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ABSTRACT

A brain-computer interface (BCI) enables a paralyzed user to interact with an

external device through brain signals. A BCI measures identifies patterns within

these measured signals, translating such patterns into commands. The P300 is a

pattern of a scalp potentials elicited by a luminance increment of an attended target

rather than a non-target character of an alphanumeric matrix. The Row-Column

Paradigm (RCP) can utilize responses to series of illuminations of matrix target

and non-target characters to spell out alphanumeric strings of P300-eliciting target

characters, yet this popular RCP speller faces three challenges. The adjacent problem

concerns the proximity of neighboring characters, the crowding problem concerns their

number. Both adjacent and crowding problems concern how these factors impede BCI

performance. The fatigue problem concerns how RCP use is tiring. This dissertation

addressed these challenges for both desktop and mobile platforms.

A new P300 speller interface, the Zigzag Paradigm (ZP), reduced the adjacent

problem by increasing the distance between adjacent characters, as well as the crowding

problem, by reducing the number neighboring characters. In desktop study, the

classification accuracy was significantly improved 91% with the ZP VS 80.6% with

the RCP.

Since the ZP is not suitable for mobile P300 spellers with a small screen size, a

new P300 speller interface was developed in this study, the Edges Paradigm (EP). The

EP reduced the adjacent and crowding problems by adding flashing squares located

iii



upon the outer edges of the character matrix in the EP. The classification accuracy of

the EP (i.e., 93.3%) was significantly higher than the RCP (i.e., 82.1%). We further

compared three speller paradigms (i.e., RCP, ZP, and EP), and the result indicated

that the EP produced the highest accuracy and caused less fatigue. Later, the EP

is implemented in a simulator of a Samsung galaxy smart phone on the Microsoft

Surface Pro 2. The mobile EP was compared with the RCP under the mobility

situation when a user is moving on a wheelchair. The results showed that the EP

significantly improved the online classification accuracy and user experience over the

RCP.
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CHAPTER 1. INTRODUCTION

This Information Age, an era of paperless organizations, remote work, elec-

tronic mail, electronic journals, electronic timetables, and web mapping services,

has brought us more independence - an independence from which individuals with

severe neuromuscular disease could, in principle, benefit to lead productive fulfilling

lives [80]. Research into Brain-Computer Interfaces (BCIs) has, over the last two

decades, emerged as a burgeoning field, offering modest improvements in quality of

life to paralyzed individuals with minimal voluntary muscular control [86]. These

individuals affected by a severe neuromuscular disease (e.g., Amyotrophic Lateral

Sclerosis (ALS), spinal cord injury, brainstem stroke, or muscular dystrophies [96]

have remained unable in any conventional manner to directly access many forms of

information and communication technology such as computers and mobile phones,

which are increasingly becoming more essential to our everyday activities. As a

substitute for orthodox communication channels (e.g., a keyboard, mouse, touch

screen, or voice recognition), BCI has set up a direct communication channel between

the user’s brain and a computer, such that the disabled user can control an external

device or interact with application software through brain signals.

The BCI research studies indicate there is a bright future for individuals with

minimal voluntary muscular control, as these individuals promise to offer an oppor-

tunity to increase their confidence, make their life enjoyable and easier, and enable

them to depend on themselves interacting with external devices and new technologies.

BCI technology, especially a P300-based BCI, has been applied successfully in a

lab in many different domains, and allowed disabled people limited communication

with other people, applications, and with external devices, including a motorized

wheelchair [48], the control of prosthetic devices [44], a smart home [40], a brain-

controlled internet browser [69, 99], a mobile address-book dialling application [16],
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and a spelling system [25].

The P300 BCI applications have utilized a high amplitude component of the

brain’s electrical response to visual stimulation [87], variously known as the P300

or P3b, as is derived from Electroencephalography (EEG) measured via electrodes

attached to the user’s scalp and elicited during the processing of an attended target

yet not by a to-be-ignored non-target stimulus [75]. Solutions to the electromagnetic

inverse problem [42] have indicated that this scalp-measured P300 component is a

consequence of neurocognitive processes [22, 54, 75, 76] affecting multiple source

generators in the temporal and parietal lobes of the cerebral cortex of neurologically

normal individuals [11, 67, 79].

Of such BCIs, the P300-based BCI speller, first introduced by Farwell and

Donchin [25], has become the most extensively investigated approach. This speller is

used to select one target object from multiple non-target objects, and has employed

the oddball paradigm containing a rare target object stimulus interspersed among fre-

quent non-target objects. The long-lasting P300 is characterized by a high-amplitude

positive peak component of the Event-Related Potential (ERP); a component that is

maximal over the user’s scalp with a peak latency of around 300 ms after the stimulus

onset.

Specifically, Farwell and Donchin’s speller consisted of a 6-by-6 matrix of 36

alphanumeric characters displayed on a screen in front of a user, which has been

termed the matrix speller or, more commonly, the row-column paradigm (RCP) [25],

as shown in Figure 1. The rows and columns are flashed alternately in a randomized

order, while the user’s attention is focused upon the target character to silently

count how many times the target character is flashed. Once the row or column

containing a target character is flashed, a rare event, the P300 component is elicited.

A classification algorithm is then applied to the collected EEG data to determine

2



the row and column that elicited the largest P300 amplitude, after which the target

is identified as the intersection of that row and that column. Though RCP has

been widely used, the paradigm has faced several challenges, namely the adjacency,

crowding, and fatigue problems. These problems affect the performance and user

experience of the RCP.

Figure 1. Classical row-column paradigm (RCP).

1.1. Motivation

The richness of the inner life of some individuals with minimal muscular control,

undistracted by the pedestrian activities of the able-bodied, has brought new scientific

insights – such as those popularized in A Brief History of Time [43] – together with

some phenomenal literary contributions: After a cortico-subcortical stroke [9] afflicted

Jean-Dominique Bauby with locked-in syndrome [23], such that the only way left to

communicate was via blinks of his left eye, the former editor of Elle composed his

memoirs, The Diving Bell and the Butterfly [5]. He recounts that while his whole

body was held prisoner in a giant invisible diving-bell, he found freedom in his

memories and imagination, which soared as a butterfly over the mountains – notions

he communicated in the blink of an eye. Bauby wrote via partner-assisted scanning

which relies upon another who presents a series of items, such as the alphabet; that
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person decodes responses, such as a blink to select an item, a specific letter.

The main motivation of this research is to offer some advantages for people,

especially the paralyzed people, like Bauby, and improve their quality of life even if

it is limited. To achieve this research motivation, new P300 BCIs are described with

new visual interfaces and a stimulus technique. These new P300 BCIs can reduce the

scope for error caused when a user misses a target selection from the visual interface

of the RCP by reducing the effect of the RCP problems.

According to a U.N. report in 2013, 85% of people on the planet, seven billion

people worldwide, own a mobile phone [70]. A mobile phone is progressively becoming

an essential wireless communication device in modern life; specifications developing

rapidly, containing many advanced features and applications. In addition, there are

some wireless EEG devices used in BCI research and commercially-available, such as

the Emotiv EEG headset. Motivated by the aforementioned wireless devices available

with high efficiency, to some extent, this research proposes to apply a new P300 BCI

on a mobile phone, and offer a portable mobile P300 BCI. This work can enable

paralyzed users to benefit from the fast developments in the mobile computing.

1.2. Problem Statement and Objectives

Though the original RCP speller provides a solution for disabled people to

interact with a computer system, this speller still faces several problems, and this

research focuses on the following problems:

1. The adjacent problem: the small distance between two adjacent characters has

been identified as the major factor affecting accuracy [27, 72, 90]. Flashes are

assumed to distract the user more when a character closer to the target character

is flashed and the user is attempting to focus upon that target character. Ac-

cordingly, P300 elicitation is affected by evoking a P300 component in response

to the non-target character flashes rather than to the target character flash, and
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consequently trigger a false stimulus, which leads to a false recognition that is

termed an adjacent error.

2. The crowding problem: crowding refers to the phenomenon that the identifi-

cation of objects is hampered if they are surrounded by identical objects [12].

This crowding problem becomes more severe when the number of surrounding

non-target characters increases [29]. Consequently, the visual discrimination of

the target character becomes more difficult [30].

3. The fatigue problem: after using the RCP for a while, the subject feels tired,

drowsy or loses his or her concentration, and this feeling affects the pattern

recognition of brain activities that make the target character identification very

difficult.

The main objective of this study was to develop new visual interfaces and

flashing techniques for the P300 BCI from desktop to mobile, which is intended to

address the adjacency, crowding and fatigue problems of the classical row column

paradigm (RCP). This main objective is discussed into two points as follow:

1. In order to address the aforementioned RCP problems, we redesign the P300

spellers from the perspective of the visual layout and flashing technique. Those

novel designs may reduce potential errors by increasing the distance between

characters and reducing the number of other characters surrounding a character.

2. Little work has been conducted on developing BCIs on mobile devices. This

dissertation intends to integrate BCIs with smart phones so that disabled users

can also benefit from the fast development of mobile techniques. However,

it is challenging to design mobile BCIs due to the small screen and complex

interaction environments (e.g., noise or mobility).
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1.3. Contributions

This dissertation makes three contributions:

1. The design of the ZP as an alternative P300-based BCI paradigm to the RCP.

The ZP increases the distance between the adjacent characters and reduces the

number of characters surrounding a character. In the ZP interface every second

row of the 6-by-6 character matrix is offset to the right by d/2 cm, where d

cm is the horizontal distance between two adjacent characters. Accordingly, an

empirical investigation was conducted to evaluate the predicted improvements

in performance and user experience with ZP. This investigation revealed that

the ZP significantly improved the online performance accuracy and the user

experience as well relative to the RCP.

2. The design of a new novel visual interface and flashing technique, the EP, as

an alternative to the RCP and ZP. Flashing rows and columns of the char-

acter matrix of the RCP were replaced by flashing squares located upon the

outer edges of the character matrix in the EP. The positions of these squares

alternated between lower and upper edges of columns; between left and right

edges of rows to denote a target in that row or column when illuminated. The

EP can be appropriate for disabled people if they have an ability to slightly

control their eye movement. The distance between adjacent flash edge points

in the EP is larger relative to the distance between adjacent flash characters in

ZP and RCP. The EP has been evaluated and it is significantly improved the

online performance accuracy and the user experience relative to the RCP and

ZP. This improvement was confirmed in different studies.

3. The design of a portable P300-based Brain-Mobile Interface (BMI) framework

that employs the EP on a mobile phone device. The EP is applicable upon
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devices with a small screen size because it provides more space between flash

edge points and increases the number of flash characters on the interface.

Moreover, the EP and RCP have been evaluated on the BMI, and the EP

significantly improved the online performance accuracy and the user experience

relative to the RCP.

1.4. Organization of the Dissertation

The remainder of this dissertation is organized into seven chapters. Chapter

2 presents a brief background of BCIs, BCI common components, Event-Related

Potentials (ERPs), ERP deflections and the components that contribute to those

ERP deflections are introduced, including the P300 component, and applications of

the P300-based BCI. Chapter 3 introduces the related work in the P300-based BCI

area for this research, and this chapter is divided into the work related to the row-

column speller paradigm and to the work related to other speller paradigms.

In Chapter 4, the Zigzag Paradigm (ZP) approach is explained. This chapter

describes the Emotiv EEG which is used for data acquisition. Also, the ZP visual in-

terface design and visual stimulus design are depicted then the experiment procedure

and classification process are described. The last sections of this chapter present the

ZP experiment results and discussions. Chapter 5 presents the Edges Paradigm (EP)

as a new P300 BCI by presenting the EP visual interface, visual stimulus, experiment

procedure, preprocessing and classification, and presents the results of this chapter

study.

Chapter 6 presents a comparative study between the row-column paradigm

(RCP), ZP, and EP, explains the study procedure, and presents the results with the

discussion. Further, this chapter compares ERPs elicited by target, target flanker,

and non-target non-flanker flashes in each paradigm. Chapter 7 describes the P300-

based Brain-Mobile Interface (BMI), visual interface, stimulus technique, procedure
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for the mobility experiment by using a wheelchair, and presents the experiments

detail results with the discussion. Chapter 8 provides a general conclusion and some

proposed future work which could be conducted in this research area.
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CHAPTER 2. BACKGROUND

This chapter presents and introduces an overview for Brain-Computer Interface

(BCI), the general functional components of any BCI system, such as data acquisition,

preprocessing and classification, and the application program’s interface that allow the

BCI to interact with the external device or application. Also, this chapter defines the

Event-Related Potentials (ERPs) and some ERP types, such as the P300 component,

which is used in this research. The last section of this chapter describes the P300-

based BCI and some of its applications, where the P300-based BCI speller is the main

concern of this research and is used to test and evaluate the new P300 BCI paradigms

designed in this research.

2.1. Brain-Computer Interface (BCI)

Communication is very important for people, who can communicate to one

another and interact with the environment to accomplish their daily activities and

attain their needs. Human-Computer Interaction (HCI) research aims to design and

implement efficient interactive interfaces between users and the application’s software

within computers, mobile phones, or any other devices. The able-bodied can inter-

act with these interfaces by neuromuscular movement, while paralyzed individuals

cannot.

A Brain-Computer Interface (BCI) is a non-muscular communication channel

between a user’s brain and an external machine [96]. In detail, BCI is used to translate

the input of Electroencephalography (EEG), digitally recorded via electrodes on the

user’s scalp, into output commands that control external devices. BCI is a very active

and rapidly growing research field, falling within the theme of complex system, draw-

ing together topics from psychology, neuroscience, computer science, and mechanical

and electrical engineering [97]. Each field is concerned with specific aspects of the

BCI framework, such as signal processing, interface design, machine learning, physical
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materials and hardware, or brain neuronal activity. The collaboration between all of

these fields is very important to designing and creating efficient BCIs.

BCI design should take into account the needs of the target users, paralyzed,

where the brain interface should be simple, easy, clear, intelligent, and comfortable.

So, a designer should define the specifications for each object located on the interface,

such as the object color, size, font, and style, and place object with respect to the

location of other objects.

2.2. Functional Components of BCI

As illustrated in Figure 2, a BCI system includes three stages: signal acquisition,

signal processing (signal preprocessing and translation), and device or application

interface. To translate the brain signals into commands, these signals should be

preprocessed and extracted to the features with suitably formatted structure to

identify the pattern of the brain activity via a classification algorithm. This pattern

is then converted to commands passed to the device or application interface, where

each command corresponds to a specific predefined pattern of brain activity.

Figure 2. Common functional components of BCI.
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2.2.1. Signal Acquisition

Brain signals are one of the most critical things for BCIs, as these signals are

used as an essential input to control external devices or any kinds of communication.

The brain signals acquisition is the first component in a BCI and can be measured

by three techniques:

1. Invasive BCI: this technique measures brain electrical activities through brain

implanted subdural or depth electrodes, i.e., cerebral cortex. This technique

measured the highest quality signals required in advanced BCI applications,

such as restoration of vision [21, 55]. There are a set of disadvantages of this

technique, being expensive, risky, procedurally complex, difficult to setup, and

requiring surgery. Electrocorticography (ECoG) is an example of invasive BCI

device.

2. Partially invasive BCI: this technique measures brain electrical activities

via implanted electrodes upon the surface of the dura, a membrane between

the skull and the brain. The signals recorded are a high in quality. Partially

invasive BCI requires surgery involving risk and a complex procedure albeit a

simpler procedure with less risk than the invasive technique, which introduced

above.

3. Noninvasive BCI: this technique is the most common brain signal acquisition

technique. Electroencephalography (EEG) is one of the most popular real-time

inexpensive devices used in noninvasive BCI technique, which was discovered

by Hans Berger [8]. The EEG records brain electrical activity via electrodes

placed at specific locations upon the scalp often according to the International

10-20 system [85]. Event-Related potentials (ERPs) are derived from EEG. This

noninvasive technique is the easiest and safest technique, but recording signals of
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a lower quality by comparison with the aforementioned techniques, the bone and

tissue between the electrodes and source generators also compromising spatial

resolution. This research uses an EEG device, the Emotiv EEG headset.

Most new EEG devices contain an analog-to-digital signal converter to record

the signal digitally, EEG data. Also, the EEG device contains an internal digital

signal processor that performs oversampling, and digital bandpass and notch filtering

to the EEG data in real-time. The EEG signal reflects rhythmic brain activity, often

analyzed into five different frequency bands: delta (0.5-3 Hz), theta (3.5-7 Hz), alpha

(8-13 Hz), beta (13-30 Hz), and gamma (30-70 Hz) [4].

2.2.2. Preprocessing and Features Extraction

Raw EEG data is typically unsuitable for classification, being contaminated by

different artifacts, such as eye movement, muscle and body movement, respiration,

cardiac signals, and scalp skin sweating [3, 26, 52]. Preprocessing EEG data and

features extraction is very important to convert the EEG data to meaningful features

for the classification algorithm.

Many artifacts within the EEG data make the discrimination between the brain

evoked potentials based on a target event, e.g., visual flash, and non-target events very

difficult. Therefore, common average referencing (CAR) for each EEG data channel

(i.e., electrode), further filtering for the EEG data, and winsorizing the EEG data to

removing the EEG data outliers are required to remove unwanted noisy sources to

improve signal-to-noise ratio (SNR) and enhance the EEG data [46].

Signal processing aims to reduce the raw EEG data dimensions by channel

selection with respect to the decimation as necessary, reducing the computational

cost and time of classification and enhancing the speed of performance. Subsequently,

the preprocessing EEG data is epoched into a meaningful data reduction of time-

amplitude features, i.e., segments or epochs, as input to the classification.
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2.2.3. Classification Algorithm

The classification algorithm aims to perform a translation of the extracted

features into an equivalent feature patterns processed by using pattern recognition to

identify the user’s commands [59]. In most BCI systems, the classification component

is divided into offline and online classification sessions. The offline or training clas-

sification session is used to build a classification statistical model (i.e., coefficients)

for each individual user depending on certain feature patterns for the calibration

dataset gathered during the target and non-target sequence stimulus presented to the

user on a visual interface. Thereafter, the online or testing classification session was

performed to find the equivalent subject’s commands for a set of extracted features

in real-time that depend on the classification model. Several classification algorithms

are used effectively in BCIs, such as Bayesian Linear Discriminant Analysis (BLDA),

Stepwise Linear Discriminant Analysis (SWLDA), Support Vector Machine (SVM),

and Fisher’s Linear Discriminant Analysis (FLDA).

Concerning classification algorithms, SWLDA, peak picking, area, and covari-

ance, have been shown to operate better under difference circumstances [25]. Hoff-

mann et al. found that the BLDA algorithm is superior to FLDA algorithm in regards

to the accuracy and bitrates [46]. Krusienski et al. found that SWLDA and FLDA are

significantly better than linear support vector machine (LSVM), Pearson’s correlation

method (PCM) and nonlinear Gaussian kernel support vector machine (GSVM) [56].

Also, the LSVM is significantly better than PCM.

Another study did not find statistically significant differences among SWLDA,

FLDA, BLDA, LSVM, and nonlinear GSVM in regards to the accuracy [2]. In

contrast, BLDA has demonstrated a smaller divergence in errors as compared with

several other classifiers, such as linear discriminant analysis (LDA), SWLDA, support

vector machine (SVM), neural network (NN), and feature extraction (FE) [66].
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In summary, Fisher’s Linear Discriminant Analysis (FLDA) algorithm has been

shown to outperform a number of classifiers [56]; an extension of FLDA, the Bayesian

Linear Discriminant Analysis (BLDA) algorithm, has been shown to outperform

FLDA and other classifiers [46, 66]. BLDA was, therefore, the classification algorithm

adopted throughout this dissertation.

2.2.4. Device/Application Interface

A device controller module aims to establish a communication between the

classification and external device. Accordingly, this module converts the classification

output to the action commands that control external device in the real-time and

concurrent sends feedback to the user.

2.3. Event-Related Potentials

Event-Related Potentials (ERPs) are specific waves of brain electrical potentials

generated during or after a sequence of external stimuli (sensory stimulation) or inter-

nal (motor imagery) thought. The EEG device, via electrodes at different locations

on the scalp, is used to derive ERPs. As shown in Figure 3, an ERP waveform consists

of a series of positive and negative voltage deflections [63].

Figure 3. ERP deflections [45].
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ERP deflection labels start with a letter P (Positive peak) or N (Negative peak),

followed by the time of occurrence in milliseconds in post-stimulus onset, or peak’s

ordinal position [63]. For example, N100 or N1 are the same ERP deflection, where

N1 is a first negative peak that occurs on the ERP. Some ERP deflections are shown

in Figure 3, such as P1, N1, P2, N2, and P3.

2.4. BCI Approaches

The noninvasive BCI systems for communication depend on the ERP. This ERP

can be generated by the following approaches:

1. Motor imagery: this approach does not depend on any external sensory

stimulations event, but on the user’s mental motor imagery tasks (thinking)

to perform a specific and limited muscle movement activity, and detect changes

in brain signals from the motor cortex during different imagined movements.

For example, the imagination of hand movement to the right or to the left [31].

2. Steady State Visual Evoked Potentials (SSVEP): this approach depends

on a visual stimulus. The ERP response is recorded through scalp-posterior

occipital electrodes, situated over the primary visual cortex. The SSVEP-based

BCI presents a set of simultaneous visual stimuli flashing objects – each object

flash flashing on and off at a unique frequency – while a user’s eyes focus on

a target object [57]. The brain generates specific brainwave with a frequency

that is the same as the target object frequency.

3. P300: this approach depends on the ERPs derived from EEG gathered dur-

ing the presentation of a sequence of sensory stimuli. For example, P300, a

positive peak amplitude component in the ERP that appears with a latency of

approximately 300 ms post-stimulus onset of the target object, was discovered

by Sutton et al. in 1965 [87]. However, P300 is one of the most important
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ERP components for BCI research being readily elicited with a short training

session. All BCI paradigms developed in this study were based on this P300

component, as is termed here P300-based BCI, which is now introduced.

2.5. P300-based BCI

P300 BCI is defined as a BCI using the EEG input associated with the elicitation

of the P300 component in response to stimulation, such as visual flashes, to issue

output commands. A P300-based BCI is reliant upon intermittent flashes and uses

the principle of an oddball paradigm, where some defined choices display on a screen

in front of a user, and the stimuli are presented alternately and randomly. The user

focuses gaze on one choice, termed the target, then the P300 potential is elicited as

a result of the target properly of the stimulus.

P300-based BCI systems are based upon sensory stimulation, which can be

visual, auditory, or tactile [6, 13, 35]. Sensory stimulation evokes electrochemical

events within the brain, which in turn cause scalp potentials that are measured with

an EEG device via electrodes at different locations on the scalp, as is used to derive

P300. Many researchers are interested in working with P300-based BCI systems,

because the P300 component amplitude can be reliably measured and easy to elicit

from the scalp with an inexpensive EEG device. In addition, P300-based BCI systems

do not require a long training session, as mentioned above.

In the last two decades, several P300-based BCI applications have been proposed

within different domains of our daily life. The following proposed applications are

some examples of P300-based BCI:

1. Brain-Actuated Wheelchair: there are many studies that design a wheelchair

that relies on a P300 [48, 58, 78]. For example, the visual wheelchair interface

[48] allows disabled people to control a wheelchair movement to specific locations

and directions by translating the target selection to the motor commands.
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2. Virtual Smart Home: Guger et al. proposed a virtual smart home controller

based on the P300 ERP component [40]. The different control elements dis-

played on the interface, such as turning light off/on, opening/closing doors and

windows, switching TV channels, etc.

3. NeuroPhone: Campbell et al. proposed the first P300 BCI system designed

specifically for mobile device [16]. This system allows neural signals to control

mobile phone applications, such as call a contact number from the phone address

book by selecting one target flash contact image.

4. P300-based BCI Speller: P300-based BCI speller (or BCI speller) is one of

the most successful applications based on the P300 ERP component, and this

application has shown a high accuracy performance in several studies. A BCI

speller aims to help disabled people to type text on a computer by selecting one

alphanumeric character at a time. The pioneering work of Farwell and Donchin

[25] displayed 36 characters into a 6-by-6 matrix in a row-column paradigm

(RCP). The rows and columns are flashed alternately and randomly on the

screen. The user focuses on the target character and counts the number of

times the target flashes. The character located at the intersection of the row and

column, which elicited the largest P300 amplitude, is the character identified

and should be the target.
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CHAPTER 3. RELATED WORK

Having already defined the adjacent, crowding, and fatigue problems of the

Row-Column Paradigm speller (RCP) and the objectives of this study (Chapter 1),

as well as having introduced the general background of the BCI and some of the BCI

applications (Chapter 2), this chapter now turns to the RCP and its related studies

in more detail.

A brain-computer interface (BCI) is not only used by disabled users, but also

it may be used by healthy users to improve their interaction with the external world

in specific situations and applications [31]. Since the BCI research field evolution

within the last two decades, it is still poorly explored by researchers, probably due to

the essential complexity of this multidisciplinary research topic [31, 71, 95]. Several

studies proposed some improvements to the RCP presented in the first part of this

chapter, such as the RCP visual interface and stimulus improvements. The last part

presents other that studies proposed new P300-based BCI speller paradigms rather

than the RCP.

3.1. Row-Column Paradigm (RCP)

This research intends to build upon prior developments of the P300 speller,

particularly the aforementioned RCP, which is introduced in more detail in what

ensures. With the RCP [25], oddball sequences of visual letter stimuli are employed

that contain rare unpredictable target stimuli interspersed amongst a series of non-

target stimuli. The RCP is designed as a 6-by-6 matrix of 36 characters. Six rows

followed by six columns are briefly flashed in a random order. The user is instructed

to focus on the target character and to count the number of times that the target

character flashes. There are 12 possible events (six row and six column flashes) and

only 2 events are relevant to the target character (i.e., the possibility of flashing the

target character is 2/12). The P300 amplitude is measured after each flash. After a
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number of flashes, a classification algorithm identifies the row that elicited the largest

P300, the column that elicited the largest P300, and, in turn, the target character

at the row-column intersection. The general approach of this widely-used successful

RCP is adopted here.

P300 is an endogenous component not significantly affected by the stimulus

attributes [82], but the exogenous stimulus attributes, such as characters’ color, size,

distribution, duration time, etc., can affect the perceptual response [74, 89]. Several

modifications were intended to improve RCP online classification performance and

user experience by reducing the effects of the aforementioned RCP problems, such

as adjacent, crowding, and fatigue problems. Some BCI researchers replaced the

RCP by new BCI speller paradigms, and some other researchers improved the RCP

performance and keep the RCP matrix.

3.1.1. RCP Visual Interface

In Salvaris and Sepulveda [81], various changes to the RCP visual interface are

explored as well as their effects on classification accuracy. Changes to the characters’

size, the distance between the characters were evaluated. A systematic evaluation

of RCP has revealed that increasing matrix characters’ size or distances between

matrix characters yielded better classification performance. Such an approach was

thought to alleviate the crowding problem, in accordance with Bouma’s law [12] that

identification of a stimulus improves as a function of the eccentricity between the

target stimuli and flanking stimuli; a law that accordingly generalizes from cognitive

performance to classification by BCI. However, reducing the size of characters, or the

distance between matrix characters, conversely reduced classification performance, so

this approach was arguably confounded by factors other than distance, thus rendering

the reduction in character size ineffective in alleviating crowding (i.e., number of

characters surrounding a character) and adjacency (i.e., distance between neighbor

19



characters) problems. Further, the previous results agree with Fazel-Rezai results

[27], which shown that 60% of errors in detecting target character occurs in adjacent

rows and columns to the target ones.

Further corroboration of Bouma’s law, in a BCI context, was thus sought by

using shifting to increase the distance between target and flanking matrix characters in

the Zigzag Paradigm (ZP) relative to RCP. This shifting also addressed the crowding

problem, for most characters, by reducing the number of other characters surrounding

a character; critically the target character. Also, adding an edge point as a stimulus

beside each row and column in the RCP matrix doubles the distance between target

and flanking edge points in the Edges Paradigm (EP) relative to RCP. Furthermore,

adding these edge points reduced the number of flash objects surrounding any object.

The size of RCP matrix has not been shown to significantly influence accuracy

[1, 83], so the traditional size of character matrix (6-by-6) is used in this work for

both proposed speller paradigms, ZP and EP.

3.1.2. RCP Visual Stimulus

Variants of the traditional visual stimulus, a flash, used in the RCP, have

been investigated and tested in several studies. Any flash design should follow

existing findings from the psychology and neuroscience to make this flash design more

effective on the ERP components. Each flashing technique has been shown to produce

different levels of classification accuracy. An approach to the crowding and adjacency

problems has been the Single Character Paradigm (SCP), which only flashes one single

character at a time [39], as shown in Figure 4. The SCP was intended to increase the

P300 amplitude thus attaining a higher overall accuracy than the RCP. Compared

with the RCP, the SCP increased the P300 amplitude. However, such improvements

in accuracy were not obtained and, of more concern, the communication rate (i.e.,

number of selection characters per minute) was reduced.
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Figure 4. The Single Character Paradigm (SCP).

Townsend et al. introduced the Checkerboard Paradigm (CBP) [90], depicted

in Figure 5, adopted a different technique for addressing the adjacency problem

by flashing 6 non-adjacent characters simultaneously. Also, the CBP increases the

matrix dimension to a 9-by-8 matrix of 72 characters. While the CBP showed

improvements in classification accuracy over RCP, neither the SCP nor CBP improved

upon the communication rate and accuracy of the RCP, or reduce the crowding

problem. Other extended approaches were intended to enhance the CBP, such as

suppressing characters surrounding targets from ashing during the offline session [34],

reducing the total number of flashes [91], or even using a hybrid spelling approach

that combined electrooculogram (EOG) with EEG [77]. While these extensions

improved the communication rate and the bit rate, online classification accuracy

went unimproved over the performance demonstrated with the CBP.

In a variant of RCP, an approach to the crowding problem was to replace

characters with familiar faces (FF) [53], as augmented P300 amplitude, and signif-

icantly improved classification performance. This promising finding suggested that

the crowding problem could be alleviated by reducing the physical similarity between

characters in the matrix. The FF used the same face to flash all row and column
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Figure 5. The Checkerboard Paradigm (CBP) [90].

characters as illustrated in Figure 6, which makes a difficult to distinguish between a

target and flankers characters flashes. Other approaches were changed the standard

flash colors, gray and white, to another one [47, 88] to reduce the crowding effect.

These approaches, the FF and changing the flash colors, did not increased the distance

between adjacent characters and reduced the number of characters in a visual spatial

crowding as well.

Figure 6. The characters with flashing familiar faces (FF) [53].

Instead of flashing characters into rows and columns, some studies designed

alternate flash pattern approaches to decrease the number of flashes needed to identify

a target character and speed-up the communication rate as well. Jin et al. designed
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four flashing techniques using 9-, 12-, 14-, and 16-flashes to identify a target character

for a P300 BCI speller based on a 7-by-12 matrix [49, 50], while this matrix requires

19 flashes (7 rows and 12 columns) in the RCP. However, the results revealed that

the online classification performances of the 16-flashes and 19-flashes patterns are

equal to each other and better than remaining patterns. According to these results,

using the same number of flashes as original flashing technique (rows and columns)

is adopted in this work. More specifically, the number of flashes in the RCP as well

as the new speller paradigms, the ZP and EP, is the number of rows multiplied by

number of columns.

The effect of a different stimulus-onset asynchrony (i.e., SOA; the time between

the onsets of the two successive flashes) was also investigated for the RCP and conflict-

ing results were reached. A short SOA of less than 200 ms commonly used in different

spellers [84, 90, 77, 98, 72] has engendered a higher data transfer rate. Turning to

the influence of SOA on accuracy, a shorter SOA has also been shown to produce

a higher online accuracy [68, 83]. In contrast, Farwell and Donchin found a longer

SOA increases the online classification accuracies [25, 61], so there is a discrepancy

between the results of the previous studies. To increase the communication rate, a

short SOA (120 ms) is used in this research for the RCP, ZP, and EP. The SOA

duration is divided into a short inter-stimulus interval (i.e., ISI; the time between the

flash termination and the onset of the next flash) (50 ms) and a short yet supraliminal

flash duration (70 ms).

For any P300 speller paradigm, the double-flash problem may happen when the

target character flashes twice consecutively, which can reduce the P300 amplitude for

the second flash of the target character which reduce the overall performance accuracy

for a speller [90]. Serby et al. flashing technique [84] is used in this work to address

the double-flash problem and prohibited that the target flashed twice in succession.
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3.2. New P300 BCI

Several promising new BCI speller paradigms have been developed, and some

of these paradigms do not require eye movement to the target character (covert

attention) [10, 73, 92, 93], where other paradigms are required to focus on a target

character to select it (overt attention) [28, 74, 92, 98]. In several new paradigms,

[10, 28, 73, 92, 93], the target character is selected in two stages. In the first stage

a region containing multiple characters is selected, and then, in a second stage,

each character in that region is distributed in a new window, from which the target

character is then selected.

The RCP provides a higher accuracy in overt attention mode relative to the

covert attention mode [14, 33, 92]. Treder et al. developed and evaluated three of

two-stage BCI speller approaches based on covert attention mode [93], where the

user only needs to fixate the center of a visual speller and covertly select the target

character. Of these two-stage approaches, the Center Speller was established as the

most accurate performance relative to the Hex-o-Spell and the Cake Speller.

Figure 7. A region-based BCI speller paradigm (RBP) [28].

A region-based paradigm (RBP) is another type of a two-stage P300 spellers

introduced by Fazel-Rezai [28], as shown in Figure 7, and it is in the same line of an
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overt Hex-o-Spell discussed in [92] and introduced in [10] with some changes. The

RBP and the most two-stage speller paradigms increased the number of characters

relative to the RCP, and increased distance between those characters (or regions) as

improved accuracy by alleviating the crowding and adjacency problems respectively.

These paradigms thus demonstrated improvements in accuracy over RCP, yet com-

munication rate was slowed by the two-stage nature of the process. The objective

of this work was thus to improve accuracy without slowing communication rate in a

single-stage interface: the ZP. Though the EP works as a two-stage speller paradigm,

but this speller use one window only without changing the characters and edge points

locations on the EP interface to reduce the memory load in comparison with other

two-stage speller paradigms.

An investigation is thus conducted – with different P300 speller’s – which

assessed BLDA classification performance and user experience in the comparison of

a single-stage ZP, a two-stage EP, and a single-stage RCP. Short flash durations and

ISIs are used. This research was intended to assess how well ZP’s shifting and EP

addressed the crowding, adjacency, and fatigue problems that affect RCP.
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CHAPTER 4. THE ZIGZAG PARADIGM (ZP)

This chapter describes a new P300-based BCI speller paradigm, called the

Zigzag Paradigm (ZP), and presents the ZP experiment results. The ZP is designed to

address the RCP problems mentioned in the previous chapters. The sufficiency of ZP’s

solution to adjacency and crowding problems can be evaluated by speller performance,

while whether the improvement of the interface reduces the fatigue problem can be

assessed by subjective ratings. Accordingly, an empirical investigation was conducted

to evaluate the predicted improvements in performance and user experience with ZP.

4.1. Methods and Materials

4.1.1. Participants

14 university students participated, of which 5 were excluded from data col-

lection due to frequent disconnection from the Emotiv EEG apparatus, as occurred

only with individuals who had long, coarse, or dense hair; a known problem for such

individuals particularly when using the saline electrodes employed in the current

investigation [20, 24]. The remaining 9 volunteers were aged 22 to 34 years (mean: 28

years; all male). All reported intact vision, no neurological conditions, and English as

their first language. The study received ethical approval from the North Dakota State

University Institutional Review Board and each participant gave informed written

consent in accordance with the Declaration of Helsinki.

4.1.2. Hardware and Data Acquisition

Data were recorded via the “Research Edition” of the Emotiv EEG wireless

headset, [20, 24] at 128 Hz in a 0.16-45 Hz bandpass from saline scalp electrodes

positioned at the selected scalp sites approximating the International 10-20 system

of electrode locations [85] depicted in Figure 8.

EEG data were acquired using the EmotivEEG Headset Toolbox written in

MATLAB [36]. The interface design, preprocessing, feature extraction, and classifi-
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cation algorithm were custom routines written in MATLAB.

Figure 8. Emotiv EEG electrode locations [24].

4.1.3. Visual Interfaces Design

Both the RCP and the ZP interfaces were divided into a small upper part and

a larger lower part (See Figure 9). Specifically, the small top part was identical in

both interfaces, and consisted of two text boxes - one for input, the other for output

- and a start button that is pressed to run the speller. Contrastingly, the large lower

part was different for the two interfaces. In the RCP, the large lower part included

a 6-by-6 matrix with 36 alphanumeric characters evenly distributed within an area

of h × w centimeters (cm) (our design is 12.7 × 12.7 cm). The distance between

two adjacent characters located on the same row or column was d cm (See Figure

9(a)), and
√
d2 + d2 cm was the distance between the two adjacent characters located

on a different row and column (See Figure 9(a)). In the RCP, each character is

surrounded by 3, 5, or 8 characters, as shown in Figure 9(a). In the ZP, after shifting

the even number of rows to the right by d/2 cm, the width is increased to w+d/2 cm

(Figure 9(b)). In the ZP, the distance between two adjacent characters in the same

row was still d cm, with
√
d2 + (d/2)2 cm between two adjacent characters located

on different rows. This shifting reduced the number of characters surrounding any
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character, which then ranged from 2 to 6 (Figure 9(b)).

 

(a)

 

(b)

Figure 9. (a) The RCP visual interface, (b) The ZP visual interface.

The characters located on the zigzag column were the same as characters located

on the straight column in RCP. Both paradigms used the same flashing technique and

classification algorithm.
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4.1.4. Visual Stimulus Design

The visual stimulus used in the study was a flash, as shown in Figure 10. To

resolve the double flash problem mentioned in the Introduction, for both spellers

(RCP and ZP), each block consisted of 6 row or 6 column trials (flashes), and it was

prohibited that the same row or column flashed twice in succession [84].

(a) (b)

Figure 10. The row and column visual flashes for the RCP (a) and ZP (b)

The order in which each of the rows or columns were flashed within a block

was otherwise randomly permuted, as illustrated in Figure 11. There were 24 blocks

per target (12 row blocks, followed by 12 column blocks). For each target, each row

was thus flashed a total of 12 times and each column was flashed a total of 12 times,

i.e., (12 row blocks * 6 flashes) + (12 column blocks * 6 flashes) = 144 flashes per

character, with the target flashing one time on each block, such that the target flashed

12 + 12 = 24 times on all blocks, and non-targets flashed 144 - 24 = 120 times. As
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depicted in Figure 11, the inter-stimulus interval (ISI) was 50 ms, and the stimulus-

onset asynchrony (SOA) was 120 ms. Each block thus lasted 120 * 6 = 720 ms. 24

blocks, containing in total 144 trials, were needed to select one target character, such

that a net time of 120 * 144 = 17280 ms was needed to select each target.

Figure 11. Flashing sequence design for one target character selection (r: row, c:
column).

4.1.5. Procedure

Each participant completed a measurement with ZP and a separate measure-

ment with RCP upon a separate day. Each measurement lasted approximately

an hour and was divided into two sessions; 40 minutes for the offline session (i.e.,

collection of calibration data), and 20 minutes for the online session. Whether the

RCP measurement or the ZP measurement was conducted on the first day, was

alternated between successive participants. Before each measurement, the participant

was asked to rate his current level of fatigue on a scale of 1 to 10 (1: no fatigue,

10: severe fatigue). After each measurement, the volunteer completed a post-study

questionnaire in which he again rated his level of fatigue, together with the level of

comfort (1: uncomfortable, 10: comfortable) and alertness (1: drowsy, 10: alert) that

he had experienced during the experiment.

The volunteer sat on a chair in front of the speller displayed on screen of the

computer monitor at a viewing distance of 90 cm. Participants were instructed
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to focus visual attention on a target symbol, while silently counting the number

of times the target character flashed, keeping blinking and muscle movements to a

minimum. Volunteers were observed by the experimenter to ensure that they followed

the user study instructions and that head, leg, and eye movements were kept to a

minimum. All participants were complaint with the instructions throughout. In the

offline session, 6 words and a number (LAP, ROD, BAND, FLAG, DRINK, MINUTE,

and 9253), as comprised 29 alphanumeric characters, were tested by each participant.

The purpose of the offline session was to train the classifier algorithm to build a

classification model for each individual participant (i.e., classification coefficient). The

online session then used 3 words and a number (SUM, LAMP, BUNCH, and 7492),

as consisted of 16 alphanumeric characters, which were used to test the accuracy of

the classifier for that participant according to the classification model. Words were

drawn from the MRC psycholinguistic database [19] on the basis of having similar,

relatively early, Gilhooly and Logie (1980) Age-Of-Acquisition norms [37].

In offline and online sessions, the target word was presented in the target text

box for each run, and, one-at-a-time, the current target character was displayed in

the 6-by-6 matrix in red for 1.5 sec before the row and column trial flashes ensued.

This period prior to the presentation of blocks of trials was intended to permit the

participant to shift their visual focus and fixate the target character so they could

then count the number of times the target flashes. The Emotiv EEG signals for each

single target character were acquired in parallel with the row and column flashes,

and both of the EEG raw data and flashes data (row/column flashes sequence, event,

target character ...) were stored in two different files, which were then merged into one

complete MATLAB file (.mat). Then, the EEG data was converted to a form suitable

for the classification algorithm. Figure 12 shows the overall software architecture.
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Figure 12. Overall P300-based BCI Architecture.

4.1.6. Preprocessing, Feature Extraction, and Classification

In general, the raw EEG data collected for each single target character was

unsuitable for classification, being contaminated by different artifacts (eye movement,

muscle and body movement, respiration, cardiac signals, and scalp skin sweating)

[3, 26, 52]. Therefore, preprocessing took place for artifact reduction prior to feature

extraction.

The Emotiv device digitally-filtered the raw EEG signals in a bandpass of 0.16

to 45 Hz. For common average referencing, the average potential at all 14 electrodes

was calculated for each time point, and then the average was subtracted from all data

at that time point. Continuous EEG data recorded for each single target character

was epoched 0 to 600 ms post-stimulus onset (See Figure 13). There were 144 epochs

(i.e., segments) per target character. In other words, a 600 ms time frame of data was

extracted following each flash to identify if that flash evoked the P300 component.

From the data structure perspective, a segment is a two-dimension matrix with the

size of 14 electrodes by 77 time points per segment, where number of time points =

(ceil(0.6 * 128)) as each 0.6 sec epoch was recorded at 128 Hz. 5% of the highest
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Figure 13. EEG data extraction (segments) for one target character selection.

sample amplitudes (artifacts) for each electrode were reduced to the 95th percentile

amplitude value. Also 5% of the lowest sample amplitudes for each electrode were

increased to the 5th percentile value. This process is termed Winsorizing [46].

Bayesian Linear Discriminant Analysis (BLDA) was employed to identify the

target character. For each participant, the classifier was trained on the calibration

data collected from the offline experiment. The calibration data contained 144 * 29

= 4176 flashes (24 * 29 = 696 target flashes and 120 * 29 = 3480 non-target flashes).

Thereafter, online classification was performed after the EEG data for the 144 row and

column flashes were recorded. In general, the classifier ran twice to infer the target

character. First, each single row segment from the 72 row segments was classified

separately, and the summation of the classification results determined for each row

segment over the 12 row blocks was calculated. The row with the highest summation

was considered as the target row, as is shown in Equations 4.1 and 4.3. Second, the

same process was applied to column segments to identify the target column, as is

shown in Equation 4.2 and 4.4. Finally, the character located at the intersection of

the target row and the target column was selected as the target character.

Total BLDA(ri) =
12∑
n=1

BLDA(ri, n) (4.1)

Total BLDA(ci) =
24∑

n=13

BLDA(ci, n) (4.2)

Target Row = max(Total BLDA(ri)) (4.3)

Target Column = max(Total BLDA(ci)) (4.4)

33



Where, r is row segment and c is column segment; i is the row or column number

(1, 2, 3, 4, 5, 6); n is the row block number (1, 2, ..., 12) or the column block number

(13, 14, ..., 24); BLDA(ri, n) and BLDA(ci, n) is the BLDA classification results of

row i segment and column i segment respectively for block n.

4.2. Results

4.2.1. Online Classification Performance

As depicted in Figure 14, the pattern of mean percentage classification accuracy

suggested that performance was improved with the ZP relative to RCP.

These findings were corroborated by inferential statistical analysis: A paired

t-test revealed that the performance improvement produced with the ZP relative to

the RCP interface was significant, t(8) = 4.08, p = 0.004, η2 = 0.676 (7/9 showed the

effect).
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Figure 14. Mean percentage classification accuracy as a function of interface (error
bars denote standard error); N=9.

For each paradigm, error distribution matrices were calculated for the 144

selected characters for all volunteers (16 characters * 9 participants = 144 selected

characters), as shown in Figure 15. Target characters were denoted by the center cell,

showing the number of correctly-selected characters. Other cells contained the number
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of erroneously-selected characters. The difference in rows and columns between the

erroneously-selected character and the target character is denoted by the cell position.

For example, if a participant erroneously-selected a character with the speller, then

the error value of the cell position (selected row-target row, selected column-target

column) within the error distribution matrix is incremented by one.

The frequencies in these error matrices showed that the adjacency problem was

ameliorated with the ZP: As shown separately for each interface in Figure 15, RCP-

detected errors totaled 19.4% (28 out of 144), ZP-detected errors 9% (13 out of 144).

Whereas 43% (12 out of 28) of these RCP-detected errors were adjacent errors, 30%

(4 out of 13) of these ZP-detected errors were adjacent errors. With 75% (21 out of

28) of the RCP-detected errors, and 92.3% (12 out of 13) of the ZP-detected errors,

either the row or the column was correctly classified.
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Figure 15. The error distributions matrix of all subjects for 16 selected characters in
the online session for the RCP (a) and ZP (b). The center cell indicates the number
of correct selections for all target characters.

4.2.2. User Experience

Here the data were questionnaire-assessed subjective ratings of fatigue, comfort,

and alertness. The pattern of means illustrated in Figure 16(a) suggested that the ZP
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caused relatively less fatigue than the RCP, and that volunteers reported, as depicted

in Figure 16(b) that ZP was more comfortable after the experimental session, as well

as being more alert with ZP. The subjective rating range is 1 to 10, where 1 indicates

the lowest level of fatigue (the best case), while 1 indicates the worst case in comfort

and alertness.
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Figure 16. Subjective rating for all participants (N=9). (a) Mean of the fatigue rating
difference before and after the experiment (0:9). (0: lowest level of fatigue, 9: highest
level of fatigue). (b) Mean of the comfort, and alertness rating (1:10). (1: lowest level
of comfort and alertness, 10: highest level of comfort and alertness).

These tendencies were broadly supported by inferential statistics: Paired t-

tests comparing ZP and RCP revealed a significant effect of interface upon fatigue,

t(8) = −3.59, p = 0.007, η2 = 0.676 (9/9 showed the effect), and upon comfort,

t(8) = 2.82, p = 0.023, η2 = 0.498 (7/9 showed the effect). The effect of interface

upon alertness was, however, marginal, t(8) = 2.31, p = 0.050, η2 = 0.246 (6/9

showed the effect).

4.3. Discussion

The results showed that increasing the distance between most characters, re-

ducing the visual spatial crowding through the shifting process (i.e., ZP), decreased

the number of adjacent errors. The ZP significantly improved accuracy relative to
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the RCP. Also, most participants, overall, found the ZP to be more comfortable and

to cause less fatigue.

These findings supported Bouma’s law [12] that identification of a stimulus

improves as a function of the eccentricity between the target stimulus and flanking

stimuli, such that there was a reduction in visual crowding and the effects of the

adjacency problem [27] using the new ZP. Which brain processes support the multiple

levels upon which visual crowding can occur remain to be identified [94], as does

how these processes causally influence the generation of P300 shown here during ZP

and RCP. Dissociations have been drawn between the visual system, implicated in

perceptual identification, and the visualmotor system, implicated in actions such as

grasping a target object amongst multiple objects [15]. P300 generation is assumed

to reflect a decision process [75], which could be engaged by processes in the visual

system, or in the visualmotor system, or, even, within both systems. In healthy

individuals, this visualmotor system is arguably less susceptible to crowding [15]

than the visual system, such that vision can guide action effectively in crowded visual

environments, e.g., pressing keys upon a small mobile device.

It therefore remains an intriguing empirical question of theoretical and practical

value as to whether patients with motor problems, associated with neuromuscular dis-

eases such as ALS, would particularly benefit from the improvements in performance

and user experience shown with ZP here. Concerning possible improvements to the

ZP indicated by classification performance of the current investigation, for almost

all ZP classification errors in the current investigation, either the row or the column

was correctly classified (Figure 15(b)). The results of the present investigation have

thus given rise to a question that concerns whether the nonadjacent flashes employed

in the Checkerboard paradigm [90] might be more effective in the ZP, rather than

the flashing rows or columns with the ZP used here. It is to be determined if such
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nonadjacent flashing might further minimize the classification errors that confuse the

target character with another character in the same row or column.
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CHAPTER 5. THE EDGES PARADIGM (EP)

The Zigzag Paradigm (ZP) improved the online classification performance and

user experience of the Row Column Paradigm (RCP) by reducing the weakness of

the RCP through a shifting process, as explained in Chapter 3. Unfortunately, the

ZP increases the interface size relative to the RCP interface. Consequently, the ZP

is not suitable for mobile P300 speller (i.e., small screen size). This chapter discusses

a novel P300 speller interface developed and evaluated, called the Edges Paradigm

(EP). The EP is intended to address the adjacency, crowding, and fatigue issues of

the RCP by replacing the traditional row/column flashing with the square flashing

in the boundary of a character matrix. This chapter shows the speller interface and

stimulus design of the RCP and EP, explains the experiment procedure, lists the

preprocessing and classification steps, presents the results of the online classification

performance and user experience for the RCP and EP, and discusses it.

5.1. Methods and Materials

5.1.1. Participants

17 neurologically normal university students and employees, who did not suffer

from paralysis, voluntarily gave their informed written consent to participate in this

investigation, which was approved by the Institutional Review Board of North Dakota

State University, in accordance with the Declaration of Helsinki. 3 participants were

excluded from the investigation because the Emotiv EEG device became disconnected

frequently. These excluded participants had long, coarse, or dense hair insulating

the connection between the scalp and the saline electrodes employed in the current

investigation [20, 24, 72]. The remaining 14 participants (aged 20-35 years; mean: 27

years; 2 females) all reported English as their first language and all of them corrected-

to-normal vision or normal vision.
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5.1.2. Hardware and Data Acquisition

EEG was recorded using 14 saline electrodes positioned on the scalp according

to the International 10-20 system of electrode locations [85]: (AF3, F7, F3, FC5, T7,

P7, O1, O2, P8, T8, FC6, F4, F8, and AF4); these electrodes were embedded within

the Emotiv EEG wireless headset. The Emotiv EEG with the “Research Edition”

was used for digitized signals at 128 Hz, and then the EEG data were filtered using a

0.16-43 Hz bandpass [24]. The P300 speller systems, EP and RCP, were implemented

on a PC using custom routines and EEG data simultaneously acquired onto the same

computer via the EmotivEEG Headset Toolbox [36]. All presentation and acquisition

software was written in MATLAB 7.14.0.739.

5.1.3. Visual Interfaces Design

The RCP and EP visual interfaces are shown in Figure 17. This figure is

annotated with abbreviations for the objects’ dimensions and the distances between

objects, as elaborated in Table 1, alongside the actual values of these dimensions and

distances used in the two interfaces. Both interfaces were divided into a small upper

panel and a large lower panel. The upper panel in both interfaces consisted of input

and output text boxes and a start button to run the speller. The lower panel of the

RCP, depicted in Figure 17(a), included a 6-by-6 matrix of 36 gray alphanumeric

characters. The lower part of the EP, illustrated in Figure 17(b), was identical to the

lower part of the RCP, except that the alphanumeric characters had a white color

and that a gray edge point was added to the left side of row 1, 3, and 5, the right

side of row 2, 4, and 6, below column 1, 3, and 5, and above column 2, 4, and 6.

In the RCP and EP interfaces, each character was surrounded by 3, 5, or 8

characters, whereas each edge point in the EP was surrounded by 1 or 2 edge points.

The EP implemented a different flashing technique from RCP. More specifically, EP

only flashed the edge point rather than the entire row or column, so the distance
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between adjacent flash objects was doubled. Although the RCP and EP interfaces

and flashing techniques were different, the same BLDA classification algorithm [46,

51, 60, 66, 72] was used.

(a) (b)

Figure 17. (a) The RCP visual interface, (b) The EP visual interface.

5.1.4. Visual Stimulus Design

The visual stimulus of interest was a flash in both interfaces, as shown in Figure

18. As shown in Figure 18, when selecting a target character with the RCP, there

were two stages in the randomized sequence of flash stimuli. In this sequence, there

were 144 trials (flashes), with 72 row trials in the first stage followed by 72 column

trials in the second stage; stages between which intervened a flash-free inter-stage

interval lasting 2 seconds (s). All row and column trials were grouped into 24

blocks (12 row blocks and 12 column blocks). Each block consisted of 6 row or 6

column trials, and the same row (column) was prevented from flashing successively

upon consecutive trials. Parenthetically, this investigation thus applied the flashing

technique introduced by Serby et al. [84] to resolve the double-flash problem, which

would have otherwise occurred when the target character flashed successively. In this

flashing technique used in the present investigation, the column flashes began after all
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Table 1. The objects’ dimensions and distances between objects for the RCP and EP
(cm).

Dimensions/Distances RCP EP

Character Height (CH) 0.68 0.68

Character Width (CW) 0.68 0.68

Edge Point Height (EPH) — 0.68

Edge Point Width (EPW) — 0.68

Horizontal Inter-character Distance (HICD) 2.13 2.13

Vertical Inter-character Distance (VICD) 2.13 2.13

Horizontal Inter-edge point Distance (HIED) — 4.26

Vertical Inter-edge point Distance (VIED) — 4.26

Interface Height (IH) 12.7 12.7

Interface Width (IW) 12.7 12.7

row flashes rather than the traditional alternation between row and column flashes,

as described in [25]. The target row and column that contained the target character

were evenly flashed 24 times (rarely; one time per block). The non-target row and

column flashed 144 - 24 = 120 times (frequently; 5 times per block).

The EP flashing technique was exactly the same as the RCP flashing technique

described above, with the exception that only the edge point was flashed rather than

the entire row or column, as illustrated in Figure 19.

The stimulus-onset asynchrony (SOA) duration in both spellers (RCP and EP)

was 120 ms, as consisted of 70 ms of flash and 50 ms of inter-stimulus interval (ISI).

Thus, each block duration was 120 ms * 6 trials = 720 ms, and each stage lasted 720

ms * 12 blocks = 8640 ms. Overall, 2000 ms + (120 ms * 144 trials) = 19280 ms

were needed to select one target character.

5.1.5. Procedure

Each participant completed an experimental session with the RCP and another

experimental session with the EP. These sessions took place upon separate days.
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(a) (b)

Figure 18. The row and column visual flashes for the RCP (a) and EP (b).

Counterbalancing was employed such that 7 participants began with the RCP and

the remaining 7 participants began with the EP. Each experiment was divided into a

calibration or “offline” session, which lasted approximately 40 minutes, followed by 20

minutes for the online session. Pre-investigation and post-investigation questionnaires

were filled out by the participant before and after each experiment, respectively, to

rate his or her current fatigue level on a scale 1 to 10 (1: no fatigue, 10: severe fatigue).

Subtraction of this pre-investigation rating from the post-investigation fatigue score

was used as an index of the increase in fatigue that occurred during the task. Further,

in the post-investigation questionnaire, the participant was also asked to rate his or

her comfort level (1: uncomfortable, 10: comfortable) and alertness (1: drowsy, 10:

alert) that he or she had felt during the experience of using the speller.
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Figure 19. The flashing technique for the RCP or EP. (t : trial, r : row or row edge
point, c: column or column edge point).

The participant sat on a chair in front of the speller presented on a computer

screen at a distance of about 90 cm. The experimental instructions for the two

spellers, RCP and EP, were different. For the RCP, participants were instructed

to focus attention on a given character in the separate stages of row and column

flashing. In contrast, with the EP, participants were instructed to focus attention on

the edge point located on the row containing the target character in the first stage,

then moving their visual focus, during the inter-stage interval, to fixate upon the edge

point located on the column containing the target character in the second stage. In

both spellers, participants were instructed to keep silently counting the number of

times the target object (character or edge point) flashes and to minimize blinking

and muscle movement during the flashing. The experiment for the current target

was repeated once the participant made noticeable muscle movements, where these

movements would have otherwise generated strong electric fields contaminating the

electrophysiological measurements.

In the offline session for both spellers, each participant spelled 29 alphanu-

meric characters distributed into 6 words and a number (LAP, ROD, BAND, FLAG,

DRINK, MINUTE, and 9253). The calibration data recorded in the offline session was

used to train the classifier to identify the classification coefficients for each individual

user (i.e., the classification model). Afterwards, in the online session, each participant
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tested the classifier accuracy based on his or her classification model by spelling

16 alphanumeric characters distributed into 3 words and a number (SUM, LAMP,

BUNCH, and 7492). Words and numbers were derived from the MRC psycholinguistic

database [19] on the basis of having similar, relatively early, Age-Of-Acquisition norms

[37].

In the offline and online sessions, the input box contained one word or a number

for each run. The current target character was highlighted in red for 2 s within the

matrix before the first and second stages, which allowed the participant to move his

or her attention to fixate on the target object (character or edge point), and to blink

and rest his or her eyes as well. In addition, specifically for the EP, a guide arrow

(0.05 × 0.68 cm) appeared 0.09 cm above or 0.09 cm to the right of each character

before the first and second stages, respectively, as illustrated in Figure 20. These

arrows appeared temporarily during the highlighting, indicating the location of the

edge point with the orientation of the arrow. The arrow next to the relevant character

directed the participant to endogenously orient attention to fixate upon the target

row or column edge point. The row edge points appeared before and during the first

stage, whereas the column edge points appeared after the first stage and during the

second stage.

The P300-based BCI speller framework is illustrated in Figure 21. For each

single character, the Emotiv EEG signals were acquired simultaneously with the

presentation of the object flashes. Then, the raw EEG data were pre-processed and

recorded with a suitable format for the classifier. Finally, the application interface

was used to setup communication between the classification and visual user interface

to identify the target character and display it on the computer screen as feedback to

the user.
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(a) (b)

Figure 20. (a) The EP visual interface before 2 sec of the first stage, (b) The EP
visual interface before 2 sec of the second stage.

5.1.6. Preprocessing, Feature Extraction, and Classification

The recorded EEG signals were contaminated with unwanted noises that were

produced by different artefacts (eye movement, muscle and body movement, respi-

ration, cardiac signals, and scalp skin sweating) [3, 26, 52], which could obscure the

EEG signal of interest. Therefore, a digital 5th order sinc filter with a bandpass

of 0.16 to 45 Hz was applied by the Emotiv EEG device internally. Then, Common

Average Referencing was used to increase Signal-to-Noise Ratio, which makes it easier

to identify the target signal. More specifically, the average of all 14 electrodes for

each time point was calculated and subtracted from all electrodes data at that time

point, this process was applied on the offline and online EEG data. Then, during

winsorization, the values within each offline channel data was sorted from lowest

to highest values, then the 5th and 95th percentile amplitude values were identified

channel-wise, and then that 5th percentile value used to replace amplitude values

falling below that 5th percentile value, just as the 95th percentile value was used to

replace amplitudes rising above that 95th percentile value in the online channel data;
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Figure 21. P300-based BCI speller framework.

effectively clipping the extremes of amplitude data during the presence of artefacts,

such as eye artefact. In the normalization process, the mean and standard deviation

values for each channel in the common average referenced winsorized offline EEG

data were calculated, in order to normalize all channels in the online data based on

z-score [46].

All pre-processed EEG data for each single target character were epoched into

600 ms sections with 144 epochs (i.e., segments), as illustrated in Figure 22. Each

segment corresponded to one flash object (trial) from the stimulus onset to 600 ms

post-stimulus onset (i.e., 600 ms time frame) to identify if that flash evoked the P300

component. More specifically, each segment was an individual two-dimensional matrix
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structure containing EEG data recorded from 14 electrodes within 77 time points

following each flash (segment size of 14-by-77), where the number of time points =

ceil (0.6 s * 128 sample/s). 5% of the highest and lowest sample amplitudes (tail

outliers) generated by artefacts for each electrode were reduced to the 95th percentile

amplitude value or increased to the 5th percentile value, respectively. This process is

termed Winsorizing [46].

Figure 22. Feature extraction (Segmentation). The flash segment is the EEG data
recorded for 600 ms after flash onset, where there are 144 flashes to select one single
character with one flash every 120 ms (SOA).

Bayesian Linear Discriminant Analysis (BLDA) was implemented in this inves-

tigation to determine the target character. For each participant, the calibration EEG

data of 144 * 29 = 4176 flashes (696 target and 3480 non-target flashes) were used to

train the BLDA, and then the BLDA coefficients were derived. Consequently, in the

online classification, BLDA was performed after the EEG data were recorded and pre-

processed for each single character (144 segments) to identify the target character.

The BLDA was run on all 144 segments to find the classification results for each

segment. Afterwards, the BLDA-calculated values for the segments corresponding to

each row (row edge point) or column (column edge point) were averaged over the 12

blocks (12 segments). The row (row edge point) or column (column edge point) with

the highest average was considered as the target row and target column, respectively,

as shown in Equations 5.1 to 5.4. Finally, the character located at the intersection

of the target row and the target column was selected as the target character. The
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identified target character was displayed in the green color for 2 s within the matrix

and added to the output text box as feedback to the participant.

AV G BLDA(ri) = (
12∑
n=1

BLDA(ri, n))/12 (5.1)

Target Row = max(AV G BLDA(ri)) (5.2)

AV G BLDA(ci) = (
24∑

n=13

BLDA(ci, n))/12 (5.3)

Target Column = max(AV G BLDA(ci)) (5.4)

Where, a row/row edge point segment is denoted by r; a column/column edge

point is denoted segment c; i signifying the row or column number (1 to 6); n the

row block number (1 to 12) or the column block number (13 to 24); BLDA(ri, n)

and BLDA(ci, n) representing the BLDA classification results of row i segment and

column i segment respectively for block n.

5.2. Results

5.2.1. Online Character-based Classification Accuracy

As depicted in Figure 23, the pattern of the mean classification accuracy sug-

gested that performance was improved with the EP, mean 93.3 ± standard error of

the mean or s.e.m. 2.01%, relative to RCP, 81.7±2.81%. This finding was corrobo-

rated by inferential statistical analysis: a paired t-test revealed that the performance

improvement produced with the EP relative to the RCP was significant, t(13) = 4.19,

p = 0.001, η2 = 0.575 (11/14 showed the effect).

The online classification performance cross 12 blocks for each participant sepa-

rately and all of them together (i.e., average) as well are illustrated in Figure 24. For

both EP and RCP is a strong linear tendency for an increase in character accuracy

with blocks superimposed onto which is an additional tendency to asymptote (ceiling)
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Figure 23. Mean percentage classification accuracy as a function of interface (error
bars denote standard error); N=14.

tightening up the error bars toward 12 blocks. Each increment in the number of blocks

initial shows a robust improvement in performance, yet not with higher numbers of

blocks (this accords with the expression about signal-to-noise ratio [62]). However, a

robust EP vs RCP advantage is apparent only after 8 blocks.

5.2.2. Flash Object-based Analysis of Errors

For each paradigm, the results for the 224 (16 characters * 14 participants)

selected characters from the online sessions were summarized within confusion ma-

trices of error distributions as shown in Figure 25. Given the error confusion matrix

denoted by m, the number of correctly selected target characters is designated by the

center cell m(0, 0), as is highlighted in gray; the row ‘0’ and column ‘0’ representing

the target row and target column, respectively. The frequency of erroneously selected

characters relative to the target character is reflected by the values in the other cells.

The difference in rows and columns between the erroneously selected character and the

target character is signified by the cell position. If a participant selected a character

with the speller, then the value of the cell position (selected row - target row, selected

column - target column) within the error distribution matrix is incremented by one.

Further error analysis was computed based upon the flash objects to examine

the effect of the adjacency problem in both paradigms. In Figure 25, all adjacent error
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Figure 24. The online BLDA classification performance of each participant (N=14)
cross blocks. The rightmost figure of the last row represents the mean classification
performance cross 12 blocks for all participants
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Figure 25. The error confusion matrix of all subjects for 16 selected characters in
the online session for the RCP (a) and EP (b); gray cell denoting the target; black
cells denoting adjacent errors, where a neighboring flash was erroneously detected as
denoting the row or column of the target.

cells are highlighted in black. For the RCP, as shown in Figure 25(a), the adjacent

flash rows for the target row were row ‘1’ and row ‘-1’, and the adjacent flash columns

for the target column were column ‘1’ and column ‘-1’. As depicted in Figure 25(b),

the adjacency identification for the EP was different from the RCP, being based upon

the edge point flash object, rather than the row or column flash in the RCP; the

adjacent flash row edge points for the target row edge point were row edge point ‘2’

and row edge point ‘-2’, whereas the adjacent flash column edge points for the target

column edge point were column edge point ‘2’ and column edge point ‘-2’.

The frequencies in these confusion matrices showed that the influence of the

adjacency problem was reduced with the EP. Of a total of 41 errors for the RCP,

there were 28 adjacent errors (68.3%). Of a total of 15 errors for the EP, there were 5

adjacent errors (33.3%). The mean number of adjacent errors was significantly higher

for the RCP, 2±0.36) than for the EP, 0.36±0.17, as was revealed to be reliable by a

paired t-test, t(13) = 4.81, p = 0.001, η2 = 0.564 (12/14 showed the effect).
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5.2.3. User Experience

The user experience questionnaire data measured subjective ratings of fatigue,

comfort, and alertness in both paradigms. As shown in Figure 26(a), the EP, 1.14±0.21,

caused less fatigue than the RCP, 3.14±0.4. The difference of fatigue ratings before

and after the experiment ranged from 0 to 9, where 0 and 9 indicated the smallest and

largest fatigue caused by using the speller, respectively. Also, participants reported

that EP, 8.29±0.34, was more comfortable after the experimental session relative to

the RCP, 6.43±0.56, as well as more alert during the experiment of the EP, 8.5±0.39,

relative to the RCP, 6.07±0.4, as shown in 26(b), where 10 indicated the highest

comfort and alertness level.
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Figure 26. Subjective rating for all participants (N=14). (a) Mean of the fatigue
rating difference before and after the experiment (0:9). (0: lowest level of fatigue, 9:
highest level of fatigue). (b) Mean of the comfort, and alertness rating (1:10). (1:
lowest level of comfort and alertness, 10: highest level of comfort and alertness).

These tendencies shown in Figure 26 were broadly supported by inferential

statistical analyses: paired t-tests comparing EP and RCP revealed a significant

effect of interface upon fatigue, t(13) = −5.29, p = 0.0001, η2 = 0.683 (12/14 showed

the effect), comfort, t(13) = 4.45, p = 0.0007, η2 = 0.604 (11/14 showed the effect),

and upon alertness, t(13) = 5.22, p = 0.0002, η2 = 0.677 (14/14 showed the effect).
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5.3. Discussion

The results showed that the use of the EP, relative to the corresponding RCP,

led to significant increases in the online classification accuracy alongside an improved

user experience. That is, use of the EP caused significantly less fatigue than did the

RCP, in a manner that also led to reliably enhanced levels of reported alertness and

comfort. The results were thus consistent with the proposition that the design of EP

ameliorated the influence of adjacent, crowding, and fatigue problems.

Concerning the adjacency problem, a large proportion of the errors with the

RCP were adjacent errors as replicated the findings of previous investigations [27,

72, 90]. The number of these adjacent errors was, here, significantly reduced using

the EP. The interpretation offered is that the increased spatial separation between

flashes denoting neighboring characters in the EP ameliorated the influence of the

adjacency problem that was more manifest for the RCP. This increased separation

was attained by the relative position of the flashing squares of the EP that denoted

neighboring characters by flashes upon opposite sides of the character matrix, rather

than by the spatially proximal flashes of neighboring rows or columns of the RCP.

There were also increased distances between adjacent flashing squares representing

alternate rows or columns upon any given edge of the EP’s character matrix – the

increased distances of the Vertical and Horizontal Inter-edge point Distances in the

EP that doubled the corresponding Inter-character Distances between the neighboring

rows and columns of the RCP (Figure 17; Table 1). These increased separations led

to an improvement in online classification performance, as was commensurate with an

aspect of Bouma’s law [12] that identification of a stimulus is improved as a function

of the spatial separation between the target stimulus and flanking non-target stimuli;

a law that generalized from cognitive performance to classification by P300 BCI, as

further extended support for the robustness of effects of spatial separation upon online
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classification performance shown previously [72].

Concerning the crowding problem, the improvement in online classification

performance was also attributable to decreasing the number of similar flashed objects

surrounding any target object to 1 or 2 flashed squares on each edge of the EP,

instead of the 3 to 8 flashed characters in the RCP. This reduction in crowding was

accomplished by reducing the number of similar neighboring flashed stimuli. That

is, in the EP, there were fewer target-adjacent horizontal or vertical flashes than

in the RCP and no diagonally adjacent flashes at all. Further, the flashed square

representing the row or column of the target character in the EP was dissimilar

to the un-flashed neighboring characters [94]. This dissimilarity is thought to have

limited those characters’ potency as flankers. Rather than serving as flankers, those

dissimilar character objects are thought to have reduced crowding by separating that

attended edge square from the other to-be-ignored edge points upon the opposite

side of the matrix. That this square denoting the target row or column was attended

[92] in central fixation – when according to Bouma’s law [12], crowding increases

with target eccentricity – is also thought to have reduced any crowding produced by

neighboring squares on the same edge.

The fatigue problem was also ameliorated by EP as demonstrated by the ratings

of user experience, which revealed that the EP caused reliably less fatigue than use

of the corresponding RCP. Additional consistent outcomes were that after using the

EP interface, participants rated themselves as feeling significantly more alert and

comfortable than they did after using the corresponding RCP. Taken together, the

results have offered support for the conclusion that EP has addressed the fatigue

problem by virtue of reducing the influence of the crowding and adjacency problems

on the neurocognitive processes that determined P300 generation, which, in turn,

increased online classification performance.
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The EP can be implemented using devices with smaller displays; devices less

suited to resolutions of the adjacency and crowding problems that have necessitated

increased separation between characters [72] that, in turn, would require expansion

of these dimensions beyond the limits of the device’s screen size. Such mobile devices

considered include commercially available tablet PCs and, as RAM and processor

speeds increase, smartphones. That is, here, the EP interface subtended a visual

angle of 8 degrees in height and width here, as would fit well within a 5 x 5 cm

display at a comfortable viewing distance of 35 cm upon a mobile device that could

be mounted on a wheelchair. Such a small device is considered particularly applicable

for many BCI applications, only occupying a large proportion of the field-of-view

when attended, such that the user could safely navigate and interact with his or her

environment without visual obstruction. That is, envisaged is that P300 BCI on such

a mobile device could be used to access information and communication technologies,

including the control of text-to-speech synthesis for speech communication, and the

motors of a wheelchair such that the user can navigate the world leading a productive

and fulfilling life in relative independence.
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CHAPTER 6. COMPARATIVE STUDY: RCP VS ZP VS

EP

The online classification performance and user experience for the P300 speller

were significantly improved with the Zigzag Paradigm (ZP) and Edges Paradigm (EP)

relative to the Row-Column Paradigm (RCP). The ZP and EP improvements were

investigated in two separate studies explained in Chapter 4 and 5, respectively. These

improvements were achieved by reducing the effect of the RCP problems, such as

crowding, adjacent, and fatigue problems. Particularly, the EP made further physical

interface and stimulus improvements on the RCP than the ZP.

The distance between all adjacent flashed objects (i.e., edge points) was doubled

in the EP, while shifting the even rows in the matrix little increased the distance

between most adjacent flashed objects (i.e., characters). Furthermore, the EP reduced

the number of flashed objects surrounding any object, flankers, relative to the ZP.

This chapter explores how the influence of the physical crowding and adjacent levels

in the P300 speller interface can affect its performance and user experience using the

RCP, ZP, and EP. In addition, Section 6.3 shows how a reduction in crowding could

improve speller classification.

6.1. Methods and Materials

6.1.1. Participants

18 neurologically normal able-bodied participants (15 male; age 20-35 years;

mean: 27.7 years; S.D.: 4.45) were voluntarily involved in a user study. The user study

was approved by the North Dakota State University Institutional Review Board, in

accordance with the Declaration of Helsinki. All gave their informed written consent

prior to their participation in the experiment.

All hardware, software, toolboxes, and materials listed in Chapter 3, Section

3.1.2., were used in this study.
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6.1.2. Visual Interfaces Design

As explained in Section 4.1.3 and 5.1.3, the RCP, ZP, and EP interfaces were

divided into a smaller upper part and a larger lower part. The small top was identical

in the three interfaces and consisted of a command button used to run the speller,

input text box to display a target text, and output text box to display the user’s

selection text (one character at a time). In contrast, the large lower part was different

for the three interfaces. In the RCP, the lower part included a 6-by-6 matrix with

36 gray alphanumeric characters (see Figure 27(a)). In the ZP, every second row of

the RCP matrix is offset to the right by HICD/2 cm, where HICD, 2.13 cm, is the

horizontal inter-character distance (see Figure 27(b)). In the EP, the color of the

RCP matrix characters was changed to white instead of gray, also, a gray edge point

is added to the left side of every odd row, right side of each even row, below every

odd column, and above each even column of the RCP matrix (see Figure 27(c)).

(a) (b) (c)

Figure 27. Visual P300 speller interface for: (a) RCP, (b) ZP, and (c) EP.

Regarding the crowding problem, the shifting process in the ZP reduced the

number of similar shape flashed characters surrounding any character from 3, 5, or 8

characters in the RCP to 2, 5, or 6 characters in the ZP. The crowding problem was

reduced significantly by the EP, whereas each flashed edge point was surrounded by

1 or 2 edge points.
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As shown in Figure 27, the distance between most adjacent flashed characters

in the ZP was increased relative to the RCP, while the distance between adjacent

flashed edges points in the EP was doubled. All interfaces dimensions and distances

between objects are elaborated in Table 2.

Table 2. The objects’ dimensions and distances between objects for the RCP, ZP,
and EP (cm).

Dimensions/Distances RCP ZP EP

Character Height (CH) 0.68 0.68 0.68

Character Width (CW) 0.68 0.68 0.68

Edge Point Height (EPH) — — 0.68

Edge Point Width (EPW) — — 0.68

Horizontal Inter-character Distance (HICD) 2.13 2.13 2.13

Vertical Inter-character Distance (VICD) 2.13 — 2.13

Horizontal Inter-edge point Distance (HIED) — — 4.26

Diagonal Inter-character Distance (DICD) 3.01 2.38 3.01

Vertical Inter-edge point Distance (VIED) — — 4.26

Interface Height (IH) 12.7 12.7 12.7

Interface Width (IW) 12.7 13.765 12.7

6.1.3. Visual Stimulus Design

Visual stimuli were flashes denoting characters, as shown in Figure 28. In this

figure, the RCP or ZP required 144 row and column flashes (trials) to select one target

character. All rows were flashed 72 times in stage 1 followed by 72 column flashes in

stage 2, with a 2 s inter-stage interval when no flash was presented. The trials of each

stage were grouped into 12 blocks, and each block contained 6 trials (1 target and 5

non-target trials). In a row block of six random flashes, one flash denoted each of the

six rows; in column blocks, flashes denoted columns. Within blocks, the order of rows

or columns quasi-randomized such that no row or column was flashed successively
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precluding the double-flash problem [84]. The SOA duration was 120 ms (70 ms of

flash and 50 ms of ISI). Thus, one target character selection lasted 19.28 s (144 trials

* 0.120 s + 2 s inter-stage interval).

In the EP, the flashing technique was exactly the same as RCP and ZP flashing

technique, but the row or column edge point was flashed instead of the corresponding

row or column.

Figure 28. Row flashes (stage 1) and column flashes (stage 2) for each target character
in the RCP, ZP, and EP. (t : trial, r : row or row edge point, c: column or column
edge point).

6.1.4. Procedure

During all experimental sessions, the speller interface was presented at a viewing

distance of 90 cm. Each subject used one of the BCI spellers for two sessions

during upon one of three experiments on separate days, such that each participant

completed two sessions using each speller. The order of assignment of the speller

to these experiments was counter-balanced across subjects. The first BCI session

of an experiment was an offline session during which the subject was instructed to

copy-spell characters from alphanumeric strings presented letter-by-letter one-at-a-

time above the interface (LAP, ROD, BAND, FLAG, DRINK, MINUTE, 9253); a

session from which the scalp-recorded data and flash sequences were used to train the

classifier. In the subsequent online session, the trained classifier was tested using16

characters (SUM, LAMP, BUNCH, and 7492) while electrophysiological recordings

were also made. Words were drawn from the MRC psycholinguistic database with
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similar, relatively early, Age-Of-Acquisition norms [37].

Instructions for the use of the relevant speller were explained to each participant

before starting the relevant experiment. For both offline and online sessions, instruc-

tions for RCP and ZP use specified to fixate upon the target character and to count

the number of target character flashes in each stage. The instructions for EP use

stated instead to fixate the target row edge point, located on the target character row

edge, in stage 1, and then to reorient fixation toward the target column edge point,

located on the target character column edge, in stage 2. This reorientation from

rows to columns or the corresponding edge squares took place during the inter-stage

interval. In the online session, the character predicted by the classifier was colored

green providing feedback in real-time.

Directly before and after each experiment, each subject rated current level of

fatigue upon a 10-point Likert item (1: no fatigue, 10: severe fatigue). Directly after

each experiment, each subject similarly rated levels of comfort (1: uncomfortable,

10: comfortable), and alertness (1: drowsy, 10: alert). The participants rating

were analyzed statistically to know the effect of each speller interface on the user

experience. The EEG data acquisition procedure is illustrated in Figure 29 (left

panel), and the fully detailed procedure was explained in Section 4.1.5 and 5.1.5.

6.1.5. Preprocessing, Feature Extraction, and Classification

For each paradigm separately, for each individual’s data, the offline and online

recordings underwent a preprocessing consisting of Filtering, Common Average Ref-

erencing, winsorizing [46], and normalization steps intended to reduce the influence

of any artefacts obscuring the EEG signal, in order to increase Signal-to-Noise Ratio

(SNR), as shown in Figure 29. Thus, most of the contaminated and unnecessary

data (noise) were eliminated from the raw EEG data to make it more useful. Data

recorded when the flashes denoting rows underwent this preprocessing separately from
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data recorded when the flashes denoting columns.

Start

EEG_Data=EmotivEEG;

EEG_Start_Time= clock;

EEG_Data.Run();

Trials=72;

i=1;

Event=[ ];

RRL= Random_72_Row_Trials;

RCL= Random_72_Column_Trials;

i<=Trials

Event[i]= clock;

Flash(RRL[i], 70ms);

Flash_free(50ms); % ISI

i=i+1;

Yes

No

i<=Trials*2

Event[i]= clock;

Flash(RCL[i], 70ms);

Flash_free(50ms); % ISI

i=i+1;

Yes

Flash_free(2000ms);

Flash_free(600ms);

EEG_Data.Stop();

No

Preprocessing and Classification

Windsorizing:

Replace the online amplitude values below  the 5
th
 and 

above the 95
th
 percentile values by 5

th
 and 95

th
 

percentile of offline amplitude values data, respectively. 

(channel-wise)

Normalization:

Normalize the online data by calculating its z-score 

based on the mean and standard deviation of the 

offline data. (channel-wise)

Filtering:

Emotiv_Bandpass_Filtering(EEG_Data) with range 

0.16 to 45 Hz.

Downsampling:

Emotiv_Downsampling(EEG_Data) from 2048 to 128 

Hz.

Average referencing:

For each matrix:

1) Calculate the average potential for each time point 

cross 14 channels, and then

2) Subtract the average from all data at that time point 

in each channel.

Extraction:

1) Extract the Row_EEG_Data into 72 segments.

2) Extract the Col_EEG_Data into 72 segments.

14 channels × 77 time points segment, OR 600 ms 

epoch.

Dividing the EEG_Data matrix into:

1) Row_EEG_Data matrix for the first 72 trials, and

2) Col_EEG_Data matrix for the last 72 trials..

Classification:

Use BLDA classifier to generate the classification 

weight values for segments, thus, to predict:

1) Target_Row.

2) Target_Column.

3) Target_Character.

Data Acquisition

End

Figure 29. Data acquisition, preprocessing, and classification procedure.

During each experiment, the Emotiv EEG wireless headset, Research Edition,

digitised signals at 128 Hz within a bandpass of 0.16 to 45 Hz (5th order sinc filter).

All preprocessing steps, such as Common Average Referencing, winsorizing, and

normalizing were explained in Section 5.1.6.
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All pre-processed EEG data for each target character were epoched into 600 ms

sections with 144 epochs (i.e., segments), as mentioned in Section 5.1.6 and illustrated

in Figure 22.

Pooled EEG date segments, online and offline EEG data, were sorted into bins

according to whether the stimulus was a row or a column; these rows and column

bins being divided into bins where the flash was a target or a non-target. In later

analyses, these non-target bins were further subdivided into bins according to whether

the non-target flash was a flanker or non-flanker. However, whether the non-target

was a flanker or a non-flanker was not used for classification.

Rather, the Bayesian Linear Discriminant Analysis (BLDA) classification algo-

rithm [65] was trained to differentiate the EEG features corresponding to a target

or a non-target. Separately with offline epochs in bins where the flash denoted a

row, and separately with offline epochs from bins where the flash denoted a column,

the BLDA was trained with the pre-processed epoched data to define classification

statistical attributes. These attributes were used to calculate a classification weight

value for each testing segment, this value called class label, which is between 0 and

1and indicate how probability of segment to be the target. Lastly, the highest

average of all probabilities values for all segments corresponding to each row or

column across 12 blocks consider as the target row and column, respectively, and

the intersection character between target row and column is the target character [46].

The classification process is fully explained in Section 5.1.6.

6.2. Results

For each subject and paradigm, the online classification accuracy was the per-

centage of the number of characters, presented to copy-spelled on the online session,

which were selected correctly by the appropriately trained BLDA. Similarly, for each

subject and paradigm, the corresponding fatigue score was computed by subtracting
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the reported level of fatigue before the experiment from that reported after the

experiment. Other user experience measures were those in the for comfort and

alertness Likert items. Accordingly, the approach to hypothesis testing was priori,

considering an overall effect of interface determined by 1-way repeated-measures

Analysis of Variance (ANOVA) with “interface” (RCP, ZP, EP) as the independent

variable and online classification performance or each user experience as dependent

variables, together with linear contrasts comparing RCP to ZP and ZP to EP levels

of interface.

6.2.1. Online Character-Based Classification Accuracy

As depicted in Figure 30, mean online classification performance according

to the notion that these new interfaces effectively address the crowding problem,

particularly, the EP (RCP: mean 80.21±s.e.m. 2.33% < ZP: 87.50±1.96% < EP:

93.75±1.13%).
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Figure 30. Mean percentage classification accuracy as a function of interface (error
bars denote standard error); N=18.

A 1-way repeated-measures ANOVA (interface: RCP, ZP, EP) upon online

classification performance confirmed a highly significant main effect of interface,

F (2, 34) = 24.82, p = 0.0000002, η2p = 0.593, replicating the previously demon-

strated advantage of ZP over RCP [72] and EP over RCP. Planned linear contrasts

corroborated this interface effect was not only due to a highly significant performance

advantage shown with the ZP over RCP, F (1, 17) = 11.41, p = 0.004, η2 = 0.402
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(11/18 showed the effect), but also a further highly significant performance advantage

of EP over ZP, F (1, 17) = 15.30, p = 0.001, η2 = 0.474 (14/18 showed the effect); an

original result of practical importance.

6.2.2. Flash Object-Based Analysis of Errors

For each paradigm, 18 participants selected 288 characters (18 participants *

16 online characters) in the online session. These selection results were presented

within error confusion matrices (m) as shown in Figure 31. The center cell m(0,

0), highlighted in gray, contained the number of target characters selected correctly.

The other cells contained the number of characters selected incorrectly relative to the

target character. For example, if the target character ‘U’, which is located on the row 4

and column 3 in a speller interface, was selected correctly, then the value in cell m(0,0)

is incremented by 1; otherwise, if the target character ‘U’ was selected incorrectly by

‘J’, which is located on row 2 and column 4, then the value in cell m(selected row -

target row, selected column - target column) = m(-2, 1) is incremented by 1.

The error confusion matrix does not reflect the numbers of correct and incorrect

target characters selection only, but it also shows the effect of the adjacency and

crowding problems upon flashed objects for each paradigm. The flashed objects in

the RCP and ZP are rows and columns, while it is the edge points in the EP. In Figure

31, all adjacent error cells are highlighted in black. In the RCP and ZP, as shown in

Figure 31(a) and Figure 31(b), the rows ‘1’ and ‘-1’ were the horizontal adjacent rows

for the target row ‘0’, and column ‘1’ and ‘-1’ were the vertical adjacent columns for

the target column ‘0’. In the EP, as depicted in Figure 6.2.2, the row edge points ‘2’

and ‘-2’ were the horizontal adjacent row edge points for the target row edge point,

whereas the column edge points ‘2’ and ‘-2’ were the vertical adjacent column edge

points for the target column edge point.
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Figure 31. The error confusion matrix of all subjects for 16 selected characters in
the online session for the RCP (a), ZP (b), and EP (c); gray cell denoting the target;
black cells denoting adjacent flashed object errors, where a neighboring flash was
erroneously detected as denoting the row or column of the target.
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For each selected character, the BLDA classifier was implemented two times to

predict the target row and target column independently, then further adjacent error

analysis was computed based on row (or row edge point) adjacent error (horizontal)

and column (or column edge point) adjacent error (vertical).

The mean±s.e.m. of the horizontal adjacent errors was larger in the RCP

relative the ZP and EP (RCP: 1.056±0.171 > ZP: 0.167±0.090 > EP: 0.111±0.076).

These findings were corroborated by inferential statistical analysis: A 1-way repeated-

measures ANOVA (interface: RCP, ZP, EP) upon horizontal errors confirmed a highly

significant advantage shown with the ZP over RCP, F (1, 17) = 24.73, P = 0.0001,

η2 = 0.593 (13/18 showed the effect), but there is no significant between ZP and EP,

F (1, 17) < 1, P > 0.05, η2 = 0.011.

The mean±s.e.m. of the vertical adjacent errors was larger in the RCP relative

the ZP and EP (RCP: 0.778±0.173 > ZP: 0.611±0.165 > EP: 0.056±0.056). In

a 1-way repeated-measures ANOVA (interface: RCP, ZP, EP) upon vertical errors

found no significant advantage shown with the ZP over RCP, F (1, 17) < 1, P > 0.05,

η2 = 0.029, but there is a highly significant advantage shown with the EP over ZP,

F (1, 17) = 9.043, P = 0.008, η2 = 0.347 (9/18 showed the effect).

6.2.3. User Experience

These online classification performance findings were also reflected by the user

experience variables, as depicted in Figure 32. As depicted in Figure 32(a), the

difference fatigue levels in the three spellers were as following: (RCP: 3.83±0.38 >

ZP: 2.44±0.33 > EP: 1.56 ±0.27). In addition, as depicted Figure 32(b), comfort

(RCP: 5.78±0.42 < ZP: 7.17±0.33 < EP: 8.33±0.37) and alertness (RCP: 6.00±0.50

< ZP: 7.17±0.36 < EP: 8.61±0.22). The online classification performance consistent

with the view that the crowding problem causes the fatigue problem experienced by

users of BCI spellers.
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Figure 32. Subjective rating for all participants (N=18). (a) Mean of the fatigue
rating difference before and after the experiment (0:9). (0: lowest level of fatigue, 9:
highest level of fatigue). (b) Mean of the comfort, and alertness rating (1:10). (1:
lowest level of comfort and alertness, 10: highest level of comfort and alertness).

An analogous ANOVA showed that there was a highly significant main effect

of interface on increases in subjectively reported levels of fatigue from before until

after the experiment, F (2, 34) = 18.66, p = 0.00007, η2p = 0.523, ε = 0.69, which was

not only due to the ZP causing less fatigue than the RCP, F (1, 17) = 36.26 (17/18

showed the effect), p = 0.00001, η2 = 0.681, but also the EP causing significantly less

fatigue than the ZP, F (1, 17) = 5.06, p = 0.038, η2 = 0.229 (13/18 showed the effect).

An ANOVA upon subjective ratings of comfort level made after using the device

similarly showed a highly significant main effect of interface, F (2, 34) = 21.93, p =

0.000004, η2p = 0.563, caused not only by ZP use being more comfortable than RCP

use, F (1, 17) = 11.41, p = 0.004, η2 = 0.402 (13/18 showed the effect), but also

EP use being much more comfortable than ZP use, F (1, 17) = 18.54, p = 0.0005,

η2 = 0.522 (15/18 showed the effect).

An ANOVA upon subjective ratings of alertness made just after device use also

revealed a highly significant main effect of interface, F (2, 34) = 17.76, p = 0.0001,
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η2 = 0.511, ε = 0.66, caused not only by users being significantly more alert after

using the ZP than after using the RCP, F (1, 17) = 15.42, p = 0.001, η2 = 0.476

(14/18 showed the effect), but also by a highly significant alertness advantage of EP

over ZP, F (1, 17) = 12.07, p = 0.001, η2 = 0.415 (13/18 showed the effect).

6.3. Discussion

The results showed that the speller online classification performance and the

user experience were significantly improved from RCP to ZP to EP, upon the 1-way

repeated-measures ANOVA. These results emphases the results of the previous two

studies explained in Section 4.2 and 5.2.

Furthermore, the numbers of incorrect horizontal and vertical adjacent selection

upon flashed objects were larger in the RCP relative to ZP, and in the ZP relative

to EP. Also, ANOVA showed that the number of the horizontal adjacent errors in

the RCP was significantly higher than the ZP; even higher for the ZP than the EP.

In contrast, ANOVA did not show significance between the number of vertical errors

between RCP and ZP, but the number of vertical errors in the ZP was significantly

higher than the EP.

While researchers have shown non-targets surrounding those targets, flankers,

hinder the speller’s classification [27, 90], and that flankers can hamper perceptual

identification of a parafoveal target [12, 94], it was previously not understood how that

crowding takes place. Particularly, the large effects [18] of interface on performance

and user experience indicated that the available features of the EEG information

better reflected target identity for the ZP than for the RCP; even better for the

EP than the ZP. According to neurocognitive principles common to the majority of

users, different paradigms could engage different flanker-sensitive and target-selective

processes as defined below.

Of theoretical interest was whether additional brain processes responsive to
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the stimulus being a target, flanking, or non-flanking a target would add to the

global power ERPs (potential average of all electrodes). 77 replicates of paired-

samples permutation t-tests [38] were calculated for each global power sampling

point between the start of stimulus presentation, 600 ms after stimulus onset, for

the following pairs of experimental conditions of a priori interest for each of the three

paradigms: “target” vs “flanker” (target-selective comparison), “flanker” vs “non-

flanker” (flanker-sensitive comparison). P-values for all 462 tests (77 global power *

2 experimental conditions * 3 paradigms) were adjusted for multiple comparisons [7].

Taken to reveal the action of additional or more vigorously generated brain

processes, windows of flanker-sensitive significantly increases in global power depicted

in Figure 33 are evident for the RCP and EP, yet not with the ZP. Further, only

ZP targets showed windows of target-selective global power increases with signifi-

cantly discernible scalp distributions. Underneath each global power function, are the

sample-wise time-course of the adjusted P -values [7] from permutation-based paired

t-tests [38] for the theoretically relevant comparisons. Flanker-sensitive comparisons

were those of non-flanker to flanker; target-selective, flanker to target. Significant

P-values were those under a critical alpha α of 0.05, as represented when p-values,

plotted upon a reversed logarithmic scale above the magenta line representing this

significance threshold. Shaded areas represent windows of consecutive significant

differences.

On the whole, RCP exhibited flanker-sensitive effects, including an early P300

effect (188-195 ms, Figure 34), thought to cause crowding without target-selective

effects. For an extensive characterization of the ERPs corroborative of this flanker-

sensitivity of RCP without target-selectivity, and discussion of the P300 latency,

please see Supplementary Notes. ZP succeeded in overcoming crowding, exhibiting

target-selective processes, the earliest of which – a target-selective early selective
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(a)

(b)

(c)

Figure 33. The ERP amplitudes averaged across electrodes, global power, as a
function of target condition for a) RCP, b) ZP, and c) EP.
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attention effect, a parietal positivity at 31-55 ms (Figure 35) – is thought to have

prevented further flanker-sensitive processes. A P300 effect at 523-531 ms is thought

to have further processed the target.

(a)

(b)

Figure 34. Flanker-sensitive comparison function at selected electrodes in the RCP.
(a) difference waves with highlighting significant differences, (b) isopotential maps.
(ntf: non-target flanker; ntnf: nontarget non-flanker).

EP neither exhibited these target-selective processes shown by the ZP, nor

the flanker-sensitive processes shown with the RCP, but rather is thought to have

been even more successful by eliciting different flanker-sensitive suppressive processes

operating in different time ranges: Crucially, a temporally distributed suppression

negativity at 180-188 ms (Figure 36) suppressed the subsequent processing of EP

flankers that was otherwise shown to occur during the early P300 processing of the

RCP flanker (188-195 ms, Figure 35). With the EP, there was further suppression

frontocentral negativity at 359-391 ms and suppression frontocentral positivity at

539-563ms (Figure 36), which differed in topography from the target-sensitive P300

shown with the ZP (Figure 35).
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(a)

(b)

Figure 35. Target-selective comparison function at selected electrodes in the ZP. (a)
difference waves with highlighting significant differences, (b) isopotential maps. (t:
target; ntf: non-target flanker).

A temporally distributed N2 effect [32] (180-188 ms) at T7 and T8: F (1, 17) =

4.57, p = 0.047, η2p = 0.212, over the isopotential map’s temples, a frontocentral

negativity (359-391 ms), F (1, 17) = 10.03, p = 0.006, η2p = 0.371 – which is left-

lateralised, F (1, 17) = 4.84, p = 0.042, η2p = 0.222, and reversed at frontal sites,

F (1, 17) = 5.87, p = 0.027, η2p = 0.257 – together with a late frontocentral positivity

(539-563 ms), F (1, 17) = 4.69, p = 0.045, η2p = 0.216.

Alongside performance and user experience measures, for a given user, these

flanker-sensitive ERP effects for the EP, or in their absence, the target-selective

effects for the ZP, are viable indicators of neurologically normal generator processes
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(a)

(b)

Figure 36. Flanker-sensitive comparison function at selected electrodes in the EP. (a)
difference waves with highlighting significant differences, (b) isopotential maps. (ntf:
non-target flanker; ntnf: nontarget non-flanker).

that overcome crowding in these paradigms – effects informative to which interface

would better address the crowding and associated fatigue problem. We have shown

these biomarkers can both be assessed and the paradigms implemented with ordinary

computer equipment using low-cost EEG electronics customizable to measure better

EEG signal quality at relatively low-cost [20] – as increases the number of potential

users who may benefit from these interface enhancements of their BCI speller.
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CHAPTER 7. P300-BASED BRAIN-MOBILE INTERFACE

The comparative study results presented in Chapter 6 emphasize the accuracy

and user study advantages of the EP over the ZP and RCP. These results alongside

with the EP visual interface nature that increases the distance between adjacent

objects and reduces the number of neighbor objects to any another object, makes the

EP as a candidate to implement on a mobile simulator with a small screen size. This

chapter presents the design, implementation, and evaluation of the mobile BCI. The

EP with some changes on its visual interface, mobile EP, to make it more suitable to

implement on a device with small screen size is illustrated here.

7.1. Method and Materials

7.1.1. Participants

10 able-bodied human subjects (all male; age 22-35 years; mean: 28 years; s.d.:

3.8) voluntarily participated in this user study. All reported corrected-to-normal or

normal vision and being free of neurological diseases. The user study was approved

by the Institutional Review Board of North Dakota State University, in accordance

with the Declaration of Helsinki. Accordingly, all participants gave informed consent

to participate in this study.

7.1.2. Hardware and Data Acquisition

The research edition of the Emotiv EEG wireless headset was used in this study.

The EEG signals were recorded by 14 saline electrodes, digitized at 128 Hz, and

bandpass filtered 0.16-45 Hz (5th order sinc filter) [24]. The Emotiv EEG deviced was

explained in Section 4.1.2.

The digitized and filtered EEG signals then were transmitted via Bluetooth to a

Surface Pro 2 device (Windows 8.1 OS; 8 GB RAM; Intel Core i5 processor) through

the Emotiv SDK software. The Surface Pro 2 has an HD 10.6 inches (26.924 cm)

display. In addition, the EmotivEEG headset toolbox was used to record the EEG
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data [36] received from the EEG headset during the BCI speller presentation. The

BCI speller system including the speller presentation, data acquisition, preprocessing,

and classification was fully developed on MATLAB 7.14.0.739. For the participant’s

mobility during the experiment, a comfortable and durable wheelchair was used in

this study.

7.1.3. Visual Interfaces Design

A Samsung Galaxy S4 smartphone is simulated on the Surface Pro 2 to present

the RCP and EP interface, as shown in Figure 37. More specifically, the spellers’

interfaces were adapted to fit in the screen of Samsung Galaxy S4 (i.e., 1080 × 1920

pixels, 5.0 inches).

(a) (b)

Figure 37. The Mobile visual interface for the RCP (a) and EP (b).

Both spellers included a matrix of 6-by-6 gray alphanumeric characters. This

matrix was displayed with the size of 9.3 × 6.375 cm (interface height (IH ) × interface

width (IW )) as elaborated in Table 3. Also, there were two text boxes and one start

command button located below the mobile status bar and above the matrix. One

76



Table 3. The objects’ dimensions and distances between objects for the RCP and EP
on a mobile simulator (cm).

Dimensions/Distances RCP EP

Character Height (CH) 0.55 0.55

Character Width (CW) 0.55 0.55

Edge Point Height (EPH) — 0.55

Edge Point Width (EPW) — 0.55

Horizontal Inter-character Distance (HICD, HICD1, HICD2) 1.02 0.6, 1.5

Vertical Inter-character Distance (VICD, VICD1, VICD2) 1.55 0.6, 2.49

Horizontal Inter-edge point Distance (HIED) — 2.1

Vertical Inter-edge point Distance (VIED) — 3.1

Interface Height (IH) 9.3 9.3

Interface Width (IW) 6.375 6.375

text box was used to input the target characters for the participant to spell, and the

second text box displayed the output characters selected by the participant, while the

start button was used to run the speller.

In the RCP, as shown in Figure 37(a), the horizontal inter-character distance

(HICD) between the centres of any two adjacent characters located in the same row

is 1.02 cm, and the vertical inter-character distance (VICD) is 1.55 cm. Though the

matrix in the EP, as illustrated in Figure 37(b), has the same size as the RCP, their

distinctions are discussed as follows:

1. A gray square edge point was added to the left (or right) of the odd (or even

rows), and below (or above) the odd (or even columns).

2. All characters in rows or columns 2, 4 and 6 were shifted up and left, respectively.

Consequently, the horizontal (or vertical distances) between two adjacent rows

(or columns) after shifting are increased (refer to HICD2 and VICD2 in Table

3).

77



3. In order to decrease the participant distraction between the target and non-

target flash edge points upon opposite side of the matrix, the characters’ color

was changed to white.

In the RCP, ri indicates the flashing row with the index i while in the EP,

ri indicates the flashing edge point corresponding to the ith row; and in the RCP, ci

indicates the flashing column with the index i while in the EP, ci indicates the flashing

edge point corresponding to the ith column. The distance between any adjacent row

or column edge points is HIED or VIED (2.1 cm or 3.1cm).

7.1.4. Visual Stimulus Design

A visual flash was used as the visual stimulus in this study. The flash objects

in the RCP are rows and columns, while the flash objects are row edge points and

column edge points in the EP. For each target character, there were two consecutive

stages of random sequences of flashes [84], punctuated by 2 sec of inter-stage interval.

In the first stage, depicted in Figure 38 (left panel), there were 72 row flashes in the

RCP or row edge point flashes in the EP. In the second stage, there were 72 column

flashes in the RCP or column edge point flashes in the EP, as illustrated in Figure

38 (right panel). The stimulus-onset asynchrony (SOA) duration was 120 ms, which

consisted of 70 ms as a flash duration and 50 ms as an inter-stimulus interval (ISI).

Thus, 19.28 sec was required to select one target character (2 stages * 72 flashes *

0.120 sec SOA + 2 sec inter-stage interval).

In stage 1, the 6 rows or row edge points were each flashed once in a random

sequence, as is termed a block. In stage 2, the 6 columns or column edge points

were each flashed once in a random sequence, also termed a block. Each stage had 12

blocks. In each block, one flash represented the target object and 5 flashes represented

the non-target objects. In other words, in each stage, each target object flashed 12

times (one time per block). Accordingly, 12 out of 72 flashes were considered as the
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Figure 38. Visual flash and flashing technique for the first stage (left panel), second
stage (right panel), and visual flash for flash r3 from stage 1 and c6 from stage 2 for
both speller (middle panel). The time measurement unit is in ms.

target object flashes (i.e., rare events), and the remaining 60 flashes considered as the

non-target flashes (i.e., frequent events).

In order to prevent the double-flash problem caused by flashing the target object

twice consecutively [25], a two-stage flashing technique was implemented [84]. For any

two consecutive blocks within each stage, the first flashing object in the second block

must be different from the last flashing object in the first block. The above technique

is formalized as follows.

stage1 = {blockn}12n=1 (7.1)

block = {ri}6i=1 (7.2)

stage2 = {blockn}24n=13 (7.3)

block = {cj}6j=1 (7.4)

Where in the same stage, blockn{flash1} 6= blockn−1{flash6}

Where, n is the number of block in the first stage (stage1) {1, 2, . . . , 12} and in the

second stage (stage2) {13, 14, . . . , 24}; ri is the row or row edge point number, i =

{1, 2, 3, 4, 5, 6}; ci is the column or column edge point number, j = {1, 2, 3, 4, 5,

6}.
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7.1.5. Procedure

Each participant completed the two spellers’ experiments over two days, one

experiment per day, which lasted about 60 minutes. All experiments were counterbal-

anced to eliminate any confounding effects of order, such that 5 participants started

with the RCP and the other 5 participants started with the EP. Each experiment

included four successive tasks after the participant signed the consent form, i.e., pre-

study questionnaire, offline session, online session, and post-study questionnaire. In

the pre-study questionnaire, the participant was asked to rate his fatigue level upon

a 10-point Likert item (1: no fatigue to 10: sever fatigue) before using the speller.

In the post-study questionnaire, the participant was asked to rate his fatigue level

again and to rate his comfort (1: uncomfortable to 10: comfortable) and alertness (1:

drowsy to 10: alert) right after using a speller. The participant sat on a comfortable

wheelchair and faced the speller with size (9.3 × 6.375 cm) displayed on the Surface

Pro 2 screen at a distance of about 60 cm , as depicted in Figure 39. The Emotiv

device was secured to the participant’s scalp so as to preclude mechanical electrodes

relative to the scalp during the experiment that could contribute to motion artifact.

The rigid casing also precluded a contribution of cable sway to motion artifact.

In the RCP, participants were instructed to gaze at the target character in the

first and second stages in the RCP. In the EP, participants were instructed to gaze

at the target row edge point in the first stage, and then to move their gaze to the

target column edge point during the inter-stage interval (2 s) and gaze at it in the

second stage. Therefore, the column edge points disappeared during the first stage,

whereas the row edge points disappeared during the second stage. In addition, in

both spellers, participants were instructed to keep silently counting the number of

times the target object flashes. The selected character, which is appended to the

output text box, is highlighted with green in the online session.
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Figure 39. A snapshot of a participant during the experiment

In the offline session, each participant spelled 6 words and a number (LAP,

ROD, BAND, FLAG, DRINK, MINUTE, and 9253) for a total of 29 alphanumeric

characters. In the online session, each participant spelled 3 words and a number

(FOX, LION, CRAFTS, 40150) for a total of 18 alphanumeric characters. Thus, in

both sessions, there were 11 runs for each speller, one run for each word or number,

and the participant spelled them character-by-character.

The 18 alphanumeric characters of the online session were selected equally (6

characters) from 3 different areas from the RCP matrix: corner, edge and center areas.

More specifically, each corner character was surrounded by 3 adjacent characters, each

edge character was surrounded by 5 adjacent characters, and the remaining characters,

surrounded by 8 adjacent characters, belonged to the center area of the matrix. This

design aimed to investigate how the number of characters surrounding the target

character affects the target character selection (i.e., the crowding problem).

While the participant sat on the wheelchair and spelled the target characters in

both sessions for both spellers, the experimenter pushed the wheelchair with a speed

about 22±1 meters per minute. The experiment was implemented outside the lab
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within normal noise inside a college building during the working hour. Particularly,

the experiment was not implemented on a straight path. Thus, the experimenter

sometimes turned the wheelchair to the right, left or rotated it smoothly. This

wheelchair mobility was continued during each run until the participant spelled the

entire word. Then, the experimenter stopped the wheelchair, input another word or

number, ran the speller, and moved the wheelchair again.

7.1.6. Preprocessing, Feature Extraction, and Classification

Since the experiments in this study were conducted with the participants’ mo-

bility, it was expected that electro-ocular and motion artifacts due to any remaining

piezoelectric cable sway and mechanical movement not prevent by rigid cable casing

and securing the electrodes to the scalp, alongside noise associated with electromusclar

activity [41], alongside the usual artifacts during EEG measurement concerning res-

piration, cardiac signals, and scalp skin [3, 26, 52], as well as other artificial electrical

sources of artifact, such as 60 Hz mains. All these artifacts could contaminate the

recordings obscuring the EEG signal. Consequently, a sequence of preprocessing

steps was implemented to increase the signal-to-noise ratio (SNR) by de-noising

the data. In this study, the EEG signals recorded in stage 1 and in stage 2 were

preprocessed, extracted, and classified separately. The first step in the preprocessing

used a bandpass filter to pass EEG signals between 0.16 and 45 Hz and downsampled

the oversampled data from 2048 Hz to 128 Hz for sake of computational efficiency.

The common average referencing technique (CAR) was used to re-reference the data

that was physically referenced to the CMS-DRL [17] is a simple, easy, fast, and very

necessary technique for multichannel EEG signals to reduce the noise, by ≥30%, to

detect the small desired signal [64]. Accordingly, the common average referencing

technique was applied on the recorded EEG data, where the average across all

channels was subtracted from each channel for each data point. The remaining
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preprocessing steps, such as winsorizing and normalizing were explained in Section

5.1.6.

The EEG data after preprocessing were extracted based on the time domain

feature. However, the EEG data for each single target character were epoched to 600

ms from each flash onset. Each epoch with 600 ms size of data was called a segment,

and each segment contained the ERP produced in consequence of neurocognitive

processes corresponding to one visual flash. Each segment contained data recorded

by 14 channels in 77 time points (0.600 s * 128 sample/s). For each target character

with 144 flashes, there were 144 segments; one segment corresponded to one flash.

Specifically, 72 row or row edge point segments and 72 column or column edge point

segments.

Now, the classification can realize the new format of segment features. The

Bayesian Linear Discriminant Analysis (BLDA) was used in this study to identify the

target character. The classification detail process was explained in Section 5.1.6.

7.2. Results

7.2.1. Online Character-based Classification Accuracy

In the online session, 180 characters (18 characters * 10 participants) were

selected for each speller. As depicted in Figure 40, the online classification accuracy

was improved with the EP, mean 89.44 ± s.e.m 2.1%, relative to RCP, 80.55±2.65%.

A paired t-test was used for the inferential statistical analysis and confirmed that the

accuracy for the EP was significantly higher than the RCP, t(9) = 3.205, p = 0.011,

η2 = 0.533 (8/10 showed the effect).

7.2.2. Flash Object-based Analysis of Adjacent Errors

Further analyses were applied to the incorrectly selected characters by investi-

gating the flash objects. The flash object may be the row and column in the RCP or

row edge point and column edge point in the EP. These analyses aimed to determine
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Figure 40. Mean percentage classification accuracy as a function of interface (error
bars denote standard error); N=10.

if the online performance improvement with the EP over RCP were caused by the

adjacent distance between flash objects. Hypothetically, if the number of adjacent

errors with the RCP is significantly higher than the number of adjacent errors in the

EP, then the adjacent distance between the flashed object played a vital role that

affect the online performance.

As shown in Figure 41, the 180 online selected characters, for each speller, were

summarized within a confusion matrix of errors, denoted by m. The rows and column

indices for m were from -5 to 5. If the online character was correctly selected, then

the number of characters selected correctly, located in the center cell m(0,0) and

highlighted in gray, is incremented by 1, where the row index ‘0’ and column index

‘0’ represent the target row and target column, respectively. All cells in m except

m(0,0) represent the error locations in the speller, and the total number of these cell

values is the total number of errors. In general, the cell position in m for any selected

character from the speller was identified by m(selected row - target row, selected

column - target column). For example, if the target character ‘L’, which is located on

the row 2 and column 6 in a speller interface, was selected correctly, then the value

84



in cell m(0,0) is incremented by 1; otherwise, if the target character ‘L’ was selected

incorrectly by ‘F’, which is located on row 1 and column 6, then the value in cell

m(1-2, 6-6) = m(-1, 0) is incremented by 1.
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Figure 41. The error confusion matrix (m) of all subjects for 180 selected characters
in the online session for the RCP (a) and EP (b); the gray center cell denoting the
target; black cells denoting adjacent flashed object errors, where a neighboring flash
was erroneously detected as denoting the row or column of the target.

Parenthetically, the horizontal (row) and vertical (column) adjacent error se-

lected characters were located in the highlighted black cells, as depicted in Figure

41. For both spellers, as illustrated in Figure 41(a) and Figure 41(b), the horizontal

adjacent flash object(s) for any target flash object was located in row ‘-1’ and row

‘1’ in m for the RCP, or row ‘-2’ and row ‘2’ for the EP. The vertical adjacent flash

object(s) for any target flash object was located in column ‘-1’ and column ‘1’ in m

for the RCP, or column ‘-2’ and column ‘2’ for the EP.

The numbers of the horizontal and vertical adjacent errors in the RCP were

larger than in the EP. Thus, the influence of the adjacent problem was reduced by

increasing the distance between the adjacent flash objects with the EP. Of a total

of 35 errors for the RCP, there were 4 horizontal adjacent errors (11.4%) and 13
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vertical adjacent errors (37.4%). Of a total of 19 errors for the EP, there were

3 horizontal adjacent errors (15.79%) and 1 vertical adjacent errors (5.26%). A

paired samples t-test showed that the mean±s.e.m of horizontal adjacent errors was

non-significant between the RCP (mean 0.4±s.e.m 0.306) and EP (0.3±0.153). In

contrast, the mean±s.e.m of vertical adjacent errors was significantly higher for the

RCP (1.3±0.367) relative to the EP (0.1±0.1), t(9) = −3.674, p = 0.005, η2 = 0.6

(7/10 showed the effect).

7.2.3. Errors Analysis for the RCP

Each online character was located on the center, edge, or corner of the speller

matrix and surrounded by 3, 5, 8 and characters, respectively. In this investigation, 6

characters were selected from each speller matrix area (6 characters per area * 3 areas

= 18 online characters) and tested by 10 participants (6 * 10 = 60 test characters per

area from all participants).

In the RCP, of a total of 60 selected characters from each area, there were 14

selected error characters (23.33%) for the center area, 11 selected error characters

(18.33%) for the edge area, and 10 selected error characters (16.67%) for the corner

area. A one-way ANOVA upon error selection from the different three matrix areas

not revealed any significant between these matrix areas.

7.2.4. User Experience

The pre- and post-study questionnaire data measured the subjective ratings

of fatigue, comfort, and alertness in both paradigms. The subjective rating range

was upon 10-point Likert item 1 to 10, and the difference between the fatigue rating

before and after the experiment was between 0 to 9, where 0 and 9 indicated the

best and worst level of fatigue, respectively, caused by use of the speller. Conversely,

10 indicated the ideal for comfort and alertness. As shown in Figure 42(a), the

mean±s.m.e fatigue level was reduced with the EP, 1.8±0.44, relative to RCP, 4±0.47.
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Also, participants were felt more comfortable after using the EP, 8.6±0.27, relative

to the RCP, 5.7±0.7, as well as more alert during spelling from the EP, 8.7±0.34,

relative to the RCP, 6.1±0.67, as shown in Figure 42(b).
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Figure 42. Subjective rating for all participants (N=10). (a) Mean of the fatigue
rating difference before and after the experiment (0:9). (0: lowest level of fatigue, 9:
highest level of fatigue). (b) Mean of the comfort, and alertness rating (1:10). (1:
lowest level of comfort and alertness, 10: highest level of comfort and alertness).

These tendencies shown in Figure 42 were broadly confirmed by inferential

statistical analyses: Paired t-tests comparing EP and RCP revealed a significant

effect of the interface upon fatigue, t(9) = 3.236, p = 0.01, η2 = 0.54 (8/10 showed

the effect), upon comfort, t(9) = −3.585, p = 0.006, η2 = 0.59 (9/10 showed the

effect), and upon alertness, t(9) = −3.284, p = 0.009, η2 = 0.54 (8/10 showed the

effect).

7.3. Discussion

The results of this study were consistent with the finding of Chapter 5 and 6

results, and confirmed that the EP significantly improved the online classification

accuracy and user experience over the RCP during both the sitting or mobility

situations, as well as with small or large speller interface. In addition, the EP

caused significantly less fatigue, more comfort, and more alertness relative to the RCP.
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In general, the EP reduced the effect of adjacent, crowding, and fatigue problems,

altogether, by adding a flash edge point to each row and column, shifting every second

row or column up and left, respectively, and changing the flashing technique and its

illumination size.

In the RCP, relatively, a large number of errors were horizontal or vertical ad-

jacent errors [27, 72, 90]. In addition, the number of adjacent errors was significantly

higher for the RCP than EP. Some participants’ spontaneously volunteers subjective

qualitative reports of a perceived interference between adjacent flash object while

moving, as was particularly apparent when using the RCP rather than the EP. The

further RCP errors analysis showed that the number of errors increased from the

corner area to edge area to center area. These differences of errors upon the matrix

areas were not significant. Increasing the number of participants in this study may

increase the differences between numbers of errors upon matrix areas.

In the EP, the white alphanumeric characters reduced the crowding problem by

increasing a spatial separator between edge points upon opposite sides of the matrix.

Furthermore, the white characters reduced the fatigue problem by decreasing the

participant distraction between the target and non-target (i.e., distractors) flashes

[29, 1].

If some mobile applications required displaying larger than 6-by-6 matrix of

objects, then the EP is the more suitable interface design choice rather than RCP. In

more details, the EP can increase the matrix dimension size, i.e., number of objects,

and keep the number of flash objects surrounding any target flash to 1 or 2, but the

distance between the two adjacent flash row edge points or column edge points is

reduced as in the RCP.
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CHAPTER 8. CONCLUSION AND FUTURE WORK

The motivation of this dissertation has been to improve the performance and

user experience with P300-based BCI. Accordingly, this dissertation has presented

new P300 BCIs to reduce the aforementioned challenges of the most popular P300

BCI, RCP. In particular, two P300 BCIs were developed – ZP and EP. In the ZP,

every second row of the objects matrix shifted to the right by d/2 cm, where d cm is

the distance between two adjacent characters located on the same row. In the EP, a

flash grey edge point added to the left side of every odd row, right side of each even

row, below every odd column, and above each even column.

In this work, four user studies were conducted to evaluate the performance and

user experience of the new proposed P300 BCIs and compare them with each other

and with the classical RCP. The first user study was conducted on the desktop to

evaluate the ZP and compare it with the RCP. A user study upon neurologically nor-

mal individuals revealed significant improvements in online classification performance

and user experience with the ZP. Improvements of online classification performance

with ZP showed that ZP offered a solution to the crowding problem and adjacency

problem, while the potentially related improvements in user experience showed that

ZP also provided an effective approach to the fatigue problem.

In the second user study, the investigation has shown that the previously un-

explored modifications of the P300-based BCI by the EP interface have exhibited

advantages over the classical RCP on the desktop. The EP demonstrated significant

improvements in the online classification performance and user experience found with

the RCP, attributable to a reduced influence of the crowding and adjacency problems,

in turn, causing less fatigue and yielding significantly improved levels of alertness and

comfort. The key principles of the EP were to reduce the influence of the adjacency

problem by increasing the distance between adjacent flashed objects and to reduce
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the influence of the crowding problem by decreasing the number of similar flashed

objects surrounding any object.

In the third user study, all P300 BCIs (RCP, ZP, and EP) were evaluated on the

desktop. The results showed that the speller online classification performance and the

user experience were significantly improved from the RCP to ZP to EP. The results

indicated that the EP offered better solutions to the adjacent and crowding problems

relative to the ZP. Further, this investigation has shown that the EP overcomes the

limitations of the RCP and ZP as a candidate class of interface for such mobile BCIs.

In the fourth study, the P300 BCIs, specifically the EP and RCP, were moved

to the mobile platform and evaluated during the user’s mobility using a wheelchair

in a normal noisy environment. This study allows disabled users to benefit the fast

development in the mobile computing. This study confirmed that the EP is suitable

for use upon a mobile device. The results of this investigation also revealed that the

online classification accuracy and user experience of the EP significantly improved

over the RCP.

In sum, the conclusion of this dissertation demonstrates that the large distance

between adjacent flash objects and the fewer objects subject to visuospatial crowding

increased the performance accuracy, as well as reducing the number of errors, and

attenuating the influence of the user fatigue problem during the use of the interface.

Although the mobile EP speller implemented on a mobile phone simulator offers a

suitable interface for small screen size, at a future time prior to valorization of this

research, it would be recommended to evaluate a prototype speller implemented on

an extant mobile phone.

In the future, this work can be expanded to implement the mobile EP on the

actual mobile phone and address most challenges that come up from the limited,

though ever-evolving specification of extant mobile phones, specifically the processor
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and memory. These challenges can be addressed by: reducing the amount of EEG

data, using advance filtering process, using a medical-grade wireless EEG device with

the optimal positioning of electrodes, designing a light and accurate machine learning

algorithm that operates at high speed upon a mobile phone, and programming in

C++ or Java programming rather than MATLAB. C++ and Java are OS platform-

independent and running under Windows and Android environments, in a manner

that could increase speed of the speller presentation, preprocessing, and classifica-

tion. Furthermore, the mobile EP can be used to implement a set of mobile phone

applications, which help paralyzed people with minimal voluntary muscular control

to utilize the advantages of mobile computing and features.

Another future direction is to utilize the datasets collected from each conducted

study for further analysis, such as channel selection and decimation (i.e., downsam-

pling to less than 128 Hz), in order to reduce the dimension vectors for each segment

(i.e., classification features). This reduction can accelerate the data processing,

particularly in a smartphone. In addition, these datasets can be further investigated

with the aim of examining the effect of different bandpass filtering boundaries on the

classification accuracy.
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[48] Iñaki Iturrate, Javier Mauricio Antelis, Andrea Kübler, and Javier Minguez,
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