
SECURE DATA SHARING IN CLOUD

A Thesis
Submitted to the Graduate Faculty

of the
North Dakota State University

of Engineering and Architecture

By

Revathi Dhamotharan

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Electrical and Computer Engineering

October 2014

Fargo, North Dakota

North Dakota State University

Graduate School

Title

Secure Data Sharing in Cloud

 By

Revathi Dhamotharan

 The Supervisory Committee certifies that this disquisition complies with North

Dakota State University’s regulations and meets the accepted standards for the

degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

Dr. Samee U.Khan

 Chair

Dr. Jacob Glower

Dr. Na Gong

Dr. Saeed Salem

 Approved:

 11/17/2014 Dr. Scott C.Smith

 Date Department Chair

iii

ABSTRACT

Cloud storage is widely used for sharing data due to low cost maintenance. But,

it is also necessary to secure data on cloud. Secure Data Sharing in Cloud focuses

mainly on: a) privacy and confidentiality, b) key management and encryption, c) secure

data sharing without re-encryption and d) forward and backward access control. When

user wants to share data, it sends request to trusted party that generates a symmetric

key which is used to encrypt the data for sharing. This key is used to compute two key

shares for trusted party and user. The key is deleted using secure overwriting. Its

working was formally verified using High Level Petri Nets, SMT Library, and Z3 solver. It

was implemented in Visual Studio and its performance was evaluated based on time

consumption for various operations which revealed that it has the potential to be

effectively used for secure data sharing in cloud.

iv

ACKNOWLEDGEMENTS

Firstly, I would like to thank my advisor, Dr. Samee U. Khan for his immense

support, patience and guidance throughout the research work. I am grateful to my

committee members, Dr. Jacob Glower, Dr. Saeed Salem and Dr. Na Gong, for their

valuable advice and suggestions which have been a great help in completing this work

successfully. Most importantly, I am extremely grateful to Mazhar Ali for all his help and

guidance during the research.

Last but not the least, I am grateful to my family and friends for their support

during my research work and progress towards completion.

v

TABLE OF CONTENTS

ABSTRACT………………………..…………………………………………………..………...iii

ACKNOWLEDGEMENTS ………………….……………………………………...……….....iv

LIST OF TABLES …………………………………………………………...……………........vi

LIST OF FIGURES………………………………………………………….……...……….....vii

1. INTRODUCTION………………………..……………………….…….……...……….........1

2. RELATED WORK…….………………………………………………..……...……….........6

3. SECURE DATA SHARING…………………….………………….……........……….........9

3.1. Entities……………………………………………………….……...………................9

3.2. Cryptographic Keys…………………………….……….…………......…………….10

3.3. SeDaSC Design…..………………....……...…………….………………...……….12

3.4. Advantages of SeDaSC………………………..……………………………………18

4. FORMAL ANALYSIS.…………...………………………………………………………….21

4.1. Formal Analysis and Verification……………………………………………………21

4.2. High Level Petri Nets……………….………………………………..……………...21

4.3. SMT-Lib and Z3 Solver…………………………..…………………….……….…...21

4.4. Verification of Properties………………………………….…………………..…….25

5. PERFORMANCE EVALUATION………………………………………..........................26

5.1. Experimental Setup…………………………………………………………………..26

5.2. Results…………………………………………...………….………………….……..27

6. CONCLUSION………………………………………………………................................33

REFERENCES………………………………………………………….………....…………..34

vi

LIST OF TABLES

Table Page

1. Data types for the HLPN model……………………………..…………………………….22

2. Places and mappings in the HLPN model………………………….……………………22

3. Hardware characteristics for cryptographic server and user client machines……..…26

4. Comparison of key generation time (in seconds).………………………….………...…31

5. Comparison of turnaround time (in seconds)……….……………………….………......32

vii

LIST OF FIGURES

Figure Page

1. Basic concept behind SeDaSC..……….…...…..……………….……………….……......3

2. Algorithm for key generation and encryption….…………………………………………12

3. File upload…………………………………………………………..…….……..…...……..14

4. Algorithm for decryption..…………………………………………………………………..15

5. File download…………….……….………………...……………..………………....….....16

6. File download (special case)….…………..…………………………………...…........…16

7. File update…………...…...……………….…………………………….…………….…….17

8. The HLPN model for the SeDaSC……………………………………………...…..…….23

9. Time consumption for key generation…...………………………..………………….…..27

10. Time consumption for file encryption...……………………………..….…….…………28

11. Time consumption for file decryption ………………………………….……..…………29

12. Time consumption for file upload..…………………………...……………….…………30

13. Time consumption for file download………………………...……….………………….30

1

1. INTRODUCTION

Cloud computing can be defined as a model for enabling ubiquitous, convenient

and on-demand network access to a shared pool of configurable computing resources

that can be rapidly provisioned and released with minimal management effort from the

user side and minimal service provider interaction [9].It has found its way into a lot of

small organizations and individuals as the use of cloud storage has reduced the need to

maintain any physical resources. The most commonly used are Amazon S3 and Google

cloud. The users just have to pay the fees to access the cloud storage resources. Due

to this, data sharing has become easy for individuals as well as organizations. They are

able to access their data from anywhere anytime without the fear of losing data. But, the

use of cloud computing comes along with a variety of issues of its own like loss of

control over data, security, privacy and confidentiality. Hence, there is a need to secure

data not only from unauthorized users but also from the cloud provider. As the

resources are shared, the users need to manage the use of cloud storage to reduce

these risks. They need to make sure that data stored on the cloud is accessed only by

members of the group to reduce the risk of losing control over data. Apart from this, the

users also need to make sure that the data is being stored and shared securely in the

cloud.

One of the widely used options to secure data is to encrypt data using

cryptography which provides a wide range of methods to encrypt data and ensure its

privacy and confidentiality. Encrypting data before uploading it to the cloud assures

privacy from the cloud service provider well. Cryptographic methods involve key

management, encryption and decryption processes.

2

Key management takes care of key generation for all the users including the new

users that may join later. If, all the members of a group use a single key, the users need

to be more careful with key management. Key management should be able to cope up

with the frequent changes in membership as it may result into high computation

overhead if not handled properly. A simple solution would be rekeying. So, when a new

user is added, the group generates a new key, re-encrypts the data and distributes the

keys again to all the members. On the other hand, when a member leaves the group,

the group performs the same procedure of rekeying to avoid the departing users from

using the current key to access data illegally. But, this results in a lot of overhead in

case of frequent changes to the group membership.

Apart from this, there is always a threat from malicious authorized users within

the group who may try to access and tamper the data. In case of a single symmetric

key, if users of the group hold the entire key, it may prove to be a serious threat if any of

the authorized users turn malicious. Though data is encrypted, it is thus necessary to

handle key management efficiently to provide secure data sharing in cloud storage.

In SeDaSC, the proposed methodology involves mainly three entities:

a) Cryptographic Server

b) Cloud Storage

c) Users

3

Figure 1. Basic concept behind SeDaSC

The cryptographic server takes care of access control, key generation,

encryption and decryption processes. Access control gives all the information about the

users including their rights, permissions, joining date, etc. Key generation involves

generating a single symmetric key which is used to encrypt the data. This key is then

split into two key shares for each user in the group. One key share stays with the

cryptographic server in access control and the other key share is sent to each

corresponding user and the original key is deleted using secure overwriting. When a

new user is added, the original key is generated again using owner’s key shares. This

is, in turn, used to generate the key shares for the new user. The key share for

cryptographic server is added to the access control list along with the rest of the

information about the new user. While the user key share is sent to the new user. On

the other hand, when a user departs from the group, the cryptographic server just needs

to delete all the information related to this user. In some methods, a single encryption

key is shared between all the users. In such cases, when a user is deleted, there is a

User

Cloud

storage

Cryptographic

server

2

.

1

2

3

4

risk that the user may turn into a threat as it still has access to the complete encryption

key. This is avoided by generating the encryption key again and re-encrypting the data.

But, frequent changes in the number of users may result in computation overhead.

These issues have been addressed in SeDaSC by efficiently handling key management

without using re-encryption.

The cloud provides storage services to the users. The data file is encrypted by

the cryptographic server and uploaded to the cloud. Whenever a user requests access

to this data file, the cryptographic server or the recipient user downloads the encrypted

file from the cloud, validates this user, decrypts the data and sends it back to the user

based on the user rights.

Users act as client to the cloud. The data file is owned by one of the users and is

shared with other users. The data owner decides who can access and edit the file. The

major contributions through this proposed methodology are as follows:

 Confidentiality of data by using symmetric encryption.

 Secure data sharing over the cloud without the use of Elliptic Curve or Bilinear

Diffie-Hellman Problem (BDH) cryptographic re-encryption.

 Secures data from malicious users within the group due to the possession of only

a part of the symmetric key.

 Handles issues related to forward and backward access control due to insider

threats.

 Formal modeling and verification of SeDaSC using High Level Petri Nets (HLPN),

SMT-Lib and Z3 Solver.

5

The design of the proposed scheme and its working will be explained further in

the later chapters.

6

2. RELATED WORK

There has been a growing interest in the study of cloud storage and ways to

secure the data. One of the major concerns here is to control which users have access

to data. Some methods use access control to manage which users have the rights to

read/write data stored on cloud. But, access control may not be enough to secure data

on cloud. An alternate solution to this is encryption. Data is encrypted by the owner

before submitting it to the cloud. This secures data from both cloud service provider as

well as unauthorized users. Encryption can be of two types- symmetric and asymmetric.

Symmetric encryption uses the same key to encrypt and decrypt the data. Unlike

symmetric encryption, asymmetric encryption uses two keys- public and private key.

The owner encrypts data with the recipient user’s public key but this encrypted data can

be decrypted using only the recipient user’s private key. This helps in securing the data

from unauthorized users. But, when a user leaves the group or is revoked by the owner,

the user can still decrypt the data as it still possesses the private key that can be used

for decryption. In order to avoid this, the owner has to generate the keys again and re-

encrypt the data. This results in a major computation overhead in case of frequent

changes to the members of the group.

Lei et al. [5] proposed a Certificateless Proxy Re-encryption scheme where the

data owner first encrypts the data using symmetric data encryption key before uploading

it to the cloud. The owner then generates proxy re-encryption keys along with all the

users. The cloud uses these re-encryption keys to transform the data stored in the cloud

and sends it to the recipient user. This transformed data can then be decrypted back to

its original form using the recipient user’s private key. By using the symmetric data

7

encryption key, this scheme ensures that the cloud does not have any access to the

original data. The proxy-re-encryption in this scheme is based on bilinear pairing and

BDH which results in high computational overhead.

In order to overcome this high computational overhead, the authors in [2]

proposed a mediated certificateless encryption scheme that does not use pairing

operations. The data is encrypted using the users’ keys generated by the cloud based

on the access control policies. When a user requests this data, the cloud decrypts the

encrypted data partially which can be decrypted to the original data using the user’s

own private key. Since, the cloud handles partial decryption and key management, user

revocation is easier to handle. But, this might prove to be a risk from security point of

view. In addition to this, as decryption is performed twice, it increases the computation

cost of decryption which in turn reduces the advantages of using pairing free approach.

The authors in [1] proposed a scheme that used El-Gamal cryptosystem and bilinear

pairing to share data securely on the cloud. This scheme was based on incremental

version of cryptography where data is divided into blocks and each block is encrypted

incrementally. This incremental re-encryption is handled by a trusted third party which

acts as a proxy and manages both encryption and access to the data. In spite of these

advantages, the computation overhead due to bilinear pairing still exists.

The authors in [11] proposed a methodology based on the shared key derivation

method for securing data sharing among the group. This methodology uses binary tree

for key computation. But, the computational cost for this scheme is high due to the

rekeying mechanism. Apart from this, the scheme is not tailored for the public cloud

system because certain operations require centralized mediations.

8

SeDaSC methodology proposes a scheme based on symmetric encryption which

helps in sharing data securely in the cloud without using El-Gamal cryptosystem, BDH

and bilinear paring. In addition to privacy and confidentiality from both cloud service

provider and malicious users, this scheme also handles forward and backward access

control as each user has access to only a part of the key and not the complete key.

9

3. SECURE DATA SHARING

This chapter discusses the proposed methodology that can be used to secure

data stored on the cloud without using re-encryption and its working. This chapter also

presents the entities involved in this methodology, key generation and the design for

this methodology.

3.1. Entities

This methodology involves majorly three entities:

a) The Cloud - This entity provides storage services to the users. In order to

preserve the privacy and confidentiality of data, it is encrypted before being

uploaded to the cloud. This also ensures that the data is secured from the cloud

service provider. In this methodology, the cloud is just involved in the basic

operations where data is uploaded and downloaded from the cloud storage. This

reduces the overhead on the cloud. So, when a user requests access to the data

file, the data file is just downloaded from the cloud, decrypted to the original form

and sent back to the user based on the user rights.

b) Cryptographic Server - This trusted entity handles all the operations required to

secure the data stored on the data. When the owner wants to share some data

with a group, it sends data to the cryptographic server. The cryptographic server

then encrypts data and sends it either to the owner to upload it to the cloud or

sends it directly to the cloud for storage. The cryptographic server also maintains

the Access Control List (ACL) which is initially sent to the cryptographic server as

a list of users by the owner along with the file. ACL provides all the information

about all the members of the group and their rights to access the file.

10

c) Users - These act as client to the cloud storage. When the owner wants to share

some data with a group. The owner decides who can access and edit the file. As

described earlier, the owner sends all this information in the form of ACL to

cryptographic server along with the file to be shared. It also controls all the user

rights and the changes to the membership of the group.

3.2. Cryptographic Keys

SeDaSC uses a single symmetric key for securing data. But, in order to avoid

unauthorized access by revoked members, this key is split into two key shares and the

original key is deleted using secure overwriting after successful encryption/decryption.

One of the key shares stays with the cryptographic server while the other key share is

sent to the corresponding user. The symmetric key and the key shares as generated in

the following way:

a) Symmetric Key (K) – This is a random symmetric key generated by the

cryptographic server. K is generated to be 256 bits which has been

recommended by most of the standards for symmetric algorithms [10][10].First, a

random 256-bit number(R) is generated such that R = {0, 1}256. This R is then

provided as an input to a hash function (Hf). Hf could be any hash function with a

256-bit output. This method uses SHA-256 as Hf which takes R as input and

generates 256-bit symmetric key, K. K is then used by a symmetric algorithm

which is AES, in this case, for both encryption and decryption. K is then split into

two key shares.

11

b) CS key share, Ki -The cryptographic server generates a Ki= {0, 1}256 for each

user. The cryptographic server makes sure that Ki is different for each user. This

Ki stays with the cryptographic server and is stored in the ACL for later use.

c) User key share, Ki’ - Ki’ is computed for each user in the following way:

 Ki’ = K ⨁ Ki (1)

This is computed for every user and sent to the corresponding user which is then

used to generate K when the user needs to access the file. Once, the key shares have

been generated and the encryption/decryption operation has been carried out, the

symmetric key K is deleted by using secure overwriting.

12

Algorithm 1 Key generation and encryption

Input:

F, ACL, Symmetric Key Algorithm SKA, 256-bit Hash Function Hf

Compute:

R = {0, 1}
256

K=Hf(R)

C=SKA(F, K)

for each user i in ACL do

 Ki = {0, 1}
256

 Ki' = K ⨁ Ki

 Add Ki for user i in ACL

 send Ki’ for user i

end for

delete(K)

delete(Ki’)

return C to the owner or upload to the cloud

Figure 2. Algorithm for key generation and encryption

3.3 . SeDaSC Design

This section presents the design of the methodology.

3.3.1. File Upload

When the owner wants to share some data with some users, the owner sends a

request to the cryptographic server. This request includes the data file, the list of users

(L) that would have access to this file. L contains all the information about the users like

13

their group id, user id, access rights and other necessary information required to control

their access. Upon receiving the request, the cryptographic server generates a group id

for this group if it does not already exist. If the group does not exist already, it also

generates an Access Control List (ACL) using L which is maintained by the

cryptographic server. It then generates the single symmetric key K, Ki and Ki’ for each

user. K is used to encrypt the file using an appropriate symmetric key algorithm (AES in

this case). As discussed earlier, Ki stays with the cryptographic server and is inserted

into the ACL for later user while Ki’ is sent to each corresponding user along with the

encrypted file and group id (if this is a new group) over a secure communication

channel. The key K is deleted by secure overwriting once the key shares have been

generated and data has been encrypted. To protect the integrity of the file, the

cryptographic server also computes the HMAC signature on every encrypted file. A

similar procedure for the HMAC key is adopted. However, HMAC key is kept with the

cryptographic server only. The encrypted data can be handled in two possible ways. It

can be sent to the owner over a secure communication channel that can then upload it

to the cloud for sharing. On the other hand, the encrypted file can be directly uploaded

to the cloud by the cryptographic server. Figure 3 shows the file upload operation and

Figure 2 shows the process for key generation and encryption.

14

Figure 3. File upload

3.3.2. File Download

When a user wants to access the file, it either sends the request to the

cryptographic server or downloads the encrypted file from the cloud and sends it to

cryptographic server along with its key share, Ki’ . The cryptographic server then

validates the user and its rights using ACL. If the user has the right to access the file,

the cryptographic server then computes the symmetric key K by applying Xor to Ki and

Ki’ corresponding to the recipient user. This key K is then used to decrypt the file. If the

key K is correct, the file is decrypted successfully. After successful decryption, this file is

then sent to the user over a secure communication channel which can be achieved

using SSL or IPSec and the key K is deleted by secure overwriting. As mentioned

earlier in this section, the encrypted file can be either downloaded by the user and

sends it to the cryptographic server or the cryptographic server can directly download it

from the cloud (as shown in Figure 5). Figure 4 shows the working of the decryption

process. Figure 5 and Figure 6 show the file download operation.

User Cryptographic

Server

4. C 3. C

2. ACL, K,

Ki , Ki’ ,C

3. C, group ID, Ki’

1. F, L

Cloud

Storage

15

Algorithm 2 Decryption algorithm

Input:

C, ACL, Symmetric Key Algorithm SKA

Compute:

Get Ki’ from the requesting user

Get C from the requesting user or download from the cloud

Retrieve Ki from the ACL

If Ki does not exist in the ACL then

return access denied message to the user

else

K = Ki ⨁ Ki’

F = SKA(C, K)

send F to the user

end if

delete(K)

delete(Ki)

Figure 4. Algorithm for decryption

16

Figure 5. File download

Figure 6. File download (special case)

3.3.3. File Update

When a user wants to update/edit the file, it sends a request to the cryptographic

server or downloads it directly from the Cloud. The request includes the encrypted file,

group id and Ki’. Upon receiving the request, the cryptographic server validates the user

and uses ACL to check if the user has rights to access and edit the file. If the user

doesn't have sufficient rights, the cryptographic server denies the user's request.

User

User

3. K

 Cryptographic

server

1. C

2. C, Ki’

 4. F

Cryptographic

server

1. Group ID, file ID, C,

Ki’

5. F

4. K

2. Download request

3. C

Cloud

storage

Cloud

storage

17

Otherwise, the cryptographic server performs the same procedure as in downloading

the file and sends the decrypted file to the user over a secure communication channel.

Once the user receives the file, it can edit the file. The user can then upload this file to

the cloud using the same process carried out while uploading the file to the cloud. But,

this won't involve key generation for each user and ACL creation as both already exist.

It only involves encrypting the file using K which is computed by applying Xor to Ki and

Ki’. The key K is deleted as always using secure overwriting. The complete file update

process is shown in Figure 7.

Figure 7. File update

3.3.4. New Group User Inclusion

When the owner needs to add a user to the group, it sends a request to the

cryptographic server along with the group id, user id, joining date and other information

related to access rights and permissions. The ACL may also contain information if the

user has access to old data. This ensures backward access control for the joining

member. The cryptographic server updates ACL with all the information for this new

user.

User

3. C

1. F, group ID, file ID,

Ki’

2. K

Cryptographic

server

4. C

Cloud

storage

3. C

18

3.3.5. User Deletion

When the owner wants to delete a user, the owner just needs to send a request

to the cryptographic server along with user id and group id. On receiving the request,

the cryptographic server looks for the user information in ACL and deletes all the

information related to this user. As the user just has its own key share and not the whole

key, the user would no longer be able to access the file and decrypt it which ensures

Forward Access Control.

3.4. Advantages of SeDaSC

The SeDaSC is proposed to provide the following services to the outsourced

data:

 Confidentiality;

 Secure data sharing among the group;

 Secure data from unauthorized access of valid insiders within the group and

 Forward and backward access control to counter insiders and departing group

users.

The following discussion briefly describes how above mentioned services are

achieved.

The cloud is not considered to be a secure and trustful entity in the context of

SeDaSC. Multi tenancy, virtualization, and shared pool of resources may pose many

forms of insider and other threats to the data. Moreover, the cloud may also retain

copies of the file even after it is requested for deletion.

In case of SeDaSC, the file is encrypted with K. The K is generated at the

cryptographic server and is deleted right after utilization using secure overwriting. The

19

cryptographic server or the user cannot reconstruct K all by themselves. For

confidentiality, the data cannot be leaked unless the attacker gains access to K. The K

in its entirety is not stored anywhere, neither it travels on the communication channel.

Therefore, the access to K is a difficult task. Even if an attacker gets hold of user share,

Ki’, he will have to guess the other share correctly. The guess or random generation is

to be made from total of 2^256-1 possible shares. The probability of generating the

correct share is 1/ (2^256-1) =8.636 × 〖10〗^ (-78) which is negligible. Moreover, if the

insider within the cloud gets access to the file, the absence of K will be a barrier to

subvert the confidentiality of the data.

For secure data sharing, SeDaSC does not utilize the concept of re-encryption

with multiple keys. The encryption is done with a single symmetric key. However, the

authorized users are granted access on the basis of possession of the key share and

the typical authentication and authorization phenomenon. The ACL lists the authorized

users with their credentials and corresponding cryptographic server key shares. After

user authentication, the user key share is used along with cryptographic server share to

generate K. As the user key share is possessed by only a valid user, only a valid user

can lead to a successful encryption/decryption of the data.

The division and dispersal of the key also helps to counter the insider malicious

users within the group. The ACL is maintained separately for each group file. Therefore,

a valid group user cannot access the group file that is not shared with him/her. An

attempt to access an unauthorized file is also blocked by the fact that the user will not

have the key share for that file. Moreover, the ACL of the unauthorized file will not

contain any record for this malicious user. Furthermore, the absence of entire key with

20

the user and ACL collectively ensure the forward and backward access control for the

data.

Most of the data forwarding schemes are dependent on the El-Gamal

cryptosystem and bilinear pairing [1]. The aforesaid schemes require re-encryption of

the data each time any user other than the owner requests access to data. The El-

Gamal cryptosystem is computationally intensive. Moreover, re-encryption at each

access adds to the overhead. SeDaSC methodology utilizes symmetric encryption and

access by multiple users is achieved through key management as explained in the

preceding section. Therefore, the overhead of the SeDaSC methodology is less as

compared to the traditional El-Gamal based re-encryption systems.

21

4. FORMAL ANALYSIS

4.1. Formal Analysis and Verification

Before going into the details of the formal analysis of the proposed methodology,

this chapter provides a brief introduction to HLPN, SMT-Lib, and Z3 solver for better

understanding.

4.2. High Level Petri Nets

The Petri Nets are used for graphical and mathematical representation of the

system. The Petri Nets can model a range of systems, such as distributed, parallel,

concurrent, non-deterministic, stochastic, or asynchronous [6]. We have used a variant

of conventional Petri Net called High Level Petri Net (HLPN). A HLPN is a 7-tuple

structure represented as N = (P, T, F, 𝜑 , R , L ,M0), where P denotes the set of places,

and T refers to the set of transitions such that P ∩ T = ∅ . The flow relations are

represented by F such that F ⊆ (P × T) ∪ (T ∪ P). The 𝜑 map places P to the data types.

The R defines the set of rules for transitions. The L is a label on F and M0 represents the

initial marking [6]. The information about the structure of the net is provided by (P, T, F)

whereas (𝜑, R, L) provides the static semantics that means the information does not

change throughout the system.

4.3. SMT-Lib and Z3 Solver

The SMT is used for validating the satisfiability of rules over the theories under

consideration. The SMT has roots in Boolean Satisfiability Solvers (SAT) [7]. The SMT-

Lib provides a common input platform and benchmarking framework that helps in the

evaluation of systems. We use Z3 solver with SMT-Lib that is not only a theorem prover

developed at Microsoft Research but it is also an automated satisfiability checker. In

22

addition, Z3 determines whether the set of formulas are satisfiable in the built-in

theories of SMT-Lib. Readers are encouraged to see [8] for the use of SMT-Lib in the

verification process.

Table 1. Data types for the HLPN model

Data types for the HLPN model

Data type Description

F A string type holding data to be protected

K A string type representing a symmetric key

Ki A string type representing first constituent part of K for user i

Ki’ A string time representing second constituent part of K for user i

C A string type representing encrypted data

Ui A number representing i-th user

Gid A number representing group ID

H A string representing hash value of the data

Table 2. Places and mappings in the HLPN model

Place Mapping

 φ(User) ℙ (F×Ui×Ki×gid ×C× H)

 φ (CS) ℙ (F ×Ui×gid ×K×Ki×Ki’× C ×H)

 φ (Cloud) ℙ (C ×H)

Verification is the process that checks for the correctness of the system. Here, it

uses the bounded model checking that verifies whether for any input parameters the

system terminates after finite number of states or not. In the bounded model checking:

(a) the description of the system is provided stating properties or rules of the system, (b)

system is represented by a model, and (c) some verification tool is used to check

whether the model holds the specified properties or not. The HLPN model for the

SeDaSC is shown in Figure 6. The data types and mappings are shown in Table 1 and

Table 2, respectively. In HLPN model, all the rectangular black boxes are transitions

and belong to set T. The circles are termed as places in the set P. Whenever the data is

to be shared among multiple users, the data owner sends the data file, F, to the

23

cryptographic server. The list of users is also sent along with the F and other

parameters discussed in chapter 3. The following rule is mapped to the transition Send_d

of the HLPN:

 R(Send_d) = ∀x1 ∈ X1 ,∀x2 ∈ X2 | x2[1] := x1[1] ^ x2[2] := x1[2] ^X2’ = X2 ∪ {x2[1], x2[2]} (2)

Figure 8. The HLPN model for SeDaSC

The cryptographic server generates a symmetric key, K, and other parameters

according to the earlier explained procedure. The following formula operates on the

transition Gen_K to depict the process:

R(Gen_K) = ∀x3 ∈ X3| x3[3] := gen_groupID(x3[3]) ^ x3[4] := gen_K() ^

 X3’= X3 ∪ {x3[3], x3[4]} (3)

The cryptographic server computes the hash of F and encrypts the F with the

symmetric key, K. The result is cryptographic data, C. The process is carried out at the

transition Encrypt_F with the following rule:

24

R(Encrypt_F) = ∀x4 ∈ X4 | x4[8] := hash(x4[1]) ^x4[7] := encrypt(x4[1] ,x4[4]) ^

 X4’ = X4 ∪ {x4[7], x4[8]} (4)

The cryptographic server computes the two constituent shares of the K, Ki and

Ki’, for each of the users in the ACL and deletes K afterwards. The transition Dvd_K

depicts the procedure with the following formula:

R(Dvd_K) = ∀x5∈ X5 | x5[5] := gen_Ki() ^ x5[6] := x5[4] ⨁ x5[5] ^ over_write(x5[4]) ^

 X5’= X5 ∪ {x5[4], x5[5], x5[6]} (5) (5)

The encrypted data C along with the hash value, group ID, and Ki’ is sent to the

data owner. The procedure is detailed in chapter 3. The following formula at the

transition Snd_R shows the process:

R(Snd_R) = ∀x6 ∈ X6 ,∀x7 ∈ X7 | x7[3] := x6[6] ^x7[4] := x6[3] ^ x7[5] := x6[7] ^ x7[6] := x6[8] ^

 over_write(x6[6]) ^ X6’ = X6 ∪ {x6[6]}^X7’ = X7 ∪ {x7[3], x7[4], x7[5], x7[6]} (6)

The user uploads the encrypted data to the cloud. The following rule maps to the

transition Upload:

 R(Upload) = ∀x8 ∈ X8, ∀ x9 ∈ X9 | x9[1] := x8[7] ^ x9[2] := x8[8] ^X9’ = X9 ∪ {x9[1], x9[2]} (7)

The downloading user downloads the encrypted data from the cloud. The

following formula relates to the transition download:

R(download) = ∀x10 ∈ X10 , ∀x11 ∈ X11 | x11[5] := x10[1] ^ x11[6] := x10[2] ^

 X11’ = X11 ∪ {x11[5], x11[6]} (8)

The user sends decryption request to the cryptographic server along with C, Ui,

gid, and Ki’. The following rule maps to the transition Decr_R:

R(Decr_R) = ∀x12 ∈ X12 ,∀x13 ∈ X13| x13[2] := x12[2] ^ x13[3] := x12[4] ^ x13[6] := x12[3] ^

 x13[7] := x12[5] ^ X13’ = X13 ∪ { x13[2] ,x13[3] ,x13[6] ,x13[7] } (9)

25

The cryptographic server after verifying the authorization status of the user from

the ACL computes K according to the procedure defined in chapter 3. The following

transition and rule shows the process:

 R(Cmpt_K) = ∀x14 ∈ X14 | x14[4] := x14[5] ⊕ x14[6] ^ X14’ = X14 ∪ { x14[4] } (10)

The cryptographic server decrypts the data and sends it back to the user. The K

and Ki’ are deleted subsequently. The transition Decr_C shows the process:

R(Decr_C) = ∀x15 ∈ X15 , ∀x16 ∈ X16 | x16[1] := decrypt(x15[7] ,x15[4]) ^

 X16 = x16∪ {x16[1]} (11)

4.4. Verification of Properties

The properties that are verified are the following:

1. A valid user in the group cannot lead to the generation of a valid K by pretending

to be another user and contributing a random Ki’,

2. A valid user in the group leads to the generation of a valid K by contributing a

valid Ki’, and

3. A malicious user outside the group, if somehow gets access to the encrypted

file, cannot lead to its decryption.

The above given model was translated to SMT-Lib and verified through Z3

solver. The solver showed that the model is workable and executes according to the

specified properties. Z3 solver took 0.085 seconds to execute the working of the

proposed model.

26

5. PERFORMANCE EVALUATION

5.1. Experimental Setup

To evaluate the performance of the proposed methodology, it was implemented

in Visual Studio 2010 C# using .Net 4 framework. As discussed earlier, the proposed

methodology consists of three entities, namely: (a) the cloud, (b) the cryptographic

server, and (c) users. The Amazon Web Services (AWS) SDK was used to avail the use

of .Net APIs and communicate with Amazon S3 which serves as the cloud server in our

implementation. The cryptographic server is implemented as a third party. The

functionality required by the user is implemented as a client application that connects

with the cryptographic server to manage all the file uploads and downloads in addition

to any changes in membership. The hardware characteristics for the cryptographic

server and the user client are as shown in Table 3.

Table 3. Hardware characteristics for cryptographic server and user client machines

CPU Intel(R) Core ™ i3-3217U CPU 2 @ 1.80 GHz 1.80 GHz

RAM 4 GB

Storage 450 GB

OS Windows 8 64 bits

The proposed scheme needs to make sure that the communication channel used

by the users, cloud and cryptographic server are secured by either SSL or IPSec.

Hence, the communication between the entities was accomplished using .Net libraries

(System.Net.Security,System.Net.Sockets). The classes TcpClient and TcpListener

have been used to implement TCP protocol. This communication channel was then

secured using the SSLStream class. The scheme uses SHA-256 hash function for

generating keys and AES (symmetric encryption algorithm) for encryption and

decryption. The scheme was implemented using a .Net library,

27

System.Security.Cryptography. The class SHA256CryptoServiceProvider within library

was used to access all of the methods related to SHA256. All of the cryptographic

operations, namely: the encryption and decryption were implemented using the AES

class that represents the base abstract class for AES algorithm.

5.2. Results

This section presents and discusses all the experimental results for SeDaSC.

5.2.1. Key Generation

As discussed earlier, key generation involves the process of generating the

symmetric key along with the cryptographic server and user key share that are

computed separately for each user. In this experiment, the time required to generate

keys is evaluated for different number of users (10 to 100).

Figure 9. Time consumption for key generation.

The results are shown in Figure 9. As is evident in Figure 9, the time for key

generation increases with the number of users. Major part of this time is due to the fact

that key shares need to be generated separately for each user. But, the time required to

28

generate the symmetric key remains almost constant and does not depend on the

number of users.

5.2.2. Encryption and Decryption

To evaluate the performance of encryption and decryption, experiments were

performed to obtain the time required for encryption and decryption for different file

sizes. The time for encryption here includes time for key generation and encryption. The

results for these experiments are as shown in Figure 10.

Figure 10. Time consumption for file encryption

The experiments show that as the size of the file increases, time consumed to

encrypt the file also increases. But, the time for key generation remains almost constant

irrespective of the file size.

29

Figure 11. Time consumption for file decryption

The time required for decryption has been shown in Figure 11. A similar pattern

has been observed for decryption too. The time required for decryption also shows an

increasing pattern as the file size increases.

5.2.3. File Upload/Download

The file upload time here refers to the total time that is taken from the point

where the request is sent to CS. It includes the following –

1. Key generation

2. Time required for file encryption/decryption

3. Time for file upload/download

4. Time taken by other processes performed during file upload/download

30

Figure 12. Time consumption for file upload

Figure 13. Time consumption for file download

31

The results in Figure 12 and 13 show that the total time taken to either upload or

download a file increases as the size of the file increases. With the increase in file size,

encryption/decryption increases but, at the same time, the upload/download time also

increases. Since, the time consumed for key generation remains constant, it is

independent of file size. As the size of file increases, the effect of time taken for key

generation on the total time for file upload considerably reduces. This reveals that the

scheme does not incur any high computation overhead.

Table 4. Comparison of key generation time (in seconds)

COMPARISON OF KEY GENERATION TIME

No. of users [5] [2] [1] SeDaSC

10 1.494 1.594 1.534 0.004

20 1.598 1.741 1.606 0.00425

30 1.673 2.321 1.684 0.00476

40 1.791 1.888 1.799 0.005

50 1.907 1.952 1.866 0.00512

60 1.954 2.193 1.923 0.0055

70 1.994 2.286 2.034 0.00598

80 2.092 2.694 2.129 0.00632

90 2.401 2.827 2.388 0.00664

100 2.495 2.887 2.545 0.00697

32

Table 5. Comparison of turnaround time (in seconds)

COMPARISON OF TURNAROUND TIME

FS
(MB)

[5] [2] [1] SeDaSC

UL DL UL DL UL DL UL DL

0.1 0.9 0.81 1.4 0.99 1.48 1.15 0.8 0.8

0.5 1.18 0.96 1.48 1.03 1.89 1.31 0.94 0.96

1 1.8 1.39 2.06 1.48 2.9 1.85 1.24 1.18

10 13.05 9.91 14.95 9.9 14.59 10.45 6.43 6.48

50 53.68 33.45 58.56 35.57 60.37 35.9 9.01 10.24

100 99.69 57.14 112.41 59.14 155.15 61.59 17.37 20.68

500 369.72 215.3 492.03 229.81 872.09 400.21 33.24 39.25

Captions for the table are following.

FS = File Size, UL = Upload, DL = Download.

The SeDaSC methodology was compared with the schemes presented in [5], [2]

and [1]. This comparison was based on the time consumption during key generation

when the group is created and the turnaround time for encryption and decryption. The

comparison of key generation time is provided in Table 4. Table 5 shows the turnaround

time for encryption and decryption. Both the tables reveal that the SeDaSC

methodology outperforms the other techniques due to absence of heavy computations.

33

6. CONCLUSION

In a nutshell, the proposed methodology SeDaSC focuses on sharing data in the

cloud in a secure manner. This methodology provides secure data storage, data

confidentiality along with backward and forward access control and at the same time

low computation overhead as there is no re-encryption. It secures data from both the

cloud service provider and unauthorized users as data is encrypted by a trusted party

before being uploaded to the cloud. This methodology uses a single symmetric key for

encryption/decryption. This key is split into two key shares for each user. One of the key

share stays with the trusted party, while the other key share is sent to the corresponding

user. The key is deleted after encryption/decryption operation using secure overwriting

to avoid any threats from the users or the cloud. This methodology was formally verified

using the High Level Petri Nets (HLPN), SMT-Lib, and Z3 solver. It was also

implemented in Visual Studio to evaluate its performance which revealed that SeDaSC

can be practically used for secure data sharing in cloud.

34

REFERENCES

[1]. Khan, A. N., Kiah, M. L. M., Madani, S. A., Ali, M., Khan, A. ur R., &

Shamshirband, S. (2014). Incremental proxy re-encryption scheme for mobile

cloud computing environment. The Journal of Supercomputing, 68(2), 624–651.

[2]. Seo, S.-H., Nabeel, M., Ding, X., & Bertino, E. (2014). An Efficient Certificateless

Encryption for Secure Data Sharing in Public Clouds. IEEE Transactions on

Knowledge and Data Engineering, 26(9), 2107–2119.

[3]. Thilakanathan, D., Chen, S., Nepal, S., & Calvo, R. A. (2014). Secure Data

Sharing in the Cloud. In S. Nepal & M. Pathan (Eds.), Security, Privacy and

Trust in Cloud Systems (pp. 45–72). Berlin, Heidelberg: Springer Berlin

Heidelberg.

[4]. Tysowski, P. K., & Hasan, M. A. (2011). Re-Encryption-Based Key Management

Towards Secure and Scalable Mobile Applications in Clouds. IACR Cryptology

ePrint Archive, 2011, 668.

[5]. Xu, L., Wu, X., & Zhang, X. (2012). CL-PRE: a certificateless proxy re-encryption

scheme for secure data sharing with public cloud. In Proceedings of the 7th

ACM Symposium on Information, Computer and Communications Security (pp.

87–88).

[6]. Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings

of the IEEE, 77(4), 541-580.

[7]. De Moura, L., & Bjørner, N. (2009). Satisfiability modulo theories: An appetizer.

In Formal Methods: Foundations and Applications (pp. 23–36). Springer.

35

[8]. Malik, S. U. R., Srinivasan, S. K., Khan, S. U., & Wang, L. (2012). A

methodology for OSPF routing protocol verification. In Proceedings of

international conference on scalable computing and communications (ScalCom),

Changzhou, China.

[9]. Yu, S., Wang, C., Ren, K., & Lou, W. (2010). Achieving secure, scalable and

fine-grained data access control in cloud computing. In INFOCOM, 2010

Proceedings IEEE (pp. 1–9).

[10]. Barker, E., & Roginsky, A. (2011). Transitions: Recommendation for

transitioning the use of cryptographic algorithms and key lengths. NIST Special

Publication, 800, 131A.

[11]. Lenstra, A. K., & Verheul, E. R. (2001). Selecting cryptographic key sizes.

Journal of Cryptology, 14(4), 255–293.

[12]. Chen, Y.-R., & Tzeng, W.-G. (2012). Efficient and Provably-Secure Group Key

Management Scheme Using Key Derivation (pp. 295–302). IEEE.

