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ABSTRACT 

Cloud computing is anticipated to revolutionize the Information and Communication 

Technology (ICT) sector and has been a mainstream of research over the last decade. Today, the 

contemporary society relies more than ever on the Internet and cloud computing. However, the 

advent and enormous adoption of cloud computing paradigm in various domains of human life 

also brings numerous challenges to cloud providers and research community. Data Centers 

(DCs) constitute the structural and operational foundations of cloud computing platforms. The 

legacy DC architectures are inadequate to accommodate the enormous adoption and increasing 

resource demands of cloud computing. The scalability, high cross-section bandwidth, Quality of 

Service (QoS) guarantees, privacy, and Service Level Agreement (SLA) assurance are some of 

the major challenges faced by today’s cloud DC architectures. Similarly, reliability and 

robustness are among the mandatory features of cloud paradigm to handle the workload 

perturbations, hardware failures, and intentional attacks. The concerns about the environmental 

impacts, energy demands, and electricity costs of cloud DCs are intensifying. Energy efficiency 

is one of mandatory features of today’s DCs.  

Considering the paramount importance of characterization and performance analysis of 

the cloud based DCs, we analyze the robustness and performance of the state-of-the-art DC 

architectures and highlight the advantages and drawbacks of such DC architecture. Moreover, we 

highlight the potentials and techniques that can be used to achieve energy efficiency and propose 

an energy efficient DC scheduling strategy based on a real DC workload analysis. Thermal 

uniformity within the DC also brings energy savings. Therefore, we propose thermal-aware 

scheduling policies to deliver the thermal uniformity within the DC to ensure the hardware 
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reliability, elimination of hot spots, and reduction in power consumed by cooling infrastructure. 

One of the salient contributions of our work is to deliver the handy and adaptable 

experimentation tools and simulators for the research community. We develop two discrete event 

simulators for the DC research community: (a) for the detailed DC network analysis under 

various configurations, network loads, and traffic patterns, and (b) a cloud scheduler to analyze 

and compare various scheduling strategies and their thermal impact. 
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1. INTRODUCTION 

1.1.  Cloud Computing 

Cloud computing is foreseen to be the next major paradigm shift in the Information and 

Communication Technology (ICT). Today, the contemporary society relies more than ever on 

the Internet and cloud computing. Cloud investments have delivered around $4B of return on the 

investment in the last five years [1.1]. According to a report published in January 2013 by 

Gartner, the overall Public Cloud services are anticipated to grow by 18.4% in 2014 to $155B 

market [1.2]. Moreover, the total market is expected to grow from $93B in 2011 to $210B in 

2016. Cloud computing offers promising incentives to the ICT sector. Among the foremost 

incentives offered by cloud computing are: (a) ease and pervasive (anytime, anywhere) access to 

the data and applications, and (b) cost effectiveness. Significant savings in the initial Capital 

Expenditure (CapEx) and Operational Expenses (OpEx) inspire enterprises and businesses to 

adopt cloud services for their computing demands. Enormous budget for the deployment of 

computing infrastructure is no more a pressing concern for the enterprises by utilizing the cloud. 

Moreover, cloud also helps in reducing the running (OpEx) costs by (a) minimizing the required 

Information Technology (IT) staff, (b) relieving the data security and backup concerns, and (c) 

reducing the utility (energy) bills. The employees can access cloud-based services anywhere, 

anytime using smart devices. Pervasive and convenient access to the enterprise data and 

applications augment the productivity. Moreover, cloud computing also offers to procure the 

computing and storage resources when required on the fly. The enterprises can procure and 

release the cloud resource for their short-term needs based on “pay per use” policy. 
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Many enterprises and small businesses are adopting cloud for their ICT needs. In the 

“Market Trends” report by Gartner, it is estimated that the cloud-based business services and 

Software-as-a-Service (SaaS) market will increase from $13.4 to $32.2 billion from 2011 to 

2016. Similarly, Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) market is 

estimated to grow from $7.6 billion to $35.5 billion from 2011 to 2016. Besides augmenting 

various dimensions of the business and enterprise, cloud computing is also transforming various 

aspects of the social and personal life. For instance, social networking has minimized the 

communication gap, and the users are connected through cloud. Cloud facilitates the 

downloading and updating of various apps (mobile applications). Pictures, videos, files, and 

reviews are shared via cloud. Moreover, cloud gaming enables the users to play the state-of-the-

art games online at low performance endpoints, such as smart phones. Besides offering a rich set 

of online players to play with, all of the game processing and rendering is performed at cloud for 

real-time gaming. 

The benefits offered by cloud computing, such as unlimited resources at nominal prices 

are attracting the research organization to utilize cloud for their computation and data storage 

requirements. Eli Lilly, a medicine company executed a complex bioinformatics job on 64-

machines cluster at cloud that cost $6.4 only. Various research domains, such as scientific 

applications, agriculture, nuclear science, healthcare, smart grids, and e-Commerce are 

increasingly employing cloud computing for their research needs. 

1.2.  Data Centers 

The data center is a pool of computational and storage resources clustered together using 

the communication infrastructure. Data centers constitute the building blocks and underlying 
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foundations of cloud computing. Cloud computing relies on data centers to deliver the required 

resources and services. The growing adoption of cloud services mandates the growth in 

computational and storage resources. Cloud service providers already have hundreds of 

thousands of servers in their data centers. Google is estimated to have around 0.9 million servers 

in their data centers. The number of servers in the Microsoft data centers double every fourteen 

months. The number of servers in Facebook data center doubled within six months from 2009 to 

2010. Amazon cloud services are supported by a data center having around 454,000 servers. 

Growing the number of servers in the data center is not a problem. However, interconnecting 

these servers to deliver high inter-server communication bandwidth and required QoS is the 

major challenge. Today’s data centers are not constrained by the computational power; they are 

limited by the interconnection network [1.3]. 

The major Information and Communication Technology (ICT) components within the 

data centers are: (a) servers, (b) storage, and (c) interconnection network. Data Center Network 

(DCN) being the communication backbone of the data center is one of the foremost design 

concerns in the data center [1.4]. The DCN infrastructure plays a vital role to ascertain the 

performance aspects and initial capital investment in the data center. 

1.3.  Motivation and Objectives 

The DC architecture holds a pivotal role to ascertain the performance boundaries and 

initial capital investment of the cloud infrastructure. The DC architecture must ensure the Quality 

of Service (QoS) and reliability of the cloud paradigm. Therefore, appropriate analysis and 

characterization of the DC architectures is mandatory. Moreover, the concerns about the 

environmental impacts, energy needs, and electricity cost of DCs are rising. DCs are required to 
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be energy efficient and energy proportional. Therefore, energy efficient and workload 

consolidation based scheduling techniques are needed. Furthermore, enormous power 

consumption by the DC resources releases excessive heat. The DC environment needs to be 

cooled down to ensure the reliable functioning of hardware. Substantial amount of energy is 

consumed by the air conditioning and cooling infrastructure to control the thermal signature of 

the DC. Hotspots, excessive heat, and uneven thermal signature within a DC lead to energy 

wastage by the cooling unit and malfunctioning of the hardware in the hotspot areas. Therefore, 

thermal aware scheduling and dynamic workload migrations are required to maintain the thermal 

uniformity within a DC to eliminate hotspots and minimize energy consumed by the cooling 

infrastructure. Finally, detailed simulation frameworks are required to rigorously analyze and test 

the solutions proposed by the research community, as the realistic testing is economically 

unviable. Therefore, new simulation frameworks and toolkits are required to help the cloud 

research community. In our work, we aim to address the aforementioned challenges faced by 

today’s data centers and cloud paradigm. Following are some of our major objectives: 

• We analyze and characterize various data center architectures to highlight their 

advantages and drawbacks to select the most appropriate data center architecture 

to ensure the: (a) performance and (b) reliability of the cloud paradigm. We 

develop a simulation framework for performance analysis, and proposed two 

novel metrics to quantify the robustness and connectivity of the DC architectures. 

• We focus on energy efficiency of the cloud paradigm that is one of the foremost 

requirements of the cloud computing. We highlight the potentials and techniques 

that can be used to achieve energy efficiency. We also propose energy efficient 
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and thermal efficient DC scheduling strategies based on a real DC workload 

analysis. 

• We aim to deliver the thermal uniformity within the data center to ensure the 

hardware reliability, elimination of hot spots, and reduction in power consumed 

by cooling infrastructure.  

• One of the salient contributions of our work is to deliver the handy and adaptable 

experimentation tools and simulators for the research community. Today, 

negligible simulation and experimentation toolkits are available for the cloud 

research community for testing and analysis. Therefore, such simulation toolkits 

and frameworks are one of the major requirements of cloud computing research 

community. 

1.4.  Contributions 

1.4.1. Analysis and Characterization of the State-of-the-Art Data Center 

Architectures 

The legacy DC architectures, such as the ThreeTier architecture are unable to handle the 

growth and adoption trend of the cloud paradigm. Consequently, various new DC architectures 

have been proposed in the literature to overcome the challenges faced by the legacy cloud based 

DCs. However, DC architecture being the architectural and functional foundation of the cloud 

paradigm must ensure: (a) performance, (b) high cross-section bandwidth, (c) robustness and 

reliability, and (d) connectivity. Therefore, we analyzed three state-of-the-art DC architectures, 

namely: (a) ThreeTier, (b) FatTree, and (c) DCell, for performance, connectivity, and robustness. 

Fundamental aim of the analysis is to ensure the suitability, performance, and reliability for the 
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cloud paradigm, and to highlight the salient features and drawbacks of the considered DC 

architectures.  

We focused the robustness and connectivity of the DC architectures in case of failures 

and perturbations. We analyzed the three DC architectures using the classical robustness metrics. 

Our analysis revealed that the classical robustness metrics are inadequate to quantify the 

robustness of the DC architectures. Therefore, we proposed a novel robustness measures for the 

robustness quantification of the DC architectures named, deterioration. Our robustness analysis 

work is published in the IEEE Transactions on Cloud Computing [1.5]. Moreover, we performed 

the connectivity analysis of the DC architectures in case of: (a) random and (b) targeted failures. 

We proposed a new connectivity metric named, μ-A2TR. Our connectivity analysis of the DC 

architectures is published in the IEEE Communications Letters [1.6]. 

Besides robustness analysis, we develop a simulation framework to implement the DC 

architectures and performed rigorous simulations in various scenarios and traffic patterns. We 

tested 222 different configurations for the aforementioned analysis to quantify the network 

throughput and delay. Our work is published in the Concurrency and Computation: Practice and 

Experience journal [1.4]. 

1.4.2. Energy Efficiency in the Cloud based DCs 

Data center consume around 30% – 80% more energy per square meter as compared to a 

traditional office space. Energy cost of a data center dominates the total Operating Expenses 

(OpEx), for instance around 45% of total OpEx in the IBM. Similarly, the concerns related to 

environmental aspects and Green House Gases (GHG) footprints of data centers are also 

intensifying. Therefore, energy efficiency is one of the most required and crucial features of 
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today’s data centers. The cloud resources are overprovisioned to handle the peak load. Therefore, 

a plenty of resources remain idle within DCs most of the time. As reported by the IBM, around 

85% of the computing capacity of the distributed systems remains idle. We reviewed various 

potentials in the state-of-the-art DC architectures that can be exploited to save energy. We 

published thorough reviews on energy efficiency potentials and challenges in DC architectures 

and DC networks in Future Generation Computer Systems [1.7], Cluster Computing [1.8], and 

IEEE FIT’13 [1.9]. 

We analyzed a real data center workload and observed that most of the time the servers 

remained idle. Consolidating the workload on fewer servers and placing the idle servers into 

sleep mode depicted potential to save substantial amount of energy. Therefore, based on our real 

workload analysis, we proposed a Data Center-wide Energy Efficient Resource Scheduling 

framework (DCEERS) that schedules data center resources according to the current workload 

demands of the DC. Our work has been published in the Cluster Computing journal [1.10]. 

1.4.3. DC Thermal Analysis and Thermal Aware Resource Scheduling 

We analyzed a real data center workload and thermal signatures to find the thermal 

impact of the resource utilization within a DC and its ambient effects. We aim to employ, 

Statistical models, such as mean procedure, correlation, and VARMAX model to find thermal 

effects of resource utilization. The facts discovered from the thermal analysis of the real 

workload were employed to define a thermal aware resource allocation and migration strategy to 

ensure the uniform thermal signature within the DC. The said strategy depicted thermal 

uniformity across the DC resources reducing the excessive energy used by the cooling 
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infrastructure in case of uneven thermal signature, and increase the reliability and life of the 

hardware resources.  

1.4.4. DC Experimentation and Simulation Toolkits 

The cloud based DCs face various challenges today. These challenges and their proposed 

solutions require detailed analysis and quantification. In this particular case, simulation is an 

appropriate solution for the detailed analysis and quantification of various problems faced by the 

DCs, because experimentation comprised of realistic DC environments are economically 

unviable. Unfortunately, network models, simulators, and schedulers to quantify the data center 

network, varying traffic patterns, and thermal impacts at a detailed level are scarce, currently. 

Therefore, we developed two discrete event simulators for the DC research community: (a) for 

the detailed DC network analysis under various configurations, network loads, and traffic 

patterns, and (b) a cloud scheduler to analyze and compare various scheduling strategies and 

their thermal impact. The aforementioned simulators will aid the cloud research community to 

implement and analyze the impact of various network protocols and scheduling policies. 
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2. BACKGROUND AND RELATED WORK 

2.1.  Data Center Network Architectures 

Data center network architecture is one of the most significant components of large-scale 

data centers, which wields a great impact on the general data center performance and throughput. 

Numerous empirical and simulation analysis show that almost 70% of network communication 

takes place within a data center [2.1]. The cost of the implementation of the conventional two-

tier and three-tier-like DCN architectures is usually too high and makes the models virtually 

ineffective in the large-scale dynamic environments [2.2]. Over the last few years, the fat-tree 

based and the recursively defined architectures are presented as the most promising core 

structures of the modern scalable data centers. On the basis of the different types of the traffic 

routing models, the DCN architectures can be classified into the following three basic categories: 

(a) switch-centric models [2.3], (b) hybrid models (using server and switch for packet forwarding 

[2.4]), and (c) server-centric models [2.5]. 

The switch-centric DCN architectures rely on the network switches to perform routing 

and communication in the network, such as three-tier architecture and the fat-tree based 

architecture [2.3]. Hybrid architectures use a combination of switches and servers that usually 

are con figured as routers within the network to accomplish routing and communication, such as 

DCell [2.4]. The server-centric architectures do not use switches or routers. The basic 

components of such models are servers that are configured as computational devices and data 

and message processing devices. 
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2.1.1. ThreeTier Architecture 

The legacy three-tier architecture is by far the most extensively used DCN architecture 

[2.6]. In the three-tier architecture, the switches are primarily arranged in three layers: (a) access, 

(b) aggregate, and (c) core (Fig. 2.1). The pool of servers is thereby connected to access layer 

switches. The core layer makes the foundation of the network tree, and each core layer switch is 

connected successively to all of the aggregate layer switches. High-end enterprise switches are 

usually used at aggregation and core layers, rendering three-tier DCN an excessively expensive 

and power hungry architecture [2.3]. Different layers of three-tier architecture are oversubscribed 

at different threshold values. Variation in the oversubscription ratio at the various network layers 

is based on the physical infrastructure. The oversubscription is de fined for optimizing the cost of 

the system design. Oversubscription can be calculated as a ratio of worst-case aggregated 

bandwidth available to end hosts and the overall bisection bandwidth of the network topology 

[2.3]. For instance, the oversubscription 4:1 means that the communication pattern may use only 

25% of the available bandwidth. The typical oversubscription values are between 2.5:1 and 8:1, 

and 1:80 to 1:240 for the paths near the root at highest level of system hierarchy [2.3]. 

2.1.2. FatTree Architecture 

The basic model of the fat-tree DCN architecture has been proposed by Al-Fares et al. 

[2.3]. The fat-tree model is promoted by the authors as an effective DCN architecture by using a 

set of commodity switches to provide more end-to-end bandwidth at a considerably lower 

monetary cost and energy consumption as compared with the high-end network switches. The 

proposed solution is backward compatible, and only requires modification in the switch 
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forwarding functions. The fat-tree based DCN architecture aims to provide 1:1 oversubscription 

ratio. 

Access 

Network

Aggregation 

Network

Core 

Network

Fig. 2.1. ThreeTier Architecture. 

Al-Fares et al. [2.3] adopted a special topology called fat-tree topology. The network 

structure is composed of n pods. Each pod contains n servers and n switches organized in two 

successive layers of n/2 switches. Every lower layer switch is connected to n / 2 hosts in the pod 

and n / 2 upper layer switches (making the aggregation layer) of the pod. There are ( n / 2 ) 2 

core level switches, each connecting to one aggregation layer switch in each of n pods.  

Pod 0 Pod 1 Pod 2 Pod 3

Edge Layer

Aggregation 
Layer

Core Layer

 

Fig. 2.2. FatTree Architecture. 
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The interconnection of servers and switches for n =4 pods is presented in Fig. 2.2. The 

fat-tree based DCN architecture [2.3] uses a customized routing protocol, which is based on 

primary prefix and secondary suffix lookup for next hop. Routing table is divided into two 

levels. For each incoming packet, destination address pre fi x entries are matched in primary 

table. If longest pre fi x match is found, then the packet is destined to the specified port. If there 

is no match, then the secondary level table is used, and the port entry with longest suffix match is 

used to forward the packets. 

2.1.3. DCell Architecture 

A recursively defined DCN architecture, referred to as the DCell model was reported in 

[2.4]. In this model, the whole system is organized in the cells or pods with n servers and a 

commodity switch. A 0 level cell DCell0 serves as the building block of the whole system. A 

DCell0 comprises of n commodity servers and a mini network switch. Higher levels of cells are 

built by connecting multiple lower level ( levell -1 ) DCells. Each DCelll -1 is connected to all of 

the other DCelll -1 within the same DCelll. The DCell provides an extremely scalable architecture. 

A 4-level DCell, having six servers in DCell0 can accommodate around 3.26 million servers. Fig. 

2.3 shows a level-2 DCell having two servers within each DCell0. The figure shows the 

connection of only DCell1[0] to all other DCell1. Unlike the conventional switch-based routing 

used in the hierarchical and fat-tree based DCN architectures, the DCell uses a hybrid routing 

and data processing protocol. Switches are used to communicate among the servers within the 

same DCell0. The communication with servers in other DCells is performed by servers acting as 

routers. In fact, computational servers are also considered as the routers in the system. The DCell 

routing scheme is used in the DCell architecture to compute the path from the source to 

destination node exploiting divide and conquer approach. Source node ( s ) computes the path 
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from s to destination ( d ). The link that interconnects the DCells that contain the s and d at the 

same level is calculated first, and then the sub-paths from s to link and from link to d are 

calculated. Combination of both of the sub-paths results in the complete routing path between s 

and d. The DCell routing is not a minimum hop routing scheme. Therefore, the calculated route 

possesses more hops than the shortest path routing. 

DCell1

DCell0

DCell2

Dcell1[0]
Dcell1[1]

Dcell1[2]

Dcell1[3]

Dcell1[4]
Dcell1[5]

Dcell1[6]

Dcell0[0] Dcell0[1]

Dcell0[2]

 

Fig. 2.3. DCell Architecture. 
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2.1.4. DCN Architectures: Issues, Solutions, and Potentials 

Servers are interconnected to each other in the recursively defined server-centric DCN 

architectures. Such DCN architectures do not use multiple layers of network switches. Therefore, 

the network links interconnecting the cells experience high oversubscription ratio (up to 256:1 

for 4096 nodes) [2.7]. The recursively defined DCNs exhibit strong reliance on the network size. 

The results of our simulation analysis show that the network throughput and inter-node 

bandwidth are inversely proportional to the network size in the DCell. Moreover, the servers also 

perform the additional task of traffic processing and routing within the server-centric routing 

model, which usually requires a dedicated processor/core. Furthermore, the routing schemes used 

in the recursive DCN architectures are usually not based on the shortest path routing. The path 

between the source and destination may possess additional intermediate hops, which results in 

higher packet delays and increased link utilization. We have simulated the DCell architecture 

with the DCell’s customized routing and shortest path routing schemes. Our simulation results, 

demonstrate that the shortest path routing outperforms the DCell’s routing in terms of network 

throughput and average packet delay. Because servers are used to inter-connect cells, the idle 

servers cannot be placed into sleep state. Therefore, Dynamic Power Management (DPM) 

techniques for energy savings are not feasible for the recursive DCNs, resulting in continuously 

full energy consumption despite being idle. Details of the simulation analysis can be seen in 

[2.7]. 

The server-centric DCNs inherently save energy that is used in the switch-centric DCNs 

by network switches. The network traffic flows may be managed by applying load-balancing 

techniques to overcome the network congestion problem. The DCell architecture also exhibits 

path diversity from source to destination. Network flow based adaptive routing protocols may 
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exploit the path diversity to select the best and most conducive path from the source to 

destination. 

The switch-centered DCNs exhibit better candidature for energy efficiency, because of 

high path overprovisioning. One of the major drawbacks of the contemporary switch-centric 

networks is the use of a large number of network switches to ensure 1:1 oversubscription ratio. 

For example, the 8-pod (128 nodes) fat-tree network requires 80 network switches [2.7]. There is 

a great deal of overprovisioning and path diversity in the switch-centric networks. Moreover, the 

average link utilization of network links is reported around 5% - 25% [2.8]. Therefore, 

underutilization of the links and path diversity may be exploited for energy efficiency. For 

instance, ALR based techniques can be very conveniently applied to save energy. Moreover, 

end-to-end path diversity offers an opportunity for network traffic consolidation and re-routing 

on a subset of links and devices. Therefore, remaining idle devices may be transitioned to the 

low power sleep mode. Furthermore, IEEE 802.3az EEE may be employed to increase energy 

savings in amalgamation with other energy efficiency techniques. 

Hybrid (electrical + optical/wireless) DCNs offer solutions to various DCN problems. 

Wireless connectivity offers a feasible solution to extend existing DCN infrastructure eliminating 

cabling cost, complexity, and installation. Wireless links can be created among server and racks 

on the fly, reducing the network load on the core network. Energy efficiency is one of the 

foremost design requirements for 60 GHz technology, resulting in energy efficient 60 GHz 

devices and technology. Wireless interconnects can be exploited to migrate the traffic from 

underutilized network devices to wireless links to place the idle devices in sleep mode for energy 

saving. Optical interconnects offer higher port density and bandwidth at considerably low energy 
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consumption. Estimated energy consumption of an optical transmitter is around 0.5nJ/bit, 

whereas the energy consumed by a high-end electrical router is around 20nJ/bit. Consequently, 

overall energy consumption can be reduced significantly. A complete optical DCN is estimated 

to deliver around 75% energy savings. Hybrid DCNs can be used to relieve the hotspots 

(congested links) in the DCN. Elephant flows and high fan in/out traffic are considered the chief 

reasons for the network congestion and performance deprivation. 60 GHz wireless flyways and 

optical circuit switched paths offer load balancing opportunities by offloading elephant flows 

from electrical switches to reduce network load and congestion. 

2.1.5. Green DCN Challenges  

New DCN architectures are required to cater to the increasing GHG emissions produced 

by the ICT sector. DCNs typically experience an average load of not more than 25% of the peak 

load. Moreover, around 70% of the time, a considerable number of the links remain idle within 

data centers [2.9]. However, the links do not remain idle constantly for long periods of time. 

Benson et al. analyzed data center traffic over a period of ten days and observed that the set of 

idle links continuously varied for the entire time period. Moreover, it also was observed that 80% 

of the links remained idle only for 0.002% of the time [2.9]. Therefore, it is important to consider 

the traffic characteristic within a data center prior to applying ALR or other energy saving 

techniques. 

Overprovisioning and underutilization of links and devices enable opportunity for energy 

efficiency techniques. However, due consideration is required to be given to the QoS and 

performance constraints. Performance degradation and increased latency may result in 

substantial revenue loss. Google reported 20% revenue loss because of an experiment that added 
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an extra delay of 500ms in displaying the search results. Amazon experienced 1% sales decrease 

because of 100ms additional delay [2.10]. Therefore, green networking initiatives must be 

reliable and ensure required performance and QoS constraints. 

Hybrid DCNs offer promising opportunities to DCNs. However, hybrids DCNs are in 

their infancy and are facing numerous challenges. 60 GHz wireless technology is limited by line 

of sight, short range, propagation loss, and signal attenuation. 60 GHz technology poses serious 

challenges in transceiver positioning, beam forming, interference due to power leaks, and signal 

reflection in densely populated data centers. Similarly, optical interconnects also experience 

numerous challenges, such as cost, scalability, link setup, switching time, and insertion loss. The 

wavelength switching time for commercially available optical switches is around 10 to 25ms. 

Moreover, hybrid networks lack sufficient efficacy for DCNs multi-tenant based mixed and 

heterogeneous workloads. Various hybrid DCN architectures make stringent overlay 

assumptions, such as that (a) flows are independent, (b) flows do not have priority, and (c) 

random hashing for flow distribution is effective. However, in practice such assumptions do not 

hold true for the DCN traffic patterns. Hybrid interconnects promise significant network 

upgrades. Aforementioned are some of the numerous unresolved challenges that pose a barrier in 

adopting hybrid technologies in data centers. 

Network protocols may be optimized or re-designed for enhanced performance and 

energy efficiency. Network-aware and energy-aware adaptive routing protocols are needed for 

better performance, high link utilization, and traffic consolidation and redirection. Moreover, 

many network services remain active to ratify their availability to periodic heartbeat messages or 

network chatter. The “interface proxying” techniques may be used to transparently transition 
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such services to sleep without affecting the network operations [2.11]. The EEE is a promising 

energy efficient technology but is still in its infancy. Efficient and reliable ALR policies are 

required to be designed for the IEEE 802.3az EEE. 

There are very little details available on characteristics of the data center traffic [2.10]. 

There is presumably no network workload generator at hand, which may generate data center 

traffic for various scenarios, such as one-to-one, all-to-all, and one-to-all, and for data intensive, 

computational intensive, and mixed workloads. A realistic data center traffic generator will 

substantially help the research community to analyze DCN under various scenarios, and tune the 

DCN for energy efficiency and reliability. 

Energy efficiency of network equipment has not increased following the Dennard’s law 

and current network equipment is not energy-proportional. Energy consumed by network devices 

in idle state is around 80% - 90% of energy consumed in peak load [2.12]. Energy proportional 

network devices are required to be designed, and can save enormous amount of wasted energy.  

The DCN is one of the most significant data center components wielding a marked 

impact on initial capital investment and performance parameters. The state of the art DCN are 

implemented at a very small scale and tested under non-realistic data center traffic [2.7]. There 

are very less comparative studies for DCNs [2.7], and presumably no comparative study of 

different DCN architectures under realistic traffic conditions. Different DCN comparative studies 

under realistic workloads are required to highlight the DCN drawbacks and future research for 

enhancement. 
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3. ON THE CHARACTERIZATION OF THE STRUCTURAL 

ROBUSTNESS OF DATA CENTER NETWORKS 

This paper is published in IEEE Transactions on Cloud Computing (TCC), vol. 1, no. 1, 

pp. 64-77, 2013. The authors of the paper are Kashif Bilal, Marc Manzano, Samee U. Khan, 

Eusebi Calle, Keqin Li, and Albert Y. Zomaya. 

3.1.  Introduction 

Cloud computing has emerged as a promising paradigm in various domains of the 

information and communication technology (ICT). Recently, cloud computing has increasingly 

been employed to a wide range of applications in various research domains, such as agriculture, 

smart grids, e-commerce, scientific applications, healthcare, and nuclear science [3.1]. Data 

centers being an architectural and operational foundation of cloud, play a vital role in the 

economic and operational success of cloud computing. Cloud providers need to adhere and 

comply with the service-level agreement (SLA) and Quality of Service (QoS) for success. Any 

violation to the SLA may result in huge revenue and reputation loss. Cloud environment is 

dynamic and virtualized, with a shared pool of resources [3.2]. Therefore, the resources in the 

data center are prone to perturbations, faults, and failures. Cloud environment and data center 

networks (DCNs) need to function properly to deliver required QoS in presence of perturbations 

and failures [3.3]. 

DCNs constitute the communicational backbone of a cloud, and hold a pivotal role to 

ascertain the data center performance and integrity [3.4]. A minor network performance 

degradation may result in enormous losses. Google reported 20 percent revenue loss, when an 

experiment caused an additional delay of 500 ms in the response time [3.5]. Moreover, Amazon 
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reported 1 percent sales decrease for an additional delay of 100 ms in search results [3.5]. 

Currently, the network robustness quantification of the widely used DCN architectures is 

unavailable. Therefore, there is an immense need to carry out such a study to quantify the 

network behavior in the presence of perturbations. A minor failure in the O2 (leading cellular 

service provider in UK) network affected around seven million customers for three days [3.6]. 

Similarly, a core switch failure in the BlackBerry’s network left millions of customers without 

Internet access for three days [3.6]. The significance of the interconnection networks is obvious 

from the aforementioned discussion, providing adequate evidences for the robustness 

requirement of the network. It can be inferred from the discussion that the network robustness 

holds a key role to ensure desired level of performance and QoS in cloud computing. In the said 

perspective, measuring the robustness of the DCN is crucial to identify the behavior and level of 

performance that a network can attain under perturbations and failure-prone circumstances. 

Therefore, DCN’s robustness is a vital measure for proven performance and fault tolerance in 

cloud computing. 

Network (or also referred to as topology) robustness is the ability of the network to 

deliver the expected level of performance when one or more components of the network fail 

[3.7]. Sydney et al. [3.8] defined robustness as the “ability of a network to maintain its total 

throughput under node and link removal”. Ali et al. [3.3] consider a system robust, when the 

system is able to operate as expected in presence of uncertainties and perturbations. System 

robustness, and network robustness in particular, has been widely discussed in the literature 

[3.7], [3.8], [3.9], [3.10], [3.11], [3.12], [3.13], [3.14], [3.15]. Network robustness metrics 

generally consider the graph theory-based topological features of the network [3.7]. Several 

metrics, such as the node connectivity, symmetry ratio, shortest path length, diameter, and 
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assortativity coefficient are used to measure network robustness. However, DCNs exhibit various 

divergences from the conventional random networks and graph models, such as heterogeneity, 

multi-layered graph model, and connectivity pattern. DCNs follow a predefined complex 

architectural and topological pattern, and are generally composed of various layers, such as 

ThreeTier and FatTree DCNs. Therefore, proper modeling of DCNs is required to measure the 

robustness. 

In this paper, we evaluate various topological features and robustness of the state-of-the-

art DCNs namely: 1) ThreeTier [3.16], 2) FatTree [3.17], and 3) DCell [3.18]. Our major 

contributions include: 

• modeling DCN topologies using multilayered graphs; 

• developing a DCN graph topology generation tool; 

• measuring several robustness metrics under various failure scenarios; 

• comparative robustness analysis of the DCN topologies and indicating the 

inadequacy of the classical robustness metrics to evaluate DCNs; 

• proposing new robustness metric for the DCN topologies. 

The robustness analysis of the DCN topologies unveiled noteworthy observations. The 

results revealed that the classical robustness metrics, such as average nodal degree, algebraic 

connectivity, and spectral radius are unable to evaluate DCNs appropriately. Most of the metrics 

only consider the largest connected component for robustness evaluation. Consequently, the 

metrics are unable to depict the factual measurements and robustness of the network. Moreover, 

none of the DCNs can be declared as more robust based on the measurements taken: 1) without 
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failure and 2) under various failure scenarios. Therefore, we present a new metric named 

deterioration to quantify the DCN robustness. 

3.2.  Graph Definitions for DCN Architectures 

3.2.1. Previous Definitions 

Kurant and Thiran proposed a general multi-layered graph model in [3.24]. The authors 

elaborated that although networks are deliberated as distinctive objects, these objects are usually 

fragments of complex network, where various topologies interdependently interact with each 

other. The authors defined two layers of the network: 1) physical and 2) logical. The physical 

graph represents the lower layer topology, and the logical graph represents the upper layer 

topology. Each logical edge exhibits mapping on the physical graph as a path. Because the 

number of layers is fixed, the proposed model is inapplicable to the DCN architectures. 

Moreover, none of the layers in DCNs are logical. Therefore, the idea of mapping one layer to 

the other is incapable to characterize DCNs. 

Dong et al. in [3.25] defined a multilayered graph G composed of M layers. Each layer 

represents an undirected weighted graph, composed of a set of common vertices υ and edges ε. 

having associated weights. As the number of nodes (vertices) in each layer needs to be same, the 

proposal is inapplicable to DCNs. Moreover, the definition lacks the interconnection information 

between different layers in the proposal. Because none of the previously proposed graph models 

matches the DCN-based graph definition, we present a formal definition for each of the DCN 

architectures. 
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Table 3.1. Definition of the Variables Used in the DCN Models. 

𝜈 set of vertices 

휀 Set of edges 

𝑃𝑖 a pod in the topology that is composed of servers and middle-layer switches 

𝑘 number of pods/modules in the topology 

𝑛 number of nodes connected to a single access layer switch 

𝑚 number of access layer switches in each pod 𝑃𝑖 

𝑞 number of aggregate layer switches in each pod 𝑃𝑖 

𝑟 number of core switches 

𝛿 servers 

𝛼 access layer switch 

𝛾 aggregate layer switch 

∁ core layer switch 

 

3.2.2. ThreeTier DCN Architecture 

We define the ThreeTier architecture according to the definitions in Table 3.1 as 

𝐷𝐶𝑁𝑇𝑇 = (𝜈, 휀 ). (3.1) 

Here 𝜈 are the vertices and 휀 represents the edges. Vertices are arranged in 𝑘 pods 𝑃𝑖
𝑘 (servers, 

access switches, and aggregate switches), and a single layer of r core ∁𝑖
𝑟 switches: 

𝜈 = {𝑃𝑖
𝑘  ∪  ∁𝑖

𝑟 }, (3.2) 

where ∁𝑖
𝑟 is a set composed of all of the core switches: 

∁𝑖
𝑟= {𝑐1 ,𝑐2 , … , 𝑐𝑟 ,}. (3.3) 

Each 𝑃𝑖 is composed of three layers of nodes, namely: 1) servers layer (𝑙𝑠), 2) access layer (𝑙𝑎), 

and 3) aggregate layer (𝑙𝑔). Nodes in each of the pods can be represented as 
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𝑃𝑖 = {𝑙 𝑚.𝛼 ×𝑛.𝛿
1  ,  𝑙𝑚.𝛼

2  ,  𝑙 𝑞.𝛾
3 }, (3.4) 

where α represents access layer switches, γ represents aggregate layer switch, and δ represents 

servers. Total number of nodes in each of the pods can be calculated as  

|𝑃𝑖| = (∑ 𝑛

𝑚

1

 + 𝑚 + 𝑞), (3.5) 

where |𝑃𝑖| stands for the cardinality of the set of nodes in each pod. The total number of vertices 

of a topology can be calculated as 

|𝜈| = {∑ |𝑃𝑖|

𝑘

𝑖=1

+ |∁|}. (3.6) 

There are generally three layers of edges ε = {§ ,ά ,₵ }, where 1) § are the edges that connect 

servers to the access layer, 2) ά edges connect the access layer to the aggregate layer, and 3) ₵ 

edges connect the aggregate layer to the core layer. Beside the aforementioned, the ThreeTier 

topology also has a set of edges connecting the aggregate layer switches to each other within the 

pod, represented by 

𝜺 = {§(∀𝜹,𝜶) , ά(∀𝜶,∀𝜸), Ὑ(∀𝜸,∀𝜸), ₵(∀𝜸 ∀∁)}, (3.7) 

Therefore, the set of edge of the ThreeTier DCN can be represented by 

𝜺 = {§(∀𝜹,𝜶) , ά(∀𝜶,∀𝜸), Ὑ(∀𝜸,∀𝜸), ₵(∀𝜸 ∀∁)}, (3.8) 

where §(∀𝜹,𝜶), are the edges connecting each server to a single- access layer switch, 

, ά(∀𝜶,∀𝜸) connecting each access layer switch to all aggregate layer switches, Ὑ(∀𝜸,∀𝜸) , 

connecting each aggregate layer switch to all other aggregate layer switches within the pod, and 
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, ₵(∀𝜸 ∀∁)connecting each aggregate layer switch to all of the core layer switches. The total edges 

in the topology can be calculated as 

|휀| =  𝑘 (𝑚𝑛 + 𝑚𝑞 +  
𝑞 (𝑞 − 1)

2
+ 𝑞𝑟).  (3.9) 

3.2.3. FatTree DCN Architecture 

Similar to the ThreeTier DCN, the FatTree architecture is also composed of a single layer 

of computational servers and three layers of network switches arranged in 𝑘 pods. However, the 

FatTree architecture follows a Clos-based topology [3.26], and the number of networking 

elements and interconnecting edges in the FatTree architecture are much higher than the 

ThreeTier architecture. We will use the conventions defined in Table 3.1 for the graph modeling 

of the FatTree architecture. The number of elements in each layer within each 𝑃𝑖 is fixed based 

on the 𝑘. The number of vertices 𝜐 in 𝑛, 𝑚, 𝑞, and 𝑟 can be calculated as 

𝑛 = 𝑚 =  𝑞 = (𝑘
2⁄ ),  (3.10) 

𝑟 =  (𝑘
2⁄ )

2

. (3.11) 

The FatTree DCN can be modeled similar to that of the ThreeTier architecture as  

𝐷𝐶𝑁𝐹𝑇 = (𝜈, 휀 ), (3.12) 

where as  𝜈, ∁𝑖
𝑟, 𝑃𝑖, |𝑃𝑖|, and |𝜈| can be modeled by using (3.2) to (3.6), respectively. Contrary to 

the ThreeTier architecture, the aggregate layer switches in the FatTree architecture are not 

connected to each other. Moreover, every core layer switch ∁𝑖
𝑟 is connected only to a single-

aggregate layer switch, which allow us to state: 
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휀 = {§(∀𝛿,𝛼)  ∪  ά(∀𝛼,∀𝛾)  ∪  ₵(∀∁ , 𝛾𝑖)}, (3.13) 

and the total number of edges in the FatTree topology can be calculated as 

|휀| =  𝑘 (𝑚𝑛 + 𝑚𝑞 + +𝑞𝑟) + 𝑘𝑟. (3.14) 

3.2.4. DCell Architecture 

In contrast with the ThreeTier and FatTree DCN architectures, the DCell uses server-

based routing architecture. Every 𝑑𝑐𝑒𝑙𝑙0within the DCell holds a switch to connect all of the 

computational servers within the 𝑑𝑐𝑒𝑙𝑙0. The DCell uses a recursively built hierarchy, and 𝑑𝑐𝑒𝑙𝑙𝑙 

is built of 𝑥𝑖 𝑑𝑐𝑒𝑙𝑙𝑠𝑙−1. The algorithm for the interconnections among the servers in various 

𝑑𝑐𝑒𝑙𝑙𝑠 can be seen in [3.18]. The graph model of the DCell architecture can be represented as: 

𝐷𝐶𝑁𝐷𝐶 = (𝜈, 휀 ),  (3.15) 

𝜈 = {𝜕𝑖 , 𝜕𝑖+1 , … , 𝜕𝑛}, (3.16) 

where 0 ≤ 𝑖 ≤ 𝑙, and 𝜕0 represents the 𝑑𝑐𝑒𝑙𝑙0: 

𝜕0 = 𝛿 ∪  𝛼, (3.17) 

where 𝛿 represents the set of servers within 𝑑𝑐𝑒𝑙𝑙0, 𝑠 is the number of servers within 𝑑𝑐𝑒𝑙𝑙0, and 

𝛼 is the network switch connecting s servers within 𝑑𝑐𝑒𝑙𝑙0. 

𝜕𝑙 = {𝑥𝑙. 𝜕𝑙−1}, (3.18) 

where 𝑥𝑙 is total number of 𝜕𝑙−1 in 𝜕𝑙. 

𝜕1 = {𝑥1𝜕0}, (3.19) 

𝜕1 = {𝑥1𝜕0}, (3.20) 

𝑥1 = 𝑠 + 1. (3.21) 

Similarly, for 𝑙 ≥ 2: 
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𝑥𝑙  = ( ∏ 𝑥𝑖

𝑙−1

𝑖=1

×  𝑠) + 1. 
(3.22) 

The DCell DCN is a highly scalable architecture and supports any level of 𝑑𝑐𝑒𝑙𝑙𝑠. However, a 3-

level DCell is sufficient to accommodate millions of servers. The total number of nodes in a 3-

level DCell can be computed as 

|𝜈0
3| =  ∑ ∑ ∑(𝑠 + 1),

𝑥1

1

𝑥2

1

𝑥3

1

 

(3.23) 

and the total number of edges in a 3-level DCell are: 

|휀0
3| = ∑ (∑ ((∑  s

𝑥1

1

) +  (𝑥1(𝑥1 − 1)/2))

𝑥2

1

+ (𝑥2(𝑥2 − 1)/2)) + (𝑥3(𝑥3

𝑥3

1

− 1)/2) . 

(3.24) 

The total number of nodes in the 𝑙 − 𝑙𝑒𝑣𝑒𝑙 DCell, 𝜕𝑙 , can be computed as 

|𝜈| =  ( ∏ (∑(𝑠 + 1)

𝑥𝑖

1

)

𝑙

𝑖=1

(𝑠 + 1)(𝑙−1)⁄ ) , 

(3.25) 

and he total number of edges in the 𝑙 − 𝑙𝑒𝑣𝑒𝑙 DCell, 𝜕𝑙 , can be computed as 

|휀| = ( ∏ (∑(𝑠)

𝑥𝑖

1

)

𝑙

𝑖=1

(𝑠)(𝑙−1)⁄ ) +
1

2
 (∑ (∏ 𝑥𝑗 − 1

𝑙

𝑘=𝑗

)

𝑙

𝑗=1

) . 

(3.26) 



31 
 

3.3.  Robustness Metrics 

3.3.1. Background 

This section briefly presents some of the well-known graph robustness metrics. Some of 

the metrics classified here (see Table 3.2) as classical are based on the concepts of the graph 

theory, while the contemporary metrics consider the services supported by the networks. In this 

paper, we consider the classical robustness metrics, leaving the dynamic aspects of the DCN 

robustness as future work. A brief description of the robustness metrics is presented in the 

following section. 

3.3.2. Robustness Metrics Glossary 

Assortativity coefficient (𝑟): presents the tendency of a node to connect to other nodes 

having dissimilar degrees [3.13]. The value of 𝑟 lies within the range −1 ≤  𝑟 ≤  1. The value 

of 𝑟 <  0 represents dissassortative network, having excess of links among nodes of dissimilar 

degrees. 

Average neighbor connectivity ( 
𝑘𝑛𝑛

|𝑣|−1
 ): delivers information about one-hop neighborhood 

of a node [3.9]. The value of 
𝑘𝑛𝑛

|𝑣|−1
 delivers joint degree distribution statistics, and is calculated as 

average neighbor degree of the average k-degree nodes. 

Average nodal degree (〈𝑘〉): is one of the coarse robustness measures [3.13]. Networks 

having high 〈𝑘〉 values are considered more robust and “better-connected” on average.  

Average shortest path length (〈𝑙〉): is the average of all of the shortest paths among all of 

the node-pairs of the network [3.12]. Small 〈𝑙〉 values exhibit better robustness, because such 
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networks are likely to lose fewer connections in response to different types of failures (random 

or targeted).  

Table 3.2. Classical and Contemporary Robustness Metrics. 

 Characteristic Reference 

Classical Average nodal degree (〈𝑘〉) [3.13] 

Node connectivity (𝑘) [3.9] 

Link connectivity (𝜌) [3.9] 

Heterogeneity(√𝜎𝑘
2/〈𝑘〉) [3.10] 

Symmetry ratio (𝜖/(𝐷 + 1)) [3.11] 

Diameter (𝐷) [3.32] 

Average shortest-path length (〈𝑙〉) [3.12] 

Assortativity coefficient (𝑟) [3.13] 

Average neighbor connectivity (
𝑘𝑛𝑛

|𝑣|−1
) [3.13] 

Clustering coefficient (〈𝐶〉) [3.13], [3.29] 

Betweenness centrality (〈𝑏〉) [3.28] 

Largest eigenvalue or spectral radius (𝜆𝑖) [3.13], [3.14] 

Second smallest Laplacian eigenvalue or 

algebraic connectivity (𝜇|𝑣|−1) 

[3.15] 

Average two-Terminal Reliability (A2TR) [3.27] 

Contemporary Elasticity (E) [3.8] 

Quantitative Robustness Metric (QNRM) [3.7] 

Qualitative Robustness Metric (QLRM) [3.7] 

R-value (R) [3.30] 

Viral Conductance (VC) [3.31] 
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Average two-terminal reliability (𝐴2𝑇𝑅): delivers the probability of the connectivity 

between a randomly chosen node pair [3.27]. In a fully connected network, 𝐴2𝑇𝑅 value is one. 

Otherwise, 𝐴2𝑇𝑅 is the sum of total number of node pairs in each connected cluster divided by 

all of the node pairs in the network. 

Betweenness centrality (〈𝑏〉): measures the number of shortest paths among nodes that 

pass through a node or link. Betweenness centrality is used to estimate the prestige of node/link 

[3.28]. 

Clustering coefficient (〈𝐶〉): is the percentage of 3-cycles among all of the connected 

node triplets within the network [3.13], [3.29]. If two neighbors of a node are connected, then a 

triangle (3-cycle) is formed by these three nodes.  

Diameter (𝐷): is the longest path among all of the shortest paths of the network. 

Generally, low D represents higher robustness.  

Elasticity (𝐸): relates to the total throughput in response to the node removal [3.8]. The 

fundamental idea is to successively remove a certain fixed number of nodes r (in the original 

definition, 𝑟 < 1%) and measure the consequent throughput degradation. The more pronounced 

and abrupt is the throughput drop experienced by a given topology, the lower is the robustness.  

Heterogeneity: is the standard deviation of the average node degree divided by the 

average node degree [3.10]. The lower heterogeneity value translates to higher network 

robustness.  
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Largest eigenvalue or spectral radius (𝜆1): is the largest eigenvalue of the adjacency 

matrix of a network [3.13], [3.14]. Generally, the networks with the higher eigenvalues have 

small diameter and higher node distinct paths. 

Node connectivity (𝑘 ): represents the smallest number of nodes whose removal results in 

a disconnected graph [3.9]. The node connectivity is the least number of node-disjoint paths 

between any two nodes within the network, which provides a rough indication of network 

robustness in response to any kind of failures or attacks (random or targeted). The same 

definition can be applied to link connectivity, when considering links instead of nodes.  

Quantitative Robustness Metric (𝑄𝑁𝑅𝑀): analyzes how multiple failures affect the 

number of connections established in a network [3.7]. The 𝑄𝑁𝑅𝑀 delivers the number of the 

blocked connections (that cannot be established because of failure).  

Qualitative Robustness Metric (𝑄𝐿𝑅𝑀): analyzes the variation in the quality of service of 

a network under various types of failures [3.7]. The 𝑄𝐿𝑅𝑀 measures the variation of the average 

shortest path length of the established connections.  

R-value (𝑅): computes the robustness of a topology under one or more topological 

features [3.30]. The obtained value is normalized to [3.0, 1].  

Second smallest Laplacian eigenvalue or algebraic connectivity (𝜇𝑣−1): depicts how 

difficult it is to break the network into islands or individual components [3.15]. The higher the 

value of 𝜇𝑣−1, the better the robustness.  



35 
 

Symmetry ratio (
∈

𝐷−1
): is the quotient between the distinct eigenvalues of the network 

adjacency matrix and the network diameter [3.11]. The networks with low symmetry ratio are 

considered more robust to random failures or targeted attacks.  

Viral Conductance (𝑉𝐶): measures the network robustness in case of epidemic scenarios 

(propagation/spreading of failures) [3.31]. The 𝑉𝐶 is measured by considering the area under the 

curve that provides the fraction of infected nodes in steady-state for a range of epidemic 

intensities. 

3.4.  Simulation Scenarios and Methodologies 

This section details the simulation scenarios and methodologies used in this work. To 

generalize the robustness analysis of the state-of-the-art DCNs, we performed extensive 

simulations considering four node failure scenarios to measure the various robustness metrics, 

namely: 

1. random failures, 

2. targeted failures, 

3. network-only (failures introduced only in the net- work devices), and 

4. real DCN failures (using real DCN failure data collected over a period of one 

year). 

To do so, we consider six DCN networks, which are presented in Section 6. For the first 

three failure scenarios, we analyzed the robustness of each DCN by introducing the failures 

within a range from 0.1 to 10 percent of the network size. With the purpose of providing a 

detailed robustness evaluation, we analyzed the robustness metrics by introducing 0.1 to 2.5 



36 
 

percent of failures with an increment of 0.1, whereas from 3 to 10 percent the increment was 

equal to 1. 

In the real DCN failures case, we used the observations reported in [3.33]. Gill et al. 

analyzed the network failure logs collected over a period of around one year from tens of data 

centers. The authors derived the failure probability for various network components by dividing 

the number of failures observed in a specific network device type, such as access layer or 

aggregate layer switches, with the total population of the devices in the given device type. We 

used the frequentist probability to derive the number of failures in three DCN architectures. We 

analyzed the various robustness metrics under real failure scenario by instigating the derived 

failures at each layer. As the number of network elements in the FatTree is much higher than the 

ThreeTier architecture, the number of failed nodes is around five times in the FatTree as 

compared to the ThreeTier architecture. 

We introduced random failures in data center nodes (including the computational servers) 

within a range of 0.1 to 10 percent of the network size, as discussed in the various studies, such 

as [3.7], [3.34], [3.35]. The node failures are distributed among the nodes at each layer and dcell 

level within a range of 31-3,266 nodes. Besides instigating failures randomly in the whole 

network, we also considered the scenario of the network-only node failure, as discussed in 

[3.33]. Another significant scenario to measure the system robustness is by introducing the 

targeted attacks [3.35], [3.36], [3.37]. In the targeted failures case, we considered the 

betweenness centrality of the nodes to introduce the node failures. 
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3.5.  Network Topologies 

In this section, we present six representative topologies of the DCN architectures. 

Moreover, robustness is discussed according to the characteristics of each of the DCN 

architectures. The selected topologies represent connected and symmetric DCN networks. 

DCN architectures follow a complex interconnection topology that entails a detailed 

understanding of the architecture to generate the DCN topology. Therefore, generating the 

representative DCN synthetic topologies is a difficult task. There is presumably no publically 

available DCN topology generation tool. We developed a DCN topology generator for custom 

and flexible creation of various DCN topologies. Based on various input para- meters, such as 

number of pods for the FatTree, dcell levels, and number of nodes in dcell0 for the DCell, and 

number of nodes and switches in various layers in the ThreeTier DCN architecture, the DCN 

topology generator engenders the network topology in various popular graph formats. We 

generated two representative network topologies for each of the DCN architectures: 

 three large networks (DCell30K, FatTree30K, and ThreeTier30K), 

 three smaller networks (DCell2K, FatTree2K, and ThreeTier2K). 

Increasing a single server in the DCell topology exponentially expands the network. A 3-

level DCell with two servers in dcell0 constitute a network of 2,709 nodes. An increase in the 

number of servers to three in dcell0 results in a network of 32,656 nodes. Therefore, the 

considered topologies are 2K and 30K networks. 

Table 3.3 depicts some of the features of the three large networks. As observed, all of the 

topologies have more than 30,000 nodes. The FatTree30K has the largest number of edges 

among the considered set of large networks. The density of the FatTree30K is around three times 
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higher than the ThreeTier30K. The higher number of edges and density exhibit better resilience 

to failures. The value of the average shortest path length 〈l〉 for the FatTree30K and 

ThreeTier30K is less than six, whereas the DCell30K has a higher path length (11). A higher 〈l〉 

means that the communication between the end hosts in the DCell30K is more susceptible to be 

affected by a failure than in the FatTree30K or ThreeTier30K. This is due to the fact that such a 

communication is going to be routed (in average) through a longer path. The higher the number 

of links and nodes involved in a path, the higher is the probability to be affected by failures. 

Similarly, the DCell30K diameter D presents a value four times higher than the FatTree30K and 

ThreeTier30K. However, the DCell30K possesses high-average nodal degree that depicts strong 

resilience against failures. Moreover, all of the three networks exhibit dissassortativity and have 

negative value of the assortativity coefficient. It means that all of the three networks have an 

excess of links among nodes with dissimilar degrees. 

Tables 3.4 and Table 3.5 present features of the DCell2K, FatTree2K, and ThreeTier2K 

topologies. Each topology is composed of around 2,500 to 2,700 nodes. As observed previously 

in the 30K networks, the FatTree DCN architecture has the largest number of edges. Regarding 

the spectral radius and algebraic connectivity 𝜇𝑣−1, the FatTree2K proves to be the most robust 

network. The higher the value of 𝜆1 and 𝜇𝑣−1, the higher the robustness. Although the 

ThreeTier2K also indicates better robustness when considering 𝜆1, the ThreeTier2K possess the 

highest maximum nodal degree 𝑘𝑚𝑎𝑥. High 𝑘𝑚𝑎𝑥 is an indicator of vulnerability, depicting that 

removal of such a node could seriously damage the network. Moreover, the minimum values of 

the node and link connectivity for all of the networks are = 1 and 𝜌 = 1, respectively. Such 

values indicate that a single node or link failure may cause the network fragmentation. Because 

of having the lowest symmetry ratio value, the DCell2K exhibits a higher robustness.  
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Table 3.3. 30K DCN Topology Features. 

Topology |𝑣| |휀| 〈𝑘〉 〈𝑙〉 〈𝑑〉 𝑟 2 ∙ |𝜖|

(|𝑣| ∙ (|𝑣| − 1))
 

DCell30K 32656 61230 3.7500 11.1521 23 -0.25 0.00011 

FatTree30

K 

30528 82994 5.4336 5.6200 6 -0.20 0.00017 

Three 

Tier30K 

30676 31632 2.0620 5.9000 6 -0.95 0.00006 

 

Table 3.4. 2K DCN Topology Features. 

Topology |𝑣| |휀| 〈𝑘〉 ∓StDe

v 

𝜆1 𝑘𝑚𝑎𝑥 𝜇|𝑣|−1 𝑘𝑛𝑛

|𝑣|−1
∓StDev 𝑘 𝜌 𝜖

𝐷 + 1
 

DCell2K 270

9 

451

5 

3.3333∓0.

94 

3.5615

5 

4 0.1243

9 

0.00066 1 1 169.312

5 

FatTree2K 250

0 

600

0 

4.8000∓7.

60 

17.418

6 

20 0.3152

8 

0.00337∓0.0

03 

1 1 318.285

7 

ThreeTier

2K 

256 274 2.1389∓4.

64 

10.250

4 

40 0.0230 0.00119∓0.0

01 

1 1 318.714 

 

It can also be observed that the FatTree2K and ThreeTier2K have a low average shortest 

path length 〈𝑙〉 than the DCell2K, and consequently can be considered more robust with respect 

to 〈𝑙〉. The average node betweenness centrality 〈𝑏〉 depicts that although the DCell2K has the 

highest value of 〈𝑏〉, the DCell2K exhibits least standard deviation in the individual node’s 〈𝑏〉 

value. Therefore, it can be inferred that all of the nodes of the DCell2K have nearly similar value 

of the betweenness centrality. Alternatively, the value of 〈𝑏〉 for the FatTree2K and ThreeTier2K 

is lower than the DCell2K, but they have higher standard deviation, which means that the 
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FatTree2K and ThreeTier2K networks have an excess of centrality measures for some nodes, 

indicating the vulnerability of networks under targeted failures. The node betweenness centrality 

distribution for the 600 highest values in the three networks is shown in Fig. 3.1. The DCell2K 

curve illustrates uniformly distributed values of 〈𝑏〉 for all of the nodes. 

 

Fig. 3.1. Node Betweenness Centrality Distribution in Logarithmic Scale of 600 Nodes with the  

Highest Value of DCell2K, FatTree2K, and ThreeTier2K. 

Table 3.5. 2K DCN Topology Features. 

Topology 〈𝑙〉 ∓StDe

v 

〈𝑏〉 ∓StDe

v 

〈𝐶〉 ∓StDe

v 

𝑟 𝐷 2 ∙ |휀|

(|𝑣| ∙ (|𝑣| − 1))
 √𝜎𝑘

2

〈𝑘〉
∓StDe

v 

DCell2K 8.51062 ± 

1.93990   

  0.00277 

± 0.00133   0±0   -0.25 

1

5 0.00123 0.28284 

FatTree2K 5.21063 ± 

1.12342   

  0.00169 

± 0.00337   

  0.8000± 

0.4000   -0.2 6 0.00192 1.58333 

ThreeTier2

K 5.72473 ± 

0.70278   

  0.00185 

± 0.01482   

  0.9404 ± 

0.2303   

-

0.896

1 6 0.00083 2.17007 

0.001

0.01

0.1

1

0 100 200 300 400 500 600

N
o
d

e
 b

e
tw

e
e
n
n
e
s
s
 c

e
n
tr

a
lit

y

Nodes

FatTree2K
ThreeTier2K

DCell2K



41 
 

 

 

Fig. 3.2. Average Nodal Degree (Left) and Assortativity Coefficient (Right) Comparison of the 

30K and 2K Networks. 

Table 3.6. Robustness Classification of the Three DCN Architectures. 

Metrics FatTree DCell ThreeTier 

|휀| Highest Average Least 

〈𝑘〉 Highest Average Least 

〈𝑙〉 Highest Least Average 

𝐷 Highest Least Average 

𝑟 Highest Average Least 

2 ∙ |휀|

(|𝑣| ∙ (|𝑣| − 1))
 

Highest Average Least 

𝜆1 Highest Least Average 

𝑘𝑚𝑎𝑥 Average Highest Least 

𝜇|𝑣| − 1 Highest Average Least 

𝜖

𝐷 + 1
 

Average Highest Least 

〈𝑏〉 Highest Least Average 

〈𝐶〉 Average Least Highest 

√𝜎𝑘
2

〈𝑘〉
 

Average Highest Least 
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The absence of 3-cycles in the clustering coefficient 〈𝐶〉 measurements reveal that the 

DCell2K lacks two-hop paths to re-route the traffic in case of failure of one of its neighbors. On 

the contrary, the FatTree2K and Three- Tier2K exhibit better robustness by having high values 

of 〈𝐶〉, which illustrate the existence of multiple alternative two-hop paths. Moreover, all of the 

three networks are dissassortative, 𝑟 <  0. The density measurements show that the FatTree2K 

is the most dense and henceforth the most robust network. The low heterogeneity value shows 

that the DCell2K can be considered as the most robust network when considering the 

heterogeneity.  

The initial network analysis (for the whole network without failures) of the considered 

DCN topologies reveals that none of the three networks can be considered as the most robust 

architecture for all of the metrics. The robustness classification of the DCN networks for various 

metrics is reported in Table 3.6. The highest, average, and least values in the Table 3.6 depict the 

robustness level of the network. It can be observed that the FatTree architecture exhibits highest 

robustness for most of the metrics. Therefore, based on the initial network analysis without 

failures, it can be stated that the FatTree DCN exhibits better robustness than the DCell and 

ThreeTier architectures. 

3.6.  Results 

This section presents a detailed analysis of the structural robustness of the DCN networks 

presented in Section 6. Initially, a comparison of the 30K with the 2K networks (6.1) is 

presented. Thereafter, the robustness analysis of the: 1) 30K networks (6.2) and 2) 2K networks 

(6.3) considering various failure scenarios is discussed. Although the study has been carried out 

within the range of 0.1 to 10 percent of the nodes affected by the failures, the results present a 
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maximum of 6 percent of the affected nodes. This is due to the fact that the higher percentages in 

the targeted and network-only failures completely disconnect some of the networks. Therefore, 

the considered graph metrics do not deliver any useful information for higher failure percentages. 

Several graph metrics are computational intensive and require a large amount of CPU 

time. Therefore, the large (30K) networks are analyzed by their: 1. largest connected component, 

2. average nodal degree, 3. node connectivity, and 4. number of clusters. Whereas, the small 

networks are studied considering their: 1. algebraic connectivity, and 2. spectral radius or largest 

eigenvalue. It is noteworthy to consider that some of the metrics are applicable only to the largest 

connected component, as they require connected graph. Therefore, the result values of 𝜇𝑣−1 , 〈𝑏〉, 

and 𝜆1 are dependent on the largest connected component of the network.  

3.6.1. Network Size Comparison  

The degree distribution of nodes in various DCNs exhibit homogeneous pattern, and the 

degree of each node is one among the few values in the degree set. For example, there are only 

two types of nodes (switches and servers) in the DCell. Therefore, the degree distribution follows 

two values: 1) having a similar value for all of the switches and 2) for all of the servers. 

Similarly, in case of the FatTree architecture, each node’s degree is either one (for servers) or the 

𝑘 (for switches). In the ThreeTier architecture, the nodal degree falls within one of the four 

values, one each for the servers, access layer switches, aggregate layer switches, and core layer 

switches. The average nodal degree 〈𝑘〉 of the DCNs does not strictly depend on the network 

size. A comparison of 〈𝑘〉 for the 2K and 30K networks is illustrated in Fig. 3.2a. It can be 

observed that there is no significant difference in the values of 〈𝑘〉 of the large and small DCN 

networks. Similarly, regarding the assortativity coefficient values for the large and small 
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networks (see Fig. 3.2b), it can be observed that there is no remarkable difference between the 

assortativity coefficients of the large and small DCNs, and all of them remain dissassortative. 

In essence, increasing the DCN size does not imply obtaining very different network 

topology characteristics. Therefore, we divide the robustness metrics analysis into two parts: 1) 

the low CPU time consuming metrics are analyzed for the 30K network set and 2) the high CPU 

time consuming metrics are studied for the 2K network set.  

3.6.2. 30K Networks  

Component structure of a network is one of the most important properties to be 

considered. Therefore, largest connected component is considered significant to measure the 

effectiveness of the network [3.38], [3.39], [3.40], [3.41], [3.42]. In case of random failures, all 

of the considered DCN architectures exhibit a robust behavior. As observed in Fig. 3.3a, the 

largest component size remains above 85 percent, even when 6 percent of the nodes fail 

randomly. However, in case of the targeted attack, the ThreeTier and FatTree topology behave 

contrary (see Fig. 3.3b). Removal of a very small fraction (< 0.1 percent) of the nodes in the 

ThreeTier architecture results in segregation of the network. The network completely disconnects 

when around 2.5 percent of the nodes fail. This is due to the fact that the ThreeTier architecture 

have certain nodes (core and aggregate layer switches) with very high betweenness centrality 

values. Therefore, failure of such nodes segregate the network. However, the FatTree shows an 

altered behavior. Around 98 percent of the nodes reside in the connected component until a 

targeted failure of 1.8 percent of the nodes. An abrupt change is observed when the failure rate 

reaches 1.9 percent, resulting in the decline of largest component size from 98 to 2 percent, 

depicting a phase change. Therefore, the point at which 1.9 percent of the nodes fail can be 
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considered as the critical point [3.43] for the FatTree architecture. Alternatively, the DCell 

confirms the resilience to the targeted attack. A smooth linear decline is observed in the largest 

component size decay. Around 94 percent of the network nodes reside in the largest component 

when 6 percent of the nodes fail in the DCell. The detailed values of the largest cluster size for 

the three networks can be found in Table 3.7.  

Table 3.7. Largest Connected Component Size of the 30K Networks. 

Percentage 
Random Targeted 

FT30K TT30K DC30K FT30K TT30K DC30K 

0 1 1 1 1 1 1 

0.1 0.997491 0.997268 0.998989 0.998985 0.020831 0.998928 

0.5 0.989269 0.990452 0.994978 0.994988 0.001597 0.994488 

0.9 0.983035 0.984007 0.990997 0.990992 0.001597 0.990323 

1.1 0.978403 0.979955 0.988976 0.988994 0.001597 0.98818 

1.5 0.971452 0.971903 0.984995 0.984997 0.001597 0.984015 

1.9 0.966457 0.96304 0.980981 0.02044 0.001597 0.979912 

2.3 0.956073 0.953742 0.976969 0.02044 0.001597 0.975778 

3 0.942934 0.938871 0.969984 0.018802 0.000033 0.96803 

4 0.927083 0.917294 0.959952 0.013889 0.000033 0.957343 

5 0.906394 0.906516 0.949954 0.006519 0.000033 0.946564 

6 0.891349 0.881696 0.939928 0.000033 0.000033 0.935755 
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Fig. 3.3. Largest Connected Component Size Analysis under Random and Targeted Failures of 

the 30K Networks. 

Table 3.8. Average Nodal Degree (〈𝑘〉) of the 30K Networks. 

Percentag

e 

 Random Targeted Network-only failure 

FT30

K 

TT30

K 

DC30

K 

FT30

K 

TT30K DC30K FT30K TT30K DC30K 

0 5.433 2.062 3.75 5.433 2.062 3.75 5.4336 2.062 3.75 

0.1 

5.425

7 

2.0588

7 

3.746

2 

5.341

9 

2.0148

15 

3.7464

3 

5.3422

6 

1.97187

8 

3.7462

8 

0.5 

5.401

5 

2.0526

8 

3.731

2 

4.977

7 

1.7928

05 

3.7331

8 

4.9883

5 

1.61214

2 

3.7312

8 

0.9 

5.380

8 

2.0468

1 

3.716

5 

4.610

7 

1.4116

25 

3.7196

9 

4.6443

9 

1.25845

6 

3.7165

8 

1.3 

5.359

0 

2.0378

3 

3.701

2 

4.240

6 

1.0304

85 

3.7068

3 

4.3092

7 

0.91184

0 

3.7012

6 

1.7 

5.339

4 

2.0269

6 

3.686

4 

3.867

6 

0.6430

98 

3.6935

58 

3.9885

3 

0.56251

24 

3.6864

67 

2.1 

5.317

62 

2.0204

9 

3.671

06 

3.488

45 

0.2525

39 

3.6818

67 

3.6709

23 

0.21987

95 

3.6710

67 

2.5 

5.314

31 

2.0161

7 

3.656

3 

3.109

26 0 

3.6705

71 

3.3725

1 0 

3.6563

59 

3 

5.270

29 

1.9995

0 

3.637

2 

2.632

44 0 

3.6566

4 

3.0140

96 0 

3.6372

58 

4 

5.225

03 

1.9723

7 

3.599

9 

1.657

54 0 

3.6273

64 

2.3334

2 0 

3.5999

3 

 

The average nodal degrees of the largest connected component are presented in Table 3.8 

and Fig. 3.4 for the random, targeted, and network-only failures. It can be observed that in case 

of random failures, where the failure is introduced both in the network and computational nodes, 
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the three DCNs behave similarly. However, when the failures are introduced in the network 

portion or in case of the targeted attack, the FatTree and ThreeTier exhibit a rapid decline in the 

nodal degree. The reason for such a rapid decay is the fact that the failure of a single access layer 

switch disconnects n nodes. Therefore, the average nodal degree decays rapidly. The failure 

analysis depicts that the DCell30K exhibits robustness in terms of the average nodal degree 

under all of the failures. 

The node connectivity is an important measure to illustrate how many nodes need to fail 

to disconnect the network. The node connectivity can be measured by calculating the minimum 

node distinct paths between any two nodes within the network. As there is only a single edge that 

connects the node to the access switch, the node disjoint paths for the ThreeTier and FatTree 

DCNs are always one. However, from every access layer switch to every other switch, there are 

always, 𝑘/2 node distinct paths in the FatTree. Similarly, in the ThreeTier network, the 

maximum node distinct paths between any two access layer and the aggregate layer devices are 

equal to 𝑞 and 𝑟, respectively. Because there is only a single edge between the network switch 

and servers within 𝑑𝑐𝑒𝑙𝑙0, the minimum node disjoint paths of the network is one. However, the 

network switch only performs the packet forwarding within 𝑑𝑐𝑒𝑙𝑙0 and the actual communication 

always occurs among the servers in the DCell architecture. The node distinct paths between any 

two servers in the DCell are equal to 𝑙 + 1, where 𝑙 is the DCell level. 

The number of the segregated clusters are depicted in Fig. 3.5 and the detailed values are 

presented in Table 3.9. It can be observed that the FatTree30K and ThreeTier30K behave 

similarly in random failures. The failure of a single access layer switch disconnects n servers, 

resulting in n segregated clusters. Therefore, the FatTree30K and ThreeTier30K networks 
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disconnect into more than 45 clusters when 0.1 percent of the nodes fail. However, for the 

network-only failure case, the ThreeTier30K disconnects into more clusters than the 

FatTree30K. In the targeted failures case, the robustness difference is even more, where the 

FatTree30K remains connected until 1.9 percent of the nodes fail. This is due to the fact that the 

FatTree network has a considerable portion of the nodes ((k/2)2 core switches) with similar high 

betweenness centrality values (see the betweenness centrality distribution in Section 6). 

Therefore, the topology remains fully connected until ((k/2)2 - 1) nodes fail in the FatTree30K. It 

is noteworthy to mention that because of nearly similar betweenness centrality distribution 

among the nodes, the DCell30K outperforms the other two 30K networks. The DCell portrays 

high robustness in random or network-only failures, and remains connected until 4 percent of the 

nodes are affected. However, the network disconnects with only 0.1 percent of the nodes failure 

in case of the targeted attack. Nonetheless, the number of segregated cluster remains much less 

than the counterparts. In any of the failure cases, the DCell30K can be considered as the most 

robust network in terms of number of isolated clusters among all of the DCN architectures.  
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Table 3.9. Number of Clusters of the 30K Networks. 

Percentag

e 

 Random   Targeted  Network-only failure 

FT30

K 

TT30K DC30

K 

FT30

K 

TT30K DC30

K 

FT30K TT30K DC30

K 

0 1 1 1 1 1 1 1 1 1 

0.1 46.6 53.8 1 1 72 3 308.2 1282.6 1 

0.5 175.6 139.9 1 1 3162 19 1491.4 6405.7 1 

0.9 243.9 214.6 1 1 8943 26 2540.2 

11510.

6 1 

1.3 344 338.7 1.1 1 14677 32 3874.6 

16580.

6 1.1 

1.7 507.9 492.1 1.1 1 20458 36 4865.8 

21692.

7 1.1 

2.1 596.3 595 1.1 1632 26239 44 6269.8 

26730.

3 1.1 

2.5 543.6 655.7 1.2 4560 29909 52 7165 30676 1.2 

3 827.1 898.7 1.2 8208 29755 70 8626.6 30676 1.2 

4 1005 1255.2 1.8 

1555

2 29448 93 

11792.

2 30676 1.8 

5 

1331.

6 1334.7 2.3 

2287

2 29142 120 

14504.

2 30676 2.3 
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Fig. 3.4. Average Nodal Degree Analysis for 30K Networks. 

 

 

Fig. 3.5. Number of Clusters Analysis for the 30K Networks. 
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3.6.3. 2K Networks  

The robustness evaluation of the large (30k) networks is infeasible when considering the 

computational intensive metrics, such as 𝜇𝑣−1, 〈b〉, and 𝜆1. Therefore, we evaluate small (2k) 

networks for the computational intensive metrics. One of the most significant considerations in 

the evaluation of the 2k networks for the computational intensive metrics is that such metrics 

only consider the largest connected component of the network. In case of the targeted and 

network-only failures, the size of the largest connected component is typically very small, and it 

constitute very little portion of the network. Therefore, the resulting values are abrupt and 

unrealistic, and are unable to depict the factual robustness of the network. Fig. 3.6 illustrates the 

process of the propagation of targeted failures within a ThreeTier2k network. (Fig. 3.6a) depicts 

the initial network, and (Fig. 3.6b) shows the disconnected network with 1 percent targeted 

failures. The nodes at different layers of the network are shown in different colors and sizes. 

The algebraic connectivity 𝜇𝑣−1 is an important measure to evaluate that how difficult it 

is to break the network into islands or individual components. The algebraic connectivity for the 

2K networks is presented in Fig. 3.7 and the details can be observed in Table 3.10. It is 

noteworthy to consider that although the DCell2K does not possess the highest value of 𝜇𝑣−1, it 

exhibits a smooth and slow decline in the value of 𝜇𝑣−1 in random and network-only failures. 

However, in case of the targeted attack, the value of 𝜇𝑣−1 for the DCell2K drops significantly 

when 3 percent of the nodes fail. Such an abrupt decrease portrays that the DCell2K is 

vulnerable to the targeted failures when the percentage of node failure is increased. For the 

FatTree2K network, it can be observed that despite showing a clearly descending curve under 

random and network-only failures, the value of 𝜇𝑣−1 increases in case of the targeted failure 
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when more than 3 percent of the nodes fail. The ThreeTier2k also depicts a similar behavior as 

the FatTree2k network when percentage of the node failure increases in the targeted and 

network-only failures. However, such abrupt increase in the values of 𝜇𝑣−1 is due to the fact that 

𝜇𝑣−1 is analyzed for a very small sized largest connected component. Therefore, the value of 

𝜇𝑣−1 increases. It is noteworthy to consider that an increase in the value of 𝜇𝑣−1 for high 

percentages of node failures (4.5 or 6 percent) does not mean that the network is more robust. 

Because the value of 𝜇𝑣−1 is calculated only for the largest connected component, it cannot be 

inferred that the networks become more robust after failures. 

The spectral radius or largest eigenvalue 𝜆1 analysis is presented in Fig. 3.8 and the 

detailed values are provided in Table 3.11. As observed in Fig. 3.8, the DCell2K has a smaller 

value of 𝜆1, but the value of decrease slightly for all of the considered percentages and types of 

failures. The FatTree2K also exhibit slight decrease in the value of 𝜆1 in random failures case. 

However, the value of 𝜆1 decreases almost linearly under network-only and targeted failures in 

the FatTree2K. The ThreeTier2K is significantly affected by the targeted failure, and the value of 

𝜆1 divides almost to half with only 0.1 percent of the nodes failure. 

The robustness analysis of the DCN architectures considering various failure types and 

percentages reveals the vulnerability of the ThreeTier and FatTree DCN architectures to the 

targeted and network-only failures. However, the DCell architecture exhibits graceful and little 

variation of the metric values in response to all of the failure types and percentages. Therefore, it 

can be inferred from the failure analysis that the DCell exhibits better robustness than the 

ThreeTier and FatTree architectures. Moreover, the results drawn from the initial robustness 

analysis of the DCN networks without failure (see Table 3.6) proves invalid. In contrary to the 



53 
 

values reported in Table 3.6, the failure analysis reveals that the DCell architecture exhibits 

better robustness. Therefore, it is evident that the classical robustness metrics are inadequate to 

evaluate the DCN robustness.  

Table 3.10. Algebraic Connectivity (𝜇|𝑣|−1) of the 2K Networks. 

Percentag

e 

 Rando

m 

  Targete

d 

 Network-only failure 

DC2K FT2K TT2K DC2K FT2K TT2K DC2K FT2K TT2K 

0 0.1243 0.3152 0.0230 0.1243 0.3152 0.023 0.1243 0.3152 0.0230 

0.1 0.1243 0.3152 0.0230 0.1229 0.3116 0.087 0.1243 0.2899 0.0120 

0.5 0.1225 0.3152 0.0230 0.1205 0.2984 0.087 0.1225 0.2853 0.0120 

0.9 0.1222 0.2921 0.0230 0.1164 0.2822 0.087 0.1222 0.2623 0.0117 

1.3 0.1187 0.2894 0.0230 0.1126 0.2646 0.087 0.1187 0.2355 0.0117 

1.7 0.1188

1 

0.2781 0.0230

8 

0.1104

1 

0.2426

2 

1 0.1188

1 

0.2066

1 

0.0067

2 

2.1 0.1174

5 

0.2979

9 

0.0120

5 

0.1077

6 

0.2214

4 

1 0.1174

5 

0.2291 0.0133

7 

2.5 0.1162

1 

0.2898

5 

0.0118

2 

0.1053

6 

0.1845

5 

1 0.1162

1 

0.1814

2 

0.0069

3 

3 0.1130

5 

0.2677

7 

0.0124

2 

0.0284

5 

0.1461

8 

1 0.1130

5 

0.2222

8 

0.0133

7 

4 0.1107 0.2664

7 

0.0120

8 

0.0518

6 

0.4875 1 0.1107 0.1606

6 

0.0455

5 

5 0.1072

3 

0.2486
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0.0145
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3 
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Fig. 3.6. ThreeTier DCN Before and After (1%) Targeted Failure. 

 

Fig. 3.7. Algebraic Connectivity Analysis of the 2K Networks. 
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Table 3.11. Spectral Radius (𝜆1) of the 2K Networks. 

Percenta

ge 

 Rando

m 

  Targete

d 

 Network-only failure 

DC2K FT2K TT2K DC2K FT2K TT2K DC2K FT2K TT2K 

0 3.561

55 

17.418

6 

10.250

44 

3.561

55 

17.418

6 

10.250

44 

3.561

55 

17.418

6 

10.250

44 

0.1 3.559

28 

17.418

44 

10.250

23 

3.558

73 

17.269 5.8705

9 

3.559

28 

17.295

31 

10.119

93 

0.5 3.549

98 

17.375

91 

10.237

74 

3.550

31 

16.755

02 

5.8705

9 

3.549

98 

17.015

78 

9.9446

8 

0.9 3.542

72 
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46 

10.248

75 

3.541
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16.233

12 

5.8705

9 

3.542
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Fig. 3.8. Spectral Radius Analysis of the 2K Networks. 

3.6.4. Real Failures in DCNs  

This section presents the robustness measurements obtained from the largest connected 

components of the six networks (three 30K and three 2K), when the real failures within the 

DCNs are produced. As defined in Section 5, a specific number of nodes from each layer of 

network topology (based on the failure logs of various data centers) have been selected to fail, 

and the graph metrics have been computed for the resulting largest connected component.  

The Table 3.12 presents the results of the real failures. All of the networks possess more 

than 90 percent of the nodes in the largest connected component in response to the real failures, 

as indicated by the value of max (υ). The results obtained from the real failures illustrate that the 

average nodal degree decreases slightly in all of the networks. The average shortest path length 

and diameter exhibit minor increase in all of the three networks. The assortativity coefficient 

value also depicts minor change for all of the DCN architecture. The value of 〈b〉 increases for all 
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connectivity exhibits comparatively higher decrease for the FatTree2K and ThreeTier2K than the 

DCell2K network. Similarly, the value of 𝜆1 also decreases significantly for the FatTree2K and 

ThreeTier2K as compared to the DCell2K. Therefore, the DCell2K network can be considered 

more robust network in case of the real failures while considering 𝜇𝑣−1 and 𝜆1.  

All of the considered networks exhibit robust behavior in response to the real failures. 

However, the DCell architecture depicts graceful and minor variations in all of the observed 

metrics as compared to the ThreeTier and FatTree architectures. Therefore, the DCell DCN can 

be considered as the most robust architecture in case of the real failures. 

3.6.5. Deterioration of DCNs  

It has been observed that depending on the: 1) DCN architecture, 2) type of failure 

(whether it is random, targeted, network-only, or real), and (3) specific percentage of the nodes 

failed, the level of robustness according to a specific graph metric, computed from the largest 

connected component might be different. Moreover, the results for the various metrics exhibit 

strong dependence on the largest connected component, as observed in Section 7. Furthermore, 

the failure analysis depicts that the initial metric measurements are unable to quantify the DCN 

robustness appropriately (see Table 3.6 and Section 7.3). Therefore, we propose deterioration 

metric, a procedure for the quantification of the DCN robustness based on the percentage change 

in various graph metrics.  

Deterioration 𝜎𝑀, for any metric 𝑀 can be calculated as the difference between the metric 

value for the whole network 𝑀0, and the average of the metric values at various failure 

percentages 𝑀𝑖, divided by 𝑀0.   
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𝜎𝑀 =  | 
𝟏

𝑀𝟎
 (  

∑ 𝑀𝑖
𝑛
𝑖=1

𝑛
 − 𝑀0)| 

(3.27) 

Where 𝑀𝑖 is measurement of the metric 𝑀 at 𝑖 percent of the nodes failure, and 𝑀0 is the metric 

value for the whole of the network (without failure). To demonstrate that our proposed metric is 

able to quantify network robustness, we compute 𝜎𝑀 for:  

1. six graph metrics namely:  

a. cluster size,  

b. average shortest-path length, 

c. nodal degree,  

d. algebraic connectivity,  

e. symmetry ratio, and  

f. spectral radius,  

2. for the random, targeted, and real failures, taking into the account 1 to 6 percent of 

the nodes failure.  

The results for the random, targeted, and real failures are presented in Figs. 9a, 9b, and 

9c, respectively. The results depict that for almost all of the failure types, the 𝜎𝑀 or the DCell is 

much less as compared to the ThreeTier and FatTree architectures. The ThreeTier DCN exhibits 

the highest deterioration in random and network-only failures. However, for the real failures, the 

FatTree DCN exhibits more deterioration than the ThreeTier network. It is noteworthy to 

consider that for the real failures, the number of the failed nodes for the FatTree is around five 

times higher than the ThreeTier architecture (see Section 5). Our proposed 𝜎𝑀 evaluates the 

network robustness, and also allows to compare the results among various DCN architectures. 

The lower the value of deterioration, the higher is the robustness of the network.  
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It can be observed that the robustness of the considered networks evaluated by the 

deterioration metric complies with the robustness of the networks observed in Sections 7.2 and 

7.3. Therefore, it can be stated that the deterioration metric can be employed to evaluate the 

robustness of the networks where the classical robustness metrics are inapplicable, such as the 

DCNs.  

Table 3.12. DCN Features in Case of Real Failure. 

Feature 
FatTree30K ThreeTier30K DCell30K FatTree2K ThreeTier2K DCell2K 

      

𝑚𝑎𝑥 (𝑣) 0.91 0.94 0.99 0.98 0.95 0.9 

〈𝑘〉 

4.7453 1.9523 3.7155 

 4.4825 

±7.07  

 2.0921 

±4.51  

 3.2899 

±0.95  

〈𝑙〉 

5.6417 5.901332 11.21 

 5.2863 

±1.09  

 5.7204 

±0.71  

 8.5909 

±1.95 

𝐷 7 6 23 7 6 15 

𝑟 

-0.288845 -0.974917 

-

0.215366 -0.21106 -0.95623 -0.23834 

𝜇|𝑣|−1)  -   -   -  0.24157 0.00672 0.12017 

〈𝑏〉 

 -   -   -  

 0.00181 

±0.00372  

 0.00205 

±0.02116  

 0.00284 

±0.0014   

𝜆1  -   -   -  16.34671 7.68104 3.53358 
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Fig. 3.9. Deterioration of the 2K Networks in Case of Random, Targeted, and Real Failures. 
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4. ON THE CONNECTIVITY OF DATA CENTER NETWORKS 

 This paper is published in IEEE Communications Letters, vol. 17, no. 11, pp. 2172-2175, 

2013. The authors of the paper are Marc Manzano, Kashif Bilal, Eusebi Calle, and Samee U. 

Khan. 

4.1.  Introduction 

Cloud computing is an emerging paradigm that in the forthcoming years is expected to 

play a pivotal role in the Information and Communication Technology (ICT) sector. Data centers 

are the foundations of the cloud computing paradigm and are crucial for its operational and 

economic success. Data centers are composed of tens of thousands of hosts that are organized in 

clusters. Services are sourced from multiple clusters within the data center, and each cluster may 

host multiple services to increase system utilization. Most of the network communication, such 

as indexing, search, or other Map-Reduce tasks [4.1], take place within the data center [4.2]. For 

example, to process a single search query, thousands of servers within the data center are 

contacted in parallel [4.2]. The expected response time to the user is generally in tens of 

milliseconds [4.1], and a minor performance degradation or network congestion may result in a 

Quality of Service (QoS) violation. 

Data Center Networks (DCNs) that constitute the communicational backbone of the 

cloud computing paradigm are of paramount importance to guarantee the system integrity [4.3]. 

The DCNs can be broadly classified into: (a) switch-centric and (b) server-centric or hybrid 

models [4.3]. The ThreeTier DCN is the most commonly used switch-centric architecture [4.4]. 

Al-Fares et al. used commodity network switches to design the FatTree switch-centric DCN 

architecture [4.5]. Guo et al. proposed the DCell; a hybrid DCN architecture [4.6] composed of 
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recursive building units called dcells. The aforementioned are the three most common DCNs 

[4.3]. 

Various network robustness and connectivity metrics have been proposed, such as the 

Average Two-Terminal Reliability (𝐴2𝑇𝑅) [4.7], which take into consideration the physical 

topology and node interconnection of the network. To operate successfully, the DCNs are 

expected to possess high tolerance to network failures [4.3]. However, the networks may behave 

diversely when exposed to various types of node or link failures. 

The A2TR is used to evaluate network connectivity in response to random failures [4.8], 

[4.9]. In this work we extend and customize the 𝐴2𝑇𝑅 procedure to evaluate targeted failures. 

Our analysis reveals that the DCNs exhibit diverse connectivity features and robustness in 

response to the targeted and random failures. As a consequence, we propose a new connectivity 

metric called 𝜇 − 𝐴2𝑇𝑅, which evaluates how difficult it is to break a network into components 

according to a specific type of failure. We believe that our proposal will aid network engineers 

and the research community in designing more robust and better-connected DCNs. 

Our major contributions include: (a) comparing the traditional network features of the 

state of the art DCNs namely: ThreeTier, FatTree, and DCell; (b) studying the DCNs 

architectural network connectivity in response to random and targeted node removals; and (c) 

proposing μ-A2TR, a metric to characterize the underlying connectivity of the DCNs. 

4.2.  Connectivity Analysis 

According to the characteristics of the DCNs, it can been inferred that the FatTree is the 

least vulnerable network, followed by the DCell and ThreeTier architectures, respectively. To 
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examine the connectivity of the DCNs in detail, we evaluate the A2TR [4.7] value of each 

network in the case of three different types of node removals. The nodes to be removed are 

selected: (a) randomly, as discussed in various studies, such as [4.8], [4.9], [4.12]; (b) by their 

nodal degree; and (c) by betweenness centrality. The nodes with high betweenness centrality and 

nodal degree are selected for removal to demonstrate the system connectivity under targeted 

attacks [4.12], [4.13], [4.14]. 

The 𝐴2𝑇 𝑅(𝑝) is the probability that a randomly chosen pair of the nodes is connected 

when 𝑝 nodes are removed from the network. If the network is fully connected, the value of 

𝐴2𝑇𝑅 is equal to 1. Otherwise, when 𝑝 nodes are removed, the 𝐴2𝑇𝑅 value is calculated as the 

sum of the number of the node pairs in every strongly connected component (SCC) divided by 

the total number of node pairs in the network: 

𝐴2𝑇𝑅 (𝑝)  =  
∑ |𝐶𝑖| . (|𝐶𝑖| − 1) 

|𝑆𝐶𝐶|
𝑖=1

|𝑁′| .  (|𝑁′| − 1)
 , (4.1) 

where |𝐶𝑖| is the number of nodes of the 𝑆𝐶𝐶 number 𝑖, and |𝑁′| is the vertex size of the residual 

graph |𝑁| − 𝑝. This ratio indicates the fraction of node pairs that are connected to each other. 

Therefore, the higher the 𝐴2𝑇𝑅 value (for a given number of removed nodes), the more 

connected the DCN is. 

We compute the 𝐴2𝑇𝑅 value from 𝑝 = 0 to 𝑝 = |𝑁| − 2, where |𝑁| is the total number of 

nodes in a DCN. In the procedure described in this section, the most expensive computation is in 

obtaining, for each 𝑝, the strongly connected components of the network. For that step, we use 

Tarjan’s algorithm [4.15], whose running time complexity is in 𝑂(|𝑁 |  +  |𝐸|). The simulation 
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was performed on a Linux system with an 8-core 64-bit Intel Xeon processor of 2GHz and 16 

GB of RAM. We employed a discrete-event simulation tool called PHISON [4.16]. 

4.3.  Results 

The results of the connectivity analysis are presented in Fig. 4.1, which depicts the 𝐴2𝑇𝑅 

evolution according to the three types of node removals. The depicted values are the average of 

1,000 runs with different random seeds, this being a widely used value in the bootstrap literature 

to carry out replications because it guarantees low variance [4.17]. 

In Fig. 4.1 it can be observed that for a lower percentage of randomly removed nodes (up 

to 40%), the DCell exhibits highly connected network, because of the high 𝐴2𝑇𝑅 values as 

compared to the ThreeTier and FatTree architectures. The ThreeTier network is more affected by 

the random removal of the nodes than the ThreeTier network. However, it is interesting to note 

that the connectivity of the DCell decreases extremely rapidly within the interval of 40% to 60% 

of removed nodes. Nevertheless, FatTree maintains a smooth linear decline for any percentage of 

removed nodes. Consequently, as discussed in Section II, of all three architectures considered 

and in response to high percentages of random node failures, the FatTree proves to be the most 

connected network. 

The connectivity analysis of the DCNs observed in the case of high nodal degree and 

betweenness centrality based node removal differs significantly from the random nodes removal. 

The results presented in Fig. 4.2 and Fig. 4.3 depict the targeted removal of the nodes. It can be 

observed that the ThreeTier architecture is the most vulnerable network. Less than 10% of the 

node pairs remain connected to each other when removing only four nodes (core layer nodes) in 

the ThreeTier architecture. Contrary to the random nodes removal case, the FatTree network is 
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significantly affected by the targeted failures. However, the A2TR value curves of the FatTree 

exhibit a smoother decline than the ThreeTier A2TR value curves. Finally, of the three 

architectures considered, the DCell is the most connected network for targeted nodes removal 

cases. 

 

Fig. 4.1. A2TR of the DCNs for Random Failures. 

 

Fig. 4.2. A2TR of the DCNs for the Nodal Degree based Failures. 
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Fig. 4.3. A2TR of the DCNs for the Betweenness Centrality based Failures. 

To conclude, it is worth noting that the network features for the DCN architectures do not 

accurately translate when evaluating the connectivity of the networks in various failure/node 

removal scenarios. Despite the fact that the FatTree exhibits better robustness features than the 

DCell architecture, the connectivity analysis demonstrates that the DCell architecture exhibits 

less vulnerability than the FatTree architecture. Therefore, it necessitates defining a new metric, 

which can accurately evaluate the connectivity of the DCNs. 

4.4.  μ-A2TR 

In this section we present 𝜇 − 𝐴2𝑇𝑅 as our third contribution to this letter, a novel metric 

to evaluate the connectivity of DCNs. We compute 𝜇 − 𝐴2𝑇𝑅 for a given network and a given 

type of failure, from the 𝐴2𝑇𝑅 values which are obtained by conducting the analysis defined 

previously in this letter. The idea of considering the performance curve for increasing network 

damage was initially proposed in [4.18]. As a result, our proposal characterizes how difficult it is 
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to break a network into components when considering an incremental node failure scenario. 

Therefore, 𝐴2𝑇𝑅 can be defined as: 

𝜇 − 𝐴2𝑇𝑅 =  
∑  𝐴2𝑇𝑅 (𝑝)|𝑁|−2

𝑝=0

(|𝑁| − 1)
 , (4.2) 

where p is the number of nodes that have been removed from the network, and 𝐴2𝑇 𝑅(𝑝) is the 

𝐴2𝑇𝑅 value of the network for 𝑝 removed nodes. 𝜇 − 𝐴2𝑇𝑅 takes values over the interval [0, 1]. 

The higher the value of μ-A2TR, the more robust the DCN, in terms of connectivity, and more 

difficult to segregate the DCN into smaller clusters is. 

Fig. 4.4 presents the 𝜇 − 𝐴2𝑇𝑅 values for the three DCNs, and for the three types of node 

removals. As can be observed, the DCell architecture exhibits the highest 𝜇 − 𝐴2𝑇𝑅: 0.45, 0.32, 

and 0.37 for the random, nodal degree, and betweenness centrality, respectively. The DCell 

architecture follows a recursively built topology, where each 𝑑𝑐𝑒𝑙𝑙 connects to 𝑙 other 𝑑𝑐𝑒𝑙𝑙𝑠 (𝑙 

is the level of the DCell architecture [4.3]). Moreover, the nodes within the DCell architecture 

exhibit low standard deviation in the nodal degree and betweenness centrality. Therefore, the 

DCell architecture exhibits high resilience to the node failures. On the contrary, the FatTree and 

ThreeTier architectures follow a hierarchical topology, where some of the nodes (core layer 

nodes) possess high nodal degree and betweenness centrality. In case of the targeted failures, 

these nodes are chosen for removal, resulting in network segregation and low connectivity. 

However, the number of nodes in the core layer of the FatTree are higher than in the ThreeTier 

architecture, the latter only having 4 nodes in our case. Therefore, the FatTree architecture 

exhibits better connectivity in terms of 𝜇 − 𝐴2𝑇𝑅 (0.41, 0.07 and 0.07 for the three types of node 

removals) than the ThreeTier (0.27 in the case of random removals and close to 0 in both of the 

targeted cases). 
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Fig. 4.4. μ − A2TR for the DCNs. 

Unlike traditional graph features, our proposal describes how robust a network is in the 

case of specific failure scenarios. The 𝜇 − 𝐴2𝑇𝑅 metric is able to denote significant differences 

between the three DCN topologies considered in this work. For instance, according to the 

algebraic connectivity or the spectral radius, the FatTree is the most robust network. However, 

𝜇 − 𝐴2𝑇𝑅 demonstrates that, although the DCell and the FatTree perform similarly in the case of 

random node removals, the former is more robust under targeted failures. In conclusion, 𝜇 −

𝐴2𝑇𝑅 provides further insight into the connectivity of the DCNs, this being highly beneficial for 

the network research community given the critical role played by such networks currently. 
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5. ROBUSTNESS QUANTIFICATION OF HIERARCHICAL COMPLEX 

NETWORKS UNDER TARGETED ATTACKS 

This paper is submitted to Physica A and is in the second round of review. The authors of 

the paper are Kashif Bilal, Marc Manzano, Eusebi Calle, Catrina Scoglio, and Samee U. Khan. 

5.1.  Introduction 

The society today is more dependent than ever on complex networks, such as the 

transportation and power networks, Internet, and Data Center Networks (DCNs). A complex 

network is generally denoted by the structural complexity, network evolution characteristics, 

connection diversity, dynamical complexity, and node diversity [5.1]. It has been argued that 

most of the complex networks inherently follow a hierarchical organization [5.2, 5.3]. However, 

there is no widely accepted definition of hierarchical networks, mainly because the definition of 

hierarchy involves several descriptors, such as order, levels, inclusion, or control [5.4]. Mones et 

al. discussed three types of network hierarchies within the complex systems, namely: flow, 

nested, and order hierarchy [5.2]. In a flow hierarchy, the nodes are organized and connected as a 

layered graph having multiple layers. The nodes in the lower layer are influenced by the nodes in 

the upper layer. Most of the complex networks within the domain of computer science and 

engineering, such as DCNs that form the backbone of the cloud computing [5.5], exhibit flow 

hierarchy. Conversely, a nested hierarchy is composed of high level and lower level elements, 

where high level elements contain lower level elements [5.6]. The ordered hierarchy is based on 

an ordered set, where ordering is made up of the values of the variables in the set of elements 

[5.7].  
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Recently, a 3-D morphological framework has been proposed to characterize 

quantitatively the concept of hierarchy [5.4]. However, the framework cannot be applied to 

undirected networks. Several quantitative hierarchy measures can be found in the literature, such 

as the hierarchical path and Global Reaching Centrality (GRC) [5.8]. Among all of the aforesaid, 

we consider the GRC hierarchical measure, because the GRC is applicable to any type of 

complex network, such as directed, undirected, weighted, or unweighted [5.2]. The GRC is based 

on the Local Reaching Centrality (LRC) that denotes the portion of nodes that can be reached via 

outgoing edges of a node. The GRC measure is computed as the difference between the 

maximum and average values of the LRCs within the network. The GRC values lie within the 

interval [0-1]. A directed tree network has the GRC value close to one; whereas, the GRC value 

of a homogeneous network, such as a lattice is near to zero (see Fig. 5.1). 

Robustness is the ability of a network to deliver an anticipated level of performance, 

while sustaining component failures and system parametric perturbations [5.9]. For instance, the 

DCNs need to be robust against failures and system parametric perturbations for the successful 

and timely delivery of cloud services [5.10]. Minor performance degradation may result in 

enormous financial and reputation loss, as reported by Google and Amazon [5.11]. Therefore, 

the robustness analysis of the complex networks that represent the foundations of our modern 

society is extremely crucial. In general, the network robustness is evaluated by using classical 

graph metrics [5.9]. Some of the well-known network robustness metrics are discussed in [5.9, 

5.12]. Various studies have been conducted for the robustness analysis of complex networks, 

such as biological, technological, and social networks [5.13]. However, to the best of our 

knowledge, there is no previous work that studies the impact of network hierarchy on the 

robustness of a network in case of intentional (or targeted) attacks.  
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In this work, we aim to emphasize the relationship between the network hierarchy and 

robustness. We use ten different networks for the said analysis. We calculate the network 

hierarchy using the GRC measure. The networks are then categorized into two classes based on 

the GRC values: (a) highly hierarchical (high GRC values networks) and (b) low hierarchical 

(low GRC valued networks). We employ various classical robustness metrics to measure the 

network robustness prior to and after the targeted failures. To imitate targeted attacks and node 

failures within a network, we choose the failing nodes based on the highest nodal degree and 

betweenness centrality of the nodes. We choose targeted failures by the nodal degree and 

betweenness centrality to represent the worst-case scenarios [5.14]. The failures are performed 

from 1% to 5% of the nodes within a network. To quantify the robustness of the networks after 

failures, we use the deterioration procedure to find the percentage change in the value of the 

metrics for the network. Our analysis reveals a strong relationship between the hierarchy and 

robustness of a network. The highly hierarchical networks are more vulnerable to the targeted 

attacks than the low hierarchical networks. Our major contributions can be summarized as:  

 evaluate hierarchy of the networks using the GRC measure, 

 measure network robustness using various classical metrics under targeted 

attacks, 

 employ deterioration procedure to quantify the network robustness after targeted 

failures, 

 analyze the relationship between the GRC value and classical graph metric 

results, 
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 investigate the correlation between the hierarchy and the robustness of a network 

under targeted failures. 

5.2.  Preliminaries 

The robustness of complex networks has been extensively studied in the past decade. The 

studies were aimed to understand the physical connectivity of a network and the effects of the 

random and targeted failures within a network using classical graph metrics [5.15, 5.13, 5.16]. 

Various new metrics to capture the advanced robustness characteristics were also proposed in 

[5.17, 5.18]. Moreover, the correlations of traditional graph metrics were also considered and 

various interesting observation were made, such as the average shortest path length and 

clustering coefficient were strongly correlated [5.19]. Recently, several metrics have been 

proposed to consider the performance of a network under failure scenarios [5.20, 5.21, 5.22]. 

However, the relationship between the robustness of a network under targeted attacks and the 

underlying hierarchical structure of the network has not been considered in detail. Therefore, we 

aim to analyze the effect of the hierarchy on the robustness of a network in response to targeted 

attacks. To do so, we define the following case study for a set of ten different complex networks: 

 

Fig. 5.1. Layout of a Directed Tree (Left) and a Lattice of 20 × 20 Nodes (Right).  
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 We consider the GRC measure to quantify the hierarchy of complex networks. 

 We define two scenarios of node targeted attacks using the nodal degree and node 

betweenness centrality.  

 Failures are instigated from 1% to 5% of the nodes within the networks. 

 We calculate the GRC value for each of the considered networks, and classify the 

networks into highly hierarchical and low hierarchical network. 

 We use six classical graph metrics to evaluate the robustness of each of the 

networks in each of the failure scenarios. 

 We study the relationship between the GRC metric and the robustness of 

networks using the deterioration procedure when incremental and irreversible 

attacks occur. 

The rest of this section is dedicated to present the networks and define the different measures that 

are used in our posterior analysis. 

5.2.1. Networks 

In this study we consider ten networks. The details of the networks are discussed below. 

 PowerlawN400: a power-law network that has been generated using the Barabási 

Albert (BA, preferential attachment mechanism) model [5.23]. 

 EuroPGN1400: an approximated model of the European power grid network 

[5.24]. 
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 ASN25K: an Autonomous System (AS) network of the year 2012 [5.25]. 

 ASN26K: the largest AS connected graph from the network set available in 

November 2007 in the Cooperative Association for Internet Data Analysis 

(CAIDA) repository [5.26]. 

 USmotorway: the US interstate highway topology [5.27]. 

 ATTN383: a physical fiber network of AT&T [5.28]. 

 SprintN300: a physical fiber network of Sprint [5.28]. 

 ThreeTierN2K: commonly used network topology within data centers [5.29, 5.30] 

 FatTreeN2K: the Clos based network topology proposed for data centers [5.31] 

 DCellN2K: hierarchical server-centric topology proposed for data centers [5.32] 

Table 5.1 depicts the main features of the networks. As observed, our set of networks is 

heterogeneous with respect to size, number of edges, average nodal degree, and maximum nodal 

degree.  

5.2.2. Global Reaching Centrality (GRC) 

Several measures have been proposed to measure the network hierarchy [5.33, 5.34, 5.35, 

5.4]. Some of the hierarchical measures require the definition of free parameters that are 

unknown for many networks [5.33, 5.34]. Some of the proposals only quantify the deviation 

from the pure tree structure to measure the hierarchy of the network [5.35], or are only applicable 

to fully directed graphs [5.4]. We consider the GRC measure as it is applicable to any type of 
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complex network, such as undirected and unweighted [5.2]. Given a graph G, the GRC can be 

defined as follows: 

𝐺𝑅𝐶 =
∑ [𝐶𝑅

𝑚𝑎𝑥
𝑖∈𝑉 − 𝐶𝑅(𝑖)]

𝑁 − 1
 , (5.1) 

where V denotes the set of nodes, N is the number of nodes within G, CR(i) is the Local Reaching 

Centrality (LRC) of the node i, and CR
max is the highest LRC value among all of the nodes within 

G. The GRC values lie within the interval [0,1]. A higher GRC value depicts a higher hierarchy 

of the network. The LRC value depicts the portion of the nodes of a network that can be reached 

from a node i. For unweighted and undirected graphs, the LRC is denoted as: 

𝐶𝑅(𝑖) =
1

𝑁 − 1
∑

1

𝑑(𝑖, 𝑗)
𝑗:0<𝑑(𝑖,𝑗)<∞

 , (5.2) 

where d(i, j) is length of the shortest path from the node i to j. It must be noted that this value for 

undirected and unweighted graphs is very similar to the local closeness centrality [5.36]. 

Fig. 5.2 illustrates the GRC measures for the set of ten networks considered in this work. 

As can be observed, there are five networks that have the value of GRC greater than 0.14, while 

the other five present the GRC values below 0.05. For the ease of the analysis and comparison, 

we classify the considered networks into two categories. The network with the GRC value 

greater than 0.14, such as the ASN25K, ASN26K, Powerlaw400, ThreeTierN2K, and 

FatTreeN2K, fall under the former category (referred as high GRC valued networks in the 

paper). Alternatively, the network with the GRC value less than 0.05, such as the ATTN383, 

EuroPGN1400, Sprint200, USmotorway, and DCellN2K, fall under the latter category (referred 

as low GRC valued networks in the paper). The GRC values of the networks are reported in 

Table 5.2.  
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Table 5.1. Network Characteristics. 

Network 
Number of 

nodes 

Number of 

edges 

Average nodal 

degree 

Maximum 

nodal degree 

ASN25K 25,357 74,999 5.91 3,781 

ASN26K 26,475 53,381 4.03 2,628 

PowerlawN400 400 399 2 47 

ThreeTierN2K 2,562 2,740 2.1389 40 

FatTreeN2K 2,500 6,000 4.8 20 

USmotorway 411 553 2.69 7 

ATTN383 383 488 2.54 8 

EuroPGN1400 1,494 2,154 2.88 13 

SprintN300 264 313 2.37 6 

DCellN2K 2,709 4,515 3.3333 4 

 

Table 5.2. The GRC Values of the Networks. 

High GRC 

valued 

Networks 

ASN25K ASN26K PowerlawN4

00 

ThreeTierN2

K 

FatTreeN2K 

GRC Value 0.24336 0.19728 0.18713 0.17199 0.14343 

Low GRC 

Valued 

Networks 

USmotorw

ay 

ATTN383 EuroPGN140

0 

SprintN300 DCellN2K 

GRC Value 0.05559 0.04579 0.04319 0.0413 0.00715 
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Fig. 5.2. The GRC Values of the Networks. 

5.3.  Robustness Analysis 

5.3.1. Initial Network Analysis 

We have analyzed the robustness of the ten complex networks considering the classical 

robustness metrics. Table 5.3 presents the values of the classical metrics for the networks without 

any failures. Table 5.3 is sorted based on the decreasing GRC values to depict the relation 

between hierarchy and robustness estimation of the network. As can be observed from the table, 

the networks with high GRC values (highly hierarchical networks) depict better robustness in 

most of the cases without failures. The FatTreeN2K and ThreeTierN2K networks have the least 

diameter value of six. The ASN25K network has a slightly higher diameter value than the 

FatTreeN2K and ThreeTierN2K networks, but a smaller diameter than most of the low GRC 
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valued networks, such as USmotorway and EuroPGN1400. The ASN26K network has the 

highest diameter value of seventeen within the highly GRC valued networks; whereas, the 

EuroPGN1400 network has the highest diameter of 44 within the low GRC valued networks. The 

average diameter value for the high and low GRC valued networks was eleven and 36.2, 

respectively. The average diameter is calculated to highlight the difference of the initial metric 

values for both of the network groups. 

As discussed in Section 2.3, the networks with low average shortest path lengths (denoted 

as ASP) are considered more robust. It can be observed from the metrics results presented in 

Table 5.3 that in general, the high GRC valued networks have low average path lengths. The 

ASN25K and ASN26K networks have the average path lengths of 3.39 and 3.87, respectively 

that makes them the most robust network based on the path length metric. On the contrary, low 

GRC valued networks exhibit high average path length values. The average of the high GRC 

valued networks is 4.84; whereas, the low GRC valued networks have 13.97 as the average value 

for the path length metric. 

The networks with high spectral radius are considered more robust. A similar trend of 

high GRC valued networks to exhibit better robustness can also be observed when considering 

the spectral radius metric. The ASN25K and ASN26K with the highest GRC value also exhibit 

the highest spectral ratio values of 103.36 and 69, respectively. Alternatively, the spectral radius 

values of the low GRC valued networks group are comparatively very low. The average spectral 

radius values for high and low GRC valued network groups are 41.53 and 3.87, respectively. 

An analogous trend of robustness estimation based on the algebraic connectivity metric 

can also be observed in both of the network groups. The high GRC valued networks exhibit high 
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algebraic connectivity values than the low GRC valued networks. The only exception is the 

DCellN2K network that has a high algebraic connectivity value, almost equal to the ASN25K 

network. However, the algebraic connectivity value of the DCellN2K is three times less than the 

FatTreeN2K network. In general, high GRC valued networks exhibit high algebraic connectivity 

values with an average of 0.0942 than the low GRC valued networks having an average value of 

0.0256. The DCellN2K and PowerlawN400 networks are to be considered as the exceptions in 

both of the network groups, while considering the algebraic connectivity values.  

The networks with high average nodal degrees are considered more robust. The networks 

having a high GRC values in general, exhibit high average nodal degrees. The ASN25K and 

ASN26K networks exhibit the highest nodal degrees of 5.91 and 4.03, respectively. However, 

the PowerlawN400 network is an exception within the group having an average nodal degree of 

1.995. The average value of the nodal degree for high and low GRC valued groups was 3.77 and 

2.76, respectively.  

In general, one may infer from the initial metric values that the higher the hierarchy, 

more robust is the network. However, we will see in Section 4 that the aforementioned 

assumption does not hold true in case of targeted failures where low GRC valued networks 

exhibit better hierarchy than the higher GRC valued networks, leading to the fact that the initial 

robustness estimation of the hierarchical networks using the classical robustness metrics may be 

misleading and erroneous. 

5.3.2. Deterioration 

We present a procedure for the quantification of the network robustness and comparison 

between various heterogeneous networks (in terms of size), named deterioration, based on the 
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percentage change in the metric values. The deterioration can be calculated as the difference 

between the initial value (without failure) of the robustness metric M and the average of the 

metric values at various failure percentages, divided by the initial value. The average of the 

metric values is considered to minimize the effect of a critical point and phase transition for 

various networks [5.37]. Some of the networks exhibit phase transition after a specific number of 

failures. For instance, the FatTree network exhibits a phase transition at 1.9% of targeted failures 

based on the betweenness centrality failures [5.10]. For targeted failures up to 1.8%, the FatTree 

holds around 98% of the nodes in the largest connected cluster. However, the total number of 

nodes within the largest cluster drops to 2% of the original network size, when targeted failures 

percentage reaches 1.9%. Therefore, we use the average of the metric values for the entire failure 

range to minimize the impact of phase change at a specific percentage of failure. Moreover, 

various metrics, such as diameter and shortest path length can only be calculated for connected 

component of the graph. Therefore, the resultant values of the aforementioned metrics may be 

misleading for a specific percentage of failure. For instance, the ThreeTierN2K network totally 

segregates after 5% of targeted failures, where the size of largest connected component is two. 

Therefore, the resultant diameter and path length is equal to one. Similarly, the size of the largest 

connected component after 5% of targeted failures in the ASN26K network was 35, compared to 

the initial network size of 26,475. Therefore, the resultant value for the diameter and average 

path length was 16 and 2.3, respectively. However, for 3% of the failures for the ASN26K 

network, the values for the largest connected component, diameter, and average path length was 

718, 46, and 15.55, respectively. Consequently, considering only the final values after 5% of 

failure will be misleading. Therefore, we take the average for all of the percentages of failures 
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for calculating the percentage change within the metric value. The deterioration can be presented 

as: 

𝜎𝑀 =  | 
𝟏

𝑀𝟎
 ( 

∑ 𝑀𝑖
𝑛
𝑖=1

𝑛
 − 𝑀0)| , (5.3) 

where 𝑀0 is the initial value of a metric 𝑀 without failures, and 𝑀𝑖 is the value of the metric 

when i percent of the nodes fail (1 ≤ 𝑖 ≤ 𝑛). The lower the value of deterioration, the higher is 

the robustness of the network, indicating that the network has undergone the minimum number 

of changes. On the contrary, the larger the change in values of various metrics of a network, the 

higher the deterioration is, depicting less robustness of the network. To demonstrate the validity 

of the proposed procedure, we calculate 𝜎𝑀 for the: diameter, algebraic connectivity, spectral 

radius, nodal degree, largest connected cluster size, and average shortest path length.  

Fig. 5.3 – Fig. 5.8 present the deterioration results for the considered metrics with respect 

to the nodal degree and betweenness centrality based targeted failures. For both of the failures 

scenarios (nodal degree and betweenness centrality), it can be observed that the low GRC valued 

networks exhibit lower deterioration in most of the cases depicting the higher robustness to 

targeted failures.  

5.3.3. Robustness Analysis under Targeted Failures 

To analyze the effect of the failures and the validity of the robustness metrics, we 

evaluate the considered networks by instigating targeted failures, and removing the nodes based 

on the: highest nodal degree and highest node betweenness centrality values. The 

aforementioned targeted failure criteria are used in various studies, such as [5.38, 5.14]. The 

nodal degree represents the number of outgoing physical connections of a node with its 
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neighbors. The betweenness centrality is used to estimate the prestige of a node, and is measured 

as the number of the shortest paths between all of the node pairs within the network that pass 

through that node [5.9]. Therefore, the two failure criteria consider the structural as well as the 

operational aspects of the network. The failures are introduced within the network from within a 

range of 1% – 5% of the total number of the nodes.  

Table 5.3. Classical Metric Values for the Considered Network Topologies. 

Network GRC Diameter 
Nodal 

Degree  
ASP 

Cluster 

Size 

Algebraic 

Connectivity 

Spectral 

Radius 

High GRC valued Networks 

ASN25K 0.243 10 5.9154 3.3984 25,357 0.10768 103.361 

ASN26K 0.197 17 4.0325 3.8756 26,475 0.02043 69.642 

PowerlawN40

0 
0.187 16 1.995 6.0065 400 0.00463 7.01347 

ThreeTierN2

K 
0.171 6 2.1389 5.7247 2,562 0.02307 10.25044 

FatTreeN2K 0.143 6 4.8 5.2106 2,500 0.31526 17.4186 

Average 0.188 11 3.776 4.8432 11,458.8 0.094214 41.5371 

Low GRC valued Networks 

USmotorway 0.055 42 2.6909 13.654 411 0.00547 4.2156 

ATTN383 0.045 39 2.5483 14.129 383 0.00554 3.7069 

EuroPGN140

0 
0.043 48 2.8835 18.888 1494 0.00169 5.0272 

SprintN300 0.041 37 2.3712 14.704 264 0.00535 2.9317 

DCellN2K 0.007 15 3.3333 8.5106 2709 0.11021 3.475 

Average 0.038 36.2 2.765 13.977 1052.2 0.0256 3.871 
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The values of the largest connected cluster size and deterioration under the targeted 

failures for the considered networks are reported in Table 5.4 and Table 5.5, for the nodal degree 

and betweenness centrality based failures, respectively. The reported values represent the cluster 

size and deterioration values for the metric results obtained after instigating 1% – 5% of the 

failures within the network. The values for the shortest path length, diameter, algebraic 

connectivity, and spectral radius, are calculated from the largest connected cluster of the 

resulting network after targeted failure. For an ease of comparison and observation, the initial 

size of the network without failure (labeled as Initial in the second column), the resultant largest 

connected cluster size obtained after 5% of the node failures (labeled as 5% F), and the 

deterioration value (labeled as D) are reported in the Table 5.4 and Table 5.5, respectively. The 

rows in the tables are sorted based on the decreasing GRC values to highlight the relation 

between the GRC value and deterioration. It can be observed from the tables that the networks 

with high GRC values exhibit more deterioration in contrary to the initial observations obtained 

from the robustness metric values without failure, as reported in Section 3.1. The detailed 

analysis of various metric results and deterioration is presented below.  

5.3.4. Robustness Analysis Considering the Classical Metrics 

5.3.4.1. Cluster Size 

The largest connected cluster (giant cluster) is one of the simplest robustness measures. A 

network with high robustness must retain most of the nodes in the giant cluster depicting a 

minimum deterioration and segregation. Such a behavior of the network having high giant cluster 

size after failures is a natural and easy estimation of the network’s robustness. We argue that the 

networks depicting higher hierarchical organization and high GRC values exhibit low robustness 
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in terms of the giant cluster size. It can be observed from the initial and after 5% failure size of 

the giant cluster (see Table 5.4 and Table 5.5) that the high GRC valued networks get segregated 

in very small sized clusters where the giant cluster has very little number of nodes as compared 

to the initial graph. For instance, the ASN25K, ASN26K, PowerlawN400, ThreeTierN2K, and 

FatTreeN2K, show 82%, 89%, 94%, 97%, and 18% deterioration in the giant cluster size for the 

nodal degree based targeted failures, respectively.  

Table 5.4. Deterioration Values for 1% – 5% of Nodal Degree based Failures. 

Network 

Cluster Size 

Diameter  
Nodal 

Degree  
ASP  

Algebraic 

Connectivit

y  

Spectral 

Radius  Initial 5%F D 

ASN25K 
25,35

7 
51 0.83 1.933 0.867 1.756 0.941 0.936 

ASN26K 
26,47

5 
35 0.90 0.716 0.854 1.238 0.658 0.936 

PowerlawN4

00 
400 9 0.95 0.573 0.415 0.593 22.189 0.592 

ThreeTierN2

K 
2,562 2 0.97 0.528 0.680 0.527 19.365 0.543 

FatTreeN2K 2,500 1,901 0.18 0.194 0.243 0.017 0.315 0.127 

USmotorwa

y 
411 376 0.07 0.122 0.088 0.266 0.403 0.152 

ATTN383 383 328 0.12 0.208 0.102 0.219 0.370 0.037 

EuroPGN14

00 
1,494 1,037 0.18 0.272 0.134 0.164 0.443 0.182 

SprintN300 264 237 0.07 0.149 0.061 0.180 0.395 0.050 

DCellN2K 2,709 2,572 0.04 0.052 0.036 0.027 0.085 0.017 
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Table 5.5. Deterioration Values for 1% – 5% of Betweenness Centrality based Failures. 

Network Cluster Size 
Diameter  

Nodal 

Degree  
ASP  

Algebraic 

Connectivity  

Spectral 

Radius  Initial 5%F D 

ASN25K 25,357 51 0.80 2.32 0.85 2.17 0.91 0.78 

ASN26K 26,475 35 0.88 0.87 0.84 1.61 0.89 0.88 

PowerlawN400 400 9 0.94 0.55 0.39 0.58 22.19 0.59 

ThreeTierN2K 2,562 2 0.97 0.43 0.62 0.53 19.37 0.55 

FatTreeN2K 2,500 120 0.39 0.13 0.23 0.13 0.03 0.26 

USmotorway 411 337 0.06 0.08 0.07 0.22 0.51 0.15 

ATTN383 383 324 0.10 0.11 0.08 0.12 0.37 0.04 

EuroPGN1400 1,494 1,036 0.15 0.29 0.12 0.18 0.51 0.19 

SprintN300 264 232 0.08 0.33 0.06 0.31 0.47 0.03 

DCellN2K 2,709 2,572 0.03 0.05 0.03 0.02 0.08 0.02 

 

The FatTreeN2K network exhibits better connectivity in case of the nodal degree failures. 

However, for the betweenness centrality based failures, the FatTreeN2K networks exhibits 39% 

deterioration. This is due to the fact that all of the nodes in the upper three layers of the 

FatTreeN2K topology have the same nodal degree [5.10]. Therefore, the nodal degree based 

failures has little effect on network connectivity in case of the FatTree2K network.  

Conversely, the networks with low hierarchy and GRC values, such as the USmotorway, 

ATTN383, SprintN300, EuroPGN1400, and DCellN2K depict 7%, 11%, 7%, 15%, and 3% 

deterioration in the giant cluster size, respectively. The deterioration results observed in the 

considered hierarchical networks depict that the networks with the low GRC values exhibit more 

tolerance to the targeted failures and show small variation in the giant cluster size. Therefore, a 

major portion and most of the nodes within the network stay connected even after 5% of the 
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failed/removed nodes. Conversely, the networks with high GRC values depict very high 

deterioration values, and the networks get fragmented and isolated in many small networks with 

very little number of the nodes in the giant cluster. A similar behavior and resultant values can be 

observed in Table 5.5 for the betweenness centrality based targeted failures as depicted by the 

nodal degree based failures. Such a behavior of the high GRC valued networks depicts weak 

tolerance against targeted attacks. The deterioration in size of the largest connected cluster 

illustrated in Fig. 5.3, also affirms that the high GRC valued networks are more prone to targeted 

failures and exhibit low robustness. 

5.3.4.2.  Average Shortest Path Length 

The networks with small average shortest path length are considered more robust. The 

networks with higher GRC values, such as the ASN25K, ASN26K, and PowerlawN400 exhibit 

low average path length values of 3.39, 3.87, and 6.006, respectively. However, the deterioration 

values observed in case of the nodal degree based targeted attacks for the aforementioned 

networks are quite high with 175%, 123%, and 59%, respectively. Conversely, the networks with 

low hierarchical values, such as the USmotorway, ATTN383, SprintN300, and EuroPGN1400, 

have comparatively high average path values of 13.65, 14.12, 14.70, and 18.88, respectively. 

Whereas, the deterioration value of the aforementioned networks are 26%, 21%, 17%, and 16%, 

respectively for the nodal degree based failures. A similar trend can be observed in Table 5.5 for 

the betweenness centrality based failures. The deterioration values observed in the networks with 

low hierarchy and GRC values is quite small as compared to the high GRC valued networks. The 

aforementioned results depict that the average path length based robustness analysis of 

hierarchical networks may be misleading and inadequate for robustness quantification of 

hierarchical networks. Fig 4. depicts the results for the average path length deterioration for the 
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nodal degree and betweenness centrality based failures. The deterioration values in Fig. 5.4 are 

capped at value 1.0 to show a better comparison. 

5.3.4.3.  Diameter 

The networks with low diameter are considered more robust. The diameter of a 

disconnected graph is infinite [5.39]. Therefore, the diameter of the largest connected cluster is 

calculated in case of disconnected networks. The high GRC valued networks have low diameter 

than the networks with low GRC values. On the contrary, higher deterioration and low giant 

cluster sizes are observed when a network with high GRC value is analyzed for the targeted 

attacks. The diameter of the high GRC valued networks, such as the ThreeTierN2K, 

FatTreeN2K, ASN25K, ASN26K, and PowerlawN400 are six, six, ten, seventeen, and sixteen, 

respectively. The diameter values for the aforementioned networks are quite small, compared to 

the networks with the low GRC values, such as USmotorway, EuroPGN1400, ATTN383, and 

Sprint, having diameter values of 42, 48, and 39, respectively. However, as can be observed in 

the Table 5.4 and Table 5.5, and as shown in Fig. 5.5, the deterioration values of the high GRC 

valued networks are very high as compared to the networks with low GRC values. Similar to the 

average shortest path length, it can be inferred that the diameter based robustness estimation of 

the hierarchical networks may be misleading and wrong as well. 



96 
 

 

Fig. 5.3. Deterioration in Largest Connected Cluster Size based on: Nodal Degree (Left) and 

Betweenness Centrality (Right). 
 

  

Fig. 5.4. Deterioration in Path Length based on: Nodal Degree and Betweenness Centrality. 
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Fig. 5.5. Deterioration in Diameter based on: Nodal Degree and Betweenness Centrality. 

5.3.4.4.  Algebraic Connectivity 

Network with high algebraic connectivity values are considered more robust. Most of the 

high GRC valued networks depict high algebraic connectivity values without failure, leading to 

the fact that such networks are more robust. The high GRC valued network, such as the 

ASN25K, ASN26K, ThreeTierN2K, and FatTreeN2K have 0.107, 0.020, 0.023, and 0.31 

algebraic connectivity values, respectively. However, the deterioration values of the 

aforementioned networks are 94%, 65%, 193%, and 31%, respectively. In contrast, the algebraic 

connectivity values for low GRC values networks, such as USmotorway, ATTN383, 

EuroN1400, and Sprint300 are 0.005, 0.005, 0.001, and 0.005, respectively. The deterioration 

observed in these networks is 40%, 36%, 44%, and 39%, respectively, in case of nodal degree 

based failures. Moreover, the giant cluster size deterioration values for all of the aforementioned 

networks also depict conflicting behavior to the initial robustness estimation based on the 

algebraic connectivity values. Most of high algebraic connectivity valued based networks that 
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were expected to be more robust illustrated low resilience to the targeted attacks, and low 

algebraic connectivity value based network described better resilience and high robustness 

opposite to the initial robustness estimation. The algebraic connectivity based deterioration is 

illustrated in Fig. 5.6. 

5.3.4.5.  Spectral Radius 

Spectral radius is another robustness measure where high spectral radius presents higher 

robustness of the network. However, in case of hierarchical networks, spectral radius based 

robustness estimation of hierarchical networks is misleading as well. The spectral radius value of 

high GRC valued networks, such as the ASN25K, ASN26K, PowerlawN400, ThreeTierN2K, 

and FatTreeN2K were 103.36, 69, 7.01, 10.25, and 17.41, respectively. The deterioration 

observed in spectral radius values after 5% of nodal degree based node failure was 93%, 93%, 

59%, 52%, and 12%, respectively. Whereas, the spectral radius values of the low GRC valued 

networks, such as the USmotorway, ATTN383, EuroPGN1400, SprintN300, and DCellN2K 

were 4.21, 3.7, 5.02, 2.93, and 3.47, respectively. The deterioration values for the 

aforementioned low GRC valued networks are 15%, 3%, 18%, 5%, and 2%, respectively for the 

nodal degree based failures. Over again, the spectral radius based robustness estimation for 

hierarchical networks is misleading, where the networks with low spectral radius values show 

better robustness and high giant cluster size, and the network with high spectral radius values 

depict higher deterioration. The deterioration values for spectral radius are illustrated in Fig. 5.7. 

5.3.4.6.  Average Nodal Degree 

The nodal degree depicts the average connectivity of the nodes within a network. Higher 

the average nodal degree, the more robust the network is. We observe that the networks with 
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high GRC values possess comparatively high average nodal degree values, such as 5.9, 4.03, 4.6, 

and, 2.67 for the ASN25K, ASN26K, FatTreeN2K, and ThreeTierN2K, respectively. However, 

the deterioration values of the aforementioned high GRC valued networks are 86%, 85%, 24%, 

and 68%, respectively. Alternatively, the low GRC valued networks like USmotorway, 

ATTN383, EuroPGN1400, and SprintN300 have 2.69, 2.54, 2.88, and 2.37 average nodal degree 

values, and 8%, 10%, 13%, and 6%, deterioration values, respectively. A similar trend can also 

be observed for deterioration values for betweenness centrality based targeted node failures 

depicted in Table 5.5. It can be observed from the aforementioned nodal degree and deterioration 

values after 5% of the node failures that the low valued GRC networks exhibit better robustness 

to the targeted failures as compared to the highly hierarchical networks. The deterioration trend 

illustrated in Fig. 5.8 also affirms the claim. 

  

Fig. 5.6. Deterioration in Algebraic Connectivity based on: Nodal Degree (Left) and 

Betweenness Centrality (Right). 
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Fig. 5.7. Deterioration in Spectral Radius based on: Nodal Degree (Left) and Betweenness 

Centrality (Right). 

 

Summarizing, the aforementioned results depict that the high GRC valued networks 

undergo more segregation and deterioration. In most of the cases, the initial metric results for the 

networks with higher hierarchy values show comparatively high robustness as compared to low 

GRC valued network. However, based on the giant cluster size and deterioration analysis, one 

can infer that the low GRC valued networks retain connectivity, exhibit large giant cluster size, 

and report low deterioration values on the contrary to the initial robustness estimation. Therefore, 

it can be argued that the initial robustness estimation of the hierarchical networks using most of 

the classical robustness measures may be misleading and inadequate.  

5.3.5. Correlation between Network Hierarchy and Deterioration 

To quantify the relationship between the network hierarchy and the deterioration in case 

of failures, we use the Pearson correlation coefficient. Fig. 5.9 illustrates the Pearson correlation 

coefficient between the GRC values and the deterioration for the nodal degree and betweenness 
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centrality based failures. As can be observed there exists a strong correlation between network 

hierarchy and deterioration. For most of the metrics, such as the cluster size, diameter, nodal 

degree, and spectral radius, the correlation value is above 80% depicting a strong correlation. 

The correlation value for the algebraic connectivity in case of the betweenness centrality based 

failures is around 70%. However, in case of the nodal degree based failures, the value of the 

correlation for the algebraic connectivity is 82%. Therefore, it can be inferred that the network 

hierarchy is closely related to deterioration in case of intentional attacks. The more hierarchical a 

network, the less robustness it exhibits in case of targeted attacks. 

 

  

Fig. 5.8. Deterioration in Average Nodal Degree based on: Nodal Degree (Left) and 

Betweenness Centrality (Right). 
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Fig. 5.9. Correlation between the Network Hierarchy and Deterioration in Classical Metrics, for 

Nodal Degree (Left) and Betweenness Centrality based (Right) Attacks. 
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6. QUANTITATIVE COMPARISONS OF THE STATE OF THE ART 

DATA CENTER ARCHITECTURES 

This paper is published in Concurrency and Computation: Practice and Experience, vol. 

25, no. 12, pp. 1771-1783, 2013. The authors of the paper are Kashif Bilal, Samee U. Khan, 

Limin Zhang, Hongxiang Li, Khizar Hayat, Sajjad A. Madani, Nasro Min-Allah, Lizhe Wang, 

Dan Chen, Majid Iqbal, Cheng-Zhong Xu, and Albert Y. Zomaya. 

6.1.  Introduction 

A data center is a pool of computing resources clustered together using communication 

networks to host applications and store data. Major Information and Communication Technology 

(ICT) components of the data center are: (a) servers and (b) network infrastructure. Conventional 

data centers are modeled as a multi-layer hierarchical network with thousands of low cost 

commodity servers as the network nodes. Data centers are experiencing exponential growth in 

number of hosted servers. Google, Microsoft, and Yahoo already host hundreds of thousands of 

servers in their respective data centers [6.1, 6.2]. Google had more than 450,000 servers in 2006 

[6.3, 6.4] and the number of servers is doubling every 14 months at the Microsoft data centers 

[6.5].  

Increased number of servers demands fault tolerant, cost effective, and scalable network 

architecture with maximum inter-node communication bandwidth. Another important aspect of 

data center design is the use of low cost commodity equipment. The server portion of data 

centers has experienced enormous commoditization and low cost commodity servers are used in 

data centers instead of high-end enterprise servers. However, the network portion of the data 

center has not seen much commoditization and still uses enterprise-class networking equipment 
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[6.6]. Increased number of servers demands high end-to-end bisection bandwidth. The 

enterprise-class network equipment is expensive, power hungry, and is not designed to 

accommodate Internet-scale services in data centers. Therefore, the use of enterprise-class 

equipment experiences limited end-to-end network capacity, non-agility, and creation of 

fragmented server pools [6.6]. 

Data Center Network (DCN) is typically based on the three-tier architecture [6.7]. Three-

tier data center architecture is a hierarchical tree based structure comprised of three layers of 

switching and routing elements having enterprise-class high-end equipment in higher layers of 

the hierarchy [6.7, 6.8]. Unfortunately, deployment of even the highest-end enterprise-class 

equipment may provide only 50% of end-to-end aggregate bandwidth [6.9]. To accommodate the 

growing demands of data center communication, new DCN architectures are required to be 

designed.  

Most of the internet communication in future is expected to take place within the data 

centers [6.10]. Many applications hosted by data centers are communication intensive, such as 

more than 1000 servers may be touched by a simple web search request. Communication pattern 

in a data center may be one-to-one, all-to-all, or one-to-all [6.11]. The major challenges in the 

data center network design include: (a) scalability, (b) agility, (c) fault tolerance, (d) end-to-end 

bisection bandwidth, (e) robustness against single point of failure, (f) automated naming and 

address allocation, and (g) backward compatibility. 

DCN architecture is a major part of data center design acting as a communication 

backbone and requires extreme consideration. Numerous DCN architectures have been proposed 

in the recent years [6.9, 6.10, 6.12-6.18]. This paper provides a comparative study and analysis 
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of major DCN architectures that are proposed in recent years by implementing: (a) proposed 

network architectures, (b) customized addressing scheme, (c) customized routing schemes, and 

(d) different network traffic patterns. 

We have implemented the fat-tree based architecture [6.9], recursively defined 

architecture [6.12, 6.13], and legacy three-tier DCN architecture to compare the performance 

under six different network traffic patterns. For the fat-tree DCN architecture, we implemented 

the n-pod based network interconnection design, customized network addressing scheme for 

servers and switches at different levels, and customized two-level routing algorithm. For the 

recursive based DCell DCN architecture, we applied customizable n-level network architecture 

(up to four levels scalable for more than 3.6 million servers), a generic network addressing 

scheme, and the DCell routing algorithm. DCell routing algorithm [6.12] returns a series of 

nodes (e.g., [001] [010]) as intermediate hops between source to destination. We formulated an 

algorithm to find the network address based end-to-end path and implemented source based 

routing in the ns-3 simulator. Moreover, the DCell routing algorithm pseudocode had some 

missing information for implementation and working. For the legacy three-tier DCN 

architecture, we implemented customizable network architecture as reported in [6.7, 6.8]. We 

used the Equal Cost Multi-Path (ECMP) [6.19] routing to obtain realistic results for the three-tier 

DCN architecture. Presumably, it is the very first comparative study of DCN architectures 

employing implementation and simulation techniques. 

A simple simulation analysis introduced in this paper allows us to compare the behavior 

and performance of the considered DCN architectures under different workload and network 

conditions. The DCN architectures used in the analysis [6.9, 6.12] have been implemented on a 
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small-scale system, with 20 servers in the case of DCell model [6.12] and 10 machines in the fat-

tree model [6.9]. The simulation analysis may be considered as a general testbed for realistic 

networks with large number of hosts and various communication and traffic patterns. The 

analysis may also be used for the “green data centers’’ for designing energy-efficient 

communication protocols in DCN [6.20 – 6.26]. 

6.2.  Simulations and Comparative Study 

6.2.1. Environment  

The main aim of the empirical simulation analysis presented in this section is to provide a 

comprehensive insight of different DCN architectures in a realistic manner. Three DCN core 

architectural models, namely: (a) the legacy three-tier architecture, (b) fat-tree based architecture, 

and (c) recursively build DCell architecture, have been used for the simulation of the multi-level 

DCN performance. We used ns-3 discrete-event network simulator for implementing the 

considered DCN architectures [6.32]. The ns-3 simulator allows modeling of various realistic 

scenarios. The most important salient features of the ns-3 simulator are: (a) implementation of 

real IP addresses, (b) BSD socket interface, (c) multiple installations of interfaces on a single 

node, (d) real network bytes contained in simulated packets, and (e) packet traces can be 

captured and analyzed using tools like Wireshark. In this work, the DCN architectures uses: (a) 

the customized addressing scheme and (b) the customized routing protocols that strongly depend 

on the applied addressing scheme (e.g., [6.9]). Therefore, ns-3 deemed as the most appropriate 

network simulator for our work. One of the major drawbacks of using the ns-3 simulator is a lack 

of the network switch module in the ns-3 library. Moreover, the conventional Ethernet protocol 

cannot be implemented in ns-3. Therefore, we configured Point-To-Point links for the connection 
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of switches and nodes. Moreover, we also implemented customized routing protocols for the 

DCN architectures in ns-3. All of our implementation will be made publically available for 

researchers and students.  

6.2.2. Implementation Details 

The considered DCN architectures have been implemented by using the multiple network 

interfaces at each node as required. We implemented the three-tier architecture with an 

oversubscription ratio of 4:1 at the access layer and 1.5:1 at the aggregate layer. We used the 

interconnection architecture for three-tier architecture as reported in [6.7, 6.8], and used ECMP 

routing for enhanced performance, as available in the high-end switches. In the case of fat-tree 

based topology, the primary and secondary routing tables are generated dynamically and are 

based on the number of pods. The realistic IP addresses have been assigned to all of the nodes 

within the system and linked to appropriate lower layer switches. Three layers of switches have 

been created, interconnected, and populated with primary and secondary routing tables. We have 

tailored the general simulator model by extending it with an additional routing module for 

processing two layered based primary and secondary routing tables in ns-3. A simulation 

representation of 8-pod fat-tree is shown in Fig. 6.1.  

In the DCell architecture, the DCell routing protocol is implemented to generate the end-

to-end path at the source node. We have specified a scalable addressing protocol for this model. 

The DCell routing lacks the generic protocol description and a specific routing scenario is 

discussed by authors. Moreover, DCell routing does not take the Internet Protocol (IP) 

addressing scheme into consideration. We generalized and implemented the routing protocol, 
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which is now fully compatible with the IP. We implemented the source based routing procedure 

to route the packets from the source to destination using the IP. 

We found some important details missing in the DCell routing protocol presented in 

Section 4.1 of [6.12]. In the function GetLink, the authors state that if (sk-m < dk-m), then the 

link interconnecting both of the sub-DCells can be found as “([sk-m, dk-m -1], [dk-m, sk-m])”. 

The “else clause” for the aforementioned “if statement” is missing, which makes the routing 

algorithm incomplete and erroneous. We formulated the missing “else clause” to complete the 

algorithm. That is to say that if (sk-m >= dk-m), then the interconnection link can be found as 

“([sk-m, dk-m], [dk-m, sk-m -1])”. Moreover, the intermediate path between nodes 021 and 121, 

presented in Section 4.1 (Theorem 4) of [6.12] has a typographical error that may mislead and 

confuse readers. The underlined node within the path ([0,2,1], [0,2,0], [1,0,0], [0,0,0], [1,0,0], 

[1,0,1], [1,2,0],[1,2,1]) should be [0,0,1] instead of [1,0,0]. For reference, a simulation 

representation of 3 level3 DCells is shown in Fig. 6.1. 

6.2.3. Traffic Patterns 

Benson et al. observed an on-off network traffic behavior within data centers. The 

network traffic logs collected at 19 various data centers provided evidence of the on-off network 

traffic and short-lived traffic bursts [6.33]. To generalize our simulation results, we used six 

different network traffic patterns to evaluate the DCN architectures for one-to-one, one-to-many, 

and all-to-all communications, namely: (a) uniform random (b) exponential random, (c) one-to-

one for one second (1-1-1), (d) one-to-one for random time interval (1-1-R), (e) one-to-many for 

one second (1-M-1), and (f) one-to-many for random time interval (1-M-R). 
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In uniform random and exponential random traffic generation scenarios, every node 

within the data center communicates with some other arbitrarily chosen node. Inter-node 

communication occurs at random time intervals following the uniform random distribution and 

exponential random distribution, respectively. In the 1-1-1 traffic generation pattern, every node 

within the network communicates with some other randomly chosen node for an on period of 

one second. That is to say that the sender nodes send the data at a Constant Bit Rate (CBR) for 

flow duration of one second. For the 1-1-R traffic, the sender nodes send the CBR data in an on 

period for a randomly chosen time interval between 0.1 to 5.0 seconds, followed by an off period 

of random time interval. 

   

Fig. 6.1. 3 DCell3 and 8-pod FatTree NS-3 Simulation.           

In the 1-M-1 traffic generation scenario, a single node communicates with n other 

arbitrarily chosen nodes for an on period of one second duration. The value for n is also chosen 

at random from a range of [1-10]. In the 1-M-R scenario, a single node communicates with n 



114 
 

other nodes for an on period of randomly chosen duration. In one-to-many network scenarios, the 

number of sender nodes is around 1/8 of the network size.  

We simulated the aforementioned four traffic generation scenarios with two different data 

rates for the CBR communication, namely: (a) 1Mbps and (b) 10Mbps. In the 10Mbps data rate, 

each sender sends 10Mb data to the receiver within a one second time slot. Similar analogy will 

hold for the 1Mbps data rate. 

6.2.4. Comparative Analysis 

We have simulated all of the DCN architectures under the six scenarios discussed in 

Section 3.3. The performances of the considered architectural models have been verified by 

using the following criteria: 

Average packet delay: Average packet delay in the network is calculated using Eq. (6.2). 
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where Dagg calculated in Eq. (1) is the aggregate delay of all of the received packets and dj is the 

delay of packet j, n is total number of packets received in the network, whereas Davg is average 

packet delay.  
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Average network throughput: Average network throughput is calculated using the Eq. 

6.3. 
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where τ is the throughput, Pi is the ith received packet,  is the size of the packet (in bits), and 

Dagg is the aggregate packets delay. 

The parameters used in the simulation of the fat-tree, DCell, and three-tier DCN are 

documented in Table 6.1, Table 6.2, and Table 6.3, respectively. Simulations were performed by 

varying the aforementioned parameters under six different traffic scenarios to achieve results in 

respective topologies. Network topologies with different number of nodes ranging from 16 to 

4096 nodes were created for the respective DCN architectures for every traffic pattern. Around 

74 different simulation scenarios were created for each of the DCN architecture, resulting in 222 

different configurations. The simulation results for the network throughput and average packet 

delay are shown in Figures 6.2 through 6.9. The FAT, DCell, and 3T in the chart legend 

represent fat-tree, DCell, and three-tier DCN architectures, respectively. 

The simulation results depict a steady behavior for DCN architectures under various 

traffic patterns and data rates. Because the network throughput is inversely proportional to 

average packet delay, large packet delays result in small throughput. The throughput and average 

packet delay for uniform random and exponential random traffic distribution is shown in Fig. 

6.6. Figures 6.3 through 6.6 report the results for 1-1-1, 1-1-R, 1-M-1, and 1-M-R traffic patterns 

for a data rate of 1Mbps, respectively. Figures 6.7 through 6.10 show the results for 10Mbps. 
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It can be observed in Figures 6.2 through 6.10 that the fat-tree DCN architecture 

outperforms the DCell and three-tier architecture in term of throughput and packet delay. The 

three-tier architecture performance is almost equivalent to that of the fat-tree architecture with a 

very little difference in the average throughput. The DCell architecture outperforms the fat-tree 

and three-tier architecture for small network topologies but as the number of nodes within the 

network is increased, the DCell architecture experiences degradation in the network throughput 

and exhibits increased average packet delay. 

The reason for the steady performance of the fat-tree architecture is the inherent network 

topology. A large number of network switches are structured in such a way so as to provide more 

end-to-end bandwidth for better and steady-state performance. 

Although the performance of three-tier architecture seems similar to that of the fat-tree 

architecture, the performance is achieved at a much higher cost. Some important aspects for the 

better performance of three-tier architecture are: (a) The three-tier architecture uses costly high-

end network equipment at the higher layer, (b) the ECMP routing also contributes to the better 

performance, and (c) the oversubscription ratio of 4:1 and 1.5:1 at the access layer and 

aggregation layer, respectively. The actual oversubscription ratio may be much higher and may 

vary form a data center to a data center at the access and aggregation layers. The data provided in 

[6.33] depicts a great variety in oversubscription ratios at the different layers of the three-tier 

data centers. 

The performance of the DCell architecture depicts a strong dependency on the network 

size. We illustrate this phenomenon through Fig. 6.1. All of the inter-DCell network traffic must 

pass through the network link connecting both of the DCells leading to increased network 
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congestion, packet delay, and packet loss. Smaller network topologies experience larger 

throughput because the network traffic load on the inter-DCell link is low and the links serve 

lesser number of nodes. For larger topologies, such as in our case of the network with 4096 

nodes, each link connecting two DCell3 experience an oversubscription ratio of 256:1. That 

obviously decreases the throughput for larger networks. Another reason for the throughput 

degradation in the DCell is the number of intermediate hops between the sender and the receiver. 

DCell routing is not a shortest path routing algorithm, and for large network topologies, the 

number of intermediate hops may be as large as 2k+1-1, without considering the switching in the 

DCell0 as a hop [6.12]. Intermediate hops including the switching in the DCell0 as a hop may 

result in more than 20 intermediate hops. 

     

Fig. 6.2. Throughput and Average Packet Delay Using Uniform Random Traffic Distribution. 
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Fig. 6.3. Throughput and Average Packet Delay for 1-1-1 Traffic Pattern with 1Mbps Data Rate. 

   

Fig. 6.4. Throughput and Average Packet Delay for 1-1-R Traffic Pattern with 1Mbps Data Rate. 

   

Fig. 6.5. Throughput and Average Delay for 1-M-1 Traffic Pattern with 1Mbps Data Rate. 
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Fig. 6.6. Throughput and Average Delay for 1-M-R with 1Mbps Data Rate. 

   

Fig. 6.7. Throughput and Average Delay for 1-1-1 Traffic Pattern with 10Mbps Data Rate. 
 

   

Fig. 6.8. Throughput and Average Delay for 1-1-R Traffic Pattern with 10Mbps Data Rate. 
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Fig. 6.9. Throughput and Average Delay for 1-M-1 Traffic Pattern with 10Mbps Data Rate. 
 

   

Fig. 6.10. Throughput and Average Delay for 1-M-R Traffic Pattern with 10Mbps Data Rate. 
 

Table 6.1. Simulation Parameters for the FatTree. 

number of pods 4 – 72 

number of nodes 16 – 93312 

simulation running time 10 – 1000 seconds 

packet size 1024 bytes 

routing algorithm two-level routing protocol 
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Table 6.2. Simulation Parameters for the DCell. 

number of levels 0 – 3 

number of nodes in DCell0 2 – 8 

total nodes in the DCell 16 – 100000 

simulation running time 10 –1000 seconds 

packet size   1024 bytes 

routing algorithm DCellRouting 

 

Table 6.3. Simulation Parameters for the ThreeTier DCN Architecture. 

number of modules 4 – 170 

nodes connected with each access layer switch 8 

oversubscription ratio at access layer 4:1 

oversubscription ratio at aggregate layer 1.5:1 

simulation running time 10 – 1000 seconds 

packet size 1024 bytes 

routing algorithm ECMP global routing 

 

The simulation results reveal that the performance of fat-tree DCN architecture is 

independent of the network size. Alternatively, performance of the DCell architecture is heavily 

dependent on the network size. The performance of the three-tier architecture is dependent on 

physical topology and oversubscription ratio at different network layers. We hope that our 
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through investigation of the most commonly used data center architectures will spark further 

investigation in developing scalable data center architectures.  
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7. THERMAL-AWARE RESOURCE ALLOCATION: TOWARDS 

DEVELOPING GREENER CLOUD COMPUTING SCHEDULERS 

This paper is submitted to Journal of Parallel and Distributed Computing. The authors of 

the paper are Kashif Bilal, Saif U. R. Malik, and Samee U. Khan. 

7.1.  Introduction 

Cloud computing is an emerging paradigm that allows a shared pool of resources, such as 

networks, servers, storages, applications, and services to be accessed conveniently and on-

demand [7.1]. Moreover, the resources can be rapidly provisioned or released with a minimal 

management effort or service provider interaction. Data Center (DC) being the architectural 

foundation of the cloud plays a vital role in the economic and operational success of the cloud 

computing paradigm [7.2]. Furthermore, DCs constitute the communication backbone of the 

cloud and are of paramount importance towards the system integrity.  

The DCs have a real need for tens to hundreds of Gbps of bandwidth and a deterministic 

QoS that is satisfied by thousands of interconnected servers [7.3, 4-6]. Moreover, to improve the 

services for the high performance computing applications, in the recent years, DCs have been 

increasingly deployed. To accommodate the ever-increasing user and application demands, the 

DCs are growing exponentially in the number of hosted servers [7.7]. The concerns over the 

environmental impact, energy needs, and electricity cost of the DCs are escalating [7.8]. Many 

ICT giants, such as Google, Yahoo, and Microsoft have already hosted hundreds of thousands of 

servers in their respective DCs. Based on the energy consumption of Google DC, a report 

suggested that Google was possibly running about 900,000 servers in 2010 [7.9]. The total 

annual percentage electricity consumption of networking devices in US alone contributed to 
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0.07% in the year 2000 that is more than 6 TWh (Tera-Watt/hr) [7.10, 7.11]. In the year 2007, 

Japan, Italy, and UK reported the percentage energy consumption of 04%, 01%, and 0.7%, 

respectively [7.12, 7.13].  

Besides being a massive consumer of power, the ICT sector is also liable for the emission 

of Green House Gases (GHG) that is a major contributor in global warming. In a report [7.14], 

the ICT sector is declared responsible for 12% of the total emission of CO2 by the year 2020. 

The servers consume 80% of the total electricity usage, while the network devices and storages 

account 10% [7.15]. The aforesaid is due to the fact that serves are the most frequently used 

entity of DCs. The discussion above ratifies the apparent need and impetus for the energy 

efficient networking in DCs. Because of the increasing demands of energy from the Information 

and Communication Technology (ICT) sector and the alarming consumption of natural 

resources, the topic of energy-efficient ICT has gained significant importance in the recent years 

[7.8]. 

To deliver the specified level of performance, the number of computational devices put in 

use at all levels of DC has significantly increased. As a result, the rate at which the heat is 

emitted by the devices has also increased. In the said perspective, the cost to stabilize the 

temperature in the DC has drastically increased and become almost equal to the cost of operating 

computational systems. The imbalance heat formations within a DC can create a hotspot that 

may cause servers to throttle down, increasing the possibility of failure. The cost to stabilize the 

temperature in the DC has drastically increased and become almost equal to the cost of operating 

computational systems. A thermal management policy can have many benefits in DC 

architecture. One of the major benefits is the reduction in cooling cost. In a typical DC 
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specification, the annual electricity cost of cooling alone is $4-8 M that includes purchasing and 

installing the air conditioning units [7.16]. Through intelligent thermal management, such a hefty 

cost can be lower down to $1-3 M, as advocated in [7.16]. Moreover, an intelligent thermal 

management can increase hardware reliability and improve operational efficiencies [7.17, 7.18, 

7.19].  

The topic of thermal aware scheduling in DCs is approached from various dimensions by 

different research communities. The increasing cost of energy consumption, including the cost of 

cooling down the DC, calls for new strategies to improve the energy efficiency in DCs. Several 

strategies have been proposed, such as [7.20-7.22] that discussed thermal-aware resource 

allocation strategies to minimize the energy consumption in DCs. In this paper, we analyze a real 

DC workload obtained from Center of Computational Research (CCR), State University of New 

York at Buffalo. We perform the thermal analysis of the aforesaid workload using three 

statistical techniques: (a) Mean Procedure, (b) Correlation Procedure, and (c) Vector 

Autoregressive Moving-average processes with Exogenous Regressors (VARMAX) model. The 

statistical techniques are used to examine the thermal behavior and pattern displayed by the 

servers when jobs are allocated. Moreover, the statistical techniques are also used to define the 

radius of ambient effect as a result of job allocation.  

The results and findings from the workload analysis are used to investigate the thermal 

dynamics of the DC using five scheduling heuristics: (a) First Come First Serve (FCFS), (b) 

Shortest Job First (SJF), (c) Longest Job First (LJF), and (d) Thermal-aware Scheduling 

Algorithm [7.24], and (e) Genetic Algorithm (GA) based scheduling [7.23]. We choose three 

classical heuristics and two thermal-aware heuristics. Our aim in selecting the scheduling 
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heuristics is to highlight the improvements of thermal-aware heuristics over the classical 

heuristics. When evaluating the heuristics, we use the results from our workload analysis to 

measure the effect of above heuristics on the thermal dynamics of the servers. The results reveal 

that the heuristics are inefficient in maintaining thermal balance among various pods in the DC. 

The nature of the workload and the comparison results motivated us to propose a new scheduling 

heuristic, Thermal Aware Resource Allocation (TARA). In TARA, the jobs are allocated to the 

servers considering the thermal signatures of the servers and ambient effect on other servers. The 

results from our simulation revealed that TARA can achieve better results and thermal balances 

among the pods. The detailed discussion and analysis of the heuristics along with the results are 

discussed in later sections. The contributions of the paper can be summarized as follows: 

 detailed thermal analysis of job allocation on a real DC workload; 

 using statistical techniques, Mean Procedure, Correlation Procedure, and 

VARMAX model, to investigate the thermal impact of job allocation to servers 

and ambient effect on other related servers;  

 proposing a scheduling heuristic, named as TARA, based on the findings and 

results from the workload analysis that can attain thermal uniformity in the DC. 

7.2.  Thermal Analysis 

In this section we discuss the tools and techniques that are used to analyze the thermal 

dynamic of DC. The jobs and the logs from the CCR dataset are used as an input for our 

simulation of the thermal aware strategies. The purpose of the analysis is to find out the thermal 

behavior and patterns exhibit by the servers when the task allocation and execution is performed. 
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Before going deep into the details of the tools and techniques used for the analysis, we briefly 

discuss some details of the workload in the following section. 

7.2.1. Workload Analysis 

  The traces from CCR represent a one-month workload with more than 22,000 (127,000 

tasks) jobs. All jobs submitted to the CCR are logged for a period of a month from 20 Feb. 2009 

to 22 Mar. 2009. The data center had 1045 distinct dual core servers. A server was based on the 

Dell 1056 PowerEdge SC1425 processor with 3.0 GHz speed, running x86-64 Linux operating 

system. The CCR data center was organized into 33 pods and each pod had 32 servers. The peak 

load in CCR data center exceeds the available resources over the course of time. In the said 

perspective, the jobs have to wait in the queue for the execution. A job can be comprised of 

several tasks and may require more than one processor to execute. The nature of the jobs in CCR 

dataset is heterogeneous that implies every job has a different execution time and number of 

processors required. Moreover, the job arrival rate in the workload is not uniform. In the said 

perspective, the resources of a DC can be underutilized, fully utilized, or over utilized, depending 

on the arrival rate of the jobs at a specific time interval.  

The jobs can be classified into different categories based on the number of CPUs required 

and execution time. We classified jobs as: (a) thin, jobs that require a single CPU for the 

execution, (b) thick, where the numbers of CPUs required are more than one, (c) short, where 

jobs have execution time less than an hour, and (d) long, where the execution time of the job is 

more than an hour. The analysis revealed that 79% of the overall jobs submitted to CCR DC 

belonged to “thin” category and only 21% belonged to “thick” category. Moreover, 50% of the 

jobs belonged to “short” category and the rest of the jobs belonged to “long” category of jobs.    
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The workload characterization highlights some of the important facts, such as the job 

arrival rate and size of the jobs that makes the thermal analysis and prediction a complex task. 

The thermal analysis in presence of the aforementioned uncertainties is a challenging task. 

Moreover, the spatial information of the data center was unavailable in the workload that 

significantly increased the complexity of the analysis. We used statistical techniques, such as: (a) 

Mean Procedure, (b) Correlation Procedure (specifically Pearson correlation coefficient), and (c) 

Vector Autoregressive Moving-average processes with Exogenous Regressors (VARMAX) 

model, to investigate the thermal behavior displayed by the servers as a result of job allocation. 

The SAS tool is used for the implementation of the strategies and for the generation of the 

graphs. The purpose of deploying statistical techniques is to: (a) capture the thermal dynamics of 

the DC, (b) the thermal effect of one server on the others, and (c) on the data center environment, 

as a result of job allocation. The details of the techniques are discussed in the following sections.    

7.2.2. Mean Procedure 

The Mean Procedure computes the summary statistics of numeric variables for all the 

observations in a dataset [7.49]. The Mean Procedure is a basic procedure within the BASE SAS 

tool [7.50]. To apply the technique in our workload thermal analysis, we categorized the servers 

into various states, such as busy (represented by a 1) and idle (represented by a 0) state. A busy 

processor emits more heat, and impacts the ambient temperature and thermal signature of the 

nearby (within the thermal radius) nodes.  
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Table 7.1. Results from Mean Procedure. 

B0102 Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

00 150 21.68 150 21.68 

01 39 5.64 189 27.31 

10 34 4.91 223 32.23 

11 469 67.77 692 100.00 

 

 

 

Fig. 7.1. Simple Statistic Measures. 

 

Fig. 7.2. Thermal Signatures vs. Processor On-Off States on Fri. 20 Feb. 2009 09:01 AM. 
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As stated previously, all of the servers were of dual core. Therefore, a single server can 

have four different states: (a) 00, both of the processors are idle, (b) 01, Processor 1 is idle and 

Processor 2 is busy, (c) 11, both processors are busy, and (d) 10, Processor 1 is busy and 

Processor 2 is idle. We perform the Mean Procedure technique on the individual servers to 

analyze the amount of time a server was executing a task based on the busy-idle state of the 

processors. Moreover, we also performed an aggregate analysis of all of the servers to identify 

the different states of the servers over a period of time. The results of our analysis are shown in  

Table 7.1. We can observe that 90% of the time the processors have the same statistics that 

indicates that both of the processors of a server are in the same state. Fig. 7.1 depicts some of the 

statistical measures, such as mean, standard deviation (σ), minimum, and maximum thermal 

values of all of the servers in Pod 1. The said measures are the results of the Mean Procedure, 

when applied to the thermal readings of Pod 1 from the workload. As seen in Fig. 7.1 the Server 

T01 has the largest mean value of 107.76℉ followed by T18 and T19 having 99.22 ℉ and 

99.12℉ mean value, respectively. The highest mean value indicates that the servers were either 

running more tasks or were geographically located at a position where the ambient temperature 

was high. The σ values of the servers are low, indicating that the dispersion and variation of the 

temperature is very close to the mean. Similarly, the minimum and the maximum temperature of 

the servers T01, T18, and T19 are higher than the rest of the servers in the pod.  

We calculate the values for all of the servers within all of the 33 pods. In every pod, the 

servers we mentioned above (T01, T18, and T19) have the same pattern of thermal signatures. 

Moreover, a similar pattern of thermal signature were followed by server T02, T03, and T04, 

where thermal signature of T03 was always less than the server T02 and T04. Furthermore, 
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server T26, T27, and T28 follow a similar pattern of having thermal signatures within the same 

range. The on-off states of the processors can assists to identify whether the change in 

temperature of the server is due to the job execution or ambient effect. Fig. 7.2 depicts the 

thermal signature and the on-off states of various servers on Fri. 20 Feb. 2009, 09:00 AM (epoch 

time: 1235120445). The thermal signatures of different nodes, such as node-0817, node-1302, 

and node-2102 are greater than 100℉. However, the processors of the said servers are either off 

or only one of the processors is on. Therefore, we can infer from Fig. 7.2 that the high 

temperature of the server was possibly because of the ambient effect. The node-0801 represents 

Pod number 08 and Server number 01. It can be observed from Fig. 7.2 that the thermal 

signatures of Server 01 in all of the pods are higher than rest of the servers in the same pod. The 

aforesaid confirms the thermal pattern of the servers discussed above in Fig. 7.1.  

7.2.3.  Correlation Procedure 

The Correlation Procedure (CORR) in SAS computes the correlation coefficients. The 

CORR measures the strength of a relationship between variables, having a value between +1 and 

−1. The signs (− or +) of the correlation value defines the direction of the relationship between 

the variables. The correlation value of +1(highest correlation) means that when the value of one 

variable increases the other will also increase. The correlation value of −1 (lowest correlation) 

indicates that when one variable increase the other decreases. The correlation value of 0 means 

no relationship between the variables. In our study, we compute the correlation between the 

temperatures of the servers to identify the thermal effect of one server on the others. In the said 

perspective, we use the Pearson Correlation Coefficient (PCC) to compute the correlation of one 

server with the rest of the servers in the pod. The PCC between two variables is defined as the 
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covariance of two variables divided by the product of their σ value. The formula used to compute 

the PCC for the population is generally represented as ρ(rho) and can be calculated as: 

𝜌(𝑋,𝑌) =
𝑐𝑜𝑣(𝑋,𝑌)

𝜎𝑋𝜎𝑌
, (7.1) 

where cov(X, Y) is the covariance of X and Y. In our case, the X is the set of thermal values of 

Server 1 and Y is the set of thermal values of Server 2. We have 33 pods and each pod has 32 

servers. Therefore, we compute the ρ(X,Y) for all of the servers with every other server in the pod, 

represented and calculated as: 

∑ ∑ 𝜌(𝑋𝑖,𝑌𝑗)
𝑛
𝑗=1

𝑁
𝑖=0 = ∑ ∑

𝑐𝑜𝑣(𝑋𝑖,𝑌𝑗)

𝜎𝑋𝑖
𝜎𝑌𝑗

𝑛
𝑗=1

𝑁
𝑖=0 , (7.2) 

where N is the total number of pods and n is the number of servers in the pod. Initially, we 

applied the CORR to only few pods. The PCC when applied to the sample data is commonly 

represented as 𝑟, and can be calculated by substituting the estimates of the covariances and 

variances based on the sample as follows: 

𝑟 =
∑ ∑ {(𝑋𝑖−�̅�)(𝑌𝑗−�̅�)}𝑛

𝑗=1
𝑁′

𝑖=0,∀𝑖∈𝑁′∧𝑁′∈𝑁

√∑ (𝑋𝑖−�̅�)2𝑁′

𝑖=0,∀𝑖∈𝑁′∧𝑁′∈𝑁
√∑ (𝑌𝑗−�̅�)

2𝑛
𝑗=1

, 
(7.3) 

where N′ is the selected number of pods from the total number of pods N. First, we observe the 

values for the sample size and then we calculated the values for the whole population of servers. 

As stated above, if the servers have high correlation, then the thermal dynamics of both servers 

follows same pattern. The higher correlation result indicates high relationship among the servers. 

Lower correlation result among the servers indicates that the change in the thermal 

signature of one server have low impact on other server. The correlation results are used 

specifically for two reasons: (a) to identify the location of the servers with respect to the other 
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related servers in a pod and (b) to define the radius of the server’s thermal effect of job allocation 

to other servers. The Fig. 7.3 and Fig. 7.4 below depict the correlation of servers with other 

servers in a pod. Fig. 7.3 shows the correlation results of first ten servers of pod 01 with each 

other. Moreover, we also consider the current state (as in Mean Procedure) of the server while 

measuring the correlations. The state of the servers is an important aspect in identifying the 

location of the servers, as it clarifies the increase in the thermal signatures of the servers. For 

instance, in Fig. 7.4 the correlation of T02 with T03 and T04 is 0.802 and 0.795, respectively. If 

we analyze the server states in Fig. 7.3, then we can observe that even when the server state is 

idle (00) the correlation of T03 and T04 with T02 is high. The aforesaid elucidates that the raise 

in the thermal signatures of T03 and T04 is highly affected by the raise in the thermal signature 

of T02. We define the radius of the thermal effect by considering the states and high correlation 

of servers to other related servers. 
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Fig. 7.3. Simple Correlation of First Ten Servers in Pod 1 Using Different States of Server. 

 

Fig. 7.4. The PCC of Servers in Pod 1.  
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7.2.4. VARMAX Model  

The Vector AutoRegressive Moving-Average model with eXogenous variables 

(VARMAX) is used to capture the linear interdependencies among multiple time series variables 

that in our case are the temperature of the servers over time. Given a time series of data, the 

VARMAX model is used for understanding and predicting values in the given data. In practice, 

the prediction or forecasting model may get affected by some other observable variables that are 

determined outside the system interests, termed as exogenous variables. In our study, the 

temperature of the servers is affected by the execution of tasks, so the task allocation is an 

endogenous variable (variables within the system). Moreover, the temperature can also be 

affected by the CRAC supplied temperature and also by the ambient temperature, which are the 

examples of exogenous variables. The valid assumptions related to exogenous variables allow 

modeling strategies to reduce computational expense and help isolate invariants of underlying 

mechanisms [7.51]. 
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There are three parts associated with VARMAX: (a) autoregressive, (b) moving average, 

and (c) exogenous variable that is why the model is referred to as the VARMAX (p, q, s), where p 

is the order of the autoregressive part, q is the order of moving average, and s represents the 

exogenous variables. The VARMAX model has a form that can be written as: 

𝑦𝑡 = ∑ 𝛷𝑖𝑦𝑡−1 + ∑ 𝛩𝑖
∗𝑋𝑡−1 + 휀𝑡 − ∑ 𝛩𝑖

𝑞

𝑖=1

𝑠

𝑖=0

𝑝

𝑖=1

휀𝑡−𝑖, 

(7.4) 

Fig. 7.5. Output Results of VARMAX Model. 

 

                                         The VARMAX Procedure 
 

                                 Number of Observations          583 

                                 Number of Pairwise Missing      0 
        

                                                                               Standard 

Variable    Type                 N            Mean           Deviation             Min             Max 
  

T27         Dependent          583        88.89708         6.43202        78.00000        98.00000 

T28         Dependent          583        89.10292         6.01228        77.00000        98.00000 
T30         Dependent          583        89.88165         5.71169        78.00000        98.00000 

B27         Independent        583         0.48542         0.50022         0.00000         1.00000 

B28         Independent        583         0.47684         0.49989         0.00000         1.00000 
B30         Independent        583         0.43053         0.49558         0.00000         1.00000 

  

                                     Model Parameter Estimates 

  

                                                              Standard 

   Equation    Parameter     Estimate         Error         t Value   Pr > |t|    Variable 
  

   T27     CONST1            27.80807        2.33597      11.90    0.0001    1             

               XL0_1_1            4.90534         0.82030       5.98      0.0001    B27(t)       
               XL0_1_2           -1.58335         0.79365      -2.00     0.0465    B28(t)       

               XL0_1_3            1.54001         0.30430       5.06      0.0001    B30(t)       

               AR1_1_1            0.54813         0.06153       8.91      0.0001    T27(t-1)     
               AR1_1_2           -0.00299         0.06239      -0.05     0.9618    T28(t-1)     

               AR1_1_3            0.02253         0.04339       0.52      0.6038    T30(t-1)     
               AR2_1_1            0.03321         0.05840       0.57      0.5699    T27(t-2)     

               AR2_1_2            0.01962         0.06185       0.32      0.7512    T28(t-2)     

               AR2_1_3            0.03994         0.04308       0.93      0.3542    T30(t-2)     

   T28    CONST2            25.03064         2.46716      10.15     0.0001    1            

               XL0_2_1           -1.47880         0.86637      -1.71      0.0884    B27(t)       

               XL0_2_2            3.84261         0.83822       4.58      0.0001    B28(t)       
               XL0_2_3            1.57167         0.32139       4.89      0.0001    B30(t)       

               AR1_2_1           -0.06124         0.06499      -0.94      0.3465    T27(t-1)     

               AR1_2_2            0.61261         0.06589       9.30      0.0001    T28(t-1)     
               AR1_2_3            0.02620         0.04583       0.57      0.5677    T30(t-1)     

               AR2_2_1           -0.10857         0.06168      -1.76      0.0789    T27(t-2)     

               AR2_2_2            0.18733         0.06533       2.87      0.0043    T28(t-2)     
               AR2_2_3            0.04158         0.04550       0.91      0.3611    T30(t-2)     

   T30     CONST3            18.79489         2.45995       7.64      0.0001    1            

               XL0_3_1           -2.52295         0.86384      -2.92      0.0036    B27(t)       
               XL0_3_2            4.20055         0.83577       5.03      0.0001    B28(t)       

               XL0_3_3            0.82251         0.32045       2.57      0.0105    B30(t)       

               AR1_3_1           -0.08975         0.06480      -1.39      0.1666    T27(t-1)     
               AR1_3_2            0.21052         0.06570       3.20      0.0014    T28(t-1)     

               AR1_3_3            0.48991         0.04570      10.72      0.0001    T30(t-1)     

               AR2_3_1           -0.01402         0.06150      -0.23      0.8197    T27(t-2)     
               AR2_3_2           -0.13757         0.06514      -2.11      0.0351    T28(t-2)     

               AR2_3_3            0.31873         0.04537       7.03      0.0001    T30(t-2) 
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where yt = (y1t, y2t, … , ykt) are the output variables of interests, which can be affected by the 

input variables Xt = (X1t, X2t, … , Xrt) that are determined outside the system. Therefore, yt and 

Xt are endogenous and exogenous variables, respectively. The εt = (ε1t, ε2t, … , εut) is referred 

as the unobserved noise variable. The Φi and Θi are k × k matrices of autoregressive 

coefficients, and Θi
∗ is k × r matrix of coefficients. The complete details of the aforesaid matrices 

and VARMAX model can be seen at [7.52]. In our study, the on/off states of the processors are 

taken as the independent variables, the exogenous variables are the supplied temperature from 

the CRAC, and the thermal signatures of the servers are considered as the dependent variables. 

 The Fig. 7.5 depicts the descriptive statistics along with the estimated parameters of the 

fitted model for three servers (Server 27, Server 28, and Server 30) with respect to their states. 

Moreover, the figure also depicts the parameter estimates and their significance that indicates 

how well the model fits the data. The column N depicts the number of non-missing observations. 

The entry T27 and B27 in the Variable column shows the thermal signatures and on (1)/off (0) 

states of the Server 27 in Pod 1, respectively. The Type column specifies that the variables are 

either dependent or independent. In our case, the thermal signatures of the servers are dependent 

on the execution of the processors. For instance, if the processors of a particular server are 

executing a job, then the thermal signature of the server is increased. The fitted model for the 

variables in Fig. 7.5 is given as: 

𝑦𝑡 = (
0.548     0.001        0.023      0.033 0.020 0.040
−0.061  0.613      0.026 −0.110

−0.090     0.211       0.490 −0.014
0.187 0.042

−0.140 0.320
) 𝑦𝑡−1 + 휀𝑡 (7.5) 

The table of parameter estimates in Fig. 7.5 lists the parameters in the model. Moreover, 

for each parameter, the table shows the estimated value, standard error, and t value of the 
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estimates. In our case, there are 30 parameters in the model. The constant term is T27 (thermal 

signature of Server 27) that we are trying to forecast using the thermal values of T28, T30 and 

the on/off states of the processors. Our model attempts to estimate the thermal value of T27 from 

two preceding thermal values of T27, T28, and T30. The autoregressive parameters are labeled 

as AR1_1_1 that represents the coefficient of the lagged value of the change in thermal value, 

whose estimate is 0.54813.  

By using all of the aforementioned statistical techniques, our aim is to analyze the 

thermal patterns and behavior shown by the servers in the CCR DC workload. It is noteworthy 

that the workload does not provide any information about the spatial location of the servers and 

pods. Therefore, analyzing and forecasting the effect of task execution on the server and to the 

other related servers become a challenging task. Based on the findings and analysis performed on 

the workload, we propose a thermal aware strategy for task allocation in a DC. The details and 

working of the strategy is discussed in the next section. 

7.3.  Thermal Aware Resource Allocation (TARA) Strategy 

We propose a thermal aware resource allocation strategy that manage and control the 

thermal dynamics of DC. The goal is to reduce the thermal imbalances within the pods and 

servers of the DC. The jobs are allocated to the servers based on the thermal signatures and 

ambient effect on the other related servers. We propose two variants of TARA strategy that 

adopts two different formulations to allocate tasks to the servers. Before going deep into the 

details of the TARA strategy, let us briefly discuss the system model.  
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7.3.1. System Model  

A DC is comprised of computing resources, such as servers and the network 

infrastructure, such as switches, interconnecting all of the computing resources. A DC follows a 

hierarchical model, where the computing resources reside at the lowest layer as depicted in Fig. 

7. 6. The network infrastructure can be considered as a multilayer graph [7.2]. The servers, 

access switches, and aggregate switches are assembled in modules (referred to as pods) and are 

arranged in three layers, namely: (a) access, (b) aggregate, and (c) server layer. The core layer is 

used to connect all of the independent pods together. The DC (DC) can be divided in two logical 

sections: (a) Pods (zones) and (b) Core Layer Switches, as below: 

𝐷𝐶 = 𝑃𝑜𝑑∀𝑖∈𝑘(𝑖) ∪ 𝐶∀𝑞∈𝑟(𝑞), (7.6) 

where C(q) is the set of core layer switches and r is the total number of core switches (γ) in the 

network. Pod(i) is the set of pods and k is the total number of pods in the DC. Each access layer 

switch (α) is connected to n number of servers (S) in a pod. Moreover, every α is connected to 

every aggregate switch (δ) in the pod. The number of servers (including S, α, and δ) in Pod(i) 

can be calculated as: 

𝑃𝑜𝑑 (𝑖) = 𝑆(𝑛×𝑚)
𝑖 ∪ 𝛼𝑚

𝑖 ∪ 𝛿𝑤
𝑖  (7.7) 

where S(n×m)
i  represents a set of servers connected to α in Pod (i). The αm

i  represents access 

layer switches in Pod (i), where m is the total number of α in Pod (i). The δw
i  represents 

aggregate layer switches and w is the number of δ in Pod (i). The components in DC work 

cooperatively to accomplish the assigned tasks. The mechanical energy consumed and almost all 

of the power drawn by the computing devices is dissipated as heat. We model the heat 

dissipation of servers within a DC, represented as ςs that can be calculated as follows: 
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𝜍𝑠
𝑖,𝛼 = (𝜍0 + 𝜍𝑝 + 𝜍𝑚)

𝑖,𝛼
, (7.8) 

where 

𝜍𝑝
𝑖,𝛼 = (𝜍𝑟𝑤 + 𝜍𝑜𝑝)

𝑖,𝛼
. (7.9) 

 

 

The ς0
i,α

 represents the heat dissipated as a result of the static power to keep the server 

active, and ςp
i,α

 represents the heat dissipation when the processing is being performed. The ς0
i,α is 

fixed that does not change and is independent of workload. However, ςp
i,α

 is dynamic and is 

dependent on the workload.  

The ςm
i,α

 represents the heat dissipated by the memory that includes energy consumed 

during the memory refresh operations. The ςp
i,α

 is further decomposed into ςrw
i,α

 that represents the 

heat dissipation because of the read and write operations, and ςop
i,α

 is the heat dissipation as a 

result of the processing performed. The heat dissipated by all the servers in Pod (i), represented 

as §s
i , can be calculated as: 

§𝑠
𝑖 = ∑ ∑ (𝜍𝑥

𝑖,𝑚)𝑛
𝑥=1

𝑚
𝑝=1 , (7.10) 

where the ςx
i,m represents the heat dissipation of Sx connected to m number of α switches in 

Pod (i). As stated above the DC is comprised of network infrastructure and servers. Therefore, 

the heat dissipation of the pod(i), represented as τρ
i , can be calculated as: 

𝜏𝜌
𝑖 = §𝑠

𝑖 + §𝜕
𝑖 + §ℊ

𝑖 , (7.11) 
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Two temperatures are associated with each server, the (a) input temperature (τin
i ) and (b) 

output temperature (τout
i ). The τin

i  represents the input ambient temperature of server that 

includes the heat received from other servers and surroundings. As depicted in Fig. 7.6, τin
i  of s1 

involves the recirculation (red dotted lines) of hot air from other servers and cooling temperature 

(τ𝑠𝑢𝑝) from CRAC. The heat dissipated by any server i∈ ℵ will change the τout
i . The variables 

τin
i  and τout

i  represent the temperature of the surroundings and not the server. However, the heat 

dissipated by the server (πout
i ) effects the values of τin

i  and τout
i . The input temperature of a 

server (πin
i ) can be calculated as: 

where 

𝜏𝑖𝑛
𝑖 = ∑(𝜋𝑜𝑢𝑡

𝑗
)

ℵ

𝑗=1

+ 𝜏𝑠𝑢𝑝. 

 

(7.13) 

The ϱ is an air coefficient that represents the product of air density, heat of air, and flow rate of 

air. The πout
i  can be calculated as:  

s1 s2

s3 s4

τsup

τin
i

τout
i

 

Fig. 7.6. Heat Exchange among Servers. 

𝜋𝑖𝑛
𝑖 = 𝜚𝑖(𝜏𝑖𝑛

𝑖 ), (7.12) 
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𝜋𝑜𝑢𝑡
𝑖 = 𝜋𝑖𝑛

𝑖 + ℶ𝑖, (7.14) 

where 

ℶ𝑖 = 𝜚𝑖(𝜏𝑜𝑢𝑡
𝑖 − 𝜏𝑖𝑛

𝑖 ). 

(7.15) 

The ℶi represents the heat dissipation of a server i∈ ℵ in proportion to the power consumed for 

processing. The current temperature of Si in Pod(j ) is denoted as tcur
i,j

 that can be calculated as:  

𝑡𝑐𝑢𝑟
𝑖,𝑗

= 𝜋𝑖𝑛
𝑖 + ∆𝑡(𝑐𝑖), (7.16) 

where ∆t(ci) represents the anticipated change in the temperature caused by executing a task ci 

on S. According to the abstract heat model of a DC, as discussed in [7.53], the heat distribution 

and its effect on the surrounding machines can be represented as cross interference coefficient 

matrix. We follow the same model and compute the heat distribution of the servers using a 

matrix, represented as hn×n = {∂i,j}, which denotes the thermal effect of Si on Sj and can be 

computed as: 

𝜕𝑖,𝑗 = 𝜏𝑜𝑢𝑡
𝑖 × 𝑘 ×

1

ĥ𝑗
, (7.17) 

where k is the thermal conductivity constant of the air and ĥ is the hop count of Sj from Si. In the 

following section we will discuss the two variants of TARA strategy in details. 

7.3.2. TARA-I 

When a new job arrives to the DC, the resource manager selects the pod with a minimum 

average thermal signature to allocate the job. The servers are sorted in the selected pod based on 

the thermal signatures, such that the server that has the lowest temperature is first in the order. 

The job is assigned to the server that is first in the order. Initially all the servers have same 

thermal signatures. When the job is assigned to the server the thermal signature of the server 
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increases from 𝑡𝑐𝑢𝑟
𝑖,𝑗

 to 𝑡𝑐𝑢𝑟
𝑖,𝑗

+ ∆𝑡(𝑐𝑖). The increase in thermal signature of the server will in return 

have the ambient effect on other servers, as in (16). It is noteworthy that the closer the server is, 

the higher the ambient effect to that server. We assume that the servers within the ĥ = 𝑟 are the 

ones affected by the ambient effect of task allocation. The steps performed by TARA-I to 

allocate jobs to the servers are depicted in Fig. 7.7. The TARA-I strategy adopts a greedy 

approach to allocate a job. Initially all the servers have same thermal signatures. Suppose a new 

job is arrived and all the servers in Fig. 7.8 have the same thermal signatures. The server s1 will 

be selected by TARA-I. The thermal signature of s1 will increase as a result of job allocation. In 

the said perspective, if we assume 𝑟 = 3, then the ambient effect will increase the temperature of 

the neighboring servers in ĥ = 3. Therefore, the temperature of 𝑠2, 𝑠3, and 𝑠4 also increases (red 

dotted line in Fig. 7.8). When the next job arrives, all the servers are sorted again and the server 

with the lowest temperature is selected. As a result, the next job is allocated to 𝑠5 that in return 

have ambient effect on the neighboring servers (solid red line in Fig. 7.8). By doing the 

aforesaid, TARA-I selects a server with a minimum thermal signatures by considering the 

ambient effect as a result of job allocation. The aim is to distribute the workload so that the 

thermal imbalance and occurrence of hotspots within a DC can be reduced. The TARA-I 

considers the ambient effect while allocating new jobs to the servers. However, if we analyze 

closely, then we will observe that in Fig. 7.8, selecting s5 for the next job is not the best option. 

The reason is that the server 𝑠2, 𝑠3, and 𝑠4 are affected in both of the allocations and their 

temperatures are raised even without executing a job. The aforesaid scenario can possibly create 

a hotspot in a long run. In the said perspective, we propose another variant of TARA strategy, 

termed as TARA-II that is more efficient and resolves the issue discussed above.    
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1: for i ←1 to k do  

2:     𝜏𝜌
𝑖 = §𝑠

𝑖 + §𝜕
𝑖 + §ℊ

𝑖        

3: end for  

4: Select 𝑚𝑖𝑛 (𝜏𝜌
𝑖 ) 

5: Get 𝜍𝑠
𝑖,𝛼 ∀ 𝑠 ∈ 𝑛 ∧ 𝛼 ∈ 𝑚   

7: Select 𝜍𝑠
𝑖,𝛼

, such that 𝜍𝑠
𝑖,𝛼 < 𝜍𝑦

𝑖,𝛼 ∀ 𝑦 ∈ 𝑛 ∧ 𝛼 ∈ 𝑚 ∧ 𝑦 ≠ 𝑠.  

8: Allocate 𝑐 to 𝜍𝑠
𝑖,𝛼

, 𝑖𝑓𝑓 𝜍𝑠
𝑖,𝛼 +  ∆𝑡(𝑐) < 𝜏𝑚𝑎𝑥

𝜍
  

Fig. 7.7. Steps Involved in TARA-I. 

 

7.3.3. TARA-II 

In TARA-II the process of task allocation is based on the pre-calculations of ambient 

effect that occur as a result of task allocation. Whenever a new job arrives, the resource manager 

selects the pod with a minimum average thermal signature. Once the pod is selected, servers are 

sorted in an ascending order, such that the server with the lowest thermal signature is ranked 

first. After the servers are sorted, the scheduler performs the pre-calculations. The pre-

calculations are executed in a way that the scheduler picks every server one by one and computes 

the 𝑡𝑐𝑢𝑟
𝑖,𝑗

 (using (15)) along with the ambient effect on other servers, as in (16). Once the pre-

calculations are completed for all the servers, the results are normalized and the server with the 

J1

s1

Ambient effect

s2 s3 s4 s5 s6 s7 s8 s9 s10

J2

 

Fig. 7.8. TARA-I Allocation and Ambient Effect on Servers. 



149 
 

minimum ambient effect and 𝑡𝑐𝑢𝑟
𝑖,𝑗

 is selected for the allocation. Our aim to perform the pre-

calculations is to select the server that has the minimum ambient effect among all the servers. 

Performing the pre-calculations allow us to uniformly distribute the workload and balance the 

thermal dynamics of the DC. In Fig. 7.8, if TARA-II is used, then for first job the server 𝑠1 is 

selected. For the next job, pre-calculations are performed again and as a result the server 𝑠8 will 

be selected, as opposed to 𝑠5 when TARA-I was used. The servers 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6, and 𝑠7 are 

not selected because they have higher ambient thermal effect and thermal signatures within 

the ĥ = 3. 

As stated in Section III, the nature of the workload, such as the job size, job arrival rate, 

and number of processors required by the job is not uniform. In TARA-II, we observed that at 

certain time intervals the average thermal signatures of the pods may fluctuate and becomes non-

uniform. The reason for the above is that long jobs are assigned to one or more servers in a pod, 

causing the thermal signatures of the servers to escalate that ultimately increase the average 

thermal signature of the pod. In the said perspective, to stabilize and balance the thermal 

signatures of the pods, we use task migrations in TARA-II. Task migration is an expensive 

operation that involves a lot of network activities at all layers of DC, such as access, aggregate, 

and core. However, in this paper our focus is on the thermal dynamics of the DC, so we will not 

go into the details of the cost involve in task migration. The following paragraph will discuss in 

details the process of task migration in TARA-II. 

The 𝜍𝑠
𝑖,𝛼

 for all the 𝑆 ∈ 𝑃𝑜𝑑(𝑖 ) is measured and observed through sensors periodically, as 

in Fig. 7.9. Whenever the value of 𝜍𝑠
𝑗
,∀𝑗 ∈ 𝑛 exceeds the maximum threshold temperature of the 

server (𝜏𝑚𝑎𝑥
𝜍

), the local controller migrates some tasks from 𝑆𝑗 to 𝑆𝑙, where 𝑆𝑗 and 𝑆𝑙are 
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connected to the same 𝛼. For the tasks to be migrated successfully to 𝑆𝑙, the constraint 𝜍𝑠
𝑙 +

∆𝑇 < 𝜏𝑚𝑎𝑥
𝜍

, must be satisfied. The ∆𝑇 represents the anticipated increase in the temperature as a 

result of task migration. If the task migration is not possible among the serves under 𝛼𝑖, then the 

servers belonging to 𝛼𝑗 , ∀𝑗 ∈ 𝑚 ∧ 𝑗 ≠ 𝑖 are considered for the migration. The 𝛼𝑖 and 𝛼𝑗 belongs 

to the same pod. When the migration is performed within the same pod it is known as Intra-pod 

migration. Moreover, if there is no server available for the migration within the same pod, then 

Inter-pod migration is performed by enforcing the same constraints as in Intra-pod migration. For 

Inter-pod migration, the centralized controller periodically monitors the average thermal values 

of each pod that it receives from the sensors. Whenever the thermal signature of the 𝑃𝑜𝑑(𝑖) 

(𝜏𝜌
𝑖 = §𝑠

𝑖 + §𝜕
𝑖 + §ℊ

𝑖 ) starts to exceeds the maximum thermal threshold value of the pod (𝜏𝑚𝑎𝑥
𝜌

), 

the centralized controller instructs the local controller of 𝑃𝑜𝑑(𝑖)to migrate some tasks to 

𝑃𝑜𝑑(𝑗), ∀𝑗 ∈ 𝑘 ∧ j ≠ i. The migration can be successfully performed only if the 𝜏𝜌
𝑖 + ∆𝑇 <

𝜏𝑚𝑎𝑥
𝜌

. The server selection and task allocation performed during Inter-pod migration is same as 

discussed above in Intra-pod migration. The centralized controller only has the coarse-grain 

information of the 𝜏𝜌
𝑖 . The allocation of migrated tasks to the servers is performed by the local 

controller through the use of fine-grained thermal information of servers. The intra-pod and 

inter-pod migrations are focused on maintaining the unified thermal threshold value in all the 

pods. The thermal signatures of servers in DC evolve in order of minutes. Moreover, the power 

states of servers can change as frequent as milliseconds. Therefore, the threshold temperatures 

are not absolute values; rather it is a range within which the thermal signatures of the servers 

should lie. In the next section we will discuss the implementation results of our proposed 

strategies along with the other existing strategies. 
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1: for i ←1 to k do  

2:     𝜏𝜌
𝑖 = §𝑠

𝑖 + §𝜕
𝑖 + §ℊ

𝑖        

3: end for  

4: Select 𝑚𝑖𝑛 (𝜏𝜌
𝑖 ) 

5: Sort 𝜍𝑠
𝑖,𝛼 ∀ 𝑠 ∈ 𝑛 ∧ 𝛼 ∈ 𝑚, such that 𝜍𝑠

𝑖,𝛼 < 𝜍𝑠
𝑖+1,𝛼 < ⋯ < 𝜍𝑠

𝑖+𝑛,𝛼
 

6: for j ←1 to m do 

7:    for i ←1 to n do 

8:      Select 𝜍𝑠
𝑖,𝑗

and compute updated 𝑡𝑐𝑢𝑟
𝑖,𝑗

 and the ambient effect on other 

server, as in (16) 

9:    end for 

10: end for 

11: for j ←1 to m do 

12:    for i ←1 to n do 

13:      for k ←0 to r do 

14:        𝑁𝑇𝑒𝑚𝑝𝑠
𝑖,𝑗

= 𝜍𝑠
𝑖+𝑘,𝑗

 

15:      end for 

16:    𝑁𝑠
𝑖,𝑗

= 𝑁𝑇𝑒𝑚𝑝𝑠
𝑖,𝑗

/𝑟 

17:   end for 

18: end for 

19: Select 𝑆𝑖, such that min (𝑁𝑠
𝑖,𝑗

)  

20: Allocate 𝑐 to 𝑆𝑖, 𝑖𝑓𝑓 𝜍𝑠
𝑖,𝛼 +  ∆𝑡(𝑐) < 𝜏𝑚𝑎𝑥

𝜍
  

21: If 𝜍𝑠
𝑖,𝛼 > 𝜏𝑚𝑎𝑥

𝜍
 ∀ 𝑠 ∈ 𝑛 ∧ 𝛼 ∈ 𝑚, then 

22:     Migrate-task c from 𝑆𝑖to 𝑆𝑗, 𝑖𝑓𝑓 𝜍𝑗
𝑖,𝛼 +  ∆𝑡(𝑐) < 𝜏𝑚𝑎𝑥

𝜍
                 

23: end if 

Fig. 7.9. Steps Involved in TARA-II. 

7.4.  Results and Discussion 

As stated in Section 2 that the workload traces used for the simulations are obtained from 

CCR, State University of New York at Buffalo. The complete detail of the workload is provided 

in Section 2. We execute the proposed strategies TARA-I and TARA-II on the aforesaid 

workload to obtain realistic results. Moreover, we also perform a comprehensive comparison of 

the proposed strategies with three classical and two thermal aware scheduling approaches. The 

purpose of the comparison is to highlight the improvements achieved by the proposed strategies. 

The jobs and the logs from the CCR dataset are used as an input for our simulation of the 

proposed and all of the other studied strategies. We use the term “hot” and “cool” for a job that 
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indicates the high thermal impact and low thermal impact on the servers, respectively, as in 

[7.20, 7.25]. Similarly, the server is termed as “hot” or “cool”, if the thermal signature of the 

server is high or low, respectively. The thermal impact of a job is usually measured based on 

attributes, such as the length of the job and number of processors required. Before going deeper 

into the details of the comparison, let us briefly discuss the approaches used for the comparison.  

The FCFS (sometimes referred as first-in, first-out) is possibly the most straightforward 

scheduling approach. The FCFS is instinctively fair, where the jobs are executed based on the 

order they are received to the scheduler. Therefore, the jobs that are submitted first are allocated 

first. However, the policy is non-preemptive, where longer jobs can add delays. In the said 

perspective, the order in which the jobs are received is very critical. If a longer job is first in the 

order, then mean wait time for all of the jobs will be high.  

The Shortest Job First (SJF) [7.54] sometimes referred to as the shortest job next, is a 

scheduling strategy that selects the waiting process with the smallest execution time to execute 

next. Unlike FCFS, the SJF scheduling policy reduces the mean waiting time of the jobs as 

shortest jobs are executed first. However, the SJF is also non-preemptive, where the jobs that are 

long may starve for the execution. The SJF strategy is used in specialized environments where 

accurate estimates of running times are available [7.55].   

In the Longest Job First (LJF) [7.36] scheduling policy the job that requires the longest 

processing time is executed first. The LJF policy sorts the jobs in an increasing order, such that 

the jobs that requires more time for completion is scheduled first. The mean waiting time of the 

jobs is high in LJF as longer jobs are executed first. Moreover, the shorter jobs have to suffer due 

to extended wait periods. The LJF is useful for the jobs that are submitted for batch processing 
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[7.41]. The batch jobs are typically long, where the resources are longer bound to the jobs, 

causing less resource fragmentation, and increase the utilization and throughput of the system 

[7.41]. 

The approach in [7.23] follows the steps of Genetic Algorithm (GA). The first step is to 

construct a set of feasible solutions. The selected solutions are then mutated (randomly 

interchange the task allocations within the solution) and mated (randomly select pairs of solution 

and exchange the subset of two task assignment to get two new solutions). The fitness function 

that checks the highest inlet temperature of the selected assignments is applied to all of the 

solutions formed as a result of mating and mutation, including the original solution. Finally, the 

solution having the lowest inlet temperature value from the set of highest inlet temperature 

values, obtained as a result of fitness function, is selected as a final solution.  

The approach in [7.24], Thermal Aware Scheduling Algorithm (TASA), is based on the 

theory of coolest inlet that attempts to schedule the larger jobs to the servers that have lowest 

thermal signatures. In TASA algorithm the servers are sorted in an ascending order of thermal 

signatures, such that the server with a lowest thermal signature is first in the order. Similarly, the 

jobs are sorted based on the task-temperature profile of the jobs, such that the job that has the 

highest thermal impact is first in the order. The goal is to maintain thermal balance within the 

pods of a DC by allocating longer jobs to the servers that have lowest thermal signatures. 

Fig. 7.10 depicts the average minimum and maximum thermal signatures of the pods over 

the period of time, when the studied scheduling heuristics are used. There were 33 pods in the 

DC and each pod had 32 servers. The thermal readings were taken after every 10 minutes. Fig. 

7.10 clearly differentiates the thermal dynamics of the DC when various scheduling approaches 
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are used. It can be infer from the above that each scheduling strategy has different thermal effect 

on the servers and ambient environment. 

In SJF (Fig. 7.10(a)), high temperature peaks are frequent as compared to low 

temperatures. The job allocation in SJF is static that can create a situation, where small jobs are 

assigned to the servers with low thermal signatures and longer jobs are assigned to the servers 

with high thermal signatures. In the said perspective, “hot” servers becomes “hotter” and “cold” 

servers stays “cool”, resulting in a thermal imbalance among the pods. However, in an ideal 

situation, the shortest job may be assigned to the highest thermal signature server and longest job 

may be assigned to the lowest thermal signature server. In the ideal scenario the thermal 

difference will be small, as depicted at some time intervals of Fig. 7.10(a). The thermal 

difference in SJF may also be small in a scenario, where only few jobs were submitted for 

execution, causing majority of the high thermal signature servers to cool down.  

In FCFS (Fig. 7.10(b)), the thermal signatures of the pods have fluctuations, which mean 

that at many time intervals the thermal status of the pods is unbalance. The reason for the thermal 

imbalance between the pods is the static assignment of tasks without considering the thermal 

status of the servers. The aforesaid, possibly creates a scenario when higher task-temperature 

profile jobs are assigned to servers with high thermal signatures and lowest thermal impact jobs 

are assigned to low thermal signature servers. In such a scenario, the thermal signatures of “hot” 

servers increases and thermal signatures of “cold” servers decreases, causing thermal imbalance 

among the pods.  

The reasons for the thermal variations in LJF (Fig. 7.10(c)) are the same as were in SJF. 

As both of the strategies uses static job assignment, the allocation of “hot” jobs to “hot” servers 
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and “cool” jobs to “cool” server is possible that causes the thermal signatures of the pods to 

fluctuate. 

However, the thermal differences in TASA (Fig. 7.10(d)) are low, as compared to SJF, 

FCFS, and LJF. The first reason is that the scheduling decisions are made considering the 

thermal status of the servers. Secondly, the “hot” jobs are assigned to “cool” servers that will 

allow the servers with higher thermal signatures to cool down, while the servers with low 

thermal signatures execute longer jobs, resulting in a thermal balance among the pods.  

In GA-based (Fig. 7.10(e)), the reason for the imbalance thermal signatures is the random 

nature of the GA based approach. The selection of the feasible solution, the mutation, and the 

mating process, all are based on randomization. If the same set of pods and servers are selected 

in the solutions most of the time, then the fitness function performed on the selected solution will 

not provide any significant information to avoid the occurrence of the hotspots. Similarly, there 

is also a possibility that the number of tasks allocated to few pods and servers are relatively low 

as compared to the rest of the pods and servers in the DC. The aforementioned possibilities will 

allow some servers to have high thermal signatures while others have low thermal signatures that 

will ultimately results in the thermal imbalance. 
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(a) SJF (b) FCFS 

 

(c) LJF 

 

(d) TASA  

(e) GA-based 
(f) Tara-I 

(g) Tara-II (without migration) (h) Tara-II (with both migrations) 

Fig. 7.10. Average Minimum and Maximum Thermal Signatures of the Pods.  
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The thermal imbalances in Fig. 7.10(f), Fig. 7.10(g), and Fig. 7.10(h) are very low as 

compared to the thermal imbalances of all the other scheduling approaches. The reason for the 

aforementioned is that the scheduling decisions are taken by considering the thermal status of the 

servers and the ambient effect on other related servers. The thermal imbalances between Fig 

11(f) and Fig. 7.10(g) are almost same. However, the thermal differences are very obvious in 

Fig. 7.10(h) as compared to Fig. 7.10(f) and Fig. 7.10(g). As stated in previous sections that the 

heterogeneous nature of the workload can cause thermal spikes within the pod, when two long 

jobs are assigned in a same pod. Therefore, to mitigate the aforesaid, TARA-II performs Intra-

pod and Inter-pod task migrations to keep the thermal balance and to avoid hotspots. In the said 

perspective, we highlighted the effectiveness of migrations performed in TARA-II on the 

thermal dynamics of DCs. We plotted the differences of highest and lowest thermal signature of 

servers at certain time intervals to expose the thermal imbalances. We plotted four different 

scenarios in TARA-II: (a) no migration is performed, (b) only Intra-pod migrations are 

performed, (c) only Inter-pod migrations are performed, and (d) both (Intra and Inter-pod) 

migrations are performed. We can observe in Fig. 7.11 that the thermal differences in the 

scenarios (a) and (d) are highest and lowest at most of the time intervals, respectively. The 

results from Fig. 7.11 clarifies that using task migrations TARA-II can effectively maintain the 

thermal uniformity within the pods of DCs.  

The results from our simulations have shown improvements in the thermal dynamics of 

the DC when the proposed strategies were adopted, as compared to the other studied approaches. 

Our proposed strategies consider ambient effect while allocating jobs to the servers that helps 

stabilize the thermal dynamics of the overall DC. 
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8. CONCLUSIONS 

Cloud computing has been a mainstream of research over the last decade. Cloud 

computing promises reliable services that are delivered through the next-generation DCs. Today, 

the contemporary society relies more than ever on the Internet and cloud computing. Cloud 

computing has been adopted and is being used in almost every domain of human life. However, 

the advent and enormous adoption of the cloud paradigm also brings numerous challenges to 

cloud providers and research community. Data Centers (DCs) constitute the structural and 

operational foundations of the cloud computing platforms. The legacy DC architectures are 

inadequate to accommodate the enormous adoption and increasing resource demands of the 

clouds. The scalability, high cross-section bandwidth, Quality of Service (QoS) guarantees, 

energy efficiency, and Service Level Agreement (SLA) assurance are some of the major 

challenges faced by today’s cloud DC architectures. Multiple tenants with diverse resource and 

QoS requirements share the same physical infrastructure offered by cloud providers. Similarly, 

reliability and robustness are among the mandatory features of cloud paradigm to handle the 

workload perturbations, hardware failures, and intentional (or malicious) attacks. Cloud 

infrastructure must ensure robust behavior to deliver the anticipated services and QoS. 

In Chapter 3, we studied the structural robustness of the state-of-the-art data center 

network (DCN) architectures. Our results revealed that the DCell architecture degrades 

gracefully under all of the failure types as compared to the FatTree and ThreeTier architecture. 

Because of the connectivity pattern, layered architecture, and heterogeneous nature of the 

network, the results demonstrated that the classical robustness metrics are insufficient to quantify 

the DCN robustness appropriately. Henceforth, signifying and igniting the need for new 
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robustness metrics for the DCN robustness quantification. We proposed deterioration metric to 

quantify the DCN robustness. The deterioration metric evaluates the network robustness based 

on the percentage change in the graph structure. The results of the deterioration metric illustrated 

that the DCell is the most robust architecture among all of the considered DCNs. The DCN 

robustness analysis revealed the inadequacy of the classical robustness measures for the DCN 

architectures. 

Chapter 4 presented a comparison of the network features of the three well-known DCN 

architectures namely: (a) Three-Tier , (b) FatTree, and (c) DCell. Moreover, we conducted a 

connectivity analysis of the considered DCNs. Finally, we proposed 𝜇 − 𝐴2𝑇𝑅, a novel 

robustness metric, which is able to characterize network connectivity. It has been observed that, 

based on several classical robustness features such as density, average nodal degree, spectral 

radius, algebraic connectivity, average shortest path length, and diameter, the FatTree 

architecture is the most robust and connected network. However, the connectivity analysis of the 

DCNs based on the 𝐴2𝑇𝑅 values in response to three types of node removals (random, nodal 

degree, and betweenness centrality) demonstrated that the DCell and FatTree are similar in terms 

of network connectivity in the case of random removals. Nevertheless, as regards to the targeted 

removals, the FatTree and ThreeTier depicted low network connectivity. From the connectivity 

analysis, it can be inferred that, although the traditional network features are useful in 

determining network robustness and connectivity, there is a need for an appropriate connectivity 

metric. We presented 𝜇 − 𝐴2𝑇𝑅 and demonstrated its ability to characterize network 

connectivity. We beleive that the 𝜇 − 𝐴2𝑇𝑅 metric will help the engineers and research 

community to design more robust DCNs. 
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Chapter 5 presented a study of the relationship between the network hierarchy and 

robustness. Our study revealed a strong correlation between the network hierarchy and 

robustness. In most of the cases, the higher the network hierarchy, the more vulnerable is the 

network to targeted attacks. Moreover, it has been observed that the initial robustness estimation 

of hierarchical networks using the classical robustness metrics may be misleading. The results 

unveiled that based on the initial network analysis without failure using he classical robustness 

metrics, the high GRC valued networks may be considered as more robust than the low GRC 

valued networks. However, when targeted failures are instigated in hierarchical networks, the 

high GRC valued networks depict more deterioration and very small portion of the nodes remain 

connected in the largest connected cluster of the network. One the contrary, the low GRC valued 

robustness retained the network connectivity and undergo low deterioration in case of targeted 

attacks. Therefore, one may infer that the robustness estimation of hierarchical networks based 

on the classical robustness metrics may be misleading and inappropriate. 

In Chapter 6 we presented a comparison of the major DCN architectures that addressed 

the issues of network scalability and oversubscription. We simulated the performance of the 

major DCN architectures in various realistic scenarios under different network configurations. 

The simulation results showed that the fat-tree based DCN architecture outperformed the DCell 

and three-tier DCN architectures in terms of average network throughput and packet delay. 

Finally, we proposed a Thermal Aware Resource Allocation (TARA) strategy that aims 

to stabilize the thermal dynamics of the DCs. The job allocation decisions in TARA were made 

by considering the ambient effect that occurred as a result of job allocations. By doing the 

aforesaid, the possibility of hotspots were removed that may cause servers to throttle down, 
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increasing the possibility of failure. Moreover, our proposed strategy was based on the findings 

of a real DC workload analysis that was performed using three statistical procedures: (a) Mean 

Procedure, (b) Correlation Procedure, and (c) Vector Autoregressive Moving-average processes 

with Exogenous Regressors (VARMAX) model. The aforesaid statistical inferences were used to 

investigate the thermal behavior, relationship, and patterns exhibit by the servers and pods within 

the DC. To demonstrate the improvements achieved using TARA, we perform a comparative 

analysis with three classical and two thermal aware scheduling approaches. The comparison 

results revealed that TARA performs better, in terms of maintaining thermal balance within the 

pods of DCs. 


