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ABSTRACT

AC induction motor-drive systems are the backbone for numerous industrial

applications, such as aerospace, medical equipment, and nuclear power plants.

The control performance of electric drives is sensitive to several uncontrollable

disturbances from changes in ambient conditions in the form of machine parameter

variations such as: magnetizing inductance (Lm), and rotor resistance (Rr). Such

variations may trigger instability because of mismatch between the reference and

desired conditions. The most common techniques to solve the issue are: (a) gain

adaptation that requires instrumentation to monitor system, (b) nonlinear control

methods, such as sliding mode, feedback linearization, and (c) robust control method,

such as H∞, and μ-analysis to account for motor uncertainties. Despite the prevalence

of PID controllers, a systematic method to tune their parameters to ensure robustness

remains an open problem.

In this dissertation, a systematic method to tune PI controllers while factoring

uncertainties is developed. Two major design methods are proposed: (a) based on

Kharitonov’s theorem and (b) based on fractional order controllers. In (a), the

control design problem for AC drives can be cast into as a set of interval polynomials

that can be analyzed via Kharitonov’s theorem. Also proposed a method to solve

the resulting polynomials, which then yield the controller coefficients. In (b), we

show how fractional order controllers (FrOC)-a generalization of PID that consider

fractional values for the integral and derivative coefficients can be designed to achieve

our main objectives. A unique advantage of such controllers is the so-called iso-

damping property (constant phase) and robustness. The performance of controllers is

assessed by comparing them with two well established techniques: traditional method

based on gain/phase margin requirements, and symmetric optimum techniques an

industrially popular technique that requires constant gain over a desired bandwidth.
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While both these techniques use reduced order models, the proposed methods are

advantageous because they can handle the full model of the machine. The simulation

results suggest that the proposed controllers remain robust against the chosen

uncertainties while both traditionally designed controllers succumb to instability. The

work paves a novel way for the design and tuning of robust PID controllers in electric

drives.
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CHAPTER 1. INTRODUCTION

High performance drive refers to an electric drive with ability to offer precise

control, rapid dynamic and a good steady state response. High performance drives are

indispensable in safety critical applications due to their precision of control. Since the

inception of AC machines, several techniques have evolved to control speed, torque,

and position of machines. The basic control inputs are the voltage and frequency of

the applied voltage/current to the motor. Since, the grid supply voltage and frequency

are fixed, power electronic converters are used as an interface between the grid supply

and the electric motor. It is well-known that variable speed drive offers significant

energy savings in industrial applications.

Numerous control strategies employing inverter provide decent steady state but

poor dynamic response. The dynamic response signifies that the poor performance

arises due to deviation of air gap flux linkages from their set values. The discrepancy

in flux linkages have to be controlled by the magnitude and frequency of the stator and

rotor phase currents. The oscillations in the air gap flux linkages result in fluctuations

in electromagnetic torque and in speed. This is detrimental in many high performance

applications, such as, robotic actuators, centrifuges, servos, metal-rolling mills, and

process drives. All of the aforesaid mentioned applications require high precision, fast

positioning, or speed control. Such requirements will not be met with the sluggishness

of control due to the flux oscillations. Moreover, air gap flux variations result in large

digression of stator currents, requiring large peak converter and inverter ratings to

meet dynamics.

The control of a separately excited dc drive is simple and requires control of

flux and torque separately. Likewise, the independent control of flux and torque is

possible in ac drives. The stator current phasor can be resolved, along the stator

flux linkages. The component along the rotor flux linkages is the field producing
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current, but this requires the position of the rotor flux linkages at every instant. The

requirement of phase, frequency, and magnitude control of the current and the flux

phasor is achieved by inverter control. The control is achieved in field coordinates

and hence known as field oriented control, also sometimes known as vector control,

because it relates to the phasor control of rotor flux linkages.

The rest of the chapter discusses the parameter mismatch and its effects on

drive performance. Brief motivation and contribution of the thesis are also presented

later in the chapter.

1.1. Tuning of Vector Controller and Parameter Sensitivity

The tuning of the vector control requires the exact values of rotor resistance,

mutual inductance, and rotor self inductance of the induction machine. The tuning

task is simple if the motor parameters remain constant. The fact that the rotor

resistance and magnetizing inductance changes with temperature and frequency and

the leakage inductance changes with the magnitude of the stator currents complicates

the tuning problem.

A mismatch between the vector controller and induction motor occurs as a

result of either the motor parameters changes with operating conditions, such as

temperature rise and saturation or of the wrong instrumentation of the parameters

in the vector controller. The later phenomenon is controllable, but the former is

dependent on the operating conditions of the motor drive and hence is uncontrollable.

The mismatch produces a coupling between the flux and torque resulting in channels

production in the machine. This has the following consequences:

1. Rotor flux linkages diverges from the commanded (reference) value.

2. Electromagnetic torque diverges from commanded (reference) value producing

a nonlinear relation between the actual torque and its commanded value.
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3. During torque transients, an oscillation is caused both in the rotor flux linkages

and in torque responses, with a settling time equal to the rotor time constant.

The rotor time constant is large on the order of 0.5 second or greater.

In a torque drive, above mentioned consequences 2 and 3 are most undesirable.

Although, in speed controlled drive the nonlinear torque-to-torque command will not

have a detrimental effect on the steady state operation, its effect is considerable during

the transients. The torque excursions can be smoothened, so they may not appear as

speed ripples with load and motor inertia.

Several techniques have been worked out to address the parameter sensitivity

in indirect field oriented control. Most of them are parameter adaptation techniques

based on the following strategies.

1. Direct monitoring of flux and torque producing stator current components.

2. Continuous measurement of instantaneous rotor and stator resistances [1], [2],

[3], [4], [5], [6], [7].

These techniques are classified as direct scheme for parameter adaptation. Most

of the parameter adaptation algorithms are themselves parameter dependent. This

particular aspect can cause significant error in the computation of the variables used

in parameter compensation techniques.

The parametric variations of the induction motor, if not properly taken care

of, can cause performance degradation of electric drives tremendously [1], [2], [3],

[8] and serve as the root cause in the development of robust control strategies for

improved performance of electric drives. Robust control techniques have also been

developed for rotor time constant [4] using model reference adaptive system (MRAS)

to estimate speed and current through fuzzy logic. Robust, indirect vector control

using the third order model of induction motor, to estimate electromagnetic torque is
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given in [5]. The robust controller using H∞ loop shaping cascaded with already well

tuned PI controller is designed by authors in [9], which improved the performance of

the controller with rotor resistance uncertainty. Robust indirect field oriented control

using a slip frequency calculation in feedback loop is presented in [5], where the

controller is dependent on the machine parameters. The auto disturbance rejection

controllers, are employed to overcome disturbances and parameter variations [10].

The plugin robust controller for already well tuned PI controller is presented in [9].

1.2. Motivation

The challenges in designing the high performance electric drives are multi-

faceted. There is stringent requirement of high precision in speed, torque, and position

control of electric drives. Moreover, the controller design under parametric uncer-

tainty for electric drives sets new challenges for the control engineers. Furthermore,

the parametric inconsistency generates the mismatch between the induction motor

and vector controller.

The parametric inconsistency causes the coupling between the flux and torque

producing channels in the machine that generates the torque and speed oscillations.

A flurry of controllers exists to reduce the effects of parametric uncertainty. The most

commonly used in electric drives and motion industry is PI controller. Its application

is adequate for wide control problems with modest performance requirements. Al-

though PI is simple in structure and easy to implement, but still tuning of PI controller

for particular performance metrics is an open problem. The controller tuning is always

an important factor to obtain the required optimal speed, torque o position tracking.

Since, it is hard to achieve the robust optimal tracking without a controller. The

robust tuning of controller are required to reject the external disturbances like load

torque variations and machine parametric variations.
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This thesis proposed two techniques to tune the PI controller. The proposed

techniques are:

1. Synthesis of PI controller using Kharitonov theorem: Kharitonov theorem is an

analysis tool to verify the robust stability of the system with characteristic

equation having unknown coefficients, used to synthesize the PI controller

including all parametric uncertainty. Since the theorem produces four corner

polynomial of controller parameters. Each polynomial is solved to obtain the

controller parameters numerically.

2. Fractional Order PI controller: The fractional order PI controller that provides

an extra degree of freedom to tune the controller is the order of integral.

The extra degree of freedom from the use of fractional order integrator and

differentiator made it possible to further improve the performance of traditional

PID controllers. Unlike a conventional PI controller, there is no systematic and

yet rigorous design or tuning method existing for a fractional PI controller.

The PI tuned with the proposed technique will be robust to parametric and

load torque perturbations. The proposed techniques are novel techniques to design

the integer order PI and fractional order PI.

1.3. Contribution of Dissertation

In the previous section we mainly highlighted the parameter uncertainty and

their effects on the performance of the drive system. The dissertation proposes the

robust control strategies for the indirect field oriented control of induction motor. The

proposed techniques are advantageous, since full dynamics of the induction machine

are considered instead of using reduced order model. Synthesis of PI controller using

Kharitonov’s theorem and fractional order PI controller are proposed in this thesis

to design the robust controller for electric drives.
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Kharitonov theorem is used to check the stability of the system with charac-

teristic equation having unknown coefficients. The coefficients are only needed to be

defined in the interval. The theorem generates the four corner polynomials and the

stability of each polynomial guarantees the robust stability of the system. The thesis

exploited four corner polynomials to synthesize the controller gains KP and KI , such

that the system is stable under all perturbation.

The fractional order control uses fractional integral and not as integer order

integral. The fractional order integral has the property to behave as infinite length

linear filter which also exhibits the iso-damping property. The fractional order integral

is implemented using Oustaloup approximation techniques, since, we can generate

third order controller with the proposed technique.

1.4. Dissertation Organization

The dissertation is organized in six chapters. The general introduction about

drives and parameter sensitivity is presented in the first chapter. The second chapter

focuses on the literature review about drives and robust control techniques. The

third chapter details the Kharitonov theorem and its applications for the synthesis of

the PI controller for vector controlled induction motor. The fourth chapter proposes

fractional order controller as an alternate solution to the PI controller as a robust

controller.
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CHAPTER 2. LITERATURE REVIEW ON DRIVES AND

ROBUST CONTROL

High performance drive refers to an electric drive with ability to offer precise

control, rapid dynamic and a good steady state response. High performance drives are

indispensable in safety critical applications due to their precision of control. Since the

inception of AC machines, several techniques have evolved to control speed, torque,

and position of machines. The basic control inputs are the voltage and frequency of

the applied voltage/current to the motor. Since, the grid supply voltage and frequency

are fixed, power electronic converters are used as an interface between the grid supply

and the electric motor. It is well-known that variable speed drive offers significant

energy savings in industrial applications.

Numerous control strategies employing inverter provide decent steady state but

poor dynamic response. The dynamic response signifies that the poor performance

arises due to deviation of air gap flux linkages from their set values. The discrepancy

in flux linkages have to be controlled by the magnitude and frequency of the stator and

rotor phase currents. The oscillations in the air gap flux linkages result in fluctuations

in electromagnetic torque, and if overlooked results in speed oscillations. This in detri-

mental in many high performance applications, such as, robotic actuators, centrifuges,

servos, metal-rolling mills, and process drives. All of the aforesaid applications require

high precision, fast positioning, or speed control. Such requirements will not be met

with the sluggishness of control due to the flux oscillations. Moreover, air gap flux

variations result in large digression of stator currents, requiring large peak converter

and inverter ratings to meet dynamics.

The control of a separately excited dc drive is simple and requires control of

flux and torque separately. Likewise, the independent control of flux and torque is

possible in ac drives. The stator current phasor can be resolved, along the stator
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flux linkages. The component along the rotor flux linkages is the field producing

current, but this requires the position of the rotor flux linkages at every instant. The

requirement of phase, frequency, and magnitude control of the current and the flux

phasor is achieved by inverter control. The control is achieved in field coordinates

and hence known as field oriented control, also sometimes known as vector control,

because it relates to the phasor control of rotor flux linkages.

In this chapter, we describe the brief history of the AC drives with the machine

classifications. The perturbation effects and parameter sensitivity to the temperature

variations. The proposed research and motivation to establish the research techniques

is discussed at the end.

2.1. Introduction

AC drive motor systems are predominantly used in different industries, like steel

mills, traction drives, in electric hybrid vehicles. Variable speed AC drives became

popular with the birth of vector control which uses the separate control of direct and

quadrature components of stator current. The d and q components can be used to

control the inverter magnitude, frequency and phase angle of output voltage. The

vector control was first proposed in 1968 in Germany by K. Hasse [11], based on the

concept of speed and torque control without direct measurement of flux, called indirect

field oriented control. The direct field oriented control, based on the concept of direct

measurement of flux was introduced by F. Blaschke in 1971 [12]. The introduction

of vector control was inspired by the development of dynamic model of induction

machine [13] in 1959, using the concept of Park’s transformation [14]. Direct self

control (DSC) [15] by Depenbrok, and direct torque control (DTC) [16] by Takahashi

and Noguchi proposed control strategies where transformations are not required and

are therefore scalar techniques. The DSC and DTC removed the dependency of

current loops and directly controlled the torque and flux using hysteresis control.
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2.2. A Brief History of the AC Drives

Electric drive is an integral part of speed control of motors, such as DC motors,

induction motors, synchronous motors, permanent magnet synchronous motors, and

switch reluctance motors. The drives are used for the soft starting, stopping and

gentle speed variations giving the four quadrant operation. The drives are used to

limit the currents for meticulous torque control. They help to run the motor beyond

their rated maximum speed, which is represented in torque speed curve as a constant

power region in Figure 1.

2.3. Motor Types

The AC motor used could either be induction motor or permanent magnet

synchronous motor depending on the requirements. AC machines can be classified

broadly as Synchronous Machines (SM) and Asynchronous Machine (ASM) also

called Induction Machine(IM) and electronically commutated machine [17]. The brief

classification of AC machines is shown in Figure 2.

Figure 1. Torque speed curve.
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2.4. Stability of Drives

The stability of the machine is important factor while working under variable

loads and speeds. The drive is in state of equilibrium when load torque and developed

torque becomes equal. If disturbance occurs in equilibrium position, the drive tries to

bring the speed of motor back to operating speed. If the operating speed is achieved

back then the machine is in stable equilibrium. If machine hits unstable equilibrium,

it either comes to rest or runs at a very high speed. The steady-state stability and

dynamic or transient stability points are important for AC drives.

The stability of drive at fixed speed is perturbed either by load torque variation

or due to the motor increased temperature over a prolonged period of operation. The

high temperature excursions generates the deviation of machine parameters from

their nominal values. Most of controller schemes described in Table 1 are parameter

dependent, which make them sensitive to parameter variations and disturbances.

Figure 2. AC machine classifications.
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2.5. Drive Control Schemes

The implementation of control techniques require the setup of machines and

inverter under different control schemes. The different control schemes used for the

AC machine can be classified either as open loop or closed loop control.

The open loop control is used when exact, precise control is not required. The

speed can be varied by just varying the voltage, frequency or both simultaneously.

Closed loop control is used when accurate or precise torque or speed control is

required. The closed loop control schemes can be further classified into, scalar control

and vector control.

2.6. Scalar Control

Scalar control methods provide an easy, cheap, and coarse control of torque

and speed. They are simple to implement and do not require sophisticated instru-

mentation. However, performance of this control scheme degrades during transients.

The degradation occurs due to inherit coupling between torque and field producing

current components of motor current. The most widely used scalar control techniques

are shown in Figure 3.

2.7. Field Oriented Control

The control of a separately excited dc drive is simple and requires control of

flux and torque separately. Likewise, the independent control of flux and torque is

possible in ac drives. The stator current phasor can be resolved, along the stator

flux linkages. The component along the rotor flux linkages is the field producing

current, but this requires the position of the rotor flux linkages at every instant. The

requirement of phase, frequency, and magnitude control of the current and the flux

phasor is achieved by inverter control. The control is achieved in field coordinates

and hence known as field oriented control, also sometimes known as vector control,

because it relates to the phasor control of rotor flux linkages.
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The field oriented control (vector control) is a high performance control scheme

for AC drives. This is the most common control scheme used in industry for high

precision control of speed, torque, and position. The scheme gives better speed

tracking in dynamic and steady state operations compared to scalar control. The

field oriented control are is normally implemented either in direct field oriented or

indirect field oriented control scheme.

Figure 3. AC machine control schemes.
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2.7.1. Direct Field Oriented Control

This method relies on direct measurement of flux and does not require flux

estimation. The schemes is called ‘direct’ because of the haul effect sensors used

to measure the flux directly. The control scheme can also be used as sensor-less

drive. The sensor-less schemes requires estimation of speed through direct current

measurements.

2.7.2. Indirect Field Oriented Control

This scheme does not require hall effect sensors and hence the name indirect.

The tuning of the vector control requires the exact values of rotor resistance, mutual

inductance, and rotor self inductance of the induction machine. The tuning task is

simple if the motor parameters remain constant. The fact that the rotor resistance

and magnetizing inductance changes with temperature and frequency and the leakage

inductance changes with the magnitude of the stator currents complicates the tuning

problem.

Figure 4. Indirect field oriented control.

A mismatch between the vector controller and induction motor occurs as a

result of either the motor parameters changing with operating conditions, such as

temperature rise, saturation, or wrong instrumentation of the parameters in the vector

controller. The later phenomenon is controllable, but the former is dependent on the

operating conditions of the motor drive and hence is uncontrollable.
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The most affected parameters are the rotor resistance Rr, magnetizing induc-

tance Lm and rotor self inductance (Lr) [2]. The parameter variations caused by

temperature and magnetic saturation causes a mismatch of plant from controller in

both steady state and transients. Several solutions for removing parameter sensitivity

from field oriented control are presented in [33], [34].

2.8. Direct Torque Control

The scheme takes the advantage of controlling the stator flux and torque directly

and uses the hysteresis control structure for flux and torque. This method uses

feedback control of torque and stator flux, which are computed from the measured

stator voltages and currents. As the method does not use a position or speed sensor to

control the machine and uses its own electrical output currents and resulting terminal

voltages, this is also referred as a direct self-control scheme. The method uses a

stator reference model of the induction motor for its implementation, thereby avoiding

the trigonometric operations in the coordinate transformations of the synchronous

reference frames. This is one of the key advantages of the control scheme. The scheme

depends only on stator resistance and no other parameters. The implementation

of the scheme requires flux linkages and torque computations, plus generation of

switching states through a feedback control of the torque and flux directly without

inner currents loops. The torque and flux feedback loops contain no PI controller(or

any other controller) so, tuning of PI controller is therefore not a problem. Rather it is

a problem of choosing the best method to control inverter switching table. Improved

estimation techniques to estimate torque and flux also enhances the performance

of DTC. The main disadvantages of direct torque control are, variable switching

frequency, chattering at low speed, direct control of current is absent, and high ripples

in current and torque.
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2.9. Flux Weakening

The flux weakening operation allows the speed of the motor go beyond the base

speed usually two to three times of the rated speed. The flux weakening region is

also known as the constant power operation, since power is kept constant and torque

is reduces as shown in Figure 1. The field weakening region requires proper dq-

current distributions for the torque capabilities [35]. The optimal strategies used for

the torque maximization are either the calculations of ids and iqs based on motor

parameters or selection of ids and iqs using flux and voltage regulators.

2.10. Issues in AC Drives

The low voltage AC drives usually ranging from 0 to 2.3 KV and have applica-

tions in home appliances and very small industries. The medium voltage AC drives

ranging from 2.3− 13.8KV are mostly used in industries such as, rolling, milling, oil

and gas, cement, and metal industry. The medium voltage drives constitute only 3%

of variable speed drives in different applications [36]. The electric drives for these

applications can reduce the overall energy losses and cost. Energy efficiency is a

trade-off and the most common challenges and problems that arises for drives are:

1. Switching devices problems, which includes, switching losses, maximum rated

current, voltage, and switching frequency.

2. Motor side problems, such as dv
dt
, puts stress on insulation of motor winding,

shaft vibration and common mode voltage generated by PWM inverter.

3. Line side problems for example, power factor problem arises due to distorted

currents at source, power quality which depends on converter topology, and

resonance of LC filters.

Switching losses occur due to AC-DC conversion and then DC-AC conversion

within semiconductor switching devices. The maximum voltage from AC mains is
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lower at the terminals of AC machine. The switching also generates losses and

chattering in current and voltage. The sine wave quality of output voltage is very low.

The patterns of PWM signals in inverter usually give rise to common mode voltage.

The common mode voltage generated between neutral point of inverter and ground

acts as a source and causes problem.

2.10.1. Low Speed Operation Issues

The applications of high torque and low speed operation of the induction

motor is critical to control for variable speed drive. For example, hybrid vehicles

or electric vehicles have major requirement of high torque at low speed. The design

of cruise control acting on brake pedals and throttle of autonomous Citrön C3 vehicle

using fractional order controller is designed to setup robustness against un-modeled

parameters and change in parameters [37].

The removal of speed dependent terms in estimator help to design a drive that

can operate even at very low speed [38]. The sliding mode observer can remove the

dependency on the speed dependent terms for parameter estimation. The model

reference adaptive control (MRAC) can be used to estimate the speed and other

control variables based on measured currents also gives the robustness to parameter

variations and low speed operation [39].

2.10.2. Flux Weakening Operation Issues

The induction motor runs at the maximum speed (rated speed) of synchronous

speed Ns =
2πfs
p

. The synchronous speed is attained at no load condition. The

maximum attainable speed depends on load torque and hence slip. The normal

mode of operation with the slip greater than unity causes the speed go beyond rated

speed. The induction motor above rated speed behaves like generator. The maximum

speed is also dependent on fs the supple frequency. The increase in fs, beyond

rated value reduces the stator flux linkages. The reduction in flux linkages arises due
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to fixed DC bus voltage. The increase in speed beyond rated speed speed reduces

flux, consequently reducing the torque. The flux weakening region is also known as

constant power region since, torque producing component remains constant.

The motoring operation beyond the rated speed can be attained using the flux

weakening operation mode. The flux weakening operation can be obtained using:

• Stator Flux Linkages controlled (Direct Scheme)

• Rotor Flux Linkages controlled (Indirect Scheme)

The stator flux linkages controlled is obtained by considering the stator dq-

voltages. The resistive drop can be eliminated and assuming the steady state

operation:

Vqs = pλqs + ωSλds (2.1)

Vds = pλds − ωSλqs (2.2)

with

Vs =
√

V 2
qs + V 2

ds

Vs = ωs

√
λ2
qs + λ2

ds (2.3)

λs =
Vs

ωs

(2.4)

The direct vector control scheme assumes that λds is aligned with the stator

flux linkages phasor. The alignment of axis causes the q-axis flux linkages λqs go to

zero.

λqs = 0 (2.5)

λds = λs (2.6)

Te = iqsλs (2.7)
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The air-gap power then reduces to:

Pa = Teωs = Vsiqs (2.8)

The constant iqs in flux weakening region therefore gives constant power. The

rotor flux linkages (indirect scheme) simply can be implemented as a function of rotor

speed as:

λref
r =

ωb

|ωr|λb,±ωb ≤ ±ωr ± ωr(max) (2.9)

The basic control scheme for flux weakening is not enough to obtain the

maximum possible speed (beyond rated speed). The rotor flux is not a linear function

of stator flux. The change in rotor flux linkages produces big change in stator flux

linkages. The change of stator flux may demand more voltages than the rated values.

The DC-link is fixed and limited, and high demand sets constraints on constant

power operation. The implementation of flux weakening requires in rotor flux linkages

controlled operation requires much attention [40].

2.10.3. Perturbation Effects

The perturbation in the form of load, voltages, and frequency variations

produces undesired operations in steady state and dynamic response of the induction

motor. The sudden load variation tends to vary the stator currents accordingly. The

increase in load demands the high generated torque from the motor. The high demand

of the torque require high stator currents. The supply voltage variations also sets the

constraint on inverter. The inverter that can compensate the variations in frequency

and voltage requires high cost. The low frequency harmonics can be eliminated

by choosing appropriate switching frequency. The high frequency harmonics are

attenuated using the LC-filters.
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2.11. Detuning of Controller

The controller tuning requires known parameters of the induction motor. The

parameters of induction motor do not remain constant over the operation of drive.

The parameter variations arises due to ambient temperature of the induction motor

causes the performance degradation of field oriented control scheme. The parameter

variations produces the detuning effect. The variation in machine parameter arises

due to the ambient temperature variations and operating conditions. The rotor time

constant (τr =
Lr

Rr

) depends on rotor resistance (Rr) and rotor inductance (Lr). The

magnetizing inductance (Lm) and stator resistance (Rs) also varies with ambient

temperature. The detuning of controller produces inconsistency in commanded and

desired signals.

2.12. Control Methodologies

The adaptive control, Model Reference Adaptive System (MRAS), self tuning

adaptive regulators are proposed in literature to overcome the performance issues

of electric drives discussed in previous sections [10]. The artificial intelligent control

techniques based on self-learning and self-adaptation to have a robust control, despite

of perturbation are a major control methodologies used for electric drives.

The robust control techniques such as H∞, Youla parameterization [9] gives

the robustness in a certain interval of parameter variations. The new emerging

control technique based on Fractional Order Controller (FrOC) is making its place

in the field of robust controllers. Fractional order calculus is an area of mathematics

that deals with the derivatives and integrals from non-integer order. The fractional

order proportional, integral, and derivative (FrOPID) controllers have achieved a

significant interest in the last few decades. In fact, FrOPID provides more flexibility

in controller design procedure than standard integer order PID controllers, because

FrOPID provides five degrees of freedom. The fractional order calculus theory is used
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to design the PI controller, although the classical PID controller is predominant in

control development. The fractional order controllers (FrOC) provides the isodamping

property which shows constant phase invariant to gain changes. The isodamping

property gives the constant phase at the ωc. The tuning of FrOC involves the

approximation techniques, such as Oustaloup approximation [41, 42].

In [43], the authors used a multirate model reference adaptive system to estimate

the rotor time constant for the IFOC which is highly dependent on rotor time

constant. Reference [44] used the adaptive sliding mode controller with recurrent

radial basis function networks to control the speed of the induction motor in IFOC

scheme.

2.12.1. Robust Control Strategies for AC Drives

The electric machine is an integral part of the drive system where the controller

is used to keep the desired performance of motor. The controllers are tuned mostly

offline using the nominal machine parameters at nominal operating conditions. The

online tuning requires a continuous monitoring of the machine parameters, which

in turn increases the controller efficiency at the cost of computational overhead.

Different controller schemes are used to control the machine and all of the schemes

have their own merits and limitations. Each of the control schemes is dependent on

different machine parameters, for example, IFOC depends in Rr and Lm while DTC

depends on the Rs [45]. Various state of the art robust control strategies are presented

in Table 2 with references and their brief description.
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Table 2: Recent robust control of induction motor.

S. No. Ref. Techniques Established Loop

01 [46] Adaptive sliding mode control for global position tracking

in the presence of uncertainties.

P

02 [47] A survey presenting sliding mode control strategies for

induction motor.

S, P

03 [48] Forth order descriptor type robust Kalman filter used to

estimate rotor flux and speed.

S

04 [49] DTC-SVM offers fast dynamic response and easy to

implement with adaptive parameter estimation scheme

for robust speed control.

S

05 [50] Control of six phase induction motor with combinational

concept of predictive control and extended Kalman filter

for robust speed control.

S

06 [51] A robust control against speed sensors faults using hy-

brid fault tolerant control with PI and H∞ controllers.

The second architecture is based on generalized internal

model control.

S

07 [52] Interfacing multiple model extended Kalman filter is

replaced by the extended Kalman filter to reduce the

influence of gross external disturbance and internal es-

timated error.

S

Continued on next page.
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Table 2 – Continued from previous page.

S. No. Ref. Techniques Established Loop

08 [53] Speed and torque control for IFOC using H∞ and

quantitative feedback theory immune to rotor resistance

perturbation.

S, T

09 [54] Fault diagnoses robust linear discriminator schemes,

which can detect broken bar and short circuit of stator

winding.

S, P

10 [55] The block control technique quasi continuous sliding

mode manifold design and the second order sliding mode

super twisting algorithms is designed to track speed and

flux of single phase induction motor under perturbations.

S

11 [56] The PI sliding mode control established to increase ro-

bustness, efficiency and elimination of chattering.

S

12 [57] Armature voltage field oriented approach combined with

robust linear generalized PI observer based output feed-

back controller for the induction motor.

S

13 [58] Sliding mode observer based on singular perturbation

theory for IFOC, robust to rotor resistance variations.

S

14 [59] Hybrid robust control using fuzzy logic for position con-

trol of induction motor under vector control scheme.

P

15 [10] Auto disturbance rejection controllers without the need

of estimation of rotor flux.

S

Continued on next page.
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Table 2 – Continued from previous page.

S. No. Ref. Techniques Established Loop

16 [60] Flux controllers are designed using Lyapunov lineariza-

tion approach associated with sliding mode control.

Speed loop is designed using PI controller and Lyapunov

method based on backstepping procedure.

S

17 [61] Online estimation of the rotor resistance with online rotor

resistance adaptation (Rs50% and Rr100%).

S

18 [62] Ninth order adaptive observer estimates rotor flux and

rotor resistance and a third order high gain observer for

speed and acceleration.

S

19 [63] Nonlinear robust feedback control with second order

observer for rotor flux and third order high gain observer

for speed and acceleration (Rr and Rs).

S

20 [64] MRAS with observing instantaneous reactive power of

magnetizing inductance immune to stator and rotor re-

sistance thermal variations.

S

21 [65] Variable structure control for DTC scheme. S

22 [66] Variable structure control with an adaptive gain for the

indirect vector control.

P

23 [67] Gain scheduled flux observer subject to parameter vari-

ations (Rr and Rs ± 50%).

S

Continued on next page.
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Table 2 – Continued from previous page.

S. No. Ref. Techniques Established Loop

24 [68] Novel control strategy for stator active-reactive currents

of DFIM. Since the rotor currents are not measured

forming the proposed control scheme as output feedback

controller.

S, P

25 [69] Field weakening operation of induction motor under vec-

tor control scheme with modulation depth control.

S
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CHAPTER 3. KHARITONOV THEOREM AND

SYNTHESIS OF CONTROLLER

The system will be stable if and only if all roots of the characteristics polynomial

lie in the open left of the complex plane and is known as Hurwitz stable. The

question of robust stability arises when the system depends on uncertain parameters

whose values are unknown but satisfy known bounds. The presence of such uncertain

parameters means that the coefficients of the characteristic polynomial are unknown

but bounded. This then define the family of characteristic polynomials. The system

will be stabilizable if all polynomials in this family are Hurwitz stable. Kharitonov’s

theorem is used to assess the stability of the dynamical system for the family of

polynomials. In this chapter, Kharitonov’s theorem is utilized for the synthesis of the

PI controller for the fifth order model of induction motor for speed loop. The closed

loop characteristics polynomial involving controller unknown coefficients is solved

for stability analysis using Hurwitz matrix, to obtain bounds of the coefficients of

controller. The inner current loops are designed using the classical control techniques.

3.1. Introduction

The demand for high performance electric drives is steadily increasing, given

the growing emphasis for electrification of the transportation industry. In many

similar applications, electric drives are required to perform under tighter control

requirements even when subject to widely varying ambient or operating conditions

[70]. In such cases, the drift introduced in motor parameters due to such variations

typically degrade the control performance, especially, in AC drives using induction

motors. The degradation occurs mainly because, the mismatch between the plant and

controller creates discrepancies between commanded and actual/measured values of

torque and flux, which induce undesirable torque oscillations or even trigger drive

instability [45, 71].
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Research efforts to counteract the effects of parametric variations mainly rely

on tracking drive parameters, either by measurement or observer based methods

[72], [73], [74], and adapting the controller parameters via gain scheduling or using

the nonlinear sliding mode controller [75]. Since PID controllers are widely used in

industrial control systems, the tuning of PID controllers for induction motor drives

are based on well established classical control techniques including the symmetric

optimum technique [76], [45] at nominal conditions.

In contrast, we consider an alternate approach for tuning these controllers

using Kharitonov’s theorem. The theorem [77] provides a necessary and sufficient

conditional test for Hurwitz stability when four variants of the polynomials created

using the upper and the lower bounds on coefficients are strictly stable. Therefore,

an immediate application of the theorem is for robust stability analysis and check the

robust stability of the system in the presence of uncertainties, [78], [79]. Relatively,

the theorem has fewer applications for control synthesis. An example in [80] illustrates

the design of a robust power system stabilizer while [79] presents an application to

CMOS manufacturing under process variations.

In this chapter, we show how Kharitonov’s theorem can be exploited to deter-

mine the controller gains, if the uncertainties in key drive parameters are restricted

to specified intervals. These intervals can be specified given reasonable knowledge

of variations in operating or ambient conditions. For an induction machine drive,

the parameters magnetizing inductance Lm and rotor resistance Rr vary in a specific

range with changes in temperature [2], [45]. The resulting interval characteristic

polynomials for the closed loop system obtained with the linearized induction machine

model can be analyzed with Kharitonov’s theorem to compute robust gains for the

controllers. Therefore, the proposed tuning method obviates the need for online

parameter estimation, additional instrumentation, or gain scheduling.
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3.2. Problem Statement

We consider Indirect Field Oriented Control (IFOC), a vector control scheme

for induction motor drives as shown in Figure 5. The scheme has three closed loops,

where two internal loops for the torque producing component are overseen by the outer

(third) speed control loop. The upper and lower limits for each of the controller in

loop is given in Appendix (B). The scheme is sensitive to three parameters namely:

rotor resistance (Rr), mutual inductance (Lm), and rotor self-inductance (Lr). A

standard dynamic model for induction motor in the synchronously rotating reference

frame [45], [81] is linearized to obtain the transfer function G(s) = P (s)
Q(s)

from vqs to ωm

(details in Appendix (B)). The inverter is represented by an averaged model (with a

single time constant and delay) [45]. The inverter transfer function I(s) is noted in

the Appendix (B). With Gc(s) denoting the controller, the speed control loop is as

shown in Figure 6.

Figure 5. Block diagram of vector control with flux
weakening.

Figure 6. Block diagram of speed loop.
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The closed loop transfer function between measured speed and reference speed

ωm

ω∗
m
, is denoted by:

Gcl(s) =
Pcl(s)

Qcl(s)
(3.1)

The specific form of Gcl(s) is described in the Appendix (B). The uncertainties

in the motor parameters enter both the denominator and numerator of the resulting

closed loop transfer function. The objective is to select the coefficients of the

controller function Gc(s) = KP + KI

s
such that the system is robust to the parametric

uncertainties as shown in Figure 7. Here, point A corresponds to operation with

nominal parameters for rotor resistance and magnetizing inductance denoted by:

A : (Rr, Lm). Similarly, B : (Rr, 0.8Lm), C : (2Rr, 0.8Lm), D : (2Rr, Lm).

Figure 7. Parameter space.
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3.3. Solution with Kharitonov’s Theorem

Kharithonov’s theorem provides a robust stability criterion for interval polyno-

mial of the form:

G(s) =

n∑
k=1

[ak, ak]s
k, k = 0, 1, 2, ......, n (3.2)

The theorem states that the interval polynomial (3.2) are strictly Hurwitz, if

and only if four polynomials, obtained by the arrangement of upper and lower bounds

on coefficients as noted in Eqn.(3.3), are strictly Hurwitz.

G1(s) = a0 + a1s+ a2s
2 + a3s

3 + a4s
4 + a5s

5

G2(s) = a0 + a1s+ a2s
2 + a3s

3 + a4s
4 + a5s

5

G3(s) = a0 + a1s+ a2s
2 + a3s

3 + a4s
4 + a5s

5

G4(s) = a0 + a1s+ a2s
2 + a3s

3 + a4s
4 + a5s

5 (3.3)

For the system considered in this chapter, the four corner polynomials generated

from Eqn.(B.5) are as follows:

G1(s) = d0 + d1s+ d2s
2 + d3s

3 + d4s
4 + d5s

5

+d6s
6 + d7s

7

G2(s) = d0 + d1s+ d2s
2 + d3s

3 + d4s
4 + d5s

5

+d6s
6 + d7s

7

G3(s) = d0 + d1s+ d2s
2 + d3s

3 + d4s
4 + d5s

5

+d6s
6 + d7s

7

G4(s) = d0 + d1s+ d2s
2 + d3s

3 + d4s
4 + d5s

5

+d6s
6 + d7s

7 (3.4)
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The coefficients d1 . . . d7 are functionally noted in Appendix (B). Each polyno-

mial in 3.4 is analyzed for the Hurwitz stability where, the stability test of Hurwitz

matrix generates 28 inequalities with two unknown coefficients.

3.3.1. Tuning Procedure

The four polynomials given in Eqn. 3.3 with coefficients ajs depends on the

machine parameters Rr and Lm for every j. The min(ajs) and max(ajs) are attained

at corner points of the parameter square given in Figure 7. The values of ajs is given

in the table 3:

Table 3. Lower and upper bounds of ajs.

Lower Bound Upper Bound
a0 0 0
a1 4.139e8 1.619e9
a2 1.498e7 3.018e7
a3 1.574e5 1.739e5
a4 242 349.3
a5 1 1

The numerator in the transfer function given in Eqn. B.5 has the upper and

lower bound given in table 4 are given to compute the dj coefficients.

Table 4. Lower and upper bounds of bjs.

Lower Bound Upper Bound
b0 9.049e8 1.803e9
b1 9.56e6 1.084e7
b2 4.189e5 6.139e8
b3 3450 3459
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Based on the values of ajs we can find the coefficients of four equations given

in Eqn. 3.4. The coefficients are functions of controller parameters KP and KI .

n4 = K1(KP b3) (3.5)

n3 = K1(KIb3 +Kpb2) (3.6)

n2 = K1(KIb2 +Kpb1) (3.7)

n1 = K1(KIb1 +Kpb0) (3.8)

n0 = KIb0 (3.9)

d7 = 1 (3.10)

d6 = (K2 + a4) (3.11)

d5 = (a4K2 + a3) (3.12)

d4 = (K2a3 + a2 +KIKP b3) (3.13)

d3 = (K2a2 + a1 +KIb3 +KP b2) (3.14)

d2 = (K2a1 + a0 +KIb2 +KP b1) (3.15)

d1 = (a2K2 +KIb1 +KP b0) (3.16)

d0 = KIb0 (3.17)

The stability of four polynomial obtained in Kharitonov’s theorem guarantees

the stability of the system with arbitrary Rr and Lm from square given in Figure 7.

The lower and upper bounds on djs obtained are given in table 5.

The Hurwitz matrix is generated for all of the four polynomials given in Eqn.

3.4 and the matrix is function of controller parameters KP and KI . The principle

minors are obtained from Hurwitz matrix, which produces the 28 polynomials as a

function of controller parameters.
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Table 5. Lower and upper bounds of djs.

Lower Bound Upper Bound
d0 6.7e13 1.3e14
d1 6.3e8+9.5e6KI+9.04e8KP 1.2e11+1.1KI+1.8e79KP

d2 1.6e12+4.2e5KI +9.56e6KP 6.5e12+6.1e8KI+1.1e7KP

d3 6.0e10+3450KI+4.2e5KP 1.2e11 +3459KI+6.1e8KP

d4 6.4e9+3450KIKP 7.3e9+3459KIKP

d5 1.12e6 1.57e6
d6 4242.9 4394.3
d7 1 1

By using the optimization procedure the values of KP and KI are obtained for

which all the 28 polynomials are positive. The values obtained for the KP and KI

are then:

KP = 0.8 (3.18)

KI = 2.9 (3.19)

3.4. Tuning of PI Controller Using Classical Approach

Motion control systems often must respond to large changes in the reference

values of the speed, torque, and position. For large changes, the overall system is

usually nonlinear. The nonlinearity occurs due to mechanical load which is often

highly nonlinear. Additional nonlinearity is introduced by voltage and current limits

imposed by inverter and main supply and motor itself. The classical PI controller

tuning therefore requires that the input reference change and load disturbances are

small around steady-state operating point. Therefore, the system can be assumed

linear around the steady-state operating point, so that the basic concepts of linear

control theory can be applied. For controller design a cascade control structure shown

in Figure 8 is used. The cascade control structure is commonly used for motor drives

because of its flexibility. It consists of distinct control loops; the innermost current
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(torque) loop is followed the speed loop. If position needs to be controlled accurately,

the outer most position loop is superimposed on the speed loop. Cascade control

requires that the bandwidth (speed of response) increases towards the inner loop,

with the torque loop being the fastest, and the position loop being the slowest. The

two loops are tuned for bandwidth of 250rad/s and 25rad/s respectively with a phase

margin of 60o for indirect field oriented controlled induction motor drive. Since, the

parameters or gains of PI controller are based on machine parameters, the parameters

of PI are calculated while assuming the estimation of all the machine parameters is

perfect . This assumption is good, because it can create parametric mismatch between

controller and induction motor under operation for detailed insight of the effect of

parametric mismatch.

3.4.1. Speed Controller

In vector control block diagram shown in Figure 5 the two reference currents

irefsd and irefsq are inputs to the flux linkage and torque controllers. The d-winding

reference current irefsd controls the rotor flux linkage λrd, where the q-winding current

irefsq controls the electromagnetic torque Tem developed by the motor. The reference

dq winding currents (the outputs of the proportional-integral PI controllers) are

converted into vrefsd and vrefsq voltage references. The dq-abc transformation produces

the three voltage reference signals vrefa , vrefb , and vrefc for the inverter. The voltage

controlled inverter can deliver the desired currents to the induction motor.

Figure 8. Cascade control of motor drive.
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The outer speed loop is designed assuming unity feedback, while inner current

(torque) loop is considered ideal having the gain of unity as shown in Figure 9.

Since the system is assumed in steady state, and under indirect field oriented control

the rotor d-axis current becomes zero(because d-axis is aligned along the rotor flux

linkage) i.e., ird = 0 and isd is at rated value and is a constant. The d-axis flux linkage

equation can be written as:

λrd = Lrird + Lmisd

λrd = Lmisd (3.20)

by using ird = 0 and irq = −Lm

Lr
isq the electromagnetic torque equation:

Tem =
P

2
(λrqird − λrdirq)

Tem =
p

2

L2
m

Lr

tsdisq

Tem = kisq (3.21)

where k = p
2
L2
m

Lr
isd is a constant. The open loop transfer function is:

Gol = (kp +
ki
s
)k(

1

sJeq
)

Gol =
ki
s
(1 +

s
ki
kp

)
k

sJeq
(3.22)

So for given cutoff frequency (ωc) and phase margin φPM , the kp and ki can be

calculated such that:
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(
kik

Jeq

)(1 + s
ki
k

s2

)
s=jωc

= 1 (3.23)

∠
(
kik

Jeq

)(1 + s
ki
k

s2

)
s=jωc

= −180o + φPM (3.24)

The bandwidth can be found using the closed loop transfer function Gcl, given

as:

Gcl =
Gol

1 +Gol

(3.25)

Figure 9. Block diagram of speed loop.

3.4.2. Current Control Design

Similarly the current loop shown in Figure 10 is designed for the given cutoff

frequency and phase margin. Under vector control conditions and steady state

operation the v∗sd and v∗sq can be written as:

v∗sd = vsd + vsd,compensated (3.26)

v∗sq = vsq + vsq,compensated (3.27)

where the stator d-axis and q-axis voltages are:

vsd = Rsisd + σLs
disd
dt

(3.28)

vsq = Rsisq + σLs
disq
dt

(3.29)
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The Laplace transform of the equation vsd and vsq is given as:

isd(s) =
1

Rs + sσLs
vsd(s) (3.30)

isq(s) =
1

Rs + sσLs
vsq(s) (3.31)

Since the controller parameters are calculated based on the ideal conditions

and disturbance can be avoided therefore, it is assumed that the vsd,compensated and

vsq,compensated are disturbance terms and can be set to zero. The open loop transfer

function for the current loop shown in Figure 10 is:

Gol =
kp +

ki
s

Rs + sσLs

Gol = ki

1 + s
ki
kp

s2σLs + sRs
(3.32)

Figure 10. Block diagram of current loop.

The parameters for PI controllers for both d-axis and q-axis can be found from:

|Gol|s=jωc
= 1 (3.33)

∠Gol|s=jωc = −180o + φPM (3.34)
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3.5. Tuning of PI Controller Using Symmetric Optimum

The magnitude and symmetric optimization techniques are two related methods

for designing “optimal” linear control systems in the frequency domain. The technique

is most commonly used in industries to tune the PID controller. In magnitude

optimum technique the main objective is to maintain the magnitude response curve

as flat as close to unity for as large bandwidth as possible for the given plant and

controller. The magnitude optimum is an optimization technique to find the best

controller coefficients for a given controller configuration that previously had been

determined [45].

3.6. Block Diagram and its Reduction

The block diagram of the indirect vector controlled induction motor is produced

by developing transfer functions of different components of the drive system shown in

Figure 11. The block diagram shows the overlap between the torque current feedback

loop and induced emf feedback loop. The overlap can be removed by using the block

reduction techniques.

Figure 11. Block diagram of vector control induction
motor with constant rotor flux.

3.6.1. Indirect Vector Controlled Induction Machine

The indirect vector controlled induction motor drive is obtained with the key

assumptions of constant rotor flux linkages:

λr = a constant (3.35)
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pλr = 0 (3.36)

where p is derivative operator. The stator equations of the induction motor are then

obtained as:

veqs = (Rs + Lsp)i
e
qs + ωsLsids

e + Lmpi
e
qr + ωsLmi

e
dr (3.37)

veds = −ωsLsi
e
qs + (Rs + Lsp)i

e
ds − ωsLmiqr

e + Lmpi
e
dr (3.38)

since by vector controller, we have:

ieqr = −Lm

Lr
ieqs (3.39)

iedr =
λr

Lr
− Lm

Lr
ieds (3.40)

substituting the rotor currents in to stator voltage equations yields:

veqs = (Rs + σLsp)i
e
qs + σLsωsi

e
ds + ωs

Lm

Lr
λr (3.41)

veds = (Rs + σLsp)ids
e − σLsωsids

e +
Lm

Lr
pλr (3.42)

where σ is the leakage coefficient. The flux producing component of the stator current

which is d axis stator current in the synchronous frames is constant in steady state

and hence its derivative is also zero.

if = ieds (3.43)

pieds = 0 (3.44)

The torque producing component of the stator current is the q axis current in

the synchronous frames, given by:
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iT = ieqs (3.45)

by plugging into q axis voltage equation gives:

veqs = (Rs + σLsp)iT + ωsLaωsif + ωs
Lm

Lr
λr (3.46)

where La is defined as:

La = σLs =

(
Ls − L2

m

Lr

)
(3.47)

substituting λr = Lmif gives the q axis stator voltage in synchronous reference frame:

veqs = (Rs + σLsp)iT + ωsLaωsif + ωs
L2
m

Lr
if = Rs + LapiT + ωsLsif (3.48)

The second stator equation is not required, the solution of either will yield

iT , which is the variable under control in the system. Now the stator frequency is

represented as:

ωs = ωr +
iT
if
(
Rr

Lr
) (3.49)

substituting ωs in Eqn. 3.48 gives:

veqs = (Rs +
RrLs

Lr

+ Lap)iT + ωrLsif (3.50)

From which the torque producing component of the stator current is derived as:

iT =
veqs − ωrLsif

Rs +
RrLs

Lr
+ Lap

=
Ka(vqse−ωrLsif )

1 + sTa
(3.51)

40



where

Ra = Rs +
Ls

Lr
Rr

Ka =
1

Ra

Ta =
La

Ra

The electromagnetic torque is given as:

Te =
3

2

P

2

L2
m

Lr

if = KtiT (3.52)

The load dynamics can be represented, given the electromagnetic torque and a

load torque that is considered to be frictional for this particular case, as:

J
dωm

dt
+Bωm = Te − Tl = KtiT − Blωr (3.53)

and hence the transfer function between the speed and the torque producing current

is derived as:

IT (s)

ωr(s)
=

Km

1 + sTm

(3.54)

where

Km =
P

2

Kt

Bt
(3.55)

Bt = B +Bl (3.56)

Tm =
J

Bt

(3.57)

3.6.2. Inverter

The stator q axis voltage is delivered by the inverter with a command input that

is the error between the torque-current feedback. The gain of the current controller
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is considered unity. The inverter is modeled as a gain, Kin with a time lag of Tin.

The gain is obtained from dc-link voltage to the inverter, Vdc, and maximum control

voltage, Vcm, as:

Kin = 0.65
Vdc

Vcm
(3.58)

The term 0.65 is introduced to account for the maximum peak fundamental

voltage obtainable from the inverter with a given dc-link voltage. The time lag in

the inverter is equal to the carrier switching-cycle time, which half the period, and is

given in terms of PWM switching frequency as:

Tin =
1

2fc
(3.59)

3.6.3. Speed Controller

A PI controller is used to process the speed-reference and filtered speed feedback

signals. The PI controller is given as:

Gs(s) =
Ks(1 + sTs)

sTs
(3.60)

where Ks and Ts are the gain and time constants of the speed controller respectively.

The feedback for the current signal is Gc(s) = Hc.

3.6.4. Speed Feedback

The speed feedback signal is processed through first order filter given by:

Gω(s) =
ωrm(s)

ωr

=
Hω

1 + sTω

(3.61)

Using the pickoff point for the electrical system can be moved to the iT point

which further can be simplified where the current loop transfer function is given by:
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G)i(s) =
KaKin(1 + sTm)

(1 + sTin[(1 + sTa)(1 + sTm) +KaKb] +HcKaKin(1 + STm))
(3.62)

where emf constant is given by Kb = KmLsif .

3.6.5. Simplified Current Loop Transfer Function

The third order current transfer function
i∗Tm

Hci∗T
, can be approximated to a first

order transfer function as follows. Tin is usually negligible compared to T1,T2, and

Tm and in the vicinity of crossover frequency, the following approximation are valid:

1 + sTin ≈ 1

(1 + sTa)(1 + sTin ≈ 1 + s(Ta + Tin) ≈ 1 + sTar (3.63)

where Tar = Ta + Tin. Substituting these into Gi(s) results in:

Gi(s) =
KaKin(1 + sTm)

(1 + sTar)(1 + sTm) +KaKb +HcKaKin(1 + sTm)
(3.64)

which can written in compact form as:

Gi(s) =
T1T2KaKin

TarTm

(1 + sTm)

(1 + sT1)(1 + sT2)
(3.65)

where

− 1

T1
,− 1

T2
=

−b±√
b2 − 4ac

2a
(3.66)

a = TarTm (3.67)

b = Tar + Tm +HcKaKinTm (3.68)

c = 1 +KaKb +HcKaKin (3.69)
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The transfer function Gi(s) is simplified by using the fact that T1 < T2 < Tm

and near the vicinity of the crossover frequency, the following approximations are

valid:

1 + sTm ≈ sTm (3.70)

1 + sT2 ≈ sT2 (3.71)

substituting these into Gi(s) yields:

Gi(s) =
KaKinT1

Tar

1

(1 + sTi)
=

Ki

(1 + sTi)
(3.72)

where Ki and Ti are the gain and time constant of the simplified current loop transfer

function, given by:

Ki =
KaKinT1

Tar

(3.73)

Ti = T + 1 (3.74)

The model reduction of the current loop is necessary to synthesize the speed

controller. The loop transfer function of the speed is given then by the substitution

of this simplified transfer function of the current loop.

3.6.6. Speed Controller Design

The transfer function of the speed loop is given by:

GH(s) ≈ Ks

Ts
Kg

(1 + sTs)

s2(1 + sTωi)
(3.75)

where approximation 1+ sTm ≈ sTm is made and the current loop time constant and

speed filter time constant are combined into an equivalent time constant:
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Tωi = −Tω + Ti (3.76)

Kg = KiKm
Hω

Tm
(3.77)

The transfer function of the speed to its command is derived as:

ωr(s)

ω∗
r

=
1

Hω

(
1 + sTs

1 + sTs +
Ts

KgKs
s2 +

TsTomegai

KgKs
s3

)
(3.78)

By equating the coefficient of the denominator polynomial to the coefficient of

the symmetric optimum function, Ks and Ts can be evaluated:

1sTs

1 + (Ts)s+ (3
8
T 2
s )s

2 + ( 1
16
T 3
s )s

3
(3.79)

The symmetric optimum function found is for a damping ratio of 0.707. From

which the speed controller constants are derived as:

Ts = 6Tωi (3.80)

Ks =
4

9

1

KgTωi
(3.81)

The proportional and integral gains of the speed controller are, respectively,

then obtained as:

Kp = Ks =
4

9

1

KgTωi
(3.82)

Ki =
Ks

Ts

=
2

27

1

KgT
2
ωi

(3.83)

The symmetric optimum controller gains for the motor given parameter are:
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Kp = 0.28 (3.84)

KI = 16.715 (3.85)

The constant gain as expected can be observed in the Figure 12.
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Figure 12. Symmetric optimum speed controller.

3.7. Results

We consider a 3 phase induction motor drive system with parameters (from [71])

as noted in Appendix (B). We consider variations in two key parameters namely:

rotor resistance Rr and mutual inductance (Lm) as noted earlier, in Figure (7). The

speed controller tuned via Kharitonov’s theorem is compared with a standard tuning

procedure - the Symmetric Optimum [76] popularly used in industrial drives and the

classical method. The controller settings obtained with these three approaches are

shown in Table. 6.
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Table 6. Controller parameters for different tuning techniques.

Kp Ki

Classical PI 0.24 3.53
Symmetric Optimum 0.28 16.715
Kharitonov Theorem 0.8 2.9

3.7.1. Small Signal Analysis

The eigenvalues of the drive system at rated values are given in Table 7, while

Table 8 shows eigenvalues for Lm at 80% and Rr at 200%. The induction machine

contributes to five eigenvalues whereas the inverter and controller contribute to one

eigenvalue each. The first pair of eigenvalues correspond to the electromechanical

oscillatory mode associated with the rotor. The last eigenvalue corresponds to the

fast acting inverter dynamics. From the eigenvalue results, it can be noted that the

dynamics are well damped with nominal values, for all three control settings. At

condition C, the symmetric optimum based controller is poorly damped compared to

settings with the classical and proposed methods. The actual dynamic performance

with these controllers is verified with dynamic simulations described in the next

section.

Table 7. Poles location for classical PI and proposed PI
(Kharitonov theorem) at rated values.

λ Classical Method Symmetric Optimum Kharitonov Theorem
1 -65.86+j388.27 -40.892+j383.49 -60.176+j431.87
2 -65.86-j388.27 -40.892-j383.49 -60.176-j431.87
3 -2.86+j12.43 -50.112+j52.455 -10.646+j25.06
4 -2.86-j12.43 -50.112-j52.455 -10.646-j25.06
5 -66.04 -53.422 -84.206
6 -35.43 -3.3976 -4.0825
7 -4004 -4004 -4013
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Table 8. Poles location for classical PI and proposed PI
(Kharitonov theorem) for Lm at 80% and Rr at 200%.

λ Classical Method Symmetric Optimum Kharitonov Theorem
1 -66.89+j380.09 -64.016+j382.78 -66.433+j425.66
2 -66.89+j380.09 -64.016-j382.78 -66.433-j425.66
3 -2.04+j8.45 -107.84+j8.396 -21.331
4 -2.04+j8.45 -107.84-j8.396 -5.0693
5 -120.98 -0.51098+j17.782 -143.28
6 -86.413 -0.51098+j17.782 -33.576
7 -4004 -4004 -4013

3.7.2. Small Signal Disturbance Dynamic Response

The small signal analysis can be compared with the following simulation setup:

• The simulation starts with full load and machine parameters Rr at 200% and

Lm at 80% of the rated values.

• The small load torque change is applied at 4 seconds.

• The load torque is set back to full load torque.

The simulation results shows that the with small disturbance and the with Lm

at 80% and Rr at 200% the drive is still stable and small disturbance does not make

system unstable.

3.7.3. Dynamic Simulations

To assess control performance, dynamic simulations are conducted on the full

system with the 5th order nonlinear induction motor model [82], with machine

parameters as described in Appendix (B). Control saturation is represented for all

the controllers as shown in Figure 6. The simulations are configured as follows:

1. First, the motor starts with full load torque and attains steady state.

2. At 3 sec, the load torque is reduced to 1
2
while retaining nominal parameters.
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Figure 13. Torque and speed response.
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Figure 14. Torque and speed response.
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3. At 5 sec, parameter variations (noted earlier in Sec. 3.2) are introduced as

a step-input, while parameter drifts occur gradually in practice, a harsh step

change is considered to assess the dynamic performance as a worst case scenario.

The dynamic response with nominal parameters is shown in Figure 15. The

response is well damped with all three controllers as corroborated with the eigenvalue

results in Table. 7. Doubling the rotor resistance while keeping all other parameters

fixed, produces the dynamic response as shown in Figure 16. While the response is

stable and damped with all three control settings, the proposed controller displays

superior dynamic performance via reduced overshoots in torque and speed with faster

settling time. Dropping the magnetizing inductance to 80 % of its nominal value

while keeping all other parameters fixed, produces the dynamic response as shown in

Figure 17. Here, the dynamic performance is considerably degraded for controllers

tuned traditionally and via symmetric optimum, as shown by the oscillatory response.

However, the response is well damped with the proposed controller in terms of

overshoot and settling time. Dropping the magnetizing inductance to 80 % and

doubling the rotor resistance produces the dynamic response as shown in Figure 18.

In this case, the dynamic performance of the proposed controller is superior to the

classical PI and symmetric optimum as in the previous cases.

The selection of parameters of the PI controller parameter are further verified

by random selection of rotor resistance and magnetizing inductance within the shaded

region of parametric space shown in Figure 7. The dynamic response for these

selection of controller parameters is shown in Figure 19. The dynamic response with

proposed and classical PI controller shows the stable response having more damping

than classical PI. The response becomes unstable by using symmetric optimum.
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Figure 22 shows input power and air gap power and corresponding efficiency of

controller tuned using classical PI and Kharitonov’s theorem. The efficiency of the

motor is approximately same as before the introduction of parameter mismatch as

disturbance. Figures 20 and 21 shows the unstable response and hence efficiency can

not be obtained.

3.7.4. Quantitative Analysis of Dynamic Simulation

From previous section we can conclude that the controller synthesis using

Kharitonov’s theorem produces the better results and are verified with in the

parametric space shown in Figure 7. The simulations results for the stable case

are considered to produce the quantitative analysis for the controller. The results

for classical PI and PI synthesized using Kharitonov’s theorem are presented in the

Figures 23, 24, 25, and 26.
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Table 9. Quantitative analysis at rated values with step
change in load torque.

Settling Time Overshoot Rise Time
Torque (PI) 1.4s 14.3% 1.2s
Torque (KT) 0.2 0% 0.2s
Speed (PI) 1.4s 9% 1.4s
Speed (KT) 0.9s 4.8% 0.06s
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Figure 24. Torque and speed response at 200% rated
value of Rr and nominal Lm, (point D).

Table 10. Quantitative analysis at rated values with Rr

as step change.

Settling Time Overshoot Rise Time
Torque (PI) 1.25s 43.6% 1.17s
Torque (KT) 0.5s 26.9% 0.3s
Speed (PI) 1.25s 4.6% 1.27s
Speed (KT) 1.25s 1.7% 0.72s
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Figure 25. Torque and speed response at 80% rated value
of Lm and 200% rated value of Rr, (point C).

Table 11. Quantitative analysis at rated values with 80%
rated value of Lm and 200% rated value of Rr.

Settling Time Overshoot Rise Time
Torque (PI) 3s 68.3% 0.17s
Torque (KT) 0.74s 54.3% 0.14s
Speed (PI) 3s 8.7% 1.3s
Speed (KT) 0.8s 3.6% 0.22s
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Figure 26. Torque and speed response at 95% rated value
of Lm and 150% rated value of Rr, corresponding to point
inside shaded region.

Table 12. Quantitative analysis at rated values with Rr

and Lm as step change.

Settling Time Overshoot Rise Time
Torque (PI) 2s 34.12% 0.25s
Torque (KT) 0.5s 19.8% 0.12s
Speed (PI) 2s 4.26% 0.25s
Speed (KT) 1s 1.5% 0.12s
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3.8. Parameter Mismatch Reference and Generated Signals Analysis

All simulations consider the machine under full (rated) load torque (assumed

as a constant torque load). The sensitivity of the system is evaluated with respect

to two parameters: rotor resistance (Rr) and magnetization (Lm) which will drift

with temperature variations. The eigenvalue results for “local” stability and dynamic

simulations with the nonlinear model show that the performance of the drive system

is most sensitive to Lm.

The mismatch between reference and generated torques at nominal parameters

and when Lm = 80% of nominal are shown for a PI controller: (a) tuned traditionally,

(b) tuned with symmetric optimum and (c) tuned with the proposed method. All

the results are shown in the Figures from 27-38. The simulation results clearly show

a pronounced mismatch when Lm = 80% of its nominal value.
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Figure 27. dq-axis reference stator currents classical PI.
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Figure 28. dq-axis reference stator currents Kharitonov
theorem PI.
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Figure 29. dq-axis reference stator currents symmetric
optimum PI.
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Figure 30. Torque reference classical PI.
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61



2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

T
or

qu
e

Time

Comparison of Reference and Generated Torque at rated values 
using SO PI Tuning

 

 

Reference Torque
Generated Torque

Figure 32. Torque reference symmetric optimum PI.
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Figure 33. dq-axis reference stator currents classical PI
with Lm at 80%.
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Figure 34. dq-axis reference stator currents Kharitonov
theorem PI with Lm at 80%.
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Figure 35. dq-axis reference stator currents symmetric
optimum PI with Lm at 80%.
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Figure 36. Torque reference classical PI with Lm at 80%.
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Figure 37. Torque reference Kharitonov theorem PI with
Lm at 80%.
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Figure 38. Torque reference symmetric optimum PI with
Lm at 80%.

3.9. Performance at Low Speed

Simulation results are shown for speeds at 10%, 20% and 50% of rated speeds.

The parameter Lm is considered at nominal and 80% of nominal at each of these

speeds. The results show that the control performance is not adversely affected at low

speeds. This is because our method does not rely on speed as an explicit or implicit

input unlike in sensorless control applications which rely on parameter estimation.
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Figure 39. Speed reduced to 10% at rated values.
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Figure 40. Speed reduced to 10% with Lm at 80%.
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Figure 41. Speed reduced to 50% at rated values.
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Figure 42. Speed reduced to 50% with Lm at 80%.
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3.10. Root Locus of Linearized Model at Different Speeds

The root locus captures the behavior of the poles with the variation in certain

parameters. The root locus is generated to have insight in small signal analysis for

different set of variable combinations, such as speed (ωm), magnetizing inductance

(Lm), and rotor resistance (Rr). Following are the different set-up of parameter

combinations are established to find out controller performance:

• Rated speed, Lm fixed, and vary Rr from rated to 200% using classical PI

(Figure 43), symmetric optimum (Figure 44), and Kharitonov’s theorem (Figure

45) and corresponding poles are shown in tab;e 13.

• Rated speed, Rr fixed, and vary Lm from rated to 70% using classical PI (Figure

46), symmetric optimum (Figure 47), and Kharitonov’s theorem (Figure 48) and

corresponding poles are shown in table 14.
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Table 13. Dominant poles with Lm fixed and varying Rr.

Rated 1.2Rr 1.4Rr 1.6Rr 1.8Rr 2Rr

PI -72±71j -78±67j -85±62j -91±56j -98±50j 104±44j
SO -72±69j -79±65j -85±60j -92±54j -99±49j -105±43j
KT -62±78j -67±73j -73±66j -79±59j -85±52j -92±43j
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Table 14. Dominant poles with Rr fixed and varying Lm.

Rated 0.95Lm 0.90Lm 0.80Lm 0.78Lm 0.74Lm 0.72Lm

PI -72±71j -23±43j -11±30j -2±19j -0.6±18j 0.7±16 1.2±15
SO -72±69j -24±36j 3±28j 7±23j 7±22j 7±20j 7±19j
KT -62±78j -15±52j -5±39j 0.2±27j 0.7±26j 1.4±23j 1.7±22j

3.10.1. Discussion on Linear Analysis

The root locus for the above mentioned cases shows that the drive system is

sensitive to Lm. The drive reaches the instability with Lm below 79% of the rated

value, while the root locus is insensitive to rotor resistance Rr.

3.11. Conclusion

A method to determine PI controller parameters of an induction motor drive

system (employing indirect field oriented control) based on Kharitonov’s theorem

is presented in this chapter. Variations in two parameters: namely Rr and Lm are

specified in a priori ranges and the controller gains are selected to ensure the stability

the corner polynomials corresponding to the parametric square. An eigenvalue

analysis indicates excellent damping for all the modes with control settings obtained

with the proposed method. Dynamic simulations with the full nonlinear model

considering control saturation confirm the robustness and superior damping benefits

with the proposed controller compared to traditional and symmetric optimum based

tuning methods.

The proposed method thus provides a systematic approach to robustify control

settings that arise in several drive systems subject to similar parametric variations.

The proposed method provided with the better result than the classical PI and

symmetric optimum tuned PI, because the proposed scheme utilized the fifth order

model while the other two techniques used reduced order pant model.
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CHAPTER 4. FRACTIONAL ORDER CALCULUS AND

DERIVATION OF FRACTIONAL CONTROLLER

It is known that the nth order derivative of a function f(t) can be mathe-

matically described by
dny

dsn
. With this notation, one may ask “What does n =

1

2

mean in the notation?” Actually, this was the question asked in a letter by the

French mathematician Guillaume François Antoine L’Höpital to one of the inventors

of calculus, the French mathematician Gottrfied Wilhelm Leibnitz said: “It will lead

to a paradox, from which one day useful consequences will be drawn.” This marks

the beginning of the fractional calculus. In the field of control it is more desirable to

have fractional order controller instead of fractional order systems. This is due to the

fact that the plant model may have already been obtained as an integer order model

in classical sense. In most cases, the objective is to improve the performance of the

system using fractional order controller.

In AC drive systems, the speed, torque and/or position of machines are

controlled using some type of device, for example, hydraulic pump, linear actuator,

or an electric motor, generally a servo. Speed control is a typical task in AC drive

systems. In this chapter, the speed control of AC drive system in vector controlled

closed loop mode of operation are focused. The fractional order PI controller is

generalized for speed control of induction motor. For simplification, the gains of PI

controller are obtained using classical control strategy with integral order assumed to

be unity. In order to improve the control performance of AC drive systems with integer

order mathematical model fractional order PI controller is proposed and designed in

this chapter.

4.1. Introduction

Fractional order calculus is an area of mathematics that deals with the deriva-

tives and integrals from non-integer order. The fractional order proportional, integral,
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and derivative (FrOPID) controllers have achieved a significant interest in the last

few decades. In fact, FrOPID provides more flexibility in controller design procedure

than standard integer order PID controllers, because FrOPID provides five degrees

of freedom. The fractional order calculus theory is used to design the PI controller,

although the classical PID controller is predominant in control development. The

fractional order controllers (FrOC) provides the isodamping property which shows

constant phase invariant to gain changes. The isodamping property gives the constant

phase at the ωc, i.e.:

d∠G(s)

ds s=jωc

= 0 (4.1)

where ωc is critical frequency. Also G(s) is the open loop transfer function containing

both plant P (s) and controller K(s).

Applications of fractional calculus in control are numerous. The fractional

order control (FrOC) scheme [83] and [84] gives the simulation results for permanent

magnet DC motor and proposed hardware realization using fractance circuit and with

microprocessor. The authors in [85] discussed the use of FrOC for Buck converter

and verified the results with simulations and experiments. In [86] the relay feedback

with artificial delay is used to tune the fractional order PID.

The reset of chapter is organized as follows: In section 4.2 classical definition of

fractional operator is introduced. Section 4.3 introduces about the fractional order

controller and approximation technique for implementation of FrOC. Section 4.4

includes the simulation results for DC motor showing the iso-damping property. The

relation between overshoot and phase margin is given in section 4.5. The simulation

and tuning of fractional order controller for AC drive under indirect field oriented

control is presented in section 4.6 and 4.8. The conclusion is presented in section

4.10.
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4.2. Fractional Calculus

Fractional calculus defines the branch of calculus where derivatives and integrals

are classified as noninteger. Fractional Calculus came into existence nearly at the

same time as integerorder calculus and is generalization of integerorder calculus. The

differentiation and integrals can be defined as:

aD
r
t =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dr

dtr
�(r) > 0

1 �(r) = 1

∫ t

a
d(τ)−r �(r) < 0

(4.2)

where aD
r
t is non-integer fractional-order operator with a and t as the limits of

operation, and r is the order of operation.

4.3. Fractional Order Controller

The fractional order controller (FrOC) forms a class of controllers based on the

fractional calculus. The most common form of a fractional order PID controller is the

PIλDδ [87], involving an integrator of order λ and a differentiator of order δ, where

λ and δ ∈ �. The transfer function of the fractional order PIλDδ controller is of the

form:

C(s) =
U(s)

E(s)
= Kp +Kis

−λ +Kds
δ (4.3)

where (λ, δ > 0). If λ = 1 and δ = 1 the classical PID is obtained. Similarly as in

classical control theory, PIλ, PDδ, P IλDδ controllers can be obtained by keeping any

of the values to zero, depending upon the requirements of the plant or process. The

fractional order controller PIλDδ enhances the performance because it behaves like

an infinite dimensional linear filter, due to noninteger integrator and differentiation.
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4.3.1. Continuous Approximation of FrOC

To implement fractional order control an infinite memory is required, it is

necessary to obtain an approximate band limited controller. The band should be

carefully selected so that all frequencies of interest stay in range. The Oustaloups

recursion algorithm [88] and [89] is proposed for simulation purposes as it gives the

frequency response more closely like ideal bode. The approximation is based on

selection of band limits for the system. The transfer function of the type can be used

to find the approximation of fractional order transfer function:

H(s) = sr, r ∈ �, r ∈ [−1 : 1] (4.4)

The band limit (ωl, ωh) is defined, where

ωl is low frequency limit

ωh is high frequency limit

The Oustaloup’s approximation is then given as:

Ĥ(s) = C0

N∏
k=−N

s+ ω′
k

s+ ωk
(4.5)

where the gains, poles, and zeros are defined as:

w′
k = wl(

ωh

ωl
)
k+N+0.5(1−r

2N+1

wk = wl(
ωh

ωl
)
k+N+0.5(1+r

2N+1

C0 = (
ωh

ωl
)

−r

2
N∏

k=−N

ωk

ω′
k

(4.6)

The implementation of Oustaloups in MATLab is given as function orafoc()

by [18]. The approximate transfer function using ωl = .01 and ωh = 1000 and
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selecting the transfer function as H(s) = s
−1
s with N = 5 and r =

−1

3
. The bode

plot of the approximate transfer function is shown in figure 49. The bode plot of

the approximated transfer function closely matches the ideal bode transfer function

G(s) =
k

sα
. The step response is also shown in figure 50.
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Figure 49. Frequency response of approximated frac-
tional order transfer function.
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4.4. Simulation Results of DC Motor and AC Motor

The DC motor is used to test the fractional controller for isodamping property

by changing the variation in parameters of the DC- motor. Block diagram of the DC

motor in closed loop with fractional order control is shown in figure 3. The transfer

function obtained for the dc motor is given as:

GDCM(s) =
θ(s)

Va(s)
=

Km

s[(Ls+R)(Js+Kf ) +KbKm]
(4.7)

Assuming time constant of the DC motor armature negligible, above model can

be simplified as:

GDCM(s) =
θ(s)

Va(s)
=

Km

s[R(Js+Kf) +KbKm]
(4.8)

GDCM(s) =
θ(s)

Va(s)
=

Km/RKf +KbKm

s(τs+ 1)
(4.9)

GDCM(s) =
θ(s)

Va(s)
=

KDCM

τs2 + s)
(4.10)

The rated values of the machine parameters are R = 6Ω, Km = Kb = 0.1, Kf =

0.2Nms, J = 0.01kgm2/s2 The transfer function of DC motor becomes:

GDCM(s) =
θ(s)

Va(s)
=

0.08

s(0.05s+ 1)
(4.11)

The controller used is of the form DλIδ. The λ and δ are selected based on ideal

bode with phase margin φm = π(1 + r)π/2 and remains constant showing the ISO

damping property. For constant phase margin the controller has the following form

[90] and [83].
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C(s) = K1
K2s+ 1

Sr
(4.12)

where K1 = 1/KDCM and K1 = /τ . The constant phase margin obtained from

controller is:

φm = arg[C(jω)GDCM(jω)] + π (4.13)

which yields to

φm = π − (1 + r)π/2 (4.14)

For r = −1/3 the phase margin obtained is

φm = π − (1− 1

3
)π/2 = 150 (4.15)

so from 4.12 the controller gets the form as:

C(s) =
τ

KDCM
s0.5 +

1

KDCMs0.5
(4.16)

hence

C(s) = 0.625d0.5 +
12.5

s0.5
(4.17)

For KDCM = 0.08 and τ = 0.05, the r is the slope of the ideal bode. The step

response for variation in parameter R from 50% to 150% of its rated value is shown

in figure 51. The isodamping property can be clearly observed in the bode plot of

the DC motor by visualizing the constant phase over the desired frequency range in

figure 52.

The same model is used to obtain the step response and frequency response

with classical PI controller shown in figure 53 and 54.
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By comparing the simulation results, with fractional order controller and

classical PI controller, it is clear that constant overshoot is obtained with fractional

order controller exhibiting the isodamping property. The four quadrant operation for

DC motor is shown in figure 55. The simulation of speed tracking for a particular

trajectory is performed using Oustaloups recursive algorithm shown in 55. The system

shows a slight difference in settling time of system, with increased settling time with

npid() function and fast settling time with Oustaloups recursive algorithm, but the

isodamping property with both the algorithms is same and shows the robustness over

the parameter variations.

4.5. Relation Between Overshoot and Phase Margin

Consider a system with transfer function G(s) with a feedback loop as shown

in fig 56. The closed loop gain is given as:

GCL(s) =
G(s)

1 +KG(s)
(4.18)
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property.

4.5.1. Phase Margin

The phase margin is a measure of how close the phase of the loop is to −180o,

when the magnitude of the loop gain is one. The phase margin is additional phase

required to bring the phase of the loop gain to −180o.

Phase Margin = Phase of loop gain− 180o

Consider the loop gain has a dominant pole at ωp1. The higher order poles can be

represented by an equivalent pole at ωeq. The system G(s) can then be approximated

as:

G(s) =
Ko

(1 + s
ωp1

)(1 + s
ωeq

)
(4.19)

Since, the frequencies of interest where the loop gain magnitude is close to unity,

ωeq > ωp1. Therefore, we can approximate G(s) as:

G(s) =
K0ωp1

s(1 + s
ωeq

)
(4.20)
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Figure 53. Step response of DC motor showing variable
overshoot with PI controller.

where

1

ωeq

=
1

ωp2

+
1

ωp3

+ · · · (4.21)

Let ωta = Koωp1. For frequencies of interest, close to the unity gain frequency,

G(s) can be written as:

G(s) =
ωta

s(1 + s
ωeq

)
(4.22)

Plugging Eqn. 4.22 in to Eqn. 4.18, for closed loop system:

GCL(s) =
1
K

1 + s
ωtaK

+ s2

ωtaKωeq

(4.23)

The Eqn. 4.23 is the transfer function for a second order system. The general

form for the response of the second order system, where system properties are

described by its Q and resonant frequencies ωn is given in Eqn. 4.24.

GCL(s) =
K

1 + s
Qωn

+ s2

ω2
n

(4.24)
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Figure 54. Bode plot of DC motor with PI controller.

By comparing Eqns. 4.23 and 4.24, we can define:

ωn =
√

Kωtaωeq (4.25)

Q =

√
Kωta

ωeq
(4.26)

The loop gain of the system is defined as the product of the gain of the feed

forward path and gain of feedback path and for the system given in Figure 56 and is

given as:

KG(s) =
Kωta

a(1 + s
ωeq

)
(4.27)

The phase margin is function of the phase of the loop gain at the frequency

where the magnitude of the loop gain is unity.

KG(ωt) = 1 (4.28)
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Figure 56. Block diagram of a system with feedback.

The ωt is the loop unity gain frequency. So, from Eqns. 4.27 and 4.28, we get:

K2ω2
ta = ω2

t (1 +
ω2
t

ω2
eq

) (4.29)

ωta

ωeq

=
ωt

Kωeq

(

√
1 +

ω2
t

ω2
eq

) (4.30)

From Eqns. 4.25 and 4.29, we can write;

Q =

√
ωt

Kωeq
(1 +

ω2
T

ω2
eq)

1
2

(4.31)
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Figure 57. Frequency plot.

Table 15. Overshoot and phase margin.

PM ωt

ωeq
Q %OS

55o 0.700 0.925 13.3%
60o 0.580 0.817 8.7%
65o 0.470 0.717 4.7%

The phase of the loop gain is:

Phaseofloopgain = −90o − tan−1(
ωt

ωeq
) (4.32)

A well known property of second order systems is that the percent overshoot is

a function of the Q and is given by:

OS = e
− π√

4Q2−1 (4.33)
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Both phase margin 4.31 and Q 4.32 are a function of ωt

ωeq
. This allows us to use

4.33 to create table of percent overshoot as a function of phase margin as given in

Table 15.

4.6. Vector Control and Problem Formulation for Induction Motor

The vector control scheme, as shown in Figure 58 is used for decoupling the

torque and field producing current components, thereby permitting great flexibility

over wide ranges of torque and speed. The induction machine has well established 5th

order nonlinear model [45, 81] that is used for simulations and is given in Appendix A.

This scheme depends on machine parameters to compute reference (or commanded)

values of torque and speed. However, variations in operating/ambient conditions,

cause a mismatch between reference and measured signals which produces undesirable

torque oscillations. The reference values are computed through via PID controllers

represented by dashed boxes in Figure 58. The scheme contains three closed loops,

two internal loops for torque producing components and one for the field producing

component of current. These internal loops are overseen by an outer loop with

a flux-weakening block - for operation beyond rated speed. Each loop contains a

controller which can be switched between either PI or FrOC, indicated by the solid

and dashed boxes in Figure 58 respectively. The reference signals for the current

loops are generated from the vector control block using Eqns. (4.34) and (4.35).

irefds =
1

Lm

(
Lr

Rr

d

dt
λref
r + λref

r ) (4.34)

irefqs =
4

3P

T ref
e

λref
r

Lr

Lm

(4.35)

where irefsd is the stator d-axis reference current, irefsq is the stator q-axis reference

current, Lm is magnetizing inductance, Lr is rotor inductance, Rr is rotor resistance,
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λref
r is rotor reference flux linkage, T ref

e is reference torque and P is the number of

poles of machine. The speed tracking loop is fed through desired speed trajectory,

while the flux weakening block is a lookup table to generate reference flux λref
r ,

for field producing current component. Instead of adapting control parameters by

constantly tracking machine parameters (and monitoring ambient conditions), we

show next, how a fractional order can compensate for parametric variations without

compromising the dynamic performance.

Figure 58. Block diagram of indirect field oriented control
with flux weakening.

4.6.1. Tuning of Fractional Order Controller

The FrOC is tuned using a graphical approach (phase shaping) based on

frequency response of an ideal integrator. The following are the steps required for

tuning the FrOC:

• The gains KP and KI are obtained based on classical PI controller design

technique.

• The parameter ‘r’ in Eqns. (4.4) and (4.5) is selected such that phase of FrOC

closely matches to ideal integrator.
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• The parameter N defines the order of approximated FrOC in Eqns. (4.4) and

(4.5). The N is selected by number of iteration to match the phase of FrOC to

ideal bode. It gives a trade off between order of the controller and performance.

• The bandwidth is selected on the requirement of system, for speed loop of

induction motor the bandwidth required is 25rad/s. So we can select the lower

frequency ωl = .1 and upper frequency ωh = 25 [81].

4.6.2. Selection of N

The selection of N is a trade off between the flatness of the system frequency

response and order of the controller. The lower the order of controller gives the easy

implementation. The frequency response for the N = 1, 3,, and 5 is shown in figure

59. The frequency response shows that even with N = 1 the system behaves close

to ideal bode of integral, while increasing N does not significantly flattens the bode.

This iteration suggests the selection of N = 1.
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Figure 59. Frequency response with varying N .
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The speed and torque response are shown in the figure 60, where the perfor-

mance is comparable with N = 1. The N can be increased to obtain the better

settling time and overshoot but at the expense of higher order controller.
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Figure 60. Torque and speed response with varying N .

4.7. Dynamic Simulation Results

Simulations are carried out for variations in two critical and temperature

sensitive parameters namely the rotor resistance and the magnetizing inductance.

The rotor resistance Rr and magnetizing inductance Lm are set to 200 and 80 %

of their nominal values, respectively. After initialization, a speed is increased by

50%, thus activating the flux-weakening mode with a step change in load torque

applied at 3s, followed by parametric changes at 5s. Finally, a further 50% increase in

reference speed is commanded at 7s. The PI controllers are tuned with a bandwidth

of 250 rad/sec for the current loop and 25 rad/sec for the speed controller with a

phase margin of 60 degrees (obtaining dynamic response with no oscillation it is

recommended to select the phase above 45 degree) [81]. The other commonly used

techniques to tune PI controller are the SO explained in previous chapter.
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The dynamic response with both sets of controllers is shown in Figs. 61 - 64

and frequency response in figure 65. It can be observed that the dynamic response

(speed and torque oscillations) is degraded with the PI controller while the FrOC

yields a stable dynamic response.
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Figure 61. Torque and speed response using FrOC (dot-
ted blue line) and classical PI (solid red line).
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Figure 62. Stator dq-axis currents using FrOC (dotted
blue line) and classical PI (solid red line).
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Figure 63. Stator dq-axes flux using FrOC (dotted blue
line) and classical PI (solid red line).
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The unstable dynamic response occurs because of the mismatch in the reference

signal and generated signals from the plant 58. Since, tuning of PI controller is

tedious process and it is mostly performed for the nominal plant parameters, any

change in the parameters of the plant above certain range degrades the performance

of the PI controller unless it is manually tuned or through supervisory control [91].

The supervisory PI control is a redundant and is expensive option for the parameter

compensation of the drives. The FrOC produces the stable and robust response

because of constant phase response as shown in Fig. 65. But due to highly nonlinear

nature of the induction motor the phase response is almost constant and produces

the ISO-damping property.

The table 16 shows the poles of the drive system with decreasing Lm using

classical PI controller. The behavior of the poles shows that the system reaches

instability with Lm = 78% of the rated value, while the poles of the drive system
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using FrOC shows very slow movement with decreasing Lm towards right half plane

as shown in table 17. Thus, keeping the drive in stable region.

Table 16. Eigenvalues of machine with PI controller.

Lm λ1,2 λ3,4 λ5,6 λ7 λ8

Rated -218.42±449.48j -78±68.6j -1.6±12.7j -6.6 -4

0.95 -95.4±417.5j -27.6±40.8j -1.4±11.8j -4.6 -2.7

0.90 -62.8±403.6j -14.8±27.45j -1.58±12j -3.26+0.17j -3.26-0.17j

0.85 -47.6±396.2j -9.1±19.4j -1.7±12.6j -3.1+0.7j -3.1-0.7j

0.80 -38.9±391.7j -6.9±13.3j -0.6±14.1j -3.1+0.9j -3.1-0.9j

0.79 -37.5±391j -0.18±14.2j -6.9±12.5j -3.11+0.98j -3.1-0.98j

0.78 -36.3±390.3j 0.22±14.2j -6.9±11.8j -3.1+1j -3.1-1j

0.77 -35.2±389j 0.58±14.1j -6.8±11.2j -3.1+1j -3.1-1j

Table 17. Eigenvalues of machine with FrOC.

Lm λ1,2 λ3,4 λ5,6 λ7 λ8 λ9

Rated -579.1±2773.6j -621.7±2391.5j -7.78±14.45j -5.9 -4.2 -857

0.95 -456.3±1845.9j -539.6±1471.1j -6.78±6.18j -6.7 -3.3 -857

0.90 -416.0±1501j -526.5 ±1127.7j -5.65±3.9j -8.6 -2.9 -857

0.85 -392.9±1308.3j -525.9±935.36j -4.89±3.35j -9.8 -2.7 -857

0.80 -376.6±1181.8j -527.7±808.93j -4.51±3.18j -10.1 -2.6 -857

0.79 -373.8±1161.4j -528.4±788.53j -4.46±3.16j -10.1 -2.6 -857

0.78 -371.2±1142.3j -529.2±769.37j -4.41±3.15j -10.1 -2.6 -857

0.77 -68.69±1124.3j -529.9±751.35j -4.36±3.13j -10.1 -2.5 -857

4.7.1. Load Torque as Pulse Disturbance

The small signal analysis can be compared with the following simulation setup:

• The simulation starts with full load and machine parameters Rr at 200% and

Lm at 80% of the rated values.

• The small load torque change is applied at four seconds when machine reaches

is in steady state.

• The load torque is set back to full load torque at six seconds.
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Figure 67 shows that with small disturbance of 10% decrease in load torque, the

system stays in stable region. The figure 67 where the large disturbance is created

by reducing load torque to 50% of rated value. The PI controller tuned with classical

technique shows the stable response with decreasing oscillations, while FrOC stabilizes

quickly.

The 68 shows the 10% step reduction in load torque for different values of N.

The dynamic response with 10% reduced load torque and Lm at 78% of the rated

value, in figure 69 shows that the PI controller tuned using classical technique lost the

tracking. The dq-axis currents and flux are shown in figures 70 and 71 respectively.
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Figure 66. Torque and speed response with load torque
reduced by 10% with Lm = 80%, Rr = 200%, and N = 1.

94



3 4 5 6 7 8
0

5

10

15

20
50% reduced load torque at 4 and reset at 6 to rated

T
or

qu
e[

N
m

]
 

 

3 4 5 6 7 8
160

170

180

190

200

210

Time

M
ec

ha
ni

ca
l S

pe
ed

[r
ad

/s
]

Classical PI
FrOC

Figure 67. Torque and speed response with load torque
reduced by 50% with Lm = 80% and Rr = 200% and
N = 1.
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Figure 68. Torque and speed response with load torque
reduced by 10% with Lm = 80% and Rr = 200% for
different N .
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Figure 69. Torque and speed response with load torque
reduced by 10% with Lm = 75%, Rr = 200%, and N = 1.
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Figure 70. dq-currents with load torque reduced by 10%
with Lm = 75%, Rr = 200%, and N = 1.
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Figure 71. dq-flux with load torque reduced by 10% with
Lm = 75% Rr = 200%, and N = 1.
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Figure 72. Torque and speed response with load torque
reduced by 50% with Lm = 75%, Rr = 200%, and N = 1.
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Figure 73. dq-currents with load torque reduced by 50%
with Lm = 75%, Rr = 200%, and N = 1.
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4.7.2. Quantitative Analysis of Dynamic Simulation

From previous section we can conclude that the controller synthesis using FrOC

produces the excellent results. The Simulations results for the stable cases are

considered for the quantitative analysis for classical PI controller and FrOC of third

order (N = 1). The results for classical PI and FrOC are presented in the Figures 75

and 76 along with the analysis in tables 18 and 19 respectively.
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Figure 75. Torque and speed response at nominal values
of Rr, Lm, and FrOC with N = 1.

Table 18. Quantitative analysis at rated values with step
change in load torque.

SettlingT ime Overshoot RiseT ime
Torque (PI) 1.4s 14.3% 1.2s
Torque (FrOC) 0.2 0% 0.2s
Speed (PI) 1.4s 9.2% 1.3s
Speed (FrOC) 0.9s 4.6% 0.06s
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Figure 76. Torque and speed response at 200% rated
value of Rr and 80% rated value of Lm and FrOC with
N = 1.

Table 19. Quantitative analysis at rated values with Rr

as step change.

SettlingT ime Overshoot RiseT ime
Torque (PI) 2.3s 68.2% 0.16s
Torque (FrOC) 0.5s 59.1% 0.06s
Speed (PI) 2.25s 10.21% 0.3s
Speed (FrOC) 0.75s 3.2% 0.12s
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4.8. Extended Simulation Results

Further Simulations are carried out to examine the validity and robustness of

the FrOC. Different parameter variations introduced are compared for classical PI

controller and FrOC. The parameters in extended simulations are varied in the wide

range to observe the performance of controllers. Also some hypothetical scenarios are

created to put controllers under worst conditions to comprehend the performance of

controllers. The simulations are carried out for the following conditions apart from

mentioned in previous section:

1. Rr increased by 100% of its nominal value.

2. Lr increased by 20% of its nominal value.

The motor is assumed to run under no load condition, and in each case the

load torque is applied at the 3 seconds as a step change.To create the mismatch

between parameters in indirect field oriented control block and induction motor the

step change in parameters is introduced at 5s.

The case where Rr is changed to 200% of its nominal value with step change in

rotor resistance Rr is shown in figures 77, 78, 79, and 80.

The step change of rotor resistance Rr at 5 seconds does not cause any instability,

but variations in Rr has a deep impact on the rotor time constant Lr

Rr
. Since any

oscillations produced in the torque are damped based on the rotor time constant.

The frequency response is shown in figure 81.

The hypothetical cased created to examine the worst case performance of the

fractional order controller created by increasing Lr by 20% of its rated value. The

results for variation in Lr are shown if figures 82, 83, 84, and 85. The bode plot is

shown in figure 86.
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Figure 77. Torque and speed response of induction motor
with Rr at 200% of rated value.

0 2 4 6 8
1

1.5

2

Stator d−axis Flux [Wb−t]

Time
0 2 4 6 8

−0.2

−0.1

0

0.1

Stator q−axis Flux [Wb−t]

Time

 

 

0 2 4 6 8
1

1.5

2

Rotor d−axis Flux [Wb−t]

Time
0 2 4 6 8

−0.5

0

0.5
Rotor q−axis Flux [Wb−t]

Time

Classical PI with Rr 200% increased
FrOC with Rr 200% increased

Figure 78. dq-flux for stator and rotor of induction motor
with Rr at 200% of rated value.
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Figure 79. dq-currents for stator and rotor of induction
motor with Rr at 200% of rated value.

0 1 2 3 4 5 6 7 8
−50

0

50

100

150

Stator d−axis Voltage [V]

Time

 

 

0 1 2 3 4 5 6 7 8
0

200

400

600

800

Stator q−axis Voltage [V]

Time

 

 

Classical PI with Rr 200% increased
FrOC with Rr 200% increased

Figure 80. dq-voltages of induction motor with Rr at
200% of rated value.
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Figure 81. Frequency response showing the iso-damping
property Rr at 200% of rated value.
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Figure 82. Torque and speed response of induction motor
with Lr at 120% of rated value.
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Figure 83. dq-flux for stator and rotor of induction motor
with Lr at 120% of rated value.
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Figure 84. dq-currents for stator and rotor of induction
motor with Rr at 120% of rated value.
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Figure 85. dq-voltages of induction motor with Lr at
120% of rated value.
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Figure 86. Frequency response showing the iso-damping
property Lr at 120% of rated value.
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4.8.1. Discussion

The results obtained using simulation for induction motor with classical PI

controller and FrOC, with varying Lm and Rr, are supported through the damping

ratio analysis. The damping ratio of corresponding mode depicts the damped

oscillatory behavior of the system.

The damping ratio of the induction motor (without any controller) in table 20

clearly shows that, as the magnetizing inductance Lm decreases the damping ratio

corresponding to mode start decreasing. Similarly the rotor resistance Rr in table 21,

is varied over 200% to 60% of its rated value shows the similar behavior.

Table 20. Damping ratio variation of induction motor
(with variation in Lm).

Lm Mode 1 Mode 2 Mode 3
Lmr 0.27 1 0.19
0.9Lm 0.15 1 0.05
0.8Lm 0.11 1 0.03
0.7Lm 0.09 1 0.02

Table 21. Damping ratio variation of induction motor
(with variation in Rr).

Rr Mode 1 Mode 2 Mode 3
2.0Rr 0.56 1 0.19
1.8Rr 0.50 1 0.19
1.6Rr 0.44 1 0.19
1.4Rr 0.38 1 0.19
1.2Rr 0..32 1 0.19
Rrr 0.27 1 0.19
0.8Rr 0.21 1 0.19
0.6Rr 0.16 1 0.19
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Table 22. Damping ratio variation (with variation in Lm)
with classical PI controller.

Lm Mode 1 Mode 2 Mode 3
Lmr 0.75 0.45 0.76
0.9Lm 0.46 0.16 1
0.8Lm 0.35 0.10 1
0.7Lm 0.27 0.08 1

The table 22 show the damping ratios of the indirect field oriented control

with classical PI controller. The decrease in the damping ratio of mode 1 and

mode 2 clearly shows that system under PI controller have more oscillation as the

magnetizing inductance decreases.

Table 23. Damping ratio variation (with variation in Lm)
using FrOC.

Lm Mode 1 Mode 2 Mode 3
Lmr 1 1 0.41
0.9Lm 0.99 0.97 0.79
0.8Lm 0.99 0.89 0.96
0.7Lm 0.99 0.85 0.99

Similarly table 23 shows the damping ratios using FrOC. The decrease in

magnetizing inductance clearly shows that the damping ratio increases for mode

3, while the decrease in damping ratio for mode 2 is comparatively slow over the

expected variation of magnetizing inductance.

The tables 24, 25, and 26 shows comparisons for FrOC and classical PI for

different parameter variations.
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Table 24. Comparison of damping ratio variation (with
variation in Lm at 80% and Rr at 200%) using FrOC.

Mode 1 Mode 2 Mode 3
PI 0.61 0.10 1

FrOC 0.99 0.89 1

Table 25. Damping ratio variation (with variation in Rr)
using classical PI controller.

Rr Mode 1 Mode 2 Mode 3
2.0Rr 0.94 0.94 0.49
1.8Rr 0.91 0.92 0.45
1.6Rr 0.88 0.88 0.46
1.4Rr 0.85 0.84 0.47
1.2Rr 0..81 0.80 0.47
Rrr 0.76 0.75 0.48
0.5Rr 0.63 0.60 0.49

Table 26. Damping ratio variation (with variation in Rr)
using FrOC.

Rr Mode 1 Mode 2 Mode 3
2.0Rr 0.50 0.99 0.40
1.8Rr 0.50 0.99 0.41
1.6Rr 0.49 0.99 0.41
1.4Rr 0.49 0.99 0.41
1.2Rr 0..41 0.99 0.41
Rrr 0.49 0.99 0.41
0.5Rr 0.50 0.99 0.41
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4.9. High Order Control (H2 and H∞ Controllers)

The optimal controllers are known because they minimize a given performance

criterion. This means they achieve the best possible result in what that criterion

is concerned. Of course, should the criterion be poorly chosen the controller’s

performance would probably be unsatisfactory, even though it would still be optimal

in the sense above. Controllers minimizing the H2 or the H∞ norm of suitable loop

transfer function involving the plant to control are in use. The idea is to minimize one

of the above norms, ensuring that the input is never amplified to such an extent that

instability will arise. It is usual to choose weights, that is shaping transfer functions,

in the control loop so that control efforts be exerted at those frequencies desired by

control designer. The weights can be found out adequately such that H2 orH∞ norm

is minimized for stable and robust controller. These are expected to cause a worse

performance but not instability.

H2 and H∞ controllers make use of the control structures of the block diagrams

shown in figure 87, where K is the controller, A, B, C, and are the matrices of the

state space representation of the plant P , and L models how noise affects the states.

Vector w collects all inputs and saves the control actions u. Vector z collects all

variables showing the performance of the control system, namely outputs and control

actions. Weights W1 to W4 are usually transfer functions, and are used to shape the

result by telling the loop in what frequencies control actions, outputs, etc., have to

be large or small.

4.9.1. Plug-in H∞ Controller

A plug-in compensator enhances the system robustness without affecting the

nominal tracking performance. In [9] the authors used the H∞ loop-shaping design

technique, which will be discussed in this theses as a high order controller to compare

with FrOC. Theoretically, this technique is optimal in dealing with unstructured
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uncertainty described by the gap metric or ν-metric. Practically it is effective in cases

when the uncertainty has unknown sources and is hard to measure. Comparing to

other H∞ controller design methods, such as mixed sensitivity optimization, the loop

shaping design turns the different task of external weighting function selection into

relatively easy choice of loop-shaping functions and eliminates the time consuming

γ-iteration, which us required in usual H∞ optimization, in the computation of the

optimal controller.

Figure 87. Block diagram of H2 and H∞ controller.

Figure 88 shows the linearized block diagram of induction motor. In the diagram

u = Te is the command torque input, y is the system output which speed and d = TL is

external disturbance, and TL is assumed to be a constant load torque. The variation

in the parameters Jm and Bm is common in real applications. For instance, the

bearing friction will change after the motor has run for a period of time.

Figure 88. Linearized induction motor model.

111



4.9.2. Controller Design

Usually the exact plant model is not known for controller design problems. The

control engineer only knows a nominal plant and a simple controller can be designed

to achieve a satisfactory tracking performance for the nominal plant. The plug-in

compensation requires that the controller is already designed and working well under

the nominal operation of the plant. The H∞ loop shaping technique is used to design

the plug-in compensator without dismantling the existing controller.

4.9.3. Controller Structure

Figure 89 shows a P plant single input single output (SISO) strictly proper

nominal system and K = [K1 − K2] is a 2DOF controller. Initially we have

already designed controller K = C = [C1 − C2] with satisfactory nominal tracking

performance, such that transfer function from reference r to output y is satisfactory

and given as:

Y

R
=

C1P

1 + C2P
(4.36)

The C is already a designed PI controller using the classical tuning technique

discussed in the previous chapter. Let the co-prime factorization of P be given as:

P =
N

M
(4.37)

where M , N ε H∞. Since C is stablilizing 2DOF controller for P , for any coprime

factorization:

C =
[X1 −X2]

Yo

(4.38)

where X1, X2, and Yo ε H∞. The 2DOF stabilizing controller can be parameterized

as:

[K1 −K2] =
S − (X2 +QM)

Yo −QN
(4.39)
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where Q ε H∞ and S ε H∞ are strictly stable systems. The nominal controller

is obtained with Q = 0 and S = X1. The transfer function from r to y, which

determines the nominal tracking performance is:

Y

R
=

NS

YoM −X2N
(4.40)

which is independent of Q. Therefore, the set of all stabilizing 2DOF controllers

which gives the same nominal tracking performance is given by:

[K1 −K2] =
[X1 − (X2 +QM)]

Yo −QN
(4.41)

Figure 89. General 2DOF controller.

The loop property of the feedback system, which depends on K2 and P only,

now depends on Q only. For any stable system Q, which can even be nonlinear and

time varying, the tracking performance is unaffected and the closed loop stability is

guaranteed.

4.9.4. H∞ Plugin Compensator and Simulations

Since the purpose of Q is to improve the loop property of the feedback system,

the tracking issue is not of common in its design. Figure 90 is showing the feedback

loop with the whole system redrawn and can be simplified to Figure 91 with K2 =

(X2 +QM/Yo −QN).
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The idea in the design of a stable Q is to design a satisfactory K2 and then back

substitute to get Q using:

Q =
K2Yo −X2

M +K2N
(4.42)

which is obtained from Eqn. 4.39. All stabilizing K2 are obtained over all stable Q

from:

K2 =
X2 +QM

Yo +QN
(4.43)

Figure 90. Block diagram for the design of the plug-in
compensator Q.

The design of the controller K2 is further divided into two steps. The first

step is to choose a proper pre-filter W1 and post filter W2, so that the shaped plant

Ps = W1PW2 has a desired open loop frequency response. The Hinfty optimal robust

controller K3 is found to minimize:

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
⎡
⎢⎣ I

K3

⎤
⎥⎦ (I + PsK3)

−1

[
I Ps

]∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞

(4.44)
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This can be done using the command ncfsyn of MATLAB μ-Analysis and

Synthesis Toolbox. The controller K2 is a combination of per-filter W1, post-filter W2

and the H∞ controller K3 as K2 = W1K3W2. Figure 92 shows the design procedure

of H∞ loop-shaping controller. Finally the Q can be found from Eqn. 4.42.

Figure 91. Standard feedback configuration.

4.9.5. Speed Controller Design for the IM

The classical PI controller tuned in the last chapter

[C1(s)− C2(s)] =
1

s
[C10s+ C11 − (C20s+ C21)] (4.45)

is employed as nominal controller tuned to obtain to track a step reference and reject

a constant external disturbance. For speed control, our plant is SISO strictly proper

stable system. It follows that M(s) = 1 and N(s) = P (s) can be assigned and

P (s) = (1/Jms+Bm) is the nominal plant model. Now the problem reduces to select

the proper pre-filter and post-filter. For a SISO system we can have W2(s) = 1 and

only put the emphasis on the choice of W1(s). As a nominal controller C2(s) has
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already an integrator to reject the constant disturbance, the choice of W1(s) here

is equal to αC2(s) so that the nominal loop frequency response can be optimized

according to the norm in Eqn. 4.44, and α is constant used to adjust the bandwidth

of the shaped plant. In this design we have:

Y0(s) =
s

c20s+ c(21)
(4.46)

where c20 = KP and c21 = KI .

Figure 92. H∞ loop-shaping controller design procedure.

X1(s) =
C10s+ C11

(C20s+ C21
(4.47)

X2(s) = 1 (4.48)
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P (s) =
1
Jm

s+ Bm

Jm

(4.49)

W1(s) = α
c20s+ C21

s
(4.50)

Ps(s) = α
c20s+ C21

s(Jms+Bm)
(4.51)

where Ps(s) is the shaped plant.

The C2(s) is defined as the classical PI tuned controller and is given as:

C2(s) =
KPs +KI

s
(4.52)

where KP = 0.24 and KI = 3.53.

For the design of block Q defined in Eqn. 4.42, the pre-filter

W1(s) = α

(
KPs+KI

s

)
(4.53)

is selected, which is a constant α times PI controller. The constant α is cho-

sen to be 8 so that the crossover should be adequate for torque rejection loop.

By using the command ncfsyn of MATLAB μ-Analysis and Synthesis Toolbox

([K,CL,GAM, INFO] = ncfsyn(P,−W1,W2); ), K3(s) found is:

K3 =
1.1508(s+ 10.98)

s+ 14.54
(4.54)

which is H∞ robust controller.

The K2 as given in Figure 92 is K2 = W1K3W2 and is found to be:

2.2096(s+ 14.71)

s+ 10.98
(4.55)
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In the last Q can then be found from Eqn. 4.42 and after canceling the common

poles and zeros we get Q as:

Q(s) =
8.2066s(s+ 10.54)(s+ 0.02942)

(s+ 75.32)(s+ 15)(s+ 12.63)
(4.56)

In the following dynamic simulation the results are compared for classical PI,

FrOC, and plug-in robust compensator. The simulation is setup as:

• The simulation starts with full load and at the rated machine parameters.

• The simulation starts with full load and machine parameters Rr at 200% and

Lm at 80% of the rated values.

• The small load torque change is applied at 4 seconds.

• The load torque is set back to full load torque.

• The above steps are repeated for 10% and 50% load torque reduction as a

disturbance.

The load torque is reduced by 10% of the rated value as an external disturbance

for which the dynamic simulation response are shown in Figure 93 for rated values of

Lm and Rr. The simulation results shows that the disturbance tracking is comparable

for the three controller types of controllers tuned. Similarly the load torque reduction

by 50% gives the same intuition. Furthermore, the dynamic simulation results for Lm

at 80% and Rr at 200% of the rated values and applying the load torque as external

disturbance produces the stable response and the controller results are almost similar

as shown in Figures 95 and 96.
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Figure 93. Torque and speed response load torque re-
duced by 10%.
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Figure 94. Torque and speed response load torque re-
duced by 10%.
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Figure 95. Torque and speed response load torque re-
duced by 50%.
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Figure 96. Torque and speed response load torque re-
duced by 50%.
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4.10. Conclusion

Robustness to parameter variations is an important factor that dictates control

performance in electric drives. In this chapter, a third order fractional order controller

implemented with Oustaloup’s approximation [42] was substituted for traditional

PID controllers used in the current and speed control loops of a vector controlled

induction motor drive. Dynamic simulations are presented when the drive system

is subject to variations in two critical parameters - rotor resistance and magnetizing

inductance. Unlike the PI controller, the simulations show that control performance

is not degraded with the proposed fractional controller despite substantial variations

in motor parameters. The results are encouraging and indicate that fractional order

controllers provide a promising alternative for the design of robust controllers in

electric drives applications.
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CHAPTER 5. EXPERIMENTAL RESULTS

The experiments are carried out for the dc motor in speed control loop and

for induction motor for V/f method. The dSpace DS1104 is used for the real time

experiments. There are four major components of the dSpce DSP-based drives, used

for the experiments in the dissertation. They are as follows: 1) Motor coupling

system, 2) Power Electronics Drive Board, 3) DSP based DS1104 research and

development controller card and CP 1104 I/O board and 4) MATLAB Simulink

and Control-desk. The block diagram of the hardware setup is shown in Figure 97.

Figure 97. Block diagram for hardware setup.

5.1. Experimental Results for DC Motor

DC motor is setup for the speed control with the cascade control structure with

similar tuning procedure is used to tune the current and speed loops of the DC motor

as discussed in chapter 3. The hardware in loop experimental results are obtained

for the two set of controllers namely: the classical PI tuned controller and and the

fractional order controller (with similar tuning procedure given in chapter 4.

The speed response with both controllers shows that the dc motor has good

reference tracking performance even under load as shown in the Figures 98, 99, 100,

101, 102, and 103.
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Figure 98. DC motor speed using PI controller.
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Figure 99. DC motor armature current with PI con-
troller.
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Figure 100. DC motor speed with fractional order con-
troller.
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Figure 101. DC motor armature current with fractional
order controller.
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Figure 102. DC motor speed with fractional order con-
troller under load of 0.1Nm.

0 10 20 30 40 50 60 70 80
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time

C
ur

re
nt

 (
A

)

DC Motor with Fractional Order Controller in Speed and Current Loop, Under Load

Figure 103. DC motor armature current with fractional
order controller under load of 0.1Nm.
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5.2. Experiment Results for Induction Motor

The three phase induction motor is setup for the speed control loop with scalar

control (V/f) scheme using the two sets of controller, the classical tuned PI controller

and fractional order controller. The experimental results shows that at nominal

operation the induction motor with FrOC gives a better reference tracking 104 than

classical PI controller 105.
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Figure 104. Induction motor speed V/f method using
fractional order controller four quadrant.
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Figure 105. Induction motor speed V/f method using PI
controller four quadrant.
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CHAPTER 6. CONCLUSION

The thesis constitute of two major techniques to achieve the robustness to

the disturbance for better tracking of speed. The first proposed technique produces

the robust PI controller parameters while the second approach is tuning robust PI

controllers which involves the fractional order integral and hence adding an extra

degree of freedom to tune the controller. The techniques proposed are:

• Kharitonov Theorem

• Fractional order controller

6.1. Major Contributions

The major contribution of the thesis towards the development of robust high

performance electric drives are:

1. Proposed a method to tune PI controller for indirect field oriented control under

parameter uncertainty using Kharitonov theorem. The dynamic simulations

shows the excellent dynamic response compared to traditionally tuned PI

controller. The improvement of 35% in rise time and 46% decrease in overshoot

is obtained in speed response with proposed method.

2. Proposed a fractional order PI controller for indirect field oriented control under

parameter uncertainty, the dynamic simulations results are encouraging and

indicate that fractional order controllers provide a promising alternative for the

design of robust controllers in electric drives applications. Moreover, as the

fractional order controller gives the high order controllers at implementation

stage, which is compared with high order classical plug-in H∞ compenstor

technique. The improvement of 66% in rise time and 68% decrease in overshoot

is attained in speed response with proposed method compared to classical PI

controller.
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6.2. Significance and Future Work

• The dynamic simulations, with the full nonlinear model considering control

saturation, confirm the robustness and superior damping benefits with the

controller synthesized using Kharitonov theorem.

• The fractional order controllers for dynamic simulation, with the full nonlinear

model considering control saturation, outperforms tracking under parametric

uncertainty and load torque variations as an external disturbance than the

classical tuned PI controllers.

• The overall improvement is obtained in the drive system, in the form of reduced

torque pulsation and shaft vibration.

• The proposed methods provides a systematic approach to robustify control set-

tings that arise in several drive systems subject to similar parametric variations.

• The synthesis of controller using Kharitonov theorem can be improved by using

some optimization technique to calculate the best gains of PI controller.

• The proposed method describes only one way to find the PI controller parame-

ters. The process can be reversed by selecting the range of gains and optimize

the damping ratio with verification using Kharitonov theorem.

• The laboratory based induction motor can be established by using certain

material which can be used as a shield between rotor and stator to control the

air gap flux, which in turn can help in controlling the magnetizing inductance

Lm of the induction motor.
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6.3. Limitations

• The magnetizing inductance Lm variation is temperature dependent and can not

be varied to a specific level in lab, which puts the constraints for experimentation

to verify the controller designed. Specialized industrial test system is required,

typically not in University lab hold those equipment.
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APPENDIX A. INDUCTION MOTOR MODEL

The dynamic model of induction motor is well established and is discussed in

literature rigorously (references). This paper uses dynamic model from (Ned Book

reference) in synchronously rotating reference frame. For high performance drives

indirect field oriented control technique is used in this paper. The dynamic model

represented in d and q axis is given below:

vsd = Rsisd +
d

dt
λsd − ωdλsq (A.1)

vsq = Rsisq +
d

dt
λsq + ωdλsd (A.2)

0 = Rrird +
d

dt
λrd − ωdAλrq (A.3)

0 = Rrirq +
d

dt
λrq + ωdAλrd (A.4)

Tem =
p

2
(λrqird − λrdirq) (A.5)

In addition, d-axis (common to stator and rotor) is aligned with the rotor flux

linkage space vector, giving the model in rotor flux orientation. The assumption of

rotor flux orientation works fine even if motor is subjected to line start or used with

scalar speed controller techniques. The benefit of aligning d-axis along rotor flux

linkage causes the q-axis flux linkage component to be zero, λrq(t) = 0 and also its

derivative is dλrq

dt
= 0 The q-axis flux linkage equation becomes

λrq = Lrirq + Lmisq (A.6)

becomes

irq = −Lm

Lr
isq (A.7)
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In squirrel cage induction motor, the rotor is short circuited from the ends which

yields vrq = 0 and vrd = 0. Since vrq = 0 and dλrq

dt
= 0 the equation A.4 becomes:

0 = Rrirq + ωdAλrd (A.8)

ωdA = −Rr
irq
λrd

(A.9)

By equations A.7, and A.9 we get the instantaneous speed of dq-winding to

rotor A-axis speed:

ωdA =
Lm

τrλrd

isq (A.10)

where τris defined as rotor time constant and is given as: τr =
Lr

Rr
.

Based on the same above assumption of d-axis alignment with rotor flux linkage

space vector, the equation for electromagnetic torque A.5 becomes:

Tem = −p

2
λrdirq (A.11)

From equation A.7, the equation A.11 can be written in terms of isq as:

Tem =
p

2
λrd

Lm

Lr
isq (A.12)

The simplified block diagram of induction motor under indirect vector control is

shown in Figure 5. The i∗sd and i∗sq are the reference values generated from parameter

based vector control block. The feedback currents are sensed from the induction

motor terminals are transformed into direct and quadrature current components, and

compared with the reference currents to generate the reference direct and quadrature

axis voltages, vds and vqs, which are transformed into three phase reference voltages

v∗a, v
∗
b and v∗c , for space vector PWM inverter. The outer speed loop used for variable
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speed drives in which the reference speed is compared with measured speed of motor,

which fed to PI controller to generate reference torque signal. For speed operations

up to rated speed the reference flux is a constant value of the maximum flux, when

the torque produced is zero. Over the rated speed operations the field weakening

technique is used [45].
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APPENDIX B. INDUCTION MOTOR TRANSFER

FUNCTION G(S)

The Transfer function of the induction motor is obtained numerically solved at

the steady state condition and generic form is given as:

G(s) =
ωm

Vqs
=

b3s
3 + b2s

2 + b1s+ b0
a5s5 + a4s4 + a3s3 + a2s2 + a1s+ a0

(B.1)

where ai and bi are the numerically obtained coefficients of numerator and denomi-

nator of the transfer function.

The inverter transfer function is given by:

I(s) =
Kinv

1 + sTinv

(B.2)

Kinv = 0.65
Vdc

Vcm

(B.3)

Tinv =
1

2fc
(B.4)

here, Vcm denotes the maximum control voltage and Vdc, the DC link voltage. The

factor 0.65 is multiplied to obtain maximum fundamental voltage which can be

obtained from DC link [45].

The closed loop transfer function of the induction motor with inverter and

controller is:

Gcl(s) =
n4s

4 + n3s
3 + n2s

2 + n1s+ n0

s7 + d6s6 + d5s5 + d4s4 + d3s3 + d2s2 + d1s+ d0
(B.5)
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where Gcl is transfer function between measured speed and reference speed ωm

ω∗
m
.

n4 = K1(KP b3)

n3 = K1(KIb3 +Kpb2)

n2 = K1(KIb2 +Kpb1)

n1 = K1(KIb1 +Kpb0)

n0 = KIb0

d7 = 1

d6 = (K2 + a4)

d5 = (a4K2 + a3)

d4 = (K2a3 + a2 +KIKP b3)

d3 = (K2a2 + a1 +KIb3 +KP b2)

d2 = (K2a1 + a0 +KIb2 +KP b1)

d1 = (a2K2 +KIb1 +Kpb0)

d0 = KIb0 (B.6)

The limits on the outer loop speed controller in block diagram shown in Figure

(6) are: T ref
e = ±Tb and the limits for inner loops are:V ref

sd = ±Vdc, V ref
sq = ±Vdc

where subscript with zero shows the steady state values at full rated load.

The machine parameters used in all simulations are:

Rs=1.77 Ω, Rr=1.34 Ω, Ls=383 mH

Lr=381 mH, Lm=369 mH, Jeq=0.025 kg.m2

p=4, Power= 3HP/2.4kW, Voltage=460 V (L-L,rms)
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APPENDIX C. MACHINE PARAMETERS AND

CALCULATION OF INITIAL CONDITIONS

%**************************************************************************

% Author: Chaudhry Arshad Mehmood

%

% Description: Partial Code is obtained from Ned Mohan Book to calculate

% the initial conditions, flux weakening lookup table and

% classical PI controller parameter calculations.

%**************************************************************************

% FFFFF IIIII N N A L

% F I N N N A A L

% FFF I N N N AAAAA L

% F I N N N A A L

% F IIIII N N A A LLLLL

% DDDD IIIII SSS SSS EEEE RRRR TTTTT A TTTTT IIIII OOOO N N

% D D I S S E R R T A A T I O O N N N

% D D I S S EEE RRRR T AAAAA T I O O N N N

% D D I S S E R R T A A T I O O N N N

% DDDD IIIII SSS SSS EEEE R R T A A T IIIII OOOO N N

% CCC OOOO DDDD EEEE

% C O O D D E

% C O O D D EEE

% C O O D D E

% CCC OOOO DDDD EEEE

%

% Calculation of Initial Conditions

% Induction Motor Parameters

% Rated Torque is 13.09 N-m

clc;

clear all;

Rs=1.77;

Rr=1.34;

Rrm=1.34;

Xls=5.25;

Xlr=4.57;

Xm=139;

Jeq=0.025;

p=4;

% Steady State Operating Condition

f=60; VLLrms= 460; s=0.0172; % phase-a voltage is at its positive peak at t=0

Wsyn=2*pi*f; % synchronous speed in electrical rad/s

Wm=(1-s)*Wsyn; % rotor speed in electrical rad/s

% Phasor Calculations

Va = VLLrms * sqrt(2)/ sqrt(3); % Va phasor

% SpaLsce Vectors at time t=0 with stator a-axis as the reference

Vs_0 = (3/2) * Va; % Vs(0) space vector

Theta_Vs_0 = angle(Vs_0); % angle of Vs(0) space vector

% We will assume that at t=0, d-axis is aligned to the stator a-axis. Therefore, Theta_da_0=0

Theta_da_0 = 0;

Vsd_0 = sqrt(2/3) * abs(Vs_0) * cos(Theta_Vs_0 - Theta_da_0);

Vsq_0 = sqrt(2/3) * abs(Vs_0) * sin(Theta_Vs_0 - Theta_da_0);

% Calculation of machine inductances

Ls = (Xls + Xm) / (2*pi*f);

Lm = Xm / (2*pi*f);

Lr = (Xlr + Xm) / (2*pi*f);

tau_r=Lr/Rr;

% Calculations of dq-winding currents

A = [Rs -Wsyn*Ls 0 -Wsyn*Lm ;...

Wsyn*Ls Rs Wsyn*Lm 0 ;...

0 -s*Wsyn*Lm Rr -s*Wsyn*Lr;... % Matrix [A]

s*Wsyn*Lm 0 s*Wsyn*Lr Rr];

Ainv = inv(A);

V_dq_0=[Vsd_0; Vsq_0; 0; 0];

I_dq_0=Ainv*V_dq_0;

Isd_0=I_dq_0(1);

Isq_0=I_dq_0(2);

Ird_0=I_dq_0(3);

Irq_0=I_dq_0(4);

% Electromagnetic Torque, which equals Load Torque in Initial Steady State

Tem_0 = (p/2) * Lm * (Isq_0 * Ird_0 - Isd_0 * Irq_0);

TL_0 = Tem_0
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% Wmech = rotor speed in actual rad/s

Wmech_0=(2/p)*Wm;% (2/p)*(1-s)*Wsyn; %(2/p)*Wm % Eq. 3-34

% Inductance matrix M in Eq. 3-61

M = [Ls 0 Lm 0 ;...

0 Ls 0 Lm;...

Lm 0 Lr 0 ;...

0 Lm 0 Lr];

% dq winding Flux Linkages with the d-axis aligned with the stator a-axis

fl_dq_0 = M * [Isd_0; Isq_0; Ird_0; Irq_0]; % dq-winding fluxes in vector form

fl_sd_0 = fl_dq_0(1);

fl_sq_0 = fl_dq_0(2) ;

fl_rd_0 = fl_dq_0(3);

fl_rq_0 = fl_dq_0(4);

[thetar, fl_r_dq_0]=cart2pol(fl_rd_0, fl_rq_0);

[thetas, fl_s_dq_0]=cart2pol(fl_sd_0, fl_sq_0);

[theta_Is_dq, Is_dq_0]=cart2pol(Isd_0, Isq_0);

[theta_Vs_dq, Vs_dq_0]=cart2pol(Vsd_0, Vsq_0);

% d-axis is now aligned with the rotor flux which results in the following new values:

fl_rd_0=fl_r_dq_0 ; %fl_rq_0 equals zero

[fl_sd_0, fl_sq_0]=pol2cart(thetas-thetar, fl_s_dq_0);

[Isd_0, Isq_0]=pol2cart(theta_Is_dq-thetar, Is_dq_0);

[Vsd_0, Vsq_0]=pol2cart(theta_Vs_dq-thetar, Vs_dq_0);

% Calculations for the controller.

Wc=25; % crossover freq in rad/s

k=(p/2)*(Lm*Lm/Lr)*Isd_0;

PM=60*pi/180; % phase margin in rad/s

Wc_kp_by_ki=tan(PM);

ki=Wc*Wc*Jeq/(k*sqrt(1+(tan(PM)^2)));

kp=ki*Wc_kp_by_ki/Wc;

% check to show that at Wc, GOLmag=1 and GOLang= (-180 degrees + phase margin of 60 degrees)

GOL=(kp+ki/(j*Wc))*k/(Jeq*j*Wc) ; % open-loop transfer function

GOLmag=abs(GOL);

GOLang=angle(GOL)*180/pi;

% PI in current loop

sigma=1-Lm*Lm/(Ls*Lr);

Wci=10*Wc ; % Current-loop bandwidth is qi times that of the speed loop

PMi=PM;

Wci_kpi_by_kii=tan(PMi-pi/2+atan(Wci*Ls*sigma/Rs));

kii=Wci*sqrt(Rs*Rs+(Wci*Ls*sigma)^2)/sqrt(Wci_kpi_by_kii^2+1);

kpi=Wci_kpi_by_kii*kii/Wci;

% check to show that at Wci, GOLimag=1 and GOLiang= (-180 degrees + phase margin of 60 degrees)

GOLi=(kpi+kii/(j*Wci))/(Rs+j*Wci*Ls*sigma);

GOLimag=abs(GOLi);

GOLiang=angle(GOLi)*180/pi;

load Lookup_table_data.mat

speed= data(:,1);

Lambda_r=data(:,4);
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APPENDIX D. FLUX WEAKENING LOOKUP TABLE

%**************************************************************************

% Author: Chaudhry Arshad Mehmood

%

% Description: Calculate flux weakening lookup table

%

%**************************************************************************

% FFFFF IIIII N N A L

% F I N N N A A L

% FFF I N N N AAAAA L

% F I N N N A A L

% F IIIII N N A A LLLLL

% DDDD IIIII SSS SSS EEEE RRRR TTTTT A TTTTT IIIII OOOO N N

% D D I S S E R R T A A T I O O N N N

% D D I S S EEE RRRR T AAAAA T I O O N N N

% D D I S S E R R T A A T I O O N N N

% DDDD IIIII SSS SSS EEEE R R T A A T IIIII OOOO N N

% CCC OOOO DDDD EEEE

% C O O D D E

% C O O D D EEE

% C O O D D E

% CCC OOOO DDDD EEEE

clc;

clear all;

format compact;

%%%%%%%%% MAcine Data %%%%%%%%%%

% Induction Motor Parameters

% Rated Torque is 13.09 N-m

Rs=1.77;

Rs=1.77;

Rr=1.34;

Rrm=1.34;

Xls=5.25;

Xlr=4.57;

Xm=139;

Jeq=0.025;

p=4;

f=60; VLLrms= 460; s=0.0172; % phase-a voltage is at its positive peak at t=0

Ls = (Xls + Xm) / (2*pi*f);

Lm = Xm / (2*pi*f);

Lr = (Xlr + Xm) / (2*pi*f);

% Steady State Operating Condition

ws=2*pi*f; % synchronous speed in electrical rad/s

wm=(1-s)*ws; % rotor speed in electrical rad/s

Vs = VLLrms * sqrt(2)/ sqrt(3);

P_out = 3.25 * 746; % Rated power of motor

%Base Quantities

wb = 2 * pi *f; %Base Frequency

Vb = sqrt(2 / 3) * Vs; %Base Peak Phase Voltage

Ib = P_out / (3 * Vb); %Base Current

Zb = Vb / Ib;

Lb = Zb / wb;

Rrn = Rr /Zb;

wrn = wm / wb;

Lsn = Ls /Lb;

Lmn = Lm / Lb;

Lrn = Lr /Lb;

%%%%%%%%%% Synchronous Reference Fram %%%%%%%%%%%%

vqs = Vs * sqrt (2/3);

vds = 0;

vqd = [vqs vds 0 0]’;

% The steady state flux linkages are evaluated from the steady state

% current; they in turn, are found by using the synchronous frame

% equations with the substitution of p = 0 and with slip speed being zero.

% because the slip speed is zero, the machine does not produce

% electromagnetic torque; thus the stator currents are utilized to produce

% solely the stator and rotor flux linkages

wsl = 0;

sync_matrix = [Rs ws * Ls 0 ws * Lm;

-ws* Ls Rs -ws * Lm 0;

0 wsl * Lm Rr wsl * Lr;

-wsl * Lm 0 -wsl * Lr Rr];

i = sync_matrix \ vqd;

Iqs = i(1,1);

Ids = i(2,1);
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Iqr = i(3,1);

Idr = i(4,1);

% Electromagnetic Torque is zero because of condition of wsl = 0

Tem = (3 / 4) * p * Lm * (Iqs * Idr - Ids * Iqr);

% Rotor Flux Linkages (in Wb - Turn) are

lambda_qr = Lm * Iqs + Lr * Iqr;

lambda_dr = Lm * Ids + Lr * Idr;

% Resultant rotor flux (in Wb - Turn) is

lambda_r = sqrt (lambda_qr^2 + lambda_dr^2)

% Stator Flux Linkages (in Wb - Turn) are

lambda_qs = Ls * Iqs + Lm * Iqr;

lambda_ds = Ls * Ids + Lr * Idr;

% Resultant rotor flux (in Wb - Turn) is

lambda_s = sqrt (lambda_qs^2 + lambda_ds^2);

% Stator Current Magnitude is

Is1 = sqrt (Ids^2 + Iqs^2);

If = Is1; % Peak value not rms value

% If is equal to the flux producing stator current in the machine. This is

% a peak value not the rms value. The friction and windage losses are not

% given, so they can be neglected. Therefore, the electromagnetic torque

% is equal to shaft torque; its rated value os obtained as

Te = P_out / (wm *(2/p));

% The torque constant K_te is

K_te = (3 / 4) * p * (Lm / Lr);

% By using rthe torque constant, the torque producing component of the

% stator current and the cuurent phasor are obtained as

It = Te / (K_te * lambda_r);

Isr = sqrt (If^2 + It^2);

theta_t = atan (It/If); % angle is in radians

% The slip speed is verified from the above as

wsl = (Rr * It) / (Lr * If);

% From steady state rotor equations , the rotor currents are found as:

Iqd_r_matrix = [Rr wsl* Lr;

-wsl*Lr Rr];

Iqdr = wsl * Lm * inv(Iqd_r_matrix) * [-If It]’;

Iqr = Iqdr(1,1);

Idr = Iqdr(2,1);

Ir1 = sqrt(Iqr ^2 + Idr ^2);

% The stator voltages are computed from the stator steady-state equation

Vqs = Rs * It + ws * Ls *If + ws * Lm *Idr;

Vds = Rs * If - ws * Ls *It - ws * Lm *Iqr;

Vsr = sqrt ( Vqs ^2 + Vds^2);

V = sqrt(3/2) * Vsr;

% Base Values

Ifrn = If /Ib;

Itrn = It /Ib;

Vsn = Vsr / Vb;

Isn = Isr /Ib;

sigma = (1 - (Lmn^2 /(Lrn * Lsn)));

an = sigma * Lsn;

a = sigma;

% an = (1 - (Lmn^2/(Lrn*Lsn)));

wrn =5;

Ks = (Rrn * Itrn) / (wb * Lrn * Ifrn);

d1 = (Lsn * Ifrn)^2 - (an * Ifrn)^2;

d2 = -Vsn^2 + 2*Ks*(Lsn * Ifrn)^2 - 2 * Ks * (an * Ifrn)^2 + (an * wrn * Isn)^2;

d3 = (Lsn * Ifrn *Ks)^2 -(an * Ks * Ifrn)^2 + 2*Ks *(an * Isn * wrn)^2;

d4 = (an* Ks * wrn * Isn)^2;

roots ([d1 0 d2 0 d3 0 d4])
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APPENDIX E. HURWITZ MATRICES SOLUTION

%**************************************************************************

% Author: Chaudhry Arshad Mehmood

%

% Description: Hurwitz Matrix solution obtained Through Kharitonov Theorem

%

%**************************************************************************

% FFFFF IIIII N N A L

% F I N N N A A L

% FFF I N N N AAAAA L

% F I N N N A A L

% F IIIII N N A A LLLLL

% DDDD IIIII SSS SSS EEEE RRRR TTTTT A TTTTT IIIII OOOO N N

% D D I S S E R R T A A T I O O N N N

% D D I S S EEE RRRR T AAAAA T I O O N N N

% D D I S S E R R T A A T I O O N N N

% DDDD IIIII SSS SSS EEEE R R T A A T IIIII OOOO N N

% CCC OOOO DDDD EEEE

% C O O D D E

% C O O D D EEE

% C O O D D E

% CCC OOOO DDDD EEEE

% clear all

close all

clc

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Parameters for first Polynomial of Karithonov Theorem%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Ki1 = sym(’Ki1’);

Kp1 = sym(’Kp1’);

a0 = 1.232e9 * Ki1;

a1 = 1.328e9 * Kp1 + 7.268e7 * Ki1;

a2 = 1.604e9 + 2.903e8 * Kp1 + 1.893e6 * Ki1;

a3 = 30401000 + 1.893e6 * Kp1 + 3450 * Ki1;

a4 = 153371.25 + 63911.25 * Kp1;

a5 = 228.275;

a6 = 1.08695;

a7 = 0.25e-3;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Leading Principal Minors and their determinants of First Karithonov Polynomial %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

lp11 = a1; lp11d=det(lp11);

lp12=[a1 a3;a0 a2]; lp12d=det(lp12);

lp13=[a1 a3 a5;a0 a2 a4;0 a1 a3]; lp13d=det(lp13);

lp14=[a1 a3 a5 a7;a0 a2 a4 a6;0 a1 a3 a5;0 a0 a2 a4]; lp14d=det(lp14);

lp15=[a1 a3 a5 a7 0;a0 a2 a4 a6 0;0 a1 a3 a5 a7;0 a0 a2 a4 a6;

0 0 a1 a3 a5];

lp15d=det(lp15);

lp16=[a1 a3 a5 a7 0 0;a0 a2 a4 a6 0 0;0 a1 a3 a5 a7 0;0 a0 a2 a4 a6 0;

0 0 a1 a3 a5 a7;0 0 a0 a2 a4 a6];

lp16d=det(lp16);

lp17=[a1 a3 a5 a7 0 0 0;a0 a2 a4 a6 0 0 0;0 a1 a3 a5 a7 0 0;0 a0 a2 a4 a6 0 0;

0 0 a1 a3 a5 a7 0;0 0 a0 a2 a4 a6 0;0 0 0 a1 a3 a5 a7];

lp17d=det(lp17);

ss112=solve(lp11d,lp12d, Ki1, Kp1);

ss123=solve(lp13d,lp12d, Ki1, Kp1);

ss134=solve(lp13d,lp14d, Ki1, Kp1);

ss145=solve(lp15d,lp14d, Ki1, Kp1);

ss156=solve(lp15d,lp16d, Ki1, Kp1);

ss167=solve(lp16d,lp17d, Ki1, Kp1);

ss171=solve(lp11d,lp17d, Ki1, Kp1);

ss1=[ss112.Kp1 ss112.Ki1; ss123.Kp1 ss123.Ki1; ss134.Kp1 ss134.Ki1;

ss145.Kp1 ss145.Ki1; ss156.Kp1 ss156.Ki1; ss167.Kp1 ss167.Ki1;

ss171.Kp1 ss171.Ki1];

format

ss1re=double(ss1);

% figure(1);

% DrawCircle(0,0,max(ss1re(:,1)/2),100,’k’);

% hold on

% figure(2);

% DrawCircle(0,0,max(ss1re(:,2)/2),100,’k’);

% hold on
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Parameters for second Polynomial of Karithonov Theorem%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Ki2 = sym(’Ki2’);

Kp2 = sym(’Kp2’);

a0 = 1.712e10 * Ki2;

a1 = 1.328e9 * Kp2 + 7.268e7 * Ki2;

a2 = 1.122e8 + 7.268e8 * Kp2 + 1.62e6 * Ki2;

a3 = 30401000 + 1.893e6 * Kp2 + 3450 * Ki2;

a4 = 180900 + 63911.25 * Kp2;

a5 = 228.275;

a6 = 1.0476;

a7 = 0.25e-3;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Leading Principal Minors and their determinants of Second Karithonov Polynomial %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

lp21 = a1; lp21d=det(lp21);

lp22=[a1 a3;a0 a2]; lp22d=det(lp22);

lp23=[a1 a3 a5;a0 a2 a4;0 a1 a3]; lp23d=det(lp23);

lp24=[a1 a3 a5 a7;a0 a2 a4 a6;0 a1 a3 a5;0 a0 a2 a4]; lp24d=det(lp24);

lp25=[a1 a3 a5 a7 0;a0 a2 a4 a6 0;0 a1 a3 a5 a7;0 a0 a2 a4 a6;

0 0 a1 a3 a5];

lp25d=det(lp25);

lp26=[a1 a3 a5 a7 0 0;a0 a2 a4 a6 0 0;0 a1 a3 a5 a7 0;0 a0 a2 a4 a6 0;

0 0 a1 a3 a5 a7;0 0 a0 a2 a4 a6];

lp26d=det(lp26);

lp27=[a1 a3 a5 a7 0 0 0;a0 a2 a4 a6 0 0 0;0 a1 a3 a5 a7 0 0;0 a0 a2 a4 a6 0 0;

0 0 a1 a3 a5 a7 0;0 0 a0 a2 a4 a6 0;0 0 0 a1 a3 a5 a7];

lp27d=det(lp27);

ss212=solve(lp21d,lp22d, Ki2, Kp2);

ss223=solve(lp23d,lp22d, Ki2, Kp2);

ss234=solve(lp23d,lp24d, Ki2, Kp2);

ss245=solve(lp25d,lp24d, Ki2, Kp2);

ss256=solve(lp25d,lp26d, Ki2, Kp2);

ss267=solve(lp26d,lp27d, Ki2, Kp2);

ss271=solve(lp21d,lp27d, Ki2, Kp2);

ss2=[ss212.Kp2 ss212.Ki2; ss223.Kp2 ss223.Ki2; ss234.Kp2 ss234.Ki2;

ss245.Kp2 ss245.Ki2; ss256.Kp2 ss256.Ki2; ss267.Kp2 ss267.Ki2;

ss271.Kp2 ss271.Ki2];

format

ss2re=double(ss2);

% figure(1);

% DrawCircle(0,0,max(ss2re(:,1)/2),100,’g’);

% hold on

% figure(2);

% DrawCircle(0,0,max(ss2re(:,2)/2),100,’g’);

% hold on

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Parameters for Third Polynomial of Karithonov Theorem%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Ki3 = sym(’Ki3’);

Kp3 = sym(’Kp3’);

a0 = 1.712e10 * Ki3;

a1 = 1.712e10 * Kp3 + 2.903e8 * Ki3;

a2 = 1.122e8 + 7.268e8 * Kp3 + 1.62e6 * Ki3;

a3 = 7513050 + 1.62e6 * Kp3 + 3450 * Ki3;

a4 = 180900 + 63911.25 * Kp3;

a5 = 391.15;

a6 = 1.0476;

a7 = 0.25e-3;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Leading Principal Minors and their determinants of Third Karithonov Polynomial %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

lp31 = a1; lp31d=det(lp31);

lp32=[a1 a3;a0 a2]; lp32d=det(lp32);

lp33=[a1 a3 a5;a0 a2 a4;0 a1 a3]; lp33d=det(lp33);

lp34=[a1 a3 a5 a7;a0 a2 a4 a6;0 a1 a3 a5;0 a0 a2 a4]; lp34d=det(lp34);

lp35=[a1 a3 a5 a7 0;a0 a2 a4 a6 0;0 a1 a3 a5 a7;0 a0 a2 a4 a6;

0 0 a1 a3 a5];

lp35d=det(lp35);
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lp36=[a1 a3 a5 a7 0 0;a0 a2 a4 a6 0 0;0 a1 a3 a5 a7 0;0 a0 a2 a4 a6 0;

0 0 a1 a3 a5 a7;0 0 a0 a2 a4 a6];

lp36d=det(lp36);

lp37=[a1 a3 a5 a7 0 0 0;a0 a2 a4 a6 0 0 0;0 a1 a3 a5 a7 0 0;0 a0 a2 a4 a6 0 0;

0 0 a1 a3 a5 a7 0;0 0 a0 a2 a4 a6 0;0 0 0 a1 a3 a5 a7];

lp37d=det(lp37);

ss312=solve(lp31d,lp32d, Ki3, Kp3);

ss323=solve(lp33d,lp32d, Ki3, Kp3);

ss334=solve(lp33d,lp34d, Ki3, Kp3);

ss345=solve(lp35d,lp34d, Ki3, Kp3);

ss356=solve(lp35d,lp36d, Ki3, Kp3);

ss367=solve(lp36d,lp37d, Ki3, Kp3);

ss371=solve(lp31d,lp37d, Ki3, Kp3);

ss3=[ss312.Kp3 ss312.Ki3; ss323.Kp3 ss323.Ki3; ss334.Kp3 ss334.Ki3;

ss345.Kp3 ss345.Ki3; ss356.Kp3 ss356.Ki3; ss367.Kp3 ss367.Ki3;

ss371.Kp3 ss371.Ki3];

ss3re=double(ss3);

% figure(1);

% DrawCircle(0,0,max(ss3re(:,1)/2),100,’b’);

% hold on

% figure(2);

% DrawCircle(0,0,max(ss3re(:,2)/2),100,’b’);

% hold on

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Parameters for Fourth Polynomial of Karithonov Theorem%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Ki4 = sym(’Ki4’);

Kp4 = sym(’Kp4’);

a0 = 1.328e9 * Ki4;

a1 = 1.712e10 * Kp4 + 2.903e8 * Ki4;

a2 = 1.604e9 + 2.903e8 * Kp4 + 1.893e6 * Ki4;

a3 = 7513050 + 1.62e6 * Kp4 + 3450 * Ki4;

a4 = 153371.25 + 63911.25 * Kp4;

a5 = 391.15;

a6 = 1.08695;

a7 = 0.25e-3;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Leading Principal Minors and their determinants of Fourth Karithonov Polynomial %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

lp41 = a1; lp41d=det(lp41);

lp42=[a1 a3;a0 a2]; lp42d=det(lp42);

lp43=[a1 a3 a5;a0 a2 a4;0 a1 a3]; lp43d=det(lp43);

lp44=[a1 a3 a5 a7;a0 a2 a4 a6;0 a1 a3 a5;0 a0 a2 a4]; lp44d=det(lp44);

lp45=[a1 a3 a5 a7 0;a0 a2 a4 a6 0;0 a1 a3 a5 a7;0 a0 a2 a4 a6;

0 0 a1 a3 a5];

lp45d=det(lp45);

lp46=[a1 a3 a5 a7 0 0;a0 a2 a4 a6 0 0;0 a1 a3 a5 a7 0;0 a0 a2 a4 a6 0;

0 0 a1 a3 a5 a7;0 0 a0 a2 a4 a6];

lp46d=det(lp46);

lp47=[a1 a3 a5 a7 0 0 0;a0 a2 a4 a6 0 0 0;0 a1 a3 a5 a7 0 0;0 a0 a2 a4 a6 0 0;

0 0 a1 a3 a5 a7 0;0 0 a0 a2 a4 a6 0;0 0 0 a1 a3 a5 a7];

lp47d=det(lp47);

ss412=solve(lp41d,lp42d, Ki4, Kp4);

ss423=solve(lp43d,lp42d, Ki4, Kp4);

ss434=solve(lp43d,lp44d, Ki4, Kp4);

ss445=solve(lp45d,lp44d, Ki4, Kp4);

ss456=solve(lp45d,lp46d, Ki4, Kp4);

ss467=solve(lp46d,lp47d, Ki4, Kp4);

ss471=solve(lp41d,lp47d, Ki4, Kp4);

ss4=[ss412.Kp4 ss412.Ki4; ss423.Kp4 ss423.Ki4; ss434.Kp4 ss434.Ki4;

ss445.Kp4 ss445.Ki4; ss456.Kp4 ss456.Ki4; ss467.Kp4 ss467.Ki4;

ss471.Kp4 ss471.Ki4];

ss4re=double(ss4);

% figure(1);

% DrawCircle(0,0,max(ss4re(:,1)/2),100,’r’);

% title(’Proportional Gain’);

% hold on

% figure(2);

% DrawCircle(0,0,max(ss4re(:,2)/2),100,’r’);

% title(’Integral Gain’);

% hold on
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[Kp11min Kp11max]= minmax(ss1re(:,1));

[Kp12min Kp12max]= minmax(ss2re(:,1));

[Kp13min Kp13max]= minmax(ss3re(:,1));

[Kp14min Kp14max]= minmax(ss4re(:,1));

[Ki11min Ki11max]= minmax(ss1re(:,1));

[Ki12min Ki12max]= minmax(ss2re(:,1));

[Ki13min Ki13max]= minmax(ss3re(:,1));

[Ki14min Ki14max]= minmax(ss4re(:,1));

format compact;

Kp1min =[Kp11min Kp12min Kp13min Kp14min]

Kp1max =[Kp11max Kp12max Kp13max Kp14max]

Ki1min =[Ki11min Ki12min Ki13min Ki14min]

Ki1max =[Ki11max Ki12max Ki13max Ki14max]
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APPENDIX F. LINEARIZED TRANSFER FUNCTIONS

%**************************************************************************

% Author: Chaudhry Arshad Mehmood

%

% Description: Transfer Functions Numerically Obtained From Matlab

%

%**************************************************************************

Rr at 50%

3450 s^3 + 1.621e006 s^2 + 7.268e007 s + 1.328e009

-------------------------------------------------------------

s^5 + 190.4 s^4 + 1.515e005 s^3 + 7.485e006 s^2 + 1.122e008 s

Rr at 200%

3450 s^3 + 1.893e006 s^2 + 2.903e008 s + 1.712e010

---------------------------------------------------------

s^5 + 347.8 s^4 + 1.734e005 s^3 + 3e007 s^2 + 1.604e009 s

Lm at 50 %

150.9 s^3 + 5.849e004 s^2 + 5.486e005 s + 4.542e006

-------------------------------------------------------------

s^5 + 21.24 s^4 + 1.423e005 s^3 + 1.305e006 s^2 + 9.002e006 s

Lm rated

3450 s^3 + 1.712e006 s^2 + 1.452e008 s + 4.593e009

-------------------------------------------------------------

s^5 + 242.9 s^4 + 1.574e005 s^3 + 1.498e007 s^2 + 4.139e008 s

Rated

3450 s^3 + 4.189e005 s^2 + 9.56e006 s + 9.049e008

-------------------------------------------------------------

s^5 + 242.9 s^4 + 1.574e005 s^3 + 1.498e007 s^2 + 4.139e008 s

Lm= 80 and Rr 200

459.3 s^3 + 1.49e004 s^2 + 4.07e005 s + 2.132e007

------------------------------------------------------------

s^5 + 57.89 s^4 + 1.432e005 s^3 + 4.97e006 s^2 + 4.992e007 s
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APPENDIX G. SYMMETRIC OPTIMUM PI

CONTROLLER DESIGN

%*****************************************************************************

% Author: Chaudhry Arshad Mehmood

%

% Description: Calculate Controller parameter for Symmetric Optimum Technique

%

%*****************************************************************************

clear all

close all

clc;

If = 48;

fc = 2000;

Bt = 0.05;

Hw = .050; % Speed filter Parameter

Tw = 0.002; % Speed Filter Parameter

Vcm = 10;

J = 0.025;

Vdc = 200;

Hc = 1;%0.333;

Rs = 1.77;

Rr = 1.34;

Lm = 139/(2*pi*60);

Lr1 = 4.57/(2*pi*60);

Ls1 = 5.25/(2*pi*60);

Ls = Lm+Ls1;

Lr = Lm+Lr1;

p = 4;

% Rs1=Rs

% J1 = J

% for J=.2 * J1: .004: 3.5 *J1

Ra = Rs + Rr*Ls/Lr;

Ka = 1/Ra;

La = Ls - (Lm^2)/Lr;

% La = 0.0037;

Ta = La/Ra;

Tm = J/Bt;

Kt = (3/2)*(p/2)*((Lm^2)*If/Lr);

Km = (p/2)*(Kt/Bt);

Kb = (p/2)*(Kt/Bt)*Ls*If;

Tin = 1/(2*fc);

Kin = 0.65*Vdc/Vcm;

Tar = Ta + Tin;

T1 = 0.00074;

T2 = 0.1173;

%approximate current loop

% Ki = Kin/Ra;

Ki = 2.8708;

Ti = T1;

%speed controller

Kg = (Ki*Km*Hw)/Tm;

% Kg = 104.1;

Twi = Tw + Ti;

Ts = 6*Twi;

Ks = 4/(9*Kg*Twi); %.5606

Kps = Ks %proportional gain

Kis = Ks/Ts %integral gain

s = tf(’s’);

Gin = Kin/(1 + s*Tin);

G1 = Ka/(1 + s*Ta);

G2 = Kb/(1 + s*Tm);

G12 = feedback(G1,G2);

%exact current loop transfer function

% Gi = Gin*G12 /(1 + Hc*Gin*G12);

Gi1 = series(Gin, G12);

Gi = feedback(Gi1, Hc);

%simplified current loop transfer function

Gis = Ki/(1 + s*Ti);

figure(1)

bodemag(Gi,Gis)

title(’Simplified and exact current loop frequency response’) ;

% axis([100 100000 -5 10]);

grid;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Exact Speed Loop%%%%%%%%%%%%%%

%exact speed loop tf

Gwf = (Km/(1 + s*Tm)) * (Ks*(1 + s*Ts)/(s*Ts))*Gi;

Gw = Hw / (1 + s*Tw);
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% Gwe = Gwf / (1 + Gwf*Gw);

Gwe = feedback(Gwf,Gw);

% title(’Results with Symmetric Optimum’)

%simplified speed loop transfer function

Gf = (Km/(1 + s*Tm)) * (Ks*(1 + s*Ts)/(s*Ts)) * (Ki/(1 + s*Ti));

% Gws = Gf/(1 + Gf*Gw);

Gws = feedback(Gf,Gw);

%%%%smoothed speed loop tf for exact by introducing a pole of -1/Ts

Gswe = Gwe/(1 + s*Ts);

%%%smoothed speed loop tf for approximate by introducing a pole of -1/Ts

Gsws = Gws/(1 + s*Ts);

figure(2);

bodemag(Gwe,Gws,Gswe,Gsws)

title(’Smoothed simplified speed loop frequency response’) ;

axis([10 1000 -20 100])

grid;
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APPENDIX H. LINEARIZED TRANSFER FUNCTIONS

%**************************************************************************

% Author: Chaudhry Arshad Mehmood

%

% Description: Plug-in H-infinity compensator for speed control Matlab Code

% The code requires the mu-Analysis and Synthesis Toolbox

%

%**************************************************************************

clc;

% The parameters from the reference paper (ref number is given in chapter)

% Kp=1.5307;

% Ki=50;

% J = 0.01111;

% Classical PI tuning already tuned in the thesis

Kp=0.24;

Ki=3.53;

J = 0.025;

Bm = 7.355e-4;

W2=1;

W1=8*(tf([Kp Ki],[1 0]));

P=tf([1/J],[1 Bm/J]);

% Finding K3 the optimal H-infinity controller

[K,CL,GAM,INFO]=ncfsyn(P,-W1,W2);

[b, a]=ss2tf(INFO.Ks.a, INFO.Ks.b, INFO.Ks.c, INFO.Ks.d);

K3=tf(b,a);

sys1=zpk(K3)

% Finding Q Plug in robust compensator

X2=1;

K2=W1*K3*W2;

M=1;

N=P;

Y0=tf([1 0],[Kp Ki]);

Q=((K2*Y0)-X2)/(M+(K2*N));

sys=zpk(Q);
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