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ABSTRACT

This work presents a new dynamic reliability management controller which

successfully extends the expected lifetime of Chip Multi-Processors (CMPs). This

is achieved by migrating tasks within the CMP, effectively reducing core wear and

temperature. While this does decrease performance, results obtained show that the

performance penalty is below 10% while lifetime expectancy increases are above 30%.

The estimation of lifetime is done by using a full system simulator to obtain execution,

power and temperature traces, and then feeding this data to the REliability eSTimation

(REST) tool. REST uses a Monte Carlo based algorithm to estimate the Mean Time To

Failure (MTTF) of the CMP according to aging mechanisms which affect the transistors.
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1. INTRODUCTION

The continuous miniaturization of devices has enabled many advancements in pro-

cessing power and portability, but at the same time has introduced many difficulties which

did not exist before - reducing the transistor size increases transistor count and thus power

density, leading eventually to dark silicon and the necessity for advanced methods of

managing power, temperature and reliability of CMOS devices.

It is reasonable to state that managing reliability is of great importance for practical

purposes. A good reliability management scheme will also manage temperature, power

and other factors as a direct consequence, and is of great value for the average end user;

a device with a short useful life and low reliability will be ultimately undesirable, no

matter how good it performs. Additionally, aging mechanisms may also cause performance

degradation and reduced fault tolerance. Because of this, researchers from both industry

and academia recognize that reliability is becoming a primary design concern in current

integrated circuits [1, 2].

Among the factors that will contribute to the aging of CMOS devices, we have

process variations, different workloads, operation environment and many others. They

will also cause varying on-chip temperatures, which will contribute to an overall decreased

reliability. Since most of these factors cannot be known at design time, a dynamic method

is required. So, to properly address the problem of managing lifetime reliability, two main

goals need to be achieved:

1. Estimate lifetime reliability.

2. Development of hardware and software techniques for improving the system lifetime.

Previously, reliability has been addressed by employing fault tolerance for either the

communication units (such as buses or the NoC) or the computation unit. While they have

their merits, designs that do not consider the system as a whole will lack accuracy and will

1



be sub-optimal at best. Chapter 7 shows this clearly, by evaluating the difference between

considering or not the NoC in the reliability design. Since it is a primary communication

medium for CMPs with tens, hundreds, and even thousands of cores [3, 4], ignoring it will

have major impact in most modern CMPs.

This work proposes a successful new dynamic reliability controller, which accurately

estimates the lifetime expected using an Artificial Neural Network (ANN) and reacts to

feedback from the Chip Multi-Processor (CMP) in order to achieve noticeable gains in

reliability with low performance penalties.
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2. FIGURES OF RELIABILITY AND REVIEW OF AGING

MECHANISMS

Proper control of any aspect of a system will depend on a well designed closed loop

control system - as has been done in many dynamic power [5]-[8] and thermal [9, 10]

management schemes. This simple control system is shown in Fig. 1.

Fig. 1. Generic closed loop control system.

The main issue with controlling the reliability of a system is the question of which

metric to use, as there are many options. As examples, availability, data integrity, MTTF,

MTTR and others can be mentioned and have been used to quantify reliability.

From the average end user point of view, all that really matters is whether or not

a system is working properly; to measure this, one can define the function R(t), which

indicates the expected lifetime remaining at any given time t. It is a upside-down bathtub

curve, as it is inversely proportional to failure rates; Fig. 2 shows an example. We can then

obtain the Mean Time To Failure (MTTF) by integrating R(t):

MTTF =

∫ +∞

0

R(t) dt. (1)

3



Fig. 2. Expected lifetime remaining R(t).

Thus, if our intent is to maximize the probability that a system will work properly at

any given time t, our main goal is to maximize the MTTF - which has been one of the most

popular measures for reliability.

Significant work has been done to estimate the reliability of single-core processors,

multi-core processors [11]-[15] and computer networks [16], while the reliability of

NoCs has only recently been studied [17]-[19]. There is also work specific to reliability

aware design [20]-[26]; however, most of this work is done with many assumptions to

make analytical calculations easier, such as considering uniform device density, identical

vulnerability of the devices to failure mechanisms and that the statistical distribution that

represents those failure mechanisms can be approximated by an exponential distribution

[11]-[14]. Those assumptions may generate significant error in the final figures of lifetime

reliability [27], and thus better ways to calculate those figures are needed to provide an

accurate estimate for the control system. Additionally, communication and processing units

are considered separately, which also cause discrepancies in reliability [28].

4



To begin to understand how to properly calculate and control the reliability of a

system, it is necessary to first understand what are the mechanisms that cause it to age

and fail.

2.1. Time Dependant Dielectric Breakdown (TDDB)

With the constant drive for lower voltages and higher speeds, the thickness of the

gate oxide in CMOS transistors has decreased dramatically over the years. With the

reduced dimension comes a reduced threshold to the electric field that causes a breakdown;

where the oxide no longer properly insulates the gate terminal. Under normal operating

conditions, charges will tunnel through the oxide, eventually becoming trapped in it, as

shown in Fig. 3.

Fig. 3. Charges being trapped in the oxide due to tunneling current.

With time, more and more charges will be trapped in the oxide, which is called the

build-up stage. When sufficient charges are trapped in the oxide, the electric field will be

higher than the threshold of the oxide, causing it to break down and the current to increase,

as shown in Fig. 4.
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Fig. 4. Trapped charges causing dielectric breakdown.

This breakdown will cause the oxide to conduct large currents, which will heat it up

and cause it to conduct even more current. This positive feedback loop will eventually

destroy the dielectric, in the stage known as the runaway stage. Because of these

characteristics, a device can suffer a hard breakdown or various soft breakdowns before

the final hard breakdown occurs [29].

Since temperature will cause the tunnelling current to increase - which will increase

the number of trapped charges - it is natural to deduce that the expected MTTF of a device

due to TDDB will decrease with temperature increases. This is shown by (2), which

models the mechanism. In this equation, a = 78\b = −0.081K−1\X = 0.759eV \Y =

−66.8eV K\Z = −8.37e−4eV , V is the supply voltage and T is the temperature in Kelvin

as in [11, 30].

MTTFTDDB ∝
(

1

V

)a−b′T
e
X+Y

T
+ZT

kT . (2)
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2.2. Negative Bias Temperature Instability (NBTI)

When negative voltages are applied to the gate, it will in time experience an increase

in threshold voltage and a degradation in transconductance, drain current and mobility

[31]. While pFETs are obviously more vulnerable to the effect due a negative voltage

being present at the gate during normal operation, nFETs may experience the effect since

they can have negative voltages applied to the gate when in the accumulation regime.

These effects will occur due to the creation of interface traps by negative bias and

elevated temperatures. The model for the MTTF due to the NBTI mechanism is shown in

(3), where A = 1.6328, B = 0.07377, C = 0.01, D = −0.06852, β′ = 0.3 and T is the

temperature in Kelvin as in [11, 32].

MTTFNBTI ∝
{[

ln

(
A

1 + 2e
B
kT

)
− ln

(
A

1 + 2e
B
kT

− C
)]

T

e
D
kT

} 1
β′

. (3)

2.3. Electromigration (EM)

When electrons collide with the metal ions in the interconnects, there is a transference

of momentum, as shown in Fig. 5(a).

With sufficient momentum, the atoms are going to be permanently displaced, causing

the interconnects to increase resistance, short with other interconnects or open completely,

as shown in Fig. 5(b). It is easy to see that this effect will be accelerated by current density

- which will increase the number of collisions - and by temperature. The model for the

MTTF shown in (4), also makes that clear.

MTTFEM ∝ (J − Jcrit)−ne
EaEM
kT . (4)
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Fig. 5. Electromigration effects.
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In this equation, J is the current density, Jcrit is the critical current density for

electromigration, n depends on the material of the interconnect and EaEM is the activation

energy for electromigration of said material.

2.4. Other Failure Models

Many other failure models that need to be considered may be discovered in the future.

While this thesis is making use only of the models for NBTI and TDDB since they have the

most effect with regards to temperature and voltage, it is very straightforward to modify the

algorithms slightly to consider more failure models, whatever their statistical distribution.

2.5. Failure Models and Device Area

One important fact to keep in mind is that all aging models shown above are specific

to each and every transistor present in the device. While calculating and joining the

MTTF for each transistor will result in the reliability of the device, that would be highly

impractical, especially given the number present in modern devices. Thus, it is easier to

adjust the equations such that all transistors with the same temperature are accounted for,

resulting then in the MTTF for the module they represent. The model equations will then

be updated according to (5).

MTTFAreaFailureModel ≈
MTTFFailureModel

Area
. (5)

2.6. Combining Failure Models

To properly combine the failure models to obtain the MTTF for the whole system,

the first problem to be faced is how to combine every aging mechanism based only on

their mean values. If the failure models had exponential distributions, combining them

to provide a single reliability figure would be straightforward using the SOFR model;

however, this is not the case, since they are best described by Weibull or lognormal

distributions. This means that the assumption of exponential distributions will lead to

inaccuracies.
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Additionally, if they were all Weibull distributed, one could apply the Minimum

Closure [33] and obtain the new mean by using (6).

MTTFcombined = Γ(1 +
1

β
)

 n∑
i=1

(
Γ(1 + 1

β
)

MTTFi

)β
− 1

β

. (6)

This, however, relies on the assumption that the β parameters (which is the Weibull

shape constant) are equal for all, and also that all failure models are Weibull distributed.

Unfortunately this is not the case, since some are Lognormal distributed, and new models

may be discovered in the future with other distribution patterns. With that in mind, to

calculate the actual value, it is necessary to make use of a Monte Carlo type simulation.
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3. CALCULATION OF FAILURE RATES USING THE MONTE

CARLO METHOD

3.1. Temperature Based Failure Rates

As seen on the results presented on the previous chapter, the MTTF of a system will

be dependent on the temperature and voltage to which the silicon is subject. However,

analytically calculating the expected lifetime of the system is not such a simple task.

For one thing, we cannot assume that the system has uniform temperature. Temper-

atures can and will vary from core to core, but it will also not be uniform inside the core

itself. Additionally, we are assuming the statistical modelling for the failure rates is of such

complexity that calculating the mean lifetime of the system is not trivial given the mean

lifetimes of the components. This is the case where you have different distributions for

different failure models (e.g. Weibull and lognormal). Thus, the mean failure for the cores

and for the system need to be calculated through a Monte Carlo simulation.

3.2. Serial Failure Model

The first thing to consider is how eventual failures will affect the system. In this

work, the serial failure model is considered, where a failure in any of the subcomponents

will result in the failure of the system; which means that the system is not fault tolerant.

As an example, consider the system shown in Fig. 6: A failure in module 4 will generate

a failure in the whole system, independent of whether or not all of the other modules are

working. Thus, having the failure times of the individual components, to obtain the failure

time of the system it is only necessary to find the minimum value, as presented in (7).

tfsystem = min{tf1, tf2, tf3, ..., tfi}. (7)
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Fig. 6. Serial failure model: System failure occurs at earliest failure.

The method can be adapted, however, to systems where some sort of fault tolerance

is present (for example, in systems with redundant cores) by simply considering a failure

only when all of the redundant modules fail. This will complicate the method somewhat,

but calculation of the MTTF is still possible.

3.3. Failure Times Generation

In order to use (7) to generate the system failure times and then compute the MTTF,

it is necessary to first generate the failure times for each of the modules. In the previous

chapter, these failure times will depend on temperature, voltage and each of the aging

mechanisms considered, and they are modelled by different distributions such as the

Weibull and the lognormal. So to generate each instance of failure, it is necessary to use

a random number generator that generates these numbers according to a distribution of

choice.
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However, generating random numbers according to specific distributions is not trivial.

Most random number generators generate uniform distributions in the [0,1] interval; so it

is easier to map this uniform distribution to generate the chosen distribution. To do that, we

make use of the fact that the CDF of any distribution will fall into the same [0,1] interval.

The Weibull CDF is given by (8).

F (x) = 1− e−(
xsample

α
)β . (8)

Rearranging the terms, we can write the sample from the CDF, as in (9). Thus, by

substituting F (x) by the uniformly distributed random variable w, we can map the random

number generator as shown in Fig. 7 via (10).

xsample = α{−ln[1− F (x)]}
1
β , (9)

xsample = α{−ln[1− w]}
1
β . (10)

Fig. 7. Mapping from a uniform distribution to a Weibull distribution.
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All that is left to do is define the values for the α and β parameters. According to

[11], we use β = 1.64 and can then calculate α according to (11), where x is the mean. In

this case, the MTTF, and Γ(.) is the Gamma function.

α =
x

Γ(1 + 1
β
)
. (11)

We can then obtain the generate instanceweibull() function, which is represented in

(12). In this equation, w is a uniformly distributed random variable in the interval [0, 1].

generate instanceweibull(MTTF ) =
MTTF

Γ(1 + 1
β
)
{−ln[1− w]}

1
β . (12)

The same logic can be applied to lognormal distributed failure mechanisms, but in

this case the CDF is given by (13):

F (x) =
1

2
+

1

2
erf

[
ln(x)−MTTF√

2β

]
. (13)

Rearranging the terms as before, we can have a generate instancelognormal() as

shown in (14):

generate instancelognormal(MTTF ) = e[MTTF+
√
2βerf−1(2w−1)]. (14)

Therefore, failure times will vary according to the subsystem temperature, voltage

and failure mode. For each combination of these factors, it is possible to generate sample

failure times that will represent the MTTF calculated analytically using the methods

described in the previous chapter. So the Monte Carlo pseudo-algorithm for the calculation

of the MTTF for the system is as shown in Fig. 8.
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Fig. 8. Monte Carlo Pseudo-algorithm.

By generating enough samples, the failure times for each of the blocks that compose

the system will approximate the desired Weibull distribution. Using this method, we are

able to generate separate failure times for all failure models and subsystems, thus being

able to calculate the system failure time.

3.4. Performance, Error and Optimizations

The Monte Carlo Method is very flexible, and can consider all sorts of statistical

models for failures, which can be almost effortlessly included in the system by utilizing the

method described. It can also be made as precise as desired, since the precision will only

depend on the amount of samples to be simulated, according to (15), where Nsamples is the

total number of samples simulated in the method.
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δMTTF ∝ 1√
Nsamples

. (15)

It is worth noting, however, that it is very slow and computationally intensive. For

example, a simulation with 108 samples takes 5 minutes to complete in a i5 2GHz machine.

However, the nature of the Monte Carlo method is one that allows for intense

parallelism, which can be explored to further reduce this time. The speedup is very close to

linear. Running the code adapted to parallel GPU computing in a CUDA enabled machine

with a K20c GPU yields a computing time of less than a second for the same 108 samples.
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4. RELIABILITY ESTIMATION FRAMEWORK

The MTTF of a system will depend on many factors, such as floorplan, temperature,

voltage and others. To obtain all of these parameters, there’s the necessity to use different

software for each task, as illustrated in Fig. 9. This Reliability Estimation Framework [28]

(or REST, for short) is capable of calculating the MTTF of cores due to select implemented

failure models.

Fig. 9. Block diagram of REST tool framework.

4.1. Cycle-accurate Simulator - GEM5

To properly test the proposed DRM technique and to evaluate the lifetime reliability

of a system, it is necessary to simulate it completely. The emulator used is GEM5 [44],

which is a combination of the M5 full system simulator [45] and GEMS, a modified version

of Ruby to support cache coherence protocols and interconnect models via Garnet [46].

GEM5 is a very powerful simulator capable of providing a cycle-accurate full system

simulation of many processor designs such as the ALPHA and the ARM [44]. In addition, it
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supports many different parameters such as the type of intra-chip communication, different

cache coherence protocols, the number of processors and many more. It is worth noting

that the simulator does have limitations: While technically there is no limit to the number

of cores it can emulate, in practice most software will correctly support only a maximum

of 4 cores. The specific software being used for this thesis supports up to 64 cores, which

is why that is the maximum number of cores used in the results. There is, however, no limit

on the cores supported by the proposed algorithm.

One other factor to be considered is that while GEM5 logs all data necessary for

the calculation of power and temperature, it does so after finishing the simulation; which

means power and temperature will only represent averages throughout the entire runtime.

This is not adequate for a system which will require real-time feedback. To circumvent this

limitation, the simulation has to be periodically stopped and all desired data dumped and

subsequently reset so that the values seen now will be averages only for that segment, as

shown in Fig. 10.

The interval between pauses shown in Fig. 10 can be adjusted arbitrarily depending

on the level of precision required.

4.2. Power Calculations - McPAT

GEM5 will provide the power consumed by each of the NoC routers, but it will not do

the same for the power being consumed by the cores themselves. To do that, it is necessary

to use McPAT [48], which is a power estimator. It will use all of the information provided

by the system simulator and additional information about the fabrication process to provide

power data for all of the units in a core for all different cores in the MPSoC, as shown in

Fig. 11.

4.3. Temperature Calculations - HotSpot

Having all of the powers corresponding to the sub-blocks of each core, it is then

possible to calculate the temperature of each of these sub-blocks, as shown in Fig. 12.
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Fig. 10. Execution of a benchmark in GEM5 with interruptions.

To do this, all of the results obtained with McPat are fed into HotSpot [49], which is

a fast and accurate thermal model that uses an equivalent circuit of thermal resistances and

capacitances for each of the micro-architecture blocks in order to compute the temperature

at each quantized interval of computation.

To correctly compute the temperatures at each core, HotSpot needs the floorplan and

the thermal characteristics of the heat extraction device (heatsink). Since the floorplan is

divided into each sub-unit of every core, they are treated as being uniform - which means

that each will be considered as having a single temperature in the whole area of the sub-unit.

This also helps computing MTTF.
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Fig. 11. Conversion of timing and cycles data to power by McPAT.
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Fig. 12. Conversion of power to temperature by Hotspot.
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Additionally, the heatsink cannot be kept constant for CMPs with different core

numbers. A CMP with 8 cores will dissipate much more power than one with 2 cores

(provided they are the same architecture and fabrication process), so the heatsink must

be adjusted accordingly. Since this thesis will compare a few CMPs with different core

numbers, the best way to ensure the results will not depend on the heatsink variation is to

set the heatsink according to the number of cores. To do so, the heat extraction capabilities

were increased according to the number of cores - meaning the heatsink for a system with

8 cores will have better heat extraction than the heatsink for a system with 2 cores.

It is also important to check if the heatsink for a single core (which will be used

as a base for all the other systems with more cores) is adequate. Temperatures of the

system should never surpass reasonable operating temperatures (usually below +140 ◦C),

but actual maximum temperatures will depend on the specific SoC in use.

4.4. Failure Times Generation and Obtaining System MTTF

All of the temperatures and voltages for the systems’ sub-blocks are used to calculate

its MTTF. Then, using the method shown in Chapter 3, failure times are generated for each,

and the minimum failure time is selected as being the failure time for the whole system, as

shown in Fig. 13. The process is repeated as desired, obtaining in the end the entire system

MTTF.

However, this MTTF obtained should be multiplied by a calibration constant which

will be responsible to bring the reliability figure to the actual value in terms of a time unit.

This is because there are many variations in the manufacture of the CMP that cannot be

accounted for; and need, thus, be determined empirically.
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Fig. 13. REST system flowchart.
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5. ESTIMATING CORE RELIABILITY USING NEURAL

NETWORKS

In order to be able to effectively maintain the system reliability above a desired

threshold, it is important to be able to calculate it quickly and with minimal effort. The

Monte Carlo method is very precise, but is computationally intensive and slow. Therefore,

a quick method is required to be able to correctly react to the changes in core temperature

while minimally affecting performance.

Artificial Neural Networks (ANNs) are perfect for this task as they involve very few

operations and can be trained at design time to represent any function or data set. They are

also able to approximate and generalize results for inputs which they were not trained for,

within reason. One of their most interesting characteristics, however, is that their training

can be reinforced or completely redone if the need to do so arises, giving them a very high

degree in flexibility.

5.1. Review of Artificial Neural Networks

ANNs were inspired by the capability and functionality of the biological neuron, and

they try to copy its behaviour as close as possible. The inputs are treated as receiving

neural synapses. There is an activation function and an output synapse, which may or may

not connect to other neurons. By using methods of reinforced learning, the ANN can be

made to represent a function which is not known in advance or that is too complex to be

calculated analytically.

The diagram for the neural cell is presented in Fig. 14. The output u can be calculated

directly (16).

u = f(b+
n∑
i=1

Xnwn). (16)

24



Fig. 14. Diagram of a Neural Cell.

Since the synaptic weights are essentially constants when the neuron is not in

training, the datasets and functions the neuron will be able to represent will depend almost

exclusively of the activation function f(u). As an example, if the activation function is

linear; such as f(u) = u, the neuron will excel in representing linear functions of the

inputs, but will have unacceptable error when representing, for example, a second-order

function.

Since it is difficult to choose an adequate activation function, as often information

about the function or dataset to be represented is not known, the solution is to add more

neurons. This is done by adding hidden layers, which have this name because they do not

have synaptic outputs, but only synaptic connections to other neurons. A representation of

a ANN with hidden layers is shown in Fig. 15. This more complex network is capable

of representing complex functions and datasets without needing to preselect an adequate

activation function. Usually, the activation function for the hidden layer neurons is the

SigTan function, and the activation function for the output layer is the linear function.
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Fig. 15. Diagram of an MLP.

The output of neuron when it is created is very much like a variable that was not

initialized properly; it is random in nature and not of much use. Therefore it is always

necessary to subject it to a learning process before it can accurately represent a dataset or

function. The method used in this thesis is called backpropagation, where errors detected in

the output of the neuron are propagated back to their origins, reducing the synaptic weight

of the inputs related to the error.
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Fig. 16. Example neuron with back propagation training path.

As an example, suppose the single neuron of Fig. 14 has two inputs, X1 and X2.

This will result in the ANN shown in Fig. 16. For every pair (X1, X2), there exists a target

output U . To train the neuron using backpropagation, every time a pair (X1, X2) generates

an output U + ε, that error ε is propagated backwards towards the inputs changing the

synaptic weights. Therefore, for every training input pair where there is an output error, the

synaptic weights and bias are updated according to (17) and (18).

winew = wiold + εαLXi. (17)

bnew = bold + εαL. (18)
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In these equations, αL is the learning rate; it determines the magnitude of the synaptic

weight change. Raising it will lower training times, but will increase the chance that

the training will not converge (i.e., reach the optimal point); lowering will then increase

training times, while increasing chance of convergence. When an ANN has done this for

every training input once, it is said it endured an epoch of training. This will be repeated

until an arbitrary stopping point, which can be the number of epochs, the output MSE or

any other. The pseudo-algorithm for learning is presented in Fig. 17.

Fig. 17. Backpropagation learning pseudo-algorithm for ANN.

For ANNs with one or more hidden layers, the methodology for backpropagation

training is the same, but with the added difficulty that the activation function of the neurons

in the hidden layer is non-linear. There are many methods for weight update in this case.

The algorithm used in this thesis is a second order algorithm shown in Fig. 18.
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Fig. 18. Backpropagation of error in ANN with one hidden layer.

5.2. Artificial Neural Network Topology and Training

The number of neurons and the geometry of their synaptic connections is called

their topology. This aspect will have an impact on all of the ANN characteristics, such

as generalization capacity, error and training time. There are many techniques for topology

optimization [42, 43], and obtaining the best topology for each application is a complex

problem. For the task of estimating either core or system MTTF, it is necessary that the

selected topology have a low error and be fast; there is little need for good generalization

since data for training the neural network can be generated with as much precision

as needed, and within the boundaries of the possible system input parameters such as
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temperatures and voltages. This means that any temperature that can be reported by the

system will have been seen by the ANN during training.

Because of these requirements, it is interesting to keep both the number of neurons

and layers at a minimum so that computational overhead can be low enough to not interfere

significantly with the system performance or reliability. Determining the minimum number

of hidden layers was done using trial and error, beginning with the minimum number; one

hidden layer and one output layer, as shown in Fig. 19.

Fig. 19. Final design of the ANN to estimate core MTTF.

The initial number of neurons was chosen arbitrarily. After this first topology design

is ready, it is necessary to train the ANN to verify whether or not its performance is

satisfactory. Should it not be, the number of neurons can be increased, and, ultimately,

if it is still not performing adequately, the number of layers can then be increased.
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In order to train the ANN, the REST framework is used to generate the input and

target training vectors. The input vector is composed of all possible combinations each

core can have regarding temperature and voltage. It is possible to include other parameters

that would affect reliability (such as load, air temperature, cooling capacity and others) but

the addition of these parameters will come at a cost: Not only the training time and input

data set will grow exponentially, but it may also require the ANN to have more layers and

neurons. In case the input data set due to added parameters becomes too big to be practical,

some data can be left out to force generalization by the ANN.

5.3. Training Results and Implementation

While the REST framework can calculate the estimated MTTF of a core or a system

based on the individual temperatures of each subunit, the ANN has the disadvantage of

relying on the reported temperatures of sensors scattered on the chip. In practice, devices

will not have dozens of temperature sensors - but only a select few in strategic places. This

has to be considered in both using and training the ANN, since the training epochs will

need to represent every possibility of what these thermal sensors will report.

To do that, REST generates a training epoch with the MTTF being calculated via

the Monte Carlo method for all possible temperatures in the operating range, and it also

generates what would be the temperature seen by the thermal sensor. Additionally, the

ANN was trained to the systems being used in this paper; specifically, the ALPHA 64

cores. However, the ANN is flexible enough to be used for most similar CMPs, if the

correct training is given. The training algorithm for MATLAB is shown in Appendix A.

Passing the training epochs through the ANN presented in Fig. 19, we obtain the

metrics shown in Fig. 20.

Since the ANN was able to reproduce the results obtained by the REST framework

with very low MSE, it is an accurate representation of the MTTF for each of the cores.

After the ANN is trained, all that is needed is to implement the trained model into
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the migration controller. This is done by simply transferring the input weights into the

migration controller and calculating the output as shown by (19).

MTTFneural =
2∑
i=1

wioutput
 2

1 + e
−2

N∑
j=1

(wjInputj+bj)

− 1

+ bioutput

 . (19)

In (19),MTTFneural represents the output of the network, being the estimated MTTF

for the core. The woutput parameters are the synaptic weights of the output layer, and the

w parameters are the synaptic weights of the hidden (input) layer. Similarly, boutput and bj

represent the bias weights of the output layer and hidden layer, respectively. N represents

the number of inputs, which in this case represents the number of temperature and voltage

sensors.

The neural network can easily be expanded to include more feedback metrics from

the SoC (such as workload and other performance counters) so as to improve MTTF esti-

mation. Additionally, the learning technique explained could be implemented to be done

on-line and programmed to respond to different factors, creating an adaptable reliability

mnagement scheme.

32



Fig. 20. Performance metrics of the ANN training for MTTF estimation.
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6. TASK MIGRATION BASED DRM

To properly control any system, the most efficient way is to get some form of

feedback from either the variables you want to control or at the very least from correlated

ones. Thus, since our goal is to control the MPSoC MTTF, it is necessary to calculate the

MTTF of the system and feed it into a control system that will vary the inputs. The generic

structure for such a controller is shown in Fig. 21.

Fig. 21. Generic diagram for a reliability controller.

Acquiring data from the CMP, the reliability controller can then make decisions and

adjust the input parameters (the ”knobs”) as necessary.

6.1. Processes Effect on Thermal Profiles

One important thing to consider is that different tasks will have different thermal

effects on a given core. Depending on memory accesses, arithmetic operations performed

and many other factors, hotspots may be generated in different parts of the core, as the

example noted in Fig. 22. This example shows the temperatures of different units in

the floorplan of an Alpha EV6 21264. Task 1 contains mostly floating point operations,

and Task 2 contains mainly integer operations. These hotspots and the overall different

34



temperatures generated will cause the cores to wear out unevenly; and, since the first core

to fail will cause the entire system to fail, it is important for maximizing reliability that all

cores wear out uniformly.

Fig. 22. Different tasks having different hotspots.

6.2. Managing Reliability

Managing overall temperature will certainly help increase reliability, but will do

nothing to achieve uniform wear. Thus, an alternative is to assign tasks based on the

processor wear; This is an interesting concept, but it will come with a performance penalty,

since tasks that need to communicate with each other will most likely not be in the optimal

position to reduce traffic on the NoC.

35



Because of this, it is easier to manage the system based on the user requirement. If

the user has no need for system reliability, tasks are free to be allocated with performance in

mind. If, however, a higher reliability figure is desired, the system can then relocate these

tasks, promoting wear levelling and lower hotspots. This provides greater flexibility, and

causes performance penalties only when it is necessary for the user. Since the controller

will need to act on the tasks at any given moment, the best choice is to be able to remap

tasks to a different core. Fig. 23 shows such a controller, which takes as inputs the desired

user reliability and parameters from the CMP that make it able to calculate said reliability.

Fig. 23. Task migration controller with reliability estimation module.

Periodically, the migration controller will poll the CMP for performance characteris-

tics and, if necessary, remap tasks to more reliable cores in order to keep system reliability

above the set target. There are many possible ways to choose which tasks will be remapped
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(and to which core), but in order to keep performance penalties at a minimum, we chose

to simply remap the task contained in the core with the lowest MTTF to the core with the

highest MTTF. This process is shown in Fig. 24.

Fig. 24. Task migration controller flow.

This migration process will occur every time the system reliability is below the

desired target. Because of that, both reliability and polling/migration intervals must

be set correctly to avoid severe performance penalties. Too short polling intervals will
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cause severe performance penalties because of excessive migration (if below target) and

computation of each core MTTF, and too long intervals will cause the system to violate

reliability targets very often.

An alternative would be to make these intervals dynamic; shortening them when

system reliability gets lower and increasing them when they get higher. For this work, the

polling interval was set as a constant.

6.3. DRM Implementation

The proposed DRM can be implemented both in hardware and in software. For

testing and flexibility, we decided to implement the migration controller in software; this

is very flexible in that minor adaptations are needed in order to implement it in existing

systems, and it can easily be updated when new techniques are developed. It will, however,

not be ultimately as efficient as a hardware implementation, since the software will need to

make use of a core to compute the reliability estimates.
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7. REST AND DRM RESULTS

The REST framework serves two purposes: to generate reliability data specific for an

MPSoC floorplan so as to train the corresponding ANN and to be able to simulate reliability

figures for testing of the proposed DRM scheme.

7.1. Testbed System and Benchmarks

For testing of the proposed DRM scheme, it is fairly challenging to predict what the

user behaviour will be; the best we can do is to assume a default set of workloads and

a system that tries to represent the average user. Because of the availability of support

and floorplan data on the ALPHA 26264 processor, it was the processor of choice for the

simulations. The ALPHA core used on the testbed system is shown in Table 1.

Table 1. ALPHA core MPSoC parameters.

Parameter Value
Core (Frequency, VDD) Alpha EV6 21264 (1 GHz, 2 V)
Branch predictor 2-bit counter
Reorder buffer 80-entries
L1 ICache 32KB
L1 DCache 64KB
L2 2MB
Network 2D regular mesh, 1 router per core
Link bandwidth 32 bits
Routing algorithm XY
Number of virtual channels (VCs) 2

To properly test the system under load, we have chosen to utilize the PARSEC set of

benchmarks. This set of benchmarks provides a decent load in the system and is repeatable

and not too time-consuming; most benchmarks used are finished before 24 hours of real-

time simulation.

In addition, to further test the proposed technique, the DRM was also used in a quad-

core Intel i7 processor, which is shown in Table 2. The benchmark running in the i7 core
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is the open-source y-cruncher, which computes π with arbitrary precision and is multi-

threaded.

Table 2. Intel i5 system parameters.

Parameter Value
Core (Frequency, VDD) Intel i5 3200 (3GHz, 1.2V)
Operating System Ubuntu 13
Kernel Modified 22.4.1
RAM Size 16GB
Chipset X58

7.2. Using the REST Framework to Evaluate NoC Floorplan Design Impact on

Reliability

One very important design consideration to be made is the floorplan of the core.

In respect to reliability, the floorplan is important because it will change the location of

hotspots, which may reduce or improve reliability. Fig. 25 illustrates this, by showing two

cores. Core 1 has all arithmetic units clustered together, which generates a massive hotspot

which will reduce lifetime dramatically (since MTTF will exponentially decrease with

temperature). Core 2, however, processes the same tasks with a much higher reliability.

This is because spacing out very powerful intensive logic units with units that do not

produce as much power will make the latter behave as heatsinks, effectively evening out

the temperature across the core.

With that in mind, we then use REST to verify what is the impact of the location

of the router in the core. They cannot be moved to many positions in the core, having to

mainly stick to the edges. Thus, we evaluate reliability when assigning the router to two

positions; in the side of the core, or on top of it, as shown in Fig. 26.
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Fig. 25. Hotspots in two cores with different floorplans.
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Fig. 26. Two different locations for the NoC router.

The area occupied by the router will vary depending on the number of ports and

buffer size, but we chose one that is 20% of the area of the core, based on the discussions

and designs in [53, 54]. To verify the difference between the two router locations, several

PARSEC benchmarks were run (Blackscholes, Facesim, Canneal and Swaption) in a

MPSoC composed of 4, 16 and 64 ALPHA EV6 cores. To properly ensure that all cores

would run threads, all benchmarks were run with 64 threads (for all MPSoCs, even those

with less than 64 cores). The results are shown in Fig. 27.
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Fig. 27. Relative comparison of MTTF due to router location.

All of the results shown are normalized to the lifetime of the case where the router

is by the side of the core (Fig. 26(b)). We can easily see that the difference between

both configurations is very small, usually not exceeding 2%. This may be because the

benchmarks used did not have sufficient communication to stress the NoC, and thus would

not generate enough heat to create local hotspots. It can be noted however that all the cases

where the router was on top (Fig. 26(a)) - which means it was right next to the processing

unit; performed worse, even though by a small margin. This suggests that placing the router

as far away as possible from the core will help reliability by reducing local hotspots.

7.3. Evaluating NoC Presence Impact on Reliability

Previous reliability models did not account for the NoC, obtaining a optimistic figure

for the reliability of the system. To evaluate how accurate the assumption that the NoC

impact on reliability is negligible, REST was used to estimate the reliability figures of

the same system used for determining NoC floorplan impact in reliability. The results are

shown in Fig. 28. The router position for all of the simulations was that of Fig. 26(b).
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Fig. 28. Relative comparison of MTTF when the NoC is considered or not.

It is easy to see that the difference in the reliability when NoCs are not considered is

very high, reaching close to 60%. This is because the production of power by the router

is not negligible; previous study has shown that processors and routers alone can generate

temperatures of up to 77.9 ◦C and 68.6 ◦C, respectively, while when considered as one unit,

the peak can reach up to 104.7 ◦C [55].

This indicates that reliability schemes that do not consider processors and network

together may not be optimal.

7.4. Proposed DRM Scheme Results in GEM5 Simulation

Using the DRM scheme and the migration controller proposed in the previous

chapter, we ran simulations for the same PARSEC benchmarks used previously. The CMP

is composed of 16 ALPHA EV6 cores, arranged in a 4x4 grid with a mesh interconnected

NoC. Routers are positioned as in Fig. 26(b), and the configuration parameters remain

those listed in Table 1. All benchmarks were set to be executed using 16 threads, assuring

every core would be busy. The result for the run of blackscholes is shown in Fig. 29.
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Fig. 29. MTTF results for GEM5 simulation of the PARSEC benchmark blackscholes.

The results represent the ROI for the benchmark, where all of the intensive calcula-

tions are done. No action is made on the initialization, for the most part because reliability

will always be above the set target (unless the set target is unrealistic). This happens

because during initialization, there’s no more than three cores active. Each of the data

points represent the time where reliability is evaluated, and a decision is made of whether

to migrate tasks or not; thus, each data point represents the average reliability figure since

the last intervention.
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For this benchmark, the normalized reliability target is set at 7.5. It should be noted

that the set reliability target is too high, and (with the exception of one point) cannot be

achieved only with task migration. However, reliability figures are still better than without

any DRM by 50.12% on average. The benchmark spends 568 ms of system time in ROI

without any DRM scheme. With the proposed method, this time increases to 608 ms, a

6.51% performance penalty. This happens because tasks spend extra time to migrate from

core to core to even out the temperatures across the CMP; since the target is almost never

met, migration will occur frequently, which reflects in performance.

When the reliability target is reasonably set as to allow migration to only occur every

other time, the performance penalty will be reduced. This is shown in the results from the

swaptions benchmark, in Fig. 30.

Fig. 30. MTTF results for GEM5 simulation of the PARSEC benchmark swaptions.

In this case, the normalized reliability is set to 1.7, a lower target that is obtainable

with the task migration controller. It can also be seen that because of the simple feedback

path of the controller, reliability will quickly oscillate around the set reliability target when
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it is met. This could further be reduced with controlling techniques, a suggestion that is

left for future work. Since not many task migrations will be executed, the running time

of the ROI increases to 804 ms with the proposed DRM method, from an ROI time of

781 ms without any method; a performance penalty of only 2.94%. The results for two

other benchmarks, facesim and canneal, are shown in Fig. 31 and Fig. 32, respectively.

Fig. 31. MTTF results for GEM5 simulation of the PARSEC benchmark facesim.

Since the reliability target is again almost never met, it is expected that the perfor-

mance penalty is going to be higher. For facesim, ROI execution time is 2448 ms with the

method against 2319ms without it, representing a 7.28% penalty; target reliability was set

at 0.95. For canneal, ROI execution time is 524mswith the method against 480mswithout

it, representing a 9.16% penalty; target reliability was set at 2.25. All of the performance

characteristics of the proposed DRM method are summed up in Table 3.
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Fig. 32. MTTF results for GEM5 simulation of the PARSEC benchmark canneal.

Table 3. Benchmarks performance metrics.

Benchmark
[52]

Avg. MTTF
improv.[%]

Perf. Penalty
[%]

ROI Exec.
time (no
DRM) [ms]

ROI Exec.
time (DRM)
[ms]

Blackscholes 45.24 2.94 781 804
Swaptions 50.12 6.51 568 605
Facesim 32.7 7.28 2319 2448
Canneal 52.2 9.16 480 524
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7.5. Proposed DRM Scheme Results in a Current Consumer CMP

Because the proposed DRM was implemented in software, it does not require any

extra hardware to be deployed (as long as the CMP has temperature and voltage sensors,

which is true for most). To demonstrate this, it is possible to run the DRM scheme in a

common multi-core computer such as the one mentioned in Table 2. The results of the ROI

of the simulation are shown in Fig. 33. The y-cruncher benchmark is run with 8 threads,

and the reliability target is set at 1.575.

Fig. 33. MTTF results for computation of pi using y-cruncher.

The first important thing to mention is that, differently from the other graphs, the

reliability figures will not match for the beginning of the ROI, because the DRM method

will already be acting before the benchmark reaches that point. Additionally, the reliability

gains, although present, are now for this case 11.25% on average; where the performance

penalty was under 5%.

Thus, the proposed DRM method also works for current CMPs, albeit not as effi-

ciently.
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8. FUTURE WORK

While the proposed dynamic reliability management scheme is successful in main-

taining a given system reliability under certain limits, there are a few limitations to the

system.

8.1. Setting Arbitrary Reliability Goals

The first and most important limitation is the setting for the desired reliability - there’s

only so much that can be done by only migrating tasks being executed in the MPSoC. While

it’s entirely plausible that reliability can be improved by 50% or 100% (as shown by the

results in Chapter 6), setting the desired reliability to values such as 10 times more lifetime

may very well be impractical and will need different DRM techniques such as DVFS.

8.2. Wear Levelling

Task remapping can be improved further with the addition of Wear Levelling tech-

niques. In this way, all cores are worn out evenly, maximizing the probability R(t) that the

system will keep working correctly. This is because all cores will have been used the same,

and will thus have the same probability of failure.

8.3. Control Theory Techniques

It is easy to notice from the results in Chapter 6 that reliability does not stabilize at

the desired value; but instead keeps fluctuating around it. This is because a very simple

feedback system was implemented. By modelling the system in question and using results

from control theory, it is possible to design the system such that the actual reliability will

have a much smoother behaviour and maintain the desired value.

8.4. Adaptable DRM

As explained in Chapter 5, it is possible to implement a reinforced learning algorithm

in the ANN responsible for the reliability estimation of the cores. By adding more

performance metrics as inputs to the ANN and providing an on-line method of training

for the ANN, it is possible to create an adaptable dynamic reliability management scheme
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that accounts for many parameters that can only be known at the time of use; such as usage

patterns, wear, climate data, process and manufacture variations and so on. This would

be a very powerful tool for optimal solutions based on the user, as well as being able to

compensate for minor variations in fabrication and manufacture.
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APPENDIX A. TWO LAYER ARTIFICIAL NEURAL NETWORK

TRAINING ALGORITHM FOR MATLAB

1 % Neura l Network T r a i n e r

2

3 % T r a i n s a one h i dd en l a y e r n e u r a l ne twork w i t h v a r i a b l e number o f

4 % neurons u s i n g a second−o r d e r b a c k p r o p a g a t i o n method .

5

6 % F i r s t , l oad a l l t h e t r a i n i n g da ta p r o v i d e d . F i l e s h o u l d have

7 % i n p u t s and t a r g e t s

8 load T r a i n i n g D a t a . mat ;

9

10 % Number o f h i dd en l a y e r neurons

11 n e u r o n s = 2 ;

12

13 % Number o f i n p u t v a r i a b l e s

14 i n p u t v a r s = 2 ;

15

16 % Number o f o u t p u t v a r i a b l e s

17 o u t p u t s = 1 ;

18

19 % Weight and b i a s are i n i t i a l i z e d randomly

20 W1 = rand ( neurons , i n p u t v a r s ) ;

21 W2 = rand ( o u t p u t s , n e u r o n s ) ;

22 b1 = rand ( neurons , o u t p u t s ) ;

23 b2 = rand ( o u t p u t s ) ;

24

25 i t e r a t i o n s = 1 ; % S t a r t a t i t e r a t i o n 1

26 l i m i t i t e r a = 10000 ; % I n t e r a t i o n s l i m i t

27

28 % L e a r n i n g r a t e

29 a l f a = 0 . 0 0 1 ;
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30

31 % I n i t i a l i z e MSE h i g h e r than t o l e r a n c e

32 MSE = 100 ;

33

34 % I n i t i a l i z e t o l e r a n c e

35 t o l e r a n c e = . 0 1 5 ;

36

37 % S i z e o f t r a i n i n g v e c t o r

38 t o t a l t r a i n i n g v e c t o r = 10000 ;

39

40 whi le ( i t e r a t i o n s < l i m i t i t e r a ) & (MSE > t o l e r a n c e )

41

42 e = 0 ; % Error

43

44 W1L = z e r o s ( neurons , 2 ) ;

45 W2L = z e r o s ( 1 , n e u r o n s ) ; % New w e i g h t / b i a s m a t r i c e s

46 b1L = z e r o s ( neurons , 1 ) ;

47 b2L = 0 ;

48

49 f o r i = 1 : t o t a l t r a i n i n g v e c t o r

50 % C a l c u l a t e o u t p u t

51 y0 = [ input ( i , 1 ) ;

52 input ( i , 2 ) ; ] ;

53 y1 = tanh (W1∗y0+b1 ) ;

54 y2 = W2∗y1+b2 ;

55

56 d e l t a 2 = ( y2− t a r g e t ( i ) ) ; % Compare t o t a r g e t ( d e s i r e d ) v e c t o r

57

58 % Backpropaga te

59 f o r j = 1 : n e u r o n s

60 F1 ( j , j ) = ( sech (W1( j , : ) ∗y0+b1 ( j ) ) ˆ 2 ) ;

61 end

60



62 d e l t a 1 = F1∗W2’∗ d e l t a 2 ;

63

64 % New w e i g h t d e l t a s

65 W2L = W2L − a l f a ∗ d e l t a 2 ∗ ( y1 ’ ) ;

66 b2L = b2L − a l f a ∗ d e l t a 2 ;

67 W1L = W1L − a l f a ∗ d e l t a 1 ∗ ( y0 ’ ) ;

68 b1L = b1L − a l f a ∗ d e l t a 1 ;

69

70 % Error squared

71 e = e + ( y2− t a r g e t ( i ) ) ˆ 2 ;

72

73 vMSE( i t e r a t i o n s +1) = e / t o t a l t r a i n i n g v e c t o r ;

74

75 end

76

77 % Update w e i g h t s and b i a s

78 W1 = W1 + W1L;

79 W2 = W2 + W2L;

80 b1 = b1 + b1L ;

81 b2 = b2 + b2L ;

82 e = e / t o t a l t r a i n i n g v e c t o r ;

83 MSE = e ;

84 i t e r a t i o n s = i t e r a t i o n s + 1 ;

85

86 % Cross v a l i d a t i o n

87 i f vMSE( i t e r a c o e s ) > vMSE( i t e r a c o e s −1)

88 break ;

89 end

90

91 end

92 % Neura l Network i s t r a i n e d !
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