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ABSTRACT 

Megachile rotundata is a solitary cavity nesting bee that is the primary commercial 

pollinator of alfalfa in North America.  During prepupal to adult development, they may be 

exposed to fungal, parasitic, and bacterial pathogens.  However, little is known about their 

immune function throughout pupation.  We characterized functional immunity of M. rotundata 

across development stages.  We injected prepupal, pupal, and adult bees with live E. coli and 

compared mortality across groups.  We also developed an assay to measure antimicrobial peptide 

(AMP) activity in hemolymph for the same age groups.  Both pupal and prepupal bees are 

sensitive to injected E. coli, resulting in high mortality, while adult bees survived longer after 

infection.  Pupal bees had significantly less AMP activity compared to prepupae and adults.  

Understanding immunity of M. rotundata will provide context for improving commercial rearing 

practices, where measuring AMP activity can now serve as a biological marker of bee quality. 
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CHAPTER 1. LITERATURE REVIEW OF MEGACHILE ROTUNDATA AND INSECT 

IMMUNITY 

1.1.      Megachile rotundata  

1.1.1. Natural history of Megachile rotundata 

 Megachile rotundata is a solitary, cavity-nesting bee.  They are native to Eurasia, but 

now also inhabit North America, ranging from Canada south to New Mexico (Stephen, 2003).  

Adult bees emerge in late June and pollinate through July (Klostermeyer and Gerber, 1969).  

Females mate within a week of emergence (Richards, 1994) and begin pollinating and 

constructing brood cells, which are capsules constructed from leaves and lined with silk-like 

adhesive, provisioned with pollen and nectar stores before oviposition.  Female bees naturally 

build nests in existing holes and construct the brood cells in series (Pitts-Singer and Cane, 2011).  

Each brood cell takes an average of 7.5 hours to complete and provision, and females lay one to 

two eggs per day (Klostermeyer and Gerber, 1969).  Males are positioned closer to the openings 

of the nest cavity by the mother, as they emerge from their leaf capsules before the females 

(Pitts-Singer and Cane, 2011).  Females are 60% larger (Yocum et al., 2011), because males 

receive on average of 17% less food provision by mass (Owen and McCorquodale, 1994).  

Females are able to control the sex of the eggs they lay by either fertilizing them, making them 

female, or not fertilizing them, making them male (Klostermeyer, 1973).   

 After hatching, the larvae consume their food provisions, progressing through five larval 

stages within the leaf capsule (Pitts-Singer and Cane, 2011).  Prepupae overwinter in a state of 

suspended development called diapause.  After diapause, the prepupae progress to a stage called 

post-diapause quiescence, which can last up to eight months.  During this stage, development can 

resume as spring temperatures increase (Richards et al., 1987).  Metamorphosis takes about four 
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to six weeks in a natural environment (Kemp and Bosch, 2000).  Bees undergoing 

metamorphosis exhibit several developmental markers including molting to pupae, acquiring 

eye-pigmentation, undergoing sclerotization (a darkening and hardening of the cuticle), finally 

reaching adulthood, and emerging.  Trostle & Torchio (1994) observed that pharate adults 

remain in the brood cell with proboscis and wings fully extended for two to three days before the 

wings harden.  Once development is complete, adult bees chew through their leaf capsule and 

emerge to mate and begin the next year’s cycle.  During development and pupation, M. 

rotundata may face immune challenges of Pteromalus venustus parasitoid wasps or chalkbrood 

fungus Ascosphaera apis.  

  

1.1.2. Commercial management of the alfalfa leafcutting bee 

 Management of M. rotundata as a key pollinator species for the alfalfa industry has been 

a large motivating factor in studying this bee.  Their natural life cycle, especially their prepupal 

overwintering phase, has been challenging to deal with in rearing practices, but current protocols 

aim to balance bee survival with pollination rates. Adult bees that emerge in an appropriate field 

stay within 100 m of their nest, moving pollen from flower to flower by an average distance of 4 

m (Amand et al., 2000).  Foraging females collecting nectar and pollen provisions ensure high 

crop yields, tripping 78% of alfalfa flowers visited (Cane, 2002).  Under favorable conditions, a 

single female accounts for more than a pound of alfalfa seed production (Cane, 2002).  

Utilization of M. rotundata boosts alfalfa seed yields up to 22-fold (Richards, 1993), with 2000 

females per hectare increasing yields by 200-400 kg/ha (Free, 1993). Usage of the bee accounted 

for a yield of 46,000 metric tons of alfalfa in 2004 alone (Pitts-Singer, 2008).   

 Adult females readily lay eggs in artificial nesting sites in the fields, taking cues from 
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previously used nesting sites (Stanley and Pitts-Singer, 2011).  The leaf capsules can be collected 

and stored for adult emergence the following season.  To augment collection of leaf capsules in 

the field, farmers buy them by the gallon in fall or winter as diapausing prepupae, and their 

prices over the years have ranged from approximately $20 to $85 per gallon (Hodgson, 2011).  

Collected bees are stored in large bins at low temperatures until spring (Richards, 1984).  

Farmers keep brood cells at 6°C until their fields are ready for pollination.  To ensure high 

pollination yields, about 5 weeks from the predicted 50% bloom of the alfalfa fields, post-

diapause bees are incubated at 29°C to mimic warming spring temperatures (Pitts-Singer and 

Cane, 2011).  Adults emerge within that 5 weeks, and pollinate as they collect leaf pieces, as 

well as the nectar and pollen provisions for the next generation of eggs.  

 Recent research suggests that the current protocol for commercial storage of these bees 

can be greatly improved (Bennett et al., 2013; Rinehart et al. 2011; Yocum et al., 2011).  Pitts-

Singer (2008) confirmed that Canadian populations of M. rotundata have higher reproductive 

success compared to those at lower latitudes, though there were regional and annual differences 

in fecundity, which were attributed to climatic conditions.  Current rearing protocols used by 

USDA scientists recommend keeping developing bees at 29°C, which compared to outside 

storage methods decreases mortality from 35% to 21% and speeds up emergence time by two to 

five weeks (Kemp and Bosch, 2000).   

 One issue with optimizing rearing protocols is quality control.  For example, how does 

one assess the fitness of surviving bees under various storage regimes?  Quantitative 

measurements of the quality of the bees would allow a cost-benefit analysis for improvements in 

rearing methods.  Identifying sublethal effects of other stressors like pesticides would also be 

useful for ensuring quality of emerging adults.  One possible marker of bee quality is immune 
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function.  Bees in storage may be attacked by fungi and parasites.  Understanding immune 

system physiology for M. rotundata may allow use of immunological markers as indices of bee 

quality when investigating improved commercial rearing practices. 

 

1.2. Immunity   

1.2.1. Insect immunity 

 While insect immune systems are thought to be less complex than those of vertebrates, 

insects have many immune responses that are specific in action, allowing them to survive 

infection.  Even though insects lack adaptive immunity, they have robust innate immune 

systems, including immunological memory (Eleftherianos et al., 2006; Rodrigues et al., 2010) 

and  immune priming (Roth et al., 2010).  In addition, induced immune responses are specific to 

type of infection, with a different suite of genes expressed depending on the pathogen (Riddell, 

2009).     

 Innate immune responses can be broadly characterized as cell-mediated or humoral.  

Cell-mediated immune responses, such as phagocytosis, encapsulation and nodule formation are 

carried out by an insect's immune cells, called hemocytes (Lackie, 1988; Strand and Pech, 1995).  

Humoral immune responses are seen in the hemolymph and fat body and include the production 

of antimicrobial peptides (AMPs) and activation of the phenoloxidase (PO) cascade.  The PO 

cascade generates cytotoxic molecules and causes melanization (Hancock and Diamond, 2000; 

Hoffmann, 1995; Zasloff, 2002).  Although ostensibly helpful, categorizing immune responses as 

either cell-mediated or as humoral may be misleading and is somewhat arbitrary.  Indeed, many 

humoral processes affect hemocyte function, and many important molecular components of 
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humoral responses are generated or mediated by hemocytes (Hoffmann, 1995; Hoffmann and 

Reichhart, 1997; Leonard et al., 1985; Strand, 2008a). 

 Another way to characterize immune functions is by whether the response is constitutive 

or inducible.  Constitutive responses are always present as a non-specific, but immediately 

effective, defense against pathogens (Cerenius and Soderhall, 2004).  In contrast, inducible 

responses can only be observed and measured after challenge with a pathogen (Haine et al., 

2008).  PO, lysozymes and phagocytosis are considered to be constitutive, while 

nodulation/encapsulation and AMP production are inducible and can take several hours to appear 

(Cerenius and Soderhall, 2004; Uttenweiler-Joseph et al., 1998).  Again, although categorizing 

immune responses is useful, the classification is not always clear-cut.  For example, elements of 

the PO cascade are constitutively expressed, but there may also be some PO that is induced upon 

a challenge.  Any breach in the insect’s cuticle will cause a clotting and coagulation response 

that includes hemocytes expressing PO activity, and melanization to prevent additional 

hemolymph loss (Muta and Iwanaga, 1996).  These overlapping defense systems provide a 

comprehensive immune protection for insects, and the response mechanisms have been adapted 

for each insect’s life history and ecological niche.  

 

 1.2.2. Cell-mediated immunity 

 Hemocyte types vary in structure and function and across species.  They are classified 

using morphological, histological, functional characteristics, as well as antigenic and molecular 

markers (Gardiner and Strand, 1999; Jung et al., 2005; Lanot et al., 2001).  The naming 

conventions are not universal for hemocytes, and the well-studied hemocyte morphology of 

Drosophila melanogaster does not necessarily translate to other species (Table 1).   
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 All cell types differentiate from stem-cell-like progenitor cells called prohemocytes 

(Lackie, 1988; Ratcliffe et al., 1985).  Hematopoiesis, or the creation of hemocytes, occurs at 

embryogenesis and throughout larval/nymphal stages (Akai and Sato, 1971; Ratcliffe et al., 

1985).  During embryogenesis of Drosophila, prohemocytes and hematopoietic organs originate 

from dorsal mesoderm (Holz et al., 2003; Jung et al., 2005).  Hematopoietic organs, called lymph 

glands in Drosophila, are a source of prohemocytes as the insect develops.  Cells in circulation 

are also continually able to proliferate, with the exception of oenocytes (Gardiner and Strand, 

2000).  Continued division of hemocytes in circulation in the hemolymph is critical for 

maintaining cell populations throughout development, so that cellular immunity can provide 

protection from pathogens (Gardiner and Strand, 2000).  Throughout the larval stages, 

holometabolous insects exhibit a pattern of increasing hemocyte production from hematopoietic 

organs, with the most cells produced in the final instar before metamorphosis (Beetz et al., 2008; 

Gardiner and Strand, 2000; Lanot et al., 2001; Nakahara et al., 2003).  Hemocyte proliferation 

halts, and a drop in total hemocyte count is seen in adult honey bees (Schmid et al., 2008) and 

adult mosquitoes (Hillyer et al., 2005), possibly indicating an alternative immune response 

strategy for the adult life stage.  

 In addition to their role in immunity, hemocytes are also important during 

metamorphosis.  Hemocytes have been shown to proliferate and differentiate into a macrophage-

like cell to play a crucial role in tissue remodeling during metamorphosis (Lanot et al., 2001; 

Thomas and Rudolf, 2010).  These cells use lysozyme activity to digest doomed larval tissue in 

the hemocoel (Lanot et al., 2001).  Hemocytes play this dual role in many insects, present in high 

numbers during pupation in honey bees (Wilson-Rich et al., 2008), ground beetles (Giglio and 

Giulianini, 2013), and tobacco hornworms (Eleftherianos et al., 2008).   
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 Phagocytosis in insects is carried out by adhesive hemocytes, usually characterized as 

granulocytes and/or plasmatocytes, and phagocytic activity is enhanced by the activation of the 

PO cascade (Leonard et al., 1985).  Hemocytes engulf targets marked for destruction ranging 

from bacteria or yeast cells to synthetic beads or particles of India ink (Hernandez et al., 1999; 

Yokoo et al., 1995).  A single granulocyte in an Aedes aegypti mosquito has been recorded to 

phagocytose 1500 cells of E. coli (Hillyer et al., 2005).  Although phagocytic activity is 

generally correlated with total hemocyte counts, Kurtz (2002) observed relatively constant 

phagocytosis in Panorpa vulgaris (scorpionfly) larvae, in spite of dropping hemocyte numbers as 

they approached pupation.  Different hemocyte types may play multiple roles in cell-mediated 

immunity or may perform specific functions, depending on the insect. 

 Encapsulation and nodulation are essentially the same process, by which hemocytes 

adhere in layers to an invading object, forming a melanized physical barrier. The difference 

between encapsulation and nodulation is the size of the adhesion target.  Nodules are formed 

around small targets (e.g. bacteria), while large targets (e.g. parasite eggs, or nylon 

monofilaments used in assays) are encapsulated (Rantala and Roff, 2007; Smilanich et al., 2009; 

Strand, 2008b).  In Drosophila, encapsulation is carried out by lamellocytes, which quickly 

proliferate from prohemocytes upon an immune challenge such as a parasitoid infestation 

(Sorrentino et al., 2002; Wertheim et al., 2005).  In the mosquitoes Anopheles gambiae and A. 

aegypti, however, no specialized capsule-forming hemocytes are found, and nodulation 

responses are carried out by granulocytes, their most common cell type (Castillo et al., 2006). 

Phagocytic activity is enhanced by activation of the PO cascade (Leonard et al., 1985), and 

melanization occurs in conjunction with a nodulation/encapsulation response, because the 

hemocytes involved are producing PO.  However, Pinera et al. (2013) found in crickets Acheta 
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domesticus that encapsulation capacity is independent from total PO activity.  These types of 

cellular immune responses are also involved in hemolymph clotting and wound healing (Muta 

and Iwanaga, 1996), and have homologous systems in vertebrates (Vilmos and Kurucz, 1998).  

 

1.2.3.  Humoral defense 

 One of the main components of the humoral immune system is the production of 

antimicrobial peptides (AMP).  AMPs are present as part of every eukaryotic organism’s 

immune system (Vilmos and Kurucz, 1998).  They are characterized as small proteins (<25 kDa) 

that execute a broad scope of activities against bacteria and/or fungi (Imler and Bulet, 2005).  

There are large variations in overall peptide sequence of AMPs expressed across even closely-

related species, but there are areas of conserved sequences with respect to the precursor protein, 

signaling pathways, and mechanisms of bacterial destruction (Zasloff, 2002).  Despite the 

ancient evolutionary lineage of AMPs, prokaryotic cells generally do not have resistance to these 

kinds of molecules, because the AMPs attack mechanism targets the bacterial cell membrane 

(Matsuzaki, 1999).  On a prokaryotic cell, the outer layer of lipid bi-layer contains negatively 

charged phospholipid head-groups, compared to eukaryotic cells, whose membranes are 

generally neutral in charge (Matsuzaki, 1999; Zasloff, 2002).  The structure of AMPs allows 

them to breach the charged membranes of bacteria, allowing access to intracellular targets or 

simply disrupting membrane function, ultimately killing the prokaryotic cells (Matsuzaki, 1999; 

Yang et al., 2000).  There exists a hard-wired signal-transduction pathway that links microbe 

infection and activation of genes to produce corresponding AMPs (Zasloff, 2002).  AMP also act 

as a longer term prophylactic from infection, persisting in the hemocoel and providing a survival 

benefit in the case of subsequent infections (Moret and Siva-Jothy, 2003).  Uttenweiler-Joseph et 
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al. (1998) examined the immune response of Drosophila melanogaster over several hours after 

an experimental infection and showed that the peak volume and variety of AMPs were present 

after 24 hours, with some remaining stable for up to three weeks.   

 Some varieties of AMPs can be constitutively expressed as a local innate immune 

response in tissues that are not immune-functioning but may need to defend against bacterial 

exposure, like the epithelial tissue in the cuticle, gut, or tracheal system (Lemaitre and 

Hoffmann, 2007).  In the silk worm Bombyx mori, the silk and cocoon have shown constitutive 

expression of antimicrobial proteins as protection during the immobile pupal stage (Pandiarajan 

et al., 2011).  The expression of these constitutive, local AMPs are not upregulated during 

infection (Lemaitre and Hoffmann, 2007), unlike the AMPs produced mostly from the fat body 

as part of an immune response.   

 In D. melanogaster, two specific AMPs have been identified in response to different 

infections.  Gram-negative bacteria result in the activation of the Toll signaling pathway, and 

upregulation of diptericin (Imler & Bulet, 2005), while fungus, yeast, or gram-positive bacteria 

cause an upregulation of drosomycin, via the imd signaling pathway (Imler and Bulet, 2005; 

Lemaitre and Hoffmann, 2007).  Further specification in parasite-host interactions has been seen 

in Bombus terrestris, in which different strains of the gut parasite Crithida bombi elicit different 

patterns in AMP gene expression (Riddell et al., 2009).  These examples of specificity in 

immune response indicate that insect immunity is capable of being more functionally ‘adaptive,’ 

especially in the context of the evolutionary arms race that embodies pathogen-host interactions.  

 Another major component of the humoral immune defense is the production of 

phenoloxidase (PO).  The PO cascade, also known as the melanization reaction, involves the 

release and activation of the zymogen proPO from oenocytoid hemocytes (or crystal cells in 
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Drosophila) and other immune cells and tissues (Castillo et al., 2006; Lanot et al., 2001).  Upon 

infection, serine proteases cleave proPO producing catalytically active PO (an oxidoreductase), 

cytotoxic compounds like quinones, other short-lived chemical intermediates, and finally 

melanin (Cerenius et al., 2008; Cerenius and Soderhall, 2004).  Melanin darkens and hardens 

into a physical barrier and is involved in hemolymph clotting (Muta and Iwanaga, 1996), as well 

as the encapsulation/nodulation response (Ling and Yu, 2005).  The PO cascade is activated 

upon recognition of non-self, via pathogen-associated molecular patterns (PAMPs) like 

peptidoglycans and liposaccharides from bacteria, or β1,3-glucans from fungi (Cerenius et al., 

2008).   Because the PO reaction is so volatile, its activation is carefully regulated spatially and 

temporally to protect from self-harm (Cerenius and Soderhall, 2004).  It is also the fastest acting 

immune response, as proPO is constitutively expressed in a variety of tissues and cell types.  

Higher PO capacity has been linked to darker, more melanized cuticle, which translates to 

greater pathogen resistance (Barnes and Siva-Jothy, 2000; Giglio and Giulianini, 2013; Wilson et 

al., 2001).  

 

1.3.  Immunity interactions 

 Immunity in insects, as with all organisms, is not a stand-alone process.  Physiological 

processes that affect and are affected by immune function are constantly in flux as an insect 

develops, interacts with its environment, and struggles to survive and reproduce.  Many of these 

interactions have been studied across species, and it is important to be able to assess them on a 

broader scale to draw conclusions about immunity as a whole, in the full context of development. 
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1.3.1. Immunity through development  

 Immunity is commonly studied in development within specific life stages, such as in the 

adult or certain larval instars due to the ease of study or specific interests.  For example, 

Manduca sexta, the tobacco hornworm, is commonly studied during its 5th and final larval instar, 

because of its large size and hemolymph volume.  Late within its 5th instar, M. sexta larvae  

succumb more quickly to infection and show decreasing humoral and cellular immune responses 

(Eleftherianos et al., 2008).  M. sexta also showed more than a 50% reduction in nodulation, PO 

capacity, and AMP activity between a day zero and day five larvae (Eleftherianos et al., 2008).  

However, Beetz et al. (2008) also saw a three- to five-fold increase in hemocyte counts in 

caterpillars  just preparing for pupation (wanderers) compared to the caterpillars freshly molted 

into their 5th instars, with the most lysozyme activity in wanderers.  This is consistent with 

observations in the wax moth Galleria mellonella, which was found to have the greatest 

hemolymph PO activity at day five of the final larval phase before pupation, and again at late 

pupal phase (Benesova et al., 2009).  In adult insects, A. aegypti mosquitoes exhibit an age-

associated mortality increase in response to an E. coli immune challenge (Hillyer et al., 2005).  

This mortality was attributed to a decrease in hemocyte count by 24% in day zero versus day five 

post-adult emergence, which supports the finding that adult mosquitos are not be able to produce 

more hemocytes after metamorphosis (Akai and Sato, 1971).  Insects may have increased or 

altered immune function at the critical phases of metamorphosis, when the greatest 

morphological changes are seen.  The pupal stage of the ground beetle Carabus lefebvrei 

exhibits an additional defense outside the normally described immune system, with secretions of 

volatile gaseous chemicals, called monoterpenes, into the subterranean pupal cell as protection 

against microbial and fungal infection (Giglio et al., 2009).  While immunity has been studied in 
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juvenile and adult insects, comprehensive characterizations of the immune response across stages 

of development on species of insects are uncommon.  Due to changing metabolic demands 

during development or different life history strategies, immune function may vary in speed, 

mechanism, or specificity, depending on the insect’s life cycle. 

 

1.3.2. Metabolic demands during development 

 Metabolic rate is a measure of how much energy is being expended by an organism. As 

ATP (energy) is produced by an animal, oxygen is consumed, and carbon dioxide and water are 

produced.  Oxygen consumption and carbon dioxide production can be measured indirectly using 

respirometry, quantifying how much ATP is being produced and used (Lighton, 1996).   

 Metabolic rates in insects are known to vary throughout development.  The Colorado 

potato beetle, Leptinotarsa decemlineata, has an increase in resting metabolic rate during the 

first 2 days after adult emergence, which then gradually decreases with age and is independent of 

mass (Piiroinen et al., 2010).  Adult tsetse flies, Glossina pallidipes, also show a rise in 

metabolic rates in the days just after emergence, thought to be due to the development of flight 

muscles (Terblanche et al., 2004).  During pupation and metamorphosis, however, 

holometabolous insects like M. rotundata experience large changes in functional morphology, 

including to the respiratory system structures.   The giant silk moth Samia cynthia has a high 

metabolic rate as a caterpillar, using more than 14 spiracles and exhibiting continuous gas 

exchange patterns (Hetz, 2007).  As a prepupa and pupa, however, S. cyntnia uses discontinuous 

gas exchange, has a much lower metabolic rate, and uses between eight and ten spiracles at any 

given time (Hetz, 2007).  This is consistent with early findings in Cecropia silk worms that 

exhibit high metabolic demands as caterpillars entering pupation (>1000 mm3 O2  g
-1 hr-1), 
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minimal O2 consumption as pupae, and increases up to 300 mm3 O2 g
-1 hr-1 just prior to adult 

emergence (Schneiderman and Williams, 1953).  Kemp et al. (2004) found that M. rotundata 

have respiration rates of less than 0.025 O2 ml g-1hr-1 during pupal stages (seven days after 

incubation at 29°C) that increase almost ten-fold as adults.  This suggests that M. rotundata may 

have a similar pattern of high metabolic demands at early and late pupation, with lower rates 

seen in mid-pupation and rising again in the pharate and adult stages.  

 

 1.3.3.  Metabolic cost of immunity  

Infection causes an increase in metabolic demand across many species (Hoffmann A.A., 

1991).  In both hemi- and holometabolous insects, an induced encapsulation response elicited an 

increase of 25-28% in adult metabolic rates compared to naïve controls (Ardia et al., 2012).  

Diapausing pupae of the white cabbage butterfly Pieris brassicae showed a metabolic increase of 

8% during an encapsulation experiment (Freitak et al., 2003).  If there is a selective pressure, like 

a high rate of parasitism in Drosophila, over several generations a lower baseline metabolic rate 

will evolve (Fellowes and Godfray, 2000).  Generally, a change in metabolic rate during an 

immune challenge indicates necessary energy expenditures resulting from the immune response, 

which could result in trade-offs in other areas of the organism’s physiology.  

While increased cost may be a common occurrence, the mechanisms by which insects 

compensate vary.  Armitage et al. (2003) looked at the cost of an initial constitutive investment 

in PO, by comparing darker T. molitor beetles (ones with higher melanization in their cuticle) to 

lighter ones, and found no trade-off in longevity or fecundity.  However, they found a cost to the 

induced immune response which resulted in reduced longevity.  In Spodoptera littoralis, genetic 

strains that have higher melanization in the cuticle show a tradeoff in lower PO activity, but 
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strains with higher PO activity develop more slowly, indicating that investment in melanin is less 

costly than having higher PO defense (Cotter, 2008). 

Another indicator of metabolic demand can be observed in food consumption.  For 

example, Apis mellifera showed an increase in sugar-feeding after an immune challenge, thought 

to compensate for the increased metabolic demands of fighting an infection (Martin-Hernandez 

et al., 2011).  In contrast, induced anorexia is seen in the cricket Gryllus texensis in response to 

an infection and is thought to reduce trade-offs between demands from digestion and demands 

from immune response on metabolism (Adamo et al., 2010).   

 When measuring the effect of immune challenges on metabolic rates, it is important to 

consider the other confounding factors that affect the measured costs.  Often the administration 

of an infection requires a wound (an injection) and possible blood loss. Ardia et. al. (2012) 

observed four insects: crickets, mealworms, cockroaches, and June beetles and investigated their 

immune responses to various challenges.  Removal of hemolymph incurred a cost across all 4 

species, as they noted 10% greater CO2 production compared to wounding alone.  Under 

stressful environmental conditions, such as starvation, tradeoffs in energy allocation have been 

shown to favor immunocompetence over reproduction in B. terrestris.  The bees showed no drop 

off in encapsulation capabilities in reduced food resource experiments, but did suffer a cost to 

reproduction (Schmid-Hempel and Schmid-Hempel, 1998).  These types of tradeoffs are 

particularly important when considering a developing insect with a fixed energy budget, such as 

M. rotundata.   
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1.4.  Immunity in Megachile rotundata 

 There is a limited amount of research on physiology of M. rotundata; historically there 

are more studies that explore their lifecycle, behavioral traits and commercial management 

(Richards et. al. 1994, Stanley and Pitts-Singer 2011, Pitts-Singer et. al. 2009).  James and Xu 

(2009) investigated the differences in gene expression between infected M. rotundata and 

healthy individuals.  Their work showed that this bee shares several conserved genes that are 

unregulated during infection and influence immune responses across insect species.  Inglis et. al. 

(1993) explored the detrimental relationship of M. rotundata larvae ingesting spores of 

Ascosphera aggregata fungus, which cause chalk brood syndrome in overwintered prepupae.  

More research is required to understand the specifics of this bee’s immune function. 

 

1.5.  Conclusion and significance 

 Studying immune responses in insects is beneficial because, while insects have only 

innate immunity, the responses are highly evolutionarily conserved.  This removes the 

confounding effects of adaptive immune functions, allowing us to draw clearer conclusions 

about the functions of the innate immune response.  With antibiotic resistance becoming a 

problem across medical and agricultural fields, insights from naturally occurring antimicrobial 

defenses could be the key to the next generation of antibiotic drugs.  Additionally, 

ecoimmunology, a field that seeks to understand how and why environmental factors contribute 

to natural variation in immunity, has become increasingly important.  By studying proximate 

mechanisms of immunity between and within species, we can gain some perspective on 

immunity’s role in the evolution of life-history traits across taxa.  We may also link variations in 
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individual immune responses to physiological trade-offs, environmental variation, and ecological 

and/or behavioral traits.   

 Effective pollinators like M. rotundata affect both natural ecosystems and agricultural 

economics.  Constructing an overview of the immune function of M. rotundata throughout its 

development improves our ability to manage this important pollinator.  When optimizing 

experimental rearing practices, it is important to develop markers of bee quality.  Examining the 

immune system of M. rotundata may allow us to use immune system parameters to as a marker 

of bee quality.  Information about developmentally induced periods of immunological 

vulnerability helps managers better protect stored bees from potential pathogens.  Future 

exploration of this bee’s immunity, such as encapsulation experiments, may better inform us of 

their relationship with the parasitoid wasp, Pteromalus venustus. 
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CHAPTER 2. CHARACTERIZING THE IMMUNE SYSTEM OF MEGACHILE ROTUNDATA 

2.1. Introduction  

 2.1.1.  Megachile rotundata natural history, commercial use, value for study 

The alfalfa leafcutting bee, M. rotundata, is a gregarious, but solitary, cavity-nesting bee 

native to Eurasia but used to great success as a pollinator of alfalfa across North America (Pitts-

Singer and Cane, 2011; Richards et al., 1987).  Males are generally smaller and faster to develop, 

and mate with emerging females within the first week after emergence (Pitts-Singer and Bosch, 

2010).  Female bees then spend two to four weeks constructing individual brood cells out of cut 

leaves for each egg she lays, provisioning each capsule with pollen and nectar for the developing 

larvae.  After hatching, the bees consume the provision in their brood cells and proceed through 

five larval instars before the prepupal bees enter diapause, a state of quiescence in which they 

will spend the winter until development to adulthood initiated by warm temperatures in May and 

June.  This life cycle strategy is particularly interesting, as the bees spend their entire 

development time within this protected brood cell, only emerging as adults.  Leaf capsules can 

also be harvested and commercially managed by alfalfa farmers and bee growers (Pitts-Singer, 

2008; Richards, 1984).    

Understanding the physiology of this pollinating species has been of increasing 

importance, and the lifecycle and pollinating behavior of M. rotundata has been of interest in 

research (Cane, 2002; Klostermeyer and Gerber, 1969), as well as on improvements of rearing 

methods (Kemp and Bosch, 2000; Rinehart et al., 2011; Yocum et al., 2010). Studies on the 

bee’s immune system have focused on its vulnerability to a common fungal disease, chalkbrood 

(Ascosphaera aggregate)(Inglis et al., 1993; Xu and James, 2009).  However, few studies have 
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focused on the immune function of M. rotundata throughout its development, and during the 

critical phase of pupation (Goerzen, 1990).   

 

 2.1.2.  Insect immunity and AMP activity throughout development 

The immune systems of insects can be characterized as innate, rather than adaptive, as 

they lack the ability to produce antibodies seen in vertebrates (Hoffmann, 1995).  Insect 

immunity can be described as cell-mediated or humoral.  Cell-mediated defenses are carried out 

by hemocytes, and include phagocytosis, nodulation, and encapsulation (Lavine and Strand, 

2002; Strand, 2008a).  Humoral immune responses include the activation of the phenoloxidase 

cascade (PO), and the production of antimicrobial peptides (AMPs).  The precursor of PO 

(proPO) is constitutively expressed and readily available from hemocytes and can be rapidly 

activated, resulting in melanization (Cerenius and Soderhall, 2004), but AMP production by the 

fat body is under genetic control, meaning there is a gene activation response that must be 

biochemically induced over several hours or days, depending on the insect (Zasloff, 2002).  Once 

activated, AMPs can effectively eliminate a wide variety of bacterial and fungal immune 

challenges (Lemaitre and Hoffmann, 2007), and some kinds of AMPs can persist in the 

hemolymph for up to two to three weeks post-infection (Uttenweiler-Joseph, 1998).  Complex 

physiological interactions govern these humoral immune responses, and changes in expression 

and function should be expected as insects develop and grow through various life stages. 

The physiology of immune responses is strongly evolutionarily conserved across other 

taxa, so when we improve our overall understanding of immune responses in insects, we also 

gain understanding of more complex immune systems of other organisms.  By studying the 

immune function of M. rotundata, we will expand on the base of knowledge of insect physiology 
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and will be able to make broader, more clearly defined inferences about the evolution of immune 

function, as well as adding context to ecoimmunological studies that investigate evolutionary and 

ecological interactions with the innate immune system.  M. rotundata is especially interesting 

from a development standpoint, as its lifecycle includes the protection of the leaf capsule for the 

span of its development to adulthood. Understanding basic mechanisms of this insect’s immunity 

will help us better protect beneficial insects from pathogens.   

Development of immune systems in insects is commonly studied within specific life 

stages, such as in the adult or certain larval instars, and usually using model insect species 

(Ardia, 2012, Eleftherianos, 2008, Schmid, 2008).  Although insect innate immunity is 

evolutionarily conserved, we expect to see variation in response and specificity of immune 

function across development, and correlation between the risk of infection for each life stage, life 

expectancy and biological function (Giglio and Giulianini, 2013).  The role hemocytes, the fat 

body, and other contributors to insect immune function play during larval development may 

differ dramatically across life stages, because the morphological and physiological changes that 

occur from larva to pupae to adult are profound.  Furthermore, while immunity has been studied 

in juvenile and adult insects, comprehensive characterization of the immune response across 

stages of metamorphosis in insects are relatively uncommon. 
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Insects have developmental and metabolic demands that may affect immune function at 

the critical phases of metamorphosis, when the greatest morphological changes are seen.  This 

may be confounded by energy demands from the immune response, especially as the pupal phase 

is non-feeding and thus energy is limited.  Table 2 shows some trends seen across development 

in other holometabolous insects.  Though cellular immune indicators such as total hemocyte 

counts increase during pupation compared to larva and adult stages (Eleftherianos et al., 2008; 

Giglio and Giulianini, 2013; Wilson-Rich et al., 2008), this may have more to do with the 

hemocyte’s role in metamorphosis and tissue remodeling than immunity (Lanot et al., 2001; 

Thomas and Rudolf, 2010).  In the honey bee Apis mellifera, a recent study showed that insects 

in the pupal phase were more likely to die from infection than either larva or adults, and showed 

the lowest AMP activity (Gaetschenberger, 2013).  Perhaps pupal insects devote so much of their 

limited resources into metamorphosis they are ill equipped to support the costly humoral immune 

responses needed to effectively fight off infection.  In M. rotundata, the pupal and larval stages 

are protected by the leaf capsule, which may provide an external barrier to pathogens until 

adulthood.  Perhaps, like B. mori, there are even AMPs spun into the silk layer within the capsule 

(Pandiarajan, 2011).  With that in mind, as well as the hypothesis that immune function varies 

through development, we predict that in M. rotundata, adult bees will have better immune 

function and survival than larval and pupal bees, and that AMP activity will be lowest during 

pupation.  

 

2.2.  Materials and methods  

 2.2.1.  Animal care 

Loose brood cells containing M. rotundata prepupae were purchased from JWM  

Leafcutter, Inc. (Nampa, ID, USA) in the spring of 2011 and 2012 and stored at 6°C for an 
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overwintering period of 8-9 months.  To initiate metamorphosis, prepupal bees were placed in a 

humidified incubator at 29°C (Rheem Sherer Model CER 69M, Weaverville, NC).  Insects were 

dissected from leaf capsules at specific time points in their development depending on the 

experiment, see Table 3 for descriptions and pictures.  Dissected prepupae were stored in a 96-

well plate, one bee per well, for the duration of pupal development.  Adult bees were reared in 

small chambers constructed using plastic cups and lids, separated by males and females, and 

given ad libitum access to a 1:1 sugar water solution that was refreshed every three days (Bennett 

et al. 2013).   

 

 2.2.2.  Survival assay  

  2.2.2.1.   Treatments  

To characterize immune responses throughout development, we used seven treatment 

groups:  injection with one of four concentrations of E. coli (105, 104, 103, or 102 live cells per 

microliter), injection with a sterile phosphate buffered saline (PBS), sham-injection, or no 

injection.  In all treatment groups, prepupal bees were extracted from their brood cells using 

sharp probes or forceps to break through the leaf capsule and soft forceps to carefully remove the 

prepupae from the cell.  After bees were removed from their leaf capsules, they were stored in 

96-well plates at 29°C until they reached the desired developmental stage and subjected to 

treatments.  For experiments with adult bees, they were allowed to emerge normally from their 

brood cells, transferred to feeding chambers, and selected for treatments after no more than three 

days of captive feeding.  Only bees that appeared in good condition, showed feeding behavior, 

and actively moved about their enclosures were chosen for experimentation.  Injections of 

bacteria and PBS and sham injections were performed using a 30 gauge needle.  All ages of M. 

rotundata were punctured on their dorsal side, in the intersegmental membrane between 
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abdominal third and fourth segments, counted from the posterior end.  A 10 µl glass Hamilton 

syringe was held by a micromanipulator (Prior England, model 62864) and the bee placed on the 

movable stage of an Olympus SZX9 microscope.  Bees and the syringe were positioned so that 

sliding the stage would allow the needle to puncture the cuticle in the same location in the same 

way each time.  For sham-injections, bees were immediately removed from the needle to a well 

plate.  Bees that receive injections of PBS or a bacterial suspension were injected with one µl 

and then removed to a well plate.  Adult bees required chilling prior to injections (less than 5 

minutes on ice) for ease of handling.  Bees receiving no injection were handled in the exact same 

way, except for the injection. 

   

  2.2.2.2.   Bacterial culture 

 DH5-α Escherichia coli were cultured with Luria broth in tubes and incubated at 37°C, 

shaking at 200 rpm, for at least eight hours (Lab-Line Environ-Shaker Model 3528-5, Melrose 

Park, IL).  After eight hours, the optical density of the bacteria-LB solution was measured using 

a spectrophotometer at 600λ wavelength, to calculate the colony forming units (CFU).  Bacterial 

cultures were resuspended at known concentrations.  Our bacteria strain followed the equation 

(177790*OD) + 6141.5 = CFU/ml.  Bacteria were then pelleted, washed and suspended in filter 

sterilized phosphate buffered saline (PBS) at the specified calculated volume to achieve 105 

cells/µl, and diluted down to 104, 103, and 102 cells/µl.  These E. coli concentrations were used 

for treatments with an immune challenge, to stimulate an immune response.       
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  2.2.2.3.  Survival assessments  

 To assess the overall efficacy of the immune system, we recorded survival of infection 

among the different treatment groups.  The treatments were given at various stages of 

development; young prepupae at one day of incubation, older prepupae at six days of incubation, 

younger eye-pigmented pupa at 14 days of incubation, and older eye-pigmented pupa at 18 days 

of incubation.  After treatment, bees were monitored for up to 30 days.  We recorded 

developmental markers (Table 3), as well as indications of severe infection or mortality.  Time of 

death was not easily measured during these developmental stages, so any coloration change 

(melanization, dehydration, mold spots) was recorded.  If the discolored bees failed to develop to 

the next phase, death was confirmed.   

 Adult bee survival was similarly assessed, with the same treatment groups administered 

within five days of a bee maturing to adult.  Days of survival after treatment were tracked for up 

to 30 days.  

 

 2.2.3. Hemolymph collection, AMP isolation, AMP activity assay 

 To determine AMP activity, we used four treatment groups.  Bees were either untreated, 

sham-injected, PBS injected or injected with heat-killed E. coli.   Treatment with heat-killed 

bacteria stimulates the immune system without an active infection.  E. coli was cultured as 

described above and was then heat killed (at 65°C for 30 minutes) and kept refrigerated at 4°C, 

for no more than two weeks prior to injections.  Bees were injected with 1 µl of 103 E. coli.  

After injection with bacteria, bees were incubated in at 29°C (Labnet 211DHS incubator, Edison, 

NJ) for 20 to 24 hours after treatment before hemolymph was collected.  Hemolymph was gently 

squeezed out of the prepupae through a small puncture wound and collected using a 10 µl 
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pipette.  This method yielded up to 12 µL of hemolymph (multiple collections using the 10 µl 

pipette for the larger volumes), on average 6.5 +/- 0.7 µl.  Older pupating insects were fragile 

and could not be squeezed.  They were instead centrifuged at a low speed to remove the 

hemolymph.  Each pupa was placed in a 0.6 ml microcentrifuge tube with a hole (0.46mm outer 

diameter) in the bottom.  A 30 gauge needle was used to wound the bee on its dorsal side near or 

on the head, and the bee was placed in the tube anterior side down.  That tube was then placed in 

a larger microcentrifuge tube (1.5 ml) and spun in a Eppendorf Centrifuge 5417C for five 

minutes at 0.6-1.5 x g.  This low speed avoided spinning out the fat body.  Higher speeds were 

used for more sclerotized pupae.  The adult bees were also spun in this manner to collect 

hemolymph, but at a much higher speed (5-7g), because they did not have as much fat as the 

pupae.  Each successfully bled eye-pigmented pupa could yield 4.7 +/- 0.5 µL, and adults yielded 

7.8 +/- 0.6 µl.  Hemolymph was kept on ice until AMP isolation.  The hemolymph was spun at 

7000 x g for five minutes in microcentrifuge tubes.  Hemolymph was then heated to 95°C for 

five minutes, and spun again at 13300 x g for 10 minutes (Kanost, 1990).  The supernatant 

contained the heat-stable AMPs, usually 3 µl or less total volume.   

 Because the AMP activity of these bees is generally low, we used a bacterial killing assay 

to quantify their activity.  Live DH5-α E. coli were diluted to 100 cells/µl in Hepes buffer (10 

mM, pH = 7).  Hepes buffer allows the E. coli to remain alive without growing, as it has no 

source of food for the bacteria.  In a 96-well plate, 1 µl of E. coli and 1.5 µl isolated AMP 

sample were added to 27.5 µl Hepes for a total of 30 µl per well, and then samples are taken at 

an initial inoculation time point and at five hours of incubation, to measure the killing capacity of 

the AMPs.  Hepes alone served as a negative control, and E. coli in Hepes served as a positive 

control.  Isolated M. sexta AMP served as a positive control for AMP detection.  For each 
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experimental replicate, there were a total of 24 treatment sample wells, with two biological reps 

per treatment per age group, in addition to the three control wells.   

 In duplicate, 2 µl of the AMP-bacteria mixture was removed from each well and added to 

98 µl Hepes in a 0. 6 ml microcentrifuge tube and mixed thoroughly.  From the 0.6 ml tube, 40 

µl was plated on LB agar plates and incubated at 37°C (Labnet 211DHS, Edison, NJ) for 24 

hours.  To confirm our starting concentration of E. coli, we plated four ten-fold serial dilutions of 

E. coli alone.   

 The samples left in the 96-well plate were incubated (shaking) in a Lab-Line Environ-

Shaker Model 3528-5 (Melrose Park, IL) at 37°C to allow time for the AMPs to kill the E.coli.  

After five hours, two more µl of the AMP/bacteria mixture was taken from each well and added 

to 98 µl in a microcentrifuge tube.  Each 100 µl tube was then diluted out serially (10 µl into 90 

µl PBS, mixed, then 10 µl taken again and added to 90 µl PBS, repeated out to 1:1000 dilution) 

as technical replicates, four for each sample.  From each of these 100 µl dilution tubes, 40 µL 

was plated on labeled LB agar and incubated at 37°C for 24 hours.  To stop growth, plates were 

placed in 6° for no more than 24 hours, and CFU were counted.  For any plates with growth 

>100 colonies, plates were divided into quadrants with an indelible marker, to help track 

counting.  Plates with more than 250-300 colonies were recorded as “lawns.”  For analysis, CFU 

were compared at the 100x dilution.  Colony counts were converted to an AMP activity index by 

taking 1/colony count at that concentration.  

 

 2.2.4. Statistics 

 We used time-to-event statistical measurements, the Kaplan-Meier test and Cox 

regression to compare development times, as well as comparing overall survival rates, showing 
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time-to-event statistics.  Adult average days of survival were tested with a univariate ANOVA, 

and a Cox regression was used for overall survival analysis.  A univariate ANOVA was also 

used to analyze the AMP assay data at the 100x CFU concentration.  Data are presented as 

means ± S.E.M., except for percentages. 

 

2.3. Results 

 For overall development descriptions, novel untreated bees were used, and only bees that 

survived to adulthood were used to calculate average development times.  Table 3 shows overall 

descriptions of the marked stages of pupal development.  Development timing differed between 

the sexes (Figs. 1 and 2).  Males developed significantly faster than females, by an average of 

2.47 days faster at the first molt of pupation (p = 0.017), 2.32 days faster at the eye-pigmented 

stage (p = 0.024), 2.56 days faster at the time of sclerotization (p = 0.015) and reached adulthood 

3.09 days earlier (p = 0.003) (see Fig. 1).  Males took an average of 24.25 ± 0.6756 days to reach 

adulthood, while females took an average of 28.6 ± 1.4 days.  Without a food source, males lived 

an average of 6.41 ± 0.964 days and females lived an average of 5.6 ± 1.53 days.  Across 

development, the greatest difference and variation in development time was seen in the pupal 

stage for males and females.   
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Table 3.  Characterization of normal development in Megachile rotundata pupae.  Novel, 

untreated bees were dissected from leaf pods and tracked throughout metamorphosis.  Daily 

visual inspections were performed and four stages were identified:  prepupa, pupa, eye-

pigmented pupa and sclerotized pupa. An adult female is also included.  Descriptions of the 

characteristics used to identify each stage and corresponding images are listed.   
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Figure 1. Development times of untreated Megachile rotundata.   The development 

stages on the x-axis correspond to the descriptions in Table 3 and the average cumulative 

days to reach each stage is calculated for males (n = 20; black dashed line) and females (n 

= 17; gray solid line).  Only bees that survived to adulthood were included in this 

analysis.  Asterisks indicate significant differences between males and females at each 

stage, p < 0.05.  Data shown are mean ± S.E.M. 
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Figure 2. Development times of untreated bees, separated by sex and stage. The average 

number of days developing bees spent in each defined stage, shown for males (n = 20; 

gray bars) and females (n = 17; open bars). The largest difference in development timing 

is seen in the prepupal phase, with females taking more time to transition out of the 

prepupal body form than males.  Data shown are mean ± S.E.M. 

 

 2.3.1.  Pupal survival assays 

 To characterize the immune system throughout development, we recorded survival of 

bacterial infections from bees treated at different stages.  Bees injected in the prepupal stages, 1 

or 6 days after incubation, had poor survival, with 20% or fewer surviving to adulthood for all 

bacteria-injected groups (Fig. 3).  Bees injected later in pupation were even less likely to reach 

adulthood, and they had limited ability to develop past the sclerotized stage (Figs. 3 and 4).    

The prepupal age group showed an effect of treatment on development time at each development 

stage, starting with the largest development delays reaching pupation, a delay that seems to carry 

through the rest of metamorphosis.  This is shown for day 6 injections in Fig. 5 (p = 0.023 for 

eye-pigmented pupa, p = 0.002 for sclerotized pupa) and expanded in Figs. 6-9 (p = 0.071 for 
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molting to pupa, p = 0.008 for reaching eye pigmented pupa, p = 0.002 for sclerotization).  For 

reaching adulthood, there was only a significant effect of bacteria treatment at the day 1 

treatment age (p = 0.001).  There was also a significant overall effect of treatment on how 

quickly the bees died (p < 0.001 for time to death).  Development delays for the day 14 injected 

pupar are shown in Figure 10.   

 

 

Figure 3.  The effect of treatment on prepupal and pupal bee mortality.  The percent of 

bees that succumbed to infection before reaching adulthood is shown.  Prepupae bees 

here were injected on day 1 after initial incubation, and eye-pigmented pupae were 

injected on day 18 (n = 20 for each treatment group at each age).  
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Figure 4.  The effect of treatment on pupal bee survival and attainment of development 

milestones. The proportion of bees injected at the eye-pigmented stage (14 days after 

incubation) that reached sclerotization and/or adulthood is shown.  (n = 20 for each 

treatment group). 
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Figure 5.  The effect of treatment on overall development timing across milestones. 

Cumulative development time for prepupae injected on day 6 after incubation at 29°C.  . 

The few bees that survived the treatments to adults (102 and 104
:  n =4, 103 and 105

:  n = 

3) showed developmental delays compared to novel (n = 20), sham (n = 8), and PBS (n = 

6) control groups.  Asterisks indicate an overall effect of treatment on development at 

that stage  
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Figure 10. The effect of later treatment on how quickly pupal bees develop to the 

sclerotized pupal stage. Percent of surviving bees that reached sclerotization stage each 

day of incubation is shown (novel n = 16, sham n = 5, PBS n = 7, 102 n = 6, 103 n = 4, 104 

n = 2, 105 n = 2).  Small arrow indicates treatments were administered on day 14 of 

incubation at 29°C.  This group had mortality too high to generate the development delay 

graph that accompanies the other graphs. 

 

 2.3.2.  Adult survival assays 

 Adult bees showed much greater ability than younger insects to survive an immune 

challenge. Females lived longer than males overall (p < 0.04, F1, 6 = 6.835), and average survival 

time dropped significantly with increasing E. coli concentrations (Fig. 11). There was no 

significant effect of treatment (p = 0.242, F6, 1 = 1.821) if sex were taken into account, but there 

was an overall effect of sex on survival time (p = 0.037, F1, 6 = 6.835).  In few cases, bees 

treated with the highest concentration injections survived up to 30 days (Figs. 11 and 12).  
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. 

 

Figure 11.  The effect of treatment on average days of adult bee survival, separated by 

sex.  Males and females differed significantly in the novel (p = 0.008) and sham (p = 

0.001) groups 



  

41 
 

 

 

F
ig

u
re

 1
2
. 

T
h
e 

ef
fe

ct
 o

f 
ad

u
lt

 s
ta

g
e 

tr
ea

tm
en

t 
o
n
 a

d
u
lt

 b
ee

 s
u
rv

iv
al

 t
im

e,
 s

ep
ar

at
ed

 b
y
 s

ex
. 
 A

 s
te

ep
er

 c
u
rv

e 
in

d
ic

at
es

 a
 h

ig
h
er

 

m
o
rt

al
it

y
 r

at
e.

 A
ll

 a
d
u
lt

 b
ee

s 
w

er
e 

tr
ea

te
d
 w

it
h
in

 3
 d

ay
s 

o
f 

em
er

g
en

ce
. 
  
F

o
r 

th
e 

tr
ea

tm
en

t 
g
ro

u
p
s,

 n
o

v
el

 n
 =

 4
9
 (

3
1
 m

al
e,

 1
8

 f
em

al
e)

, 

sh
am

 n
 =

 3
3
 (

1
9
 m

al
e,

 1
4

 f
em

al
e)

, 
P

B
S

 n
 =

 3
2
 (

2
7
 m

al
e,

 5
 f

em
al

e)
, 
1

0
2
 n

 =
 3

9
 (

3
3
 m

al
e,

 6
 f

em
al

e)
, 
1

0
3
 n

 =
 3

7
 (

2
5
 m

al
e,

 1
2
 f

em
al

e)
, 

1
0

4
 n

 =
 3

9
 (

2
9
 m

al
e,

 1
0
 f

em
al

e)
, 
1
0

5
 n

 =
 4

5
 (

3
4
 m

al
e,

 1
1
 f

em
al

e)
. 
  
T

h
e 

le
ft

 s
id

e 
g
ra

p
h
 s

h
o
w

s 
m

al
es

, 
th

e 
ri

g
h
t 

si
d
e 

sh
o
w

s 
fe

m
al

es
. 



  

42 
 

 2.3.3.  Antimicrobial peptide assays 

 AMP activity was affected by age (Fig. 13), (p < 0.001, F2, 122 = 16.480).  Within the 

adult age group, there was a significant effect of treatment (p < 0.001, F3, 36 = 10.558).  For 

adults and prepupae, AMP activity was highest when bees were primed with heat-killed bacteria.  

Injection of PBS also caused elevation in AMP activity for these groups, and for the pupae 

AMPs were elevated slightly with a sham injection.  AMP activity was undetectable in pupal 

bees, with no effect of treatment (p = 0.728, F3 = 0.436).  There was also no significant effect of 

treatment (p = 0.118, F3, 39 = 2.084) in prepupal bees.  Although they showed a similar pattern to 

adult bees in AMP activity, with higher AMP activity among those primed with heat-killed 

E.coli compared to novel and sham groups.   
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Figure 13. Antimicrobial peptide activity across development stages.  The effect of 

treatment on AMP activity, shown as an index calculated by one divided by the average 

colony count is shown.  A higher index value indicates greater AMP activity.  n = 10 for 

each treatment group of adults, n = 10 for prepupae treated with heat killed E. coli and 

eye-pigmented pupae treated with PBS and sham injections.  n = 11 for all other groups.  

Data shown are mean +/- SE.   

 

2.4.  Discussion 

 We expect immune function to be variable across development in insects and across taxa, 

due to the variable demands on metabolism and interaction with life cycles, environments, and 

evolutionary factors.  The overall picture of the immune function of M. rotundata across pupal 

development is that it is most vulnerable, immunologically, in the midst of the greatest 

physiological and morphological changes seen in metamorphosis.  We see this trend in both in 

the pupal bee’s inability to survive a live inoculation of a supposedly non-infectious E. coli strain 

(Fig. 3), and in the humoral immune indicator of AMP activity being largely absent in pupal bees 

(Fig. 13).  These juvenile bees are very sensitive to any immune challenge.  Pupal and prepupal 

insects in many species have shown immunological vulnerability, and studies of insects 



  

44 
 

approaching pupation can also give an idea of what is to come in metamorphosis (Table 3).  This 

is a first description of M. rotundata’s immune function throughout pupal metamorphosis and 

will allow for greater understanding of the bee’s defenses against infection and when it is most 

vulnerable.  The techniques described here to measure immune function can be used as markers 

of bee quality and to compare various commercial rearing methods, which is exciting for farmers 

and academics alike.  This is also a novel approach to measuring AMPs in insects with lower 

activity (compared to model animals like M. sexta), which will hopefully transfer to other non-

model insects in need of immunological study. 

 

 2.4.1. Survival and development of M. rotundata 

 Our hypothesis that for M. rotundata, adult bees would have a more robust immune 

function compared to the relatively sheltered prepupal and pupal bees was supported.  The bees 

treated before and during pupation struggled to overcome infection, with the pupal groups 

proving to be the most vulnerable.  Pupal and prepupal bees that did survive the initial infection 

exhibited delays in development, though it is worth considering for the apparent development 

delays during pupation, the number of surviving bees is so low that the development differences 

we are showing may be attributed to differences between males and females, as we cannot 

differentiate the sexes until (or unless) they reach adulthood.  Pupal and prepupal bees are so 

vulnerable that even our PBS injections and sham controls caused major mortality, suggesting 

they are sensitive to any break in the cuticle.  It is reasonable to conclude that at pupal life stages, 

M. rotundata relies heavily on the protection of the leaf capsule. These results are consistent with 

recent studies of honey bees, showing vulnerability to infection and no AMP activity during 

pupation of worker and drone bees (Gaetschenberger et al., 2013).   
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 Previous studies examining the development of M. rotundata used x-ray protocols to 

track the timing of their development within the leaf capsules every three days (Kemp and 

Bosch, 2000), which does not show specific timing for pupation, eye-pigmentation, and 

sclerotization.  Our study tracked the bees visually daily and is more detailed in describing 

development markers.  The sexual differences in development timing and survival we observed 

are also consistent with these previous studies (Kemp and Bosch, 2000), with males developing 

faster by about three days on average, and adult females surviving an average of three days 

longer (without treatment).  Our methods differ from other studies of M. rotundata through 

development, in that they included extracting bees from their leaf capsules.  This accounts for the 

differences seen in development time to adults for our bees compared to the studies of Kemp and 

Bosch (2000), which measured actual emergence time from the leaf capsules and found that 

males and females emerged 33 and 35.8 days after incubation, respectively.   Trostle and Torchio 

(1994) observed that pharate adults remain in the cell capsules with proboscis and wings fully 

extended for two to three days before the wings harden and the proboscis is retracted just prior to 

emergence, something we could not see in the absence of the leaf capsule.   

 Adult survival assays in this study included feeding with 50/50 sugar water, which 

increased longevity compared previous studies that used longevity without feeding as a measure 

of vigor (Kemp, 2000).  Injections of E. coli as an immune challenge were not as immediately 

deadly to adults compared to pupae, with some adult females living a maximum of 34 days after 

injection of the highest concentration E. coli treatment.  In other adult insects, Aedes aegypti 

mosquito exhibits an age associated mortality increase in response to an E. coli immune 

challenge.  Hillyer et. al. (2005) attributed this mortality to a decrease in hemocyte count by 24% 
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in day zero versus day five post adult emergence, which suggests that adult mosquitos may not 

be able to produce more hemocytes.   

 Other holometabolous insects have a mixed result when measuring immune responses 

across development.  Pupae of red turpentine beetles, Dendroctonus valens, show the highest 

encapsulation capacity compared to larva and adults, and in contrast, the lowest PO activity (Shi 

and Sun, 2010).  For honey bees, encapsulation doesn’t vary across development, but hemocytes 

are more abundant in pupae compared to adults and larvae, while adults showed the highest PO 

activity (Wilson-Rich et al., 2008).  As insects have such a broad and diverse physiology when it 

comes to immune responses, making specific predictions is often challenging. 

 

 2.4.2.  AMP activity 

 AMP activity is weaker in prepupae than in adult bees, and seemingly absent from eye-

pigmented pupae.  We used a modified AMP assay as no specific protocol was available for M. 

rotundata.  It is worth noting that the AMPs, though clearly present in these bees, are far weaker 

than what has previously been observed from lab-reared Manduca sexta we used as controls.  

The initial experimental design was a zone of inhibition assay, and though some AMP activity 

was seen from M. rotundata using the assay described by Moret (2000), there was not enough 

contrast to consistently see differences in treatment groups.  The assay also required too much 

hemolymph or isolated AMP to execute for what we were able to collect from M. rotundata.  

Haine et al. (2008) solved this problem by using a different strain of bacteria, Arthrobacter 

globiformis, which was less resistant to weak AMPs when studying similarly weak AMPs of 

honey bees.  However, we were unable to obtain this bacterium and were compelled to seek 

other protocols.  We tried another experimental design to see if there would be an effect of 
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AMPs to slow the E. coli growth over time by comparing optical densities at multiple time points 

of the bacteria’s growth phase.  Isolated AMPs were put into an LB culture E. coli in a 96-well 

plate, and as the bacteria grew over 6 hours, optical density was measured to see any slowed 

growth rate, but again there was not enough contrast between M. rotundata groups.  In each of 

these experimental designs, the M. sexta AMPs were extremely effective at eliminating 

microbes, and in survival assays M. sexta injected with the same DH5-α E. coli had almost no 

mortality for the larval caterpillars (Booth, 2013).  The protocol that finally worked was 

successful because the bacteria were able to survive, but not able to grow in the HEPES buffer, 

and the serial dilution of the E. coli allowed for observable differences between M. rotundata 

groups for their capacity to kill the bacteria over 5 hours, when plated out on agar. 

 Both AMP activity and survival of treatment immune challenges in M. rotundata is 

highest in adult bees, which makes sense in the context of their life cycle.  They may be 

relatively protected in their leaf capsule for their entire larval and pupal phases, so they would 

not need as robust an immune response until after they emerge as adults.  The silk moth B. mori 

has been shown to express AMP activity during pupation in the hard casing of its pupal cocoon 

(Pandiarajan et al., 2011), and the pupation of Carabus lefebvrei involves volatile chemical 

secretions into their underground chamber as antimicrobial and antifungal defense while they 

develop (Giglio, 2009).  We predict there is AMP activity (or another form of immune defense) 

present in the leaf capsule itself for M. rotundata as it is constructed by the mother.  During 

pupation in the leaf capsule, the bees may have to defend from fungus like chalkbrood (A. 

aggregate) (McManus and Youssef, 1984), as well as parasitoid wasps of the Melittobia genera 

(Woodward, 1994).   
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 AMP activity is just one measure of immune function in M. rotundata, but the pattern 

holds that when we see the least AMP activity is when we see the lowest survival of an immune 

challenge (Figs 3 and 4).  AMPs are produced as a result of immune system activation, by the 

presence of bacteria or fungal infection (Hoffmann et al., 1995), but during pupal development 

of M. rotundata, those infection signals did not elicit a response (Fig 13).  During the critical 

time of pupation, no AMP activity was detected, suggesting that the pupation process may be too 

energetically costly for the bees to also mount an immune response.  This is similarly the case 

with the ground beetle Carabus lefeburie, which has the lowest phenoloxidase (PO) activity in 

its pupal phase (Giglio and Giulianini, 2013).  M. sexta caterpillars also have shown a decrease 

in cellular defense responses as they transition to wandering stages before pupation, with 

significantly lower PO, AMP, and nodulation activity, and fewer hemocytes compared to the 

early 5th instar larvae (Eleftherianos et al., 2008).  In the wax moth G. mellonella, PO activity 

peaks at the larva to pupa molt and at the transition from pupa to adult, but the lowest PO levels 

also occurred during pupation (Benesova et al., 2009).  

 

 2.4.3.  Conclusion 

 The results of this study are intriguing due to M. rotundata’s importance as a pollinator 

and study organism and encourages further examination of this bee’s immune function and 

ecoimmunology.  In the context of commercial rearing, categorizing the immunological 

development of M. rotundata, and in particular, describing any developmental vulnerabilities 

they suffer during pupation informs both farmers and researchers.  Future studies investigating 

improvements in rearing techniques can use these result and methods as markers of quality.  Any 
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improvement in survivability of commercial bees will make M. rotundata more effective and 

efficient as a key pollinator species.   

 Further questions outside the context of commercial rearing remain.  For example, we 

recorded little to no AMP activity during pupation: which other immune defenses must take over 

until the adult bees emerge and produce effective AMPs once more?  In the context of insect 

immunology and development, examination of the evolutionarily conserved innate immune 

system may play a role in understanding immunity for vertebrates, and could even ultimately be 

applied to human medicine.  The more we know about this bee’s physiology, life cycle, and 

ecological interactions, both in the wild and commercially, the better equipped we will be to deal 

with increasing challenges of climate change, growing demand for pollinated foods, and the need 

for insects to play a larger role in the lives of humans.  

 

 2.4.4.  Future directions 

  Additional study of M. rotundata’s physiology will allow for biological markers that can 

be used to optimize rearing practices for this commercially important pollinator. To have a full 

picture of the bee’s development of immunity, the larval phase of M. rotundata should be 

examined to find its ability to survive an immune challenge and develop to adulthood, as well as 

measuring AMP activity.  Further immunity studies across development stages of M. rotundata 

could be used as indicators of immune function. These methods could also be used to test the 

effect of toxins such as pesticides and herbicides the bees are likely to encounter in pollinating 

situations for commercial farms, as well as in the wild.  
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