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ABSTRACT 

 This research project was designed to understand the influence of excessively restricting 

ankle range of motion (ROM) on knee injuries, especially non-contact anterior cruciate ligament 

(ACL) tear.  Participating in physical activity without injuries is important to maintain physically 

active life style and well-being.  To prevent ankle injuries, external ankle supports (EAS) are 

widely used in sport settings by limiting frontal plane ankle ROM; however, the EAS also 

restricts sagittal plane ankle ROM that could increase the risk of non-contact ACL injury by 

intensifying the medial knee displacement (MKD) and ground reaction force (GRF).  In this 

research, the effects of external ankle supports (EAS) on landing mechanics were investigated 

among 19 physically active college-aged females.  Two research manuscripts report the results of 

this research project. 

 The first manuscript investigated the effect of EAS on landing kinematics and kinetics 

during a drop-jump landing task.  The results demonstrated the use of EAS altered the ankle 

displacement, total MKD, and vertical GRF; however, no relationship was observed between 

isokinetic plantar flexor strength and landing mechanics.  The second manuscript compared the 

effect of EAS on landing kinematics and kinetics between drop-jump landing and forward-jump 

landing tasks.  The result exhibited the use of EAS similarly affect ankle displacement, knee 

displacement, peak MKD in drop-jump landing and forward-jump landing tasks.  However, the 

landing tasks affected the posterior GRF differently, and the EAS altered vertical GRF 

differently in the two landing tasks. 

 Overall, excessively restricted ankle ROM changed the landing kinematics and kinetics, 

especially MKD and GRF during landing tasks.  Our findings indicate that healthcare 
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professionals should use EAS with care because the overly limited ankle ROM could increase 

the risk of non-contact knee injuries by increased MKD and GRF. 

 Future research should include an examination of the effect of EAS on the magnitude of 

ACL strain, an assessment of the strength of the other muscles, an evaluation of the muscular 

activation during a landing task.  These studies help understand the landing techniques and 

strength training to reduce the risk of non-contact ACL tear among physically active population.  
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INTRODUCTION 

Background 

 Physically active lifestyle begins at youth age and can be carried over to adulthood.  

Participating in sports without suffering injuries is also essential for long-term physically active 

lifestyle.  Prevention of injury is important for sports medicine professionals.  Non-contact 

anterior cruciate ligament (ACL) injury has been receiving more attention in recent years.  

Females are three to four fold more susceptible to non-contact ACL injury compared to males.
1
  

Factors that could lead to non-contact ACL injury is greater knee valgus angle and greater 

ground reaction force (GRF), and subsequent loading of the ACL during a landing or 

deceleration task.
2
   

 The strength of the plantar flexors is essential to absorb a landing force during a landing 

task because the foot is the first part of the body to make contact with a landing surface.
3
  The 

range of motion (ROM) at the ankle joint and the strength of the plantar flexors are associated 

with GRF, and medial knee displacement (MKD) is believed to contribute to ACL injuries.
2-4

  

Thus, some have postulated that a smaller ankle ROM may alter the landing biomechanics,
5-7

 and 

consequently, increase the risk of non-contact ACL injury.  External ankle supports (EAS) are 

often used to prevent ankle injury in athletic setting.  Application of EAS not only limits frontal 

plane movement at the ankle joint but also restricts sagittal plane ankle motions.
8
  This restricted 

ankle sagittal plane motion could alter the landing kinematics and kinetics,
5
 and as a result, may 

increase the risk of non-contact ACL injury. 

 It is important to study landing biomechanics among females along with the use of EAS.  

The use of EAS is common to prevent ankle injuries in athletic training settings, but the 
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influence of EAS on the landing biomechanics has not been investigated by two-dimensional 

video digitizing.  This study may provide a novel focus for using EAS in athletic training settings. 

Framework for the Study 

 Physically active lifestyle in early life can help control body weight and can be carried in 

the adulthood.  The recent increase of female sports participation
9
 has also raised the number of 

sport-related injuries.  Sports-related injuries are most common in the ankle joint followed by the 

knee joint.
10

  Injuries to the knee joint occurred more often among male athletes due to collision-

type sports, but the rupture of knee ligament including anterior cruciate ligament (ACL) was 

more common among female athletes, especially in basketball and soccer.
10-12

  This trend was 

observed in both high school and in college sports.
13-15

 

 Although a small percentage of injuries to the knee joint required a surgical 

reconstruction; reconstruction of the ACL accounted for 80% of knee surgeries in general 

population.
16

  The highest risk of ACL rupture appeared to be gender dependent.  Males 

sustained an ACL tear most often in their 20s; on the other hand, females suffered ACL injury 

most often between age 11 and 20.
17

  Injury rate of the ACL injury was the higher among 

females compared to males even though the study included contact ACL injuries commonly 

occurred in high-contact sports, such as football and wrestling.
18

  Among college athletes in the 

U.S., female athletes suffered 3.25 to 4.0 times more non-contact ACL injury compared to male 

athlete in soccer and basketball.
1
  In Europe, ACL injury was commonly occurred in soccer, 

(European) handball, and skiing.
18

   

 The risk of non-contact ACL injury was higher among females than males, teenage 

females are more likely to suffer non-contact ACL tear than adult females.
1,17,19,20

  During the 

secondary growth spurt, females increased quadriceps angle (Q-angle), hip internal rotation, knee 
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valgus angle, foot pronation, and anterior knee ligament laxity.
21-23

  In addition to postural 

change in the growth spurt, postpubertal females demonstrated the greatest quadriceps-

hamstrings ratio compared to prepubertal females, prepubertal males, and postpubertal males.
23

  

These postural and neuromuscular changes might lead to different kinematics and kinetics 

between genders during a landing task.  Prepubertal males and females showed similar knee 

valgus angle and GRF; however, following puberty, females demonstrated greater GRF and knee 

valgus angle than males during a drop-off landing task.
24-26

  Another gender-related factor is the 

fluctuation of female hormones, especially estrogen and progesterone, during the menstrual 

cycle.
27

 

Potential ACL injury theories were ligament dominance (insufficient joint stiffness), 

quadriceps dominance (muscular imbalance of quadriceps and hamstrings), leg dominance 

(imbalance of the two lower extremities), and trunk dominance (insufficient core control to resist 

against the trunk lateral flexion) theories.
2
  Common mechanisms of non-contact ACL injury 

were plant-and-cut, landing from a jump, and decelerating without change of direction with little 

force attenuation at the ankle joint that resulted in the internal rotation and valgus loading of the 

knee.
28,29

   

Many previous studies have focused on kinematics of the hip and the knee joint during 

landing tasks.
30-35

  Hence, the ankle joint that plays an important role for landing force 

attenuation or absorption has not been paid great attention.  The foot is the first part of the body 

to make contact with a landing surface, and the foot position at the initial contact could decide 

the magnitude of sagittal plane ankle joint displacement.
5,6

  Moreover, the strength of the plantar 

flexors is essential to absorb a landing force during a landing task.
3
  The less angular 

displacement at the ankle joint and less strength of the plantar flexors were inversely associated 
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with GRF.
3
  Additionally, the less ankle dorsiflexion and smaller plantar flexor strength 

increased the MKD.
4
  However, the importance of the gastrocnemius and the soleus has not been 

clearly explained by previous research.  Smaller ankle dorsiflexion ROM and weaker 

gastrocnemius strength was related to a greater MKD in a descending phase of squat movement.
4
  

Conversely, the gastrocnemius might not be fully used to attenuate a landing force during natural 

landing
3
; therefore, the soleus possibly contributes to attenuate a landing force, as well.  GRF not 

absorbed at the ankle joint would be transferred to the knee and hip joints.  In addition to 

abnormal GRF,
36,37

 one of the non-contact ACL injury mechanisms is the excessive valgus angle 

at the knee joint.
2
  Frontal plane knee kinematics appeared to be affected by the sagittal plane 

ankle and knee joint kinematics.
38-40

  However, the influence of the ankle joint in terms of the 

knee valgus and ACL loading during a landing has been neglected to date.  Restricting the ankle 

ROM may alter the landing mechanics that is believed to increase the risk of non-contact ACL 

injury. 

The EAS, including ankle taping and bracing, have been widely used in various sports 

settings.  Although the main purpose of EAS is to limit the frontal plane ankle motion, ankle 

inversion and eversion ROM, to reduce ankle sprain, the application of EAS also restricts the 

sagittal plane ankle motions, plantar flexion and dorsiflexion.
8,41

  This restricted sagittal plane 

ankle could contribute to alter the landing kinematics and kinetics
5
 and could increase the risk of 

non-contact ACL injury.  

 In conclusion, physically active lifestyle begins at a young age and will be carried over to 

adulthood.  Participating in sports without suffering injuries is also essential for a long-term 

physically active lifestyle.  Females are more likely to sustain a non-contact ACL injury 

compared to males, and gender-dependent factors have been suggested.  During descending 
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phase of activities, the lower extremities must dissipate GRF so that joints are not overloaded.  

Therefore, ankle joint plays a significant role to attenuate landing force because the foot and 

ankle joint are the first body part to contact the landing surface.  If the landing force is not 

attenuated, the rest of force will be transferred to proximal body part.  However, the effects of 

EAS on the lower extremity landing kinematics and kinetics have not been studied to date.   

Purpose of Study 

 Female sports participation has grown dramatically over the last forty years. With 

increased participation, females are more at risk of non-contact ACL rupture than males. One 

cause is female’s landing mechanics differs from male counterparts.  Smaller flexion of the 

lower extremity during a deceleration phase of activities and subsequent greater GRF and knee 

valgus might increase the risk of the ACL injury.  Therefore, the first purpose of this study was 

to investigate whether the limited ankle ROM by application of EAS changes landing kinematics 

and kinetics during a drop-jump landing.  Both drop-jump landing (DJL) and forward-jump 

landing (FJL) tasks are inevitable in many sports activities.  Therefore, the second purpose of 

study is to investigate whether the limited ankle ROM by application of EAS and landing tasks 

would similarly change landing kinematics and kinetics during DJL and FJL tasks.     

Hypotheses of Study 

(1) Limiting ankle ROM using external ankle supports (EAS) would decrease ankle 

displacement, increase total MKD (tMKD), and increase vGRF during a drop-landing 

task. 

(2) Greater isokinetic plantar flexor strength would be inversely correlated with tMKD 

and vGRF.EAS application will change landing kinematics and kinetics more in DJL 

task than FJL task. 
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(3) There would be difference in sagittal plane ankle displacement, sagittal plane knee 

displacement, peak MKD, vertical GRF (vGRF), and posterior GRF (postGRF) 

during landing tasks among ankle conditions controlled by EAS application. 

(4) There would be difference in sagittal plane ankle displacement, sagittal plane knee 

displacement, peak MKD, vGRF, and postGRF between DJL and FJL tasks. 

Limitations, Delimitations, and Assumptions 

Limitations 

(1) Menstrual cycle was not controlled even if the questionnaire included a question 

regarding subject’s cycle of menstruation. 

(2) Joint transverse-plane movement such as joint rotation was not measured due to use 

of two-dimension video cameras. 

(3) The GRF measured was not separated into left and right lower extremity GRF. 

(4) The landing tasks tested were natural landing followed by a vertical jump with a 

minimum instruction.  This could results in relatively inconsistent results dependent 

on individual effort. 

Delimitations 

(1) Recreational physically active individuals were recruited to the study because NDSU 

athletics has implemented a jump-landing training among female student-athletes.   

(2) Subjects were only college-aged females to avoid maturational differences among 

subjects.   

(3) Only one type of EAS, ASO lace-up ankle brace, was used in the study. 

(4) Joint torque or shear force was not analyzed. 
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Assumptions 

(1) MKD measured in two-dimension video digitizing could represent knee valgus 

measured in three-dimension video analysis. 

(2) Greater knee valgus increases the risk of ACL tear. 

(3) Greater GRF increases the risk of ACL tear. 

(4) College-aged subjects are at postpubertal stage of maturation. 

Definition of Terms 

Abduction represents a motion of a joint that is moving to the side or lateral away from 

the midline of the trunk in the frontal plane.
42

 

Adduction represents a motion of a joint that is moving medially or toward the midline in 

the frontal plane.
42

 

Anterior indicates a position or direction that is relating to the front or in the front part of 

the body.
43

 

Distal means position or direction of the body that is situated away from the center or 

midline of the body, or away from the point of origin
43

 

Extension represents a motion of a joint that is straightening or increasing the angle in a 

joint in the sagittal plane.
42

 

External rotation is a rotary movement around its axis away from the midline of the 

body.
42

 

Flexion represents a motion of a joint that is bending or decreasing the angle in a joint in 

the sagittal plane.
42

 

Frontal plane is an anatomical plane divides the body into front (anterior) and back 

(posterior) sections and is perpendicular to the sagittal plane.
43
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High-tension brace (HTB) is one of the treatments in which each lace of a prophylactic 

lace-up ankle brace is tied with 7 – 7.5 kg tension.  The tension is measured by a 

hand-held scale is maintained for one second during an EAS application. 

Hyperextension represents a motion of a joint with excessive stretching or extension 

movement
44

 

Inferior indicates a position or direction of the body relating to below in relation to 

another structure
43

 

Internal rotation is a rotary movement around its axis towards the midline of the body.
42

 

Lateral indicates a position or direction relating to the side, farther from the middle.
43

 

Low-tension brace (LTB) is one of the treatments in which each lace of a prophylactic 

lace-up ankle brace is tied with 2.5 - 3 kg tension.  The tension is measured by a 

hand-held scale is maintained for one second during an EAS application.   

Medial indicates a position or direction relating to the middle or center.
43

 

Posterior indicates a position or direction of the body that is relating to the behind, in 

back, or in the rear.
43

 

Pronation is a motion of forearm and forefoot that is internally rotating movement of 

forearm and forefoot towards the midline of the body so that the palm is down in 

the anatomical position, or the plantar surface is turned outward.
42

 

Proximal indicates a position or direction of the body relating to nearest to the trunk or 

the point of origin
43

 

Rotation represents a rotational motion in which all points of a part describe circular arcs 

around its axis.
42
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Sagittal plane is a plane divides the body into right and left sections and is perpendicular 

to the frontal plane.
43

 

Superior indicates a position or direction of the body relating to above in relation to 

another structure
43

 

Supination indicates a motion of forearm and forefoot that is externally rotating away 

from the midline of the body so that the palm is up in the anatomical position, or 

the plantar surface is turned toward the midline.
42

 

Transverse plane is a plane divides the body into above (superior) and below (inferior) 

sections and is perpendicular to both the sagittal and frontal planes.
43

  

Valgus represents a position of a body part that is bent away from the midline of the body, 

or the outward angulation of the distal segment of a bone or joint.
44

  Knee valgus 

may be a pure abduction motion of the tibia relate to the femur or may be 

combination of abduction and knee rotation.
45

 

Varus represents a position of a body part that is bent towards the midline of the body, or 

the inward angulation of the distal segment of a bone or joint.
44

  Knee varus may 

be a pure adduction motion of the tibia relate to the femur or may be combination 

of adduction and knee rotation.
45

 

Acronyms 

ACL: Anterior cruciate ligament 

DJL: Drop-jump landing 

EAS: External ankle supports 

FJL: Forward-jump landing 

GRF: Ground reaction force 
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HTB: High-tension brace 

LTB: Low-tension brace 

MKD: Medial knee displacement 

postGRF: Posterior ground reaction force 

ROM: Range of motion 

tMKD: Total medial knee displacement 

vGRF: vertical ground reaction force 

Operational Definitions 

Drop-jump landing (DJL) was completed by following steps.  (1) dropping off the box (31 cm) 

with leaving two feet simultaneously, (2) landing with two feet on the center of the forceplate 

platform located 30 cm away from the box, (3) immediately performing a maximum vertical 

jump with raising both arms similar to rebounding task in basketball,
24

 and (4) landing back to 

the forceplate platform. The motions of arms were not restricted during the task. 

Forward-jump landing (FJL) was completed by following steps. (1) jumping off the box (31 cm) 

with leaving two feet simultaneously, (2) jump forward to reach the center of the forceplate 

platform located away at 50% of the subject’s body height,
46

 (3) landing with the two feet 

simultaneously, (4) immediately performing a maximum vertical jump with raising both arms 

similar to rebounding task in basketball,
24

 and (5) landing back to the forceplate platform.  The 

motions of arms were not restricted during the task. 

Medial knee displacement (MKD) represented apparent frontal plane knee positions relative to 

the hip width.  MKD was measured as a ratio to the distance between the left and right anterior 

superior iliac spine.
47

  This valgus-like knee movement involved ankle, knee, and hip rotation 

that are only measured by three-dimension motion analysis.  A total MKD (tMKD) was 
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calculated by subtracting the peak MKD from initial-foot-contact MKD; that is, total tMKD 

represented the medial knee displacement during a landing task.  Peak MKD represented the 

maximum medial knee movement during a landing task; that is, smaller the value of MKD 

demonstrated the greater medial knee movement. 

  



12 

 

LITERATURE REVIEW 

Anatomy of the Lower Extremity 

 The lower extremity consists of foot, lower leg, patella, thigh, and pelvis.  Joints 

including ankle, knee, and hip, are located between these body parts.  Ligaments function as 

stabilizers at each articulation, and muscles act as movers as well as stabilizers.  Each joint is 

dynamically stabilized by coordinated muscle functions. 

Anatomy of Foot and Ankle Joint 

The foot consists of seven tarsal bones (calcaneus, talus, cuboid, navicular, and three 

cuneiforms), five metatarsal bones, and 14 phalanges (toes).  Two bones, particularly calcaneus 

and talus, have a significant role to transmit the body weight to the ground.  The calcaneus, 

known as a heel bone, has a direct contact with the ground.  The superior surface of the 

calcaneus articulates with the inferior surface of the talus, and this articulation is called subtalar 

joint.  Most of inversion and eversion occur at the subtalar joint along with the movement at the 

transverse tarsal joint and plantar flexion at the ankle joint.
48

  Pronation and supination of the 

foot occurs at the subtalar joint through anterior-posterior axis.  These sideways motions of the 

calcaneus relative to the talus has a direct influence on the rotation of the lower leg, the tibia and 

fibula.
49

 

 The ankle joint is located between the superior part of the talus and the distal ends of the 

tibia and fibula.  Although the axis of the ankle joint motion changes dependent of the angle of 

talus, the ankle joint is commonly considered as a hinge joint that allows dorsiflexion and plantar 

flexion of the foot in the sagittal plane.  Because the posterior part of the talus is narrower than 

its anterior part, the posterior part of the talus loosely sits within the ankle mortise between the 

medial and lateral malleoli.  Therefore, the ankle joint is relatively unstable when the joint is in 
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plantar-flexed position.  The ankle joint is enclosed and loosely stabilized by the fibrous capsule 

that is reinforced by the ligaments laterally and medially.
48,50

 

 The anterior and posterior muscles work as dorsiflexors and plantar flexors, respectively.  

Particularly, the posterior muscles or plantar flexors that collectively insert into the posterior 

aspect of the calcaneus are important to absorb the impact in running and landing movements.  

These muscles include the soleus and the gastrocnemius.  Because the soleus, located deep to the 

gastrocnemius, crosses only the ankle joint, this is a pure ankle plantar flexor muscle.
48

  The 

gastrocnemius has two heads that originate at the posterior aspects of the medial and lateral 

condyles of the femur
44

; therefore, the gastrocnemius crosses the ankle and knee joints and 

works as the knee flexor and the ankle plantarflexor.
48

 

Anatomy of Knee Joint 

The femur, tibia, fibula, and patella form the knee joint.  As a result there are three 

articulations; the tibiofemoral joint, patellofemoral joint, and proximal tibiofibular joint.  The 

tibiofemoral joint is formed by the distal end of the femur and the proximal end of the tibia; the 

patellofemoral joint is located between a femoral groove and the patella; the proximal 

tibiofibular joint consists of the lateral surface of the proximal tibia and the proximal part of the 

fibula.  In this research project, the tibiofemoral joint is operationally referred as the “knee joint.”  

In the knee joint, the medial and lateral condyles of the femur are articulated with the 

medial and lateral condyles of the proximal tibia.
48

  The medial and lateral meniscus deepens the 

smooth surface of the tibia (tibial plateaus) so that the convex-shaped femoral condyles lie in the 

concave-shaped deepened menisci.
51

  However, the stability of the tibiofemoral joint is still 

insufficient due to the configuration of the femoral condyle and shallow surface of the tibial 
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condyles.  Therefore, the stability of the knee joint is largely depending on the ligaments 

connecting the femur and tibia and on the surrounding musculature.
48

 

 Two ligament groups and two muscle groups largely contribute to the stability of the 

knee joint.  Two ligament groups are extracapsular and intra-articular ligaments and are located 

between the femur and the tibia.  Extracapsular and intra-articular mean outside the joint capsule 

and inside the joint, respectively.  The extracapsular ligaments include the medial collateral 

ligament (MCL) and the lateral collateral ligament (LCL), and the both ligaments locate outside 

of the joint capsule.  The MCL is a flat band-like ligament locating on the medial aspect of the 

knee joint and resists against knee valgus force.  By contrast, the LCL is a strong cord-like 

ligament on the lateral aspect of the knee joint and resists against knee varus force.
48

  The intra-

articular ligaments consist of anterior cruciate ligament (ACL) and posterior cruciate ligament 

(PCL).  The cruciate ligaments are located in the center of the knee joint and cross each other 

obliquely within the knee joint.  The ACL is located between the posterior part of the medial side 

of the lateral condyle of the femur and the anterior part of the tibial plateau so that it prevents 

anterior displacement of the tibia relative to the femur or posterior displacement of the femur on 

the tibia.
48

  

Not only does the ACL prevent tibial anterior translation, but the hamstring muscle group 

also prevents the joint movement by holding the proximal tibia posteriorly.  The ACL also resists 

against abnormal tibial internal rotation and external rotation when the knee is in a flexed 

position, addition to assisting MCL and LCL in resisting against valgus and varus stress.
27,52

  The 

PCL originates from the anterior part of the lateral surface of the medial condyle of the femur 

and attaches into the posterior area of the tibial plateau preventing posterior displacement of the 

tibia on the femur or anterior displacement of the femur relate to the tibia.
27,48
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The two muscle groups are the quadriceps (the rectus femoris, the vastus medialis, the 

vastus intermedialis, and the vastus lateralis) and the hamstring (the biceps femoris, the 

semitendinosus, and the semimembranosus) groups.  The quadriceps group is the main part of 

the anterior thigh muscles and collectively forms the patellar tendon; hence, the quadriceps is the 

powerful knee extensor muscles.  The rectus femoris crosses two joints, the hip and knee joint, 

so that it flexes the hip joint and extends the knee joint.  Other four vastus muscles originate 

from the femur and merge into the rectus femoris, so these three muscles are also the knee 

extensors.  Posterior thigh muscles are collectively called the hamstrings.  Because the hamstring 

muscles cross both the hip and knee joints this muscle group extends the hip joint and flexes the 

knee joint.   Yet, the hamstring muscles are divided into two groups depending on its location; 

laterally biceps femoris, and medially the semimembranosus and semitendinosus.  Laterally 

located, the biceps femoris inserts into the posterior fibular head, so it also externally rotate the 

tibia when the knee joint is flexed.  On the other hand, medially located semimembranosus and 

semitendinosus insert into the proximal posterior tibia and proximal medial tibia, respectively; 

thus these muscles internally rotate the tibia when the knee is in flexed position.
48

 

Anatomy of Hip Joint 

The hip joint is a strong and stable multiaxial joint due to the ball-and-socket type 

structure and strong ligaments.  The head of femur (ball) sits in the acetabulum (socket) of the 

pelvis, and the joint is enclosed by thick and strong ligaments; thus, this joint is stable but allows 

wide ROM.
48

  More than 17 muscles are identified at the hip joint, but for the purpose of this 

literature of review, only several large muscles are mentioned.  The hip muscles are commonly 

divided into three compartments; anterior, posterior, and medial compartments.  Anterior 

compartment includes iliopsoas and rectus femoris muscles.  The iliopsoas is the major hip 
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flexor muscle, and the rectus femoris, two-joint muscle, assist the iliopsoas.  The posterior 

compartment stores the gluteus maximus muscle, the gluteus medius, the gluteus minimus, and 

the external rotators in addition to the hamstring muscles mentioned above.  The gluteus 

maximus muscle forming the main bulk of the buttocks is the largest muscle in the hip region.  

The main functions of the gluteus maximus are extension and external rotation of the thigh.  The 

hip extension is also assisted by the hamstring muscles, two-joint muscles.  The gluteus medius 

and minimus muscles almost always work together due to the same direction of the muscle fibers 

and the same nerve supply.  The functions of these muscles are abduction and medial rotation of 

the thigh.  The gluteus medius and minimus muscles are responsible for preventing dropping the 

unsupported side of the pelvis in locomotion.  The external rotators collectively stabilize the 

head of the femur in the acetabulum and externally rotate the thigh.
44,48

  

Sports Participation and Injuries to the Knee Joint 

 Sport participation has been growing, particularly females, in last 40 years.  As female 

sports participation increased, the difference of injury characteristics has emerged, especially in 

ACL tears.  This difference was most notable in soccer and basketball in the United States. 

Benefits of Sports Participation in Adolescents 

Participating in physical activity in adolescent has positive influence on healthy lifestyle 

later in life without chronic diseases, such as obesity, cardiovascular diseases, and diabetes.  

Although the number of high school athletes has been increasing in last few decades, the number 

of injuries associated with athletic participation has also been increasing and sometimes has 

negative influence, such as osteoarthritis in the knee joint,
53

 later in life. 

 Sedentary lifestyle could increase the risk of chronic diseases, such as cardiovascular 

diseases, stroke, cancers, diabetes, and osteoporosis.
54

  Conversely, physically active lifestyle 
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decrease the risk of many chronic diseases.
55

  Sports participation during childhood could predict 

physically active lifestyle in adulthood.  This trend has been observed in both male and 

female.
55,56

  Physical activity is beneficial to control body weight and Body Mass Index (BMI).  

Those who with lower BMI might have the higher risk of musculoskeletal injury compared to 

those who with greater BMI.
57

  Therefore, continuing active lifestyle without devastating injuries 

is beneficial for long-term health. 

Number of Female Sports Participation 

Sports participation in high school has been increasing tremendously in recent years, 

especially among girls.  The primary reason of the augmentation was probably due to the 

enactment of Title IX in 1972 that expanded the opportunities for girls’ sports participation in 

education-based settings.
58

  During 2011 and 2012 school year, the number of high school 

female athletes has increased approximately 11 fold (from 294,015 to 3,207,533) since the 

implementation of Title IX, and the number of athletic participation in boys has only increased 

by approximately 20% (from 3,666,917 to 4,484,987) during the same period.
59

  The ratio 

between boys and girls sports participation changed from 12:1 to 1.4:1, and the girls accounted 

for approximately 40% of high school sports participation.
60

   

The most popular sports in the U.S. for boys were football, track and field, basketball, 

baseball, and soccer.  Basketball, volleyball, and soccer were the most popular sports among 

girls.
60,61

  In recent years, the number participating in soccer showed the highest increase in 

United States among both boys and girls.
12,62

  This trend has been seen not only in high school 

and college in the United States, but also around the world, especially among female.  According 

to National Collegiate Athletic Association (NCAA), the number of current college men’s soccer 

players increased by 70%; in contrast, the number of women’s soccer players increased over 13 
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times since early 1980’s.
62

  The number of female soccer players has increased 54% between 

2000 and 2006 worldwide.
9
  These numbers, particularly in females, indicates that females may 

strive for physically active and healthy lifestyle.  

Sports Participation and Sports-related Injury Risks 

Although it has been well known that physical activity is beneficial for a healthy lifestyle, 

recent increase of sports participation in children, adolescents, and young adults, has also raised 

the risks of sports-related injuries.  There are physical and physiological difference between 

young/ adolescent athletes and matured/ post-adolescent athletes; therefore, sports-related injury 

occurrence is dependent on the maturity of athletes.   

Although sports-related injuries were rarely fatal, children (5 – 12 years) were the most 

vulnerable to sports injuries, followed by adolescents (13 – 18 years), young adults (18 – 24 

years), and matured adult (> 25 years).
63

  One study investigated the soccer-related injury 

occurrence between the range of 14 years old (under-15 group) and 18 years old (under-19 

group) in Sweden.  It was reported the younger-than-15 years group had the highest injury 

incidence (8.7/ 1000h), and the younger-than-18 years group showed the lowest incidence of 

injuries (4.9/1000h) and concluded that the rate of overall injuries gradually decreased as the 

player became older or more skilled.
64

  Adolescents under 15 years old suffered more injuries 

(68%) with sprain and/or strain compared to children younger than 11 years old (32%) with cuts 

or lacerations.
65

  A more recent study showed those who were younger than 14 years were more 

likely to injure the upper extremity, and those who were older than 15 years were likely to injure 

the lower extremity.
66

  High school athletes suffered approximately 80% of sports injury to the 

lower extremities (60%) or the upper extremities (20%).
67

  Among college sports, over 50% of 

all injuries involved the lower extremities.
68

  The common injured areas in high school sports 
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were the ankle, knee, head, back, and the common types of injuries were sprain, contusion, 

concussion, fracture, and muscle strain.
61

  Therefore, the risk of sports related injury occurrence 

seemed to associate with maturation, and the adolescents are more vulnerable to sports related 

injuries, especially sprain and strain in the lower extremities, compared to other age groups. 

Age and Gender Difference in Sports-Related Knee Injuries 

 Injuries to the lower extremities are common, and the knee joint was second most 

frequently injured body part following the ankle joint.  Male athletes suffered more knee injuries 

than female athletes.  Once it occurred, females rupture ligaments in the knee joint more than 

males.  Injuries to the knee joints were the second most frequent (15.2%), following the ankle 

joints (20.9%), among high school athletes.
10

  Knee injuries frequently damage one or more of 

the following structures; ACL, PCL, MCL, LCL, the medial meniscus, or the lateral menisci.
18

  

The sports-related knee injuries involving these structures accounted for more than 40% of all 

knee injuries.
10

  The risk of sport-related knee injuries began to increase abruptly in adolescence, 

and this trend continued through early adulthood.  Similar to the risk of injury to the lower 

extremities, adolescents and young athletes (10 – 24 years old) were more likely to suffer a knee 

injury more than matured athletes.
11,18

   

 Previous research showed there is no difference in knee injury occurrence between 

genders, and sprain and/or strain accounted for approximately 40% of all knee injuries in both 

genders.
11,18

  There was a discrepancy, however, in the types of activity during which knee 

injuries occurred.  Knee injuries for males happened more likely than females during sports 

activities (male = 62%; female =36%).
11

  Among the knee injuries, the complete ligament tear 

involved the 8.4% for boys and 21.8% for girls.
10

  It should be noted football has the highest 
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injury rate in sport activities
69

; therefore, the gender difference in knee injury also needs to be 

evaluated by types of sports.   

Knee Injuries in Various Sports 

 Sports injuries occur in various sports with different injury rates.  Studies
15,70,71

 found 

female athletes suffered more knee injuries than male counterpart in the sports that are played by 

both genders with the same rules.  High school athletic activity injury surveillance study 

demonstrated the severe injury rates per 1000 athlete-exposure (AE).
71

  The definition of an AE 

was an athlete’s participation in one practice or competition, and the definition of severe injury 

was any injury that lead to a loss of more than 21 days of sports participation.
71

  Football had the 

highest rate of severe injury (0.69/1000AE) in 2005 – 2007 school years, followed by boys’ 

wrestling (0.52/1000AE), girls’ basketball (0.34/1000AE), girls’ soccer (0.33/1000AE), boys’ 

soccer (0.25/1000AE), boys’ basketball (0.24/1000AE), and girls’ volleyball (0.15/1000AE).  Of 

these sports, knee injuries were the most prevalent in girls’ soccer (49.7%), followed by girls’ 

basketball (44.9%), girls’ volleyball (31.9%), football (25.8%), boys’ soccer (23.3%), boys’ 

basketball (20.7%), and boys’ wrestling (16.7%).
71

 

 Soccer is the most played sport in the world.
9
  According to NCAA Injury Surveillance 

data from 1988 to 2003, the top two soccer-related injury in competition occurred in the ankle 

(male = 3.19/1000AE; female = 3.01/1000AE) and the knee (male = 2.07/1000AE; female = 

2.61/1000AE), and the similar trend was also observed in practice sessions.
72,73

  Female soccer 

players were 1.06 times and 1.26 times as likely to sustain an ankle injury and knee injury, 

respectively, than male soccer players.
70

 

 The same injury trend was seen in high school basketball and collegiate basketball during 

the same period.  The highest injured rate was at the ankle (male = 2.33/1000AE; female = 
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1.89/1000AE), followed by the knee (male = 0.66/1000AE; female = 1.22/1000AE).
13,14

  

Moreover, the male college basketball players are 0.81 times less likely to suffer ankle injury, 

but female players are 1.84 times more likely injured the knee joint.  Among high school 

basketball players, the most frequent injured body part was the ankle, followed by the knee joint, 

and the risk of knee injury for females was significantly higher (RR = 2.29) than males.
15

 

Anterior Cruciate Ligament Injury among General Population 

 Anterior cruciate ligament (ACL) is one of the most important ligaments in the knee joint 

to maintain the stability including resisting against anterior tibial translation on the femur, 

limiting valgus and varus stresses, and limiting hyperextension of the knee.
52

  The prevalence of 

ACL injury was studied in general population in Sweden and New Zealand.  A Swedish 

population-based study showed age-related trend.  The risk of an ACL injury was the highest 

between age 21 and 30 for males, but the risk was the greatest between age 11 and 20 for females.  

Teenage girls had a 1.35 times higher risk of an ACL injury compared to the 20’s.
17

  Another 

population-based study completed in New Zealand reported that although the rate of surgical 

procedures as a result of knee injuries was only 3.9%, ACL reconstruction surgery accounted for 

80%.
16

  In short, an ACL injury rarely happens in general population, but adolescent, young 

adult males, and young adult females are at highest risk of ACL injury. 

Anterior Cruciate Ligament Injury among Athletic Population 

 ACL injury in the athletic population is even more devastating because of its important 

role as a static joint stabilizer.  A study in Europe reported 45% of the knee injuries involved 

ligamentous (LCL, MCL, ACL, or PCL) and/or meniscus tissue damage.  Of those internal knee 

structures, ACL was the most commonly injured (50%) and occurred in soccer, ski, and 

(European) handball.
18

  Among U.S. collegiate athletes, the highest rate of an ACL injury was 
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reported in women’s gymnastics (0.33/1000AE), followed by women’s soccer (0.28/1000AE), 

women’s basketball (0.23/1000AE), men’s football (0.18/1000AE), and men’s wrestling 

(0.11/1000AE).
68

  Three women’s sports reported higher ratio of ACL injuries than football and 

wrestling, high-contact men’s sports, and the same sports played by male counterparts.  Because 

these injury rates included an ACL injury caused by both contact and non-contact mechanisms, 

the result was more surprising.  The non-contact injury was defined as an injury as a result of 

decelerating, cutting, landing, or a pivoting maneuver; in other words, no collision with another 

person or object was involved at the time of injury.
74

 

 Soccer and basketball are two sports in which an ACL injury frequently occurs.  A study 

concluded that female soccer players are more vulnerable to ACL tear compared to male 

counterparts.  When compared with males, females reported higher ratio of ACL injury to the 

total knee injury (female = 37%; male = 24%) in pediatric and adolescent soccer players.
19

  The 

higher relative risk of ACL injury in female athletes than male athletes was also reported.
1
  

Among men’s and women’s collegiate soccer and basketball, women’s soccer showed the 

highest ACL injury risk (0.31//1000AE) compared to women’s basketball (0.27/1000AE), men’s 

soccer (0.11/1000AE), and men’s basketball (0.08/1000AE) between 1990 and 2002.  The 

relative risk of ACL injury in females in soccer was 2.81 relates to males, and that of women’s 

basketball compared to men’s basketball was 3.38.  Nevertheless, when the non-contact 

mechanism of ACL injury is considered, the relative risk of female ACL injury was even greater 

in soccer (3.25) and basketball (4.00) compared to male.
1
  Another study also demonstrated 

college female athletes had higher relative risk of ACL injury in basketball (5.37) and soccer 

(9.48) compared to male athletes.
20
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 Because a physically active life style of an adolescent is carried over to adulthood, it will 

contribute to a life with less chronic diseases.  As the number of female participating in sports 

activity drastically increased after implementation of Title IX in 1972, the number of injury 

incidents, especially ACL tear, also increased.  The gender difference in rate of non-contact ACL 

injury is significant, and studies need to investigate the reasons for the gender difference in the 

ACL injury. 

Theories and Mechanisms of Anterior Cruciate Ligament Injury 

 Possible theories of non-contact ACL injury have been proposed.  Although none of the 

theories were proven by observing non-contact ACL injury moments, each theory sounds 

anatomically and biomechanically understandable.  Also, mechanisms of non-contact ACL 

injury were assessed only by two-dimension video analyses.  It was found foot positions and 

ankle motion could be associated with altered knee joint motions, and the observation of non-

contact ACL injury supported some of the possible theories. 

Four Theories of Anterior Cruciate Ligament Injury 

The potential ACL injury theories included ligament dominance, quadriceps dominance, 

leg dominance, and trunk dominance theories.  The ligament dominance theory attributed to 

inability to absorb a landing force due to an imbalance between the neuromuscular and 

ligamentous control of dynamic knee joint stability.
2
  This insufficient joint stability resulted in 

greater GRF and knee valgus and subsequently excessive loading of the ACL that functioned to 

restrain against anterior tibial translation and frontal plane motions in the knee joint.
2,30

  The 

quadriceps dominance theory attributed to an imbalance between knee extensor and flexor 

strength, recruitment, and coordination/ co-contraction reduced joint stability during a dynamic 

task.
2,30

  This neuromuscular imbalance, especially relatively strong knee extensors torque and 



24 

 

weak knee flexors torque, might lead to greater knee valgus collapse and tibial external 

rotation.
75

  The leg dominance theory was an imbalance among the two lower extremity strength, 

coordination, and control that could increase joint load/stress on one extremity than the other 

side.
2
  The last theory was core dysfunction dominance theory that is an imbalance between the 

inertial demands of the trunk and control and coordination of the core to resist the trunk lateral 

flexion.  This asymmetrical core control might provide more load on one lower extremity than 

the other.
2
   

Mechanism of Anterior Cruciate Ligament Injury 

Two possible mechanisms of ACL injury have been suggested; multiplanar loading with 

knee valgus collapse mechanism, and sagittal plane-oriented loading with anterior tibial shear 

mechanism.
76

  Previous studies reported the common activities leading to an ACL injury were 

jumping, landing, planting, lateral pivoting/ twisting, or deceleration.
76-79

 

 It is not possible to study causes and mechanisms of ACL injury without analyzing the 

ACL injury.  Several studies analyzed videotapes of athletes that captured the moments of ACL 

rupture in basketball, handball, soccer, football, cheerleading, gymnastics, and skiing.
28,29,35-37,80

  

Some of these studies compared the joint angles of the lower extremities and the trunk with 

uninjured athletes performing similar maneuvers
35,37

 or analyzed the videotape with a model-

based image-matching technique for better estimation of joint kinematics.
36,80

  Several studies 

analyzed the moments when ACL tear occurred.  In majority of cases (74 – 100%), players were 

in offensive phase, and some cases did not involve a contact to either the upper or lower body 

prior to ACL tear (40 - 72%).
28,36,81

  Three major tasks performing during ACL tear were 

performing cutting maneuver accounted for 13 – 70%, performing one-leg landing was involved 

in 20 to 30% of cases, and performing two-leg landing was involved in 30% of cases.
28,36,81
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Approximately 80% of women and 20% of men were in a deceleration phase.
42 

 In addition, 19 

out of 20 cases were considered as out of balance or perturbation during ACL injury.
28

  Hence, it 

may be speculated that single-leg planting to change a direction during a deceleration phase 

might be contributing to an ACL tear.  In some studies,
28,35,37

 foot position at initial contact on 

the ground, sagittal plane joint angles of the foot, ankle, knee, hip, and trunk (viewed from the 

side), and frontal plane joint angles of the knee, hip, and trunk (viewed from the front) were 

evaluated.   

Visual observation found that the foot was planted lateral to the knee (the imaginary line 

from the center of the knee perpendicular to the ground), the knee at initial contact was slightly 

flexed and in valgus position, and the tibia was either internally or externally rotated.
28

  A case-

control study found that ACL injured subjects landed with the hindfoot (heel-landing) or with the 

entire foot (flat-landing).
37

  Moreover, ACL injured subjects demonstrated less plantar flexion of 

the ankle, more flexed hip joint, and less trunk flexion at initial contact phase of landing 

compared to control subjects.  The lower extremity kinematics were not different between the 

groups only in the sagittal plane knee angle.
35,37

  Results were not consistent in the knee flexion 

angle at the initial contact between a visual observational study and two-dimension video 

analyzing studies.  Although knee and hip frontal plane position were not different between the 

groups, the lateral flexion trunk angle relative to the vertical line was greater in ACL-injured 

group.  The uncontrolled lateral trunk flexion might contribute to the knee valgus during an ACL 

injury.
35,37

  The major limitations of the two-dimension video analysis were that the exact 

moment of an ACL rupture could not be determined and that the accurate joint rotation angles 

were not measured in the transverse plane.  Still, the studies concluded that the video analysis 

revealed the commonly observed mechanism of noncontact ACL injury was “valgus collapse” of 
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the knee joint.  The valgus collapse is a combination of knee abduction, external rotation of the 

tibia, and internal rotation of the femur.
28,35,37,81

  Two phases commonly evaluated were a phase 

at initial contact of the foot with the ground and a phase at immediately after the initial contact.  

Researchers found that a rapid knee valgus loading occurred within 40 to 50 milliseconds after 

the initial contact; thus, knee collapse could be a predominant factor of a non-contact ACL 

tear.
35,36,81

   

Although downhill skiing is not commonly reported in ACL injury studies in U.S., it is 

popular in Europe and often reported in ACL injury research.  Common mechanisms of an ACL 

injury among world-class alpine skiers were studied by analyzing 20 video-recorded ACL 

injuries.  At the moment of an ACL tear, 60% of injury occurred when the skier was attempting 

to change direction, and 85% of cases the boot-ski binding were not released so that no body 

weight was sustained and absorbed at the ankle joint.
29

  The study suggested three common 

mechanisms of ACL injury in downhill ski; slip-catch mechanism, dynamic snowplow, and 

landing back weighted.  In slip-catch mechanism, a nearly straight knee of the outer ski was 

abruptly forced into flexion, internal rotation, and valgus.  In dynamic snowplow, a skier was out 

of balance with more weight on only one leg; subsequently, the loaded knee was forced into 

internal rotation and/or knee valgus.
29

  The slip-catch and dynamic snow-plow mechanisms were 

similar to the multi-plane loading with knee valgus collapse mechanism and frequently involved 

internal rotation and valgus loading of the knee.  These mechanisms are common mechanisms of 

an ACL injury during planting-and-cutting, landing, and decelerating.  In the landing back 

weighted mechanism, the skier landed with little flexed knees and on the tails of the ski.
29

  This 

mechanism is corresponding to the decelerating and landing without changing direction observed 

in other sports.  Although it is difficult to investigate an actual ACL injury in video analysis or in 
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a prospective study because the number of subject is always limited due to low injury rate as 

described above, analyzing injuries based on actual incidents provide significant impact on 

future studies.  Nevertheless, relatively low frame rate (generally 30 or 60Hz) in standard video 

recordings used in video analyses were not clear enough to capture accurate images of rapid 

athletic movements.
82

   

Potential Factors for Non-contact Anterior Cruciate Ligament Injury 

 The following factors contribute to non-contact ACL injury have been suggested; age and 

maturation (prepubertal vs. postpubertal), neuromuscular characteristics, gender (postpubertal 

males vs. postpubertal females), anatomical factors (femoral intercondylar notch width, tibial 

slope etc.), fatigue effect, hormonal levels, and leg dominance. 

Maturation and Gender Difference in Postural Characteristics 

Females were more likely to suffer a non-contact ACL injury than males, and the non-

contact ACL injury rate was higher among teenage girls compared to adult females.
1,17,19,20

  It 

should be speculated that there might be a gender-related and maturation-related factors 

regarding non-contact ACL injuries.  A case study
83

 followed an adolescent girl and reported that 

the female ALC injured athlete was in postpubertal stage at the time of injury.  Prior to the injury 

the female athlete increased in height and body mass index (BMI) but decreased in hip abduction 

angle and hamstring muscle strength.  In addition, she presented limited change in quadriceps 

muscle strength.  Hence, the subject relatively decreased the knee flexor-to-extensor ratio and 

elevated center of mass.
83

  The result of this case study was further investigated by several 

studies
21-24

 that examined the alteration of kinetics and kinematics between different stages of 

maturation. 
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There are obvious physique changes with maturation, especially during the second 

growth spurt or puberty.  A cross-sectional study
21

 compared postural and anatomical differences 

in males and females between different maturation stages instead of chronological ages in 

adolescent.  The researchers assigned the subjects into three categories based on self-

administered Tanner’s 5-stage maturation stage classification; prepubertal (stage 1) and early 

pubertal (stage 2) group combined, mid-pubertal (stage 3) and late pubertal (stage 4) group 

combined, and postpubertal (stage 5) group.
21

  Some variables changed with maturation were 

gender dependent; in other words, anatomical and postural characteristics changed differently in 

males and females during growth spurt, and the difference might eventually influence on the 

different non-contact ACL injury rate.  Genu recurvatum (hyperextension of the knee joint), 

quadriceps angle (Q-angle), anterior knee laxity, and foot pronation reduced with maturation 

stages in both genders; however, the amount of decrease in Q-angle and anterior knee laxity were 

greater in males during the same growth period.  The pelvic anterior tilt and tibial torsion, by 

contrast, increased in both genders during the same period.  In postpubertal group, female 

demonstrated greater Q-angle, anterior knee laxity, hip internal rotation, and tibiofemoral (knee 

valgus) angle compared to males.
21

 Although the researchers did not measure the width of pelvis, 

another study
22

 reported that female had wider pelvic width than male, which subsequently 

increases hip varus along with femoral anteversion, increased knee valgus and Q-angle, and foot 

pronation following the growth spurt.  

In conclusion, postural characteristics of post-pubertal female include greater anterior 

knee laxity, greater knee valgus, and external rotation of the tibia associated with hip internal 

rotation and foot pronation.  These characteristics are similar to the mechanisms of non-contact 

ACL injury. 



29 

 

Maturation and Gender Difference in Muscle Strength and Ligament Laxity 

In addition to apparent physique changes, neuromuscular characteristics and ligamentous 

laxity also change during puberty.  In the prepubertal stage, no gender difference in quadriceps 

and hamstrings strength was observed.  During puberty, both boys and girls increased the 

quadriceps and hamstring isometric strength, but the rate of increased muscle strength were 

greater in boys (179% in quadriceps, 148% in hamstrings) than girls (27% in quadriceps, 44% in 

hamstrings).  As a result, matured girls demonstrated greater quadriceps-hamstrings (Q-H) ratio 

(2.06) compared to prepubertal girls (1.73), prepubertal boys (1.58), and matured boys (1.48).
23

  

Also, matured boys demonstrated increased both quadriceps and hamstrings peak torques during 

the puberty, especially in late pubertal stage.  Girls, however, did not show significant changes in 

quadriceps or hamstrings peak torque.
24

   

Moreover, boys and girls alter ACL laxity differently during the second growth spurt.  

Although there was no difference in knee joint anterior laxity between genders prior to the 

puberty, the knee anterior laxity dramatically decreased in boys but increased in girls.
23,83

  

Therefore, while boys gained muscular strength and ligament stiffness during puberty, girls 

increased Q-H ratio and ACL laxity during the same period.  These postural, muscular, and 

ligamentous characteristics during puberty could lead to gender differences in kinematics and 

kinetics during physical activities. 

Difference with Maturation in Kinetics and Kinematics during Activities 

Gender differences were also observed in kinetics and kinematics during landing and 

jumping activities during puberty.  Although it is not conclusive, it has been believed the higher 

GRF corresponded to greater ACL loading.
80

  In the prepubertal stage, boys and girls had similar 

quadriceps and hamstring activities and GRF in a vertical jump task targeted to their 50%-
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maximum vertical jump height.
84

  In the post-pubertal stage, matured subjects showed greater 

hamstring muscle activity at pre-landing phase and longer time to reach the peak GRF compared 

to prepubertal subject.
84,85

  Hence, gender did not affect the muscular activities and GRF in the 

50%-maximum vertical jump activity.   

Meanwhile, gender seemed to influence landing pattern during a drop vertical jump task.  

Postpubertal boys increased vertical jump height and decreased in landing GRF, whereas girls 

did not change GRF with maturation during a 31-cm drop vertical jump task.
25

  Although both 

genders lowered GRF loading rate, postpubertal boys displayed smaller landing GRF compared 

to postpubertal girls.
25

  This trend in GRF was also observed in another study, though GRF 

loading rate showed no difference between pre- and post-pubertal stages.
84

  As a result, while 

boys increased the ability to attenuate landing force, girls did not change force-attenuating ability 

with maturation. 

In addition to the physique development and the following kinetics alteration, kinematics 

during drop vertical jump and vertical jump tasks changed during the second growth spurt.  

Before puberty no gender effect in the maximum knee valgus angle was observed.
24,84

  

Following the pubertal period, boys reduced the maximum knee valgus during landing, but girls 

did not change or even increase the knee abduction angle.
24,26,84

  As the result, postpubertal boys 

exhibited less knee valgus angle than girls; in other words, girls demonstrated more knee valgus 

movement than boys with maturation during a drop vertical jump task or 50%-maximum vertical 

jump task.  However, similar to kinetics no gender difference was observed before pubertal, and 

the knee valgus angle was reduced with maturation in both genders in 50%-maximum vertical 

jump task.
84

  Therefore, 50%-maximum vertical jump task might have not been enough to 

observe kinetic and kinematic difference between genders.   
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It should be noted that some studies used two maturation stages (pre- and post-

puberty);
25,26,84,86

 others classified the stages into three stages (pre-, early, and late/post-

puberty)
24

, or four (pre-menarchial girls, after menarchial girls, boys younger than 13 years old, 

and boys older than 14 years old).
23

  In those studies, several limitations were reported.  Other 

potential factors of an ACL injury, such as hormone levels, femoral notch width, Q-angle, or foot 

pronation were not controlled, thus, maturation and gender influence might explain the disparity 

in ACL injury rate between genders. 

Fatigue and Knee Joint Kinetics and Kinematics 

Even though the athletes are trained and conditioned to minimize fatigue during a match, 

one epidemiological study reported the highest rate of knee injuries occurred in the final 20 

minutes of a competition (number of knee injury incidents; 0-20min = 17, 21-40min = 25, 41-

60min = 26, and 61-80min = 32) in rugby football.
87

  This result might indicate that sport-related 

injury may be associated with fatigue that would alter the kinetics and kinematics of the lower 

extremity during landing tasks.  Because studies that investigated pre- and post-fatigue 

conditions used different neuromuscular fatigue protocols, the result demonstrated various 

kinetic and kinematic alterations.
88-91

 

Following an isokinetic fatigue protocol, both males and females demonstrated delayed 

contraction time in the hamstrings and calf muscles, but only females showed delayed onset of 

the vastus medialis activation without changing ACL laxity.
92

  Interestingly, the GRF exhibited 

wide range of alteration following a fatigue exercise; decreased GRF,
88,89

 no difference,
90

 and 

increased GRF.
91

  One study that observed a decreased GRF reported no difference in maximum 

loading rate during a single-leg landing task possibly due to other factors besides fatigue.
89
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To attenuate or absorb GRF more or less effectively, the joints kinematics of the lower 

extremity need to be altered.  As for the hip joint, fatigue protocols did not affect the angle of the 

hip flexion at the initial contact, but the maximum flexion angle increased
90

  or did not change.
89

  

In the frontal plane, the hip adduction-abduction angles showed no fatigue effect.
90,93

  As for the 

knee joint, the fatigue effects on the knee joint kinematic changes were also controversial.  The 

results revealed knee joint flexion angle increased,
89,90

 no difference,
88,91

 or even decreased
94

 

after fatigue.  However, the maximum valgus angle and tibial rotation after fatigue showed no 

fatigue effect or increase following fatigue.
90,91,93

  Interestingly, the ankle joint kinematic change 

after fatigue was consistent among researches; maximum dorsiflexion angle and foot pronation 

intensified due to fatigue of the lower extremity muscles.
89-91,93

  

Therefore, fatigue might influence the lower extremity joint kinematics more in the 

frontal plane knee joint movement and the sagittal and frontal plane ankle joint movement than 

kinematics of the hip joint in both frontal and sagittal plane and the knee joint on the sagittal 

plane.  This fatigued neuromuscular function and altered joint kinematics during landing tasks 

could be fatigue-protocol or landing-task dependent.  Still, the altered joint kinematics and the 

unchanged GRF might indicate that the subjects possibly adjusted their landing techniques at the 

ankle and the knee joint to effectively attenuate landing load.  Another interesting explanation of 

increased ankle dorsiflexion that should be mentioned was not associated with fatigue.  The 

gastrocnemius lost the plantar-flexing moment because it is a two-joint muscle crossing the ankle 

joint and the knee joint; therefore, as the knee flexion increased, plantar flexion might rely on the 

soleus muscle strength.
89
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Anatomical Factors in the Knee Joint 

Intercondylar notch width, Q-angle, and tibial slope have commonly been studied by 

case-control-study to investigate any of those anatomical structure differences, but the influence 

of intercondylar notch on ACL injury has been inconclusive.
95-98

  The width of femoral 

intercondylar notch was generally narrower in females compared to males regardless the height 

of the subjects.  The researchers concluded that the relationship between the ACL injury rate and 

the width of intercondylar notch disappeared when the size or diameter of ACL were taken into 

account.  The result lead to a conclusion that the ACL injury rate might attribute to factors other 

than the width of intercondylar notch.
95

  This result was supported by a recent study that 

compared ACL-injured group to no-injured group among females.  The study revealed that there 

were no difference in standing Q-angle, the width of the pelvis, or the width of the intercondylar 

notch between injured and non-injured groups.
96

   

Instead of the intercondylar notch width, other case-control studies
97,98

 measured other 

anatomical variables including tibial plateau slope and depth, in the knee joint to compare the 

case-control and gender differences.  In both genders, ACL-injured subjects had more posterior-

directed tibial plateau slope and shallower medial tibial plateau depth for the femoral condyle 

compared to the control group.
97,98

  Among control groups the female demonstrated more 

posterior-directed tibial plateau slope and shallower medial tibial plateau depth.
97

  Therefore, the 

posterior tibial slope and shallow tibial plateau depth might be more important than the 

intercondylar notch width in different ACL injury rate between males and females. 

Leg Dominance and Anterior Cruciate Ligament Injury 

Researches revealed kinetic and kinematic asymmetries were associated with leg 

dominance during landing tasks.
82,99

  Previous studies investigated leg dominance as a possible 
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factor in non-contact ACL injury, but the non-contact ACL injury occurrence regarding the side 

of leg dominance was still debatable.  Some researchers found non-contact ACL injuries 

occurred more on the non-dominant leg,
100,101

 other researchers concluded the leg dominance 

could not predict the side of non-contact ACL injuries.
74,99,102

   

In ACL injured athletes, males were more likely to tear the ACL on the dominant leg (26 

- 55%); by contrast, female athletes were likely to suffer ACL rupture on the non-dominant leg 

(63 - 68%).
100,101

  Therefore, non-contact ACL injuries in female might be associated with the 

leg-dominance, and this difference was possibly due to decreased in strength, activation, or 

proprioception in the non-dominant leg.
101

  On the contrary, several other studies concluded that 

there was no association of leg dominance in non-contact ACL injury.  Researchers found no 

association between side of injury and the dominant leg and no difference in genders between the 

injured and the dominant legs.
74,99,102

  Therefore, the side of non-contact ACL injury could not be 

predicted by merely determining the dominant leg by only asking which leg was the kicking leg. 

Hormonal Fluctuation and Anterior Cruciate Ligament Injury 

Although the physique and neuromuscular development that occur in both genders during 

puberty are often discussed in literatures, only the female population experiences menarche.  The 

menarche usually occurs at the onset of the second growth spurt, and this hormonal alteration 

might influence on gender difference in the non-contact ACL injury rate.  During a menstrual 

cycle, the levels of ovarian hormones fluctuate, particularly estrogen and progesterone.   

Menstrual cycle is divided into three phases; the menstrual phase, the follicular phase, 

and the luteal phase.  Although duration in each phase varies individually, it has been reported 

the average duration of one menstrual cycle is 28 days (ranged from 24 to 35 days).
27

  During the 

menstrual period that lasts roughly five days, a sudden reduction of ovarian hormones occurs.
27
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The second phase, the follicular phase, begins following the menstrual phase and lasts from day 

6 to 13.  During the follicular phase, follicular development stimulates estrogen secretion; 

consequently, the estrogen level reaches the highest.
27

  At the end of the follicular phase, the 

sudden surge of the luteinizing hormone concentration occurs.  As the peaky luteinizing hormone 

increase subsides, ovulation occurs and lasts for 24 hours during which the estrogen level 

significantly decreases.
103

   Following the ovulation, the luteal phase begins and lasts from day 

15 to 28.  During the luteal phase, the levels of estrogen, progesterone, and relaxin increase.
27

  If 

implantation does not occur, the levels of these hormones return to the lowest level, and the 

menstrual phase begins.
27,103

 

The relationship between the fluctuation of ovulatory hormones and non-contact ACL 

injury has been investigated, but it has been difficult to conclude a cause-and-effect relationship.  

Among females who were not on oral contraceptives, non-contact ACL injuries were recorded 

more in the follicular phase (2.5 to 3 times) than the luteal phase, especially five days before the 

ovulation occurs.  In female who were taking oral contraceptives, the similar relationship was 

observed but only a trend.
103-106

  The non-contact ACL injury rate was lower in the oral 

contraceptive users; physically active females, however, might not have normal hormonal profile 

merely because they have normal menstrual cycle.
106

  These results did not find the cause-and-

effect relationship between the menstrual cycle and the increased non-contact ACL injury.   

The ACL laxity was studied by measuring the amount of anterior tibial translation and 

the levels estrogen and progesterone.  One study
27

 reported that ACL laxity was the greatest in 

the luteal phase followed by the follicular phase and the menstrual phase.  In this study the 

researchers divided the menstrual cycle into three phases; the menstrual, follicular, and luteal 

phases.  Another study
107

 used four phases; menses, follicular, ovulation, and luteal phases.  The 
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result was that although the difference was not significant, compared to the mid-follicular and 

mid-luteal phases, the ACL laxity was higher by 10% at the ovulation phase.  In addition to the 

laxity of ACL, by calculating from a GRF and vertical acceleration of the center of mass 

following a single-leg hop, musculotendinous stiffness of the lower extremity decreased by 4.5% 

at the ovulation phase compared to the beginning of the follicular phase.
107

  Still, one major 

limitation of ACL laxity studies was that the subjects did not suffer ACL rupture during the 

investigation.  Hence, although the results were noteworthy, it should not be concluded that the 

greater ACL laxity and lower musculotendinous stiffness increase the risk of non-contact ACL 

injury. 

Lower Extremity Kinematics and Kinetics during Landing 

 During a landing, closed-kinetic-chain mechanism of the body functions as a shock 

absorber.  Joints in closed-kinetic-chain system are affected by motions at other joints that are 

controlled by muscles.  The foot is the first part of the body to contact on a ground during a 

landing task, and the impact that is not absorbed is transferred from the distal joint to the 

proximal joint through the ankle, knee, and hip joints.
108

  In other words, the work at the distal 

joint affects the load at the proximal joints.  After all, joints and muscles of the lower extremity 

need to be resistive against GRF to successfully attenuate or absorb the landing force without 

collapsing joints and losing balance.  Greater stress at a proximal joint is believed to be a result 

of a poor shock absorption ability of the distal joint and muscles. 

Ankle Joint and Landing Biomechanics 

Pronation of the foot is essential to dissipate impact from the landing surface.  Although 

the results appeared to be landing-task dependent, foot pronation might contribute to absorb 

landing force.  Frontal plane motion of the ankle, such as supination and pronation, might play a 
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significant role to attenuate the landing force
82

 because the ankle is the first joint to transfer the 

impact to the proximal joints during landing tasks.  The foot becomes more flexible by pronating 

at the subtalar joint and unlocking the mid-tarsal joint to absorb the landing impact from the 

ground.
109

  Despite the logical concept of frontal plane ankle motion, the influence of foot 

pronation and supination has not been conclusive.  No difference in magnitude of GRF or rate of 

loading was observed among pronated-foot (GRF = 3.44 BW; loading rate = 0.05 BW/ms), 

supinated-foot (GRF = 3.57 BW; loading rate = 0.06 BW/ms), and neutral-foot (GRF = 3.65 

BW; loading rate = 0.06 BW/ms) subjects in a drop landing task.
110

   

Another study, however, reported females showed greater vertical and posterior GRF 

than males possibly due to different ankle and knee kinematics during a drop landing task.
38

  At 

the initial contact phase of a drop landing, no difference were found in the lower extremity joint 

kinematics between genders, including the ankle plantar flexion and foot pronation.  On the 

contrary, the peak joint angles were significantly different between genders.  Females 

demonstrated greater peak ankle dorsiflexion (females = 32.7°; males = 23.8°), foot pronation 

(females = 20.9°; males = 1° supination), and knee valgus (females = 24.9°; males = 1° varus) 

angles than male subjects.  As the results, females exhibited larger vertical GRF (females = 4.71 

BW; males = 3.51 BW) and posterior GRF (females = 0.78 BW; males = 0.19 BW) than males 

during the drop landing task.
38

  The different results between two studies might have attributed to 

the study methods.  When the landing task was conducted by landing from 30cm with bare feet, 

no difference was observed between pre-measured foot conditions.
110

  The other study was 

conducted by landing from 60cm while wearing running shoes, and the foot movement 

(pronation and supination) was measured during the landing task.
38

  It needs to be noted that the 
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importance of the pronation was not isolated from ankle dorsiflexion and knee valgus; therefore, 

the clear influence of foot pronation was still controversial. 

 Muscular weakness and functional stability in the ankle joint altered landing 

biomechanics, possibly to compensate the lack of ankle function.  The muscular weakness might 

reduce the time to reach peak force.  Functional instability of the ankle joint following an ankle 

sprain was associated with weaker ankle muscle strength, pain in the joint, and less ligamentous 

stability.
111

  Subjects with ankle functional instability were compared to subjects with no ankle 

instability, and the result was that peak vertical GRF was not different between functional 

instability (GRF = 5.01BW) and control (GRF = 4.77BW) groups.  Although vertical GRF 

increased more quickly 30 millisecond after initial contact in the instability group, and the time 

to reach peak GRF was also not different between functional instability (40.0 ms) and control 

(45.8 ms) groups.
111

   

A possible reason of these vertical GRF difference was that the subjects with ankle 

instability could not overcome the initial impact due to muscle weakness or delayed muscular 

activation.  In other words, the instability subjects might have attempted to absorb the landing 

impact, but the ankle musculature was not functionally used to attenuate the initial landing force.  

Another possible reason was that instability group subject might have landed differently than 

control group due to instability and pain.  Thus, the strength of the ankle joint and muscles might 

play important role in landing tasks. 

In summary, frontal plane foot kinematics did not influence the GRF.  In 30-cm drop 

landing did not affect ankle kinematics.  In 60-cm drop jump, however, female subjects 

demonstrated greater peak joint angles in foot pronation, dorsiflexion, and knee valgus in 

addition to greater GRF.  Also, weak plantar flexor muscle could not attenuate landing force 30 
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ms after initial foot contact.  These results indicated not only ankle displacement but also plantar 

flexor strength was essential to attenuate landing force.  

Ankle Plantar Flexors and Ground Reaction Force 

The function of ankle plantar flexors during landing tasks was investigated by several 

researchers.  The GRF must be overcome or absorbed by muscles of the lower extremities; ankle 

plantar flexors, knee extensors, and/or hip extensors.
6,37,108

  The ankle plantar flexors were 

particularly important to absorb GRF during landing tasks.
3-6

  When comparing greater knee-

flexion landing (soft landing) to less knee-flexion landings (stiff landing), the ground impact 

needed to be absorbed more by the joint of the lower extremity.
3,5,6

  

 Two types of drop landing technique, soft landing and stiff landing, from 59cm high 

platform were compared.  In this study,
5
 the landing techniques were divided only by the knee 

flexion angle during the landing task.  Soft landing was a landing with greater than 90° peak 

knee flexion angle (mean angle = 117°); stiff landing involved less than 90° knee flexion (mean 

angle = 77°) during the landing task.
5
  At the foot contact, the joints of lower extremity were 

prepared to absorb the landing impact.  In the soft landing technique, the hip and the knee joints 

were more flexed than the stiff landing as expected, but the ankle joint was less plantar flexed at 

the foot contact.  As a result, soft landing presented lower vertical GRF (= 2.25BW) than stiff 

landing (GRF = 3.16BW), possibly due to effective force absorption.  The percentage of 

absorbed landing force by the hip and knee joints in soft landing were approximately 5.8% and 

6.2%, respectively, greater than stiff landing.  In contrast, the ankle joint performed less 

percentage to absorb the landing force in soft landing by 13% compared with stiff landing.
5
  This 

indicated that in soft landing, quadriceps muscles, hamstring muscles, and gluteus maximus 

performed more to absorb kinetic energy.  The plantar flexor muscles might be more activated in 
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when the knee flexion was less involved during a landing.  The importance of plantar flexor 

muscles was also reported in another study.
6
 

 During a landing from 30cm-high platform, male subjects displaced the hip joint, knee 

joint, and ankle joint by 4.0°, 12.9°, and 26.7° in sagittal plane, respectively.
6
  As a result, the 

percent of work at each joint to absorb the landing energy was 16.2%, 5.7%, and 78.2% at the 

hip, knee, and ankle joint, respectively.  Comparing male subjects, female subjects demonstrated 

less joint displacement at the hip (1.6°) and knee (8.3°), but the ankle joint displacement (27.1°) 

was similar to male’s value.  Although the relative energy absorbed at the hip joint (9.7%) and 

the knee joint (5.7%) were not different from the males, the ankle joint energy absorption rate 

was greater in female (88.3%).  Still, the normalized maximum vertical GRF in female was 9% 

greater than male.
6
  These results indicated that in the landing with less hip and knee flexion 

(stiff-type landing), the work at the ankle joint might increase to accommodate the total energy 

absorption.   

 The importance of plantar flexor muscles in stiff landing technique was also reported by 

another landing study.
3
  Four types of drop vertical landing from an 30.5cm overhead drop bar 

were compared.
3
  The key result was that as the knee stiffness increased, the plantar flexor 

muscles became more important to attenuate the landing force.  Natural landing showed greater 

knee flexion than three other stiff-knee landings; however, stiff-knee landing with conscious 

plantar flexors activation demonstrated 10° more plantar flexion and recorded the least vertical 

GRF.  Stiff-knee plantar flexion landing also showed the greatest Achilles tendon force during 

the vertical drop landing task.  In contrast, stiff-knee heel-first landing showed the lowest 

Achilles tendon force and the highest vertical GRF.
3
  The author believed that the gastrocnemius 

was not fully utilized in normal landing technique because stiff-knee landing with plantar flexors 
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activation resulted in lower vertical GRF than natural landing technique.  Consequently, the 

gastrocnemius, a two-joint muscle, might become slack when the knee was flexed.
3
  The 

gastrocnemius was loosened when the knee joint was flexed, but the soleus, a single-joint muscle, 

may work as a primary plantar flexor.  This conclusion could lead to that a future research should 

investigate the soleus strength and activation that may get more involved to attenuate landing 

impact in soft-type landing tasks.   

 A landing with greater knee and hip flexion angle showed lesser GRF than a landing with 

lesser knee and hip angle.  Still, ankle plantar flexors played a significant role in attenuating 

landing force to compensate smaller proximal joint flexion angles.  This was supported by 

another study that reported that ankle plantar flexion was more involved when the knee and hip 

flexion was limited.  Because gastrocnemius is a two-joint muscle, in theory, as knee joint flexed, 

the muscle tension of gastrocnemius is lost, and the soleus need to produce counter force against 

landing force. 

Ankle Range of Motion and Ground Reaction Force 

In addition to the plantar flexors, the ankle displacement, particularly dorsiflexion, during 

a landing task were important to provide enough time for plantar flexors to generate a counter 

force.  During a toe-landing task from 40 cm height, the GRF forced the ankle joint into 

dorsiflexion, and the eccentrically contracting plantar flexor muscles counteracted the 

dorsiflexion to absorb GRF.  Thus, sagittal plane ankle displacement and plantar flexors played 

important roles during a landing task.
7,108

  When a toe-landing was compared to a heel-landing, 

the ankle dorsiflexion was more than eight times greater in toe-landing technique (44°) than heel-

landing technique (5°).  The peak GRF was approximately 60% greater in heel-landing (GRF = 

10.1BW) than in toe-landing (GRF = 6.2BW) probably due to difference in the ankle position at 
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the initial contact in heel-landing (30.1° dorsiflexion) compared to the toe-landing (10.8° plantar 

flexion).
7
  The non-contact ACL injury was analyzed by reviewing recorded injury moments.  

The result revealed that all ACL injured subject had heel landings or flat-foot landings; in 

contrast, the control subjects landed with the forefoot or a combination of the forefoot and the 

midfoot.
37

  These results could indicate that heel-landing technique might be associated with the 

greater risk of non-contact ACL injury due to lack of ability to attenuate landing impact force by 

plantar flexors. 

 Another study also found that greater ankle displacement decreased vertical GRF during 

a landing task from 30.5 cm height.
3
  A landing with a greater ankle plantar flexion prior to the 

foot contact (GRF = 4.1BW) exhibited approximately 40% smaller vertical GRF compared to 

less ankle plantar flexion at the initial foot contact (GRF = 6.7BW).  It is interesting that vertical 

GRF was not different between natural landing with knee flexion (GRF = 4.3BW) and stiff-knee 

landing with plantar flexion (GRF = 4.1BW).
3
  The result indicated that greater plantar flexion 

and subsequent greater ankle displacement maximally utilized the plantar flexor muscle to 

absorb vertical landing force.  

The flexibility of the plantar flexors seemed to affect the loading stress on the knee joint 

during a descent phase of single-leg squat.
112

  Comparing subjects with patellar tendinopathy and 

subjects with no patellar abnormalities, the group of patellar tendinopathy was believed to be 

exposed to greater knee loading stress.  The patellar tendinopathy group had smaller ankle 

dorsiflexion ROM measured by a weight-bearing lunge test compared to the control group.  The 

author concluded the weight-bearing dorsiflexion ROM with greater or smaller than 45° 

appeared to differentiate normal patellar tendon and pathological patellar tendon.
112

  In other 
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words, the ankle with less dorsiflexion could not absorb the GRF effectively, and the force was 

transferred to the proximal joints. 

Greater plantar flexion at initial foot contact allowed the ankle joint more time to absorb 

the landing force accompanied by plantar flexor activation.  In other words, the ankle 

displacement might affect the ability to force attenuation.  This logic was supported by a study of 

tendinopathy that found greater plantar flexion flexibility could transfer smaller force to the knee 

joint.
112

  Therefore, ankle ROM in sagittal plane may be important to absorb landing force. 

Roles of Calf Muscles during Landing Tasks 

Although the previous researchers concluded the plantar flexor muscles played an 

important role to absorb landing force during landing tasks, the roles of gastrocnemius and 

soleus muscles have been debatable.
3,113

  One study
3
 concluded that the gastrocnemius might not 

function in a landing with knee flexion because the muscle became flaccid when the knee is 

flexed.  Therefore, the soleus muscle might be more important than the gastrocnemius during a 

landing.  Another study
113

 found an inverse association between knee-extended passive 

dorsiflexion ROM and GRF.  The greater knee-extended passive ROM was also correlated with 

knee and hip displacement, which indicated the GRF was attenuated by greater sagittal plane 

joint displacement.  However, the knee-flexed passive dorsiflexion ROM had no association with 

GRF or other lower extremity kinematics during the landing.  These results lead to a conclusion 

that greater knee-extended passive dorsiflexion ROM and greater joint displacement at the knee 

joint might be associated with greater force absorption ability of the gastrocnemius.
113

  Future 

research should compare the role of the gastrocnemius and the soleus during a landing task. 

 Regarding calf muscle activity, no gender difference was observed in the gastrocnemius, 

but soleus activity was higher among females.
114

  Male seemed to absorb loading force in all 
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lower extremity joints, whereas females tended to absorb the force by primarily knee and ankle 

joints.  In addition, females demonstrated greater force loading rates and greater peak angular 

velocities compared to males.
6,115,116

  These different landing techniques were related to that 

females could less effectively attenuate loading force than males by 24%.
6
  Muscular activity and 

generated force were correlated with muscular stiffness that provide dynamic stability in the 

joints.
117

  Hence, neuromuscular control deficit and less joint stiffness in the lower extremity 

might be related to inability to produce sufficient torque on the joints and might result in 

ligament-dominance landing.
117,118

 

Even though subjects with excessive medial knee displacement demonstrated greater 

muscular strength in hip extensors and hip external rotators, they showed lower plantar flexor 

strength during a squat movement.
4
  The excessive medial knee displacement group had 

approximately 17% decreased plantar flexor strength compared to the control group.  The 

authors explained the link between decreased plantar flexor strength and greater medial knee 

displacement.  The medial head of the gastrocnemius could not be strong enough to resist against 

tibial external rotation.
4
  As a result of tibial external rotation, the greater medial knee 

displacement was recorded.  Still, this result was investigated during a squat movement that was 

much slower movement than landing task, GRF was not measured, and the muscular strength 

was measured in isometric strength.   

Although the ankle plantar flexors counteract the landing force, the importance of two 

muscles in the plantar flexors was still inconclusive.  Nonetheless, the weakness of plantar 

flexors could not provide sufficient ankle joint stiffness to resist against landing force, and the 

residual energy would be transferred to the knee joint.  If the knee joint is unable to provide 

sufficient joint stiffness, the energy could be attenuated by the ligaments in the knee joint.  In 
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addition, the weakness of the plantar flexors was related to excessive MKD in squat movement 

that was similar to landing task.  Therefore, both joint displacement and associated muscle 

strength are important to effectively attenuate landing force. 

Duration of Landing Phase and Ground Reaction Force 

Not only the maximum joint flexion angle during a landing task but also the time of 

landing phase was associated with the GRF.  Studies revealed that shorter the time between the 

initial foot contact and the maximum joint flexion might be related to the greater GRF.
5,6

  

Durations of landing phase was measured in two parameters; one is the time between the initial 

contact and peak flexion,
6
 the other is the time to reach peak GRF.

5
  Both studies revealed 

similar results.   

The duration to peak GRF was shorter in stiff landing (85 ms) compared to soft landing 

(126 ms)
6
, and the duration to peak flexion of the ankle, knee, and hip joints were also shorter in 

female or stiff-type landing (324 ms, 286 ms, and 133 ms, respectively) than male soft-type 

landing technique (334 ms, 223 ms, and 117 ms, respectively).
5
  Although the time to the peak 

ankle dorsiflexion was not significant, the duration to the peak knee and hip flexion were 

significantly shorter.  As the result of shorter landing phase, both stiff landing techniques 

demonstrated greater vertical GRF (3.16 - 3.56 BW) compared to soft landing techniques (2.25 - 

3.21 BW).
5,6

   

In addition to the difference in the magnitude of vertical GRF between landing types, the 

time to the peak force were also notable.  It was suggested that maximum stress was loaded on 

the ACL as short as at 40 ms after the initial contact.
36,119

  Thus, the shorter time to the peak 

landing force might contribute to greater GRF and excessive loading on the ACL. 
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Ankle Range of Motion and Knee Valgus during Landing Tasks 

Researchers found that smaller ankle dorsiflexion could increase GRF due to a lack of 

landing force attenuation.
5-7

  By landing on a 3.6° inclined surface, the ankle ROM during 

landing tasks was modified.  During the two-leg drop jump task, ankle dorsiflexion was limited 

by 3° increased, knee valgus increased by 1.4°, and the GRF increased by 10.2% (BW) 

compared to landing on a flat surface.
39

  Although the clinical importance of 1.4° of knee valgus 

increasing was not clear due to the lack of similar studies,
39

 previous studies reported that 2.5° 

knee valgus angle could apply significant ACL strain,
120

 and that increasing knee valgus angle 

by 4° produce 15% greater strain in ACL.
121

  The author suggested the greater GRF during 

landing with limited dorsiflexion could increase the load on ACL.  Although the neuromuscular 

activities were not measured in this study, the quadriceps muscle might need to increase activity 

to counteract the external flexion moment,
39

  and this higher force produced by the quadriceps 

muscle might also contribute to non-contact ACL injury.
122

  However, it should be noted that this 

study
39

 measured lower extremity kinematics and kinetics with landing on an inclined surface, 

but did not limit actual ankle ROM.  This result was also supported by squat with a wedge under 

the forefoot to reduce dorsiflexion ROM so that the ankle dorsiflexion was restricted.
4
 

During a descent phase of squat movement, decreased ankle dorsiflexion was associated 

with greater MKD.
4
  The knee valgus during a landing task was believed to increase the risk of 

non-contact ACL injury.
45,99

  Therefore, the ankle ROM, particularly dorsiflexion, in addition to 

plantar flexor strength, possibly plays a significant role in reducing GRF and frontal plane knee 

movement, and subsequently the risk of non-contact ACL injury.  

Ankle ROM restriction was related to greater MKD in descending phase of squat that is 

similar to the descending phase of a two-leg landing task.  During a two-leg landing, limited 
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ankle ROM increased knee valgus angle that was found to be associated with MKD in addition 

to greater GRF.  Therefore, MKD and GRF could be increased by smaller ankle ROM, 

particularly dorsiflexion, that may increase the risk of non-contact ACL injury. 

Ankle Range of Motion and Risk of Non-contact Anterior Cruciate Ligament Injury 

Ankle joint has hardly been focused in studies that investigated a risk of non-contact 

ACL injury.  Previous studies showed the ankle ROM, the strength of plantar flexors, and 

landing types might be associated with non-contact ACL injury.  During a landing task, the 

lower extremity must absorb a landing impact.  The importance of plantar flexion strength was 

explained by its role as a shock absorber against a landing impact.  The ankle joint could 

attenuate approximately 80% of landing force
6
, and greater ankle displacement demonstrated 

larger ability to absorb landing force.
3,7

  The landing force that was not absorbed at the ankle 

joint would be transferred to the proximal joints including the knee and the hip joint.
108

  The 

knee joint and the hip joint must have greater angular displacement to dissipate the transferred 

force.  However, if a weaker gastrocnemius was unable to rotate the tibia internally during the 

knee flexion, the medial knee displacement would increase.
3,4

  Therefore, the link between less 

landing force attenuation ability at the ankle joint and ACL injury was filled by insufficient 

strength against quick dorsiflexion movement and subsequent greater GRF, and greater medial 

knee displacement due to weaker gastrocnemius.  Future research should also investigate the 

ankle kinematics and kinetics to assess a risk of non-contact ACL injury in addition to the knee 

and hip joint kinetics and kinematics. 

Greater ankle ROM along with greater peak angular velocity and higher rate of load 

attenuating function at the ankle joint among females
6,38,116

 indicated that smaller ankle ROM in 

the sagittal plane and/or plantar flexor weakness, especially in the soleus, might increase the risk 
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of non-contact ACL injury.  These gender differences could increase stress on the ACL of female 

and be a potential factor associated with the gender difference in non-contact ACL injury rate.   

Sagittal Plane Knee Joint Kinematics and Kinetics 

The residual force that was not absorbed by the ankle joint could be transferred to the 

knee joint.  The association of greater GRF and subsequent excessive knee valgus could be 

explained by ligament-dominant landing technique, which might increase the risk of non-contact 

ACL injury.
30

  When the ankle joint absorbed the landing force enough along with less knee 

flexion during a landing task, the GRF was similar to a natural landing with more knee flexion 

and less ankle plantar flexion.
3
  When instructed to land with less knee flexion or to land on 

heels, both GRFs were similarly greater than the knee flexed natural landing and the plantar 

flexed with less knee flexion landing.
3
  Similar to the ankle joint sagittal plane ROM, the knee 

flexion angle during a landing task was inversely related to GRF.
110

  The results indicated that 

not only greater displacement of the ankle joint but also greater knee displacement could 

contribute to reduce GRF during a landing.  The less GRF is believed to decrease the loading 

stress on the ACL; therefore, the risk of non-contact ACL injury might be reduced, as well.
82

 

 Previous studies often investigated knee joint kinematics and kinetics during landing 

tasks in conjunction with gender differences.  The results showed males often attenuate landing 

impact more effectively than females.
6,38

  However, contribution of the sagittal plane knee angles 

to the magnitude of GRF has been controversial.  Females tended to land with less knee flexion 

and demonstrated greater GRF than males (females = 30 N/J; males = 19 N/J) during single-leg 

hopping.
116

  The GRF was reduced significantly with a greater knee flexion angle at initial 

contact phase of a single-leg landing task.
123

  When the initial contact was at less than 25° of 
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knee flexion, the resultant GRF was 19.3 N/kg.  This GRF was significantly larger than the 

landing with 65° knee flexion at the initial contact that recorded less GRF of 16.4 N/kg.
123

   

During a two-leg drop jump task, males and females demonstrated similar initial contact 

knee flexion angles (male = 14.87°; female = 14.83°) and maximum joint angles (male = 88.91°; 

female = 87.25°).  Females, however, demonstrated greater peak vertical GRF and posterior GRF 

than males possibly because females activated lower extremity muscles to resist landing force 

before and during the landing different from males.
38

  Another study found different results.  

When female landed with less initial-contact knee flexion (males = 30.0°; female = 22.8°) but 

greater maximum flexion (males = 33.4°; females = 53°) than males, no difference were 

observed in normalized GRF (males = 3.67 BW; females = 3.39 BW) and time to peak GRF 

(males =  40.00 ms; females = 44.38 ms) between genders.
115

  Although both studies assessed 

landing from a 60 cm height, the first study used vertical drop from a hang bar, and the latter 

study used drop off from a box. 

Studies of two-leg landing tasks did not agree with the results of the single-leg tasks.  

Even though the knee flexion angles at initial foot contact and flexion at maximum flexion were 

similar, females showed greater GRF than males.  Although, the smaller knee flexion angle at the 

initial contact might be compensated by greater peak knee flexion angle to attempt to maintain 

GRF relatively consistent, the insufficient muscular strength could not resist to the landing force.  

As a result, females demonstrated greater GRF compared to males.  Also, different types of 

landing might induce different foot contact strategies and subsequent knee joint kinematics 

between tasks.  In other words, vertical landing task might induce different landing strategies 

than forward landing in terms of initial foot contact. 
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Although the association between the sagittal plane kinematics and GRF was 

inconclusive, the rate of loading could affect GRF during landing tasks.  When looking at GRF 

loading rate, the greater GRF loading rate increased the GRF during landing tasks.  The results 

elucidated that females had lower capability of landing force absorption compared to males 

during landing phase in a single-leg hop.  During a single-leg hop landing, the standardized GRF 

loading rate was greater in females (260 N/Js) than males (190 N/Js), which was 

approximately1.5 times larger in females than males.
116

  However, these results were not 

supported by another study that examined the angular velocity at the knee joint.   

A study observed a greater angular velocity in a knee joint did not result in a larger 

maximum GRF.
115

  During a drop landing task a 60 cm box, female exhibited greater ankle and 

knee displacements in the landing phase, but the peak angular velocities at the ankle and the knee 

joint were also greater in females (ankle = 1044°/s; knee = 725°/s) than males(ankle = 573°/s; 

knee = 602°/s).  The study, still, did not found a significant difference in peak GRF between 

genders (females = 3.67 BW; males = 3.39 BW).
115

  Although, the loading rate might not be 

associated with angular velocity and be considered separately, the two studies also used different 

tasks.  The one study used 15-second repeated in-place hopping task
116

, and the other used 60-cm 

two-foot drop jump task.
115

  In addition to possible muscular activation strategies, the task 

difference might produce different results. 

Another study of single-leg landing from a 30 cm box also reported that knee flexion 

angular velocity was less in females, but normalized GRF was significantly greater in females.
6
  

The initial-contact knee flexion angles were similar in males and females, but the angular 

displacement at the knee joint was less in females.  The time to peak flexion was also shorter in 

females (223 ms) than males (285 ms possibly due to smaller angular displacement.  The females 
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had slower mean angular velocity (37.2°/s) than the males (45.3°/s), the GRF was greater in 

females (3.56 BW) than males (3.21 BW).
6
  These results might imply that although the height 

of the platform or the types of landing (single-leg or double-leg) could be interacted, males and 

females used different strategies in landing tasks.  In other words, females landed with greater 

angular velocity in the ankle joint, but smaller angular velocity in the knee joint.  In contrast, 

males landed with smaller angular velocity in the ankle joint, but greater angular velocity in the 

knee joint.  Muscle activities of the lower extremity, still, need to be evaluated to study this 

relationship to conclude greater GRF combined with smaller peak knee flexion angle might 

influence on the risk of non-contact ACL injury. 

Frontal Plane Knee Joint Kinematics and Kinetics 

The risk of non-contact ACL injury is believed to be related to knee valgus angle during 

landing.  Although analyses of video recordings found that ACL-injured subjects landed with 

greater knee valgus and increased valgus angle progressively, the knee valgus angle was actually 

fluctuate during a landing task.  Still, greater knee valgus angle during a landing task may 

increase the risk of non-contact ACL injury, particularly immediately after initial foot contact.  

This greater knee valgus angle was also associated with smaller peak knee flexion angle, which 

was correlated with greater GRF and may increase the risk of non-contact ACL injury. 

Three-dimension kinematics of non-contact ACL injury was reconstructed from the video 

recordings of non-contact ACL injury moments.  The ACL-injured individuals demonstrated 

rapidly loaded on ACL up to 40 ms after initial contact by increasing knee valgus angle along 

with internal rotation of the knee joint.
36

  Therefore, the frontal plane kinematics could increase 

non-contact ACL injury risk.  Knee valgus during landing tasks should also be considered as a 

non-contact ACL injury factor.
45

  A non-contact ACL injury two-dimension video analysis 
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revealed that the knee valgus angles were similar in ACL injured (5.5°) and non-injured 

individuals (5.6°) at the initial contact; however, the ACL injured subjects demonstrated 

progressively increased the knee valgus angle (37.7°) compared to non-injured group (9.0°) 

during a landing.
37

  This knee valgus motion was believed to be the result of ligament dominance 

landing.
30

  It must be noted that the moment of ACL rupture was not determined by the video 

analysis; therefore, the greater knee valgus angle might be the result of an ACL tear.
37

  Still, in 

these video analyses, capturing accurate joint angles was difficult due to the low frame rate of 

general broadcasting on television. 

During landing tasks, women tended to land with more frontal plane knee movement and 

less sagittal plane knee movement than men.  Females demonstrated greater knee valgus at initial 

contact of the foot than males during single-leg drop landing tasks.
31,86

  During a landing 

followed by two-second “stick,” the knee frontal plane angles of females and males at the initial 

foot contact were 0.65° valgus and 3.9° varus, respectively.  At the peak knee flexion, these 

angles were 3.1° varus in females and 15.3° varus in males.
86

  Although female landed with 

slight knee valgus, both females and males increased the varus angle as the knee flexion 

increased.  The authors suggested that the sagittal plane angle could be more associated with 

frontal plane knee angle than with a gender difference; hence, the association had to be examined 

if each degree of knee flexion is different between genders.
86

 

Dynamic change of frontal plane knee angles were reported when the knee frontal plane 

movement was analyzed after initial contact (up to 500 ms) during a single-leg medial and lateral 

landing.  The result exhibited that the dynamic change of knee frontal plane angles would not 

have a correlational relationship with the knee flexion angle.
31

  The knee flexion angle would 

continuously increase until the peak knee flexion angle is reached; however, the frontal plane 
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knee angles actually fluctuated during the single-leg landing tasks.  In both medial and lateral 

landings, the knee valgus angle progressively decreased immediately after the initial contact (up 

to 50 ms).  Following the first varus motion, the knee valgus angle quickly increased (up to 100 

ms), and this knee valgus angle was recorded as the peak knee valgus.  The knee valgus angle 

was, then, rebounded back to neutral position, and the dynamic change of frontal plane knee 

movement was plateaued or gradually increased.
31

  This result also supported that a ACL tear 

might occur within 40 ms after the initial contact.
36

  Following the initial reduction of the valgus 

angle, the knee suddenly suffered the peak knee valgus angle regardless the direction of landing. 

Even though the frontal plane knee movement showed an oscillating movement, females 

often demonstrated a greater maximum valgus angle at the knee joint compared to males 

regardless landing tasks.
32,38

  Single-leg forward landing resulted in significantly greater knee 

valgus in females (7.26°) than males (3.29°) without demonstrating any differences in hip flexion, 

hip adduction, hip internal rotation, and knee flexion.
32

  During a two-leg drop landing from a 

60-cm hang bar, females showed greater frontal plane knee movement (26.5°) compared to 

males (7.1°).  The authors found that the greater difference in the knee valgus angles between 

genders occurred at the first 30 to 50% and the last 10% of the landing phase.
38

  Therefore, not 

only immediately after the initial foot contact, the frontal plane knee angle at the peak knee 

flexion should also be analyzed. 

Frontal plane knee motion was examined with two groups divided by the value of the 

total knee and hip flexion, and the landing with greater hip and knee flexion could result in the 

lower knee valgus during a two-leg drop landing task.
40

  The high-flexion group recorded the 

total flexion angle above the mean of all subjects (peak knee flexion = 100.6°; peak hip flexion = 

89.9°); the low-flexion groups showed the total sagittal plane angle below the mean (peak knee 
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flexion = 86.5°; peak hip flexion = 67.4°).  The low-flexion angle subjects demonstrated greater 

maximum knee valgus angle (6.3°) compared to the high-flexion angle subjects (3.9°).
40

  The 

results implied that a landing with a low sagittal plane flexion might result in greater valgus 

loading.  This high valgus loading landing technique was also found among non-contact ACL 

injured adolescent females.
30,37

 

A prospective controlled cohort study revealed that during a drop vertical jump task, 

ACL injured subjects demonstrated a landing technique with greater knee valgus and smaller 

knee flexion angles that was believed to increase non-contact ACL injury risk.
99

  Three joint 

angles that showed significant difference between groups were knee valgus angle at initial 

contact, knee valgus angle at maximum knee flexion, and maximum knee flexion angle.  The 

ACL injured group showed greater knee valgus (5.0°) at the initial foot contact compared to the 

uninjured group (3.4°).  The knee valgus angle increased in the ACL injured group (9.0°), but the 

knee valgus reduced in the uninjured group (1.4°) during a descending phase of the drop vertical 

jump task.  Moreover, the maximum knee flexion was also smaller in the ACL injured group 

(71.9°) than the uninjured group (82.4°).
99

  Therefore, the frontal plane knee joint angle might be 

related to the sagittal plane knee joint angle during non-contact ACL injury. 

There was a consensus that greater knee valgus during a landing task could increase the 

risk of non-contact ACL injury
35-37

 possibly due to higher ACL loading that might attribute to 

the landing technique with smaller knee flexion and greater knee valgus.
2,30,99

  Moreover, the 

study that compared the ACL injured and uninjured groups found an association between knee 

valgus angle and peak GRF.  The ACL injured group with greater knee valgus motion and 

smaller knee flexion demonstrated greater vertical GRF (1266 N) compared to the uninjured 

group (1058 N) during the drop vertical jump task.  A significant correlation was observed 
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between the knee valgus angle and the maximum vertical GRF only in the ACL-injured group (R 

= .67).
99

 

The knee valgus angle has been believed to increase the ACL loading during a landing 

task.
37,45,99

  The greater knee valgus angle was possibly associated with the smaller knee flexion 

angle
40,99

 and smaller ankle dorsiflexion
4,39

 in the descending phase of landing.  The force 

transmitted to the proximal joints was a residual force that was not absorbed in the distal joint.  

Therefore, the ankle joint kinematics and kinetics could play significant roles in ACL loading 

force in the knee joint.  Role of the ankle joint on the risk of non-contact ACL injury has not 

been sufficiently investigated to date.  Future studies need to investigate the association of the 

ankle joint energy absorption and the risk of non-contact ACL injury. 

Greater knee valgus angle are likely to increase the risk of non-contact ACL injury.  This 

association was supported by analyzing video recordings of ACL injury.  Studies
35,36,80

 found 

that the knee valgus angle immediately after initial foot contact could lead to greater peak knee 

valgus angle.  Therefore, a landing with greater frontal plane angles may increase the risk of non-

contact ACL injury.  However, the association between the knee joint kinematics and the ankle 

joint kinematics has hardly studied thus far.  

Landing Tasks and Landing Biomechanics 

In addition to types of landing (soft and stiff landings), tasks of landing also influenced 

the kinematics and kinetics.  Two commonly used landing tasks to assess non-contact ACL 

injury risk were drop-landing,
3,5,86,119,124

 and forward-jump landing.
113,124

  A study comparing the 

two landing tasks concluded that the two tasks were different.  Forward-jump landing involved 

concentric and eccentric muscle contraction during the task; on the other hand, drop-landing 

involved only eccentric phase of muscle contraction.
82

  Although the ankle joint did not show 
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asymmetry between two legs during the two landing tasks, the forward-jump landing task 

exhibited greater asymmetry at the hip adduction angle and the knee valgus angle in frontal plane 

kinematics than drop-landing task.  This result indicated that the asymmetry in knee valgus 

might be associated with the greater risk of non-contact ACL injury during forward-jump task 

which includes landing and deceleration.
2,82

   

 Although two different types of landing tasks have been examined to assess the risk of 

non-contact ACL injury, only one study
82

 investigated these two landing tasks.  It was concluded 

that female subjects demonstrated asymmetrically greater valgus angle in a dominant leg than 

males during a forward-jump landing.  The kinematics of ankle and knee joints have not been 

studied in two different types of landing tasks yet. Therefore, it is also important to compare the 

two types of landing tasks in terms of available ankle range of motion (ROM). 

External Ankle Supports 

 External ankle supports (EAS), such as ankle taping and ankle bracing, have been 

frequently used to prevent ankle sprains in athletic settings.  Although ankle taping was often 

used in athletic training, re-usable ankle lace-up brace and semi-rigid brace have become more 

common because of high cost of daily taping and irritation to the skin by tape adherent or 

adherent spray.
125

  The goal of the EAS is restricting ankle frontal plane movement, such as 

inversion and eversion, at the subtalar joint.  However, many of EAS inevitably limit ankle 

sagittal plane movements, plantar flexion and dorsiflexion, which are essential movements 

during athletic movements.  Therefore, EAS may not only affect athletic performance but also 

alter landing mechanics due to limited plantar flexion and dorsiflexion.  The influence of limiting 

ankle sagittal plane movements during functional performance have been debatable; still, 
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changing landing kinematics and kinetics might contribute to increasing a risk of non-contact 

ACL injury. 

External Ankle Supports and Ankle Function 

Ankle taping and lace-up ankle braces successfully decrease ankle inversion and eversion 

ROM.  The EAS effectively limit inversion ROM (12 – 47%)
125

; hence, EAS decreased total 

ROM in the frontal plane at the ankle joint.
8,41,125,126

  Although these studies demonstrated EAS 

effectively restricts the frontal plane ROM, the effect of ankle injury reduction was still 

questionable.
125,127

    

 Ankle inversion sprain frequently occurs when the ankle is in slightly plantar flexed 

position and in inversion.
44

  Consequently, limiting plantar flexion should be one of the purposes 

of the use of EAS.  Ankle taping techniques and lace-up ankle braces efficiently reduced passive 

(59%)
128

 and active (26%)
129

 ankle plantar flexion ROM,
41,128,129

 but the dorsiflexion was also 

limited (50.0%)
128

 as the result of the EAS application.
8,41

  Compared to non-taped condition, the 

ankle taping decreased the plantar flexion angle (non-taped condition = 65°; taped condition = 

26.5°) and reduced the dorsiflexion angle (non-taped condition = 20°; taped condition = 10°).
128

   

As a result, the total sagittal plane ankle ROM was reduced.
8,125,126

  This limited plantar flexion 

and dorsiflexion might contribute to alter functional performance during running and jumping 

tasks, and alter proximal joint kinematics during various landing tasks.   

External Ankle Supports Do Not Influence Functional Performance 

Although previous studies revealed prophylactic EAS effectively restricted ankle ROM in 

sagittal and frontal plane, constricted sagittal plane ROM also interfered plantar flexion and 

dorsiflexion that were essential movement during functional tasks, such as jumping and landing 

tasks.  Studies concluded that EAS hardly affected or had no negative effect on performance 



58 

 

during functional tasks.  EAS reduced sprint speed by only one percent, and the reduction was 

not significant.
8
   Agility speed reduced up to 0.5% by semi-rigid ankle brace application, and 

ankle taping or lace-up brace did not affect agility performance.
8
  Single-leg static balance was 

not different between no EAS and EAS groups.
130,131

  Application of EAS did not change athletic 

performance in vertical jump height or broad jump distance even though the sagittal plane ankle 

ROM was limited.
8,41,129,131,132

  Many researchers had hypothesized that application of EAS, such 

as ankle taping, lace-up brace, or semi-rigid brace, would deteriorate functional task performance, 

especially vertical jump height.  The results did not support their hypotheses possibly due to 

measuring only static open kinetic ROM.
132

  In other words, limited ankle ROM measured in 

open kinetic chain might not have influence in dynamic ROM during functional tasks.  In 

addition, long-term effects of EAS were not observed; hence, wearing EAS for months or years 

might influence on muscular strength or joint proprioception and on functional task performance. 

External Ankle Supports Alter Landing Kinematics 

Although EAS did not negatively affect functional performance, such as sprinting speed, 

agility speed, balance, or vertical jump height, they altered kinematics of the lower extremity 

during landing, side cutting, and squatting tasks.  Kinematic changes due to altered ankle ROM 

were observed not only in the ankle joint but also in the proximal joints in the lower extremity.  

The reason for this change was possibly because the movement of the distal segment influenced 

the proximal joint through the closed-kinetic chain system. 

Application of EAS decreased the plantar flexion angle at ground contact (no EAS = 

24.5° – 37.8°; EAS = 16.9° - 34.4°).
133,134

  The maximum dorsiflexion angle during a landing 

phase was also reduced by EAS (no EAS = 23.2° - 21.5°; EAS = 21.0° - 22.1°).
134,135

  As a result 

of less plantar flexion before landing and limited ankle dorsiflexion during landing phase, the 
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total ankle joint displacement was also decreased.
134,135

  This reduced range of ankle motion 

could lead to decreased time to peak GRF during drop landing tasks during a 60-cm box drop 

landing task.
136

  Still, another study revealed that the time from the foot contact with the ground 

to the maximum dorsiflexion did not change during a 30-cm height two-foot drop-landing and 

immediate vertical jump task.
134

  These inconsistent results might possibly be due to the use of 

different heights of landing (60 cm vs. 30 cm) and types of EAS (semi-rigid ankle brace vs. lace-

up ankle brace).   

Ankle motions in the frontal plane including inversion and eversion did not change by 

ankle tape application during a single-leg drop landing task,
133

 but the frontal plane movements 

were effectively reduced in dynamic side-cutting tasks.
137

  Thus, during a single-leg or two-leg 

landing task that primarily involved sagittal plane motion, EAS likely to affected only sagittal 

plane kinematics. 

 Limited ankle sagittal plane motion by EAS might also change the rotation of the tibia 

and subsequent joint kinematics during landing or functional tasks.  Orthotics application to the 

females with pes planus did not change tibial rotation angle,
138

 but wearing EAS decreased the 

tibial internal rotation during running, cutting, and crossover cutting tasks,.
137

  This indicated that 

simply supporting the medial longitudinal arch did not change landing kinematics, but stabilizing 

the ankle joint by EAS could affect the lower extremity kinematics during functional tasks.   

It was understandable for EAS to alter the kinematics at the knee joint during landing 

task.  EAS changed the knee joint angles during a forward-jump landing task but did not affect 

during a simple vertical drop landing task.  Application of lace-up brace increased the knee 

flexion angle at the foot contact but did not change the peak knee flexion angle; as the result, the 

knee sagittal plane displacement decreased.  The knee joint sagittal motion appeared to be 
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compensating the ankle-stabilizer-induced reduction of the ankle sagittal motion by increasing 

knee flexion at the foot contact so that the GRF were relatively kept constant.
134

  The time to 

peak knee flexion did not change, and this result was comparable to the time to peak dorsiflexion 

angle.
134

  Another study used a hanging vertical drop landing demonstrated no difference in 

sagittal plane knee displacement among control, ankle taping, and lace-up brace.
139

  This 

disagreement could attribute to the different landing methods; the former used a forward-jump 

landing, and the latter used a simple vertical drop landing.   

Regarding the sagittal plane knee angle, the knee flexion angle and the anterior tibial 

shear force were inversely associated; therefore, less knee flexion during a landing task increases 

the anterior tibial shear force.  Thus, application of EAS and reduced sagittal plane ankle 

displacement could reduce the tibial anterior shear force during the forward-jump landing task.
134

  

This reduction of sagittal plane ankle displacement could result in greater peak landing force 

because the ankle dorsiflexion ROM and the plantar flexors played an important role in landing 

force attenuation.
5,113

   

The sagittal plane ankle ROM measurement was associated with the knee and the hip 

displacement.  The dorsiflexion angle measured in knee extension was inversely correlated with 

the knee sagittal plane displacement and the hip sagittal plane displacement during a landing task.  

Therefore, in addition to the ankle ROM, the gastrocnemius muscle activation or strength could 

be related to the GRF.
113

  Another correlational study showed that the less dorsiflexion angle was 

associated with the greater dynamic valgus.
140

  Furthermore, restriction of the ankle dorsiflexion 

by placing a wedge under the forefoot during the controlled squatting exercise simulated the 

restricted plantar flexion flexibility.
141

  It should be noted that those correlational studies did not 
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use EAS to limit ankle ROM, and the use of EAS and proximal joint kinematics during landing 

task have not been studied to date. 

External Ankle Supports Alter Landing Kinetics 

EAS affected the proximal joint kinematics during landing tasks.  The different lower 

extremity kinematics could also influence the kinetics during the same tasks.  The kinetics 

measured were vertical GRF, time and rate to the peak GRF, muscular activities (the vastus 

medialis oblique, vastus lateralis, gastrocnemius, soleus, peroneal muscles, and tibialis anterior), 

and time to stabilize after a landing task.  The results of GRF and muscular activities were not 

consistent probably due to different tasks performed.
41,134,136,137,139,142-145

 

The maximum GRF did not change during forward-jump landing tasks
134,142

 and dynamic 

cutting tasks
137

 following the application of EAS.  When the landing was divided into two phases, 

toe contact (first peak GRF) and heel contact (second peak GRF), the magnitude of the GRF 

depended on the task performed.  The GRF significantly decreased both at toe contact and at heel 

contact during two-leg drop landing after EAS application.
136

  In contrast, during hanging drop 

landing, EAS application increased GRF at the toe contact phase but did not change at the heel 

contact phase.  As a result, the time to peak GRF decreased at the toe contact; hence, the rate to 

the peak GRF also increased.
139

  During basketball-type side cutting drill, wearing EAS did not 

change GRF at the toe contact phase but decreased maximum GRF.  Moreover, EAS application 

decreased the time between the first peak and the second peak GRF; therefore, the rate of GRF 

increased.
143

   

EAS application modified muscular activities in the lower leg muscles.  During a single-

leg forward-jump landing task, the gastrocnemius and the peroneus longus activities decreased, 

and the tibialis anterior activity did not change in EAS group compared to control group.
142
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Although it was not measured, reduced calf muscle activities could indicate that the mechanical 

ankle stability might decreased during the landing task.  Other studies
41,144,145

 demonstrated that 

the peroneus longus and brevis activities were not changed by EAS application.  However, these 

studies measured muscular activities during sudden inversion
41,144

 or transient oscillations
145

 

instead of sagittal plane landing tasks.  Thus, the disparity of peroneus longus activity could 

attribute to the tasks performed, and the EAS application might reduce the activity of the 

peroneus longus during the sagittal plane landing task. 

Restricted dorsiflexion could alter the soleus muscular activation level because the soleus 

muscle eccentrically resist ankle dorsiflexion to control sagittal plane ankle motion.
141

  When the 

knee is flexed the gastrocnemius loses its proper tension to generate force.  In contrast, the soleus 

muscle length-tension relationship is not influenced by the knee flexion.  Consequently, the 

soleus activity level could increase during the deceleration phase of squat-type movement.  In 

drop-landing tasks, the soleus activity possibly becomes more important than in forward-landing 

tasks.  This is probably due to the necessary displacement of the ankle joint between the tasks. 

Non-contact Anterior Cruciate Ligament Injury Risk Assessments 

 Three screening assessment techniques, including tuck jump, drop jump, and landing 

error scoring system (LESS), have been commonly used by utilizing two-dimensional 

commercial digital camcorders to evaluate potential non-contact ACL injury factors of sagittal 

and frontal plane kinematics.  Because the gold standard three-dimensional movement evaluation 

is costly and time-consuming, field-based movement assessment tools using commercially 

available digital camcorders are used by clinicians and coaches.   By using two-dimensional 

video images recorded at 30 or 60 Hz, all of those assessment tools successfully evaluated lower 
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extremity kinematics difference between males and females during landing phase of various 

landing tasks. 

Tuck Jump and Drop-Jump Assessments 

Tuck jump assessment tools were developed to help detect landing errors by observing 

knee and hip flexion angles, lower extremity valgus angle, asymmetry of extremities, foot 

placement, foot contact timing, and landing noise.
2,146

  In the tuck jump assessment, participants 

performed 10-second repeated tuck jumps, and the clinician visually rated the landing technique 

based on the grading criteria.  Two standard camcorders were placed in front and on the side of 

the landing platform to obtain kinematics of frontal plane and sagittal plane, respectively.  The 

two main focuses of the tuck jump assessment is dynamic knee collapse and side-to-side 

asymmetry during the task.
146

  It should be noted that the lower extremity external and internal 

rotations of the femur and tibia could affect the frontal plane apparent motion at the knee joint, 

and the frontal plane movement analyzed by two-dimensional video recording system was not 

representative of true knee valgus.   

 Drop-landing vertical jump has been used to evaluate the lower extremity frontal plane 

dynamic knee valgus collapse during landing phase and accelerating phase.
47,140

  The drop-

landing vertical jump consisted of jumping off a box of 31cm
47

 or 46cm
140

 in height, natural 

landing, and immediate maximum vertical jumping.
47

  The knee valgus collapse was evaluated at 

the initial toe contact to the ground, at the maximum knee flexion, and the initial forward 

movement of the body for a vertical jump.  In drop-landing studies, the dynamic knee collapse 

was not measured in angles; instead, the distance between the knees were normalized to the 

participant’s height
140

 or to the distance between the left and left anterior superior iliac spines of 
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the hip
47

 in addition to actual distance between the hips.  Hence, the dynamic knee valgus 

collapse was expressed as knee separation ratio relative to the hip distance.
47

   

The knee separation does not measure the true angle of knee valgus in the frontal plane, 

but simply means the distance between the knee joints.  The knee apparent movement observed 

by a single-plane video analysis could be the results of combined movements in the transverse 

and frontal planes.  Decreased hip external rotation ROM was associated with the frontal plane 

knee valgus.
140

  Hence, the knee separation measurement implied not only the internal and 

external rotation of the femur and tibia, but also internal rotation of the hip joint.  The test-retest 

reliability of the hip separation distance was found to be substantially high (ICC ≥ 0.94), and the 

within-test reliability for the hip, knee, and ankle separation distance were substantial (ICC ≥ 

0.90).
47

   

Forward-Jump and Landing Error Scoring System 

Landing Error Scoring System (LESS) is a newly developed jump-landing movement 

evaluation tool to identify landing errors by reviewing two-dimensional recorded images with 

video analysis software programs.
147

  Based on jump-landing characteristics, the LESS simply 

used a dichotomous scoring system to several items.  The LESS measured knee flexion angle, 

knee valgus angle, trunk flexion angle, ankle plantar-flexion angle, foot/ toe position, stance 

width, foot contact symmetry, sagittal ROM in all lower extremity joints, and overall quality of 

landing.
148

  The LESS was originally proposed to assess potential landing errors associated with 

non-contact ACL injury; therefore, the scoring system was more comprehensive landing 

assessment tool than previous clinical assessment tools.
46

   

Similar to the drop-landing vertical jump task, the LESS also involved landing and 

vertical jump tasks.  However, a key difference in LESS was that the LESS required horizontal 
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motion in addition to landing movement which was often involved in non-contact ACL injury.
46

  

The suggested task consisted of a two-leg forward, but not vertical, jump from a 30cm-height 

box, two-leg landing on to the platform at a distance of 50% of subject’s body height, and 

immediate maximum vertical jump.
46,149

  The investigators instructed the subjects to complete 

the task as naturally as possible.
150

  Recording of the initial landing of the box was reviewed in 

the sagittal and the frontal plane by a rater using the LESS, and the total error score would be 

calculated.
151

  Each faulty landing characteristics was scored as an error, and the higher LESS 

score indicate poorer landing technique.
148,150

   

 The LESS is a valid and reliable tool to characterize erroneous landing technique during a 

forward-jump landing task to identify with high non-contact ACL injury.  The LESS had 

excellent intra-session (ICC2,1 = 0.90), inter-rater (ICC2,1 = 0.84) and intra-rater (ICC2,k = 0.90) 

reliability in a drop-landing task.
151,152

 More importantly, the inter-rater (ICC2,k = 0.84) and intra-

rater (ICC2,1 = 0.91) reliability for the LESS was also excellent in the forward-jump landing task.  

The scoring system successfully differentiated gender differences and high/low erroneous 

groups
151

; however, the validity of the LESS appeared to be item dependent when it was 

compared to three-dimensional motion analysis.
152

   

When the scores of experienced-raters were compared to the three-dimensional motion 

analyzing tool, excellent agreement (> 84%) was shown for ankle flexion angle at initial contact, 

total knee flexion ROM, trunk flexion at maximum knee flexion, and foot position (tibial 

rotation) at initial contact.  Moderate agreement (68 – 74%) was demonstrated for trunk flexion 

at initial contact, stance width relative to the shoulder width, knee valgus at initial contact, and 

total knee valgus ROM.
152

  Significant correlation with three-dimensional motion analysis (κ = 

0.46 – 1.0) was also observed for total knee flexion ROM, symmetric initial foot contact, foot 
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position at initial contact (toe-out), narrow stance width (< shoulder width), knee valgus at initial 

contact, lateral trunk flexion at initial contact, total knee valgus ROM, and total sagittal plane 

ROM in the drop-landing task.
152

   

The higher LESS score with erroneous landing technique was associated with less flexion 

angles at the knee and hip, greater knee valgus, greater hip adduction, greater anterior tibial shear 

force, and greater GRF in the forward-jump landing task.
46

  The important risk factors for non-

contact ACL injury were knee flexion angle, knee valgus angle, and hip adduction angle; 

therefore, the LESS is an excellent assessment tool to identify landing errors that might 

contribute to non-contact ACL injury. 

 The gold standard three-dimension motion analyses usually use a high-speed filming 

technology between 150 and 500 Hz.
113,133,152

  A drawback of two-dimension video analyses of 

tuck jump, drop jump, and LESS to evaluate landing technique were incapability of 

commercially available camcorder to capture kinematic data.
152

  Those camcorders usually 

capture images 30 or 60 Hz
45,152,153

; therefore, high-speed human movements, especially in the 

sagittal plane movement, were probably not clearly pictured when raters reviewed and evaluated 

the landing techniques.  Even using a three-dimension motion analysis to analyze human 

movement, filming 60 Hz was not appeared to be sufficient to capture detail of joint angles 

during a drop-landing task.
154

 

Summary 

 The risk of sports-related injury is inevitable in physical activity, particularly in sports.  

Interestingly, non-contact ACL injury is substantially more prevalence in females than males.  

Potential factors and theories have been proposed; however, no definitive cause has been 

identified, and it is likely that multiple factors could contribute to this phenomenon.  One of the 
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factors identified by video analyses was excessive knee valgus angle and greater GRF during a 

landing, and this was supported by other experimental researches.  Adolescents change their 

strength and postural characteristics during their puberty period, and postpubertal females, in 

general, demonstrate greater knee valgus angles during landing tasks.  Because landing force that 

is not attenuated in the ankle joint has to be transferred to the proximal joints, ankle joint ROM 

and strength, particularly plantar flexors, are essential during a landing.  However, the 

relationship between ankle ROM and kinematics in the proximal joint and ground reaction force 

(GRF) is still unknown.  The ankle ROM in frontal plane is successfully restricted by external 

ankle supports (EAS) in athletic settings, but EAS also limited the sagittal plane ankle ROM.  

Hence, the influence of EAS regarding knee kinematics and kinetics during landing tasks needs 

to be identified. 
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METHODS 

Purpose of study 

Females are more at risk of a non-contact ACL rupture than males. One cause is female’s 

landing mechanics differs from their male counterparts.  Less flexion of the lower extremity 

during a deceleration phase of activities and subsequent greater GRF and knee valgus might 

increase the risk of the ACL injury.  Drop-jump landing (DJL) and forward-jump landing (FJL) 

tasks are inevitable in many sports activities.  Therefore, the first purpose of this study was to 

investigate whether the limited ankle ROM by application of external ankle supports (EAS) 

changes landing kinematics and kinetics.  Therefore, the second purpose of study was to 

investigate whether the two types of landing tasks differ in kinematics and kinetics. 

Experimental Design 

 To assess the effect of EAS, landing tasks, and isokinetic strength of the soleus, a 3 x 2 

factorial crossover-repeated measure design was used.  The independent variables were EAS 

conditions and landing tasks.  Three EAS conditions tested were no ankle braces (NB), ankle 

braces with low-tension (LTB), and ankle braces with high-tension (HTB).  The NB was a 

comparison group.  Two types of landing technique performed were drop-jump landing and 

forward-jump landing.  The order of EAS conditions and landing tasks were counterbalanced by 

using a Latin square and crossover, respectively.  The dependent variables were static ankle 

plantar flexion and dorsiflexion with knee flexion, static ankle dorsiflexion with knee extension, 

static ankle dorsiflexion with weight bearing, ankle displacement during a landing, peak ankle 

dorsiflexion during a landing, peak medial knee displacement (MKD) during a landing, peak 

vertical GRF during a landing, concentric peak torques of plantar flexors at 60°/s, 120°/s, and at 



69 

 

180°/s, and eccentric peak torque of plantar flexors at 30°/s.  In addition to age, height, and 

weight were measured, the day of last menstrual cycle was also asked. 

Sample Size and Sampling Method 

 Based on the data obtained in pilot studies, the minimal number of subjects in each 

condition required with a power of 0.8 and a level of significance α of 0.05 was calculated
155

 to 

be 14.9.  Convenience sampling method was used, and physically active healthy adults were 

recruited from HNES 210 (First Aid and CPR), HNES368 (Biomechanics of Exercise), and 

HNES 365 (Kinesiology) class.  Potential participants were approached by in-class recruitment 

and e-mail.  Criteria to participate in the study included no neuromuscular dysfunctions, no 

history of prior surgeries within six months, or signs and symptoms of inflammation including 

pain and/or joint effusion in the lower extremities.  A physically active healthy college-age 

female was defined as a person who was between 18 and 25 years old, who performed physical 

activity at least two times per week and minimum of 30 minutes in each session, and who had no 

lower extremity at the time of participation or no history of surgery within six months prior to 

the participation. 

Potential Errors and Bias 

 There were possible errors in this research project; fatigue effect, order effect, learning 

effect, selection bias, and instrumentation effect.  To minimize fatigue effect, a minimum two 

minute rest period was provided between each trial.  To evenly distribute the order effect, the 

order of treatments (NB, LTB, and HTB) was counterbalanced by use of Latin square.  In 

addition, the order of landing tasks (DJL and FJL) was alternated.  To minimize learning effect, 

sufficient familiarization period (practice time and repetition) was given prior to testing trials; 

however, to examine a natural landing, only minimum instruction was provided.  To minimize 
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selection bias in terms of pubertal maturation, participants were at least 18 years old at which no 

further pubertal growth was expected.
156

   

Ankle range of motion (ROM) was manually measured by a goniometer.  To minimize 

error regarding goniometric measurement, measurements were taken by the co-investigator who 

was a health professional with seven years of year experience as an athletic trainer.  Although 

kinematics is commonly analyzed by a three-dimension motion analysis package, sagittal plane 

ankle kinematics and frontal plane knee kinematics were measured by a commercially available 

two-dimension digital video cameras.  Because joint rotations are not able to be analyzed by a 

two-dimension video analysis, medial knee displacement (MKD) relative to the distance of the 

anterior superior iliac spines was assessed, instead.  The landing motion was recorded with high-

speed video filming mode. 

Equipment Set Up 

 Two digital cameras (EX-FH20; Casio, Inc., Tokyo, Japan) were used to record landing 

kinematics.  One digital camera was mounted on a tripod 73 cm from the floor.  The tripod was 

placed 175 cm in front of a box from which participants took off.  This digital camera recorded 

medial knee displacement (MKD) in frontal plane.  Another tripod with a digital camera 

mounted on was positioned at 175 cm on the right side of the box.  This second digital camera 

recorded ankle displacement in sagittal plane.  The box was 33 cm (13.0 inches) in height and 53 

cm (20.9 inches) in width.  The frequency of filming was at 210Hz which was more than three 

times sharper or distinct than commercially available digital video recorders.  Although the 

frequency of the recording was more than three times greater, the brightness of the recording was 

sacrificed; therefore, additional 8-inch studio floodlight (PL8; Smith-Victor Corp., Bartlett, IL) 

was placed behind each digital camera to additionally illuminate the laboratory lighting.  
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 Participants were instructed to wear athletic shorts and low-cut sports shoes.  For frontal 

plane kinematic recordings, markers were placed at both left and right side of the body; at 2 cm 

anterior to the acromioclavicular joints, at the anterior superior iliac spine, at the center of patella, 

and at the middle of the distal lower extremity 5cm superior to the ankle joint.  For sagittal plane 

kinematic recordings, markers were placed only on the right side of the body; at 2 cm lateral to 

the acromioclavicular joint, at the greater trochanter, at the center of the knee joint line, and at 

the lateral malleolus. 

 The force platform (AccuPower; AMTI, Watertown, MA) was embedded to the testing 

surface.  The position of the 33-cm box was adjusted depending on the task performed.  For DJL 

task, the box was placed 5cm from the edge of the platform, which was 35 cm (13.8 inches) from 

the landing target on the platform.  For FJL task, the box was placed at 50% of the participant’s 

height from the center of the force platform.  Therefore, participants targeted to land 

approximately in the center of the platform in both tasks. 

 The Biodex Multi-Joint system 4 PRO (Biodex Medical System, Shirley, NY) was used 

to assess concentric and eccentric isokinetic torque of the plantar flexors, especially soleus 

muscle.  The position of a participant was seated on the dynamometer seat, and the position of 

the ankle was adjusted according to the participant’s body length in order for the axis of ankle 

movement in sagittal plane was aligned with the axis of rotation of the dynamometer.   

Experimental Procedure 

 The procedure consisted of pre-trial evaluation, warm-up exercises, external ankle 

supports (EAS) application, ankle ROM measurements, and jump-landing trials.  The EAS was 

applied prior to ankle ROM measurements.  The ankle ROM was measured in three different 

conditions; no brace (NB), low-tension brace (LTB), and high-tension brace (HTB).  Following 
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ankle ROM measurements, jump-landing tasks were performed.  A minimum of 2 minute rest 

period was provided between jump-landing trials.  The orders of EAS applications and jump-

landing tasks were counterbalanced.  Two measurements were taken in each condition and task 

and were averaged for analyses.  Following the landing trials, the concentric and eccentric 

isokinetic strength of the plantar flexors was measured at 60°/s concentric contraction, at 120°/s 

concentric contraction, at 180°/s concentric contraction, and at 30°/s eccentric contraction.  A 

minimum of 2 minute rest was provided between isokinetic measurements.  The entire study 

took approximately 75 minutes to complete. 

Pre-trial evaluation 

Participants were reported to the Biomechanics Laboratory in the Bentson Bunker 

Fieldhouse at North Dakota State University and signed the informed consent.  Participants were 

instructed to wear athletic shorts, T-shirts, and low-cut sports shoes for the testing.  A history and 

current signs and symptoms of lower extremity injury and the amount of weekly physical activity 

were assessed for eligibility.  They were also asked about most recent menstrual cycle.  Height 

and body weight were measured by a conventional stadiometer (seca213; seca, Hamburg, 

Germany) and weight scale (751KLS; Health o meter, McCook, IL), and weight was used to 

standardize the isokinetic strength.   

Warm-up exercise 

Participants were allowed to warm up to prepare the body’s neuromuscular system for the 

demands of landing tasks.  Dynamic warm-up exercise consisted of two minute comfortable 

jogging on a treadmill, 30 second toe walking, 30 second straight leg kicks, 15 second leg swings, 

20 second high knee walk, 20 second butt kicks, 20 second lunge walk, and 20 second skipping.  
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If a subject did not feel he/she was warmed-up enough, additional warm-up exercise was 

performed by subject’s choice.  However, no static stretching was allowed. 

External ankle supports application 

Prophylactic lace-up ankle braces (ASO® Ankle Stabilizer; Medical Specialties, Inc., 

Charlotte, NC) were fit on both the subject’s ankles based on subject’s shoe size (small, medium, 

and large) as instructed by the manufacturer.  During the brace application, participant was 

sitting in a chair and the lower leg was held in perpendicular to the floor so that the ankle joint 

maintained in 90°.  Each lace was tied with a relatively constant tension at 2.5 – 3.0 kg (5.5 lb – 

6.6 lb; lower-tension brace, LTB) or at 7 – 7.5 kg (15.4 lb – 16.5 lb; higher-tension brace, HTB) 

measured by a hand-held digital scale (Rapala VMC, Vaaksy, Finland).  Each lace was held 

between the target tensions for approximately one second at 90° angle from the surface contour 

of the ankle braces.   

Ankle range of motion measurement 

After warm-up exercise, ankle ROM was measured in non-weight bearing and weight 

bearing positions.  The non-weight bearing active ROM of the left and right ankle was measured 

by a 1-degree-increment transparent plastic goniometer (Patterson Medical/ Sammons Preston; 

Bolingbrook, IL) in two positions.  First, a subject was sitting on a table, and the ankle joint was 

off the table with full knee extension.  Second, the subject was sitting on the edge of a table with 

90° hip and knee flexion.  The reference landmarks were suggested previously.
157

  The fulcrum 

of the goniometer was placed over the center of the lateral malleolus.  The stationary arm was 

aligned with the lateral midline of the fibula by using the fibular head as reference.  The moving 

arm was aligned parallel to the lateral aspect of the fifth metatarsal at maximum dorsiflexion and 

plantar flexion.  The subject was asked to move the ankle toward the body for dorsiflexion 



74 

 

measurement and to move the ankle down or away from the body for plantar flexion 

measurement.  The subject maintained the ankle angle for three seconds so that the co-

investigator could read the angle measurement.  Two measurements were taken by the co-

investigator and were averaged for analyses. 

Additionally, weight-bearing lunge dorsiflexion was measured by determining the angle 

of the lower leg relative to the vertical line.
158

  First, a single strip of tape was aligned on a wall 

perpendicularly and on the floor 90° to the wall.  Second, two landmarks on the skin were 

marked by a non-permanent felt pen.  One was at 15 cm (5.9 inches) inferior to the tibial 

tuberosity on the anterior boarder of the tibia.  The other was a line perpendicularly bisecting the 

posterior calcaneus.  Third, a participant positioned the foot with the big toe and the calcaneus on 

the tape.  Fourth, the participant lunged forward until the ipsilateral knee was in contact with a 

vertical tape on the wall.  The distance between the foot and the wall was adjusted to find the 

point where the knee touched the tape on the wall without lifting the heel off the floor.  The heel 

was held by the co-investigator in order to maintain heel contact.  Lastly, when the participant 

reached the maximum dorsiflexion angle, the co-investigator placed the fluid-filled inclinometer 

(Baseline Bubble; Fabrication Enterprises, Inc., White Plains, NY) on the mark placed on the 

tibia and recorded the angle.  During the lunge dorsiflexion, pronation or supination of the foot 

was allowed.  Two measurements were taken by the co-investigator and were averaged for 

analyses. 

Validity and reliability of joint range of motion measurements 

Although several different methods have been developed to measure joint range of 

motion, a universal goniometer has appeared to be reliable and most widely used in clinical 

settings because it is simple to use, noninvasive, and inexpensive.
159

  The use of universal 
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goniometric measurement is still believed to be reliable and valid compared to other newly 

developed methods.  Reliability of recently developed digital protractor, electronic goniometer, 

fluid goniometer, and other devices have been compared to a universal goniometer and three-

dimension motion analyses. 

 The goniometric measurement of ankle joint was difficult to standardize due to its 

complex motion at the talocrural joint, the subtalar joint, and the inter-tarsal joints.
159,160

  The 

standard error of the mean (SEM) for intra-tester in the fluid goniometer, the electronic 

goniometer, and the universal goniometer were 0.92 – 1.52°, 0.85 – 1.2°, and 0.85 - 0.99°, 

respectively.
159

  Another study
160

 found when a single tester took two measurement, the error of 

universal goniometric measurements on the ankle dorsiflexion was less (SEM = 2.3°) than when 

the multiple testers took two measurements with the same subject (SEM = 3.1°).  Moreover, the 

SEM slightly increased when the same tester took multiple measurements at different occasions 

(SEM = 2.4°).
160

  Hence, universal goniometric measurements of ankle dorsiflexion should be 

taken by a single examiner using multiple measurements at one location.  Nonetheless, a 

universal goniometer showed slightly greater intra-tester reliability than the electronic 

goniometer for assessing active ROM.  The active ankle dorsiflexion and plantar flexion intra-

class ICC for the universal goniometer and the electronic goniometer were 0.80 – 0.95 and 0.72 

– 0.91, respectively.
161

  Although most of goniometric measurements revealed high intra-tester 

and inter-tester reliability, the inter-device reliability decreased when different goniometric 

devices were used, and the results were compared.
160,162

  Therefore, the results of goniometric 

measurement using different devices should not be interpreted interchangeably.   

Possible reasons of intra-tester errors were the validity of an instrument, the tester’s 

reading of the goniometer, and the tester’s judgment of the ‘end feel’ at the limit of range of 
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motion in passive range of motion.
160

  To reduce those potential errors, application of a 

standardized method has been discussed including using a consistent anatomical landmarks, 

having a subject set in a consistent position, placing a goniometer at a consistent position, taking 

multiple measurements and averaging them, and using a same torque applied to a joint.
159,160,163

  

It was a remarkable that a 5-Nm change in torque at ankle joint lead to a 5° to 10° difference
163

 

and that the variability of measurements less than 7° were associated with measurement error in 

ankle dorsiflexion measurement.
159

  Visual estimation might be the simplest method to measure a 

joint range of motion, but the reliability of the visual estimation comparing to universal 

goniometric measurements for the active ankle range of motion were wide ranging (ICC2,1 = 0.32 

- 0.94).
164

  This wide range of reliability suggested that visual estimation not be used to measure 

ankle joint active range of motion repeatedly.  

Although many methods have been used to measure lower extremity joint angle including 

digital protractor, electric goniometer, fluid goniometer, and universal goniometer, ankle 

dorsiflexion was usually measured with non-weight bearing position.  The ankle joint must be in 

dorsiflexed position during landing tasks; thus, an ankle dorsiflexion also needs to be taken in 

weight-bearing position.  The weight-bearing ankle dorsiflexion could be measured during lunge 

movement.
158

  For this test, a patient’s studying foot faced perpendicularly against a wall, and the 

patient lunged the knee toward the wall.  With the anterior aspect of the knee contacting on the 

wall, the foot was moved smoothly away from the wall until the maximum ankle dorsiflexion 

was reached without lifting the calcaneus away from the ground.  The angle of tibial shaft 

relative to the vertical line was taken by an inclinometer at 15cm inferior to the tibial 

tuberosity.
158

   Because the torque applied to the ankle joint at the weight-bearing position was 

much greater than that applied by an examiner’s hand in non-weight bearing methods, the 
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advantage of this method was that the measurement could more represent the ankle dorsiflexion 

during functional tasks, such as running, jumping, and landing.
158

 

Both intra-tester reliability and inter-tester reliability were excellent, and the skill level 

and experience of the testers did not affect the reliability of dorsiflexion lunge measurements. 

Intra-tester reliability of a novice tester with minimal clinical experience was excellent (ICC3,3 

= .98), and that of an experienced tester (nine years of clinical experience) was excellent (ICC3,3 

= .98).  Inter-rater reliability was also excellent (ICC2,3 = .97).
158

  However, its validity was not 

investigated, and the researcher noted that this method did not measure a specific joint range of 

motion.  Instead, this measurement was a result of a combined movement at talocrural, subtalar, 

and midtarsal joints.
158

  It was suggested that the result of dorsiflexion lunge measurement not be 

compared to other methods because this method was measured in weight-bearing position and 

others are usually taken with non-weight bearing position.  In conclusion, despite some 

disadvantages including being uncomparable to other measurements, including several joint 

movements, and untested validity, this method should not be ignored when relationships of this 

measurement are tested against other variables taken in functional tasks, such as running, 

jumping, and landing. 

Jump-landing tasks 

Two types of landing tasks were tested; drop-jump landing (DJL) and forward-jump 

landing (FJL).  Participants were allowed to practice each jump-landing task until they felt 

comfortable to perform.  However, no specific instruction was provided regarding the landing 

tasks to minimize the coaching effect on the participant’s natural landing strategies.  Minimum 

of one complete jump-landing sequence was verified by the co-investigator before testing trials 

to make sure understanding of the each task.   
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Verbal instruction for landing tasks 

The co-investigator verbally explained the sequence of the landing tasks, but no specific 

instruction was provided regarding how to land in order to observe participant’s natural landing 

mechanics.  Detailed instruction of the sequence could possibly alter participant’s landing 

mechanics because they realized what was being examined.  The co-investigator emphasized 

four key characteristics in the tasks.  First, for DJL, the participant dropped off the box without 

jumping up vertically, whereas for FJL, the participant jumped off forward without jumping up.  

Hence, DJL task was performed as a relatively vertical movement that simulates a landing from a 

rebounding in basketball.  On the other hand, FJL task was performed as a relatively horizontal 

movement that simulates landing during a jump-stop in basketball.  Second, the participant 

landed straight in front of the box facing the front digital camera to be recorded appropriately.  

Third, the participant vertically jumped up as high as they could immediately after they landed 

from the box.  Fourth, the participant performed the tasks in a smooth sequence.   

Drop-jump landing task 

The Drop-jump landing (DJL) protocol followed the previously used protocol
47

 with 

some modifications.  The five-step DJL sequence was as follows; (1) participant extended the 

right leg in forward with approximately 30° of hip flexion, (2) participant took off with the left 

foot without jumping up movement, (3) participant landed on the force platform immediately 

below the extended right foot; hence the task was relatively vertical landing, (4) participant 

performed a maximum vertical jump immediately after two-foot landing, and (5) participant 

landed back on the platform. 
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Forward-jump landing task 

The Forward-jump landing (FJL) protocol followed the previously used protocol
46

 with a 

modification.  The five-step FJL sequence was as follows; (1) participant jumped off from the 

box with two-feet, (2) participants jumped forward, but not vertically, to reach the center of the 

force platform, (3) participant landed on the center of the platform with both feet, (4) participants 

performed a maximum vertical jump immediately after two-foot landing, and (5) participants 

landed back on the platform. 

Validity and reliability of two-dimension kinematic assessment 

Many of previous studies that investigated landing kinematics and kinetics used a three-

dimensional motion analyze system synchronizing with a force plate.  Although the three-

dimensional motion analyze system is expensive, complex, and time-consuming, the system has 

been considered as a “gold standard” and used to evaluate human movement.
45,152,153,165,166

  

Commercially available digital camera has also been used to assess jump-landing technique and 

lower extremity injury risk screening in clinical settings where three-dimensional movement 

evaluation was not feasible.
2,46,47,146,149,152,153,166,167

  Using commercially available digital cameras 

might be relatively easy for evaluators regardless of experience to select an appropriate frame, 

but researchers pointed out that precisely filming human kinetics, especially high-speed 

movement, was difficult by using commercially available digital cameras due to low frame rate 

(30 to 60 Hz).
152,168

   

In addition to the difficulty of capturing precise human movement, several investigators 

indicated that commercially available video cameras were unable to detect transvers plane 

kinematics even though two video cameras were used to record single-plane frontal and/or 

sagittal plane motions.
47,140,153,166

   Nevertheless, several authors claimed that apparent frontal 
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plane joint angles were affected by the hip, knee, and ankle joints’ sagittal, frontal, and 

transverse plane movements including hip flexion, femoral internal rotation, knee valgus, knee 

anterior translation, tibial external rotation, ankle flexion, and foot rotation.
45,47,140,153,166

  

Therefore, because apparent frontal plane knee angle does not represent true knee valgus or 

abduction, the observed frontal plane knee angle has been referred as various operational terms, 

such as medial knee collapse
140

, frontal plane knee projection angle (FPPA)
166

, dynamic knee 

valgus
153,166

, or medial knee displacement (MKD).
169

 

An alternative to gold standard three-dimensional motion analysis system is the two-

dimensional video analysis.  Even though the single-plane two-dimensional analysis were 

usually unable to synchronize to data from a force plate or other commercially available video 

recorder, the use of two video recorders could provide frontal and sagittal plane kinematic 

information for landing mechanics evaluation.  The two-dimensional video digitizing was 

completed by using computer software that required digitization of selected frame of captured 

video manually.
45,130

 

When single-plane video recorded clips was evaluated by a two-dimensional digitizing 

software, sagittal plane kinematics were valid against universal goniometric measurements, but 

frontal plane kinematic compared to three-dimensional motion analysis were inconclusive.  

Concurrent validities of two-dimensional assessment of sagittal plane hip and knee joint angles 

compared to goniometric measurements were excellent (hip flexion: r = .95; knee flexion: r 

= .98).
165

  In this study, the sagittal plane joint angles were assessed during an isometric 

mechanical lifting task measured with a back leg chest dynamometer system. The hip angle was 

formed by two lines; one line was running between the lateral aspect of the acromion process and 

the greater trochanter, the other was a line between the greater trochanter and the lateral femoral 
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epicondyle.  The knee angle was formed by two lines; one was running between the greater 

trochanter and the lateral femoral epicondyle, and the other was connecting the lateral femoral 

epicondyle to the lateral malleolus.
165

 

Another study that investigated validity of sagittal plane lower extremity joint angles 

compared to goniometric measures also reported that two-dimensional kinematic analysis was 

moderately valid.
130

  The ankle and knee sagittal plane angles during a functional movement, 

Star Excursion Balance Test, showed less than 4° measurement error, and the hip flexion angle 

measurement error was less than 11°.
130

  Nonetheless, the validity of two-dimensional kinematic 

assessment has not been compared to the gold-standard, three-dimensional motion analysis to 

date.  To validate the sagittal plane kinematic analysis with two-dimensional video assessment, 

the results need to be compared to the results of three-dimensional motion analysis. 

The sagittal plane lower extremity kinematics also showed moderate to high intra-rater, 

inter-rater, and test-retest reliabilities during functional tasks.  During an isometric mechanical 

lifting task, the intra-rater reliability of hip flexion was high (ICC3,1 = 0.99), and that of knee 

flexion was high (ICC3,1  = 0.98), as well.  Inter-rater reliabilities of hip flexion and knee flexion 

were also high (ICC2,1 = 0.96, and ICC2,1 = 0.96, respectively).
165

  During Star Excursion Balance 

Test, the test-retest reliability of the peak ankle, knee, and hip angles were high (ICC3,1 = 0.82, 

ICC3,1 = 0.85, and ICC3,1 = 0.79, respectively).
130

 

While the validity of sagittal plane kinematics was compared to universal goniometric 

measurements, validity of frontal plane kinematics was compared to three-dimensional motion 

assessment.  Moderate to high correlations between two-dimensional kinematic analysis and 

three-dimensional kinematic analysis have been reported.  Concurrent validity of frontal plane 

knee angle measured by two-dimensional video digitizing evaluation demonstrated high against 
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three-dimensional motion analysis during side step (r = 0.76) and side jump (r = 0.80) tasks.
45

  

Pearson correlation coefficient of FPPA compared to knee external rotation and hip adduction 

during a single-leg squat was moderate with r = 0.48 and was poor with r = 0.32, respectively. In 

addition, FPPA was also associated with hip adduction (r = 0.61), and knee abduction (r = 

0.49).
170

  On the other hand, low concurrent validity of two-dimensional assessment at knee and 

hip joints were also reported against three-dimensional motion analysis.  Compared to FPPA, 

poor Pearson correlation coefficients were demonstrated in knee flexion (r = -0.26), knee 

abduction (r = -0.20), knee internal rotation (r = 0.12), hip flexion (r = -0.32), hip abduction (r = 

0.34), and hip internal rotation (r = 0.15).
169

  Thus, a two-dimensional joint kinematic assessment 

might be an alternative to measure knee joint medial displacement during functional tasks.  It 

must be noted that transverse plane joint rotation could not be identified by two-dimension 

assessment. 

Intra-rater reliability of two-dimensional video digitizing was reported that simple task 

such as countermovement vertical jump demonstrated better reliability than more complex tasks 

such as drop vertical jump task.  The intra-rater reliability of FPPA measured by two-

dimensional digitizing method was high in functional tasks including two-leg countermovement 

vertical jumps (r = 0.75), single-leg countermovement jumps (r = 0.64), single-leg side spring (r 

= 0.75), and single-leg drop vertical jump (r = 0.54).  The intra-rater reliability in measuring the 

angle between the line of femur and horizontal line was also high in the same tasks; two-leg 

countermovement vertical jumps (r = 0.74), single-leg countermovement jumps (r = 0.68), 

single-leg side spring (r = 0.73), and single-leg drop vertical jump (r = 0.60).
171

  It was 

concluded that simplicity of functional tasks could increase in intra-rater reliability
171

 possibly 
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due to insufficient recording frame rate of video recorders that was usually between 30 and 60 

Hz.   

In addition to simplicity of tasks, easiness to identify anatomical landmarks during 

manual digitizing process could contribute to the degree of reliability in two-dimensional 

kinematic analysis.  Reliability of two-dimensional manual video digitizing with and without 

using 2cm-diameter marker was compared in treadmill running, and the result reported that joints 

that was visually exposed including shoulder (marker (M) ω2 = 0.82; non-marker (NM) ω2 = 

0.77), elbow (M ω2 = 0.76; NM ω2 = 0.68), and knee joints (M ω2 = 0.97; NM ω2 = 0.67) showed 

higher reliability than joints that was covered or hidden such as hip joints by shorts (M ω2 = 

0.92; NM ω2 = 0.41) and ankle joints by shoes (M ω2 = 0.70; NM ω2 = 0.16), where ω2 was 

contribution of intra-tester variability to total variability.
172

  Hence, without using marker on 

selected anatomical landmarks, joint kinematics could not be reliably measured, especially the 

joints that were not visually seen. 

In conclusion, apparent frontal plane knee displacement could be validly and reliably 

identified with two-dimensional motion evaluation, but accurate knee valgus angle that is largely 

affected by hip and knee joint kinematics should not be measured by two-dimensional video 

digitizing method.  Using high-speed camera that is able to capture over 200 Hz may accurately 

select anatomical landmarks during two-dimensional video digitizing; therefore, high frame rate 

could improve accuracy of single-plane motion analysis.  Also, filming dynamic movements 

with two cameras could capture separate frontal and sagittal plane joint kinematics, even though 

manual time synchronization of two videos and with force plate data is not feasible without a 

sophisticated digitizing computer system. 
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Isokinetic strength measurement 

Following the landing tasks, isokinetic strength of plantar flexors in both ankles will be 

measured.  The position of a participant was seated on the tilted dynamometer chair ( 85° 

reclining) with the hip joint flexed approximately 90° flexion, and the distal femur was supported 

on a supplemental pad by using an appropriate strap.   The subject’s knee joint was maintained at 

70° flexion during the testing.  The axis of the dynamometer was aligned to the body of the talus, 

lateral malleolus, and just below the medial malleolus so that the anatomical rotational axis of 

the ankle was aligned with the mechanical rotational axis of the dynamometer.  After adjusting 

the height of the dynamometer and the distance of the seat from the dynamometer, the foot was 

strapped on a footplate which was connected to the axis of the dynamometer.   

Isokinetic torque of the plantar flexors was recorded between 30° of plantar flexion and 

10° of dorsiflexion from the anatomically neutral position of the ankle.  Concentric torques were 

measured at 60°/s, 120°/s, and 180°/s, while isokinetic eccentric torque was recorded at 30°/s.  

For each angular velocity, up to five repetitions of sub-maximal practice trial were allowed prior 

to the maximal test trial, and the isokinetic testing consisted of three repetitions with maximal 

effort. Each testing was followed by two minutes of recovery period.  During the isokinetic 

testing, constant verbal encouragement (“push down the foot as hard/ fast as you can”) was 

provided to help participants produce maximum effort during the testing.  For each angular 

velocity, the peak torque value was analyzed. 

 Isokinetic dynamometer allows objectively measure muscular functional variables by 

generating a counter-torque equal to the force produced by a subject.
173

  The measurable 

variables include, but not limited to, peak torque, average peak torque, angle-specific torque, 

power, and work by generating a constant velocity throughout a pre-determined ROM.  It was 
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reported due to constant movement velocity, isokinetic muscular function testing was reliable 

and valid when the angular velocities was less than moderately high (< 300°/s).
174,175

  

Data Collection and Analyses 

Data collection 

Participants were allowed to practice the tasks until they could perform the sequence 

properly.  Minimum of one complete sequence was verified by the co-investigator prior to each 

task.  Three ankle brace conditions (no brace = NB, LTB, and HTB) were counterbalanced for all 

participants.  Two landing tasks (DJL and FJL) were also be alternated for all participants.  Two 

measurements were taken for each ankle condition and task, and the measurements were 

averaged for analyses. Therefore, each participant completed a total of 12 landing tasks. 

The digital camera captured the landing tasks at a sampling rate of 210 Hz.  The 

kinematic data were stored in a memory cards mounted in each digital camera.  The data stored 

in memory cards were transferred to a laptop computer for analyses using Dartfish Motion 

Analysis Software (version 10.0; Dargfish®, Fribourg, Switzerland).  Force plate data were 

collected at a sampling rate of 400 Hz.  The force platform was connected to a laptop computer 

so that the GRF data were stored in the computer simultaneously for analyses by using computer 

software (AccuPower version 1.5; Athletic Republic, Fargo, ND). 

Data analysis 

Three dependent variables were mainly analyzed in this research project.  Medial knee 

displacement was operationally defined as the ratio of distance between the center of left and 

right patellae relative to the distance between the left and right anterior superior iliac spines.  In 

other words, the distance between the patellae was normalized to the distance between the 

anterior superior iliac spines.  The distance of those landmarks are generally dependent on 
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participant’s body size; therefore, the ratio, instead of actual distance, was considered as better 

measurement.  This analysis was performed on a computer screen with Dartfish Video Motion 

Analysis software.  Values from the two measurements in each conditions and tasks were 

averaged for statistical analyses. 

 Sagittal plane ankle angle was measured only on the right side of the body at two 

moments during an initial landing task from the take-off box.  The first was at the initial foot 

contact where any part of the foot made contact with the surface of the force platform.  The 

second was measured at maximum dorsiflexion of the ankle.  The total angle between the initial 

foot contact and the maximum dorsiflexion during a landing task was defined as ankle joint 

displacement.  The optimal references were the shaft of the lower extremity and the shaft of the 

5
th

 metatarsal.  The first line was the shaft of the lower extremity that was referenced between 

the center of the knee joint line and the lateral malleolus.  Because the shoe covered the shaft of 

the 5
th

 metatarsal, the landmark was assumed to be parallel to the sole of the shoe. Therefore, the 

second line was drawn from the lateral malleolus toward the toes that was parallel to the sole of 

the shoe.  Values from the two trials in each conditions and tasks were averaged for statistical 

analyses. 

 Maximum ground reaction force (GRF) was obtained during a landing task.  AccuPower 

software was used to analyze the GRF.  Raw GRF value was re-calculated relative to each 

participant’s body weight (in Newton).  Because participant’s GRF is dependent on their body 

weight, the force value needed to be normalized to the body weight.  To maintain the landing 

height relatively constant, the co-investigator emphasized not to jump up as participants took off 

the box.  Values from the two trials in each conditions and tasks were averaged for statistical 

analyses. 
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Isokinetic data collected by the dynamometer were analyzed by Biodex Advantage 

software (version 4.47; Biodex Medical System, Shirley, NY).  Isokinetic strength was 

determined by peak torque, and the peak torque was defined as the maximum torque recorded in 

the five testing repetitions and expressed in Newton-meters (N·m).
176

  The peak torque was, then, 

normalized to the body weight to evaluate a relationship between the isokinetic torque and GRF.  

When no side difference is observed, the left and right peak torques were combined and averaged 

because the landing tasks were performed by both feet and because the GRF value was expressed 

as a two-feet landing force. 

Statistical Analyses 

 The sample size was calculated based on the pilot study in which the minimum expected 

mean difference and SD in peak ankle dorsiflexion during a DJL task between non-braced (NB) 

condition and high-tensioned braced (HTB) condition are 3.47° and 3.9°, respectively.  Based on 

this estimation, the total number required was 20 subjects in each condition.  The equation used 

to calculate the required sample size was; 

  

The means and SDs for each dependent variable were calculated across the two trials for each 

condition and task.  The days after the menstrual period were also reported.  Prior to evaluating 

the hypotheses, ICC3,2 were be calculated to examine the reliability of measurements.  For the (1) 

and (2) hypotheses, the effect of EAS on ankle displacement, tMKD, and vGRF were evaluated 

by performing a repeated-measures MANOVA because these dependent variables were believed 

to be associated.  Multivariate normality was tested by evaluating univariate normality for each 

dependent variable.  Homogeneity of covariance was checked by Levene’s test.  If omnibus F 
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was significant, separate ANOVAs on each dependent variable with Tukey post-hoc test was 

performed.  Following the assumption checking procedures, interaction was evaluated.  When 

interaction was not significant, separate repeated-measure ANOVAs with Tukey multiple 

comparison post-hoc test.  For the (3) and (4) hypotheses, the effect of EAS and landing tasks on 

ankle displacement, knee displacement, peak MKD, vGRF, and postGRF were evaluated by 

performing a repeated-measure 3 (ankle brace conditions) x 2 (landing tasks) MANOVA.  

Following the assumption checking procedures, interaction was evaluated.  When interaction 

was not significant, separate repeated-measure ANOVAs with post-hoc Tukey multiple 

comparison test at each level were conducted to examine the main effects.   Following 

conducting necessary ANOVA, η
2
 of effect size was calculated to assist clinical interpretation of 

the independent variables on the dependent variables.  The effect size η
2
 was defined as follows; 

trivial < 0.01, small < 0.06, medium < 0.14, and 0.14 ≤ large.
177

 

Additionally, Pearson’s correlation coefficients (r) were computed to evaluate 

relationships among ankle ROM and ankle displacement, among the ankle ROM, ankle 

displacement, knee displacement, hip displacement, tMKD, peak MKD, vGRF, postGRF, and 

plantar flexor isokinetic peak torque.  The α level is set a priori at ≤ .05 for all statistical analyses.  

Statistical Package for the Social Sciences (version 20.0, SPSS Inc, Chicago, IL) will be used to 

analyze the data. 
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PAPER ONE: ANKLE BRACING INCREASES MEDIAL KNEE DISPLACEMENT 

AND VERTICAL GROUND REACTION FORCE DURING A DROP-LANDING TASK 

Abstract 

Context: Anterior cruciate ligament (ACL) injuries can occur during landing or 

deceleration tasks.  Sagittal plane ankle range of motion (ROM) appears not only to play 

important role in absorbing ground reaction force (GRF) but also to affect medial knee 

displacement (MKD) during the maneuvers.  In addition to the frontal plane ankle ROM, 

external ankle supports (EAS) can restrict the sagittal plane ankle ROM, but how EAS affects the 

landing mechanics is not well understood.  Objective: To evaluate the effects of EAS on landing 

kinematics and kinetics.  Design: Crossover study.  Setting: Controlled laboratory environment.  

Patients or Other Participants: Nineteen physically active females [M (SD): age = 20.2 (1.1) 

years, height = 170.0 (7.15) cm, mass = 65.7 (8.0) kg].  Intervention(s): Participants performed 

a drop-landing task under three bracing conditions: no bracing, low-tensioned bracing, and high-

tensioned bracing.  Main outcome Measure(s): Static knee extended and knee flexed ankle 

ROMs, sagittal plane ankle displacements, total MKD (tMKD), vertical GRF (vGRF), plantar 

flexor isokinetic peak torque (concentric contraction: 60°/s, 120°/s, and 180°/s, and eccentric 

contraction: 30°/s).  Results: Ankle bracing conditions significantly altered ankle displacement 

(F2,36 = 15.42, P < .001), tMKD (F2,36 = 12.56, P < .001), and vGRF (F1.195,21.515 = 5.72, P 

= .021).  However, planter flexor isokinetic peak torque demonstrated no correlation with vGRF 

or tMKD regardless of the angular velocities.  Conclusions: Excessively restricted sagittal plane 

ankle ROM by ankle bracing reduced the ankle displacement, and increased frontal plane knee 

displacement and vGRF.  Therefore, healthcare professionals should be aware of not excessively 

limit the sagittal plane ankle ROM as they apply ankle taping or bracing. 
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Introduction 

 Knee ligamentous injuries, including the anterior cruciate ligament (ACL) rupture were 

more common among female athletes, especially in basketball and soccer.
1
  Two major tasks 

performing during non-contact ACL tear were cutting and landing tasks.
35

  It is believed that 

landing with increased knee valgus angle and greater ground reaction force (GRF) produces 

greater ACL strain during a deceleration task.
37

  Therefore, greater knee valgus angle and greater 

GRF could lead to non-contact ACL injury because they appeared to be associated with 

subsequent loading of the ACL during landing or deceleration tasks. 

 Compared to non-ACL injured subjects, ACL injured subjects demonstrated less plantar 

flexion of the ankle at initial contact phase of landing
35

; in other words, they showed heel first 

landing or flat foot landing.
37

  Non-contact ACL injuries are also common in skiing, and 60% of 

ACL injury occurred when the skier was attempting to change direction, and 85% of ACL injury 

occurred when the ski boot binding was not released so the impact from the ground was not 

absorbed at the ankle joint.
29

  This high occurrence attributed to the structure of the rigid ski 

boots that does not allow the ankle motion.  Hence, the ankle joint appears to play an important 

role in decelerating and changing a direction to absorb impact from a playing surface. 

Ankle range of motion (ROM), particularly dorsiflexion, affects the loading stress on the 

knee joint.  The GRF forced the ankle joint into dorsiflexion, and the eccentrically contracting 

plantar flexor muscles counteracted the dorsiflexion to absorb GRF during a toe landing task.
108

  

When a toe landing was compared to a heel landing, toe landing strategy showed greater ankle 

displacement and less peak GRF than heel-landing technique.
7
  Thus, landing with less ankle 

displacement could be associated with the greater risk of non-contact ACL injury due to lack of 

capacity to attenuate landing GRF.  Greater sagittal plane joint ROM appeared to reduce vertical 



91 

 

GRF (vGRF) during landing tasks.  The lower extremity muscles played important roles to 

absorb landing force,
178

 and angular displacement at the ankle joint and strength of the plantar 

flexors were inversely associated with vGRF.
3
  Therefore, it was speculated that greater plantar 

flexion and subsequent greater ankle displacement maximally utilized the plantar flexion muscle 

to absorb vertical landing force.   

In addition to abnormally greater GRF, one of the non-contact ACL injury mechanisms is 

the excessive valgus angle at the knee joint.
2
  The commonly observed mechanism of non-

contact ACL injury was “valgus collapse” of the knee joint.  The valgus collapse is a 

combination of knee abduction, external rotation of the tibia, and internal rotation of the 

femur.
179

  This frontal plane knee kinematics appeared to be affected by the sagittal plane joint 

kinematics.
39

  Medial knee displacement (MKD) was operationally defined as apparent medial 

movement of the knee joint in the frontal plane which involved the hip, knee, and ankle joints’ 

sagittal, frontal, and transverse plane movements.
47

  Although 2-dimension analysis can not 

identify rotational movement, it can be used to distinguish excessive knee valgus, a movement in 

the frontal plane.
45

  In addition to MKD, GRF could be increased by smaller ankle ROM and 

smaller plantar flexor strength during a landing task.
4
  No clear explanation has been made which 

plantar flexor muscle was mainly associated to the increased MKD, but plantar flexion strength 

might more rely on the soleus strength as the knee flexion angle increases.
89

  One possible 

explanation was that the gastrocnemius loses the plantar-flexing moment as the knee joint 

increase its angle because it is a two-joint muscle crossing the ankle joint and the knee joint.
3
  

Therefore, the gastrocnemius might not be fully used to attenuate a landing force during natural 

landing due to knee flexion.   
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The external ankle supports (EAS), including ankle taping and bracing, have been widely 

used to prevent ankle sprain in various physical activities.  Although the main purpose of EAS is 

to limit the frontal plane ankle ROM to reduce the risk of inversion or eversion ankle sprain, the 

application of EAS also restricts the sagittal plane ankle motions.
41

  This restricted sagittal plane 

ankle ROM could alter the landing kinematics and kinetics and could consequently increase the 

risk of non-contact ACL injury.  Smaller dorsiflexion during a deceleration phase of activities 

appeared to increase subsequent GRF
3,7

 and MKD,
39

 and this could increase the risk of an ACL 

injury.  The influence of the ankle ROM limited by an external support in terms of the dynamic 

knee valgus during a landing, however, has not been studied to date.  Restricting the ankle 

displacement could also alter the landing mechanics.  Therefore, the purpose of this study was to 

investigate whether the limited ankle ROM by application of EAS changes landing kinematics 

and kinetics during a drop-jump landing.  Two hypotheses were investigated: first, limiting ankle 

ROM using external ankle supports (EAS) would decrease ankle displacement, increase total 

MKD (tMKD), and increase vGRF during a drop-landing task.  Second, greater isokinetic plantar 

flexor strength would be inversely correlated with tMKD and vGRF. 

Methods 

Participants 

Nineteen physically active and healthy college aged female subjects [M (SD): height = 

170.0 (7.15) cm; mass = 65.7 (8.0) kg, age = 20.2 (1.1) years, 11.4 (9.2) days post menstrual 

period] without history of lower extremity injury completed the test protocol.  The inclusion 

criteria were participation in physical activity at least twice per week and minimum of 30 

minutes per session, no current neuromuscular dysfunction, no signs or symptom of 

inflammation, no history of surgeries within six months in the lower extremities.  The 
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participants were recruited from a local university and completed a demographic form and 

signed an informed consent prior to being tested.  The study was approved by the university’s 

Institutional Review Board. 

Ankle Range of Motion Measurement 

After completing warm-up exercises, ankle ROM was measured in non-weight bearing 

and weight bearing positions.  The non-weight bearing active ROM of the left and right ankle 

was measured in two positions.  Knee extended ankle ROM was measured by the subject sitting 

on a table and the knee joint kept at full extension.  Knee flexed ankle ROM was measured by 

the subject sitting with flexing the hip and knee at 90°.  Two measurements were taken in each 

position by the same researcher and averaged for analyses.  In weight bearing position, lunge 

dorsiflexion was measured by determining the angle of the lower leg relative to the vertical line 

(Figure 1).
158

  Because the torque applied to the ankle joint at the weight bearing position was 

greater than that applied by an examiner’s hand, the advantage of this method was that the 

measurement could more represent the ankle dorsiflexion during functional tasks, such as 

running, jumping, and landing.
158

 

External Ankle Supports Application 

Prophylactic lace-up ankle braces (ASO® Ankle Stabilizer; Medical Specialties, Inc., 

Charlotte, NC) were fit on the subjects’ ankles as instructed by the manufacturer.  During the 

brace application, participants were sitting in a chair and the lower leg was held perpendicular to 

the floor so that the ankle joint was maintained in 90°.  Each lace was tied with a relatively 

constant tension at 2.5 – 3.0 kg (low tension brace, LTB) or 7 – 7.5 kg (high tension brace, HTB) 

measured by a hand-held digital scale (Rapala VMC, Vaaksy, Finland).  Each lace was held 
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between the target tensions for one second at 90° angle from the surface contour of the ankle 

braces.   

Drop-Landing Task 

Participants were instructed to wear athletic shirt, shorts, and low-cut sport shoes.  For 

frontal plane kinematic recordings, markers were placed at both left and right side of the body at 

2 cm anterior to the acromioclavicular joints, at the anterior superior iliac spine, at the center of 

patella, and at the middle of the distal lower extremity 5cm superior to the ankle joint.  For 

sagittal plane kinematic recordings, markers were placed only on the right side of the body at 2 

cm lateral to the acromioclavicular joint, at the greater trochanter, at the center of the knee joint 

line, and at the lateral malleolus.  Two digital cameras (EX-FH20; Casio, Inc., Tokyo, Japan) 

were used to record landing kinematics.  Digital cameras were mounted on a tripod 73 cm from 

the floor.  The tripod was placed 175 cm in front of the center of the force plate.  This digital 

camera recorded tMKD in frontal plane.  Another tripod with a digital camera mounted on was 

positioned at 175 cm on the right side of the center of the force plate.  This second digital camera 

recorded ankle and knee displacements in sagittal plane.  The force platform (AccuPower; AMTI, 

Watertown, MA) was embedded to the testing surface. 

 The drop-jump landing protocol followed Noyes’s protocol
47

 with some modifications.  

A 33cm box was placed 5cm from the back edge of the platform, which was 35 cm from the 

landing target on the platform.  The five step drop-jump landing sequence was as follows: (1) 

participant extended the right leg in forward motion with approximately 30° of hip flexion; (2) 

participant took off with the left foot without jumping up movement; (3) participant landed with 

both feet simultaneously on the force platform with facing the front digital camera to be recorded 

properly; (4) participant performed a maximum vertical jump immediately after two foot 
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landing; and (5) participant landed back on the platform.  Prior to a trial jump, participants were 

allowed to practice the jump-landing task and provided two-minute rest.  They practiced the task 

until they felt comfortable to perform it without hesitation.  The sequence of the landing task was 

explained; however, no specific instruction was provided regarding the landing tasks to minimize 

the coaching effect on the participant’s natural landing strategies.   

Isokinetic Strength Measurement 

Following the landing tasks, isokinetic strength of plantar flexors in both ankles was 

measured.  The Biodex Multi-Joint system 4 PRO (Biodex Medical System, Shirley, NY) was 

used to assess concentric and eccentric isokinetic torque of the plantar flexors.  The position of a 

participant was seated on the tilted dynamometer chair with the hip joint flexed at 90° flexion, 

and the distal femur was supported on a supplemental pad by using an appropriate strap.  The 

participant’s knee joint was maintained at 70° flexion during the testing.  The axis of the 

dynamometer was aligned to the body of the talus, lateral malleolus, and just below the medial 

malleolus so that the anatomical rotational axis of the ankle was aligned with the mechanical 

rotational axis of the dynamometer.  After adjusting the height of the dynamometer and the 

distance of the seat from the dynamometer, the foot was strapped on a footplate which was 

connected to the axis of the dynamometer.   

Isokinetic torque of the plantar flexors was recorded between 30° of plantar flexion and 

10° of dorsiflexion from the anatomically neutral position of the ankle.  Concentric torque was 

measured at 60°/s, 120°/s, and 180°/s, while isokinetic eccentric torque was recorded at 30°/s.  

For each angular velocity, five repetitions of submaximal practice trial were allowed prior to the 

maximal test trial.  The isokinetic testing consisted of three repetitions with maximal effort.  

Each testing angular velocity was followed by two minutes of recovery period.  During the 
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isokinetic testing, constant verbal encouragement was provided to help participants produce 

maximum torque during the testing.  For each angular velocity, the peak torque value was 

analyzed. 

Data Collection 

Three ankle brace conditions (no prophylactic ankle bracing = NB, low tension ankle 

bracing = LTB, and high tension ankle bracing = HTB) were counterbalanced for all participants.  

The digital cameras captured the landing tasks at a sampling rate of 210 Hz.  The kinematic data 

stored in memory cards were transferred from each camera to a laptop computer for kinematic 

analyses using Dartfish Motion Analysis Software (version 10.0; Dargfish®, Fribourg, 

Switzerland).  Force plate data were collected at a sampling rate of 400 Hz.  The force platform 

was connected to a laptop computer so that the GRF data were stored in the computer for kinetic 

analyses by using computer software (AccuPower version 1.5; Athletic Republic, Fargo, ND). 

Data Analysis 

Kinematic measurements  

The tMKD represents the total medial displacement of the patellae (the distance of the 

patellae at the initial foot contact subtracted from the distance of the patellae at the maximum 

knee flexion; Figure 2).  The distance of the landmarks was generally dependent on participant’s 

body size; therefore, the normalized ratio relative to the anterior superior iliac spines was 

considered as better measurement than the actual distance between the patellae.    Values from 

the two measurements in each condition were averaged for statistical analyses. 

Ankle displacement was defined as the total angle between the foot contact and the 

maximum dorsiflexion during a landing task.  The sagittal plane ankle displacement was 

measured only on the right side of the body at two instants during an initial landing from the 
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33cm box.  The first moment was at the foot contact when any part of the right foot made contact 

with the surface of the force platform.  The second moment was measured at maximum 

dorsiflexion of the ankle.  Total angle between the two instants was calculated as ankle 

displacement.  Ideally, the references for ankle angle measurement were the shaft of the lower 

extremity and the shaft of the 5
th

 metatarsal.  The first line was the shaft of the lower extremity 

that is referenced between the center of the knee joint line and the lateral malleolus.  Because the 

5
th

 metatarsal was covered by the shoe, the landmark was assumed to be parallel to the sole of 

the shoe; therefore, the second line was drawn from the lateral malleolus toward the toes that is 

parallel to the sole of the shoe.  Values from the two trials in each condition were averaged for 

statistical analyses.   

Kinetic measurements 

 Peak vertical GRF (vGRF) was obtained during the landing task.  AccuPower software 

was used to analyze the vGRF.  Raw vGRF value was re-calculated relative to each participant’s 

body weight (BW in N).  Values from the two trials in each condition were averaged for 

statistical analyses.  Isokinetic data collected by the dynamometer were analyzed by Biodex 

Advantage software (version 4.47; Biodex Medical System, Shirley, NY).  Isokinetic peak torque 

was normalized to the body mass (BW in kg) to evaluate a relationship between the isokinetic 

peak torque (N/kg) and vGRF (N/BW).
176

  Because no side difference was observed, the left and 

right peak torque were combined and averaged, and the GRF value was expressed as a two-feet 

landing force. 

Statistical Analysis 

The sample size was determined based on the pilot studies in which the minimum 

expected difference and SD in ankle dorsiflexion during a drop-jump landing task between NB 
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condition and HTB condition were 3.47° and 3.9°, respectively.  The means and SD for each 

dependent variable were calculated across the two trials for each condition.  The effect of EAS 

conditions on ankle displacement, tMKD, and vGRF were evaluated by performing a repeated 

measure MANOVA.  Following the assumption checking procedures, interaction was evaluated.  

When interaction was not significant, separate repeated measures ANOVAs with Tukey multiple 

comparison post hoc test were performed.  Following conducting necessary ANOVAs, η
2
 of 

effect size was calculated to assist clinical interpretation.  The effect size η
2 
was defined as 

follows; trivial < 0.01, small < 0.06, medium < 0.14, and 0.14 ≤ large.
177

  Pearson’s correlation 

coefficients (r) were also computed to evaluate relationship between the plantar flexor isokinetic 

peak torque and vGRF, and between the plantar flexor isokinetic peak torque and tMKD.  The α 

level was set a priori at ≤ .05 for all statistical analyses.  Statistical Package for the Social 

Sciences (version 20.0, SPSS Inc, Chicago, IL) was used to analyze the data. 

Results 

Two hypotheses were investigated in this study: first, limiting ankle ROM using EAS 

would decrease ankle displacement, increase tMKD, and increase vGRF during a drop-landing 

task; second, greater isokinetic plantar flexor strength would be inversely correlated with tMKD 

and vGRF.  A MANOVA was conducted to assess if there were differences between the three 

ankle brace conditions (NB, LTB, and HTB) on ankle displacement, tMKD, and vGRF during 

the drop-jump landing task.  The assumptions of MANOVA were checked and met.  A 

significant multivariate effects were found in ankle brace conditions (Wilks’ Λ = .725, F4,8 = 

2.23, P = .03, observed power = .84).  Because omnibus F value of MANOVA was significant, 

we further conducted separate repeated-measure ANOVA on each dependent variable.   



99 

 

Follow-up repeated measures ANOVAs with Tukey multiple comparison post hoc test 

was conducted to assess whether there were differences in ankle displacement, tMKD, and vGRF 

among the ankle brace conditions.  Results showed that ankle displacement, tMKD, and vGRF 

were significantly different for ankle brace conditions. The ankle displacement during the drop-

jump landing task was significantly different among ankle brace conditions (F2,36 = 15.42, P 

< .001, observed power > .99, η
2
 = .22).  The tMKD during the landing task was different among 

ankle brace conditions (F2,36 = 12.56, P < .001, observed power = .99, η
2
 = .08).  The results of a 

repeated measures ANOVA with Greenhouse-Geisser adjustment indicated vGRF during the 

landing task was significantly different among ankle brace conditions (F1.195,21.515 = 5.72, P 

= .021, observed power = .67, η
2
 = .02).  The descriptive statistics and Tukey post-hoc multiple 

comparison test results of each dependent variable are shown in Figure 3 and Table 1, 

respectively.  Hence, our findings supported the first hypothesis of this study. 

To evaluate the second hypothesis whether plantar flexor isokinetic peak torque 

(concentric contraction: 60°/s, 120°/s, and 180°/s, and eccentric contraction: 30°/s) was 

correlated with vGRF and tMKD, Pearson’s correlations (r) were computed.  Results indicated 

plantar flexor isokinetic peak torque did not demonstrated a correlation with vGRF (60°/s: r 

= .10, P = .10, 120°/s: r = .002, P = .99, 180°/s: r = .05, P = .83, -30°/s: r = .08, P = .74) and 

with tMKD (60°/s: r = .11, P = .65, 120°/s: r = .20, P = .41, 180°/s: r = .17, P = .48, -30°/s: r = -

.08, P = .74).  Thus, the second hypothesis was rejected. 

Discussion 

The purpose of this study was to investigate whether the limited ankle ROM by 

application of EAS changes landing kinematics and kinetics.  Although external ankle supports 

(EAS) are used to limit the frontal plane ankle ROM to reduce the risk of ankle sprain, the 
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application of EAS also restricts the sagittal plane ankle motions.
8,41

  This restricted sagittal 

plane ankle ROM appeared to alter the landing kinematics and kinetics.
5
  Smaller dorsiflexion 

during a deceleration phase of activities was found to increase subsequent MKD,
4,141

 and this 

limited dorsiflexion in a landing task could increase the risk of non-contact ACL injury due to 

increasing MKD or knee valgus. 

In this study, the laces of the ankle braces were controlled in two tensions.  The laces 

were tied with 3 -5 kg in LTB condition.  A majority of the subjects (17/19 = 89%) commented 

that LTB condition was felt “snug.”  On the other hand, in HTB condition, the laces were tied 

with 7 – 8 kg.  Only a small portion of the subjects (2/19 = 11%) preferred HTB conditions.  The 

effect of EAS to restrict the sagittal plane ankle displacement during drop-jump landing was 

consistent with the results of a previous study
134

 that also investigated the effect of ASO 

prophylactic ankle brace®.  The study reported that the means of ankle joint displacement during 

a jump-landing task were 59.3 (14.3)° and 56.5 (12.5)° without and with EAS, respectively.  

Our results indicated that EAS application reduced the ankle displacement, increased 

tMKD, and increased vGRF during a drop-landing task; thus, the first hypothesis was supported.  

In contrast, the second hypothesis was not supported.  We found that isokinetic plantar flexor 

strength (concentric contraction: 60°/s, 120°/s, and 180°/s, and eccentric contraction: 30°/s) was 

not correlated with tMKD or vGRF.  The primary finding in this study was EAS application 

increased tMKD during a drop-landing task.  Bell and colleagues
4
 found that subjects with 

smaller knee-flexed dorsiflexion ROM exhibited greater MKD in which the patella moved 

medially to the great toe during a two-leg squat.  They compared a group of greater MKD and a 

group of less MKD.  Greater MKD group showed the excessive medial knee movement which 

the authors defined as the patella moving medially to the great toe during a two-leg squat. The 
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researchers found that greater MKD group had smaller dorsiflexion ROM than control group.  

They also found that the greater MKD group reduced MKD when performing a two-leg squat 

with a 5.1cm heel lift under the calcaneus.  The use of the artificial heel lift increased the plantar 

flexion ROM before the squatting exercise, and the angle of the lower leg was altered which was 

similar to increased dorsiflexion.
4
  Macrum et al.

141
 also reported that restricted ankle 

dorsiflexion increased MKD compared to control group.  They compared MKD during a two-leg 

squat in two conditions; squatting on a 12° posteriorly slanted board and no slant board.  With 

posteriorly slanted board, the ankle joint was put into dorsiflexed position; in other words, the 

subjects started the squat movement at dorsiflexed position.  Consequently, the dorsiflexion 

displacement was reduced during the squat task.  As a result, subjects with limited dorsiflexion 

decreased knee flexion and increased MKD.
141

  Bell et al.
4
 and Macrum et al.

141
 measured MKD 

during a controlled squat movement.  In contrast, we measured tMKD during a dynamic 

movement and still found the result was consistent with the previous studies.
4,141

  Artificially 

limited ankle available ROM in both plantar flexion and dorsiflexion resulted in reduction of 

ankle displacement during the dynamic task.  We speculated that limited peak ankle dorsiflexion 

[NB: M (SD) = 26.7 (4.6)°, LTB: M (SD) = 23.1 (4.5)°, HTB: M (SD) = 21.8 (5.0)°] increased 

tMKD during a drop-landing task.  It was proposed that reduced dorsiflexion prevented the body 

from lowering the center of mass during a weight-bearing activity, which induced greater 

pronation at the subtalar joint and subsequent greater internal rotation of the tibia and knee 

valgus angle.
180

  In a cadaveric simulation study, landing with increased knee valgus angle 

induced greater ACL strain compared to a landing without knee valgus.
120

 Our results indicated 

that increased tMKD by EAS may increase a knee valgus loading and ACL strain during a drop-

landing task. 
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We found that limited ankle ROM also decreased the ankle dorsiflexion during the drop-

landing task.  Mcrum et al.
141

 discovered that limited dorsiflexion with a posteriorly slanted 

board significantly reduced a sagittal plane knee displacement by approximately 15° during a 

drop-landing task.  This study also observed a significant reduction of the sagittal plane knee 

displacement between NB [M (SD) = 65.7 (11.4)°] and HTB [M (SD) = 60.4 (9.7)°] conditions.  

However, it should be noted that the sagittal plane ankle displacement in this study did not 

attribute a reduction of peak dorsiflexion angle during the drop-landing task [NB: M (SD) = 26.7 

(4.6)°, LTB: M (SD) = 28.5 (11.1)°, HTB: M (SD) = 26.4 (10.6)°].  Even though the static ankle 

ROM measurement showed significant decrease by EAS application (Table 2), we observed that 

the ankle displacement ascribed to the decreased plantar flexion angle at the initial foot contact 

[NB: M (SD) = 35.8 (12.3)°, LTB: M (SD) = 28.5 (11.1)°, HTB: M (SD) = 26.4 (10.6)°].  These 

results contradict previous studies
4,141

 that reported the reduction of ankle ROM, specifically 

dorsiflexion, intensified the MKD during squatting exercises.  We still agree with the fact that in 

those studies, the ankle displacement was mechanically controlled either to increase
4
 or to 

decrease
141

 the available ankle ROM.  Therefore, the magnitude of MKD during a drop-landing 

task appears to depend on available static ankle ROM or dynamic ankle displacement.  An 

additional correlation calculation showed that tMKD was inversely correlated with both knee 

extended ankle ROM (r = -.45, P < .001) and knee flexed ankle ROM (r = -.53, P < .001). 

The importance of ankle displacement, specifically plantar flexion, was reported by Self 

and his colleagues.
3
  When comparing two landing techniques during a vertical drop-landing 

from a 30cm height, stiff knee landing with exaggerated (greater) plantar flexion and stiff-knee 

landing with natural (less) plantar flexion, the ankle plantar flexion at initial foot contact was 33° 

and 45°, respectively.  Their results showed the peak vGRF was approximately 18% smaller in 
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the landing with greater plantar flexion.
3
  These results were consistent with the findings of our 

study.  The plantar flexion angle with NB at the initial foot contact in our study showed similar 

angle to Self et al.
3
, and HTB condition demonstrated approximately 6% greater vGRF compared 

to NB during the drop-landing task.  The difference in the magnitude of vGRF may attribute to 

the tasks performed and other joint displacement angles.  Self and his research team
3
 reported 

that participants performed vertical drop-landing tasks, and the knee displacement (M = 28.6°) 

was controlled in both landing conditions, while we did not control the knee angles during the 

drop-landing task [NB: M (SD) = 65.7 (11.4)°, LTB: M (SD) = 63.0 (10.0)°, HTB: M (SD) = 60.4 

(9.7)°].  The smaller difference in vGRF compared to Self et al.
3
 may be caused by the knee-

flexion displacement.  Yet, Hewett et al.
179

 reported that ACL injured individuals had 20% 

greater GRF compared non injured individuals; that is, increased vGRF by 6% may not be 

enough to increase ACL strain.  We found that sagittal plane knee displacement was significantly 

correlated with ankle displacement (r = .51, P < .001) and vGRF (r = -.65, P < .001).  The 

greater the lower extremity sagittal plane joint displacement indicated the body had longer 

landing phase or greater angular velocity at a joint; as a result, the muscles of the lower 

extremities generate counter force for longer duration.
5
  Greater knee flexion angle at the foot 

contact and subsequent increasing sagittal plane knee displacement were inversely correlated 

with peak GRF during landing tasks.
181

  Therefore, the correlation between sagittal plane ankle 

displacement and sagittal plane knee displacement during a drop-landing task provided longer 

duration for the body to attenuate vGRF.  By applying EAS, ankle ROM and resultant sagittal 

plane ankle displacement decreased.  This limited ankle ROM was correlated with smaller knee 

displacement; hence, it is reasonable that greater vGRF was observed with EAS application. 
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Surprisingly, neither of tMKD or vGRF was correlated with knee-flexed isokinetic 

plantar flexor strength.  In the second hypothesis, we believed that the importance of the 

gastrocnemius would become less in a landing phase; in contrast, the soleus would play more 

important role during a landing task because the knee joint would be flexed up to 90° during a 

landing task.  Yet, the second hypothesis was not supported in this study.  Although the 

importance of plantar flexors are proposed by Self et al.
3
 and DeVita et al.

5
 in landing tasks, 

controversial results were reported depending on a task performed.  When comparing soft 

landing (greater knee displacement) and stiff landing (less knee displacement), studies found that 

the role of plantar flexors are noticeable,
3,5

 while Yeow et al.
178

 reported that the contribution of 

the plantar flexor muscles were trivial compared to the knee and the hip joint during a landing 

task.  The discrepancy in the importance of plantar flexors seems to attribute the difference of 

landing techniques.  When the knee displacements were controlled (stiff or soft landing 

depending on the knee flexion angle), the contribution of the plantar flexor muscles increased 

because the knee joint did not attenuate the landing force.
3,5,6

  We did not control the sagittal 

plane knee flexion ROM or displacement; therefore, it is reasonable that the contribution of the 

plantar flexor might have been trivial to absorb the landing force in this study.  Still, we found 

the vGRF was greater in EAS group compared to NB group possibly because the EAS 

application altered the sagittal plane ankle joint displacement and subsequent knee joint 

displacement.  Our finding also did not show a correlation between isokinetic plantar flexors and 

tMKD.  This no correlation indicated that the contribution of the plantar flexor was minor in a 

drop-landing task probably because the sagittal plane knee displacement was not controlled and 

compensated the limited ankle displacement in this study.  Moreover, the muscles that mainly 

counteracted the knee valgus movement were the knee musculature located on the medial half of 
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the knee joint, such as gracilis, medial hamstrings, vastus medialis, rectus femoris, and medial 

gastrocnemius.  However the plantar flexors, especially gastrocnemius, did not contribute to 

resist against valgus moment.
182

  Therefore, the vGRF needs to be absorbed by the knee and 

ankle joints in conjunction with the hip joint that is depending on the landing techniques.
115,178,183

 

Limitations 

This study had several limitations.  We recruited only female subjects who were not 

participating in intercollegiate sports but were physically active college-age young adults.  Non-

contact ACL injury occurs more often in athletic settings, so the results of this study can only be 

generalized to physically active college-age females.  Future studies also need to recruit male 

subjects and different age group subject to confirm this study.  The second limitation is that 

because we did not use three-dimension motion analysis, the MKD measured in two-dimension 

kinematic assessment is assumed to represent knee valgus.
45

  However, we can not specify the 

angle of knee valgus in each knee because the MKD simply represent the proportion of the 

distance between the centers of the patellae relative to the distance between the anterior superior 

iliac spines.  In addition to the assumption of the MKD, we were also not able to determine the 

joint movements in the transverse plane due to two-dimension kinematic analysis.  These 

analyses need to be done with more sophisticated equipment. 

Conclusions and Clinical Implications 

It is believed that greater knee valgus angle and greater vGRF increased the risk of non-

contact ACL injury.
37

  The sagittal plane joint motions altered the frontal plane knee motion and 

landing force regardless of the isokinetic soleus strength.  HTB intensified tMKD and vGRF due 

to reduced ankle displacements during a drop-landing task even though the effect sizes were 

medium and small, respectively.  The ankle ROM was limited by prophylactic lace-up ankle 
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braces, and its effect size was also large.  While only 11% preferred the HTB condition over 

LTB, most of subjects commented that the LTB felt “snug.”  Therefore, health care professionals 

who apply ankle taping or bracing on physically active individuals need to be aware of not 

applying EAS with excessively restricting the ankle sagittal plane ROM.  The primary finding of 

this study was that the prophylactic lace-up ankle braces significantly increased tMKD along 

with vGRF during a landing task, but the magnitude of ACL strain was not measured.  It is 

recommended that those who regularly wear EAS during activities need to train with EAS when 

they practice landing techniques.  Hence, future studies should aim at measuring frontal plane 

knee displacement and GRF during a landing task should be considered to investigate the 

magnitude of tMKD and vGRF to sufficiently increase the stress on the ACL to tear.   
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Table 1. Orders of Ankle Bracing Conditions and Landing Tasks for Each Participant. 

Subject # Ankle condition 1 Ankle condition 2 Ankle condition 3 Landing task 1 Landing task 2 

1 NB LTB HTB DJL FJL 

2 LTB HTB NB DJL FJL 

3 HTB NB LTB DJL FJL 

4 NB LTB HTB FJL DJL 

5 LTB HTB NB FJL DJL 

6 HTB NB LTB FJL DJL 

7 NB LTB HTB DJL FJL 

8 LTB HTB NB DJL FJL 

9 HTB NB LTB DJL FJL 

10 NB LTB HTB FJL DJL 

11 LTB HTB NB FJL DJL 

12 HTB NB LTB FJL DJL 

13 NB LTB HTB DJL FJL 

14 LTB HTB NB DJL FJL 

15 HTB NB LTB DJL FJL 

16 NB LTB HTB FJL DJL 

17 LTB HTB NB FJL DJL 

18 HTB NB LTB FJL DJL 

19 NB LTB HTB DJL FJL 
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Table 2. Means (SD) of Ankle Displacement, Knee Displacement, Total Medial Knee 

Displacement, and Vertical Ground Reaction Force 

 

 NB LTB HTB 
P value 

(ANOVA) 

Ankle Displacement (°) 62.5 (13.2) 51.6 (10.7) 
48.2 

(10.8) 
< 0.001 

tMKD (%) 
20.1 

(15.9) 

26.2 

(21.2) 

35.1 

(24.6) 
< 0.001 

vGRF (N/BW) 2.61 

(0.43) 

2.68 

(0.40) 

2.76 

(0.40) 
0.007 

Abbreviation: NB = No bracing, LTB = Low-tension bracing, HTB = High-tension bracing 
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Table 3. Means (SD) of Ankle Range of Motions for Ankle Brace Conditions and Measurement 

Procedures 

 
 

NB LTB HTB P value 

 PF DF 
Total 

ROM 
PF DF 

Total 

ROM 
PF DF 

Total 

ROM 
PF DF 

Total 

ROM 

Knee 

Extended 

(°) 

44.12 

(12.2) 

10.42 

(5.3) 

54.54 

(12.1) 

33.4 

(9.9) 

10.1 

(4.7) 

43.5 

(10.9) 

22.0 

(6.5) 

6.8 

(6.0) 

28.8 

(9.9) 
<.001 <.001 <.001 

Knee  

Flexed 

(°) 

43.7 

(13.6) 

16.1 

(5.3) 

59.7 

(14.3) 

31.1 

(11.0) 

14.1 

(4.7) 

45.2 

(11.4) 

22.5 

(7.3) 

11.6 

(5.5) 

34.1 

(9.4) 
<.001 <.001 <.001 

Lunge DF 

(°) 
 

43.9 

(6.5) 
  

40.7 

(4.2) 
  

38.0 

(4.3) 
  <.001  

P value 0.17 <.001 <.001 .02 <.001 .05 .53 <.001 <.001    

 

Abbreviations: NB = No bracing, LTB = Low-tension bracing, HTB = High-tension bracing, PF 

= Plantar flexion, DF = Dorsiflexion, Total ROM = PF + DF 
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Figure 1. Procedure of Weight-bearing Ankle Dorsiflexion Measurement.  

1) Participant lunged forward until the ipsilateral knee was in contact with the wall.  2) The 

distance between the foot and the wall was adjusted to find the point where the knee could touch 

the wall without lifting the heel off the floor.  3) When participants reached the maximum 

dorsiflexion angle, the investigator recorded the tibial angle by a fluid filled inclinometer 

(Baseline Bubble; Fabrication Enterprises, Inc., White Plains, NY). 
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Figure 2. Definition of Total Medial Knee Displacement (tMKD). 

The total medial knee displacement (tMKD) is calculated by (b) – (c). 

* ASIS = Anterior superior iliac spine. (a) Normalized distance between ASISs (= 100%). (b) 

Distance between the patellae relative to (a) at initial foot contact. (c) Distance between the 

patellae relative to (a) at maximum knee flexion. 
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Figure 3. External Ankle Supports Altered Landing Kinematics and Kinetics. 

Ankle displacement (A), total medial knee displacement (tMKD, B), and vertical ground reaction 

force (vGRF, C) in three ankle brace conditions (no-bracing = NB, low-tension bracing = LTB, 

high-tension bracing = HTB). * = significantly differs from NB.  † = significantly differs from 

LTB.  ‡ = significantly differs from HTB. 
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PAPER TWO: ANKLE BRACING ALTER LANDING MECHANICS DURING DROP-

LANDING AND FORWARD-LANDING TASKS 

Abstract 

Context: Landing with greater knee valgus angle and ground reaction force (GRF) 

increases anterior cruciate ligament (ACL) strain in a deceleration phase.  Sagittal plane ankle 

movement is important not only to absorb GRF, but also to reduce medial knee displacement 

(MKD) during landing tasks.  Although external ankle supports (EAS) are commonly used to 

limit frontal plane ankle range of motion (ROM) in athletic settings, EAS may also restrict 

sagittal plane ankle ROM.  Drop-jump landing (DJL) and forward-jump landing (FJL) are 

commonly used to evaluate the risk of non-contact ACL injury; however, differences in landing 

kinematics and kinetics of the two tasks are not well studied.  Objective: To evaluate the effect 

of EAS on kinematics and kinetics in DJL and FJL tasks.  Design: Crossover study.  Setting: 

Controlled laboratory environment.  Patients or Other Participants: Nineteen physically active 

females [M (SD): age = 20.2 (1.1) years, height = 170.0 (7.15) cm, mass = 65.7 (8.0) kg].  

Intervention(s): Participants performed a DJL and FJL tasks under three ankle bracing 

conditions: no bracing, low-tensioned bracing, and high-tensioned bracing.  Main outcome 

Measure(s): Ankle displacement, knee displacement, peak MKD, vertical GRF (vGRF), and 

posterior GRF (postGRF). Results: Significant effects of EAS were found in ankle displacement 

(F2,36 = 46.73, P < .001), knee displacement (F36,2 = 23.46, P < .001), and peak MKD (F2,36 = 

56.45, P < .001).  Landing tasks affected only postGRF (F1.18 = 440.65, P < .001).  Significant 

interaction between ankle brace conditions and landing tasks (F36,2 = 6.84, P < .01) was observed 

in vGRF.  Conclusions: Restricting sagittal plane ankle ROM increased peak MKD and 

postGRF in both landing tasks, and may raise the risk of non-contact ACL injury.  Therefore, 
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healthcare professional should be careful not to excessively limit the ankle motion when 

applying EAS. 

Introduction 

Knee ligamentous injuries including anterior cruciate ligament (ACL) rupture were more 

common among female athletes.
10

  Two major tasks performed during non-contact ACL tear 

were cutting and landing tasks at a deceleration phase.
28

  Landing with increased knee valgus 

angle and greater ground reaction force (GRF) produced greater ACL strain during a 

deceleration task.
2
  Therefore, greater knee valgus angle could lead to non-contact ACL injury 

due to subsequent loading of the ACL during a landing or deceleration task. 

 The foot is the first part of the body to make contact with a landing surface, and the foot 

position at the initial contact could decide the magnitude of sagittal plane ankle joint 

displacement.
5,6

  A video analysis study
35

 reported that ACL injured subjects showed less plantar 

flexion of the ankle at initial contact phase of landing.  Hence, the ankle joint plays an important 

role in decelerating and changing a direction to absorb impact from the ground or a playing 

surface.  Hewett’s
35

 study also revealed the commonly observed mechanism of non-contact ACL 

injury was “valgus collapse” of the knee joint.  The valgus collapse is a combination of knee 

abduction, external rotation of the tibia, and internal rotation of the femur.
28,35,37,80

  In this study, 

medial knee displacement (MKD) represents knee valgus collapse, and it is operationally defined 

as apparent movement of the knee joint in the frontal plane and involved the hip, knee, and ankle 

joints’ sagittal, frontal, and transverse plane movements.
47

  Although the two-dimension analysis 

could not identify rotational movement, a previous study
45

 reported two-dimension analysis can 

be used to distinguish excessive knee valgus, a movement in the frontal plane.   
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Sagittal plane ankle and knee joint kinematics appeared to affect frontal plane knee 

kinematics.
39,40

  Less ankle dorsiflexion and smaller plantar flexor strength increased the MKD 

during a squat exercise that simulated descending phase of a landing task.
4
  Hence, MKD could 

be increased by limited ankle ROM, particularly dorsiflexion during a landing task.  Ankle 

displacement was important for plantar flexors to generate a counter force during a landing task.  

The landing impact forced the ankle joint into dorsiflexion, and the eccentrically contracting 

plantar flexor muscles counteracted the dorsiflexion to absorb GRF during a toe landing task.
108

  

When a landing with greater plantar flexion was compared to a landing without plantar flexion, a 

greater ankle plantar flexion prior to the foot contact exhibited smaller vertical ground reaction 

force compared to less ankle plantar flexion.
7
  Therefore, greater plantar flexion and subsequent 

greater ankle displacement could be important to maximally absorb vertical landing force. 

 Tasks of landing could influence the kinematics and kinetics.  Two commonly used 

landing tasks to assess non-contact ACL injury risk were drop-jump landing (DJL),
3,5,86,119,124

 

and forward-jump landing (FJL).
113,124

  A study comparing the two landing tasks concluded that 

the two tasks were different.  In test settings, forward-jump landing involved concentric (in 

taking-off phase) and eccentric (in landing phase) muscle contraction during the task; on the 

other hand, drop-landing involved only eccentric (in landing phase) muscle contraction.
82

  

Although two different types of landing tasks have been examined to assess the risk of non-

contact ACL injury, a comparison of the landing types, DJL and FJL, in terms of the kinematics 

and kinetics of ankle and knee joints have not been studied. Therefore, this study compared the 

two types of landing tasks in terms of ankle and knee displacement during the two types of 

landing tasks. 
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  In addition, external ankle supports (EAS), including ankle taping and bracing, have 

been widely used in various physical activities.  Although the main purpose of EAS is to limit 

the frontal plane ankle motion and to reduce the risk of ankle sprain, the application of EAS also 

restricts the sagittal plane ankle motions.
8,41

  This restricted sagittal plane ankle could contribute 

to alter the landing kinematics and kinetics.
5
  Restriction of the ankle dorsiflexion reduced peak 

knee flexion angle and increased MKD during a squatting task.
141

  Limiting dorsiflexion in a 

landing task, then, could increase the risk of non-contact ACL injury due to increasing knee 

valgus angle.  Limited dorsiflexion during a deceleration phase of activities appeared to increase 

MKD,
4,141

 and this greater MKD could increase the risk of the ACL injury.  Therefore, the 

purpose of this study was to assess whether the limited ankle ROM by application of EAS and 

landing tasks would similarly change landing kinematics and kinetics during DJL and FJL tasks.  

Two hypotheses were investigated.  First, there would be difference in sagittal plane ankle 

displacement, sagittal plane knee displacement, peak MKD, vertical GRF (vGRF), and posterior 

GRF (postGRF) during landing tasks among ankle brace conditions controlled by EAS 

application.  Second, there would be difference in sagittal plane ankle displacement, sagittal 

plane knee displacement, peak MKD, vGRF, and postGRF between DJL and FJL tasks. 

Methods 

Participants 

Nineteen physically active and healthy college aged female subjects [M (SD): height = 

170.0 (7.15) cm; mass = 65.7 (8.0) kg, age = 20.2 (1.1) years, 11.4 (9.2) days post menstrual 

period] without history of lower extremity injury completed the test protocol.  The inclusion 

criteria were participation in physical activity at least twice per week and minimum of 30 

minutes per session, no current neuromuscular dysfunction, no signs or symptom of 
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inflammation, no history of surgeries within six months in the lower extremities.  The 

participants were recruited from a local university and completed a demographic form, and 

signed an informed consent prior to being tested.  The study was approved by the universities 

Institutional Review Board. 

Ankle Range of Motion Measurement 

After obtaining the informed consent, demographic and anthropometric information, a 5-

minute warm-up exercise was performed.  Ankle ROM was measured in non-weight bearing and 

weight bearing positions.  The non-weight bearing active ROM of the ankles was measured 

using a plastic goniometer (Patterson Medical/ Sammons Preston; Bolingbrook, IL) in two 

positions.  First, the subject was in long-leg sitting position; second, the subject was sitting with 

90° hip and knee flexion.  Two measurements were taken by the same researcher and averaged 

for analyses.   

In weight bearing position, lunge dorsiflexion was measured by determining the angle of 

the lower leg relative to the vertical line.
158

  Because the torque applied to the ankle joint at the 

weight bearing position was greater than that applied by an examiner’s hand, the advantage of 

this method was that the measurement could more represent the ankle dorsiflexion during 

functional tasks, such as running, jumping, and landing.
158

  First, a single strip of tape was 

aligned on a wall perpendicularly and on the floor 90° to the wall.  Second, two landmarks on the 

skin were marked by a felt pen.  One landmark was at 15 cm inferior to the tibial tuberosity on 

the anterior boarder of the tibia.  The other was a line perpendicularly bisecting the posterior 

calcaneus.  Third, participants positioned the foot on the tape with the big toe and the line on the 

calcaneus.  Fourth, participants lunged forward until the ipsilateral knee was in contact with a 

vertical tape on the wall.  The distance between the foot and the wall was adjusted to find the 
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point where the knee could touch the wall without lifting the heel off the floor.  The heel was 

held by the investigator in order to maintain heel contact.  Lastly, when participants reached the 

maximum dorsiflexion angle, the investigator placed the fluid filled inclinometer (Baseline 

Bubble; Fabrication Enterprises, Inc., White Plains, NY) on the mark placed on the tibia and 

recorded the tibial angle.  During the lunge dorsiflexion, pronation or supination of the foot was 

allowed.  Two measurements were taken by the same researcher and averaged for analyses.  

Although this method did not measure a specific joint ROM but measured a combined movement 

at talocrural, subtalar, and inter-tarsal joint, both intra-tester reliability and inter-tester reliability 

were excellent.
158

  

External Ankle Supports Application 

Prophylactic lace-up ankle braces (ASO® Ankle Stabilizer; Medical Specialties, Inc., 

Charlotte, NC) were fit on both the subject’s both ankles as instructed by the manufacturer.  

During the brace application, participants were sitting in a chair and the lower leg was kept in 

perpendicular to the floor so that the ankle joint was maintained in 90°.  Each lace was tied with 

two lace tensions at 2.5 – 3.0 kg (lower-tension brace, LTB) and at 7 – 7.5 kg (higher-tension 

brace, HTB).  The lace-up tensions were measured by a hand-held digital scale (Rapala VMC, 

Vaaksy, Finland).  Each lace was held between the target tensions for one second at 90° angle 

from the surface contour of the ankle braces.   

Jump-Landing Tasks 

Participants were instructed to wear athletic shirt, shorts, and low cut sports shoes.  For 

frontal plane kinematic recordings, markers were placed at both left and right side of the body; at 

2 cm anteriorly to the acromioclavicular joint, at the anterior superior iliac spine, at the center of 

patella, and at the middle of the distal lower extremity (5cm superior to the ankle joint).  For 
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sagittal plane kinematic recordings, markers were placed only on the right side of the body; at 2 

cm lateral to the acromioclavicular joint, at the greater trochanter, at the center of the knee joint 

line, and at the lateral malleolus.  Two digital cameras (EX-FH20; Casio, Inc., Tokyo, Japan) 

were used to record landing kinematics.  Digital cameras were mounted on a tripod 73 cm from 

the floor.  One tripod was placed 175 cm in front of the center of the force plate where a 

participants aimed to land.  This digital camera recorded peak MKD in frontal plane.  Another 

tripod with a digital camera mounted on was positioned at 175 cm on the right side of the force 

plate.  This second digital camera recorded ankle and knee displacement in sagittal plane.  The 

force platform (AccuPower; AMTI, Watertown, MA) was embedded to the testing surface.  The 

position of the 33-cm box was adjusted depending on the task performed. 

Prior to a trial jump, participants were allowed to practice each jump-landing task until 

they felt comfortable to perform the landing tasks.  Although the investigator verbally explained 

the sequence of the landing tasks, no specific instruction was provided regarding the landing 

tasks to minimize the coaching effect on the participant’s natural landing strategies.  Minimum 

of one complete jump-landing sequence was verified by the investigator before testing trials to 

make sure understanding of the each task.   The drop-jump landing (DJL) protocol followed the 

previously used protocol
47

 with some modifications.  A 33cm box was placed 5cm from the back 

edge of the platform, which was 35 cm from the landing target on the platform.  The five-step 

DJL sequence was as follows: (1) participant extended the right leg in forward with 

approximately 30° of hip flexion; (2) participant took off with the left foot without jumping up 

movement; (3) participant landed on the force platform immediately below the extended right 

foot; hence the task was relatively vertical landing; (4) participant performed a maximum 

vertical jump immediately after two-foot landing; and (5) participant landed back on the platform.  
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The forward-jump landing (FJL) protocol also followed the previously used protocol
46

 with a 

modification.  The five-step FJL sequence was as follows: (1) participant jumped off with two 

feet from the 33cm box located at 50% of participant’s height to the center of the force plate; (2) 

participants jumped forward, but not vertically, to reach the center of the force platform; (3) 

participant landed on the center of the platform with both feet; (4) participants performed a 

maximum vertical jump immediately after two-foot landing; and (5) participants landed back on 

the platform. 

Data Collection 

Three ankle brace conditions (no prophylactic ankle bracing = NB, low-tension ankle 

bracing = LTB, and high-tension ankle bracing = HTB) and two landing tasks (drop-jump 

landing = DJL and forward-jump landing = FJL) were counterbalanced and alternated, 

respectively for all participants.  The digital cameras captured the landing tasks at a sampling 

rate of 210 Hz.  The data stored in memory cards from each camera were transferred to a laptop 

computer for kinematic analyses using Dartfish Motion Analysis Software (version 10.0; 

Dargfish®, Fribourg, Switzerland).  Force plate data were collected at a sampling rate of 400 Hz.  

The force platform was connected to a laptop computer so that the GRF data were stored in the 

computer for kinetic analyses by using computer software (AccuPower version 1.5; Athletic 

Republic, Fargo, ND). 

Data Analysis 

Kinematic measurements 

Peak MKD was operationally defined as the ratio of distance between the center of left 

and right patellae relative to the distance between the left and right anterior superior iliac spines.  

The distance of those landmarks was generally dependent on participant’s body size; therefore, 
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the ratio was considered as better measurement than the actual distance between the patellae.  

Therefore, in this study, smaller peak MKD indicates greater knee valgus that represents greater 

knee valgus angle.  This analysis was performed on a computer screen with the Dartfish Video 

Motion Analysis software.  Values from the two measurements in each condition were averaged 

for statistical analyses. 

The ankle displacement was defined as the total angle between the foot contact and the 

maximum dorsiflexion during a landing task.  Sagittal plane ankle angles were measured only on 

the right side of the body at two instants during an initial landing from the take off box.  The first 

instant was at the foot contact when any part of the right foot made contact with the surface of 

the force platform.  The second instant was measured at maximum dorsiflexion of the ankle.  

Total angle between the two instants were calculated as a displacement.  Ideally, the anatomical 

references for ankle angle measurement were the shaft of the lower extremity and the shaft of the 

5
th

 metatarsal.  The first line was the shaft of the lower extremity that is referenced between the 

center of the knee joint line and the lateral malleolus.  Because the 5
th

 metatarsal was covered by 

the shoe, the landmark was assumed to be parallel to the sole of the shoe.  Therefore, the second 

line was drawn from the lateral malleolus toward the toes that is parallel to the sole of the shoe.  

The knee angles were measured as the angle created by the two lines; between the lateral 

malleolus and the knee joint line and between the knee joint line and the greater trochanter of the 

femur.  Values from the two trials in each condition were averaged for statistical analyses.   

Kinetic measurements 

Peak vGRF and peak posterior ground reaction force (postGRF) were obtained during a 

landing task. AccuPower software was used to analyze the GRFs.  Raw GRF values were re-

calculated relative to each participant’s body weight (BW in N).  Values from the two trials in 
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each condition were averaged for statistical analyses.  The GRF values were expressed as a two-

feet landing force. 

Statistical Analysis 

The sample size was determined based on the pilot study in which the minimum expected 

difference and standard deviation (SD) in ankle dorsiflexion during a DJL task between NB 

condition and HTB condition were 3.47° and 3.9°, respectively.  The means and SD for each 

dependent variable were calculated across the two trials for each ankle condition and landing 

task.  Prior to evaluating the hypotheses, ICC3,2 was calculated to check the reliability of 

kinematic dependent variables.  Independent variables were ankle brace conditions and landing 

tasks.  Dependent variables were ankle displacement, knee displacement, peak MKD, vGRF, and 

postGRF.  The effect of ankle brace conditions and landing tasks on ankle displacement, knee 

displacement, peak MKD, vGRF, and postGRF were evaluated by performing a repeated 

measure 3 (ankle brace conditions) x 2 (landing tasks) MANOVA because these dependent 

variables were believed to be associated.  Following the assumption checking procedures, 

interaction was evaluated.  When interaction was not significant, separate repeated measure 

ANOVAs with Tukey post hoc test at each level of factors were conducted to examine the main 

effects.   Following conducting necessary ANOVAs, η
2
 of effect size was calculated to assist 

clinical interpretation.  The effect size η
2 

was defined as follows; trivial < 0.01, small < 0.06, 

medium < 0.14, and 0.14 ≤ large.
177

  The α level was set a priori at ≤ .05 for all statistical 

analyses.  Statistical Package for the Social Sciences (version 20.0, SPSS Inc, Chicago, IL) was 

used to analyze the data.  
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Results 

 Two hypotheses were investigated.  First, there would be difference in sagittal plane 

ankle displacement, sagittal plane knee displacement, peak MKD, vGRF, and postGRF during 

landing tasks among ankle brace conditions controlled by EAS application.  Second, there would 

be difference in sagittal plane ankle displacement, sagittal plane knee displacement, peak MKD, 

vGRF, and postGRF between DJL and FJL tasks.  Before MANOVA was conducted, ICC3,2 in 

each dependent variable was calculated as reliability testing.  Intraclass correlation coefficient 

for each dependent variable are as followings: ankle displacement (DJL: ICC3,2 = 0.98, FJL: 

ICC3,2 = 0.94), peak MKD (DJL: ICC3,2 = 0.96, FJL: ICC3,2 = 0.97), vGRF (DJL: ICC3,2 = 0.83, 

FJL: ICC3,2 = 0.77), and postGRF (DJL: ICC3,2 = 0.71, FJL: ICC3,2 = 0.60).  MANOVA was 

conducted to assess if there were significant effects of ankle brace conditions (NB, LTB, and 

HTB) and landing tasks (DJL and FJL) on ankle displacement, knee displacement, peak MKD, 

vGRF, and postGRF.  The assumptions of MANOVA were checked and met.  A significant 

effect was found in ankle brace conditions (Wilks’ Λ = 0.740, F12,206  = 3.38, P < .001) and 

landing tasks (Wilks’ Λ = 0.639, F6,103  = 11.75, P < .001), but not in the interaction (Wilks’ Λ = 

0.947, F12,206  = 0.57, P = .83).  Because omnibus F value of MANOVA was significant in the 

factors, we conducted separate 3 (ankle brace conditions) x 2 (landing tasks) repeated measures 

ANOVA on each dependent variable. 

 Follow up 2 x 3 repeated measures ANOVAs with Tukey post hoc test was conducted to 

assess whether there were difference in ankle displacement, knee displacement, peak MKD, 

vGRF, and postGRF.  Results for ankle displacement indicated that no interaction was found 

between ankle brace conditions and landing tasks (F2,36 = 0.63, P = .54).  Significant effects of 

ankle brace conditions were found (F2,36 = 46.73, P < .001, observed power > 0.99, η
2
 = 0.16), 
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but no effect was observed between landing tasks (F1,18 = 0.36, P < .561).  Post hoc test results 

indicated that ankle displacements with both LTB and HTB were significantly less than NB (P 

< .05), but no difference was observed between LTB and HTB (Figure 4).  Hence, the first 

hypothesis was supported.  Means and SD of ankle displacement are shown in Table 4. 

 Result for knee displacement revealed that no interaction was observed between ankle 

brace conditions and landing tasks (F2,36 = 0.72, P = .49).  EAS application significantly changed 

the knee displacement during landing tasks (F36,2 = 23.46, P < .001, observed power > 0.99, η
2
 = 

0.05).  Post hoc test indicated that the knee displacement was significantly smaller in LTB 

compared to NB condition (P < .05), and it was significantly smaller in HTB compared to LTB 

condition (P < .05) in both landing tasks.  Also, the knee displacement was also greater in DJL 

compared to FJL (F18,1 = 32.71, P < .001, observed power > 0.99, η
2
 = 0.06) in all ankle brace 

conditions (Figure 4).  Hence, the first hypothesis was supported.  Means and SD of knee 

displacement are shown in Table 4. 

Results for peak MKD revealed that the change was significant in ankle brace conditions 

(F2,36 = 56.45, P < .001, observed power > 0.99, η
2
 = 0.05) but not in landing tasks (F1,18 = 1.76, 

P = .20).  Also, no interaction was observed between ankle brace conditions and landing tasks on 

peak MKD (F2,36 = 0.11, P = .89).  Post-hoc test results indicated that peak MKD with LTB was 

significantly smaller than NB (P < .05) but greater than HTB, and peak MKD with HTB was 

significantly smaller than NB and LTB (P < .05) (Figure 4).  Hence, the first hypothesis was 

supported.  Means and SD of peak MKD are shown in Table 4. 

A two-way repeated measures ANOVA for vGRF showed a significant interaction 

between ankle brace conditions and landing tasks (F36,2 = 6.84, P < .01), and this indicated ankle 

brace conditions changed vGRF differently in DJL and FJL (Figure 5).  Means and SD of vGRF 
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are shown in Table 4.  A follow up repeated measures ANOVA for ankle brace conditions 

reported that a significant effect of ankle brace conditions on vGRF was observed (F36,2 = 5.72, P 

< .007, observed power > 0.84, η
2
 = 0.03), and post hoc Tukey multiple comparison test showed 

vGRF was significantly greater in HTB condition compared to NB condition (P < .05) during 

DJL task.  Another follow up repeated measures ANOVA for ankle brace conditions in FJL was 

also performed to examine the effect of ankle brace conditions on vGRF.  Result showed the 

effect of ankle brace conditions was significant (F36,2 = 4.34, P = .02, observed power = 0.54, η
2
 

= 0.03) in FJL.  Post hoc Tukey multiple comparison test reported that during FJL, vGRF was 

significantly greater in NB than HTB condition (P < .05).  Therefore, both the first and second 

hypotheses were supported in regard to vGRF. 

Results for postGRF indicated that a significant change in postGRF was observed 

between landing tasks (F1.18 = 440.65, P < .001, observed power > 0.99, η
2
 = 0.75), but not 

among ankle brace conditions (F2,36 = 3.00, P = .06).  No interaction was observed between ankle 

brace conditions and landing tasks on postGRF (F2,36 = 0.60, P = .55).  Post hoc Tukey multiple 

comparison test revealed that postGRF in FJL was significantly greater than postGRF in DJL (P 

< .05) (Figure 4).   Thus, only the second hypothesis was supported regarding postGRF.   Means 

and SD of postGRF are shown in Table 4. 

Discussion 

 Although EAS is used to limit the frontal plane ankle ROM to reduce the risk of ankle 

sprain, the application of EAS also restricts the sagittal plane ankle ROM.
8,41

  This restricted 

sagittal plane ankle ROM appeared to alter the landing kinematics and kinetics.
5
  Smaller 

dorsiflexion during a deceleration phase of activities was found to increase subsequent MKD,
4,141

 

and this limited dorsiflexion in a landing task could increase the risk of non-contact ACL injury 
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due to increasing MKD or knee valgus.  Although, two different types of landing tasks, DJL and 

FJL, have been used to assess the risk of non-contact ACL injury, the kinematics of ankle and 

peak MKD have not been studied in two different types of landing tasks to date. The purpose of 

this study was to assess whether the limited ankle ROM by application of EAS and the landing 

tasks would change landing kinematics and kinetics.   

In this study, the laces of the ASO® prophylactic ankle braces were controlled in two 

tensions.  The laces were tied with a tension between 3 and 5 kg in LTB condition.  A majority 

(17 out of 19) of subject commented that LTB condition was felt “snug.”  On the other hand, in 

HTB condition, the laces were tied with a tension between 7 and 8 kg.  Only small portion (2 out 

of 19) of subject preferred the HTB conditions.  The effect of ASO prophylactic ankle brace to 

restrict the sagittal plane ankle displacement during DJL was comparable to the results of a 

previous study.
134

  DiStefano and colleagues
134

 reported that the means (SD) of ankle joint 

displacement during a jump-landing task were 59.3 (14.3)° and 56.5 (12.5)° without and with 

EAS, respectively. 

 We found that restricted sagittal plane ROM at the ankle joint reduced the ankle 

displacement, decreased knee displacement, increased peak MKD in both DJL and FJL similarly.  

The restricted sagittal plane motion at the ankle joint affected vGRF differently depending on the 

task performed.  The postGRF was also greater in FJL compared to DJL; however, the ankle 

brace conditions did not change postGRF in either DJL or FJL. 

Among those findings, the primary finding was that restricted sagittal plane ankle 

displacement by EAS application increased peak MKD in both DJL and FJL; in other words, 

limited ankle ROM by EAS increased MKD regardless of landing tasks.  This finding was 

consistent with previous studies
4,141

 measured frontal plane knee motion during a two-leg squat.  
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Macrum et al.
141

 found that restricted ankle dorsiflexion by placing a wedge under the forefoot 

lead to greater MKD excursion compared to non-wedge condition.  Bell and colleagues
4
 

observed that subjects with greater MKD showed less ankle dorsiflexion measured in knee 

flexed position compared to control subjects.  These findings indicated restricting lower 

extremity sagittal plane joint displacement could increase the frontal plane knee displacement.  

During a deceleration phase of landing, the center of mass must be lowered by flexing the lower 

extremity joints in the sagittal plane.  Limiting the sufficient ankle dorsiflexion could induce 

pronation at the subtalar joint and subsequent internal rotation of the tibia and knee valgus.
39,180

  

We also found that EAS application significantly decreased the knee flexion displacement in 

conjunction with an increased peak MKD during landings compared to NB condition.  Thus, not 

only sagittal plane ankle displacement, less flexion in the knee were associated with greater peak 

knee valgus angle.
40,113

  Because the MKD or knee valgus during a dynamic task was proposed 

to be one of the mechanisms of ACL injury,
35,99

 it is plausible EAS application could increase 

the risk of non-contact ACL injury.  

  Although EAS application significantly decreased the sagittal plane ankle ROMs 

measured in knee extended and knee flexed positions (Table 5), no significant correlation was 

observed between ankle displacement and non-weight bearing ankle ROMs.  This findings 

contradicted a previous correlational study in which extended knee ankle dorsiflexion ROM was 

significantly related to knee flexion displacement, but not related to MKD.
113

  This contradiction 

could attribute to the different ankle ROM measurements.  In our study, active ankle ROM was 

measured, while Fong et al.
113

 used passive ankle ROM.  Among measured ankle ROMs, the 

only correlation was found between ankle displacement and ankle dorsiflexion measured in the 
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weight-bearing lunge position.  During a landing, ankle joints are forced into dorsiflexion; thus, 

active ankle ROM might not have shown a significant correlation in this study. 

In addition, our results showed a significant correlation between the sagittal plane ankle 

displacement and vGRF, which indicated the ankle joint could not have absorbed the vGRF 

effectively.  According to the previous studies,
 17,31

 the less weight bearing dorsiflexion ROM 

produced greater stress on the proximal joint, and less ankle displacement was associated with 

greater vGRF during a drop-landing task.  Moreover, extended knee passive dorsiflexion was 

also correlated with vGRF.
113

  This study revealed that EAS decreased angular displacement at 

the ankle joint similarly in DJL and FJL but changed vGRF differently between two landing 

tasks.  Regarding DJL, vGRF was significantly greater in HTB condition compared to NB 

condition.  Therefore, EAS application not only increased peak MKD but also vGRF during 

drop-landing tasks due to limited ankle joint function to absorb impact from a landing surface.
35

  

In a correlational study,
34

 ACL injured individuals demonstrated a correlation between vGRF 

and peak sagittal plane knee angle.  Hence, our results indicated that excessively restricted 

sagittal plane ankle ROM may increase the risk of non contact ACL injury during a deceleration 

phase of landing tasks due to intensifying vGRF and peak MKD.  Another related finding in our 

study was vGRF was significantly correlated with the following; ankle displacement (r = -0.35, 

P = .008), knee displacement (r = -0.65, P < .001), and hip displacement (r = -0.72, P < .001) 

during DJL task.  This association was explained in other studies
5,6

 that GRF must be absorbed 

by displacement of the ankle, knee, and hip joints and associated muscles.  We also found a 

correlation between the ankle displacement and knee displacement (r = 0.51, P < .001) in DJL 

task.  The landing load was decreased by the joints in the lower extremities, but joint 

displacement in a joint was affected by the displacements of other joints.
6,34,113

  When one joint 
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displacement is restricted, the other joints are expected to compensate the limited force absorbing 

ability.  If the other joint does not perform the compensatory force reduction, the landing force 

would increase.  Our result infers that displacement of both ankle and knee joints play important 

role in landing energy absorption in landing tasks, and the limited ankle ROM by EAS changed 

the landing style from natural landing to stiff landing.  The stiff landing was characterized by 

more erect posture with less sagittal plane displacement during a landing.
5,34

  The ankle joint 

absorbed approximately 80% of landing force when the knee and hip ROM was limited.
6
  Hence, 

it is speculated that EAS application prevented the function of ankle and knee joints from 

absorbing landing energy and increased vGRF during DJL unless the hip displacement changed.  

This  excessive vGRF was believed to be one of the mechanisms of the non contact ACL 

injury.
35

  Another significant correlational result was observed between vGRF and peak MKD (r 

= -0.35, P = .007).  The frontal plane energy dissipation was significantly greater in the hip and 

knee joint compared to the ankle joint regardless of the height of landing.
181

  In our study, the 

vGRF was correlated with peak MKD (r = -0.35, P = .008).  This speculated that the frontal 

plane displacements in the knee and hip joint also contribute to attenuate the landing impact 

during a drop-landing task.  

The effect of EAS influenced vGRF differently in DJL and FJL, and a significant 

interaction was observed in this study.  Greater vGRF was observed with EAS condition in DJL; 

in contrast, greater vGRF was observed with NB condition in FJL.  The ankle displacement was 

significantly greater in NB compared to LTB and HTB conditions (F36,2 = 18.12, P < .001, 

observed power = 0.99, η
2
 = 0.12).  Fong et al.

113
 reported that extended knee dorsiflexion ROM 

was positively associated with knee displacement and negatively related to vGRF during a 

forward-landing task in which the landing target was set at 40% of the subject’s height.  Our 
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result exhibited contradictory result regarding vGRF in which EAS not only significantly 

reduced the ankle displacement but also decreased the vGRF in FJL.  Correlational statistics 

showed that vGRF in FJL was significantly associated with the knee displacement (r = -0.47, P 

< .001) and hip displacement (r = -0.67, P < .001), and the strength of these correlations were 

comparable to that of DJL.  Still, the reason for this interaction was unknown, and muscular 

strength or muscular activation level might have contributed to this interaction.  A further study 

needs to be done for this interaction in vGRF between ankle brace conditions and landing tasks.  

Landing tasks, but not EAS conditions, significantly changed postGRF.  Because DJL 

was more vertical landing tasks; on the other hand, the body mass was moving forward during 

the FJL.  Therefore, to decelerate forward movement of the body, postGRF was greater in FJL 

compared to DJL.  The GRF was correlated with anterior tibiofemoral shear force during a 

single-leg forward landing task, and the magnitude of the correlation was greater in postGRF 

compared to vGRF.
184

  The anterior tibiofemoral shear force was correlated with postGRF and 

peak knee extension moment during a stop-vertical jump task.
185,186

  This result was not 

surprising.  Therefore, FJL may increase risk of non-contact ACL injury due to higher postGRF 

and subsequent higher tibiofemoral anterior shear force and knee extension moment.  We agreed 

with a study by Pappas and Carpes
82

 that reported drop-landing and forward-landing tasks are 

different, and the two different landing tasks should be considered as separate tasks.  Hence, 

when we assess the risk of non-contact ACL injury, and landing-mechanics neuromuscular 

training is implemented, both drop-landing and forward-landing tasks should be practiced. 

Limitation 

This study had a couple of limitations.  Only female subjects who did not participate in 

intercollegiate athletic sports but were physically active college-age young adults were recruited.  
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Non-contact ACL injury occurs not only in athletic settings but also any physical activities, so 

the results of this study can only be generalized to physically active college-age females.  Future 

studies also need to recruit male subjects or different age group subject to confirm the results of 

this study.  Because three dimension motion analysis was not used, the MKD measured in two-

dimension kinematic assessment was assumed to represent knee valgus.
45,170

  Still, we can not 

specify the angle of knee valgus in each knee because the MKD simply represent the proportion 

of the distance between the centers of the patellae relative to the distance between the anterior 

superior iliac spines.  In addition to the assumption of the MKD, we were not able to determine 

the joint movements in the transverse plane due to using two-dimension kinematic analysis. 

Conclusions and Clinical Implication 

External ankle supports are often used by health care professionals to reduce the risk of 

ankle sprains by limiting the frontal plane ankle ROM.  However, ankle taping and prophylactic 

lace up ankle braces sometimes restrict the sagittal plane ankle ROM, as well.  The restricted 

ankle sagittal plane ROM increased peak MKD and postGRF in both drop-jump landing and 

forward-jump landing tasks.  Because excessive knee valgus angle and postGRF stress on the 

ACL, restricting ankle sagittal plane ROM may also increase the risk of ACL injury due to 

landing mechanics alteration.   

The implication of the study appears complex, especially on vGRF for the two landing 

tasks.  However, it is clear that restricted ankle ROM by prophylactic lace up ankle bracing 

increased peak MKD postGRF in both drop-jump landing and forward-jump landing tasks.  

Greater knee valgus angle and postGRF are believed to increase the risk of non-contact ACL 

injury; therefore, the sagittal plane ankle ROM should not be limited during landing tasks.  

Because those tasks are frequently performed in sports, health care professionals who apply 
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ankle taping or ankle bracing should be careful not to excessively restrict the sagittal plane ankle 

ROM.  In addition, coaches, strength and conditioning specialists and athletic trainers should be 

aware of athletes’ excessive knee valgus during landing tasks that include landing from a 

rebound and jump-stop task.   
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Table 4. Means (SD) of Landing Tasks and Ankle Brace Conditions 

 
DJL  FJL 

NB LTB HTB  NB LTB HTB 

Ankle Displacement (°) 
62.5 

(13.2) 

51.6 

(10.7) 

48.2 

(10.8) 
 

59.8 

(16.6) 

50.9 

(12.7) 

48.0 

(12.1) 

Knee Displacement (°) 
65.7 

(11.4) 

63.0 

(9.9) 

60.4 

(9.7) 
 

72.4 

(12.4) 

68.4 

(12.6) 

65.3 

(10.8) 

Peak MKD (%) 
94  

(29.8) 

87.1 

(33.6) 

75.8 

(31.2) 
 

96.0 

(29.6) 

88.7 

(31.3) 

79.0 

(30.3) 

vGRF (N/BW) 
2.61 

(0.43) 

2.68 

(0.40) 

2.76 

(0.40) 
 

2.67 

(0.36) 

2.61 

(0.38) 

2.51 

(0.40) 

postGRF (N/BW) 
0.35 

(0.06) 

0.35 

(0.05) 

0.36 

(0.06) 
 

0.63 

(0.09) 

0.65 

(0.07) 

0.67 

(0.12) 

Abbreviations: DJL = Drop-jump landing, FJL = Forward-jump landing, NB = No bracing, LTB 

= Low-tension bracing, HTB = High-tension bracing, vGRF = vertical ground reaction force, 

postGRF = posterior ground reaction force. 
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Table 5. Means (SD) of Ankle Range of Motions for Ankle Brace Conditions and Measurement 

Procedures 

 
NB  LTB  HTB 

 PF DF 
Total 

ROM 
 PF DF 

Total 

ROM 
 PF DF 

Total 

ROM 

Knee 

Extended (°) 

44.12 

(12.2) 

10.42 

(5.3) 

54.54 

(12.1) 
 

33.4 

(9.9) 

10.1 

(4.7) 

43.5 

(10.9) 
 

22.0 

(6.5) 

6.8 

(6.0) 

28.8 

(9.9) 

Knee  

Flexed (°) 

43.7 

(13.6) 

16.1 

(5.3) 

59.7 

(14.3) 
 

31.1 

(11.0) 

14.1 

(4.7) 

45.2 

(11.4) 
 

22.5 

(7.3) 

11.6 

(5.5) 

34.1 

(9.4) 

Lunge DF (°) 
 

43.9 

(6.5) 
   

40.7 

(4.2) 
   

38.0 

(4.3) 
 

Abbreviations: NB = No bracing, LTB = Low-tension bracing, HTB = High-tension bracing, PF 

= Plantar flexion, DF = Dorsiflexion, Total ROM = PF + DF 
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Figure 4. External Ankle Supports and Landing Tasks Affect Landing Kinematics and Kinetics. 

Ankle displacement (A), knee displacement (B) peak medical knee displacement (peak MKD, C), 

and posterior ground reaction force (postGRF, D) in three ankle brace conditions (no-bracing = 

NB, low-tension bracing = LTB, high-tension bracing = HTB) and in two landing tasks (drop-

jump landing = DJL, forward-jump landing = FJL).  * = significantly differs from NB.  † = 

significantly differs from LTB.  ‡ = significantly differs from HTB. § = significantly differs 

between DJL and FJL tasks. 
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Figure 5. External Ankle Supports Differently Alter Vertical Ground Reaction Force. 

Vertical ground reaction force (vGRF) in three ankle brace conditions (no-bracing = NB, low-

tension bracing = LTB, high-tension bracing = HTB) and in two landing tasks (drop-jump 

landing = DJL, forward-jump landing = FJL).   
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APPENDIX A: DEMOGRAPHIC INFORMATION QUESTIONNAIRE AND ROM 

 

Restricted Ankle Range of Motion Alters Landing Kinematics and Kinetics during 

Landing Tasks 

Demographic Information Sheet 

Filled out by Participant: 

Age: ______ years old 

Dominant leg (Which leg do you use to kick a ball?):   LEFT or RIGHT 

Injury History: 

1. Are you currently injured in the lower extremity (Foot, Ankle, Lower leg, Knee , Thigh, or 

Hip)?  YES NO 

2. Do you have any inflammatory signs or symptoms (dysfunction, pain, swelling, heat, 

redness)?   YES NO 

3. Have you had surgery in your lower extremity (Foot, Ankle, Lower leg, Knee, Thigh, or Hip) 

in the last 6 months?  YES NO 

4. When (DD/ MM/ YYYY) did your last menstrual period end?       /      / 2013 or 2014 

 

Physical Activity History: 

1. What type of physical activity do you usually participate in? 

 ____________________________________________________________ 

2. How many days a week do you usually perform physical activities? 

 _______________________________ 

3. How long (30 minutes, 45 minutes, 1 hour, etc.) do you usually perform physical activity (in 

each session)? 

 _______________________________ 
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Filled by CoI  

Anthropometric Measurement: 

1. Height      2. Weight 

___________________cm   ___________________kg 

Ankle Range of Motion 

1. No ankle brace (Baseline)  

Knee-extended (Non weight bearing) 

Right: Plantar flexion 1)__________ 2)__________ 

 Right: Dorsiflexion  1)__________ 2)__________ 

 Left: Plantar flexion 1)__________ 2)__________ 

 Left: Dorsiflexion 1)__________ 2)__________ 

Knee-flexed (Non weight bearing) 

Right: Plantar flexion 1)__________ 2)__________ 

 Right: Dorsiflexion  1)__________ 2)__________ 

 Left: Plantar flexion 1)__________ 2)__________ 

 Left: Dorsiflexion 1)__________ 2)__________ 

Lunge dorsiflexion (Weight bearing) 

 Right: Dorsiflexion  1)__________ 2)__________ 

Left: Dorsiflexion 1)__________ 2)__________ 

2. Low tension ankle brace  

Knee-extended (Non weight bearing) 

Right: Plantar flexion 1)__________ 2)__________ 

 Right: Dorsiflexion  1)__________ 2)__________ 
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 Left: Plantar flexion 1)__________ 2)__________ 

 Left: Dorsiflexion 1)__________ 2)__________ 

 

 

Knee-flexed (Non weight bearing) 

Right: Plantar flexion  1)__________ 2)__________ 

 Right: Dorsiflexion  1)__________ 2)__________ 

 Left: Plantar flexion 1)__________ 2)__________ 

 Left: Dorsiflexion 1)__________ 2)__________ 

Lunge dorsiflexion (Weight bearing) 

 Right: Dorsiflexion  1)__________ 2)__________ 

Left: Dorsiflexion 1)__________ 2)__________ 

3. High tension ankle brace 

Knee-extended (Non weight bearing) 

Right: Plantar flexion  1)__________ 2)__________ 

 Right: Dorsiflexion  1)__________ 2)__________ 

 Left: Plantar flexion 1)__________ 2)__________ 

 Left: Dorsiflexion 1)__________ 2)__________ 

Knee-flexed (Non weight bearing) 

Right: Plantar flexion  1)__________ 2)__________ 

 Right: Dorsiflexion  1)__________ 2)__________ 

 Left: Plantar flexion 1)__________ 2)__________ 
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 Left: Dorsiflexion 1)__________ 2)__________ 

Lunge dorsiflexion (Weight bearing) 

 Right: Dorsiflexion  1)__________ 2)__________ 

Left: Dorsiflexion 1)__________ 2)__________ 
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APPENDIX B: INFORMED CONSENT FORM 

North Dakota State University 

 Health, Nutrition, and Exercise Sciences  

 PO Box 6050 Dept2620 

 Fargo, ND 58108-6050 

 701-231-8093 

 

Title of Research Study:   

Restricted Ankle Range of Motion Alters Landing Kinematics and Kinetics during Landing 

Tasks. 

 

This study is being conducted by:  

Dr. Pamela Hansen, Associate Professor/ Athletic Training Program Director in the HNES 

Department (Pamela.J.Hansen@ndsu.edu/ 231-8093), and Hidefusa Okamatsu, a graduate 

student in the Human Development and Education Wellness option doctoral program 

(Hidefusa.Okamatsu@ndsu.edu/ 701-388-6825). 

 

Why am I being asked to take part in this research study?   

You are being asked to voluntarily participate in this study because you are: (1) healthy and 

active college female student (between 18 – 25 years old), (2) have no lower extremity muscle or 

ligament problem, (3) had no surgery in the lower extremities (foot, ankle, lower leg, knee, thigh, 

or hip) within six months, (4) have no pain or swelling in the lower extremities.  If you have any 

current injury in the lower extremities, or are under age 18 or over 25 years old, you will not be 

eligible for this study. 

 

What is the reason for doing the study?   

This research project examines (1) whether limited ankle movement changes landing technique, 

and (2) whether vertical and forward landing tasks change landing techniques.  Ankle braces or 

taping are commonly used in athletics; however, it may hinder shock absorbing function of the 

ankle and produce higher impact at the knee or hip joint. Also, ankle movement is controlled by 

the calf muscle.  Therefore, this study may help people who suffer from knee injuries due to 

ankle restriction or ankle muscular weakness. 

 

What will I be asked to do?   

(1) You will be asked to meet the co-investigator in the Biomechanics Laboratory (BBFH 

Rm#16) of the BBF. A random number will be assigned to you.  You will be asked if you have a 

history of leg, knee, or ankle injuries, and your last menstrual period.  Your height and body 

weight will be measured.  You will be instructed to wear athletic shorts, T-shirts, and low-cut 

tennis shoes for testing.   

(2) You will perform a warm-up for approximately 5 minutes to prepare your body for the 

landing tasks. 

(3) Range of motion of the both your ankles will be measured. Sitting and in standing positions. 

(4) Markers will be placed on your shoulders, hips, knees, and ankles. The researcher will 

demonstrate the jump-landing and forward jump landing tasks for you.   
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(5) You will be allowed to practice both the drop-jump landing and forward-jump landing tasks 

until you can perform the sequence properly.  *In both tasks, you will be asked to perform a 

maximum vertical jump immediately after landing.  

(6) Following a 2-minute rest, you will be asked to perform the two different landing tasks that 

will be recorded by digital cameras. 

(6a) You will perform drop-jump landing task and forward-jump landing task with no 

ankle brace, with normal lace-up ankle braces, and tight lace-up ankle braces.  Two-minute rest 

will be given between each task. 

(6b) The ankle braces will be fitted on your feet based on your shoe size.  Each lace will 

be tied with a constant tension (normal or tight lace-up brace).  The tensions will be measured by 

a digital tension meter.  You will repeat ankle angle measurement and landing tasks. 

(7) Once landing tasks are completed, your calf muscle strength will be measured in the 

Research Laboratory (BBFH Rm#14).  You will be sitting and your foot placed in a foot 

apparatus. You will be instructed to move (push and pull) your foot as fast and hard as you can. 

(8) You will perform cool-down exercise (stationary bike) if needed. 

 

Where is the study going to take place, and how long will it take?   

You will report to Biomechanics laboratory of the Bentson Bunker Fieldhouse (BBFH Rm#16) 

on the testing day.  The study will last about 60 - 75 minutes. 

 

What are the risks and discomforts?   

There are less than minimal risks in the landing tasks because landing and the vertical jump is 

frequently performed during a physical activity.  The vertical jump and strength test with 

maximum effort may cause muscular soreness and fatigue despite the warm-up session before 

the testing.  The researchers have taken reasonable safeguards to minimize any known risks to 

you.  Exercise testing will be terminated immediately if you feel any pain or discomfort.  The 

researchers are Certified Athletic Trainers who are trained in recognizing and treating exercise-

related injuries (e.g., muscle strain, ligamentous sprain, etc.).  If needed, EMS will be activated.  

If you need to visit local outpatient clinics, any costs for medical treatment will be charged to 

you or your insurance carrier.  However, if these costs are not covered by insurance for any 

reason, they will be your responsibility. 

  

What are the benefits to me?   

Your participation to this study will help identify the effect of restricting ankle motion on 

landing mechanics.  This eventually may help your physically active lifestyle with less sports 

injury. Your participation in this study may also help to identify the effectiveness of ankle braces.  

 

What are the benefits to other people?   

The results of this study may contribute to expand the knowledge of ankle braces and knee 

injuries, especially anterior cruciate ligament injury.  The results may help improve other injury 

prevention protocols, such as anterior cruciate ligament injury prevention exercises.   

 

Do I have to take part in the study?   

Your participation is completely voluntary.  Your decision whether or not to participate will not 

affect your relationship with the instructor, or the benefits you may expect to receive from the 

class and/or NDSU.  You are eligible to participate in this study; however, your participation in 
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this research is completely your choice.  Even if you decide to participate in the study, you may 

change your mind and stop participating at any time without penalty or loss of benefits to which 

you are already entitled.  

 

Do I receive any compensation for participating in the study? 

You will receive $25 cash of compensation for your effort and time commitment.  Even if you 

stop participating, you will still receive $10 no matter how much of the study you complete.  The 

monetary compensation will be provided when you finish or stop the testing session. 

 

What are the alternatives to being in this research study?   

Instead of being in this research study, you can choose not to participate. 

 

Who will see the information that I give?   

All research records, including the demographic data, ankle motion data, video-recorded landing 

mechanics, and calf muscle strength will be kept locked storage in the Co-Investigator's office.  

Your information will be combined with information from other people taking part in the study.  

When we write about the study, we will write about the combined information that we have 

gathered.  We may publish the results of the study; however, we will keep your name and other 

identifying information private.   

 

What if I have questions or concerns? 

Before you decide whether to accept this invitation to take part in the research study, please ask 

any questions that might come to mind now.  Later, if you have any questions or concerns about 

the study, you can contact the researchers, Pamela Hansen at 701-231-8093 or Hidefusa 

Okamatsu at 701-388-6825.   

 

What are my rights as a research participant? 

You have rights as a participant in research. If you have questions about your rights, or 

complaints about this research, you may talk to the researcher or contact the NDSU Human 

Research Protection Program by: 

 Telephone: 701.231.8908 

 Email: ndsu.irb@ndsu.edu 

 Mail:  NDSU HRPP Office, NDSU Dept. 4000, PO Box 6050, Fargo, ND 58108-

6050. 

The role of the Human Research Protection Program is to see that your rights are protected in 

this research; more information about your rights can be found at:  www.ndsu.edu/research/irb. 

 

 

 

Documentation of Informed Consent: 

You are freely making a decision whether to be in this research study.  Signing this form means 

that  

1. you have read and understood this consent form 

2. you have had your questions answered, and 

3. you have decided to be in the study. 

 

mailto:ndsu.irb@ndsu.edu
http://www.ndsu.edu/research/irb
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You will be given a copy of this consent form to keep. 

 

              

Your signature         Date 

 

         

Your printed name  

 

              

Signature of researcher explaining study      Date 

 

         

Printed name of researcher explaining study   
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APPENDIX C: IRB APPROVAL LETTERS 
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APPENDIX D: MATERIAL USED 

1-degree-increment transparent plastic goniometer (Patterson Medical/ Sammons Preston, 

Bolingbrook, IL) 

 

 

A hand-held digital scale (Rapala VMC, Vaaksy, Finland) 
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Each lace will be held at the target tension for one second at 90° angle from the surface of the 

ankle brace. 

 

 

 

 


