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ABSTRACT 
 

 Remote sensing is one possible approach for improving crop nitrogen use efficiency to 

save fertilizer costs, reduce environmental pollution, and improve crop yield and quality. 

Feasibility and potential of using remote sensing tools to predict crop yields and quality as well 

as to detect nitrogen requirements, application timing, rate, and places in season were 

investigated based on a two-year (2012-2013) and four-crop (corn, spring wheat, sugar beet, and 

sunflower) study. Two ground-based active optical sensors, GreenSeekerTM and Holland 

Scientific Crop CircleTM, and the RapidEyeTM satellite imagery were used to collect sensing data. 

Highly significant statistical relationships between INSEY (NDVI normalized by growing degree 

days) and crop yield and quality indices were found for all crops, indicating that remote sensing 

tools may be useful for managing in-season crop yield and quality prediction.  
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GENERAL INTRODUCTION 

Due to their unbeatable strengths in data collecting and analysis, remote sensing 

technologies are being widely and successfully used in precision agriculture to help establish 

information and technology-based agricultural management system, and hence benefit the 

farmers and environment, and optimize relevant logistics as well. Precision agricultural 

management practices include variable rate fertilizing or herbicide spraying or planting or 

irrigation, site-specific harvesting, in-season crop yield and quality prediction, soil and land 

survey, etc. Precision nitrogen (N) management based on remote sensing technologies is one of 

the most representative examples as N was found to be one of the most critical nutrients for crop 

growth (Havlin et al., 2005). Improving nitrogen use efficiency (NUE) saves fertilizer cost, 

improves crops yield and quality, and reduces environmental pollutions caused by loss of N in 

the field (Havlin et al., 2005).  

An in-season variable N fertilization algorithm for winter wheat and corn based on 

optical sensing data was proposed (Raun et al., 2002; Raun et al., 2005) and widely recognized. 

One of the fundamental components of this algorithm is the in-season yield prediction using the 

statistical relationship between remote sensing data and crop yield. Specifically, the independent 

variable was in season estimate of yield (INSEY), which was obtained by dividing normalized 

difference vegetation index (NDVI) by accumulated positive growing degree days (GDD). Using 

this algorithm, in-season site-specific crop N deficiency and requirement can be determined. 

Crop qualities were also related with in-season ground-based or space remote sensing data (Gehl 
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and Boring, 2011; Humburg et al., 2006 ). Besides helping make variable N fertilization, crop 

yield and quality prediction may also support possible crop production parameters estimation and 

optimize the logistics decision-makings.  

Generally, there are three types of remote sensing systems (Mulla, 2013): space sensing 

(satellite imagery), aerial sensing (aerial photography), and ground-based sensing (proximal 

sensor readings). In this research, two ground-based active optical sensors, GreenSeekerTM 

(NTech Industries, Inc., Ukiah, CA, USA) and Holland Crop CircleTM, (Holland Scientific Inc., 

Lincoln, Nebraska, USA), and a type of passive optical satellite imagery, the RapidEyeTM Ortho 

Products (Level 3A) satellite imagery (http://blackbridge.com/rapideye/products/ortho.htm) were 

employed to collect sensing data. Four NDVI maps can be computed from each set of RapidEye 

satellite imagery, as illustrated in Figure 1. Average NDVI for each sub-plot can be further 

extracted according to the GPS coordinates of the corner points of each sub-plot. The studied 

four crops were sugar beet, spring wheat, corn, and sunflower. The overall objective of this 

research is to further validate the feasibility of using remote sensing data to make in-season 

predications of four crops yield and quality by investigating the statistical relationships between 

remote sensing data and crops yield or quality based on two-year data. Other objectives include 

comparison of the performance the three optical remote sensing systems, comparison of the 

performance of three regression models, and evaluation of the impact of including plant height 

into regression models. 



 

3 
 

 

Figure 1. NDVI maps extracted from RapidEye satellite imagery (left top: red NDVI; right top: 
blue NDVI; left bottom: red edge NDVI; right bottom: green NDVI). 

The rest of this thesis is organized as follows: chapter “LITERATURE REVIEW” makes 

a thorough review of relevant reported work, with focuses on crop yield and quality prediction 

using ground-based active optical sensing and passive optical satellite remote sensing; all the 

necessary experimental data including crops, site-years, plot design, remote sensing data, plant 

height data, and crop yield and quality data, and their collecting methods as well are presented in 

detail in chapter “MATERIALS AND METHODS”, where the adopted statistical data analysis 

methods and software are explained, too; chapter “RESULTS AND DISCUSSIONS FOR 

SUGAR BEET”, chapter “RESULTS AND DISCUSSIONS FOR SPRING WHEAT”, chapter 

“RESULTS AND DISCUSSIONS FOR CORN”, and chapter “RESULTS AND DISCUSSIONS 

FOR SUNFLOWER” discuss the statistical relationships between remote sensing data and the 

yield (quality) of the four studied crops, respectively; conclusions for the entire study and 

suggestions for future work are given in the last chapter.  
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LITERATURE REVIEW 

Importance of Nitrogen and Nitrogen Use Efficiency 

N is one of the most important nutrients for plant growth, yet it is also the one that is 

most commonly deficient in most non-legume cropping systems (Havlin et al., 2005). It ranks 

behind only C, H, and O in total quantity needed and is the mineral element most demanded by 

plants. Nitrogen is a major part of chlorophyll and the green color of plants and is responsible for 

lush, vigorous (Brady and Weil, 1999).  

Although N is the most abundant element in our atmosphere, plants cannot use it until it 

is naturally transformed in the soil, or added as chemical fertilizer such as ammonium nitrate, 

urea, or anhydrous ammonia, before or during the crop growing season. Growth and yield, 

however, will be reduced if the sum of soil N availability and N rate applied is less than the total 

N required for optimal growth and development. Deficient N application cannot produce optimal 

yield and therefore is unfavorable to meeting the increasing demands of humans and animals; on 

the other hand, excessive N application will result in low NUE and environmental degradation 

(Hirel et al., 2007; Raun and Johnson, 1999; Sowers et al., 1994). The over-application of N 

increases N loss through several pathways: immobilization, volatilization, denitrification and 

leaching, that results in economic loss to growers, nitrate pollution of ground and surface waters 

(Havlin et al., 2005) and possible production of nitrous oxides.  

There are a number of definitions for NUE (Liang and Mackenzie, 1994; Moll et al., 

1982; Raun and Johnson, 1999; Semenov et al., 2007; Spargo et al., 2008). A simple yet 
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reasonable definition of NUE is the difference between N uptake in an treated plot divided by the 

total N application rate (Arnall et al., 2009). Raun and Johnson (1999) pointed out that NUE for 

cereal crop production is as low as 33% worldwide, and that an increase in NUE of 1% and 20% 

could save about $234 million and more than $4.7 billion, respectively, in N fertilizer costs per 

year. Currently, yield is not the only factor that affects farmers economically. Qualities such as 

wheat protein content, sugar beet recoverable sugar per unit area, sunflower oil content, greatly 

affect the price received for crop delivery. Inappropriate N fertilization has negative impacts on 

not only the crop yield but also crop quality. Franzen (2003) referred to numerous studies which 

indicated that excess N uptake decreases sugar beet sucrose levels and increases impurities that 

increase sugar beet processing costs. Improvement in NUE would be expected to improve crop 

yield and quality, maximizing farmer’s economic return, and reducing environmental pollution.  

Possible techniques for improving NUE include use of nitrification inhibitors, urease 

inhibitors, urea polymer or other coatings, use of a balanced fertilizer program, splitting of N 

fertilizer application timing, applying N at the time when it is least susceptible to loss, and 

accounting for temporally variable influences on crop N needs. Crop N requirement 

determination and improvement of NUE may also be aided through the use of remote sensing 

tools for N status determination, yield potential prediction and crop quality prediction.  

Precision Agriculture and Remote Sensing 

Precision agriculture, viewed as one of the top ten revolutions in agriculture during the 

past 50 years (Crookston, 2006), is perhaps the best solution to improving NUE through site-
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specific and variable-rate N application. The basic foundation of precision agriculture is to 

replace the conventional management practices that apply uniform treatments to the whole field 

with much more flexible practices by dividing the farm into small management zones with each 

zone receiving different applications based on its individual needs (Mulla, 2013). Improved 

management usually improves crop productivity, farm economic return, and protects 

environmental quality. Representative precision agricultural practices include the management of 

fertilizer rate, herbicide type and rate, irrigation timing and rate, soil organic matter, yield, 

quality, and seed selection and rate. In-season N management and crop yield or quality 

prediction is just part of precision agriculture, which aims at improved field management by 

doing the right practice at the right time and right place in response to variations across years and 

landscape. Just as Bakhsh et al. (2000) pointed out, there was significant variability of crop yield 

and yield response to N fertilizer across years due to climate change. Also, extensive soil 

sampling, optical sensor measurements of plants, and geostatistical analyses indicated that 

statistically significant differences in nitrogen availability existed at a 1 m2 spatial scale (Raun et 

al., 1998; Solie et al., 1999).  

Soil testing and plant testing have been used as target monitoring methods in precision 

agriculture, but in recent decades remote sensing has become more popular and more widely 

used. Remote sensing is “the acquisition of information about an object without being in physical 

contact with it” (Elachi and Zyl, 2006). Remote sensors based on light absorption or reflection 

measures the electromagnetic radiation reflected or emitted from the target. Remote sensing has 
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many advantages over soil testing or plant testing: firstly, it provides a non-destructive way of 

sampling; secondly, larger amounts of data can be collected and analyzed efficiently; thirdly, 

remote sensing data have been proved reliable by a vast number of researches and applications in 

the past decades; fourthly, it is a cost-effective way of data collection and analysis.  

Remote sensing systems can be classified into three categories: ground-based, aerial 

(aircraft), and space (satellite) (Mulla, 2013). Ground-based sensing is also called proximal 

remote sensing; its corresponding sensors can be either hand-held or tractor-mounted. Images 

from aerial and space sensing systems can cover larger areas in a shorter period but the quality of 

most of them is strongly affected by the cloud cover (Mulla, 2013).  

In terms of energy source of emission and reflectance, remote sensing systems can be 

classified into two categories: passive sensing and active sensing (Lo and Yeung, 2007). Passive 

remote sensing systems rely on independent or external energy sources to sample emitted and 

reflected radiation from target surfaces. Usually, the sun is the most common energy source for 

passive sensors (Lo and Yeung, 2007). Active remote sensing systems have their own energy 

sources that send out electromagnetic radiation at specified wavelengths to the surfaces and 

receive the corresponding reflectance (Lo and Yeung, 2007). Some active remote sensing 

systems can be used both in the day and in the night, and are not influenced by cloud cover due 

to their pulsated light (Graham, 1999).  

In terms of spectral bands quantity and width, remote sensing systems can be classified 

into three categories: hyperspectral, multispectral, mono-spectral. Typically, monospectral 
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remote sensing systems use the near infrared (NIR) band (Christy, 2008; Long et al., 2008). 

However, multispectral and hyperspectral sensing systems are more common and frequently 

used. Multispectral sensors usually only have several (in most cases less than 10) broadbands, 

each with greater than 40 nm width and are centered on NIR or on one of the visible light 

spectrum regions such as red, green, blue, or red edge (Mulla, 2013). Hyperspectral sensing 

usually has hundreds or even thousands of spectral bands that cover a wide range of spectrum 

and each band tends to be narrow (about 10 nm wide) (Mulla, 2013). Hyperspectral sensing can 

provide larger spectral range cover and higher spectral resolution of bands and therefore can 

provide more information than multispectral sensing. Figure 2 is an illustration of the 

electromagnetic spectrum, which shows the range of all possible frequencies of electromagnetic 

radiation.  

 
Figure 2. Electromagnetic spectrum (http://scioly.org/wiki/index.php/Remote_Sensing). 

 



 

9 
 

Remote sensing has been widely applied to various agricultural researches and practices 

including crop N status monitoring (Bausch and Khosla, 2010; Cabrera-Bosquet et al., 2011; 

Erdle et al., 2011; Li et al., 2010b; Raper et al., 2013; Solari et al., 2008; Tang et al., 2010), crop 

yield prediction (Bredemeier et al., 2013; Gehl and Boring, 2011; Harrell et al., 2011; Holzapfel 

et al., 2009; Inman et al., 2007; Lofton et al., 2012a; Lofton et al., 2012b; Mayfield and 

Trengove, 2009; Solari et al., 2008; Yang and Everitt, 2012), crop quality prediction (Gehl and 

Boring, 2011; Long et al., 2008; Mayfield and Trengove, 2009; Soderstrom et al., 2010), crop 

biomass estimation (Cabrera-Bosquet et al., 2011; Erdle et al., 2011; Flynn et al., 2008; Freeman 

et al., 2007; Li et al., 2010a; Montes et al., 2011), soil organic matter content estimation (Genu et 

al., 2013; Liu et al., 2013; Stamatiadis et al., 2013), irrigation (Akkuzu et al., 2013; Awan et al., 

2013; Kharrou et al., 2013; Moller et al., 2007), soil water status (Li et al., 2013; Li et al., 2012; 

Moller et al., 2007; Neale et al., 2012; Obade et al., 2013).  

The improvement of farm NUE is an important issue due to economic and environmental 

concerns. There is a solid rationale behind the relationship between crop N status and sensing 

data.  For many crops there is a strong linear relationship between leaf N and chlorophyll 

concentration (Blackmer and Schepers, 1995; Evans, 1983; Olfs et al., 2005). Therefore, 

chlorophyll content of a plant, the greenness of the plant, can be a good indicator for leaf N 

concentration. Visible light, especially blue and red light, is absorbed by plant chlorophyll as an 

energy source during photosynthesis. NIR radiation (about 760 to 900 nm) is not used in 

photosynthesis; much of the radiation is reflected from the living green plants. NIR reflectance is 
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mainly controlled by the structure of the spongy mesophyll and has a positive correlation with 

crop condition and yield. Typically 2 to 10% of the visible light is reflected from the canopy of 

the green vegetation, and 35 to 60% for NIR light (Holland Scientific, 2011). In general, 

healthier plants absorb more visible light and reflect more NIR. Based on this relationship, useful 

vegetation indices can be created based on NIR and visible light reflectance to monitor crop N 

status. For hyper-spectral data, there are many options available to derive different vegetation 

indexes (VIs).  

Introduction to Vegetation Indices 

Vegetation Indices (VIs) are combinations of surface reflectance at two or more 

wavelengths designed to highlight a particular property of vegetation. Depending on the width of 

the spectral band, VIs can be classified into multispectral broadband VIs and hyper-spectral 

narrow band VIs (Mulla, 2013; Thenkabail et al., 2002). Multispectral broadband VIs are usually 

produced using one NIR band and one visible band. Many of the hyperspectral narrow-band 

indices have a similar form as that of the hyperspectral bands with the difference mainly being 

the width of the bands used. Depending on whether a N-rich referenced plot is used, VIs can be 

divided into two general categories, absolute spectral indices and relative spectral indices 

(Sripada et al., 2008). 
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The two most popular and typical broadband and absolute spectral VIs are NDVI (Rouse 

et al., 1973; Tucker, 1979) and Simple Ratio (SR) (Jordan, 1969). Normalized difference 

vegetation index (NDVI) is defined as 

                              NDVI =  (NIR - red) / (NIR + red)                                                (1) 

and SR is defined as  

                                                        SR = NIR / red                                                                 (2) 

where NIR and red refer to near infrared and red spectral reflectance measurements, respectively. 

Generalized NDVI definition uses any visible spectral reflectance including red spectral 

reflectance:  

                                  Generalized NDVI =  (NIR - red) / (NIR + red)                                    (3) 

The mentioned NDVIs hereafter all refer to generalized NDVI. Usually greater NDVI or SR 

values indicate higher plant N content in the leaf. Two main drawbacks of NDVI are interference 

by soil background when canopy density is low and inability to detect changes in leaf 

chlorophyll content in canopies that have a high leaf area index value exceeding 2 or 3 

(Thenkabail et al., 2000). A soil adjusted vegetation index (SAVI) is also widely used: 

                               SAVI = (NIR-RED) / (NIR+ RED+ L) * (1+L)                                       (4) 

where L = soil brightness factor (Shaver et al., 2011). Cao et al. (2013) found that the red edge 

band (710 nm) NDVI obtained from a Holland Crop Circle SensorTM in his experiment could 
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better predict rice N status than could red-based NDVI. In the estimation of leaf N and 

chlorophyll contents in corn using remote sensing, Schlemmer et al. (2013) indicated that indices 

extracted using NIR and red-edge spectral bands were one of the best choices of VIs tested.  

Blackmer et al. (1994) indicated that the green (G) wavelength reflectance was 

particularly sensitive to leaf N content change. A simple ratio based on mid-infrared and green 

bands were found to be the single most effective ratio for the prediction of barley protein content 

(Soderstrom et al., 2010). Gitelson et al. (2005) tested two chlorophyll indices (CIs), each of 

which was equal to the SR minus 1, with one based on G spectral and NIR, and the other red 

edge and NIR, and found that both indices have a very strong linear relationship with chlorophyll 

content. Schepers et al. (1996) found that a strong relationship (r2=0.97) existed between the 

G/NIR ratio and chlorophyll meter readings in a greenhouse maize experiment. Comparisons 

between NDVI and GNDVI indicated that GNDVI could produce a better correlation with grain 

yield than did NDVI (Blackmer et al., 1996; Shanahan et al., 2001). Here GNDVI refers to 

Green Normalized Vegetation Index and is defined as (Gitelson et al., 1996)  

                             GNDVI = (NIR - G) / (NIR + G)                                                    (5) 

GNDVI extracted from Landsat imagery was found to be the consistently best vegetation index 

to linearly relate to beet sucrose concentration in terms of r2 value as far as single image was 

involved (Humburg et al., 2006). Clay et al. (2006) compared GNDVI with NDVI and 
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demonstrated that each of the two indices have their own strength. NDVI was more sensitive to 

water stress and GNDVI was more sensitive to N stress.  

Using raw NDVI data directly for plant N status or crop yield prediction usually is not a 

wise choice. For example, a study trying to use raw NDVI from the Holland Crop Circle Sensor 

to predict cotton leaf N status found that the relationship between sensor readings and leaf N 

content was inconsistent (Raper et al., 2013).  Several studies have indicated that a reference area 

of non-limited N supply could normalize the differences between hybrids, soil, and other 

environmental conditions and therefore might strengthen relationships (Dellinger et al., 2008; 

Shanahan et al., 2001). In a study of estimating of corn N requirements, it was revealed that the 

economic optimum nitrogen rate (EONR) could be best predicted using Relative Green 

Difference Normalized Vegetation Index by ratio (RGNDVI) from the Holland Crop Circle 

Sensor at V6 stage (r2 = 0.79) (Sripada et al., 2008):  

                    RGNDVI = GNDVIplot / GNDVIreference plot                                             (6) 

Another corn study showed that EONR was strongly related to RGNDVI when control and 

manure preplant treatments were used (r2 = 0.84), but not so when ammonium nitrate was 

applied (Dellinger et al., 2008). Normalized Green NDVI, which is in essence similar to relative 

GNDVI, extracted from QuickBirdTM satellite imagery was found to be a good predictor of in-

season corn N status (Bausch and Khosla, 2010). A two-year corn study indicated that NDVI 

ratio (NDVIplot / NDVIreference plot) had a better relationship with grain yield (r2 = 0.65) than did 
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INSEY with grain yield (r2=0.58) (Inman et al., 2007). This NDVI-ratio is the inverse of the 

Reponse Index of NDVI (RINDVI) in developing an in-season N recommendation algorithm 

(Johnson and Raun, 2003; Raun et al., 2005).  

A special relative VI is the In-Season Estimate of Yield (INSEY), which is NDVI divided 

by growing degree days (GDD) from planting date, and reflects the biomass produced per day of 

positive growth for a particular crop (Raun et al., 2001; Teal et al., 2006). In-season estimate of 

yield (INSEY) has been proven useful for yield and quality prediction in several crops (Gehl and 

Boring, 2011; Li et al., 2009; Ortiz-Monasterio and Raun, 2007; Raun et al., 2001; Raun et al., 

2002; Raun et al., 2005; Singh et al., 2011; Teal et al., 2006). Normalizing NDVI with GDD 

does not necessarily improve yield potential prediction significantly, but its use makes it feasible 

to combine years and sites of spectral data in predictive regression model establishment (Teal et 

al., 2006). A detailed list of the hyper-spectral narrowband vegetation indices can be found in 

reference (Mulla, 2013).  

Ground-Based Active Optical Sensing and N Fertilizer Requirements Determination 

There are three types of typical and commercial ground-based active optical sensing 

systems that can be used to estimate plant N status in real-time and thus enable the in-season 

variable rate N fertilization on-the-go. These systems include GreenSeekerTM (NTech Industries, 

Inc., Ukiah, CA, USA), Holland Crop CircleTM, or Crop Circle (Holland Scientific Inc., Lincoln, 

Nebraska, USA), and Yara N-sensor ALSTM (Yara International, Oslo, Norway). The first 
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generation of GreenSeeker had only NIR (770 nm) and red (660 nm) two optical channels. The 

latest second generation provides two more red edge bands at 710 nm and 735 nm. An affordable 

and easy-to-use handheld GreenSeeker crop sensor was also commercially released in 2013. The 

latest Crop Circle ACS-470 sensor is supplied with 6 narrowband interference filters to 

determine its spectral response. At one time only three of the filters are used because the sensor 

has only three optical measurement channels. The 6 filter wavelength includes 532 nm, 550 nm, 

670 nm, 700 nm, 730 nm, and 760 nm. A latest advancement in active crop canopy sensing 

solutions is the RapidSCAN CS-45TM system developed by Holland Scientific, Inc. and 

integrating a data logger, graphical display, GPS, crop sensor and power source into one small 

compact instrument. This handheld sensor provides three optical measurement bands: NIR (780 

nm), red (670 nm), and red edge (730 nm). The first Yara N-Sensor was introduced in 1999 in 

Germany for use on cereals. Unlike the first Yara N-Sensor which was a passive optical sensor, 

the Yara N-Sensor ALS launched in 2006 is an active multispectral sensor that can measure crop 

reflectance characteristics at selected wavelength in the region from 450 nm to 900 nm 

(Samborski et al., 2009).  

GreenSeeker 

Raun et al. (2001) developed the INSEY index and an innovative technique based on an 

active canopy sensor for grain yield potential with zero-N fertilization (YP0) prediction of winter 

wheat (Triticum aestivum, L). A significant exponential relationship was found between 

estimated yield and measured yield when all 9-location and two-year data were included. The 
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estimated yield explained 83% of the variability of grain yield predicted from 6 out of 9 

locations. Based on INSEY, Lukina et al. (2001) developed a winter wheat in-season N 

fertilization recommendation algorithm. In-season N needs were estimated by subtracting 

predicted early-season plant N uptake (at the time of sensing) from predicted total grain N uptake 

(predicted yield potential times grain N percent), and then divided by the expected NUE of 0.70.  

In order to quantitatively characterize the crops’ in-season likelihood to respond to 

additional N for each field, the concept of response index (RI) was introduced (Johnson and 

Raun, 2003). The actual crop grain response to applied N at harvest was defined as RIHarvest = 

(highest mean yield N treatment) / (mean yield of the check treatment) (Mullen et al., 2003). A 

response index based on NDVI was also introduced to predict in-season RIHarvest, and a strong 

linear relationship was found between RIHarvest and RINDVI (Mullen et al., 2003).  

An effective N fertilization optimization algorithm (NFOA) (Raun et al., 2002) for winter 

wheat was developed based on the predicted YP0 (Raun et al., 2001) and a field-specific NDVI-

based Responsive Index RINDVI. Steps in the development of the algorithm include: 1) predict 

YP0 using the relationship equation between actual grain yield and INSEY (Raun et al. 2001); 2) 

predict RI at Harvest (RIHarvest) using RINDVI, which is computed as mean NDVI readings of 

adequate N rate treatment divided by mean NDVI readings of pre-plant N rate. To accomplish 

this step, NDVI measurements were collected from from Feekes 4 to Feekes 6 growth stages. 

The RIHarvest was well correlated with RINDVI and was defined as the grain yield from N-adequate 

plots divided by the yield from the plots receiving the pre-plant N rate; 3) determine Yield 
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Potential (YP) using pre-plant N rates YPN and equation YPN  = YP0 × RINDVI; 4) Predict 

percent N in the grain (PNG) with a linear relationship equation between PNG and YPN; 5) 

predict grain N uptake (GNUP) by multiplying YPN with PNG; 6) predict forage N uptake 

(FNUP) based an exponential relationship equation between FNUP and NDVI; and 7) determine 

in-season fertilizer N requirement (FNR) using equation FNR =(GNUP - FNUP)/expected NUE. 

The expected NUE used in this research was the theoretical maximum NUE of an in-season N 

application, 0.70 (Raun et al., 2002).  

Based on the previous NFOA (Raun et al., 2002), an improved version of NFOA was 

proposed (Raun et al., 2005). In the previous NFOA algorithm, the sensing and fertilizing 

resolution was 1 m2. The greatest difference in this improved algorithm was including the 

coefficient of variation (CV) from NDVI readings, which reflects the spatial variability within 

each 0.4 m2 area, into the algorithm. The improved algorithm consists of three important 

components, INSEY, RIHarvest that can be predicted using RINDVI, and CV. This study also 

demonstrated that with only two years of field data, one might establish reliable crop yield 

potential prediction equations. Several NFOA-based different algorithms and a fixed N rate 

method were evaluated and compared in a corn study, where it was found that the algorithm of 

NFOA based on RI alone was the best one tested (Tubana et al., 2008b). 

The parameter CV is of great significance for improving the accuracy of the NFOA 

especially when spatial variability is large. Use of the CV’s of the plot NDVI reading was related 

to stand density in winter wheat. When the CVs of plot NDVI readings were less than 18%, it 
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was still possible for the winter wheat to recovery from N stress (Morris et al., 2006). When CVs 

were greater than 20%, the possibility of recovery with N application of winter wheat would be 

considered poor because the stand density would most probably be less than 100 plants m-2 

(Arnall et al., 2006). Response Index (RI) can be adjusted based on the CV of NDVI readings 

(Raun et al., 2005). Arnall et al. (2013) made a further evaluation of the utilizing of CV in 

improving winter wheat RIHarvest prediction based on RINDVI. According to the results of CV’s 

experiments conducted on resolutions of both small 1.48 m2 and large 17.0 m2 areas, no 

improved RI prediction was observed. To improve the RI prediction accuracy, Chung et al. 

(2010) established an equation for adjusting RINDVI based on the original RINDVI and the days 

where growing degree days are positive.  

Instead of using a constant NUE of 0.70 employed in previous studies (Raun et al., 2001; 

Raun et al., 2002; Raun et al., 2005), dynamic NUE values were estimated using RIHarvest or 

RINDVI or both because NUE estimated from crop grain yield was not a constant and was 

dependent on time and N application rate (Arnall et al., 2009). When both were used to establish 

a linear regression model between NUE and RI, the r2 was significantly higher than using one 

type of RI alone. Previous studies (Raun et al., 2001; Raun et al., 2002; Raun et al., 2005) 

combined grain yield potential and nitrogen response to determine the in-season optimal N 

fertilization rates, but did not consider the relationship between grain yield potential and nitrogen 

response. Since they both have impact on fertilizer N requirements, it is necessary to find out if 

they are independent of each other and hence help justify any in-season N rate recommendation 
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algorithm already developed. Grain yield potential and nitrogen response were found to be 

independent in a long-term winter wheat study (Raun et al., 2011). 

Determining the optimal resolution for sensing and analyzing field variation is also 

important for achieving the best prediction from an in-season N management algorithm. The 

optimal spatial scale depends on the specific soil class and properties, the crop type, and 

landscape position. Focusing on small-scale spatial variation is not always helpful because it 

could be time-consuming, unprofitable, and produces cluttered data that is difficult to analyze 

and condense into meaningful forms (Biermacher et al., 2009; Boyer et al., 2011). A spatial scale 

that is too large cannot realize the potential benefits of site-specific nutrient management. Best 

sensing resolutions have been documented for both winter wheat (Tubana et al., 2008a) and corn 

(Chung et al., 2008). It is worthwhile to examine the economic effect resulting from the 

application of variable-rate N directed by optical sensor N recommendation algorithms. A recent 

study (Boyer et al., 2011) indicated that on average the fixed 90 kg ha-1 treatment was more 

profitable than variable N rate treatments suggested by an optimization algorithm (Raun et al., 

2005). The proposed optimum yield predication and/or N fertilization algorithms (Raun et al., 

2001; Raun et al., 2002; Raun et al., 2005) have been widely applied and confirmed (Inman et 

al., 2007; Li et al., 2009; Lofton et al., 2012b; Morris et al., 2006; Ortiz-Monasterio and Raun, 

2007; Roberts et al., 2011; Singh et al., 2011; Teal et al., 2006; Tubana et al., 2008b; Tubana et 

al., 2011).  
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The N-rich reference strip, which still seems to be the most common adopted strategy due 

to its simplicity and utility, is also a key element in a variable N application optimization 

algorithm. The premise of its advantages, however, is that the correct and usually difficult choice 

of the place for N-rich strip establishment must be made with consideration of soil spatial 

variability. Statistically significant differences in N availability in the field have been observed 

(Cao et al., 2012; Raun et al., 1998; Solie et al., 1999). There are two possible ways to establish 

N-rich strips (Samborski et al., 2009). One is to enable the reference strips to traverse as many 

growing conditions and soil types as possible, the other is to establish more than one N-rich 

strips positioned on different soil types and use different adequate N rate. Bausch and Brodahl 

(2012) discussed several strategies for evaluating the quality of reference strips for in-season, 

field-scale, irrigated corn nitrogen sufficiency.  Other types of reference strips other than N-rich 

strips include zero-N reference plot (Olivier et al., 2006), ramped calibration strips (Raun et al., 

2008), and a virtual reference strip (Holland Scientific, 2013).  

Instead of using INSEY, some researchers explored alternative ways of using 

GreenSeeker NDVI readings to make crop yield or quality prediction. To predict sugar beet 

quality and N status using GreenSeeker, Gehl and Boring (2011) classified GDD into several 

intervals and then set up the relationship between NDVI and quality or N status for each interval 

or group. Their research indicated that at the stages of midseason when GDD between 1200 and 

1400, or when GDD between 1900 and 2300, or at the harvest stage, the NDVI readings had 

strong exponential relationships with recoverable sugar yield. They also found that harvest 
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NDVI had a strong relationship with canopy total N. The same sensor and similar method of 

grouping NDVI based on GDD was practiced in a rice grain yield potential estimation study that 

came to a conclusion that this method is superior to the using of INSEY (Harrell et al., 2011). 

Inman et al. (2007) related NDVI-ratio (the ratio of NDVI from any plot to NDVI from N-rich 

plot) to the corn grain yield and compared the results with that obtained using INSEY and found 

that the relationship between NDVI-ratio and the corn grain yield was stronger than that between 

INSEY and corn grain yield (r2=0.65 vs. r2=0.58).  

Some other issues regarding GreenSeeker are summarized below. Walsh et al. (2013) 

conducted a trial which incorporated soil moisture into the GreenSeeker INSEY-based N 

recommendation algorithm; however no significant contribution of the soil moisture to the 

improvement of the algorithm was observed. Girma et al. (2006) also found soil moisture was 

not a good predictor for winter wheat yield prediction, but at the same time they found that the 

use of plant height improved prediction. A most tested commercial GreenSeeker system that can 

be used on-the-go for variable rate N application in the field is the GreenSeeker RT200 system, 

whose effectiveness has been tested and proven in soft red winter wheat N application studies 

(Thomason et al., 2011).  

Crop Circle 

In a study developing N fertilizer recommendations for corn using Crop Circle ACS-210, 

Dellinger et al. (2008) related the relative Green NDVI (RGNDVI) with the economic optimum 
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nitrogen rate (EONR). The RGNDVI was defined as the ratio of GNDVI from a test plot and that 

from the N-rich strip. Strong linear-plateau relationships were found between RGNDVI and 

EONR from either control plots or manure-preplant applied plots or from the combination of 

those plots (p<0.0001, r2=0.84). On the contrary, poor statistical relationship between GNDVI 

and EONR was found based on the data from ammonium nitrate fertilizer-applied plots. 

To find the best vegetation index for estimating EONR based on active Crop Circle, a 

number of indices were evaluated and the RGNDVI was found to be superior at corn growth 

stage V6 (Sripada et al., 2008). The established relationship equation between EONR and 

RGNDVI was a linear-floor model with a coefficient of determination of 0.79. The authors also 

investigated the N:corn price ratio and EONR so that EONR estimated using Crop Circle could 

be further adjusted according to the current N:corn price ratio to improve its usefulness to corn 

growers. Scharf and Lory (2009) also developed and calibrated a similar N sidedress 

recommendation algorithm for corn at stage V6-V7. Oliveria et al. (2013) further calibrated the 

EONR prediction algorithm (Scharf and Lory, 2009) and determined the best growth stage for 

sensor-based side-dressing as well as the sensor height, model, and wavelengths that best predict 

N need.  

Quadratic-plateau regression models reflecting the relationship between Crop Circle 

ACS-210 sensor indices and differential from economic optimum nitrogen rate were established 

for corn to assess corn N stress at the V10 to V12 growth stages (Barker and Sawyer, 2010). 

Among a variety of vegetation indices, this study suggested three indices that best suited for 
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Crop Circle: RGNDVI, relative simple ratio index (RSRI), relative modified simple ratio index 

(RMSRI), and relative green difference vegetation index (RGDVI).  

The above in-season N recommendation algorithms based on the Crop Circle are direct 

application and are also related to economic optimization, and therefore have the potential for 

benefits to corn growers. However, indirect solutions have also been developed. In a corn study, 

NDVI590 index (based on visible 590 nm and NIR 880 nm bands) from Crop Circle were used 

to estimate N status and grain yield (Solari et al., 2008). The comparison with the results 

obtained from the chlorophyll meter index CI590 showed that NDVI590 from Crop Circle was 

inferior in directing variable N applications. To make use of the advantages of both active optical 

sensor and passive chlorophyll meter, Solari et al. (2010) developed a Crop Circle algorithm for 

irrigated corn N recommendations based on 1) a previously-developed SPAD chlorophyll meter 

algorithm where a quadratic relationship was established between N application rate and the 

sufficiency index (SI) of the chlorophyll meter, and 2) a significant linear relationship found 

between SIs of chlorophyll meter and Crop Circle (Varvel et al., 2007).  

Yara-N Sensor 

Only a few published studies have been conducted using Yara N-sensor. Using simple 

ratio based VI from the Yara N-sensor, the biomass of winter wheat was estimated and the 

corresponding N redistribution strategies were then developed (Berntsen et al., 2006). A Yara N-

Sensor based real-time variable N requirement computation algorithm, which was based on 
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relationships between chlorophyll content and crop N status, was determined for winter wheat 

and triticale (Zillmann et al., 2006). Partial least squares regression models based on Yara N-

Sensor sensor readings and weather data such as air temperature and daily precipitation were 

constructed to predict protein content in malting barley (Soderstrom et al., 2010). The authors 

compared the models that utilized all possible combinations of wavelengths in simple ratios as 

input and those that only used some selected wavelengths. The middle infrared spectral band was 

very important in ensuring model performance. Mayfield and Trengove (2009) compared the 

outputs from the Yara N-Sensor with the measurements of wheat biomass, N uptake, and N 

content and found a high correlation between sensor data and all measurements except N 

content. Portz et al. (2012) derived a VI, which was 100 times the difference between reflectance 

from the bands of R760 and R730, from Yara N-SensorTM ALS to correlate to sugarcane N 

uptake and biomass, and found significant exponential relationships between sensor VI and N 

uptake or biomass.  

Ground-based Active Optical Sensor Comparisons 

Raper et al. (2013) compared three optical sensors, GreenSeeker, Crop Circle, and Yara 

N Sensor, in cotton leaf N status estimation using NDVI directly and found no significant 

performance difference among these sensors. Performance of Greenseeker and Crop Circle in N 

variability determination in corn was compared and both sensors were found to perform well, 

with no significant performance differences between them (Shaver et al., 2011). Similar 

conclusions were found in a sugarcane study (Amaral et al., 2013). In a cotton study where 
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GreenSeeker, Crop Circle, and CropScan were compared, the r2 values of the relationships 

between each sensor readings and the EONR were found to be very close (Oliveira et al., 2013). 

Another study compared the performance of four spectral sensors including one passive 

radiometer and three active optical sensors in discriminating biomass parameters and N status in 

wheat cultivars (Erdle et al., 2011). The three active optical sensors were an active flash sensor 

(AFS), Crop Circle, and GreenSeeker. Because the first generation of GreenSeeker could only 

rely on NDVI-based indices and NDVI is strongly subject to the potential saturation effect, the 

other three sensors using indices based on NIR and red edge were found to be more reliable. The 

saturation effect occurs when leaves converge and overgrow the canopy. At that point, NDVI 

readings typically plateau between 0.9 and 0.9999, leaving little numerical room to record 

differences in crop status. Tremblay et al. (2009) compared the performance of GreenSeeker and 

Yara N-sensor in assessing the status of N in spring wheat and concluded that the NDVI values 

of the two sensors correlated well only at the early growth stage and that GreenSeeker only 

performed well where the NDVI values were greater than 0.5.  

Since reported comparisons are currently very rare and unsystematic, and each sensor’s 

company is still improving existing or developing new types of sensors, it’s difficult to make a 

definite conclusion about which ground-based active-optical sensor is superior. Yara N-sensor 

seems to be the least to be used and it seems that until now GreenSeeker is more widely used 

because of the relatively mature algorithms for improving NUE. There is also abundant 
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information about the use of the GreenSeeker on the NUE website, http://nue.okstate.edu/, 

administered by Oklahoma State University.  

Passive Optical Satellite Remote Sensing 

Since the launch of Landsat 1 in 1972 (Mulla, 2013), satellite imagery has been more 

widely used in agriculture including crop N management and yield prediction. Bhatti et al. 

(1991) conducted a trial using Landsat imagery to estimate soil organic matter content and then 

used it as well as other ground-based measurements as auxiliary data to estimate wheat yield 

potential. Landsat 1 has four bands, green, red, and two infrared bands, with a resolution of 56 m 

× 79 m. On February 11, 2013, NASA launched Landsat 8 that provides moderate-resolution 

imagery from 15 meters to 100 meters and operates in the visible, near-infrared, short wave NIR, 

and thermal infrared spectrums (NASA, 2013). Other representative satellite imaging systems 

include: SPOT, MODIS, QuickBird, RapidEye, GeoEye, WorldView, NOAA-AVHRR, and etc., 

technical details of these systems can be easily found in corresponding website. Generally 

speaking, the newly launched satellite remote sensing systems provide higher spatial resolution, 

a greater variety of spectral bands, and higher revisit frequency. Satellite imagery in the visible 

and NIR bands are useful only when it is in the day and no cloud covering. Only the radar 

satellite remote sensing that is in essence an active sensing is not influenced by the weather 

condition.  
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Vegetation indices, especially NDVI, derived from satellite imagery have been reported 

to have high correlation with crop grain yield or N status. Shou et al. (2007) showed that the 

individual red, green, and blue spectral band reflectance values from QuickBird satellite imagery 

were highly correlated with winter wheat total N concentration and aboveground biomass. 

Mkhabela et al. (2005) found a strong linear relationship between cumulative NDVI derived 

from NOAA’s (National Oceanographic and Atmospheric Agency) AVHRR (Advanced Very 

High Resolution Radiometer) satellite imagery and corn grain yield in the four agro-ecological 

regions of Swaziland. A strong correlation was found between vegetation condition index (VCI) 

derived from AVHRR remote sensing data and the winter wheat yield (Salazar et al., 2007). 

Later, the regression-based winter wheat yield prediction model was constructed using the 

principal components of a series of VCI. In a potato yield prediction study, three VIs including 

NDVI, LAI, and fraction of photosynthetically active radiation (fPAR) derived from coarse 

spatial resolution MODIS imagery were found to be highly correlated with potato yield (Bala 

and Islam, 2009). In exploring the potential of Sentinel-2 and Sentinel-3 satellite data in 

estimating total crop and grass chlorophyll and N content, the red-edge chlorophyll index (CIred-

edge), the green chlorophyll index (CIgreen), and the MERIS terrestrial chlorophyll index (MTCI) 

were found to be most useful (Clevers and Gitelson, 2013). 

The most convenient yet still effective way of predicting crop yield or N status using 

remote sensing data perhaps is to construct the empirical regression relationships between crop 

yield or N status and the vegetation indices from sensing data. To improve the prediction 
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accuracy, more often than not, other ancillary measurements other than the spectral indices were 

also incorporated into the regression model. A new vegetation index, general yield unified 

reference index, generated from AVHRR remote sensing data was found to be highly correlated 

with both field level yield and county level yield (Ferencz et al., 2004) and the developed yield 

prediction regression model was further evaluated using wheat and corn data in Hungary 

(Bognar et al., 2011). Bausch and Khosla (2010) extracted NGNDVI from QuickBird satellite 

multi-spectral data to estimate the nitrogen status of irrigated corn and proved the feasibility of 

using QuickBird satellite multi-spectral imagery for in-season N management at the V12 and 

later growth stage.  In a sugar beet quality prediction using Landsat-5 and Landsat-7 imagery, 

Green NDVI was found to be the consistently best vegetation index to linearly relate beet 

sucrose concentration (Humburg et al., 2006). To estimate winter wheat yield with MODIS 250 

m resolution imagery, Ren et al. (2008) established a multivariate linear regressive relationship 

between the spatial accumulation of NDVI and the winter wheat yield at the county level of 

Shandong Province, China, and concluded that the proposed model can be useful for regional 

crop yield prediction 40 days ahead the harvest time. Becker-Reshef et al. (2010) constructed a 

generalized regression-based model that took the seasonal maximum NDVI from MODIS as the 

main input parameter to predict winter wheat yields in Kansas and Ukraine. Power regression 

functions using the selected best 10-day average NDVI from MODIS data as independent 

variable were established to forecast the yields of four crops: barley, canola, field peas, and 

spring wheat (Mkhabela et al., 2011). Validation experiment results showed that the proposed 
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models can accurately predict yield one to two months before harvest. Soderstrom et al. (2010) 

constructed partial least squares models based on multispectral satellite remote sensing data 

(SPOT 5 and IRS-P6LISS-III) to make regional prediction of protein content in malting barley at 

the late growth stage. The models that used only remote sensing data were not as good as those 

that relied on both sensing data and weather data including air temperature and daily 

precipitation. Yang et al. (2009) evaluated the multispectral SPOT-5 satellite imagery in grain 

sorghum yield estimation. Based on the original 10-m resolution, images with pixel sizes of 20 

and 30 m were also generated for comparison study. Vegetation indices, and the principal 

components as well, based on visible bands and mid-infrared band were derived from all three 

resolutions to relate to crop yield using stepwise multivariate linear regression. Results revealed 

that the coarser the resolution is, the more variation in yield can be explained by the sensing data. 

Prasad et al. (2006) predicted the corn yield of the state of Iowa using a piecewise linear 

regression model involving four independent variables: NDVI from AVHRR satellite imagery, 

soil moisture, surface temperature, and rainfall. A similar study conducted in Sudan for sorghum 

yield prediction based on remote sensing adopted the same four parameters mentioned above 

(Shamseddin and Adeeb, 2012). Schut et al. (2009) used a moisture stress index and the NDVI 

derived from either AVHRR or MODIS satellite imagery as the independent variables to 

construct partial least squares multivariate regression models for wheat yield prediction and 

concluded that these PLS models were better than their currently in-use yield forecasting system 

DAFWA.  
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Many approaches using satellite remote sensing were based on complicated crop growth 

models that utilize mathematical simulations, which are in contrast to the relatively simple 

empirical regression models adopted when using ground-based optical sensing. There are several 

limitations of the empirical regression models. Simple regression based approaches are 

applicable only for a given region and the same range of weather conditions where they were 

developed (Doraiswamy et al., 2005). Also, the accuracy of the empirical relationships between 

VI and yield is affected by the size of the data set used (Padilla et al., 2012). Regression models 

that rely only on the measurement of vegetation photosynthetic characteristics cannot capture the 

influence of events that reduce yield but do not reduce green biomass during vegetative growth 

(Becker-Reshef et al., 2010).  

Crop growth model based yield predictions usually rely on leaf area index (LAI), or 

green leaf area index, or green area index (GAI) derived from satellite imagery. According to 

Fernandes et al. (2003), LAI is half the all-sided living foliage per unit ground surface area 

projected on the horizontal datum. Leaf area index is a key variable in many agricultural models 

and quantitatively measure the foliage density. It was reported that green LAI was closely related 

to wheat yield (Kouadio et al., 2012). Based on a 10-year winter wheat monitoring study, green 

LAI derived from MODIS satellite imagery was consistent with ground measurements at both 

regional scale and field level (Duveiller et al., 2012). Baez-Gonzalez et al. (2005) conducted a 

large-area corn yield prediction using Landsat-7 ETM+ data and LAI based yield prediction 

model. This model consists of two parts: LAI prediction using NDVI data from satellite imagery 
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and yield prediction using the predicted LAI. All of these predictions were based on some 

regression models. A regional corn and soybean crop yield simulation model was modified based 

on MODIS satellite imagery and climate-based physiological models that required daily average 

temperature, solar radiation and rainfall data (Doraiswamy et al., 2004; Doraiswamy et al., 

2005). The LAI was first derived from the MODIS 250 m resolution NIR and VIS reflectance 

data and other parameters, and then LAI was used to help resolve the crop yield model 

parameters. Padilla et al. (2012) evaluated the GRAMI model (Maas, 1993a, b) developed to 

simulate the growth and yield of grain crops in estimating durum and bread wheat yield. The 

relationship between NDVI from Landsat-5 imagery and LAI was derived and used for LAI 

estimation. The estimated LAI was then used for the within-season calibration of GRAMI model. 

High spatial and temporal resolution Formosat-2 remote sensing NDVI data were used to 

estimate green LAI, which was further used to calibrate six parameters of the SAFY maize and 

sunflower biomass prediction models (Claverie et al., 2012). To predict corn, soybean, and 

spring wheat yield, green LAI was estimated using a modified transformed vegetation index 

derived from multispectral Landsat TM and SPOT data before it was further used by a functional 

crop model, STICS, to estimate crop yield (Jego et al., 2012). In a regional-level wheat yield 

prediction exercise, metrics derived from the shape of decreasing curves of green LAI temporal 

profiled were further used to construct a regression-based wheat yield prediction model (Kouadio 

et al., 2012). The green LAI in this study was estimated from MODIS satellite data. Another 

green LAI based corn grain yield prediction model was constructed using both MODIS data and 
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crop phenology information, and the model was verified and demonstrated to be useful for state 

level corn yield estimation (Sakamoto et al., 2013). Moriondo et al. (2007) used the AVHRR 

NDVI images and a crop phenology simulation model, CROPSYST, to predict regional-level 

wheat yield. Fraction of absorbed photosynthetically active radiation (FAPAR) was firstly 

estimated based on a linear relationship between FAPAR and NDVI, and FAPAR was then used 

to compute the above-ground biomass, and finally a harvest index obtained from the integration 

of the simulation sub-model and NDVI data transformed the biomass to yield.  

In a comparison of different optical sensing systems, including the RapidEyeTM satellite 

remote sensing satellite, to predict site-specific N fertilization rate, it was found that satellite 

imagery would not be suitable for determining N-rates unless the red edge inflection point 

(REIP) were first calculated (Wagner and Hank, 2013). Other useful techniques in crop yield 

estimation or monitoring using satellite imagery include artificial neural network model 

development using NDVI and other measurements as input (Jiang et al., 2004), multiple-frame 

approach utilizing the advantages of two or more sampling data frames with one being complete 

but expensive to sample and other frames inexpensive to sample but incomplete (Das and Singh, 

2013), and multi-temporal image fusion of satellite imagery with different spatial resolutions and 

from different sensors (Amoros-Lopez et al., 2013). Regression based models and crop growth 

based models are widely used, with either having their own advantages and disadvantages. There 

are currently few studies published that make direct and practical comparison of the two types of 

yield prediction models.  



 

33 
 

Summary 

Numerous studies have confirmed the benefits of using optical sensing for N fertilizer 

management. Based on a mid-season N recommendation strategy supported by active optical 

sensing technology, the NUE of winter wheat has been improved more than 15% (Raun et al. 

2002). Compared with a NUE of 33% based on 90 kg N ha-1 fertilization rate, a higher NUE of 

41% was achieved based on optimum N rates obtained from an active optical sensor-based 

algorithm for winter wheat (Tubana et al. 2008a). In winter wheat, the NUE of using active 

optical sensing was 61.3% compared to a very low NUE of 13.1% resulted by common farmer 

practices (Li et al. 2009). Corn NUE has also been improved from 56% using a fixed N rate to 

65% using NFOA-based N rates (Tubana et al. 2008b). Optical sensing based N management not 

only can improve NUE, but also can result in more homogeneous quality and less harvesting 

time and cost. For example, protein levels with greater consistency averaging 0.2-0.5% above 

target in cereal crops and an 80% reduction in lodging rates compared with crops where nitrogen 

was applied under conventional practices were observed (Yara-International, 2013). All these 

promising results indicate the potential of extension of optical remote sensing based algorithms 

in crop N management.  

To continue to improve crop NUE is still a great challenge. When a crop is grown in 

different locations and years, NUE can be quite different even for the same genotype (Baligar et 

al., 2001). Therefore, including ancillary data such as plant (e.g., plant height, leaf temperature, 

etc.), soil (e.g., soil texture, soil bulk density, soil pH, etc.), and weather data (e.g., air 
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temperature, daily precipitation, etc.) in the N recommendation systems might be useful in 

increasing in-season N recommendation accuracy.  In addition, remote sensing reflectance data 

quality and accordingly N status or crop yield or quality prediction can be greatly affected by a 

number of factors (Barker and Sawyer, 2013; Kim et al., 2012; Samborski et al., 2009).  

N deficiency is not the only factor that influences crop yield and quality, other nutrients 

can also have significant impact on them, as can environmental and pest management factors. 

Therefore the causes for variability in crop yield or quality must be adequately understood to 

ensure the use of remote sensing based variable rate N application only when N is the main 

growth-limiting factor. To develop reliable and versatile in-season variable rate N 

recommendation algorithms, it is no easy a thing to optimally select the most appropriate optical 

remote sensing system, canopy reflectance vegetation indices, ancillary measurements, and 

prediction model combination. More profitability analyses of remote sensing-based methods 

used for in-season variable rate N application need to be conducted to encourage the adoption of 

improved site-specific nutrient strategies by farmers.  
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MATERIALS AND METHODS 

Crops and Study Site-Years 

Experiments were conducted in 2012 and 2013 on four crops; sugar beet (Beta vulgaris, 

L), spring wheat (Triticum aestivum, L.), corn (Zea mays, L.) and sunflower (Helianthus annuus, 

L.). Detailed site and crop production information is provided in Table 1.  

Nitrogen Fertilization and Plot Design 

The studies were organized using a randomized complete block design (RCBD) with four 

replications and six N rate treatments as ammonium nitrate (34-0-0) granules applied within 

about a week of seeding. The N treatments for corn, spring wheat, and sunflower were 0, 45, 90, 

135, 180, and 225 kg ha-1, and the treatments for sugar beet were 0, 34, 67, 101, 135, and 168 kg 

ha-1. For all site years, each experimental unit was 9.1 m by 9.1 m. Row width and the GPS 

coordinates are listed in Table 1. Soil samples from the 0-15 cm and 15-60 cm depths were 

collected at each site in each year before fertilizer application to determine residual soil nitrate, 

plant available P, K and other relevant soil chemical properties. The tables in the appendix list 

the soil test results for each site-year. 

Ground-Based Active Optical Sensors and Canopy Reflectance Data Collection 

Two handheld ground-based active optical sensors were used to collect crop canopy 

optical reflectance data, as shown in Figure 3 and Figure 4. The Holland Crop Circle ACS-470 

SensorTM (Holland Scientific Inc., Lincoln, Nebraska, USA) was used in both years. This sensor 

has 6 narrowband interference filters but only three optical measurement channels, so each time 
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only three of the filters are used. The 6 filter wavelengths were 532 nm, 550 nm, 670 nm, 700 

nm, 730 nm, and 760 nm. The 670 nm (red), 730 nm (red edge), and 760 nm (NIR) were used to 

calculate NDVI (using red and NIR band) and red edge NDVI (using red edge and NIR band). In 

2012, the first generation of GreenSeekerTM (NTech Industries, Inc., Ukiah, CA, USA), which 

provides 660 nm (red) and 770 nm (red edge) two channels, was used and NDVI was calculated. 

The latest second generation of GreenSeeker has two more red edge channels including 710 nm 

and 735 nm, and it was used in the 2013 growing season. Optical reflectance was measured using 

the sensors positioned about 50 cm above the crop canopy, with the operator and walking along a 

representative middle row within the defined area of each experimental unit/plot. Sensing date, 

growth stage, and other information such as planting date and harvesting date can be found in 

Table 2. In 2012, sensing for sugar beet was also conducted immediately before each harvest and 

the sensing date information is listed in Table 3.  

Based on the NDVI data, In Season Estimate of Yield (INSEY) was calculated using the 

formula below: 

                                                         INSEY = NDVI / GDD                                                  (7) 

where GDD refers to the accumulated positive growing degree days from planting date to 

sensing date and was obtained from the website of North Dakota Agricultural Weather Network 

(http://ndawn.ndsu.nodak.edu/). 
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Table 1. Background information for crops and soils in the experiments. 

Year Crop Cultivar Site NW corner GPS 
coordinate 

Previous crop soil types and slope row width Seeding rate 

       --- cm --- -- seeds ha-1 --

2012 spring 
wheat 

Kelby Gardner, ND 47°10'19.425"N 
96°55'12.471"W 

soybean Fargo-Enloe complex, 0 
to 2 % slopes 

20 3,850,000 

2012 spring 
wheat 

Argent Valley City, ND 46°52'58.656"N 
97°54'52.072"W 

sunflower Barnes-Svea loams, 3 to 
6 % slopes 

20 2,970,000 

2013 spring 
wheat 

Kelby Gardner, ND 47°10'12.322"N 
96°54'03.359"W 

soybean Fargo-Enloe complex, 0 
to 2 % slopes 

20 2,470,000 

2013 spring 
wheat 

Argent Valley City, ND 46°52'41.906"N 
97°54'46.331"W 

sunflower Barnes-Svea loams, 3 to 
6 % slopes 

20 2,570,000 

2012 corn DeKalb 42-72 Durbin, ND 46°50'59.021"N 
97°09'29.045"W 

corn Fargo-Hegne silty clays, 
0 to 1 % slopes 

56 84,000 

2012 corn NK 17P Valley City, ND 46°53'04.814"N 
97°54'55.421"W 

spring wheat Swenoda-Barnes 
complex, 3 to 6 % slopes 

76 70,400 

2013 corn DKC43-10 or 
Proseed 1193 
VT3 

Arthur, ND 47°02'04.176"N 
97°07'48.268"W 

soybean Fargo silty clay loam, 0 
to 1 % slopes 

56 86,500 

2013 corn NK 17P Valley City, ND 46°53'26.218"N 
97°55'05.695"W 

spring wheat Swenoda-Barnes 
complex, 3 to 6 % slopes 

76 65,700 

                                                                                                                     (continues) 
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Table 1. Background information for crops and soils in the experiments (continued). 

Year Crop Cultivar Site NW corner GPS 
coordinate 

Previous crop soil types and slope row width Seeding rate 

       --- cm --- -- seeds ha-1 --

2012 sugar beet VanDerHave 
36813RR 

Crookston, MN 47°47'58.426"N 
96°35'55.436"W 

spring wheat Bearden-Colvin complex, 
0 to 1% slopes 

56   141,000 

2012 sugar beet Crystal 095 Amenia, ND 46°58'34.623"N 
97°15'04.762"W 

spring wheat Fargo silty clay, 0 to 1 % 
slopes 

56   167,000 

2013 sugar beet Crystal 875 Casselton, ND 46°51'43.782"N 
97°18'47.800"W 

spring wheat Fargo silty clay, saline, 0 
to 1 % slopes 

56   150,000 

2013 sugar beet Seedex Xavier Thompson, ND 47°45'00.656"N 
97°05'23.046"W 

spring wheat Bearden silty clay loam, 
0 to 1 % slopes 

56   148,000 

2012 sunflower CHS RH 1121 

confection 

Cummings, ND 47°31'45.677"N 
97°06'52.330"W 

corn Glyndon silt loam, saline, 
0 to 1 % slopes 

76    44,500 

2012 sunflower CropPlan 555 
NSCLDR 

Valley City, ND 46°52'35.815"N 
97°56'27.728"W 

spring wheat Fordville loam, 0 to 2 % 
slopes 

76    64,000 

2013 sunflower CHS RH 1121 
confection 

Cummings, ND 47°32'31.989"N 
97°01'41.687"W 

corn Divide loam, 0 to 2 % 
slopes 

55    44,500 

2013 sunflower Syngenta 3495  

oilseed 

Valley City, ND 46°52'45.234"N 
97°54'15.948"W 

corn Barnes-Buse loams, 3 to 
6 % slopes 

76    66,700 
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Table 2. Sensor reading information for spring wheat, sugar beet, corn and sunflower trials, 2012 and 2013. 

Site-year Crop Planting date First sensing 
date 

First sensing 
growth stage 

Second 
sensing date 

Second 
sensing 
growth stage 

Harvest date (s) 

Gardner 2012 spring wheat Apr. 7 May 23 V4 Jun. 6 Flag leaf Jul. 26 

Valley City 2012 spring wheat Mar. 31  May 23 V4 Jun. 6 V5  Jul. 26 

Gardner 2013 spring wheat May 6 Jun. 17 V4 Jun. 25 V5 Aug. 12 

Valley City 2013 spring wheat May 7 Jun. 17 V4 Jul. 25 V5 Aug. 13 

Durbin 2012 corn May 3 Jun. 15 V6 Jun. 29 V12 Sep. 22 

Valley City 2012 corn May 3 Jun. 15 V6 Jun. 29 V12 Sep. 22 

Arthur 2013 corn May 10 Jun. 20 V6 Jul. 23 V14 Sep. 24 

Valley City 2013 corn May 15 Jun. 25 V6 Jul. 17 V12 Oct. 8 

                                                                                                                                                                                                                          (continues) 
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Table 2. Sensor reading information for spring wheat, sugar beet, corn and sunflower trials, 2012 and 2013 (continued). 

Site-year Crop Planting date First sensing 
date 

First sensing 
growth stage 

Second 
sensing date 

Second 
sensing 
growth stage 

Harvest date (s) 

Crookston 2012 sugar beet Apr. 25 Jun. 4 V6 Jun. 21 V14 Aug. 15 (1st); Aug 
29 (2nd); Sep. 15 
(3rd) 

Amenia 2012 sugar beet Apr. 12 May 24 V6 Jun. 13 V14 Aug. 15 (1st); Aug 
28 (2nd) 

Casselton 2013 sugar beet May 13 Jun. 20 V8 Jul. 10 V12 to 14 Aug. 27 (1st) ; Sep. 
16 (2nd);Sep. 30 
(3rd) 

Thompson 2013 sugar beet May 14 Jun. 20 V8 Jul. 10 V12 Aug. 27 (1st) ; Sep. 
17 (2nd) ; Oct. 1 
(3rd) 

Cummings 2012 Sunflower 
(confectionery) 

May 7 Jun. 19 V8 Jul. 3 V14 Sep. 24 

Valley City 2012 Sunflower (oilseed) May 16 Jun. 19 V6 Jul. 10 V12 Sep. 28 

Cummings 2013 Sunflower 
(confectionery) 

May 29 Jul. 2 V8 Jul. 18 V16 Oct. 17 

Valley City 2013 Sunflower (oilseed) Jun. 3 Jul. 3 V8 Jul. 22 V18 Oct. 8 
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Figure 3. Holland Crop CircleTM handheld system (http://hollandscientific.com/crop-circle-
handheld-system/). 

 

Figure 4. GreenSeekerTM handheld system (http://www.molisol.com/sitio/mapeo-de-indice-
verde.php?sub=-1). 

Table 3. 2012 sugar beet harvest sensing dates. 

site-year first harvest sensing second harvest sensing third harvest sensing 

Crookston 2012 Aug. 15 Aug. 29 Sep. 15 

Amenia 2012 Aug. 15 Aug. 28 Not conducted 
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Satellite Imagery 

RapidEyeTM Ortho Products (Level 3A) satellite imagery 

(http://blackbridge.com/rapideye/products/ortho.htm) was also used in our research as an 

alternative to the ground-based optical sensing data. Figure 5 illustrates this satellite imaging 

system. This level of imagery has already been subjected to radiometric, sensor and geometric 

corrections before being released. The imagery has a 5-meter spatial resolution and includes 5 

broad spectral bands: Blue (440-510 nm), Green (520-590 nm), Red (630-685 nm), Red Edge 

(690-730 nm), and NIR (760-850 nm). Four different NDVI indices including red NDVI, blue 

NDVI, red edge NDVI, and green NDVI can be extracted from an imagery using different 

combinations of visible spectral band and NIR band. NDVI extraction from RapidEye satellite 

imagery was conducted using GRASS GIS 6.4.2 (GRASS Development Team, 2012), an open 

source and free GIS software, and MATLAB 8.0 (The Mathworks, Inc., 2012). The dates of the 

satellite imagery are provided in Table 4.  

 

Figure 5. RapidEyeTM satellite imagery system (RapidEye AG, Germany) 
(http://en.wikipedia.org/wiki/File:RapidEye_Satellites_Artist_Impression.jpg). 
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Table 4. Satellite imagery dates for spring wheat, corn, sugar beet and sunflower 2012 and 2013. 

site-year crop imagery date 

Gardner 2012 spring wheat Jul. 03 

Valley City 2012 spring wheat not applicable 

Gardner 2013 spring wheat Jun. 24 

Valley City 2013 spring wheat Jun. 15 

Durbin 2012 corn Aug. 16 

Valley City 2012 corn Aug. 16 

Arthur2013 corn Jun. 24 

Valley City 2013 corn Jul. 21 

Crookston 2012 sugar beet Jul. 01; Aug. 16 

Amenia 2012 sugar beet Jul. 11; Aug. 16 

Casselton 2013 sugar beet Jun. 24 

Thompson 2013 sugar beet Aug. 13 

Cummings 2012 Sunflower (confection) Jul. 01; Aug. 16 

Valley City 2012 Sunflower (oilseed) Aug.10 

Cummings 2013 Sunflower (confection) Jun. 24 

Valley City 2013 Sunflower (oilseed) Jun. 24 

Plant Height Data Measurement 

Plant height in this thesis means the height from ground to the upmost mature leaf of the 

plant. In 2012, the plant height was measured using a tape by hand. In 2013, both a tape and an 

ultrasonic distance sensor (Senix Model; ToughSonic TSPC-30S1-232, Senix Corporation, 

Hinesburg, VT) mounted on a self-made special bicycle were used to measure the plant height. 

By default, plant height in our regression models refers to plant height measured by tape. For 
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2013 plant height data, the “tapeHeight” means plant height measured by tape and the 

“sensorHeight” stands for plant height measured by height sensor. 

Crop Yield and Quality Data 

The harvest dates of each site-year crop are listed in Table 2. Only the middle 1.22 m 

width of area in each spring wheat subplot was harvested. Only the middle row or the row close 

to middle of each subplot of Corn and sunflower was harvested by hand. In 2012, Amenia sugar 

beet were harvested two times and Crookston sugar beet 3 times, with each harvest consisting of 

3.05 meters of row of each subplot. In 2012, the sugar beet canopy sample was also harvested for 

canopy total N analysis. In 2013, both Casselton and Thompson sugar beet were harvested thrice 

and no canopy samples collection was made.  

Both the wheat and corn dry grain yield was determined using a weighing scale and a test 

machine, where the grain moisture and test weight were also measured. Spring wheat grain 

protein content was determined using an Infra Tec1226 grain analyzer made by Dresden, 

Germany (Franzen et al., 2008) and was adjusted based on 12.0 percent U.S. standard moisture 

basis (Wheat Marketing Center, 2008). Sunflower yield was measured using a weighing scale. 

Confectionery sunflower seeds were also subject to screening test, meat to shell ratio test, and 

maximum length and maximum width test at the USDA sunflower testing center. Through 

screening test, the total weight percentage of sunflower seeds that cannot pass the 0.87, 0.79, and 

0.71 cm sieves, respectively, can be obtained, of which the most important one is the first one 
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(0.87 cm content). A nuclear magnetic resonance oil test (NMR test) was applied to NuSun 

oilseed sunflower seeds at the USDA sunflower testing center, Fargo, ND, to obtain the oil 

percent adjusted to 10% moisture. Besides determining 2012 sugar beet canopy total Kjeldahl 

nitrogen content, both years’ beet root yield in metric ton per ha, recoverable beet sugar yield in 

kg per ha, and other indices such as beet stands per ha, concentration of ammonium N, 

concentration of K and P, etc. were analyzed at the East Grand Forks American Crystal Sugar 

Tare Laboratory.  

Statistical Data Analysis Methods and Software 

SAS 9.3 (SAS Institute, Inc., 2013) was used to perform analysis of variance (ANOVA) 

to determine the effect of N application rate on crops yield and quality. Yield and quality means 

were grouped based on LSD. 

Two data preprocessing methods were compared in this study. One is directly using the 

individual sub-plot yield and averaged sensing data of each sub-plot to do regression analysis; 

the other is averaging the individual sub-plot yield and sensing data over each N fertilization 

treatment across all site-year plots involved in a model before doing any regression analysis. The 

better model in terms of coefficient of determination (r2 value) and model significance was 

chosen according to the regression results from these two methods.  

Three regression models, linear (y = ax + b), exponential (y = aebx), and quadratic 

polynomial (y=ax2+bx+c), were compared in this study. The latter two can be viewed as general 
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linear models. All of these models were constructed and tested using the PROC REG of SAS 9.3 

(SAS Institute, Inc., 2013). In analyzing any one of the three types of models, if the model p-

value is greater than 0.05 or the p-value for the key coefficient is greater than 0.05, the model is 

regarded as insignificant or invalid. Key coefficients were the “a” in linear model, “b” in 

exponential model, and “a” in quadratic polynomial model. And “GS” and “CC” refers to 

GreenSeeker and Crop Circle, respectively.  

For corn, ground-based sensing INSEY and satellite imagery INSEY were related to 

yield. For other crops, satellite imagery INSEY was related to both yield and quality, but the 

ground-based first sensing and second sensing (see Table 2 for details) INSEYs (including 

INSEY × plant height) were related to yield and quality, respectively.  Besides, the sugar beet 

harvest sensing data, namely, ground-based sensing data collected on the same days of 

harvesting, were related to the corresponding harvest yield and quality. In 2012, two sugar beet 

quality indices, recoverable sugar yield and top total N were subjected to regression analysis; in 

2013, only the recoverable sugar yield was considered. Except sugar beet root yield, yield for 

other crops refers to dry grain or dry seed yield, of which corn yield and sunflower yield were 

further adjusted using the corresponding plant stand information based on the following formula:  

                                          Adjusted yield = yield / stand coefficient                                      (8) 

where, stand coefficient = plant stand of individual plot / average of plant stand over all plots. 
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Except sunflower, ground-based or satellite-based sensing data for the two sites of each 

of the other crops in each individual year were pooled for analysis. Sunflower data were firstly 

analyzed for each individual site-year, and then analyzed for two-year pooled data of each 

different type of sunflower seed (oilseed or confectionery). Comprehensive studies using all site-

year data were also conducted.  
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RESULTS AND DISCUSSIONS FOR SUGAR BEET 

Analysis of the Influence of N Fertilization Rate on Yield and Quality 

ANOVA analysis results for the four site-year sugar beet yield and quality data are given 

in Table 5 through Table 14. In each of these tables, means with the same letter in the same 

column are not significantly different at the 0.05 significance level based on LSD t-test. Sugar 

beet yield means the beet root yield per hectare, and the most important quality index is the 

recoverable sugar yield per hectare. In 2012, the sugar beet top total N estimated from the top 

samples is an important quality index (Franzen, 2003) too. Gehl and Boring (2011) found that N 

rate had significant linear relationship with sugar beet root yield, but based on our two-year and 

four-site study, it seems that no clear trend of the influence of the N fertilization rate on the root 

yield or recoverable sugar yield per hectare could be found, which most probably due to high 

nitrate residuals (see Appendix Table A1-A4) or other extreme unfavorable conditions. 

However, it was found from Table 5 to Table 7 that N fertilization rate had a positive impact on 

the recoverable top total N per hectare. Most of the N absorbed by the sugar beet plant is 

accumulated in the top and the root needs only about 30% of the absorbed N (Gehl and Boring, 

2011). So more extra N may go and accumulate to the top. 
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Table 5. Amenia 2012 first (August 15) harvest sugar beet ANOVA analysis. 

N rate  
(kg ha-1) 

Root yield 
(Mg ha-1) 

Recoverable 
sugar yield 

(kg ha-1) 

Recoverable 
sugar yield 

(kg (Mg 
beets)-1) 

Net sugar 
(%) 

Sugar 
loss to 

molasses 
(%) 

Amino-N 
(ppm) 

Beet 
stands 

(thousand 
ha-1) 

Top total 
N 

(kg ha-1) 

0 39.61a† 7175.5a 181.5a 18.15a 1.37c 485.5c 126a 25.12c 

34 42.21a 7474.8a 178.9a 17.89a 1.41bc 516.3bc 139a 37.65bc 

67 41.75a 7581.3a 181.7a 18.17a 1.49bc 579.8bc 129a 49.03ab 

101 47.00a 8007.3a 171.9a 17.19a 1.56b 615.8b 131a 53.78ab 

135 47.87a 8315.5a 174.2a 17.42a 1.53bc 620.3b 132a 47.54abc 

168 44.28a 7768.2a 175.7a 17.57a 1.79a 782.8a 144a 63.72a 

† Means with the same letter in the same column are not significantly different at the 0.05 
significance level based on LSD t-test. 

Table 6. Amenia 2012 second (August 28) harvest sugar beet ANOVA analysis. 

N rate  
(kg ha-1) 

Root yield 
(Mg ha-1) 

Recoverable 
sugar yield 

(kg ha-1) 

Recoverable 
sugar yield 

(kg (Mg 
beets)-1) 

Net sugar 
(%) 

Sugar loss 
to 

molasses 
(%) 

Amino-N 
(ppm) 

Beet 
stand 

(thousand 
ha-1) 

Top total 
N  

(kg ha-1) 

0 43.68b† 8,832a 202.7a 20.27a 1.40c 564 d 132a 31.10b 

34 47.54ab 9,411a 199.5a 19.95a 1.58bc 674 cd 131a 53.39ab 

67 48.20ab 9,556a 198.3a 19.83a 1.73b 797 bc 139a 75.41a 

101 55.26a 9,988a 183.6a 18.36a 1.83ab 858.3ab 139a 64.87a 

135 48.14ab 9,376a 196.1a 19.61a 1.78b 826.8ab 126a 69.87a 

168 45.61ab 8,898a 195.2a 19.52a 2.03a 997.5a 125a 72.61a 

† Means with the same letter in the same column are not significantly different at the 0.05 
significance level based on LSD t-test. 

Table 7. Crookston 2012 first (August 15) harvest sugar beet ANOVA analysis. 

N rate  
(kg ha-1) 

Root yield 
(Mg ha-1) 

Recoverable 
sugar yield 

(kg ha-1) 

Recoverable 
sugar yield 

(kg (Mg 
beets)-1) 

Net sugar 
(%) 

Sugar  
loss to 

molasses 
(%) 

Amino-N 
(ppm) 

Beet 
stands 

(thousand 
ha-1) 

Top total 
N  

(kg ha-1) 

0 58.06a† 8,815a 151.8ab 15.18ab 1.32bc 443.3c 120a 76.9c 

34 58.19a 9,124a 156.9a 15.69a 1.31c 434.5c 113a 70.4c 

67 61.05a 9,256a 151.6ab 15.16ab 1.37bc 490.3bc 120a 93.9bc 

101 61.12a 9,040a 147.8b 14.78b 1.42bc 518.0b 120a 107.4b 

135 60.79a 8,866a 145.9bc 14.59bc 1.44b 517.3b 115a 140.0a 

168 61.99a 8,697a 140.6c 14.06c 1.57a 587.5a 115a 144.2a 

† Means with the same letter in the same column are not significantly different at the 0.05 
significance level based on LSD t-test. 
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Table 8. Crookston 2012 second (August 29) harvest sugar beet ANOVA analysis. 

N rate  
(kg ha-1) 

Root yield 
(Mg ha-1) 

Recoverable 
sugar yield 

(kg ha-1) 

Recoverable 
sugar yield 

(kg (Mg 
beets)-1) 

Net sugar 
(%) 

Sugar loss 
to 

molasses 
(%) 

Amino-N 
(ppm) 

Beet stands 
(thousand 

ha-1) 

Top total 
N  

(kg ha-1) 

0 67.24a† 11,930a 177.4a 17.74a 1.54a 579.8a 113ab 130.0a 

34 69.91a 12,450a 178.1a 17.80a 1.51a 546.3a 120ab 120.7a 

67 69.31a 12,580a 181.8a 18.18a 1.45a 514.3a 112ab 112.0a 

101 64.25a 11,710a 182.7a 18.27a 1.45a 541.5a 106b 119.3a 

135 66.98a 11,920a 178.1a 17.81a 1.40a 488.0a 128a 114.5a 

168 65.91a 11,740a 179.1a 17.91a 1.51a 547.5a 104b 126.8a 

† Means with the same letter in the same column are not significantly different at the 0.05 
significance level based on LSD t-test. 

Table 9. Casselton 2013 first (August 27) harvest sugar beet ANOVA analysis. 

N rate  
(kg ha-1) 

Root yield 
(Mg ha-1) 

Recoverable 
sugar yield 

(kg ha-1) 

Recoverable 
sugar yield (kg 
(Mg beets)-1) 

Net sugar 
(%) 

Sugar loss 
to molasses 

(%) 

Amino-N 
(ppm) 

Beet stands 
(thousand 

ha-1) 
0 31.96b† 5,796a 181.7a 18.17a 1.58c 505.3c 128a 

34 32.56ab 5,872a 180.6ab 18.06ab 1.59c 524.5c 135a 

67 32.69ab 5,996a 183.3a 18.33a 1.72bc 587.0bc 123a 

101 33.96ab 6,142a 181.6a 18.16a 1.95ab 712.8ab 135a 

135 33.76ab 5,934a 176.0ab 17.60ab 1.93ab 704.3ab 125a 

168 36.42a 6,254a 172.3b 17.23b 2.10a 771.0a 135a 

† Means with the same letter in the same column are not significantly different at the 0.05 
significance level based on LSD t-test. 

Table 10. Casselton 2013 second (September 16) harvest sugar beet ANOVA analysis. 

N rate  
(kg ha-1) 

Root yield 
(Mg ha-1) 

Recoverable 
sugar yield (kg 
ha-1) 

Recoverable 
sugar yield (kg 
(Mg beets)-1) 

Net sugar 
(%) 

Sugar loss to 
molasses 
(%) 

Amino-
N 
(ppm) 

Beet stands  
(thousand  
ha-1) 

0 43.14a† 7,330a 169.8ab 16.98ab 1.17bc 348.3bc 131a 

34 43.48a 7,500a 171.2a 17.12a 1.08c 314.0c 141a 

67 45.54a 7,740a 170.0ab 17.00ab 1.36ab 461.5abc 125a 

101 45.21a 7,590a 168.2ab 16.82ab 1.39ab 491.5ab 139a 

135 49.40a 8,100a 164.0ab 16.40ab 1.45a 529.3a 131a 

168 51.20a 8,250a 160.7b 16.07b 1.58a 609.3a 138a 

† Means with the same letter in the same column are not significantly different at the 0.05 
significance level based on LSD t-test. 
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Table 11. Casselton 2013 third (September 30) harvest sugar beet ANOVA analysis. 

N rate  
(kg ha-1) 

Root yield 
(Mg ha-1) 

Recoverable 
sugar yield 
(kg ha-1) 

Recoverable 
sugar yield (kg 
(Mg beets)-1) 

Net sugar 
(%) 

Sugar loss 
to molasses 
(%) 

Amino-N 
(ppm) 

Beet stands 
(thousand 
ha-1) 

0 47.27ab† 8,126ab 171.9ab 17.19ab 1.31cd 388.8cd 134a 

34 42.54b 7,406b 173.1a 17.31a 1.14d 297.3d 132a 

67 54.79ab 9,511ab 172.9a 17.29a 1.34c 399.5cd 113a 

101 50.60ab 8,328ab 164.8abc 16.48abc 1.45bc 468.5bc 120a 

135 60.45a 9,873a 163.4bc 16.34bc 1.52ab 510.8ab 141a 

168 54.86ab 8,660ab 157.4c 15.74c 1.64a 607.0a 122a 

† Means with the same letter in the same column are not significantly different at the 0.05 
significance level based on LSD t-test. 

Table 12. Thompson 2013 first (August 27) harvest sugar beet ANOVA analysis. 

N rate  
(kg ha-1) 

Root yield 
(Mg ha-1) 

Recoverable 
sugar yield 

(kg ha-1) 

Recoverable 
sugar yield 

(kg (Mg 
beets)-1) 

Net sugar 
(%) 

Sugar loss to 
molasses 

(%) 

Amino-N 
(ppm) 

Beet stands  
(thousand  

ha-1) 

0 42.34b† 6,693a 158.3ab 15.83ab 1.20ab 318.5ab 113a 

34 54.59a 8,251a 151.0bcd 15.10bcd 1.23ab 342.8ab 109a 

67 50.20ab 7,988a 159.1a 15.91a 1.12b 273.3b 100a 

101 48.67ab 7,233a 148.3cd 14.83cd 1.32ab 362.5ab 109a 

135 48.27ab 7,443a 155.3abc 15.53abc 1.35ab 375.0ab 103a 

168 46.94ab 6,959a 147.3d 14.73d 1.42a 419.8a 101a 

† Means with the same letter in the same column are not significantly different at the 0.05 
significance level based on LSD t-test. 

Table 13. Thompson 2013 second (September 17) harvest sugar beet ANOVA analysis. 

N rate  
(kg ha-1) 

Root yield 
(Mg ha-1) 

Recoverable 
sugar yield 

(kg ha-1) 

Recoverable 
sugar yield 

(kg (Mg 
beets)-1) 

Net sugar 
(%) 

Sugar loss 
to molasses 

(%) 

Amino-N 
(ppm) 

Beet stands  
(thousand  

ha-1) 

0 56.86c† 8,419b 148.4a 14.84a 0.81b 184.0b 100a 

34 57.66bc 8,187b 141.6ab 14.16ab 0.82b 182.8b 100a 

67 75.50a 11,170a 148.0a 14.80a 0.92ab 231.3ab 112a 

101 63.98abc 9,369ab 146.6a 14.66a 0.95ab 247.0ab 97a 

135 66.05abc 8,939b 133.1b 13.31b 1.07a 293.3a 88 a 

168 70.31ab 9,303ab 133.4b 13.34b 1.11a 303.3a 91a 

† Means with the same letter in the same column are not significantly different at the 0.05 
significance level based on LSD t-test. 
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Table 14. Thompson 2013 third (October 1) harvest sugar beet ANOVA analysis. 

N rate  
(kg ha-1) 

Root yield 
(Mg ha-1) 

Recoverable 
sugar yield 

(kg ha-1) 

Recoverable 
sugar yield 

(kg (Mg 
beets)-1) 

Net sugar 
(%) 

Sugar loss 
to molasses 

(%) 

Amino-N 
(ppm) 

Beet stands  
(thousand  

ha-1) 

0 69.64a† 11,160a 160.2a 16.02a 0.86b 194.5b 109a 

34 64.32a 9,737a 150.3a 15.03a 0.90ab 213.0b 113a 

67 77.10a 12,170a 158.3a 15.83a 0.90ab 216.5b 107a 

101 73.90a 11,780a 160.2a 16.02a 0.91ab 230.0ab 103ab 

135 72.57a 11,490a 157.4a 15.74a 0.94ab 246.8ab 104a 

168 66.71a 10,310a 154.6a 15.46a 1.02a 292.3a 84b 

† Means with the same letter in the same column are not significantly different at the 0.05 
significance level based on LSD t-test. 

Relationships between Root Yield and Ground-Based Sensor Readings, 2012 

First Harvest Root Yield Prediction 

The INSEY data for each sensing period for both 2012 sites were pooled and related to 

the first harvest sugar beet root yield. A summary of the first (V6-8) and second (V12-14) GS 

sensing regression analysis results are listed in Table 15. Similarly, the r2 values of the regression 

models based on CC first (V6-8) or second (V12-14) sensing data are given in Table 16. These 

models were based on the single plot regression method. Exponential models were found to be 

the best ones for relating CC first harvest sensing INSEY with the first harvest root yield, and the 

regression results are summarized in Table 17. No regression models were established between 

GS first harvest sensing INSEY and the first harvest root yield because no GS sensing was taken 

in 2012 at Amenia due to technical problems with the GS instrument.  

Similar conclusions can be drawn from Table 15 and Table 16 in that 1) second sensing 

data without plant height information has closer relationships with the first harvest root yield, 2) 

only the plant height measured at the first time helped improve the model performance, 3) 
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exponential models and the linear models performed similarly and both of them were more 

consistent than the quadratic polynomial models. The reason for the poor performance of the 

second plant height is most probably due to the extremely dry weather in 2012, which hindered 

the plant from normal development. Take Amenia site in 2012 for example, sugar beet was 

planted in April and sensed the second time in June. According to NDAWN rainfall data 

(http://ndawn.ndsu.nodak.edu/get-

table.html?station=23&variable=mdr&year=2014&ttype=monthly&quick_pick=&begin_date=2

011-01&count=36), the total rainfall of April – June in 2012 was only half and one third of that 

in 2011 and 2013, respectively. The very high r2 values in Table 17 indicate that the INSEY and 

the harvest beet yield in the same day are highly correlated with each other, and that INSEY is an 

excellent predictor of the sugar beet root yield the date of harvest.  

 

Table 15. r2 values of the relationships between 2012 GS INSEY and first harvest root yield. 

Model† GS V6-8 red 
INSEY 

GS V6-8 red INSEY × plant 
height 

GS V12-14 red 
INSEY 

GS V12-14 red INSEY × 
plant height 

Exponential 0.434 0.615 0.645 0.302 

Linear 0.468 0.649 0.670 0.316 

† Model is significant at 0.05 significance level. 

Table 16. r2 values of the relationships between 2012 CC INSEY and first harvest root yield. 

Model† CC 
V6-8 
red 
INSEY 

CC V6-8 
red 
INSEY × 
plant 
height 

CC V6-8 
red edge 
INSEY 

CC V6-8 
red edge 
INSEY × 
plant 
height 

CC V12-
14 red 
INSEY 

CC V12-
14 red 
INSEY × 
plant 
height 

CC V12-
14 red 
edge 
INSEY 

CC V12-
14 red 
edge 
INSEY × 
plant 
height 

Exponential 0.546 0.718 0.622 0.727 0.695 0.369 0.703 0.267 

Linear 0.558 0.732 0.630 0.738 0.717 0.383 0.721 0.276 

† Model is significant at 0.05 significance level. 
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Table 17. r2 values of the relationships between 2012 CC first harvest INSEY and first harvest 
root yield 

Model† CC first 
harvest red 

edge INSEY 

CC first 
harvest red edge  

INSEY × plant height 

CC first 
harvest red 

INSEY 

CC first 
harvest red  

INSEY × plant height 
Exponential 0.913 0.857 0.944 0.872 

Linear 0.909 0.854 0.939 0.870 

† Model is significant at 0.05 significance level. 

Second Harvest Root Yield Prediction 

The INSEY data for each sensing period for both 2012 sites were pooled and related to 

the second harvest sugar beet root yield. Very similar regression results and same conclusions 

were obtained in this section as those obtained in last section. The r2 values of the exponential 

and linear regression models were listed in Table 18 to Table 20. All the models listed in these 

tables are highly significant each with a p-value less than 0.0001. Since in most cases the 

quadratic models were not significant or consistent, they were not summarized here.  

 

Table 18. r2 values of the relationships between 2012 GS INSEY and second harvest root yield. 

Model† GS V6-8 red 
INSEY 

GS V6-8 red INSEY ×  
plant height 

GS V12-14 red 
INSEY 

GS V12-14 red INSEY × 
plant height 

Exponential 0.387 0.559 0.647 0.373 

Linear 0.397 0.579 0.649 0.366 

† Model is significant at 0.05 significance level. 

Table 19. r2 values of the relationships between 2012 CC INSEY and second harvest root yield. 

Model† CC V6-8 
red 
INSEY 

CC V6-8 
red INSEY 
× plant 
height 

CC V6-8 
red edge 
INSEY 

CC V6-8 
red edge 
INSEY × 
plant 
height 

CC V12-14 
red INSEY 

CC V12-14 
red INSEY 
× plant 
height 

CC V12-14 
red edge 
INSEY 

CC V12-14 
red edge 
INSEY × 
plant 
height 

Exponential 0.411 0.595 0.452 0.596 0.677 0.424 0.667 0.321 

Linear 0.415 0.609 0.454 0.609 0.676 0.417 0.661 0.312 

† Model is significant at 0.05 significance level. 
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Table 20. r2 values of the relationships between 2012 GS and CC second harvest INSEY and 
second harvest root yield. 

Model† GS second 
harvest red 

INSEY 

GS second 
harvest red 
INSEY × 

plant height 

CC second 
harvest red 

edge INSEY 

CC second 
harvest red 

edge INSEY 
× plant height 

CC second 
harvest red 

INSEY 

CC second 
harvest red 
INSEY × 

plant height 
Exponential 0.794 0.673 0.785 0.625 0.801 0.676 

Linear 0.789 0.666 0.782 0.620 0.798 0.671 

† Model is significant at 0.05 significance level. 

Relationships between Root Yield and Ground-Based Sensor Readings, 2013 

First Harvest Beet Root Yield Prediction 

Pooled analysis of the two 2013 site INSEY and first sugar beet harvest root yield 

showed that the regressions were not significant. However, there were some significant models 

between some data sets, listed in Table 21. Including plant height into the models improved the 

r2 values. The plant heights in Table 21 refer to the heights measured by tape. Table 21 also 

indicates that in 2013, relationships of sensor readings with first harvest root yield were poor. 

Reasons such as sensing samples or harvest samples were not representative could result in these 

poor results. 

 

Table 21. r2 values of the relationships between 2013 ground-based sensing INSEY and first 
harvest root yield. 

Model† GS V12-14 red 
INSEY × plant 

height 

GS V12-14  red 
edge INSEY 

GS V12-14  red edge 
INSEY × plant height 

CC V12-
14 
red 

INSEY 

CC V12-14 
red INSEY × plant 

height 

Exponential 0.250 0.215 0.313 0.110 0.270 

Linear 0.256 0.221 0.321 0.105 0.272 

† Model is significant at 0.05 significance level. 
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Second and Third Harvest Beet Root Yield Prediction 

Only a few models were significant in second and third sugar beet root yield prediction, 

each with low r2 values. As in the first harvest, including sugar beet canopy height improved 

prediction models between sensor reading and sugar beet root yield. 

Relationships between Root Yield and Ground-Based Sensor Readings, 2012 and 2013 

First Harvest Root Yield Prediction 

With the pooled two-year and four-site data, three highly significant quadratic polynomial 

models with very high r2 values (close to 1) were found between first sensing INSEY and first 

harvest root yield, as illustrated in Figure 6 to Figure 8. This thesis only investigated linear, 

exponential, and quadratic polynomial model. It seems from Figure 6 to Figure 8 that linear-

plateau model might be a more reasonable choice. It was also possible that at very high INSEY 

position where N rate was usually very or extremely high, the balance of the nutrients in the soil 

was broken, resulting in slightly reduced yield. Highly significant exponential and linear models 

with similar performance were shown to be the best models for predicting sugar beet root yield 

using the second sensing INSEY, as demonstrated in Table 22. All the r2 values in Table 22 are 

very high and similar. Including the plant height information into the models didn’t improve the 

models’ performance. GreenSeeker and Crop Circle performed similarly. The significant 

exponential or linear models for sugar beet root yield prediction were in consistent with the 

models found for wheat and corn (Raun et al., 2002; Inman et al., 2007). 
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Figure 6. Relationship between two year GS V6-8 red INSEY × plant height and the first harvest 
beet root yield.  

 

Figure 7. Relationship between two year CC V6-8 red edge INSEY × plant height and the first 
harvest beet root yield. 
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Figure 8. Relationship between two-year CC V6-8 red INSEY × plant height and the first harvest 
beet root yield. 

 

Table 22. r2 values of the relationships between 2012 and 2013 ground-based V12-14 sensing 
INSEY and first harvest sugar beet root yield. 

Model† GS V12-14  
red INSEY 

GS V12-14  
red INSEY × 
plant height 

CC V12-14  
red edge 
INSEY 

CC V12-14  
red edge 
INSEY × 

plant height 

CC V12-14 
red INSEY 

CC V12-14 
red INSEY × 
plant height 

Exponential 0.760 0.739 0.778 0.756 0.800 0.767 

Linear 0.770 0.737 0.781 0.755 0.803 0.766 

† Model is significant at 0.05 significance level. 

Second Harvest Root Yield Prediction 

Highly significant exponential and linear models with high r2 values were also found in 

pooled data from 2012 and 2013, relating GS and CC second readings with sugar beet second 

harvest root yield (Table 23). The first sensing did not significantly relate to second sugar beet 

yields. At the second sensing, including plant height improved model performance in second 

harvest yield prediction. Figure 9 through Figure 11 illustrate the exponential models that include 
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plant height. These results again confirmed the superiority of using exponential model and linear 

model for sugar beet root yield predicion. 

 

Table 23. r2 values of the relationships between 2012 and 2013 ground-based sensing INSEY 
and second sugar beet harvest root yield. 

Model† GS V12-14  
red INSEY 

GS V12-14  
red INSEY × 
plant height 

CC V12-14  
red edge 
INSEY 

CC V12-14  
red edge 
INSEY × 

plant height 

CC V12-14 
red INSEY 

CC V12-14 
red INSEY × 
plant height 

Exponential 0.867 0.917 0.726 0.878 0.736 0.881 

Linear 0.856 0.908 0.713 0.868 0.723 0.870 

† Model is significant at 0.05 significance level. 

 

Figure 9. Relationship between two-year GS V12-14 red INSEY × plant height and the second 
harvest beet root yield. 
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Figure 10. Relationship between two-year CC V12-14 red edge INSEY × plant height and the 

second harvest beet root yield. 

 

Figure 11. Relationship between two year CC V12-14 red INSEY × plant height and the second 
harvest beet root yield. 
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Relationships between Top Total N and Ground-Based Sensor Readings, 2012 

First Harvest Top Total N Prediction 

The first and second harvest sugar beet top total N was related to the pooled two-site 

INSEY day in 2012. Table 24 and Table 25 summarize the r2 values of using GreenSeeker 

INSEY and Crop Circle INSEY, respectively, as the predictors of the first harvest sugar beet top 

total N. The two sensors and the two regression models performed similarly. Existing research 

also reported that exponential model was very suitable for sugar beet top total N prediction using 

GreenSeeker NDVI (Gehl and Boring, 2011). Combining the height information with the first 

sensing INSEY greatly improved the model performance, but not when using the second sensing 

INSEY and plant height. This was probably due to extremely dry weather in 2012 which 

hindered the normal growth of the plant height. Figure 12 and Figure 13 illustrate the best 

models using GreenSeeker and Crop Circle, respectively.  

 

Table 24. r2 values of the relationships between 2012 GS INSEY and first harvest top total N. 

Model† GS V6-8  
red INSEY 

GS V6-8 red  
INSEY × plant height 

GS V12-14  
red INSEY 

GS V12-14 red  
INSEY × plant height 

Exponential 0.264 0.532 0.563 0.358 

Linear 0.253 0.597 0.569 0.322 

† Model is significant at 0.05 significance level. 

The relationships between 2012 CC sensing data obtained on the same day of the first 

harvest and the first harvest sugar beet top total N were also analyzed, and the r2 values were 

listed in Table 26. All models in this table are highly significant with very high r2 values, 

indicating that INSEY is an excellent predictor of the sugar beet top total N. Including plant 
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height into the models improved model performance. Figure 14 illustrates the best model listed 

in Table 26.  

 

Table 25. r2 values of the relationships between 2012 CC INSEY and first harvest top total N. 

Model† CC V6-8  
red 
INSEY 

CC V6-8  
red INSEY 
× plant 
height 

CC V6-8  
red edge 
INSEY 

CC V6-8  
red edge 
INSEY × 
plant 
height 

CC V12-14 
red INSEY 

CC V12-14 
red INSEY 
× plant 
height 

CC V12-14 
red edge 
INSEY 

CC V12-14 
red edge 
INSEY × 
plant 
height 

Exponential 0.345 0.633 0.393 0.654 0.591 0.405 0.583 0.314 

Linear 0.289 0.671 0.338 0.707 0.582 0.363 0.557 0.264 

† Model is significant at 0.05 significance level. 

Table 26. r2 values of the relationships between 2012 CC first harvest INSEY and first harvest 
top total N. 

Model† CC first 
Harvest red 
edge INSEY 

CC first 
Harvest red edge INSEY × 

plant height 

CC first 
Harvest red 

INSEY 

CC first 
Harvest red INSEY × plant 

height 
Exponential 0.966 0.977 0.903 0.960 

Linear 0.932 0.972 0.856 0.952 

† Model is significant at 0.05 significance level. 

 

Figure 12. Relationship between 2012 GS V6-8 red INSEY × plant height and first harvest top 
total N. 
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Figure 13. Relationship between 2012 CC V6-8 red edge INSEY × plant height and first harvest 
top total N. 

 

Figure 14. Relationship between 2012 CC first harvest red edge INSEY × plant height and first 
harvest top total N. 
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sensing regression, the best regression analysis method is using all the individual plot data 

without averaging processing; for the second sensing and second harvest sensing data regression, 

the best regression analysis method is found to be the one averaging all individual plot data over 

each N application rate treatment.  

Table 27 summarizes the r2 values of the relationships between 2012 ground-based first 

sensing INSEY and the second harvest top total N of 2012 sugar beet. Using the regression 

method that averages all individual plot data over each N application rate treatment, no 

significant regression models were found using the second sensing INSEY or second harvest 

INSEY directly, but highly significant regression models with very high r2 values using the 

INSEY × plant height information were revealed, as demonstrated in Table 28. Both Table 27 

and Table 28 indicate that plant height information plays a positive role in improving the 

regression models performance in terms of both model significance and r2 value. It seems that, 

compared to the first sensing regression, the second sensing and second harvest sensing are 

better sugar beet top total N predictors in this case. The exponential model is slightly better than 

the linear model. The models found here were consistent with those found in the first harvest top 

total N prediction. Figure 15 and Figure 16 illustrate the exponential relationships between CC 

second red INSEY × plant height or CC second harvest red INSEY × plant height and the second 

harvest top total N. 
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Table 27. r2 values of the relationships between V6-8 sensing INSEY and the second harvest top 
total N of 2012 sugar beet. 

Model† GS V6-8 red  
INSEY 

GS V6-8 red  
INSEY × plant height

CC V6-
8 red 

INSEY 

CC V6-8 red 
INSEY × plant 

height 

CC V6-8 red 
edge INSEY 

CC V6-8 red 
edge INSEY × 

plant height 
Exponential 0.174 0.399 0.218 0.463 0.246 0.482 

Linear 0.157 0.399 0.176 0.439 0.204 0.466 

† Model is significant at 0.05 significance level. 

Table 28. r2 values of the relationships between V12-14 sensing INSEY ×plant height or second 
harvest sensing INSEY × plant height and the second harvest top total N of 2012 sugar beet. 

Model† GS V12-14 
red INSEY × 
plant height 

CC V12-14  
red INSEY × 
plant height 

CC V12-14  
red edge 
INSEY × 

plant height 

GS second 
harvest red 
INSEY × 

plant height 

CC second 
harvest red 
INSEY × 

plant height 

CC second 
harvest red 

edge INSEY 
× plant height 

Exponential 0.760 0.820 0.814 0.867 0.894 0.868 

Linear 0.739 0.800 0.794 0.864 0.890 0.868 

† Model is significant at 0.05 significance level. 

 

Figure 15. Relationship between 2012 CC V12-14 red INSEY × plant height and second harvest 
top total N. 
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Figure 16. Relationship between 2012 CC second harvest red INSEY × plant height and second 
harvest top total N. 
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Table 29. r2 values of the relationships between V6-8 sensing INSEY and the first harvest 
recoverable sugar of 2012 sugar beet. 

Model† GS V6-8 
red INSEY 

GS V6-8 red 
INSEY × 

plant height 

CC V6-8 red 
INSEY 

CC V6-8 red 
INSEY × 

plant height 

CC V6-8 red 
edge INSEY 

CC V6-8 red 
edge INSEY 

× plant height 
Exponential 0.332 0.419 0.425 0.490 0.489 0.495 

Linear 0.350 0.422 0.432 0.482 0.492 0.483 

† Model is significant at 0.05 significance level. 

Table 30. r2 values of the relationships between V12-14 sensing INSEY and the first harvest 
recoverable sugar of 2012 sugar beet. 

Model† GS V12-14 red 
INSEY 

GS V12-14  
red INSEY × 
plant height 

CC V12-14  
red INSEY 

CC V12-14  
red INSEY × 
plant height 

CC V12-14  
red edge 
INSEY 

CC V12-14  
red edge 

INSEY × plant 
height 

Exponential 0.414 0.177 0.459 0.225 0.481 0.165 

Linear 0.417 0.173 0.462 0.220 0.482 0.160 

† Model is significant at 0.05 significance level. 

Table 31. r2 values of the relationships between first harvest sensing INSEY and the first harvest 
recoverable sugar of 2012 sugar beet. 

Model† CC first harvest 
red INSEY 

CC first harvest 
red INSEY × plant 

height 

CC first harvest 
red edge INSEY 

CC first harvest red edge 
INSEY × plant height 

Polynomial 2 0.646 0.602 0.661 0.605 

† Model is significant at 0.05 significance level. 

Second Harvest Recoverable Sugar Yield Prediction 

The first sensing INSEY, second sensing INSEY, and the second harvest sensing INSEY 

was related to the first harvest recoverable sugar yield of 2012. Table 32, Table 33, and Table 34 

summarize the r2 values of the significant regression models. Results here again indicated that 

exponential or simple linear models were the best choice. Plant height information improved the 

first sensing regression models performance, but decreased the second sensing and the second 

harvest sensing regression models performance. This showed that the role of plant height was not 

consistent taking into consideration of the relevant results presented earlier. As expected, the 
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harvest INSEY was the best predictor of harvest yield. The CC red INSEY slightly outperformed 

other INSEYs (Table 33 and Table 34). Figure 17 and Figure 18 illustrate the best two models 

from Table 33 and Table 34, respectively.  

 

Table 32. r2 values of the relationships between V6-8 sensing INSEY and the second harvest 
recoverable sugar of 2012 sugar beet. 

Model† GS V6-8 red 
INSEY 

GS V6-8 red 
INSEY × plant 

height 

CC V6-8 red 
INSEY 

CC V6-8 red 
INSEY × plant 

height 

CC V6-8 red 
edge INSEY 

CC V6-8 red 
edge INSEY × 

plant height 
Exponential 0.391 0.551 0.392 0.573 0.420 0.568 

Linear 0.394 0.562 0.397 0.586 0.425 0.580 

† Model is significant at 0.05 significance level. 

Table 33. r2 values of the relationships between V12-14 sensing INSEY and the second harvest 
recoverable sugar of 2012 sugar beet. 

Model† GS V12-14 red 
INSEY 

GS V12-14 red 
INSEY × plant 

height 

CC V12-14 red 
INSEY 

CC V12-14 red 
INSEY × plant 

height 

CC V12-14 red 
edge INSEY 

CC V12-14 red 
edge INSEY × 

plant height 
Exponential 0.682 0.404 0.685 0.442 0.657 0.330 

Linear 0.679 0.392 0.684 0.431 0.651 0.317 

† Model is significant at 0.05 significance level. 

Table 34. r2 values of the relationships between second harvest sensing INSEY and the second 
harvest recoverable sugar of 2012 sugar beet. 

Model† GS second 
harvest red 

INSEY 

GS second 
harvest red 

INSEY × plant 
height 

CC second 
harvest red 

INSEY 

CC second 
harvest red 

INSEY × plant 
height 

CC second 
harvest red 

edge INSEY 

CC second 
harvest red 

edge INSEY × 
plant height 

Exponential 0.745 0.619 0.754 0.624 0.707 0.555 

Linear 0.739 0.607 0.750 0.614 0.703 0.544 

† Model is significant at 0.05 significance level. 
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Figure 17. Relationship between 2012 CC V12-14 red INSEY and second harvest recoverable 

sugar yield. 

 

Figure 18. Relationship between 2012 CC second harvest red INSEY and second harvest 
recoverable sugar yield. 
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Relationships between Sugar Beet Recoverable Sugar Yield and Ground-Based Sensor 

Readings, 2013 

Most of the regression models for 2013 recoverable sugar yield prediction were either 

insignificant or with very low r2 values between sensor INSEY and recoverable sugar yield. 

However, there were a few regression models for the second harvest recoverable sugar yield 

prediction that were highly significant with high r2 values, as shown in Table 35 and Figure 19. 

From Figure 19 it can be seen that very high INSEY (corresponding to high N rate or over 

application of N) resulted in reduced sugar yield, which was highly possible as reported by 

Franzen (2003) and Gehl and Boring (2011) especially when there was high nitrate residual level 

together with high N fertilizer application rate.  

 

Table 35. r2 values of the relationships between 2013 ground-based sensing INSEY and the 
second harvest recoverable sugar. 

Model† GS second red 
INSEY 

GS second red 
edge INSEY 

CC first red edge 
INSEY × tape 

measured height 

CC first red 
INSEY × tape 

measured height 

CC second red 
INSEY × tape 

measured height 
Exponential 0.665 0.661 NS NS NS 

Polynomial 2 NS NS 0.949 0.925 0.865 

† NS means model is not significant at 0.05 significance level; otherwise model is significant at 

0.05 significance level. 
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Figure 19. Relationship between 2013 CC first red edge INSEY × tape measured plant height 
and the second harvest recoverable sugar yield. 

Relationships between Recoverable Sugar Yield and Ground-Based Sensor Readings, 2012 

and 2013 

First Harvest Recoverable Sugar Yield Prediction 

Two and four-site data were pooled for regression analysis. A summary of the r2 values 

of the significant relationships between first ground-based sensing INSEY and the first harvest 

recoverable sugar yield is shown in Table 36, where all models use the plant height information. 

This implies that the first plant height information has greatly improved the models performance 

(from insignificance to significant). For the second sensing INSEY, a quadratic polynomial 

model was found to be the best choice and the results were summarized in Table 37. Table 37 

also demonstrates the positive role of the plant height information plays in improving model 

performance. The best quadratic polynomial model is illustrated in Figure 20. Exponential and 

linear models were found to better when using early season INSEY as predictor, while quadratic 
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polynomial model was shown to be better when V12-14 growth stage INSEY was used. As 

discussed earlier, all these three models for sugar yield prediction were possible based on only 

two-year data. The model type can be different when using INSEY data from different growth 

stage.  

Table 36. r2 values between 2012 and 2013 two-year ground-based V6-8 sensing INSEY and the 
first harvest recoverable sugar.  

Model† GS V6-8 red  
INSEY × plant height 

CC V6-8 red  
INSEY × plant height 

CC V6-8 red edge  
INSEY × plant height 

Exponential 0.422 0.414 0.428 

Linear 0.438 0.428 0.440 

† Model is significant at 0.05 significance level. 

Table 37. r2 values of the relationships between 2012 and 2013 two-year ground-based V12-14 
sensing INSEY and the first harvest recoverable sugar. 

Model† GS V12-14 red 
INSEY × plant height 

CC V12-14 red 
INSEY × plant height 

CC V12-14 red edge 
INSEY 

CC V12-14 red edge 
INSEY × plant height 

Polynomial 2 0.907 0.963 0.943 0.961 

† Model is significant at 0.05 significance level. 

 

Figure 20. Relationship between 2012 and 2013 two-year CC V12-14 red INSEY × plant height 
and the first harvest recoverable sugar yield. 
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Second Harvest Recoverable Sugar Yield Prediction 

There were significant relationships between the GS and CC red and red edge INSEY and 

the second harvest recoverable sugar yield (Table 38). The first and second measured plant 

height data generally improved model performance. From Table 38 we can also find that mid-

season INSEY can better predict sugar yield than can early-season INSEY. Figure 21 illustrates 

the linear relationship between CC V12-14 red INSEY and the second harvest recoverable sugar 

yield. 

Relationships between Root Yield and Satellite Imagery INSEY, 2012 

The satellite imagery INSEY from Amenia July 11 and Crookston July 1 of 2012 were 

pooled and then related to each of the harvest sugar beet root yield. The same method applied to 

the satellite imagery INSEY from Amenia August 16 and Crookston August 16 in 2012. The r2 

values of the significant regression models are summarized in Table 39 and Table 40. From these 

two tables we can see that, generally speaking, both the July and August INSEYs have closer 

relationships with the first harvest root yield than with the second harvest root yield. Another 

observation is that August INSEYs are better related to each root yield than are July INSEYs in 

most cases. These two findings are due to the same fact that sensing at a closer date to the 

harvest leads to a stronger relationship between INSEY and root yield. For this year’s study, red 

edge INSEY from satellite imagery seemed to be the best predictors of root yield in terms of r2 

values. Red edge NDVI was also reported to have better ability in plant leaf N prediction (Cao et 
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al., 2013; Schlemmer et al., 2013). Figure 22 and Figure 23 illustrate one July INSEY model and 

one August INSEY model, respectively.  

 

Table 38. r2 values of the relationships between 2012 and 2013 two-year INSEY and the second 
harvest recoverable sugar yield. 

Model† GS V6-8 
red INSEY 

× plant 
height 

CC V6-8 
red edge 
INSEY 

CC V6-8 
red edge 
INSEY × 

plant height

GS V12-14 
red INSEY 

GS V12-14 
red INSEY × 
plant height 

CC V12-14 
red edge 
INSEY 

CC V12-14 
red INSEY 

Exponential 0.435 0.162 0.421 0.531 0.497 0.457 0.536 

Linear 0.463 0.174 0.444 0.578 0.519 0.492 0.591 

† NS means model is not significant at 0.05 significance level; otherwise model is significant at 

0.05 significance level. 

 

Figure 21. Relationship between 2012 and 2013 two-year CC V12-14 red INSEY and the second 
harvest recoverable sugar yield. 
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Table 39. r2 values of the relationships between July 2012 satellite imagery INSEY and sugar 
beet root yield. 

 
Model† 

first harvest root yield second harvest root yield 

red INSEY red edge INSEY green INSEY red INSEY 

Exponential 0.749 0.855 0.714 0.588 

Linear 0.767 0.855 0.722 0.588 

† NS means model is not significant at 0.05 significance level; otherwise model is significant at 
0.05 significance level. 

Table 40. r2 values of the relationships between August 2012 satellite imagery INSEY and sugar 
beet root yield. 

 
Model† 

first harvest root yield second harvest root yield 

red 
INSEY 

red edge 
INSEY 

blue 
INSEY 

green 
INSEY 

red 
INSEY 

red edge 
INSEY 

blue 
INSEY 

Exponential 0.861 0.901 0.885 0.864 0.691 0.470 0.668 

Linear 0.864 0.904 0.892 0.864 0.689 0.469 0.671 

† Model is significant at 0.05 significance level. 

 

Figure 22. Relationship between 2012 July satellite imagery red edge INSEY and the first 
harvest sugar beet root yield. 
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Figure 23. Relationship between 2012 August satellite imagery red edge INSEY and the first 
harvest sugar beet root yield. 
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between them, the relationships with yield were significant. The normalizing effect of the 
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Table 41. r2 values of the relationships between 2013 satellite imagery INSEY and sugar beet 
root yield. 

Harvest order Model† Red INSEY Red edge INSEY Blue INSEY Green INSEY 

first harvest 
Exponential 0.463 0.632 0.613 0.625 

Linear 0.411 0.595 0.576 0.579 

second harvest 
Exponential 0.476 0.606 0.587 0.581 

Linear 0.425 0.559 0.539 0.534 

third harvest 
Exponential 0.545 0.542 0.576 0.575 

Linear 0.538 0.575 0.598 0.604 

† Model is significant at 0.05 significance level. 

 

Figure 24. Relationship between 2013 satellite imagery red edge INSEY and the first harvest 
sugar beet root yield. 
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consideration of the results for each individual year as well as combined two-year study, red 

INSEY became the most consistent and effective. In fact, red spectral band is an indispensable 

band for almost all optical sensors, either ground-based or space-based. Figure 25 illustrates the 

exponential relationship between red INSEY and the first harvest sugar beet root yield. Figure 26 

illustrates the quadratic polynomial relationship between green INSEY and the first harvest sugar 

beet root yield.  

Table 42. r2 values of the significant relationships between 2012 and 2013 two-year satellite 
imagery INSEY and sugar beet root yield. 

 
Model† 

first harvest root yield second harvest root yield 

red INSEY blue INSEY green INSEY red INSEY blue INSEY 

Exponential 0.588 0.506 NS 0.440 0.290 

Linear 0.549 0.443 0.664 0.407 0.268 

† NS means model is not significant at 0.05 significance level; otherwise model is significant at 
0.05 significance level. 

 

Figure 25. Relationship between 2012 and 2013 two-year satellite imagery red INSEY and the 
first harvest root yield. 
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Figure 26. Relationship between 2012 and 2013 two-year satellite imagery green INSEY and the 
first harvest root yield. 
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Table 43. r2 values of the relationships between July 2012 satellite imagery INSEY and sugar 
beet top total N. 

 
Model† 

first harvest top total N second harvest top total N 

red INSEY red edge INSEY red INSEY red edge INSEY 

Exponential 0.536 0.954 0.420 0.682 

Linear 0.529 0.957 0.420 0.683 

† Model is significant at 0.05 significance level. 

Table 44. r2 values of the relationships between August 2012 satellite imagery INSEY and sugar 
beet top total N. 

 
Model† 

First harvest top total N Second harvest top total N 

red 
INSEY 

red edge 
INSEY 

blue 
INSEY 

green 
INSEY 

red 
INSEY 

red edge 
INSEY 

blue 
INSEY 

Exponential 0.627 0.598 0.710 0.727 0.509 0.441 0.486 

Linear 0.611 0.590 0.695 0.706 0.518 0.433 0.531 

† Model is significant at 0.05 significance level. 

 

Figure 27. Relationship between 2012 July satellite imagery red edge INSEY and the first 
harvest sugar beet top total N. 
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Relationships between Recoverable Sugar Yield and Satellite Imagery INSEY, 2012 

Table 45 and Table 46 summarize the r2 values of the significant regression models 

between pooled July or August 2012 satellite imagery INSEY and each harvest sugar beet 

recoverable sugar yield. Humburg et al. (2006) found that Green NDVI was the most consistent 

VI to predict sugar beet sucrose concentration, but this was not the case in our study. It seems 

from these two tables that red INSEY is the most reliable INSEY for the study of year 2012 as in 

all cases there were at least two significant models with high r2 values.  

Table 45. r2 values of the relationships between July 2012 satellite imagery INSEY and sugar 
beet recoverable sugar yield. 

 
Model† 

first harvest recoverable sugar second harvest recoverable sugar 

red INSEY green INSEY red INSEY 

Exponential 0.549 0.739 0.544 

Linear 0.549 0.745 0.543 

† Model is significant at 0.05 significance level. 

Table 46. r2 values of the relationships between August 2012 satellite imagery INSEY and sugar 
beet recoverable sugar yield. 

 
Model† 

first harvest recoverable sugar second harvest recoverable sugar 

red INSEY red edge INSEY blue INSEY red INSEY red edge INSEY blue INSEY 

Exponential 0.570 0.487 0.500 0.642 0.387 0.638 

Linear 0.567 0.471 0.495 0.643 0.390 0.641 

† Model is significant at 0.05 significance level. 

Relationships between Recoverable Sugar Yield and Satellite Imagery INSEY, 2013 

INSEYs calculated from the Casselton June 24 imagery and the Thompson August 13 

imagery were pooled and related to each harvest recoverable sugar yield, and the r2 values of the 

significant regression models are summarized in Table 47. Each of the satellite imagery INSEYs 

was better with the third harvest recoverable sugar yield, compared to the first and second 
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harvests. In this year, red INSEY was still good, but Green INSEY was the best among the 

compared four INSEYs, which was in accordance with the work of Humburg et al. (2006).  

 

Table 47. r2 values of the relationships between 2013 satellite imagery INSEY and sugar beet 
recoverable sugar yield. 

Harvest order model† red INSEY red edge INSEY blue INSEY green INSEY 

first harvest  Exponential 0.274 0.359 0.346 0.370 

Linear 0.262 0.362 0.349 0.366 

second harvest Exponential 0.299 0.283 0.280 0.290 

Linear 0.293 0.290 0.284 0.294 

third harvest Exponential 0.463 0.415 0.446 0.458 

Linear 0.449 0.434 0.452 0.476 

Polynomial 2 0.501 0.495 0.508 0.524 

† Model is significant at 0.05 significance level. 

Relationships between Recoverable Sugar Yield and Satellite Imagery INSEY, 2012 and 

2013 

Two-year and four-site INSEYs calculated from satellite imageries were pooled and 

related to each harvest sugar beet recoverable sugar yield, and the r2 values of the significant 

regression models were summarized in Table 48. Due to the poor quality of the 2013 satellite 

imagery, the overall pooled satellite imagery data was not as highly related to recoverable sugar 

yield compared to ground-sensor data. In general, Red INSEY outperformed other INSEYs in 

terms of consistency. Figure 28 illustrates the exponential relationship between red INSEY and 

the second harvest recoverable sugar yield. The widely validated exponential model (Raun et al., 

2005) for crop yield prediction seemed also very effective for sugar beet recoverable sugar yield 

prediction. 
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Table 48. r2 values of the relationships between 2012 and 2013 two-year satellite imagery 
INSEY and sugar beet recoverable sugar yield. 

 
Model† 

First harvest sugar yield Second harvest sugar yield 

red INSEY blue INSEY red INSEY blue INSEY 

Exponential 0.436 0.444 0.449 0.351 

Linear 0.427 0.421 0.434 0.322 

† Model is significant at 0.05 significance level. 

 

Figure 28. Relationship between 2012 and 2013 two-year satellite imagery red INSEY and the 
second harvest recoverable sugar yield. 
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most suitable model for recoverable sugar yield prediction using INSEY still needs more site-

year data to select and validate. Our study on top total N prediction using harvest INSEY further 

support the argument that sugar beet top biomass and color (reflected by NDVI value) at harvest 

time is a good predictor of N availability for subsequent year (Franzen, 2003; Gehl and Boring, 

2011).These experiments are not robust enough to indicate which NDVI source, GreenSeeker, 

Crop Circle, or RapidEye satellite imagery, is significantly better than the others. However, the 

active-optical ground-based sensors and passive satellite sensing each have their own strengths 

and weakness. Active-optical ground-based sensing can be conducted almost any time (Graham, 

1999), which means that it would be particularly useful for real-time field input activities; 

however, their ability to collect large areas of imagery quickly for logistical purposes is poor. 

Passive satellite sensing is greatly influenced by weather conditions especially cloud or haze 

cover, or darkness, but with them large amounts of data can be collected in very short time. 

Satellites would be very effective in logistical data collection to aid in predicting in-season N 

fertilizer needs and screening fields for possible supplemental N. Plant height was not consistent 

in improving model performance, primarily due to dry conditions in 2012 and late summer 2013. 

Different soil type and weather conditions may have impacts on the quality and the predictability 

of our pooled data. To obtain more reliable prediction models, more site-years of 

experimentation and data analysis will be necessary.  
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RESULTS AND DISCUSSIONS FOR SPRING WHEAT 

ANOVA Analysis of Yield and Quality Data 

ANOVA analysis of the results for the four site-year spring wheat yield and quality data 

are provided in Table 49. Generally, N fertilizer rate had a significant and positive influence on 

both dry grain yield and protein content of spring wheat. This result was concordant with those 

of the study by Abedi et al. (2011) and by Brown et al. (2005). Since the available N or residual 

N in the soil for different plot of different or same site-year may be quite different, it would be 

unreliable to use N fertilizer rate to predict crop yield or quality directly. So statistical 

relationships will not be constructed and analyzed for these data.  

Table 49. Spring wheat yield and protein content ANOVA analysis. 

 
N rate 

(kg ha-1) 

2012 Gardner 2012 Valley City 2013 Gardner 2013 Valley City 

yield (Mg 
ha-1) 

protein 
(%) 

yield (Mg 
ha-1) 

protein 
(%) 

yield (Mg 
ha-1) 

protein 
(%) 

yield (Mg 
ha-1) 

protein 
(%) 

0 2.135 c† 12.19 d 3.200 b 11.81 c 2.906 c 11.13 d 3.378 c 15.71 b 

45 2.654 bc 13.49 c 3.522 ab 12.49 c 3.891 b 11.91 c 3.803 ab 16.10 ab 

90 3.130 ab 15.00 b 3.953 a 14.12 b 3.942 b 12.29 c 3.706 bc 15.89 ab 

135 3.273 a 14.23 c 3.262 b 14.69 ab 4.287  a 13.18 b 3.864 ab 16.10 ab 

180 3.225 a 16.43 a 3.882 a 15.60 a 4.432 a 13.86 ab 3.842 ab 16.36 a 

225 3.414 a 15.69 ab 3.531 ab 15.63 a 4.269 a 13.97 a 4.063 a 16.34 a 

† Means with the same letter in the same column are not significantly different at the 0.05 
significance level based on LSD t-test. 
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Relating Ground-Based Sensing Data to Spring Wheat Yield 

Yield Regression Analysis, 2012 

The sensing data from Gardner and Valley City, 2012 were pooled to relate with spring 

wheat yield. Regression analysis indicated that neither the Crop Circle 2012 first red INSEY nor 

the Crop Circle 2012 first red edge INSEY can be used as effective predictors to wheat yield. In 

other words, no significant regression models were found using 2012 Crop Circle INSEYs. As 

for GreenSeeker, the best prediction model among linear, quadratic polynomial, and exponential 

models was found to be the exponential model, as illustrated in Figure 29. Existing relevant 

researches on wheat also found that exponential model was the best choice among several 

compared common models (Raun et al., 2001; Raun et al., 2005). This model indicates that in 

this year the GreenSeeker sensing data was highly related to spring wheat yield.  

 

Figure 29. Relationship between 2012 GS first red INSEY and spring wheat yield. 
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Yield Regression Analysis, 2013 

In 2013, for each type of INSEY, both the exponential model and the linear model were 

highly significant with similar r2 values. In all cases, the linear models slightly outperformed the 

corresponding exponential models. In other words, the two models performed similarly. So we 

still can say that exponential model is one of the best choices for wheat yield prediction using 

INSEY. Figure 30 through Figure 33 illustrate these linear regression models.  

 

Figure 30. Relationship between 2013 GS first red INSEY and spring wheat yield. 
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Figure 31. Relationship between 2013 GS first red edge INSEY and spring wheat yield. 

 

 

Figure 32. Relationship between 2013 CC first red INSEY and spring wheat yield. 
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Figure 33. Relationship between 2013 CC first red edge INSEY and spring wheat yield. 

Yield Regression Analysis, 2012 and 2013 

Four site-years of data were combined to conduct a comprehensive regression analysis. 

Regression results indicated that the best model using GreenSeeker sensing data was a linear 
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exponential model, as illustrated in Figure 35 and Figure 36. From the results based on two-year 

pooled data as well as each individual year pooled data, it seems that either linear or exponential 

models can be very good choices for relating ground-based optical sensor first readings with the 

spring wheat dry grain yield.  These strong relationships between INSEY and wheat yield 

indicate that early-season spring wheat yield potential and hence early-season wheat N 

deficiency and requirement can be predicted using optical sensors.  
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Figure 34. Relationship between 2012 and 2013 GS first red INSEY and spring wheat yield. 

 

 

Figure 35. Relationship between 2012 and 2013 CC first red INSEY and spring wheat yield. 
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Figure 36. Relationship between 2012 and 2013 CC first red edge INSEY and spring wheat yield. 

Relating Ground-Based Sensing Data to Spring Wheat Quality 

Protein Content Regression Analysis, 2012 

Using the pooled data of 2012, each data set from both sensors at flag leaf INSEY had a 
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and Figure 39.  Existing researches on wheat focused on the yield prediction using INSEY and 

rare touched the wheat protein content prediction using optical sensing data. The study based on 

two-site data of 2012 reveals that exponential model was perhaps the most appropriate model for 

spring wheat protein content prediction using flag leaf stage INSEY. 
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Figure 37. Relationship between 2012 GS second red INSEY and spring wheat protein content. 

 

 

Figure 38. Relationship between 2012 CC second red INSEY and spring wheat protein content. 
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Figure 39. Relationship between 2012 CC second red edge INSEY and spring wheat protein 
content. 

Protein Content Regression Analysis, 2013 

Exponential models were still the best choices among the three types of models tested 

using the pooled data of 2013. Figure 40 through Figure 43 illustrate these models. 

 

Figure 40. Relationship between 2013 GS second red INSEY and spring wheat protein content. 
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Figure 41. Relationship between 2013 GS second red edge INSEY and spring wheat protein 
content. 

 

 

Figure 42. Relationship between 2013 CC second red INSEY and spring wheat protein content. 
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Figure 43. Relationship between 2013 CC second red edge INSEY and spring wheat protein 
content. 

Protein Content Regression Analysis, 2012 and 2013 

Figure 44, Figure 45, and Figure 46 illustrate the best regression models, which are all 
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using ground-based optical sensing data. Besides, all these ground-based active optical sensing 
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Figure 44. Relationship between 2012 and 2013 GS second red INSEY and spring wheat protein 
content. 

 

 

Figure 45. Relationship between 2012 and 2013 CC second red INSEY and spring wheat protein 
content. 

y = 3.3623e1255.2x

R² = 0.8000
p-value = 0.0161

12

12.5

13

13.5

14

14.5

15

15.5

16

1.00E-03 1.05E-03 1.10E-03 1.15E-03 1.20E-03 1.25E-03

P
ro

te
in

 c
on

te
n

t 
(%

)

2012 and 2013 GS second red INSEY

y = 3.3778e1478.1x

R² = 0.7745
p-value = 0.0207

12

12.5

13

13.5

14

14.5

15

15.5

16

8.50E-04 9.00E-04 9.50E-04 1.00E-03 1.05E-03

P
ro

te
in

 c
on

te
n

t 
(%

)

2012 and 2013 CC second red INSEY



 

97 
 

 

Figure 46. Relationship between 2012 and 2013 CC second red edge INSEY and spring wheat 
protein content. 
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slightly cloud cover at the sensing moments. The slight cloud interference influenced the NDVI 

value range but did not affect the overall trend.  

 

Figure 47. Relationship between 2012 satellite imagery red edge INSEY and spring wheat yield. 

 

Figure 48. Relationship between 2012 satellite imagery red edge INSEY and spring wheat 
protein content. 
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Regression Analysis, 2013 

Results of 2013 two site-year pooled data show that 1) no significant relationships 

between any satellite imagery INSEY and wheat yield were found, and 2) highly significant 

linear relationships were found between red, or green, or blue INSEY and wheat protein content. 

Figure 49, Figure 50, and Figure 51 illustrate these prediction models, of which the blue INSEY 

performed best (r2 is close to 0.9).  

 

Figure 49. Relationship between 2013 satellite imagery green INSEY and spring wheat protein 
content. 
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Figure 50. Relationship between 2013 satellite imagery red INSEY and spring wheat protein 
content. 

 

 

Figure 51. Relationship between 2013 satellite imagery blue INSEY and spring wheat protein 
content. 
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Regression Analysis, 2012 and 2013 

With all site-year data included, it was found out that only the blue INSEY has very 

highly significant relation with spring wheat yield. This quadratic relationship (r2=0.9747) is 

illustrated in Figure 52. Unlike the positive relationships between wheat yield and INSEY found 

for each individual year, this quadratic relationship based the two-year satellite imagery data 

looks different and this was probably because of two reasons. One is that some of the satellite 

imagery was not in good quality due to cloud cover, and the other is these imagery dates were 

not close and some of them were captured in the very late season. Thus the quality of the pooled 

data was substantially and negatively affected. Except green INSEY, all other INSEYs were 

found to be highly related to wheat protein content, as illustrated in Figure 53 through Figure 55. 

These protein content prediction models have similar r2 values. An overview of all regression 

cases, including each individual year regressions and the combined two year regressions, the 

blue INSEY seems to be the best spring wheat predictor for both yield and protein content.  
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Figure 52. Relationship between 2013 satellite imagery blue INSEY and spring wheat protein 
content. 

 

Figure 53. Relationship between 2012 and 2013 satellite imagery red INSEY and spring wheat 
protein content. 
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Figure 54. Relationship between 2012 and 2013 satellite imagery blue INSEY and spring wheat 
protein content. 

 

Figure 55. Relationship between 2012 and 2013 satellite red edge INSEY and spring wheat 
protein content. 
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regression models, all that farmers need to do in the future is to collect NDVI data using remote 

sensors, then divide NDVI by GDD to obtain INSEY, and finally input INSEY to the 

correspondence regression model as independent variable. Spring wheat yield or protein content 

and hence the site-specific crop N deficiency and requirement can therefore be predicted in early 

season or mid-season using the algorithm proposed by Raun et al. (2005). Farmers may 

particularly benefit from the use of the RE INSEY to determine whether to apply a post-anthesis 

N application for protein enhancement or use of the R INSEY or RE INSEY to direct an in-

season variable rate N application at about the 5 leaf growth stage to improve year to year yield 

consistency and compensate for unanticipated early season N loss. Usually higher protein 

content results in higher wheat prices for farmers.  
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RESULTS AND DISCUSSIONS FOR CORN 

ANOVA Analysis of Corn Yield Data 

ANOVA analyzing results for the four site-year corn yield data are given in Table 50. 

Except 2012 Durbin site, the N fertilizer rate didn’t have shown significant impacts on the 

adjusted dry grain yield. The nitrate residual in each site of Valley City 2012, Arthur 2013, or 

Valley City 2013 was much higher than that in Durbin 2012 site, as summarized in the appendix 

tables A19 through A12. Even in 2012 Durbin, the N rate influence was not that obvious in that 

only the 0 and 225 Kg ha-1 rate yields were significantly different. This was probably due to 

many unfavorable weather or soil conditions.  

Table 50. Corn yield ANOVA analysis. 

 
N rate 

2012 2012  2013 2013 

Durbin Valley City Arthur Valley City 

      ---kg ha-1--- -------------------------------------------------Mg ha-1----------------------------------------------------- 

0 3.319 b† 8.347 a 6.744 a 8.385 a 

45 4.458 ab 7.526 a 6.464 a 7.895 a 

90 4.163 ab 7.357 a 6.647 a 8.477 a 

135 4.069 ab 8.471 a 7.497 a 7.597 a 

180 4.389 ab 8.320 a 7.952 a 8.283 a 

225 5.247 a 8.805 a 7.160 a 7.696 a 

† Means with the same letter in the same column are not significantly different at the 0.05 
significance level based on LSD t-test. 
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Relating Yield to Ground-Based Sensing Data 

V6 Sensing Regression Analysis, 2012 

Significant exponential models were found for all types of V6 sensing INSEY or 

INSEY*height. These results were in accordance with that of the existing researches (Raun et al., 

2002; Raun et al., 2005). The results presented later in this chapter also validated the superiority 

of exponential models. Table 51 lists the r2 value for each of these models.  

Table 51. r2 values of exponential models for 2012 corn ground-based V6 sensing 

Model† GS red GS red×height CC 
redEdge 

CC redEdge×height CC red CC 
red×height 

Exponential 0.189 0.356 0.558 0.565 0.460 0.514 

† Model is significant at 0.05 significance level. 

From Table 51 it can be seen that Crop Circle performs better than does GreenSeeker in 

2012 and that plant height of this year does help improve the model performance. It seems that 

the impact of plant height was more obvious in GreenSeeker-related models than in Crop Circle-

related models. Crop Circle red edge INSEY × plant height became the best yield predictor in 

this year, and this exponential model is illustrated in Figure 56. Commonly speaking, the higher 

the INSEY or INSEY × height, the higher the yield.  
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Figure 56. Relationship between 2012 corn CC V6 red edge INSEY × height and dry grain yield. 

V12 Sensing Regression Analysis, 2012 

Significant exponential models were found for all types of INSEY or INSEY × plant 

height. Table 52 lists the r2 value for each of these models. Figure 57 illustrate the exponential 

relationship between yield and Crop Circle red edge INSEY × height. The data in Table 52 

strongly indicate that the original models performed poorly and including the plant height data 

into a model greatly improved model performance.  
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† Model is significant at 0.05 significance level. 
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Figure 57. Relationship between 2012 corn CC V12 red edge INSEY × height and dry grain 
yield. 

V6 Sensing Regression Analysis, 2013 

A linear model and an exponential model using the Crop Circle red INSEY as predictor 
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Figure 58. Relationship between 2013 corn CC V6 red INSEY and dry grain yield. 
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poor performance of these models is that the ground-based optical second sensing data were not 

collected using the best distance (approximately 0.5 m to 1 m) specified by the sensors 

manufacturers due to the higher corn height this year and the fact that we didn’t have extensions 

longer enough at that time.  

Table 55. r2 values of regression models for 2013 corn GreenSeeker V12 sensing. 

Model† Red  red×tapeHeight  redEdge  redEdge×tapeHeight  redEdge×sensorHeight  

Linear 0.160 NS 0.110 NS NS 

Polynomial 2 NS 0.178 NS 0.198 0.133 

† NS means model is not significant at 0.05 significance level; otherwise model is significant at 
0.05 significance level. 

Table 56. r2 values of regression models for 2013 corn Crop Circle V12 sensing. 

Model† redEdge×tapeHeight  redEdge×sensorHeight  red  red×tapeHeight  

Linear NS NS 0.138 NS 

Polynomial 2 0.213 0.129 NS 0.167 

† NS means model is not significant at 0.05 significance level; otherwise model is significant at 
0.05 significance level. 

V6 Sensing Data Regression, 2012 and 2013 

Significant linear and exponential models with very high r2 values were found for all 

types of INSEY or INSEY × height, with the linear models slightly outperforming the 

corresponding exponential models. So in this case, either linear model or exponential model was 

a good choice. Table 57 lists the r2 values for all linear models. From this table we can see that 

instead of improving the performance of the regression models, the plant height information 

decreased all the corresponding models r2 values. Figure 59, Figure 60, and Figure 61 illustrate 

the best model for each type of INSEY.  
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Table 57. r2 values of linear models for all site-year corn ground-based V6 sensing. 

Model† GS red GS 
red×tapeHeight 

CC 
redEdge 

CC redEdge×tapeHeight CC red CC 
red×tapeHeight 

Linear 0.844 0.693 0.804 0.667 0.822 0.688 

† Model is significant at 0.05 significance level. 

 

Figure 59. Relationship between 2012 and 2013 two-year corn GS V6 red INSEY and dry grain 
yield. 

 

Figure 60. Relationship between 2012 and 2013 two-year corn CC V6 red edge INSEY and dry 
grain yield. 
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Figure 61. Relationship between 2012 and 2013 two-year corn CC V6 red INSEY and dry grain 
yield. 

V12 Sensing Data Regression, 2012 and 2013 

Three significant quadratic polynomial regression models with plant height information 

included were found, as listed in Table 58. All these models have low r2 values. This was most 

probably due to the inconsistency in V12 growth stage sensing data collection, as in that stage 

the corn height was unfavorable for using the best sensing distance. This adverse factor 

influenced not only the r2 values but also the model type. 

Table 58. r2 values of quadratic polynomial models for all site-year corn ground-based V12 
sensing. 

Model† GS red×tapeHeight CC redEdge×tapeHeight CC red×tapeHeight 

Polynomial 2 0.279 0.263 0.270 

† Model is significant at 0.05 significance level. 
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Relating Yield to Satellite Imagery Data 

Satellite Imagery Regression Analysis, 2012 

Two 2012 RapidEye satellite imagery data sets, one from Durbin August 16 and the other 

from Valley City August 10, were pooled for regression analysis. Each of the four types spectral 

INSEY was statistically related to 2012 corn adjusted dry grain yield. Red INSEY and Green 

INSEY were found to be very effective corn yield predictors when exponential models or linear 

models were adopted. Exponential models slightly outperformed the corresponding linear 

models. Figure 62 and Figure 63 illustrate these two highly significant exponential models that 

have very high r2 values. An existing research found that cumulative NDVI from satellite 

imagery had strong linear relationship with the corn grain yield (Mkhabela et al., 2005), but no 

existing researches were found regarding the relationship between satellite imagery INSEY and 

corn grain yield.  
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Figure 62. Relationship between 2012 corn satellite imagery red INSEY and dry grain yield. 

 

 

Figure 63. Relationship between 2012 corn satellite imagery green INSEY and the dry grain 
yield. 
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Satellite Imagery Regression Analysis, 2013 

In 2013 two satellite imagery INSEY data sets and corresponding adjusted dry grain yield 

data sets were pooled together for regression analysis. One imagery INSEY data is from Arthur 

June 24, and the other from Valley City July 21. Statistical regression analysis results indicate 

that no significant relationships were found between this year’s satellite imagery INSEY and 

corn yield. This is partly because of the light cloud haze over Valley City corn site on the space 

sensing day. However, significant exponential relationships with very high r2 values between 

each types of INSEY but the blue INSEY of Arthur June 24 imagery and corn yield were 

revealed, as illustrated in Figure 64 through Figure 66.  

 

Figure 64. Relationship between 2013 Arthur June 24 corn satellite imagery red INSEY and the 
dry grain yield. 
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Figure 65. Relationship between 2013 Arthur June 24 corn satellite imagery red edge INSEY and 
the dry grain yield. 

 

Figure 66. Relationship between 2013 Arthur June 24 corn satellite imagery green INSEY and 
dry grain yield. 

Satellite Imagery Regression Analysis, 2012 and 2013 

All site-year pooled data, which are the combination of 2012 data and 2013 data 

described above, were subject to regression analysis to find out if there are significant 

y = 5.5429e560.17x

R² = 0.8441
p-value = 0.0096

6

6.5

7

7.5

8

8.5

2.E-04 3.E-04 4.E-04 5.E-04 6.E-04 7.E-04

D
ry

 g
ra

in
 y

ie
ld

 (
M

g/
h

a)

2013 Arthur June 24 satellite imagery red edge INSEY

y = 4.3494e501.36x

R² = 0.8811
p-value = 0.0055

6

6.5

7

7.5

8

8.5

7.E-04 8.E-04 9.E-04 1.E-03 1.E-03 1.E-03

D
ry

 g
ra

in
 y

ie
ld

 (
M

g/
h

a)

2013 Arthur June 24 satellite imagery green INSEY



 

117 
 

relationships between satellite imagery INSEY and corn yield. Except blue INSEY, all types of 

INSEY have significant and strong exponential relationships with corn grain yield, as illustrated 

in Figure 67 through Figure 69.  

 

Figure 67. Relationship between 2012 and 2013 corn satellite imagery green INSEY and dry 
grain yield. 

 

Figure 68. Relationship between 2012 and 2013 corn satellite imagery red edge INSEY and dry 
grain yield. 
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Figure 69. Relationship between 2012 and 2013 corn satellite imagery green INSEY and dry 
grain yield. 

Conclusions 

Both the ground-based active optical sensing data and the passive satellite imagery data 

have strong potential for in-season corn yield prediction and hence site-specific N deficiency and 
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RESULTS AND DISCUSSIONS FOR SUNFLOWER 

Valley City Oilseed Sunflower Data Analysis 

ANOVA Analysis of the Yield and Quality 

ANOVA analysis results for 2012 and 2013 Valley City NuSun oilseed sunflower dry 

seed yield and oil% per 10% moisture are listed in Table 59. Yield was adjusted using the plant 

stand information. Except 2012 yield, no significant influence of N application rate was found. 

The appendix table A16 indicates that there was very high total nitrate residual in 2013 Valley 

City sunflower site, which explained why in 2013 the yield and oil content was not significantly 

affected by N rate. In Valley City 2012, the soil test (Appendix Table A14) showed that the 

percentage of organic matter was very high and was more than twice that of Valley City 2013. 

Higher organic matter content implies higher N source for plant. This might explain why no 

significant influence of N rate on oil content of 2012 Valley City. Existing research did find 

significant influence of N rate on oilseed sunflower oil content (Mollashahi et al., 2013). 

Yield Regression Analysis, 2012 

Our regression analysis based two-site data of 2012 indicated that no significant 

relationships were found between dry seed yield and ground-based optical active sensing V6-8 

INSEY. This probably because at V6-8 stage, the sunflowers were still very small and the optical 

sensing were greatly and adversely influenced by soil background. Another possible reason 

might be that the selected sensing samples were not good enough to be used as representatives. 
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Highly significant exponential models and linear models with high r2 values, however, were 

found between dry seed yield and the INSEYs from satellite imagery of August 10, 2012, as 

summarized in Table 60. This was reasonable as in August the biomass of sunflower was already 

very dense. Except the green INSEY, all other types of INSEY were found to be very good 

predictors of the yield. The exponential models and the linear models have similar performance. 

Pena-Barragan et al. (2010) also found a significant linear relationship between remote sensing 

data of aerial photography and sunflower yield, but their study used absolute NDVI instead of 

normalized INSEY. Figure 70 illustrates the exponential relationship between yield and blue 

INSEY. 

 

Table 59. ANOVA analysis of Valley City oilseed sunflower yield and quality. 

N rate 
(kg ha-1) 

2012 2013 

yield 
(Mg ha-1) 

Oil content 
(%) 

yield 
(Mg ha-1) 

Oil content 
(%) 

0 1915ab† 46.05a 2476a 41.00a 

45 2282bc 46.00a 2881a 40.29a 

90 1750a 46.29a 2405a 41.23a 

135 2319bc 44.99a 2242a 40.59a 

180 2698c 45.61a 3041a 40.61a 

225 2664c 45.16a 3007a 41.31a 

† Means with the same letter in the same column are not significantly different at the 0.05 significance level based 

on LSD t-test. 

Table 60. r2 values of the relationships between 2012 Valley City sunflower dry seed yield and 
satellite imagery INSEY. 

Model† red INSEY red edge INSEY blue INSEY 

Exponential 0.768 0.721 0.826 

Linear 0.788 0.712 0.816 

† Model is significant at 0.05 significance level. 
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Figure 70. Relationship between 2012 Valley City sunflower seed yield and satellite imagery 
blue INSEY. 

Yield Regression Analysis, 2013 

No significant relationships were found between dry seed yield and ground-based optical 

active sensing V6-8 INSEY. Similar reasons as mentioned above can be said for this result. A 
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illustrates the exponential relationship between yield and green INSEY. 
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Figure 71. Relationship between 2012 Valley City sunflower seed yield and satellite imagery 
green INSEY. 

Yield Regression Analysis, 2012 and 2013 

No significant relationships were found between Valley City sunflower seed yield and 

pooled two site-years ground-based sensing INSEY. Poor performance in each individual year 

explained the poor performance for combined two-year data. Highly significant exponential and 

linear relationships between yield and pooled satellite imagery red INSEY or green INSEY were 

found, as illustrated in Table 61 and Figure 72.  
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Figure 72. Relationship between 2012 and 2013 Valley City sunflower seed yield and satellite 
imagery green INSEY. 
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Oil Content Regression Analysis, 2013 

No significant relationships were found between ground-based active sensing V12-16 
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Theoretically, oil content was expected to have a positive correlation with remote sensing 

INSEY. This kind of quadratic polynomial trend might be the result of 1) cloud and haze effects 

on the satellite imagery, 2) harvest samples were not representative enough, and 3) one-year data 

was not enough.  

 

Figure 73. Relationship between 2013 Valley City sunflower seed oil content and satellite 
imagery green INSEY. 

Oil Content Regression Analysis, 2012 and 2013 

Analysis of the pooled two site-year INSEY data and oil content data revealed that 

GreenSeeker red INSEY, Crop Circle red edge INSEY, satellite red INSEY, and satellite red 

edge INSEY are valid predictors of sunflower seed oil content, as summarized in Table 62. 

Compared to the results of each individual year, it seems that at least two-year data were 

necessary for finding reliable regression models. Figure 74 illustrates the linear relationship 
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Table 62. r2 values of the relationships between 2012 and 2013 Valley City sunflower dry seed 
oil content and INSEY. 

Model† GS 
red 

INSEY 

CC 
red edge 
INSEY 

Satellite 
red 

INSEY 

Satellite 
Red edge 
INSEY 

Exponential 0.320 0.549 0.763 0.751 
Linear 0.316 0.550 0.772 0.755 

† Model is significant at 0.05 significance level. 

 

Figure 74. Relationship between 2012 and 2013 sunflower oil content and Crop Circle red edge 
V12-16 INSEY. 
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Residual nitrate in 2013 Cummings site was low, as indicated by the soil test results shown in 

Appendix Table A15. Best sunflower seed yield and qualities were all found when 135 kg ha-1 N 

rate was applied, even when the treatment was not a significant influential factor. This implies 

two possible facts: over application of N may result in reduced sunflower seed yield, and one of 

the other nutrients or conditions may become the most limiting factor for sunflower growth.  

Table 63. ANOVA analysis of 2012 and 2013 Cummings confectionery sunflower seed yield and 
quality. 

Year N rate 
(kg ha-1) 

Yield 
(Mg ha-1) 

Length 
(mm) 

Width 
(mm) 

Meat/shell 
0.87 cm 

content (%) 

2012 

0 2288a† 15.95bc 8.74b 1.01a 69.44a 

45 2541a 16.22abc 9.12a 0.92a 81.24a 

90 2094a 16.26abc 8.93ab 0.98a 77.41a 

135 2095a 15.87c 8.81ab 0.94a 74.67a 

180 2252a 16.47ab 8.97ab 1.02a 80.87a 

225 2509a 16.57a 8.91ab 0.95a 81.88a 

2013 

0 1616a 15.37a 8.53a 0.88a 33..14a 

45 2168ab 15.37a 8.80a 0.90a 48.61ab 

90 2217abc 15.76a 8.78a 0.95a 58.58b 

135 2866c 16.41a 9.04a 1.14b 82.58c 

180 2737bc 16.33a 8.92a 0.99ab 79.92c 

225 2862c 16.38a 8.94a 1.01ab 66.20bc 

† Means with the same letter in the same column for the same year are not significantly different at the 0.05 

significance level based on LSD t-test. 

Yield Regression Analysis, 2012 

The r2 values for the significant exponential relationships between 2012 Cummings 

sunflower seed yield and INSEY were summarized in Table 64. Only one significant exponential 

regression model using ground-based sensing INSEY was found. All the rest models were based 

on satellite imagery INSEY. Although all the listed models were highly significant, their r2 
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values were not that satisfying. One site-year data might not be enough for having reliable 

discoveries. Also harvest was conducted on only one row for each treatment in each replication, 

implying that data might not always be reliable or representative.  

Table 64. r2 values of the exponential relationships between 2012 Cummings sunflower dry seed 
yield and INSEY. 

†GS  
red  

V8 INSEY 

Sat July01 
Red 

INSEY 

Sat July01 
Blue INSEY 

Sat July01 
Green INSEY 

Sat Aug16 
Red 

INSEY 

Sat Aug16 
Red edge 
INSEY 

Sat Aug16 
blue 

INSEY 

0.309 0.242 0.320 0.310 0.353 0.266 0.297 

† Model is significant at 0.05 significance level. 

Maximum Length Regression Analysis, 2012 

Only one significant quadratic polynomial relationship (r2=0.382) between Cummings 

2012 sunflower seed maximum length and green INSEY of July 1 satellite imagery was found. 

The quality tests were conducted using even smaller number of samples, making the interested 

relationships weak or trend abnormal when data were not representative. 

Maximum Width Regression Analysis, 2012 

A significant linear relationship (r2=0.169) between Cummings 2012 sunflower seed 

maximum width and blue INSEY of July 1 satellite imagery, and a significant quadratic 

polynomial relationship (r2=0.876) between Cummings 2012 sunflower seed maximum width 

and red edge INSEY of August 16 satellite imagery were found. 
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Meat to Shell Ratio Regression Analysis, 2012 

Only a significant exponential relationship (r2=0.188) between Cummings 2012 

sunflower seed meat to shell ratio and red INSEY of August 16 satellite imagery was found. 

0.87 cm Content Regression Analysis, 2012 

Two significant quadratic polynomial relationships between Cummings 2012 sunflower 

22/64'' content and red edge INSEY from Crop Circle (r2=0.971) and August 16 satellite imagery 

(r2=0.924), respectively, were found. Figure 75 illustrates the first regression model. Notice that 

the 0.87 cm content first increases with INSEY and then declines with the increase of INSEY. 

We don’t believe this trend is normal because as mentioned earlier, quality test sample numbers 

were very small, and also this was just one site-year data.  

 

Figure 75. Relationship between Cummings 2012 sunflower 0.87 cm content and V12-16 CC red 
edge INSEY. 
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Yield Regression Analysis, 2013 

No INSEYs from satellite imagery were found to be valid predictors of Cummings 2013 

sunflower seed yield. This was mainly due to the bad influence of cloud and haze on the quality 

of satellite imagery. This reason applied also to the results in the following sections. However, 

there existed highly significant exponential and linear relationships with very high r2 values 

between yield and ground-based active V6-8 sensing INSEYs, as summarized in Table 65 and 

Table 66. Results in these two tables show that GreenSeeker and Crop circle performed 

similarly, and that the exponential models and linear models performed similarly. These results 

indicate that strong positive correlation exists between V6-8 ground-based optical sensing 

INSEY and sunflower seed yield. The plant height measured either by tape or by height sensor 

didn’t help improve the original models’ performance. The plant height data colleting methods 

need to be improved in that when using tape only three representative samples were measured 

and when using height sensor the bumpy soil surface greatly influenced the measured height data 

at the time when sunflower was still very small.  Figure 76 and Figure 77 illustrate two 

significant linear regression models, one based on GS red INSEY and the other based on CC red 

edge INSEY.  
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Table 65. r2 values of the relationships between 2013 Cummings sunflower seed yield and GS 
V6-8 INSEY. 

Model† 
Red  

INSEY 
Red INSEY×
tapeHeight 

Red  
INSEY× 

sensorHeight 

Red edge 
INSEY 

Red edge 
INSEY× 

tapeHeight 

Red edge 
INSEY× 

sensorHeight 
Exponential 0.938 0.907 0.888 0.910 0.890 0.872 

Linear 0.945 0.931 0.900 0.921 0.916 0.886 

† Model is significant at 0.05 significance level. 

Table 66. r2 values of the relationships between 2013 Cummings sunflower seed yield and CC 
V6-8 INSEY. 

Model† 
Red  

INSEY 
Red INSEY×
tapeHeight 

Red  
INSEY× 

sensorHeight 

Red edge 
INSEY 

Red edge 
INSEY× 

tapeHeight 

Red edge 
INSEY× 

sensorHeight 
Exponential 0.930 0.908 0.882 0.936 0.909 0.890 

Linear 0.927 0.927 0.890 0.940 0.931 0.901 

† Model is significant at 0.05 significance level. 

 

Figure 76. Relationship between Cummings 2013 sunflower seed yield and GS V6-8 red INSEY. 
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Figure 77. Relationship between Cummings 2013 sunflower seed yield and CC V6-8 red edge 
INSEY. 

Maximum Length Regression Analysis, 2013 

No INSEYs from satellite imagery were found to be valid predictors of Cummings 2013 

sunflower seed maximum length. Highly significant quadratic polynomial relationships with 

very high r2 values between Cummings 2013 sunflower seed maximum length and CC V12-16 

INSEY were found, as summarized in Table 67. Tape-measured plant height slightly improved 

the performance of the regression models. Figure 78 illustrates the quadratic polynomial 

relationship between seed maximum length and CC red edge INSEY × tapeHeight, indicating the 

positive correlation between INSEY and sunflower maximum length.  
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Table 67. r2 values of the quadratic polynomial relationships between 2013 Cummings sunflower 
seed maximum length and CC V12-16 INSEY. 

†Red  
INSEY 

Red INSEY× 
tapeHeight 

Red edge 
INSEY× 

 

Red edge 
INSEY× 

tapeHeight 

Red edge  
INSEY× 

sensorHeight 
0.956 0.964 0.944 0.982 0.865 

† Model is significant at 0.05 significance level. 

 

Figure 78. Relationship between Cummings 2013 sunflower seed maximum length and CC V12-
16 red edge INSEY × tapeHeight. 

Maximum Width Regression Analysis, 2013 

No INSEYs from satellite imagery were found to be valid predictors of Cummings 2013 

sunflower seed maximum width. Highly significant exponential and linear relationships with 

very high r2 values between Cummings 2013 sunflower seed maximum width and ground-based 

optical sensing V12-16 INSEYs were found, as summarized in Table 68 and Table 69. Plant 

height information was shown to be very useful in improving the regression models’ 

performance. Plant height measured by sensor performed a little bit better than that measured by 
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tape. At the sunflower V12-16 stage, the height sensor can take more consistent and 

representative readings. Figure 79 illustrates the linear relationship between seed maximum 

width and CC V12-16 red edge INSEY × sensorHeight.  

Table 68. r2 values of the relationships between 2013 Cummings sunflower seed maximum width 
and GS V12-16 INSEY. 

Model† 
Red  

INSEY 
Red INSEY× 
tapeHeight 

Red  
INSEY× 

sensorHeight 
Exponential 0.719 0.886 0.889 

Linear 0.712 0.881 0.894 

† Model is significant at 0.05 significance level. 

Table 69. r2 values of the relationships between 2013 Cummings sunflower maximum width and 
CC V12-16 INSEY. 

Model† 
Red  

INSEY 
Red INSEY×
tapeHeight 

Red  
INSEY× 

sensorHeight 

Red edge 
INSEY 

Red edge 
INSEY× 

tapeHeight 

Red edge 
INSEY× 

sensorHeight 
Exponential 0.839 0.918 0.933 0.870 0.918 0.935 

Linear 0.832 0.913 0.937 0.865 0.914 0.937 

† Model is significant at 0.05 significance level. 

 

Figure 79. Relationship between Cummings 2013 sunflower seed maximum width and CC V12-
16 red edge INSEY × sensorHeight. 

y = 2236x + 7.7476
R² = 0.9373

p-value = 0.0015

8.4

8.5

8.6

8.7

8.8

8.9

9

9.1

3.00E-04 4.00E-04 5.00E-04 6.00E-04 7.00E-04

M
ax

im
u

m
 w

id
th

 (
m

m
)

Cummings 2013 sunflower CC V12-16 red edge 
INSEY×sensorHeight



 

134 
 

Meat to Shell Ratio Regression Analysis, 2013 

No INSEYs from satellite imagery were found to be valid predictors of Cummings 2013 

sunflower seed meat to shell ratio due to the bad quality of this year’s satellite imagery. Several 

ground-based optical sensing INSEY × sensorHeights demonstrated strong ability in predicting 

meat to shell ratio, as summarized in Table 70. All these significant models took great advantage 

of the plant height information measured by height sensor as their corresponding original models 

without plant height information included were not significant. At later growth stage when 

sunflower were very big, the height sensor could perform its best in data measurement and 

collecting and thus contribute positively to the model performance. Figure 80 illustrates the 

polynomial quadratic relationship between meat to shell ratio and CC V12-16 red INSEY × 

sensorHeight. 

Table 70. r2 values of the relationships between 2013 Cummings sunflower meat to shell ratio 
and ground-based sensing V12-16 INSEY. 

Model† 
GS red  

INSEY×sensorHeight 
CC red  

INSEY×sensorHeight
CC red edge 

INSEY×sensorHeight 

Exponential 0.960 0.937 0.909 

Linear 0.954 0.921 0.887 

Polynomial 2 NS 0.997 0.994 

† NS means model is not significant at 0.05 significance level; otherwise model is significant at 
0.05 significance level. 
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Figure 80. Relationship between Cummings 2013 sunflower seed meat to shell ratio and CC 
V12-16 red INSEY×sensorHeight. 

0.87 cm Content Regression Analysis, 2013 

No INSEYs from satellite imagery were found to be valid predictors of Cummings 2013 

sunflower seed 0.87 cm content due to bad satellite imagery quality. Highly significant 

exponential and linear relationships with very high r2 values between Cummings 2013 sunflower 

seed 0.87 cm content and ground-based optical sensing V12-16 INSEYs were found, as 

summarized in Table 71 and Table 72. Plant height at this growth stage proved to be effective in 

improving r2 values of the regression models. 0.87 cm content is a comprehensive size index. Its 

results in this section agree with those for the maximum length and maximum width. Figure 81 

illustrates the exponential relationship between 0.87 cm content and CC V12-16 red edge INSEY 

× tapeHeight. 
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Pooled Data Regression Analysis, 2012 and 2013 

Due to the extremely poor performance of Cummings 2012 ground-based sensing INSEY 

and poor performance of Cummings 2013 satellite imagery INSEY, only a few significant 

regression models were found when relating the two site-year pooled INSEY to sunflower seed 

yield or qualities. Specifically, only a few valid ground-based sensing predictors were found for 

seed yield, maximum width, and 0.87cm content, as summarized in Table 73. No valid predictors 

were found for seed maximum length and meat to shell ratio.  

Table 71. r2 values of the relationships between 2013 Cummings sunflower seed 0.87 cm content 
and GS V12-16 INSEY. 

Model† 
Red INSEY× 
tapeHeight 

Red  
INSEY× 

sensorHeight 
Exponential 0.733 0.785 

Linear NS 0.796 

† Model is significant at 0.05 significance level. 

Table 72. r2 values of the relationships between 2013 Cummings sunflower 0.87 cm content and 
CC V12-16 INSEY. 

Model† 
Red  

INSEY 
Red INSEY×
tapeHeight 

Red  
INSEY× 

sensorHeight 

Red edge 
INSEY 

Red edge 
INSEY× 

tapeHeight 

Red edge 
INSEY× 

sensorHeight 
Exponential 0.816 0.877 0.879 0.887 0.915 0.905 

Linear 0.700 0.779 0.880 0.795 0.835 0.900 

† Model is significant at 0.05 significance level. 
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Figure 81. Relationship between Cummings 2013 sunflower seed 0.87 cm content and CC V12-

16 red edge INSEY × tapeHeight 

Table 73. r2 values of the relationships between 2012 and 2013 two-year Cummings sunflower 
yield or quality and INSEY. 

Model† 

Yield Maximum width 0.87 cm content 

GS V6-8  
Red 

INSEY 

CC V12-16 red 
edge INSEY 

CC V12-16 red 
INSEY 

CC V12-16 red 
edge INSEY 

CC V12-16 red 
INSEY 

Exponential 0.897 0.762 0.813 0.873 0.734 

Linear 0.879 0.761 0.812 0.847 0.695 

† Model is significant at 0.05 significance level. 

Conclusions 

Strong relationships found between remote sensing INSEY and sunflower seed or quality 

indices implied that using these significant models, farmers can predict their sunflower seed 

yield early season and predict sunflower quality indices in mid-season. Variable N deficiency 

and N requirement can be detected and the sensors could be used to direct an in-season N 

application. Precision N management at a scale of applicator width times length of row to 

y = 2.4631e724.9x
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integrate sensor readings are therefore possible. Including plant height information at the V12-16 

stage was shown to be very useful in improving regression model performance. This was not the 

case for height measured at the early season. Improving plant height measurement at early 

season might increase the positive effects of plant. More site-year data is necessary for validating 

the above-mentioned conclusions and finding the best consistent regression models. 
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GENERAL CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

Strong statistical relationships found between remote sensing INSEY and all crops yield 

or quality indices support the feasibility and great potential of using optical sensing data to 

predict crop yield and quality in season, and to detect in-season N application needs, rates, and 

places. These easy-to-use prediction technologies and models can benefit the farmers, the 

relevant big companies, and the environment as well through improved NUE and optimized 

logistics activities. Table 74 summarizes the r2 values of the best models in terms of both r2 value 

and model consistence based on the combined two-year data with an exception being sugar beet 

top total N had only one-year data. Overall the exponential models and linear models were more 

consistent and reliable, which conforms to the most relevant existing researches (Raun et al., 

2002; Raun et al., 2005; Gehl and Boring, 2011; Inman et al., 2007; Li et al., 2009; Lofton et al., 

2012b). Additional site-years of data are necessary for better regression model validation, 

selection, and correction to ensure that the selected models can be used over wide areas and 

years. Also, with more data available, it may be worthwhile to explore more complicated 

prediction approaches such as crop growth models, multiple regression, nonlinear regression, 

artificial neural networks, and support vector machines.  

Currently, there are no strong and enough evidences to indicate which NDVI (INSEY) 

source, GreenSeeker, Crop Circle, or RapidEye satellite imagery, is significantly better than 

others. This conclusion was supported by Table 74 to a large extent. Each type of remote sensing 

system has its own advantages and disadvantages. Ground-based active optical sensing can be 
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conducted almost any time, but its use usually only collects a small number of samples. On the 

contrary, passive satellite imagery can only be obtained at certain days and is strongly and 

adversely influenced by the cloud or haze, but it can cover a very large area efficiently with all 

samples included. Incorporating both sources of information in prediction models may improve 

prediction accuracy.  

Table 74. Summary of r2 values of the best models for each sensing system, each crop, and each 
yield or quality index. 

crop sugar beet spring wheat corn oilseed sunflower confectionery sunflower 

index 
root 
yield RSY§§ 

Top 
Total N 

yield 
protein 
content 

yield yield 
oil 

content 
yield 

Max. 
width 

0.87 cm 
content 

GS 
0.917 

(E†) 

0.907 

(Q‡) 
0.760 
(E) 

0.961 

(L§) 
0.800 (E) 

0.844 
(L) /†† 

0.320 
(E) 

0.897 
(E) 

/ / 

CC 
0.881 
(E) 

0.963 
(Q) 

0.820 
(E) 

0.963 
(E) 

0.816 (E) 
0.822 
(L) 

/ 
0.550 
(L) 

/ 
0.813 
(E) 

0.873 
(E) 

RSI* 
0.588 
(L) 

0.449 
(E) 

0.957 
(L) 

0.975 
(Q) 

0.678 (L) 
0.779 
(E) 

0.824 
(E) 

0.755 
(E) 

/ / / 

*RapidEye satellite imagery 

†Exponential model 

‡Quadratic polynomial model 

§Linear model 

§§Recoverable sugar yield 

††No significant models found. 

Plant height information performed inconsistently in improving models efficiency. This 

is probably due to five reasons: 1) height data collection methods themselves were inconsistent 

or unreliable, 2) impact of extremely different weather conditions after measurements were 

obtained, 3) the multiplication method we used when incorporating height information into the 

prediction model may not be the best or most consistent, 4) NDVI data collection was not 

reliable, and 5) experimental data was too limited for thorough investigation.  
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An alternative crop yield or quality predictor to INSEY is the N-rich-strip-based relative 

NDVI (Dellinger et al., 2008; Inman et al., 2007), which is worthy of trial in the future. Other 

measures that can be considered for improving prediction models performance in the future 

include but not limited to: classifying the INSEY data based on soil texture type before 

constructing the models; keep constant distance of the ground-based sensors from plant top; use 

other sources of satellite imagery with better quality.  
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APPENDIX 

Table A1. Soil test results for Amenia sugar beet site in 2012 

Depth 
(inches) 

NO3-N  
(kg ha-1) 

P  
(ppm) 

K  
(ppm) 

pH 
 

OM  
(%) 

Zn  
(ppm) 

0-6 58 9 380 7.6 4.9 0.65 

6-24 94 /† / / / / 

† No data. 

Table A2. Soil test results for Crookston sugar beet site in 2012 

Depth 
(inches) 

NO3-N  
(kg ha-1) 

P  
(ppm) 

K  
(ppm) 

pH 
 

OM  
(%) 

0-6 15 9 300 7.4 4.9 

6-24 20 /† / / / 

† No data. 

Table A3. Soil test results for Casselton sugar beet site in 2013 

Depth 
(inches) 

NO3-N  
(kg ha-1) 

P  
(ppm) 

K  
(ppm) 

pH 
 

OM  
(%) 

Zn  
(ppm) 

0-6 43 7 370 7.6 5.4 0.37 

6-24 111 /† / / / / 

No data. 

Table A4. Soil test results for Thompson sugar beet site in 2013 

Depth 
(inches) 

NO3-N  
(kg ha-1) 

P  
(ppm) 

K  
(ppm) 

pH 
 

OM  
(%) 

Zn  
(ppm) 

0-6 15 10 225 7.8 5.7 1.10 

6-24 74 /† / / / / 

† No data. 

Table A5. Soil test results for Gardner spring wheat site in 2012 

Depth 
(inches) 

NO3-N  
(kg ha-1) 

P  
(ppm) 

K  
(ppm) 

pH 
 

OM  
(%) 

Zn  
(ppm) 

0-6 30 24 185 7.5 5.3 1.15 

6-24 50 /† / / / / 

† No data. 
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Table A6. Soil test results for Valley City spring wheat site in 2012 

Depth 
(inches) 

NO3-N  
(kg ha-1) 

P  
(ppm) 

K  
(ppm) 

pH 
 

OM  
(%) 

Zn  
(ppm) 

0-6 31 32 128 5.4 3.8 1.10 

6-24 37 /† / / / / 

† No data. 

Table A7. Soil test results for Gardner spring wheat site in 2013 

Depth 
(inches) 

NO3-N  
(kg ha-1) 

P  
(ppm) 

K  
(ppm) 

pH 
 

OM  
(%) 

0-6 28 16 245 5.6 4.8 

6-24 104 /† / / / 

† No data. 

Table A8. Soil test results for Valley City spring wheat site in 2013 

Depth 
(inches) 

NO3-N  
(kg ha-1) 

P  
(ppm) 

K  
(ppm) 

pH 
 

OM  
(%) 

0-6 34 16 245 5.6 4.8 

0-24* 143 /† / / / 

* No soil residual nitrate for 6-24 inches soil was tested. 
† No data. 

Table A9. Soil test results for Durbin corn site in 2012 

Depth 
(inches) 

NO3-N  
(kg ha-1) 

P  
(ppm) 

K  
(ppm) 

pH 
 

OM  
(%) 

Zn  
(ppm) 

0-6 24 40 650 7.4 5.4 0.77 

6-24 20 /† / / / / 

† No data. 

Table A10. Soil test results for Valley City corn site in 2012 

Depth 
(inches) 

NO3-N  
(kg ha-1) 

P  
(ppm) 

K  
(ppm) 

pH 
 

OM  
(%) 

Zn  
(ppm) 

0-6 40 8 275 6.3 3.9 0.39 

6-24 47 /† / / / / 

† No data. 
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Table A11. Soil test results for Arthur corn site in 2013 

Depth 
(inches) 

NO3-N  
(kg ha-1) 

P  
(ppm) 

K  
(ppm) 

pH 
 

OM  
(%) 

Zn  
(ppm) 

0-6 12 11 270 7.9 4.7 1.44 

6-24 54 /† / / / / 

† No data. 

Table A12. Soil test results for Valley City corn site in 2013 

Depth 
(inches) 

NO3-N  
(kg ha-1) 

P  
(ppm) 

K  
(ppm) 

pH 
 

OM  
(%) 

Zn  
(ppm) 

0-6 31 18 150 6.1 4.5 0.78 

6-24 57 /† / / / / 

† No data. 

Table A13. Soil test results for Cummings sunflower site in 2012 

Depth 
(inches) 

NO3-N  
(kg ha-1) 

P  
(ppm) 

K  
(ppm) 

pH 
 

OM  
(%) 

0-6 58 9 380 4.9 0.65 

6-24 94 /† / / / 

† No data. 

Table A14. Soil test results for Valley City sunflower site in 2012 

Depth 
(inches) 

NO3-N  
(kg ha-1) 

P  
(ppm) 

K  
(ppm) 

pH 
 

OM  
(%) 

0-6 35 8 275 3.9 6.3 

6-24 47 /† / / / 

† No data 

Table A15. Soil test results for Cummings sunflower site in 2013 

Depth 
(inches) 

NO3-N  
(kg ha-1) 

P  
(ppm) 

K  
(ppm) 

pH 
 

OM  
(%) 

0-6 13 24 160 8.2 4.9 

6-24 30 /† / / / 

† No data. 
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Table A16. Soil test results for Valley City sunflower site in 2013 

Depth 
(inches) 

NO3-N  
(kg ha-1) 

P  
(ppm) 

K  
(ppm) 

pH 
 

OM  
(%) 

0-6 22 21 270 6.0 3.1 

6-24 155 /† / / / 

† No data. 


