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ABSTRACT 

In dose-finding studies, c-optimal designs provide the most efficient design to study an 

interesting target dose. However, there is no guarantee that a c-optimal design that works best for 

estimating one specific target dose still performs well for estimating other target doses. 

Considering the demand in estimating multiple target dose levels, the robustness of the optimal 

design becomes important. In this study, the 4-parameter logistic model is adopted to describe 

dose-response curves. Under nonlinear models, optimal design truly depends on the pre-specified 

nominal parameter values. If the pre-specified values of the parameters are not close to the true 

values, optimal designs become far from optimum. In this research, I study an optimal design 

that works well for estimating multiple ED�s and for unknown parameter values. To address this 

parameter uncertainty, a two-stage design technique is adopted using two different approaches. 

One approach is to utilize a design augmentation at the second stage, the other one is to apply a 

Bayesian paradigm to find the optimal design at the second stage. For the Bayesian approach, 

one challenging task is that it requires heavy computation in the numerical calculation when 

searching for the Bayesian optimal design. To overcome this problem, a clustering method can 

be applied. These two-stage design strategies are applied to construct a robust optimal design for 

estimating multiple ED�s. Through a simulation study, the proposed two-stage optimal designs 

are compared with the traditional uniform design and the enhanced uniform design to see how 

well they perform in estimating multiple ED�s when the parameter values are mis-specified.
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1. INTRODUCTION 

Experimental designs are increasingly expensive to construct in drug development. Thus, 

setting up an appropriate design that allows researchers to gather as much accurate information 

as possible at minimal cost becomes important in a dose-finding study. An optimal design can 

save time, cost and energy by providing the most efficient design to study the interesting 

objective accurately with limited resources. It identifies dose levels and the number of the 

subjects that assigned to each selected dose level in the most efficient way (Atikinson and 

Donev, 1992; Dragalin et al., 2007; Miller et al., 2007). 

In general, optimal designs use different optimality criteria for studying different 

objectives in dose-finding trials.  For instance, the c-optimal design provides the minimal 

variance for estimating target dose levels such as minimum effective dose (MED) and median 

effective dose (ED��), and the D-optimal design enables the researchers to study the dose-

response relationship accurately. One key objective for the dose-finding trial is to study an 

interesting target dose ED�. The ED� is the dose level that achieves �% of the maximum 

treatment effect within the observed dose range and � is given between 0 and 100 (Ting, 2006; 

Bretz et al., 2010). For example, the ED�� is the dose level that achieves 50% of the maximum 

treatment effect. C-optimal design works very well for estimating the ED�. 

The ED�� is a common interesting dose level since it generates a reasonable treatment 

effect. Other dose levels such as ED�� and ED�� are also interesting dose levels to study in 

practice (Kopman et al., 2000). In biological and toxicological studies, sometimes researchers 

want to study multiple dose levels in a single study. For instance, the dose levels ED �, ED��, 

ED!�, and ED"� are selected to study for daptomycin in infected mice (Louie et al., 2001); 

Another example is the dual ED�s such as ED#� and ED��  are interesting to researchers 
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conducting the nefopam experiments on patients who suffer from moderate pain in the 

postoperative period (Beloeil et al., 2007). Considering the increasing demand in estimating 

multiple target dose levels from a single study, it is critical to construct an optimal design that 

works well for estimating multiple ED��. 

In this paper, I consider the flexible 4-parameter logistic (4PL) model (also called 

sigmoid �$%& model) to describe the dose-response functions. The 4PL model is frequently used 

to study the dose-response relationship due to its sigmoid or S-shape curve in nature 

(MacDougall, 2006; Dragalin et al., 2007; Leonov and Miller, 2009). Zhang and Hyun (2016) 

stated that under the 4PL model, the c-optimal design for estimating one specific ED� works 

poorly when estimating other ED��. They proposed a robust c-optimal design that works well for 

estimating multiple  ED�� under the assumption that the parameter values are known. Optimal 

designs under nonlinear models are very sensitive to the unknown model parameter values. The 

nominal values of parameters need to be pre-specified in advance of implementing the optimal 

design. Typically, the construction of the optimal design is based on the initial guess of the 

parameter values. However, if the initial guess is not close to the true values, the optimal design 

is far from optimum (Chernoff, 1953; Wang and Yang, 2014).  

To reduce the uncertainty of the parameter values, a two-stage design technique is 

applied based on two different approaches in this study. One approach is to adopt the design 

augmentation in the second stage (Dragalin et al, 2007; Padmanabhan and Dragalin, 2010). Since 

the optimal design obtained at the second stage takes the existing design at the first stage into 

account, the optimal design at the second stage is not a true optimal design but an augmented 

optimal design. The whole procedure has two steps which offer an efficient way to learn about 
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the parameters from the first stage and then the accrued data is used to determine the augmented 

design at the second stage. (Montepiedra and Yeh, 2004).  

The other approach is applying the Bayesian paradigm to construct the Bayesian optimal 

design at the second stage. The Bayesian optimal design utilizes the probability distribution of 

the unknown parameters instead of a single set of parameters to derive a better design (Dette, 

1996; Albert, 2009). Again, the two-stage procedure is performed. At the first stage, a small 

proportion of the subjects are assigned according to a fixed design.  At the second stage, the 

posterior distribution of the parameters is generated based on the information learned from the 

first stage. 

One challenging task for seeking the Bayesian optimal design is that it needs heavy 

computation in the numerical calculation. To overcome this problem, a clustering method can be 

applied. The previous research commonly used the K-means clustering method as an alternative 

method to the full posterior Bayesian method (Dror and Steinberg, 2006; McCallum and 

Bornkamp, 2015). K-means clustering reduces the computation of the high-dimensional data by 

partitioning � observations into ' clusters by minimizing the within-cluster sum of squares 

(Hartigan and Wong, 1979). Various clustering methods have been developed such as Kernel K-

means and Fuzzy c-means. Each of them has their own features. For instance, the kernel K-

means handles the non-linear structure and the Fuzzy c-means allows a data point to belong to 

two or more clusters (Dhillon et al., 2004; Welling, 2013; Dunn, 1973; Bezdek, 1981). In this 

paper, I am also interested in comparing the performance of the three clustering methods to see if 

different clustering methods change the performance of the Bayesian optimal designs.  
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Finally, the proposed two-stage designs are compared with other traditional designs such 

as uniform design and D-optimal design to see how they perform for estimating multiple ED��  

over a wide range of mis-specified model parameters. 

Literature review on optimal designs and numerical algorithms are given in Chapter 2. 

Chapter 3 shows the model and robust optimal designs for estimating multiple ED�s. In Chapter 

4, two-stage optimal designs for estimating multiple ED�� which account for parameter 

uncertainty are proposed and their performance is studied. Several scenarios of simulations are 

set up to check the performance of the two-stage optimal designs compared with other designs 

for estimating multiple ED�� under various parameter values. Finally, the conclusion is given in 

Chapter 5. The flowchart of this study is also provided at the last to give some idea of 

constructing the optimal designs. 
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2. BACKGROUND 

2.1. Optimal Designs 

Conducting experimental designs becomes increasingly expensive and it is always 

desirable to obtain effective designs with minimal costs. Optimal design is an efficiency tool to 

reduce costs by using statistical models with fewer replications when estimating model 

parameters compared with standard non-optimal designs. It specifies the distribution of resources 

in an efficient way by providing the best dose levels to observe and the proportions of the 

subjects that assigned to each selected dose level. 

Various optimal designs have been developed based on different research objectives. For 

example, c-optimal design is used for estimating a target dose level, and D-optimal design is 

used for estimating the dose-response relationship (Atikinson and Donev, 1992; Dragalin et al, 

2007). The general design form is written as:  

ξ = )* +,-,. , / = 1, 2 …  k2 

where x4  is the /56 dose level, w4 = n4/N represents the proportional allocation of subjects to x4, 
n4 is the number of subjects allocated to the /56 dose level and N=∑ n4:4;# , which is the total 

number of subjects. 

2.1.1. C-optimality 

The c-optimal design enables researchers to study a function of model parameters by 

minimizing the variance of estimating the target dose level ED�. To obtain the c-optimal design, 

one needs to find a design that minimizes the c-optimality criteria, Ψ=: 

Ψ= = min (VarCED�D E) 
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2.1.2. D-optimality 

When the research goal is to estimate the model parameters, the D-optimal design is 

applied. It minimizes the variance for model parameters by maximizing the determinant of the 

Fisher information matrix. The D-optimality criterion function, ΨF, is defined as: 

ΨF = maxG |M(ξ ;  Θ)| 
2.1.3. Metropolis-Hasting (MH) Algorithm 

Markov Chain Monte Carlo (MCMC) is used to simulate draws from the posterior 

distribution. A general way to construct a MCMC is to use a Metropolis-Hasting (MH) algorithm 

(Albert, 2009). The Metropolis-Hastings algorithm has the following steps: 

(1) Start with an initial value ��. 

(2) Draw a candidate �∗ from a jumping distribution L5(�∗|�5M#) at the N56 iteration. 

(3) Compute the acceptance rate 

O = �(�∗|P) / L5(�∗|�5M#) �(�5M# |P) / L5(�5M#|�∗)  
(4) Accept �∗ = �5 with probability min (O, 1); Otherwise, do not accept the �∗, then 

set �5 = �5M#. 

(5) Repeat steps 2-4 R times to generate R draws from the �(�|P). 

2.2. K-means, Kernel K-means, and Fuzzy c-means 

K-means clustering is one of the simplest clustering algorithms that reduces the 

dimension of huge data sets (Hartigan and Wong, 1979; Wu, 2012; Morissette and Chartier, 

2013). The procedure of the k-means follows a simple way to classify the R data points into a 

certain number of clusters, say ' clusters. It includes several steps: 

(1) Place the R data points into initial ' clusters. 



 

7 
 

(2) Assign each point to its closest cluster. 

(3) Updates each of the k cluster centers with the centroid of the points assigned to 

that cluster. 

(4) Finally, repeat the algorithm until all cluster centers remain unchanged. 

The k-means algorithm is considered a variance minimization technique with aiming to 

minimize the sum of the variance within the clusters. Suppose S4T is the U56 data point in /56 

cluster, V4 is the center mean of the /56 cluster. Then k-means minimizes the objective function: 

∑ ∑ ||S4T − V4||WX, T;#Y4;# , where ||S4T − V4||W is the squared Euclidean distance which measures the 

distance between the data point S4Tand the cluster center V4. 
Kernel K-means shares the same procedure as K-means but except that it applies the 

kernel method to calculate the distance instead of computing the Euclidean distance (Dhillon, 

Guan, and Kulis, 2004; Welling, 2013). The advantage of the Kernel K-means is to classify 

clusters with non-linear structure. Another cluster method is Fuzzy c-means developed by Dunn 

in 1973. The difference of the Fuzzy c-means is that it allows one data point to belong to two or 

more clusters. It updates the K-means objective function by multiplying the degree of 

membership of data point S4 in the cluster U (Dunn, 1973; Bezdek, 1981). 

2.3. General Equivalence Theorem 

The General Equivalence Theorem is used to verify optimal designs (Pukelsheim, 2006; 

Atkinson, 2008).  It can be applied to any optimal design by taking the directional derivative of 

the convex function with regards to the design criterion. Here, the general equivalence theorem 

for the c-optimal design is obtained as follows. The design 	= is c-optimal design if, and only if,  

Z f \(x)MM(	=;  Θ)g ,(Θ)^W ≤ _g ,(Θ)`\MM(	=;  Θ)g ,(Θ), 



 

8 
 

where g ,(Θ) is the first derivative of g (Θ) with respect to Θ. MM(	=;  Θ) is the generalized 

inverse of the information matrix M(	=;  Θ). Suppose a = (x#, … , xY) is the design points, and 

let f(a) denotes the first partial derivatives of the density function for some model of the design 

points with parameter vector Θ, then the information matrix is defined as M (	;Θ) = 

∑ bif(a, Θ)f (a, Θ)\:4;# . The equal sign holds when x is one of the optimal design points in 	=. 

The left side of the inequality represents the standardized variance of the predicted response, 

while the right side is the variance of estimating g (Θ) on the c-optimal design. The maximum of 

the left side is always less than or equal to the right side. 

2.4. V-algorithm 

The V-algorithm is an iterative algorithm to search optimal designs and was established 

by Fedorov (1972). It starts with some initial design such as the uniform design. One restriction 

on the initial design is that it requires the number of the design points to be equal or greater than 

the number of model parameters. Otherwise, it will cause the information matrix to become 

singular and the algorithm cannot run. At the nth iteration, this algorithm maximizes the 

sensitivity function dX, denoted by: 

dX = Z f \(x) MXM(	  ;  Θ)g,( Θ) ^W - _g,( Θ)`\MXM(	  ;  Θ)g,( Θ). 

Here,  MX (	  ;  Θ) is the information matrix evaluated at the Rde iteration. A point x∗ is 

chosen from the design space which maximizes the dX. The selected point x∗ is then used in the 

next iteration to update the information matrix as below: 

MXf# (	  ;  Θ)= (1- gXf#) MX (	  ;  Θ)+gXf#f(x∗)(Xf#) f(x∗)h(Xf#), 

where gXf# = 
#

Xf# . The stepwise process stops when the sensitivity function reaches 0 and the c-

optimal design is obtained. 
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2.5. YBT Algorithm 

One drawback of the V-algorithm is that it focuses on searching optimal design points, so 

it runs large number of iterations to get the optimal weights. To address this drawback, it is 

useful to apply the Newton-Raphson method to find the corresponding design weights after 

obtaining the design points. Another drawback of the V-algorithm is that it can take a very long 

time to converge to an optimal design, especially for c-optimal designs. Yang et al (2013) 

presented the Yang-Biedermann-Tang (YBT) algorithm to find the optimal design for a single 

objective. They showed the YBT works better than other current algorithms, including V-

algorithm (Yang et al, 2013). The YBT starts with a randomly selected initial design, and selects 

the design points to maximize the sensitivity function, then adds the selected design points into 

the previous design. Then, the optimal design weights for the updated design points are obtained 

by using the Newton-Raphson method. 

However, the YBT algorithm needs a good guess of the initial design. When it involves a 

complicated optimal design problems such as multiple objective optimal designs, it might require 

a long time or even fail to converge to an optimal design if the selected initial design points are 

far from the optimum. Hyun and Wong (2015) proposed the modified YBT algorithm to update 

the YBT through selecting the better initial design generated by the V-algorithm. Hyun and 

Wong (2015) showed that the modification improves the searching speed and can generate the 

multiple-objective optimal design that the YBT could not. 
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3. OPTIMAL DESIGNS FOR ESTIMATING MULTIPLE ijkl 

This Chapter covers the 4-parameter logistic (4PL) model and the Fisher information 

matrix. Then optimal designs for estimating multiple ED�� are conducted under the model. C-

optimal design works the best for estimating the ED� because the ED� can be expressed as a 

function of the model parameters under the 4PL model. In practical research, multiple ED�� 

might be the objective when conducting optimal design. For instance, the researchers might want 

to estimate the ED�� and ED"� from a single study and it is possible that they want to estimate 

additional ED�� from the collected data. It wastes time and resources to set up various c-optimal 

designs for estimating multiple ED��. To solve this problem, Zhang and Hyun (2016) presented 

one robust c-optimal design that works well for estimating multiple ED��. However, under 

nonlinear model, optimal design truly depends on the nominal values of model parameters. This 

might also true for the proposed robust c-optimal design by Zhang and Hyun. In this Chapter, I 

check how the robust c-optimal design works for estimating multiple ED��  under mis-specified 

model parameters.  

3.1. Model and Information Matrix 

It is often observed that the dose-response relationships follow a sigmoid curve. This 

leads us the 4PL model, which is frequently used for many toxicological and biological systems. 

It takes into account the minimum dose, maximum dose, ED��, and the slope of the curve. 

The mean response (effect) m for the 4PL model at a given dose a4 is defined as 

m(a4,Θ) = �#+(�W-�#) 
n,op

n,op+qrop, 

where a4 is the /th dose level. �#is the minimum effect; �W is the maximum effect; �s is the ED��, 

and  �  is the slope. 
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Then the continuous response Y for the /th dose level and Uth replication is defined by 

Y4T= m (a4,Θ) + u4T , u4T ~ N (0, wW).  

Here, Θ = (�#, �W,  �s,  � ), U=1,2,3,…, R4, /=1,2,3,…, '. The variance wW is assumed to be an 

unknown constant. Then the normalized Fisher information matrix under the 4PL model is 

M (	;Θ) = 
#
σx ∑ bif(a4, Θ)f (a4, Θ)\:4;# , 

where the f(a4, Θ) is the partial derivatives of the mean response m (a4,Θ) with respect to model 

parameters Θ: 

f (a4, Θ) = ( yz (n,,{)
y|} , yz (n,,{)

y|x  , yz (n,,{)
y|r , yz (n,,{)

y|p  )\   =

~ |r�p
n,�pf|r�p , n,�p

n,�pf|r�p ,   |p(|}M|x)|r(�p�})n,�p
*n,�pf|r�p.x , |p(|xM|})|r�pn,�p�X ��r

*n,�pf|r�p.x   �
\

. 

In the information equation above, we can see that the design and the model parameters 

are carried out by the Fisher information matrix M (	;Θ). Thus, it is an essential component in 

searching the c-optimal design for estimating multiple ED��. After we set up the model and the 

Fisher information matrix, we can search the optimal designs in the next section. 

3.2. Robust Optimal Designs for Estimating Multiple ijkl 

To study a function of model parameters, c-optimal design can be applied. Under the 4PL 

model, ED� is solved by an explicit form � = 
μ (Xi,Θ) - |}|x-|} , which leads ED� =  θs ( �

#M�) }�p, where � 

represents the � % of the maximum treatment response. Let ED�� denotes the maximum 

likelihood estimate of the ED�, then the variance of estimating the ED� is defined as 

Var(ED��) =_ ED��`\M(ξ; Θ)MED��, 
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where _ ED��`\=�0,   0, ( �
#M�) }�p , − �  qr qpx * �

#M�. }�p log( �
#M�) � � ; M(ξ; Θ)M is the generalized 

inverse of the Fisher information matrix mentioned earlier. 

To find the c-optimal design for estimating the ED�, one needs to find a design that 

minimizes Var(ED��), which leads to the sensitivity function as follows: 

) ��(+)��*�∗��� ; {.��,(q)2x
_�,(q)`���*�∗��� ; {.��,(q)  ≤ 1, 

By the General Equivalence Theorem, the equality holds when x is one of the c-optimal 

design points. 

Zhang and Hyun (2016) stated that under the 4PL model, the c-optimal design for 

estimating the ED� works poorly when it is used for estimating additional ED��. Thus, it is 

essential to seek one robust c-optimal design that performs well for estimating multiple ED��. As 

an illustration, five ED�� (ED#�, EDs�, ED��, ED��, ED��) are considered. The robust optimal 

design is obtained using the same experimental setup from Padmanabhan and Dragalin (2010): 

Dose range = [0, 8] and Θ = (0, −1.7, 4, 5). In addition, another two sets of model parameters 

are considered to check the performance on the different parameter values. Under the 4PL 

model, the optimal design based on the information matrix does not depend on the parameters �# 

and �W, and commonly, researchers are more interested in checking the designs with the changes 

in the ED��, which is �s (Li and Majumdar, 2008; Hyun and Wong, 2015). Thus, the three sets 

of the model parameters with different �s are Θ# = (0, −1.7, 1, 5), ΘW = (0, −1.7, 4, 5), and 

Θs = (0, −1.7, 6, 5). All designs are obtained by the modified YBT algorithm and verified by 

the General Equivalence Theorem. 
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Three robust c-optimal designs are obtained under the three sets of model parameters 

Θ#, ΘW , and Θs, and their design efficiencies are compared. The idea of the robust c-optimal 

design is that it combines the c-optimality criteria for the various ED�� into one compound 

criterion, which maximizes the weighted log product of the design efficiencies for estimating the 

various ED�� (McGree et al., 2008). Before we can obtain the robust c-optimal designs, we need 

to know the definition of the design efficiency. 

Design efficiency measures how a design performs with respect to some optimality 

criterion. Because our goal is to estimate the ED�, we use the c-efficiency, which is the ratio of 

the variance of a design 	 against the c-optimal design  	∗���: 

Eff ���(	) = � ���� ���*�∗���; {.� ����
� ���� ���(� ; {)� ���� . 

Since the locally c-optimal design for estimating the ED�, 	∗���provides the minimum 

variance, the design efficiency is always between 0 and 1. The better the design 	 performs, the 

closer it is to 1. 

Using the design efficiency, we can obtain the robust c-optimal design for estimating the 

multiple ED��. Let � ∈ � = (10, 30,50, 70,90). Note that the five values of � are selected for an 

illustration purpose, and it can be extended to any other �s. The robust c-optimal design for 

estimating multiple ED�� that maximizes the weighted log product of the relative design 

efficiencies is 

	 ¡¢ = arg max� )∑ £�¤¥¦ §Eff ���(	)¨�∈© 2, 
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where £� is the pre-assigned weight, which indicates the relative importance of the 

corresponding ED�, and ∑ £��∈© = 1. By the Equivalence Theorem, 	 ¡¢ is the robust c-optimal 

design if, and only if, 

∑ £��∈© ª ��(+,{)«(�¬® ;{)����� ¯x
� ���� ��«(�¬® ;{)�����  ≤ 1. 

Again, the equal sign holds when x is one of the design point of 	 ¡¢. For simplicity, I consider 

each ED� to be equally important, that is £� = 0.2. Using the five different values of ED�, we 

search the robust c-optimal designs under the three sets of model parameters by the modified 

YBT algorithm and they are given in Table 1: 

Table 1: Robust c-optimal designs for estimating multiple ED�� under Θ1, Θ2, and Θ3. Θ 	 ¡¢ 

Θ# = (0, −1.7, 1, 5) § . 001, .84, 1.19, 7.990.21, 0.29, 0.29, 0.21¨ 

ΘW = (0, −1.7, 4, 5) §. 001, 3.22, 4.58, 7.990.20, 0.27, 0.32, 0.21¨ 

Θs = (0, −1.7, 6, 5) §. 001, 4.28, 6.18, 7.990.19, 0.27, 0.30, 0.24¨ 

The robust c-optimal designs are obtained by using the five ED��(ED#�, EDs�, ED��, ED��, ED��).  In each design form, the first row represents the design points, and the second row 

represents the design weights. 

The robust c-optimal design provides the design points and the proportions of the 

subjects that should be allocated to each design point. From Table 1, one can observe that all the 

robust c-optimal designs have four design points with lower bound and upper bound of the dose 

range included. While, the middle two design points are changed by the values of the model 

parameters. To interpret the designs in Table 1, here I take the robust c-optimal design under ΘW 

as an example: the robust c-optimal design assigns 20% and 21% of the subjects into the lower 

bound and the upper bound of the dose level respectively, then assigns 27% and 32% of the 
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subjects into the two middle dose levels 3.22 and 4.58 respectively. As shown in the table, the 

robust c-optimal designs are changed under the different sets of nominal model parameters. The 

General Equivalence Theorem checks the validations of the designs (see Figure 1, 2 and 3). 

From the three figures, we can see that all the robust c-optimal design points reach to 1. 

 

Figure 1: Plots of the sensitivity function of the robust c-optimal design for estimating multiple ���� under Θ1 = (0, −1.7, 1, 5). 
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Figure 2: Plots of the sensitivity function of the robust c-optimal design for estimating multiple ���� under Θ2 = (0, −1.7, 4, 5). 

 
Figure 3: Plots of the sensitivity function of the robust c-optimal design for estimating multiple ���� under Θ3 = (0, −1.7, 6, 5). 
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Once I obtain the robust c-optimal designs, the next important procedure is to check the 

performances of the obtained designs for estimating the multiple ED�� by design efficiencies. As 

a comparison, the uniform designs are used. Uniform design allocates equal subjects to fixed 

equally spaced doses. In this study, uniform design, 	±#, with 8 design points is selected. To 

enhance the performance of the uniform design, I apply the same robust design technique to find 

the optimal weights for the 8 points uniform design. The 8 points uniform design with optimal 

weights denotes as 	±W. It can be obtained by maximizing the robust c-optimal design criterion 

function showed earlier over the weights for the given uniform design points. 	±# and 	±W are 

shown as follows: 

	±# is a fixed design and it is given by: 

 	±# = §.��#,#.# ,W.W�,s. s, .��,�.�#,!."!,"}²,      }²,     }²,     }²,     }²,     }²,     }²,     }² ¨; 

Under Θ# = (0, 1.7, 1, 5),  	±W is given by: 

 	±W = *.��#, #.# , W.W", s. s,  .��, �.�#, !."!, �.���.��, �.#�, �. W, �.��, �.��, �.��, �.��, �.s".; 

Under ΘW = (0, 1.7, 4, 5),  	±W is given by: 

 	±W = *.��#, #.# , W.W", s. s,  .��, �.�#, !."!, �.���.��, �.#", �.��, �.W�, �.s!, �.��, �.��, �.W#.; 

Under Θs = (0, 1.7, 6, 5),  	±W is given by: 

	±W = *.��#, #.# , W.W", s. s,  .��, �.�#, !."!, �.���.# , �.��, �.��, �.�W, �.WW, �.WW, �.#", �.WW.. 

I examine the design efficiencies of the robust c-optimal designs and the two uniform 

designs for estimating various of the ED��, which are ED#�, EDW�, EDs�, ED �, ED��, 

ED!�, ED��, ED"�, ED��, and ED��. See Table 2 as below:
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Table 2: Efficiencies of the designs for estimating multiple ���� under the three sets of the 

nominal model parameters Θ ξ �³³�}´  �³³�x´  �³³�r´  �³³�p´  �³³�µ´ �³³�¶´  �³³�·´  �³³�²´  �³³�¸´  �³³�¸¸  

Θ# 	 ¡¢  0.621 0.657 0.626 0.665 0.846 0.670 0.794 0.576 0.639 0.747 

	±# 0.009 0.010 0.011 0.017 0.048 0.177 0.337 0.059 0.030 0.020 

	±W 0.019 0.021 0.024 0.037 0.098 0.265 0.392 0.107 0.059 0.041 

ΘW 	 ¡¢  0.575 0.557 0.600 0.677 0.668 0.651 0.626 0.654 0.756 0.830 

	±# 0.386 0.397 0.449 0.500 0.457 0.409 0.371 0.375 0.429 0.474 

	±W 0.497 0.512 0.597 0.721 0.716 0.662 0.595 0.588 0.653 0.692 

Θs 	 ¡¢  0.515 0.580 0.649 0.660 0.715 0.816 0.873 0.903 0.919 0.914 

	±# 0.503 0.508 0.421 0.373 0.389 0.442 0.477 0.502 0.523 0.544 

	±W 0.516 0.623 0.593 0.532 0.542 0.601 0.635 0.675 0.667 0.687 

Note: Θ# = (0, −1.7, 1, 5), ∶ ΘW = (0, −1.7, 4, 5), and Θs = (0, −1.7, 6, 5). 

Table 2 shows that the under the nominal model parameters Θ# and Θs, the robust c-

optimal design generally outperforms the two uniform designs for estimating varies of ED�� 

with the values of � changed from 10 to 99. Under the model parameter ΘW, the robust c-optimal 

design, 	 ¡¢, works similar with the uniform design, 	±W, when estimating the EDs�. For 

estimating the ED#�, EDW�,  ED��, ED"�, ED��, and ED��, 	 ¡¢ performs better than 	±W, while 

performs a little worse than 	±W when estimating the ED �, ED��, and ED!�; The efficiencies of 

the uniform design, 	±#, are relatively low for estimating the multiple ED�� compared with 	±W 

under the three sets of model parameters, indicating that the robust design techniques with 

optimal weights enhanced the design performance as expected. Overall, the robust c-optimal 

design provides generally constant efficiencies ranging as low as 52% to as high as 92%. 

However, the uniform design ranges from 1% to 54% and the uniform design with optimal 

weights ranges from 2% to 72%. Although I only consider five ED�� to conduct the robust c-
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optimal design, it performs consistently well for estimating other ED�� which are not included 

into the compound criterion. The corresponding efficiencies plots in Figure 4, 5 and 6 help 

illustrate the performance of the robust c-optimal design. It is obvious that in Figure 4 and Figure 

6, the efficiency line of the robust c-optimal design is always higher than those of the uniform 

designs. While in Figure 5, the efficiency line of the robust c-optimal design intersects with the 

uniform design with optimal weights three times, but overall it works consistently and better than 

both uniform design. 

 
Figure 4: Design efficiencies of the robust c-optimal design and uniform designs under Θ# = (0,−1.7, 1, 5). In the legend of the figure, Robust represents the robust c-optimal design; U1 

represents the uniform design with 8 design points; U2 represents the uniform design with 8 

design points with optimal weights. 
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Figure 5: Design efficiencies of the robust c-optimal design and uniform designs under ΘW = (0,−1.7, 4, 5). In the legend of the figure, Robust represents the robust c-optimal design; U1 

represents the uniform design with 8 design points; U2 represents the uniform design with 8 

design points with optimal weights. 

 
Figure 6: Design efficiencies of the robust c-optimal design and uniform designs under Θs = (0,−1.7, 6, 5). In the legend of the figure, Robust represents the robust c-optimal design; U1 

represents the uniform design with 8 design points; U2 represents the uniform design with 8 

design points with optimal weights. 
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Though the obtained robust c-optimal design works well for estimating multiple ED��, it 

might work poorly under different nominal values of parameters. In Table 3, we check the design 

efficiencies of the robust c-optimal design for estimating multiple ED�� under the true parameter 

value Θ#, 	 ¡¢#
, when it is used for different parameter values such as ΘW and Θs. From Table 3, 

we can see that the design efficiencies are pretty low for the robust c-optimal design under Θ# 

when it is used for ΘW and Θs.  

Table 3: Efficiencies of the robust c-optimal deigns for estimating multiple ���� under the true 

value of model parameter Θ1, 	Rob
1, when the parameter values are mis-specificed to Θ2 or Θ3. Θ �³³�}´  �³³�x´  �³³�r´  �³³�p´  �³³�µ´ �³³�¶´  �³³�·´  �³³�²´  �³³�¸´  �³³�¸¸  

Θ# (True) 0.621 0.657 0.626 0.665 0.846 0.670 0.794 0.576 0.639 0.747 

ΘW 0.100 0.108 0.102 0.086 0.078 0.071 0.068 0.064 0.056 0.053 

Θs 0.045 0.040 0.012 0.010 0.007 0.005 0.004 0.004 0.005 0.006 

The efficiencies in the first row are the design efficiencies of the robust c-optimal design, 	 ¡¢#
, 

against the c-optimal design under Θ#; The second row are the design efficiencies of the robust 

c-optimal design, 	 ¡¢#
, against the c-optimal design under ΘW; The third row are the design 

efficiencies of the robust c-optimal design, 	 ¡¢#
, against the c-optimal design under Θs. 

Here,Θ# = (0, −1.7, 1, 5), ΘW = (0, −1.7, 4, 5), and Θs = (0, −1.7, 6, 5).
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4. TWO-STAGE OPTIMAL DESIGNS FOR ESTIMATING MULTIPLE ijkl 

Optimal design under the 4PL model truly depends on the pre-specified model 

parameters. This is also true for the robust c-optimal design shown in the previous Chapter. To 

reduce the parameter dependency, the two-stage strategy is studied. One approach is to adopt the 

design augmentation at the second stage. The other one is to apply the Bayesian paradigm at the 

second stage. 

4.1. Two-stage C-optimal Design for Estimating Multiple ijkl 

First two-stage optimal design is constructed by adopting the design augmentation at the 

second stage. The idea of the two-stage optimal design is as follows: 

(1) 1st Stage: A small proportion of the total sample size �, say �#, is assigned according 

to a fixed design, ξ#.   

(2) Fit the 4PL model to the data that collected from the first stage and uses the estimated 

parameters Θº to search the augmented optimal design ξW at the second stage. 

(3) 2nd Stage: Assign the rest of the sample �W = � − �# to the ξW. 

For simplicity, in this study we adopt the same five ED�� (ED#�, EDs�, ED��, ED��, 
and ED��) to conduct the two-stage c-optimal design under the same dose range and the 

parameters values. Let 	# be a uniform design with four equally spaced dose levels used at the 

first stage, 

	# = * .��#,W.!�,�.ss,"�.W�,�.W�,�.W�,�.W�.. 

Let 	»¼ be the augmented c-optimal design at the second stage, 

	»¼ = arg min� )∑ £�¤¥¦ * � ED�� �\½∗C	, ΘºEED�� .�∈© 2, 
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where ½∗C	, ΘºE =  g ½C	#, ΘºE + (1 − g) ½C	, ΘºE, Θº is the maximum likelihood estimator of Θ 

collected from the first stage; ½C	#, ΘºE is the information matrix that evaluated at the first stage; 

and g is the proportion of the subjects allocated the first stage. Here we set g = 0.3, which means 

we assign 30% of the subjects into the first stage design and the remaining 70% of the subjects 

are assigned to the second stage. By the General Equivalence Theorem, the sensitivity function 

for 	»¼ is: 

∑ £��∈© ª ��(+,{)«∗(�¿À ;{)����� ¯x
� ���� ��«∗(�¿À ;{)�«(�¿À ;{)«∗(�¿À ;{)�����  ≤ 1. 

Equality holds if, and only if, x is one of the dose levels in the 	»¼. The augmented c-

optimal design at the second stage is obtained by using the modified YBT algorithm. For 

illustrative purposes, it is assumed that the MLE Θº obtained from the first stage is Θ#, ΘW, and 

Θs, respectively. Now, the two-stage c-optimal design is generated based on the first stage 

design 	# and the augmented c-optimal design at the second stage 	»¼ by the proportion g = 0.3 

(see Table 4). After the 	»¼ is searched, the two-stage c-optimal design is obtained based on: g ∗
	# + (1 − g) ∗ 	»¼. As shown in Table 4, all the two-stage c-optimal designs contain six designs 

points including the lower bound and upper bound dose levels.  

All of the augmented c-optimal designs are verified by the Equivalence Theorem in 

Figure 7, 8, and 9. In Figure 10, we check the efficiencies of the two-stage c-optimal design for 

estimating the series of the ED�� ranging from ED#� to ED��. One can observe that the 

efficiencies plots of the two-stage c-optimal design are very close to the ones of the robust c-

optimal design in the previous section. After spending some portion of subjects to get 

information about the parameter values, the two-stage c-optimal design does not lose much 

efficiency for estimating various ED��. Here it is assumed that the MLE of Θ obtained from the 
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first stage is accurate. However, the accuracy can be changed by the sample size and the design 

used in the first stage. Later, using the simulation study, I study real performances of the two-

stage c-optimal design under various sample sizes of the first stage. 

Table 4: Two-stage c-optimal designs for estimating multiple ���� under the three sets of the 

nominal model parameters Θ1, Θ2, and Θ3.  Θ 	»¼  	5Á¡MÂ5%ÃÄ  

Θ# = (0, −1.7, 1, 5) § . 001, .84, 1.18, 7.990.16, 0.30, 0.46, 0.08¨ § . 001, .84, 1.18, 2.67, 5.33, 7.990.19, 0.20, 0.32, 0.08, 0.08, 0.13¨ 

ΘW = (0, −1.7, 4, 5) §. 001, 3.28, 4.53, 7.990.16, 0.27, 0.30, 0.27¨ §. 001, 2.67, 3.28, 4.53, 5.33, 7.990.19, 0.08, 0.19, 0.21, 0.08, 0.25¨ 

Θs = (0, −1.7, 6, 5) §. 001, 4.33, 6.20, 7.990.10, 0.24, 0.40, 0.26¨ §. 001, 2.67, 4.33, 5.33, 6.20, 7.990.15, 0.08, 0.17, 0.08, 0.27, 0.25¨ 

	»¼ is the augmented c-optimal design at the second stage, 	5Á¡MÂ5%ÃÄ is the two-stage c-optimal 

design. The proportions of subjects that assigned to the first stage design and the second stage 

design are 0.3 and 0.7, respectively.
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Figure 7: Plots of the sensitivity function of the augmented c-optimal design for estimating 

multiple ���� under Θ# = (0, −1.7, 1, 5). 

 

Figure 8: Plots of the sensitivity function of the augmented c-optimal design for estimating 

multiple ���� under ΘW = (0, −1.7, 4, 5). 
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Figure 9: Plots of the sensitivity function of the augmented c-optimal design for estimating 

multiple ���� under Θs = (0, −1.7, 6, 5). 

 

Figure 10: Efficiencies of the two-stage c-optimal design for estimating multiple ���s 

(��#�, ��W�, ��s�, �� �, ����, ��!�, ����, ��"�, ����, and ����) under Θ# = (0, −1.7, 1, 5), ΘW = (0, −1.7, 4, 5), and Θs = (0, −1.7, 6, 5). 
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In order to check the performance of the two-stage c-optimal design, we run simulation 

1000 times using different sample size at the first stage and the efficiencies of two-stage c-

optimal design are computed under the assumption of the true parameter value Θ = ΘW =
(0, −1.7, 4, 5). For simplicity and consistency study, the same five values of ���� 

(ED#�, EDs�, ED��, ED��, and ED��) are studied in the simulations. There are three scenarios for 

estimating each ED� by changing the proportion of the first stage sample size, α. In the 

simulations, we set total sample size equal 300, and set α = 1/10, 1/3, and 1/2, which means the 

first stage simple size is 30, 100, and 150, respectively. For each simulation run, I assign the 

proportion α of the total 300 sample size according to the first-stage design 	# =
* .��#,W.!�,�.ss,"�.W�,�.W�,�.W�,�.W�.. Then I generate the response data under the continuous response model 

mentioned in Chapter 3, assuming that the mean response is given by 4PL model, σ =0.1, and 

Θ = ΘW. Figure 11(a) and Figure 11(b) shows an example of the generated response data plot 

with varied of the first stage sample size �#= 30, 100, and 150 under σ=0.1 and σ=0.5, 

respectively. Next, based on the generated response, Θº is estimated using the least squares 

estimate (LSE) method and used in the second stage to obtain the augmented c-optimal design at 

the second stage. However, the augmented c-optimal design at the second stage cannot be 

obtained when the parameters are not estimable from the collected data at the first stage. If the 

value of σ is too large, it may become harder to converge to the estimated parameter values. 

Thus, I compute the success rate, which is defined as the ratio of the number of the parameters 

that estimated successfully from the first stage over the total runs. First I run the simulation 1000 

times under σ=0.1 to see the performance of the two-stage c-optimal design with varied sample 

sizes that assigned at the first-stage design, then I run the simulation 1000 times again by 

increasing the value of σ from 0.1 to 0.5 to compare the change of the success rate. In Table 5, 
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the success rate and summary statistics of c-efficiencies of the two-stage c-optimal design are 

computed when the model parameters are estimable at the first stage under σ=0.1. Additionally, 

it shows how the values change according to different sample sizes at the first stage �1.  

 
Figure 11: Generated response data from the first-stage design with varied first-stage sample size �1=30, 100, and 150, under σ=0.1 and σ=0.5, respectively. 

Table 5 demonstrates that under σ=0.1, the success rates in each scenario are 100%, 

which indicates all the parameters are estimable when σ is as small as 0.1. It also shows that the 

two-stage c-optimal design for estimating multiple ED�� performs fairly well when the 

parameters are estimated at the first stage. In addition, it shows that the 25% quantile has slightly 

increased (around 1% to 3%), while the 75% quantile has slightly decreased (around 1% to 3%) 

when the first sample size changed from 30 to 150. However, the median and mean does not 

change much, which implies that the sample size for the first stage does not impact very much on 

the efficiency. The mean c-efficiencies of the two-stage optimal design increase from 53% to 
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72% when increase the value of  ED� from ED#� to  ED��, which suggests that the two-stage c-

optimal design works better to estimate higher values of  ED�� compared with lower  ED��. 

Figure 12, 13, 14, 15, and 16 show the histograms of c-efficiencies of the two-stage c-optimal 

designs for estimating multiple ED#�, EDs�,  ED��,  ED��,  and ED��, respectively, with 

changing the proportions of the first stage sample size.  

Table 5: Success rate and summary statistics of c-efficiencies of the two-stage c-optimal design 

for estimating multiple ���� (ED#�, EDs�, ED��, ED��, and ED��) with varied values of first 

stage sample size (30, 100, and 150) under σ=0.1. 

EDÅ N1 
Success 

Rate 

25% 

Quartile 
Median Mean 

75% 

Quartile 

ED#� 

30 100% 0.5063 0.5371 0.5369 0.5670 

100 100% 0.5207 0.5341 0.5350 0.5489 

150 100% 0.523 0.5352 0.5350 0.5460 

EDs� 

30 100% 0.5342 0.5624 0.5611 0.5899 

100 100% 0.5455 0.5594 0.5596 0.5742 

150 100% 0.5495 0.5606 0.5607 0.5722 

ED�� 

30 100% 0.5918 0.6339 0.6291 0.6670 

100 100% 0.6139 0.6378 0.6346 0.6570 

150 100% 0.6191 0.6364 0.6346 0.6518 

ED�� 

30 100% 0.5541 0.5969 0.5975 0.6398 

100 100% 0.5795 0.6012 0.6010 0.6223 

150 100% 0.5807 0.5990 0.5996 0.6178 

ED�� 

30 100% 0.6657 0.7178 0.7196 0.7693 

100 100% 0.6917 0.7156 0.7177 0.7407 

150 100% 0.6984 0.7203 0.7207 0.7392 
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Figure 12: Histograms of c-efficiencies of the two-stage c-optimal designs for estimating the ED#� when the proportions of first stage sample size are varied. In the 1000 times simulations, 

σ=0.1, the total sample size N = 300, α represents the proportion of the first stage sample size, N1 

represents the value of the first stage sample size. (a) α=1/10, that is N1=30; (b) α=1/3, that is N1=100; (c) α=1/2, that is N1=150. 

 

Figure 13: Histograms of c-efficiencies of the two-stage c-optimal designs for estimating the EDs� when the proportions of first stage sample size are varied. In the 1000 times simulations, 

σ=0.1, the total sample size N = 300, α represents the proportion of the first stage sample size, N1 

represents the value of the first stage sample size. (a) α=1/10, that is N1=30; (b) α=1/3, that is N1=100; (c) α=1/2, that is N1=150. 
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Figure 14: Histograms of c-efficiencies of the two-stage c-optimal designs for estimating the ED�� when the proportions of first stage sample size are varied. In the 1000 times simulations, 

σ=0.1, the total sample size N = 300, α represents the proportion of the first stage sample size, N1 represents the value of the first stage sample size. (a) α=1/10, that is N1=30; (b) α=1/3, that is N1=100; (c) α=1/2, that is N1=150. 

 

Figure 15: Histograms of c-efficiencies of the two-stage c-optimal designs for estimating the ED�� when the proportions of first stage sample size are varied. In the 1000 times simulations, 

σ=0.1, the total sample size N = 300, α represents the proportion of the first stage sample size, N1 represents the value of the first stage sample size. (a) α=1/10, that is N1=30; (b) α=1/3, that is N1=100; (c) α=1/2, that is N1=150. 
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Figure 16: Histograms of c-efficiencies of the two-stage c-optimal designs for estimating the ED�� when the proportions of first stage sample size are varied. In the 1000 times simulations, 

σ=0.1, the total sample size N = 300, α represents the proportion of the first stage sample size, N1 

represents the value of the first stage sample size. (a) α=1/10, that is N1=30; (b) α=1/3, that is N1=100; (c) α=1/2, that is N1=150. 

Next, I run another 1000 times simulations by increasing the value of the σ to 0.5 to see 

how the success rate changes and how the two-stage c-optimal design performs.  

Table 6 shows that after the σ value increase into 0.5, the success rates in each scenario 

become lower compare with full success rate when σ is 0.1. Overall, when N1 is 30, the success 

rate is relatively low as 65%, when N1 increases into 150, the success rate becomes as high as 

96%. This seems reasonable because larger σ represents larger variation in the responses. When 

there are wider variations in the response, it is hard to estimate parameters accurately with small 

sample size.  The success rate becomes higher by increasing N1 but we cannot expect the same 

increase in the c-efficiency because the number of the subjects assigned the augmented c-optimal 

design at the second stage becomes smaller. Similarly, the performance of the two-stage c-

optimal design remains fairly well with a slight decreases in efficiencies. Figure 17, 18, 19, 20, 
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and 21 show the histograms of c-efficiencies of the two-stage c-optimal designs for estimating 

the ED#�, EDs�, ED��,  ED��, and ED�� with varied values of the proportion of the first stage 

sample size after set σ into 0.5. See the Table and Figures as follows: 

Table 6: Success rate and summary statistics of c-efficiencies of the two-stage c-optimal design 

for estimating multiple ED�� (ED#�, EDs�, ED��, ED��, and ED��) with varied values of first 

stage sample size (30, 100, and 150) under σ=0.5. 

��� N1 Success Rate 25% Quartile Median Mean 75% Quartile 

��#� 

30 64.80% 0.4096 0.5010 0.4604 0.5546 

100 87.90% 0.4760 0.5148 0.5046 0.5372 

150 94.90% 0.4890 0.5005 0.4952 0.5089 

��s� 

30 64.90% 0.5778 0.5852 0.5479 0.5952 

100 90.60% 0.5479 0.5582 0.5583 0.5612 

150 94.40% 0.5180 0.5341 0.5407 0.5506 

���� 

30 66.60% 0.5822 0.6012 0.5904 0.6632 

100 66.60% 0.5606 0.5887 0.5777 0.6402 

150 95.50% 0.5596 0.5981 0.5844 0.6099 

���� 

30 66.80% 0.4398 0.5386 0.4951 0.5949 

100 90.30% 0.5422 0.5849 0.5598 0.5932 

150 95.90% 0.5467 0.5694 0.5547 0.5741 

���� 

30 64.80% 0.4500 0.6215 0.5654 0.6975 

100 88.70% 0.5933 0.6866 0.6406 0.7044 

150 94.50% 0.6214 0.6594 0.6410 0.6893 
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Figure 17: Histograms of c-efficiencies of the two-stage c-optimal designs for estimating the ED#� when the proportions of first stage sample size are varied. In the 1000 times simulations, 

σ=0.5, the total sample size N = 300, α represents the proportion of the first stage sample size, N1 

represents the value of the first stage sample size. (a) α=1/10, that is N1=30; (b) α=1/3, that is N1=100; (c) α=1/2, that is N1=150. 

 

Figure 18: Histograms of c-efficiencies of the two-stage c-optimal designs for estimating the EDs� when the proportions of first stage sample size are varied. In the 1000 times simulations, 

σ=0.5, the total sample size N = 300, α represents the proportion of the first stage sample size, N1 

represents the value of the first stage sample size. (a) α=1/10, that is N1=30; (b) α=1/3, that is N1=100; (c) α=1/2, that is N1=150. 
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Figure 19: Histograms of c-efficiencies of the two-stage c-optimal designs for estimating the ED�� when the proportions of first stage sample size are varied. In the 1000 times simulations, 

σ=0.5, the total sample size N = 300, α represents the proportion of the first stage sample size, N1 

represents the value of the first stage sample size. (a) α=1/10, that is N1=30; (b) α=1/3, that is N1=100; (c) α=1/2, that is N1=150. 

 

Figure 20: Histograms of c-efficiencies of the two-stage c-optimal designs for estimating the ED�� when the proportions of first stage sample size are varied. In the 1000 times simulations, 

σ=0.5, the total sample size N = 300, α represents the proportion of the first stage sample size, N1 

represents the value of the first stage sample size. (a) α=1/10, that is N1=30; (b) α=1/3, that is N1=100; (c) α=1/2, that is N1=150. 
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Figure 21: Histograms of c-efficiencies of the two-stage c-optimal designs for estimating the ED�� when the proportions of first stage sample size are varied. In the 1000 times simulations, 

σ=0.5, the total sample size N = 300, α represents the proportion of the first stage sample size, N1 

represents the value of the first stage sample size. (a) α=1/10, that is N1=30; (b) α=1/3, that is N1=100; (c) α=1/2, that is N1=150. 

4.2. Adaptive Bayesian C-optimal Design 

The other two-stage optimal design to address the parameter uncertainty is applying the 

Bayesian paradigm at the second stage (Dette, 1996; Albert, 2009). Instead of using a single set 

of the parameters, the Bayesian approach considers the design incorporated with a prior 

probability for the parameters. In this study, since our goal is to study the target dose ED�, we 

adopt the Bayesian c-optimality, which minimizes the weighted average of the variance for 

estimating ED� (Atkinson and Donev, 1992): 

ΨÇ%.= = ∑ �(Θ4)Var(ED�D |Θ4)$4;# ,  

where �(Θ4) denotes the prior probability given to Θ4, and ∑ �(Θ4)$4;# =1. If there is no 

prior knowledge of the probability �(Θ4) and all values of the parameters are considered equally 

important, one can simply set �(Θ4) = #
$. The fact is that the Bayesian optimal design truly 
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depends on the prior distribution of the parameters. To reduce the prior dependency, the adaptive 

Bayesian optimal design is studied (McCallum and Bornkamp, 2015).  

The idea of the adaptive Bayesian optimal design is similar with two-stage optimal 

design. In the first stage, a small proportion of the subjects is assigned to a fixed design such as 

uniform design. In the second stage, the posterior distribution of the model parameters is 

obtained based on the prior distribution and the information that is collected from the first stage. 

Next, the generated posterior distribution is incorporated into the Bayesian optimality.  

Two challenges to construct adaptive Bayesian optimal design at the second stage are: (1) 

computing the undefined posterior distribution; (2) heavy numerical evaluations of the optimal 

criterion. In order to consider conservative performance of the adaptive Bayesian optimal design, 

the Jefferys prior distribution which is non-informative prior is used: �(Θ) = |½(ξ#; Θ)|#/W, 

where ξ#is the fixed design at the first stage. Due to the Jeffreys prior distribution is used, the 

posteriors distribution becomes undefined. In this paper, we simulate draws by using Markov 

Chain Monte Carlo with M-H algorithm to generate 10,000 samples with 1000 burn-in from the 

posterior distribution for the parameters. In the numerical searching, the uniform design with 

four design points in the dose range [0,8] is used in the first stage, and a small sample size of 40 

subjects are assigned into the uniform design. Under the 4PL model, let wW = √2, and Θ =
(0, −1.7, 4, 5). Since the c-optimal design under 4PL does not depend on θ# and θW, we focus on 

generating the posterior distributions for θs and θ . Based on the collected information from the 

first stage, the sample size of 9000 for θs and θ  are generated and their histogram and density 

plots are given in Figure 22. The adaptive Bayesian c-optimal designs using the sampling 

parameters from the posterior distribution are obtained in the following sections. 
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Figure 22: Histogram and density plots of the posterior distributions for �s and � . t3 represents 

the parameter �s and t4 represents the parameter � . Sample size of 10,000 with 1000 burn-in. 

4.2.1. Bayesian C-optimal Design for Estimating ijÉÊ under Full Posterior 

Distribution 

For simplicity, in this study I start from searching an adaptive Bayesian c-optimal design 

for estimating the ED��, which minimizes the weighted average of the variance for estimating 

the ED��. The directional derivative of the Bayesian c-optimality criterion in equation leads to 

the sensitivity function as below: 

Ë £4 Z f \(x, Θ4)½(	Ç%.= ; Θ4)MED��� ^W
_ ED��� `\½(	Ç%.= ; Θ4)MED���

$

4;#
≤ 1 

 

Where £4 is the weight of each set of the Θ4 and is set to be 
#
$ with Ì sampling draws. 

Again, by the Equivalence Theorem, the equal sign holds if, and only if, x is one of the dose 

levels in the adaptive Bayesian c-optimal design 	Ç%.=. 

9000 parameter samples from the posterior distribution requires computation of 9000 

evaluations of the Fisher information matrix to evaluate the criterion for one design. It is time-
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consuming to complete the whole iterations. As an illustration study, we randomly select size of 

200 samples out of the 9000 samples to obtain the adaptive Bayesian c-optimal design for 

estimating the ED��. The Bayesian optimal design is searched by the modified YBT algorithm 

and verified by the Equivalence Theorem in Figure 23. The adaptive Bayesian c-optimal design 

for estimating the ED�� by using the 200 sample parameters from the posterior distribution is 

given by: 

	Ç%.= = *.���#,   .�#,   . W,   #.W",   #.!",   W.W�,   s."!,   �.��   �.�W,   �.�s,   �.#W,   �.�s,   �.��,   �.W�,   �.s#,   �.WW.. 

One can observe that the adaptive Bayesian c-optimal design for estimating the ED�� 

contains eight design points including the lower bound and the upper bound of dose levels.  

 
Figure 23: Plots of the sensitivity function of adaptive Bayesian c-optimal design for estimating 

the ED�� by using the sample size of 200 that randomly draw from posterior distribution. 
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4.2.2. K-means, Kernel K-means, and Fuzzy C-means Clustering Methods 

McCallum and Bornkamp (2015) proposed an efficient alternative to reduce the laborious 

evaluations by adopting K-means clustering method instead of using full posterior samples and 

they also proved that the K-means clustering provided good theoretically approximations when 

number of clusters ' = 10. In this study, we classify Ì = 9000 samples into ' = 10  clusters 

using k-means clustering algorithm to conduct the adaptive Bayesian c-optimal design for 

estimating the ED��. In this scenario, the £4 in the Bayesian c-optimality equation becomes the 

weight of each clusters, which is the proportion of the samples associate with each cluster center. 

As a comparison, Kernel K-means and Fuzzy c-means clustering methods are also studied in 

searching the optimal design compare with the one based on the full posterior distribution. For 

simplicity, the Kernel K-means and Fuzzy c-means also use k=10 clusters. K-means, Kernel K-

means, and Fuzzy c-means clustering can be easily computed by kmeans(), kkmeans() and 

cmeans() in R. 

The adaptive Bayesian c-optimal design for estimating the ED�� using K-means, Kernel 

K-means, and Fuzzy c-means clustering methods are given in Table 7. All the optimal designs 

are verified by the General Equivalence Theorem. From Table 7, we can state that all the three 

designs contain eight design points include lower bound and upper bound of the dose level range. 
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Table 7: Adaptive Bayesian c-optimal designs for estimating the ED�� by using different 

clustering methods. 
Clustering methods 	Ç%.= 

K-means 	Ç%.=.Í = § . 0001, .98, 1.46, 2.27, 2.49, 4.05, 5.40, 7.990.11, 0.06, 0.03,   0.20,   0.05,   0.24,   0.10, 0.22¨ 

Kernel K-means 	Ç%.=.ÍÍ = §. 0001, .04, .97, 1.64, 2.16, 2.61, 4.49, 7.99   0.9, 0.04, 0.02,   0.09,   0.07,   0.18,   0.28, 0.22¨ 

Fuzzy c-means 	Ç%.=.Î¼ = §. 0001, .54,   1.49, 2.46, 2.67, 4.34, 4.63, 7.99   0.11, 0.02, 0.12,   0.12,   0.10,   0.22,   0.07, 0.23 ¨ 

	Ç%.=.Í represents the adaptive Bayesian c-optimal design with K-means clustering; 	Ç%.=.ÍÍ 

represents the adaptive Bayesian c-optimal design with Kernel K-means clustering; 	Ç%.=.Î¼  

represents the adaptive Bayesian c-optimal design with Fuzzy c-means clustering. 

For further investigation of the obtained design performances, we compute the design 

efficiencies for the cases using the posterior, K-means, Kernel K-means, and Fuzzy c-means. I 

use the 9000 parameter samples and compute the design efficiencies under the selected sample 

parameters. Here the same dose range and the parameters values ΘW are used. As a comparison, 

the traditional designs such as uniform design and D-optimal design are studied. For illustrative 

purposes, I use the 8 points uniform design, U1, and the 8 points uniform design with Bayesian 

optimal weights, U2. Bayesian technique is adopted when search the Bayesian optimal weights 

to enhance the performance of the 8 points uniform design. To find the Bayesian optimal weights 

for the 8 points uniform design, I maximizes the Bayesian c-optimal criterion function over the 

weights for the given 8 design points. In addition, I am interested in checking how the two-stage 

c-optimal design works for various nominal parameter values, thus, the two-stage c-optimal 

design is included into the design comparison to see how it performs under the 9000 sampling 

parameters. The two-stage c-optimal design for estimating the ED�� is obtained under: σ=0.1, 

Θ = ΘW  = (0, −1.7, 4, 5), and the proportion of the first stage sample size α=0.3. Figure 24 and 
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25 show the histogram plots of the c-efficiencies for the five obtained designs and the three 

comparison designs. The summary statistics of 25% quartile, median, mean, and 75% quartile of 

the design efficiencies are provided in Table 8. 

From the histogram plots and the summary statistics table, I note that there are very slight 

differences among the four adaptive Bayesian c-optimal designs and the uniform design with 

Bayesian optimal weights when estimating the ED��. One potential reason that the uniform 

design with Bayesian optimal weights performs as well as the Bayesian optimal designs could be 

that it contains 8 equally spaced design points which is very close to the Bayesian optimal 

designs. If we reduce the 8 uniform design points to 5 or 6 design points, the uniform design with 

Bayesian optimal weights would perform much more poorly.  

As expected, the two-stage c-optimal design for estimating the ED�� works worse 

compared with the Bayesian optimal designs and uniform design with Bayesian optimal weights. 

The mean efficiency of the two-stage c-optimal design is around 7% lower and its lower quartile 

is much lower. This implies the two-stage c-optimal design is not as robust as Bayesian c-

optimal design and the uniform design with Bayesian optimal weights for mis-specified 

parameter values. Table 8 shows that the median and the mean design efficiencies for the 

Bayesian designs and uniform design with the Bayesian optimal weights are around 10% higher 

than the traditional uniform design, and 20% higher than the D-optimal design.  

Overall, one can conclude that after reducing the parameter dependency, the adaptive 

Bayesian c-optimal designs still work better than the traditional uniform design and D-optimal 

design, as well as the two-stage c-optimal design. The table and plots are as follows: 
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Table 8: Summary statistics of the efficiencies of the designs for estimating the ED�� under the 

9000 Θs. 

Designs 25% quartile Median Mean 75% quartile 

	Ç%.= 0.4981 0.5931 0.5763 0.6601 

	Ç%.=.Í 0.4996 0.5763 0.5596 0.6189 

	Ç%.=.ÍÍ 0.5074 0.5704 0.5696 0.6327 

	Ç%.=.Î¼  0.5062 0.5777 0.5723 0.6438 

	\Á¡MÂ5%ÃÄ  0.3219 0.4762 0.5022 0.6662 

	±W 0.5018 0.5800 0.5668 0.6382 

	±# 0.4481 0.4775 0.4739 0.5026 

	F 0.1388 0.3855 0.3649 0.5890 	Ç%.= represents the Bayesian c-optimal design with full posterior distribution method; 	Ç%.=.Í 

represents the Bayesian c-optimal design with K-means clustering method; 	Ç%.=.ÍÍ represents 

the Bayesian c-optimal design with Kernel K-means clustering method; 	Ç%.=.Î¼  represents the 

Bayesian c-optimal design with Fuzzy c-means clustering method; 	\Á¡MÂ5%ÃÄ represents the 

two-stage c-optimal design; 	±# represents the 8 points uniform design; 	±W represents the 8 

points uniform design with Bayesian optimal weights; 	F represents the D-optimal design. 

 

 
Figure 24: Histograms of c-efficiencies of the Bayesian c-optimal designs for estimating the ED�� using full posterior, K-means, Kernel K-means, and Fuzzy C means, under the 9000 Θs. 
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Figure 25: Histograms of c-efficiencies of the uniform designs, D-optimal design, and two-stage 

c-optimal design for estimating the ED�� under the 9000 Θs. U1 represents the 8 points the 

uniform design; U2 represents the 8 points uniform design with Bayesian optimal weights for 

estimating ED��; D-opt represents the D-optimal design for estimating ED��; Two-stage 

represents two-stage c-optimal design for estimating the ED��. 

4.2.3. Adaptive Bayesian C-optimal Design for Estimating Multiple ijkl 

From the last section, we know that K-means, Kernel K-means, and Fuzzy c-means 

perform similarly compared with the full posterior method. For simplicity, we use the K-means 

algorithm to extend the research in searching the adaptive Bayesian c-optimal design for 

estimating multiple ED��. The sensitivity function can be updated from the Bayesian c-

optimality sensitivity equation by summarizing the multiple values of ED�: 

∑ £4 ∑ ÏT ) ��(+,{,)«(�ÐÑ.Ò ;{,)���Ó� 2x

Ô ��Ó�Õ�«(�ÐÑ.Ò ;{,)���Ó�
�T;#Y4;# ≤ 1, 

where ¤ is the number of ED��, ' is the number of the clusters, £4 represents the weight of each 

cluster, and ÏT represents the weight of each ED�. Here we set ¤ = 5 and ' = 10. 
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Again, by the Equivalence Theorem, the equal sign holds if, and only if, x is one of the 

dose levels in the adaptive Bayesian c-optimal design, 	Ç%.=. The modified YBT algorithm is 

applied to search the design for estimating multiple ED�� (ED#�, EDs�, ED��, ED��, ED��), 	Ç%.= 

as below: 

	Ç%.= = * .���#,   �.Ws,   #.� ,   #.!,   W.�!,    W.��,    s.�,   �.�s,   �.W�,   �.���.�",   �.��,   �.� ,   �.#s,   �.#!,   �.�s,   �.#�,   �.#s,   �.�s,   �.#"   .. 

	Ç%.= is verified by General Equivalence Theorem in Figure 26. 

 

 

Figure 26: Plot of the sensitivity function of the adaptive Bayesian c-optimal design for 

estimating multiple ED�s (ED#�, EDs�, ED��, ED��, ED��) using K-means clustering. 

I include five ED�s to conduct the adaptive Bayesian c-optimal design, now I am 

interested in investigating the performance of the design for estimating other ED��. Consider 

covering all the possible ED��, I adopt the same ten ED�� (ED#�, EDW�, EDs�, ED �, ED��, 
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ED!�, ED��, ED"�, ED��, and ED��) to compute the design efficiencies. Since my goal is to 

conduct the adaptive Bayesian c-optimal design which reduces the parameter dependency, I 

randomly select ten sets of model parameters from the 9000 samples and check how the adaptive 

Bayesian c-optimal design works to estimate the ten ED�� under the 10 randomly selected 

parameter values. The randomly selected ten sets of model parameters are shown in Table 9 and 

the design efficiency plots are given in Figure 27, 28, and 29. In the c-efficiency computation, 

the adaptive Bayesian c-optimal design, the two uniform designs, and the D-optimal design are 

fixed design. Take estimating the ED#� under the model parameter Θ# = (0, −1.7, 2.6, 3.6) as an 

example. First, I search the c-optimal design for estimating the ED#� under Θ#, then I compute 

the c-efficiency by using one of the fixed designs, for example, the adaptive Bayesian c-optimal 

design, against the c-optimal design. All the other design c-efficiencies are computed by the 

same procedure.  

Table 9: Ten sets of model parameters randomly selected from the 9000 Θs. Θ 
 Θ# = (0, −1.7, 2.6, 3.6) Θ! = (0, −1.7, 2.4, 2.8) 

ΘW = (0, −1.7, 2.9, 4.8) Θ� = (0, −1.7, 2.8, 4.4) 

Θs = (0, −1.7, 2.5, 4.0) Θ" = (0, −1.7, 2.9, 4.5) 

Θ = (0, −1.7, 3.5, 3.1) Θ� = (0, −1.7, 2.1, 4.6) 

Θ� = (0, −1.7, 2.3, 4.6) Θ#� = (0, −1.7, 3.6, 3.2) 

 

Figure 27, 28, and 29 shows that the D-optimal design works the worst for estimating 

various ED�� under the ten sets of the model parameters. At some point, it works better than 

other designs, for example, the efficiency of D-optimal design for estimating the ED � is around 

0.8 (see Figure 27), but overall the efficiency is low and inconsistent. The 8 points uniform 
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design works reasonably well, but its efficiencies are always lower than the adaptive Bayesian c-

optimal design. 

Compared with the 8 points uniform design and the D-optimal design, the efficiency lines 

of the adaptive Bayesian c-optimal design and 8 points uniform design with Bayesian optimal 

weights are always on the top of the plots no matter how the values of � and the parameter 

values change. From the efficiency plots, one can conclude that for larger ED� (ED#�, EDW�,  
EDs�, and ED �), the Bayesian c-optimal design is better than the uniform design with the 

Bayesian optimal weights. For higher ED�, sometimes Bayesian c-optimal design is better and 

sometimes not. Thus, if researcher wants to estimate wide range of the ED� from low p to high p, 

the Bayesian c-optimal design is more robust. Besides both designs utilized the Bayesian 

technique, another possible reason for the two designs perform similarly could be the uniform 

design has very close 8 design points with the Bayesian design. As discussed in the previous 

Section, the design efficiency would decrease if reduce the uniform design points to 5 or 6 

points.  
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Figure 27: Efficiencies of the adaptive Bayesian c-optimal design, uniform designs and D-

optimal design under ten sets of model parameters for estimating the ED#�, EDW�, EDs� and ED � 

respectively. In the legend of the plots, the U1 represents the 8 points uniform design, U2 

represents the 8 points uniform deign with Bayesian optimal weights, Ba represents the adaptive 

Bayesian c-optimal design, and D represents the D-optimal design under Θ = (0, −1.7, 4, 5).  
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Figure 28: Efficiencies of the adaptive Bayesian c-optimal design, uniform designs and D-

optimal design under ten sets of model parameters for estimating the ED��, ED!�, ED��, and ED"� respectively. In the legend of the plots, U1 represents the 8 points uniform design, U2 

represents the 8 points uniform design with Bayesian optimal weights, Ba represents the adaptive 

Bayesian c-optimal design, and D represents the D-optimal design under Θ = (0, −1.7, 4, 5). 
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Figure 29: Efficiencies of the adaptive Bayesian c-optimal design, uniform designs and D-

optimal design under ten sets of model parameters for estimating the ED�� and ED�� 

respectively. In the legend of the plots, U1 represents the 8 points uniform design, U2 represents 

the 8 points uniform deign with Bayesian optimal weights, Ba represents the adaptive Bayesian 

c-optimal design, and D represents the D-optimal design under Θ = (0, −1.7, 4, 5). 

At this point, I compare the performance of the adaptive Bayesian c-optimal design (Ba), 

8 points uniform design with Bayesian optimal weights (U2), and the two-stage c-optimal design 

(Two-stage) for estimating multiple ED�� under various parameter values. To see their design 

performance, I compute the c-efficiencies by using the 9000 sampling parameters for estimating 

the ED#�, EDs�, ED��, ED��, and ED��, respectively. The two-stage c-optimal design (Two-

stage) I choose to use here is the design under the set-up values: σ=0.1, Θ = (0, −1.7, 4, 5) and 

the proportion of the first stage sample size α=0.3. Again, as a comparison, the 8 points uniform 

design (U1) is included in the simulations. For each c-efficiency, I search the c-optimal design 

under one set of parameter value from the 9000 samples, and compute the c-efficiency of the 

proposed design such as the adaptive Bayesian c-optimal design against the c-optimal design. 
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For each design (Ba, Two-stage, U1, U2), this procedure repeats 9000 times until all the c-

efficiencies are computed based on the 9000 parameter samples.  

The summary statistics of 25% quartile, median, mean, and 75% quartile of the c-

efficiencies are provided in Table 10. Histogram plots of the c-efficiencies of the four designs 

shown in Figure 30, 31, 32, 33, and 34. 

Table 10: Summary statistics of c-efficiencies of the designs for estimating multiple ED�� 

(ED#�, EDs�, ED��, ED��, and ED��) under σ=0.1. 

ED� Designs 25% Quartile Median Mean 75% Quartile 

ED#� 

Ba 0.4030 0.4657 0.4656 0.5260 

Two-stage 0.3536 0.4835 0.4837 0.5817 

U2 0.3656 0.4387 0.4391 0.5111 

U1 0.3303 0.3763 0.3884 0.4654 

EDs� 

Ba 0.4715 0.5369 0.5203 0.5879 

Two-stage 0.4330 0.5579 0.5444 0.6621 

U2 0.4381 0.5349 0.5114 0.6049 

U1 0.3855 0.4671 0.4411 0.5122 

ED�� 

Ba 0.5216 0.5550 0.5526 0.5830 

Two-stage 0.4316 0.5540 0.5268 0.6511 

U2 0.5138 0.5666 0.5561 0.6074 

U1 0.4489 0.4783 0.4777 0.5032 

ED�� 

Ba 0.4916 0.5269 0.5314 0.5684 

Two-stage 0.3986 0.4907 0.4707 0.5396 

U2 0.4824 0.5375 0.5302 0.5820 

U1 0.4177 0.4534 0.4596 0.5049 

ED�� 

Ba 0.5059 0.5570 0.5553 0.6155 

Two-stage 0.2969 0.4342 0.4326 0.5489 

U2 0.4748 0.5737 0.5418 0.6204 

U1 0.4350 0.4918 0.4766 0.5469 

Ba represents the adaptive Bayesian c-optimal design for estimating multiple ED��; Two-stage 

represents two-stage c-optimal design for estimating multiple ED��; U1 represents the 8 points 

uniform design; U2 represents the 8 points uniform design with Bayesian optimal weights for 

estimating multiple ED��.



 

52 
 

 

Figure 30: Histograms of c-efficiencies of the designs for estimating the ED#�. U1 represents the 

8 points uniform design, U2 represents the 8 points uniform design with Bayesian optimal 

weights for estimating multiple ED��, Ba represents the adaptive Bayesian c-optimal design for 

estimating multiple ED��, Two-stage represents the two-stage c-optimal design for estimating 

multiple ED��. 

 

Figure 31: Histograms of c-efficiencies of the designs for estimating the EDs�. U1 represents the 

8 points uniform design, U2 represents the 8 points uniform design with Bayesian optimal 

weights for estimating multiple ED��, Ba represents the adaptive Bayesian c-optimal design for 

estimating multiple ED��, Two-stage represents the two-stage c-optimal design for estimating 

multiple ED��. 
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Figure 32: Histograms of c-efficiencies of the designs for estimating the ED��. U1 represents the 

8 points uniform design, U2 represents the 8 points uniform design with Bayesian optimal 

weights for estimating multiple ED��, Ba represents the adaptive Bayesian c-optimal design for 

estimating multiple ED��, Two-stage represents the two-stage c-optimal design for estimating 

multiple ED��. 

 

Figure 33: Histograms of c-efficiencies of the designs for estimating the ED��. U1 represents the 

8 points uniform design, U2 represents the 8 points uniform design with Bayesian optimal 

weights for estimating multiple ED��, Ba represents the adaptive Bayesian c-optimal design for 

estimating multiple ED��, Two-stage represents the two-stage c-optimal design for estimating 

multiple ED��. 
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Figure 34: Histograms of c-efficiencies of the designs for estimating the ED��. U1 represents the 

8 points uniform design, U2 represents the 8 points uniform design with Bayesian optimal 

weights for estimating multiple ED��, Ba represents the adaptive Bayesian c-optimal design for 

estimating multiple ED��, Two-stage represents the two-stage c-optimal design for estimating 

multiple ED��. 

Table 10 shows that when estimates of the ED#� and the EDs�, the mean efficiencies of 

the two-stage c-optimal design are slightly higher than the other designs in the simulation. While, 

for estimates of the ED��, the ED��, and the ED��, adaptive Bayesian c-optimal design and the 8 

points uniform design with Bayesian optimal weights work better than the two-stage c-optimal 

design. This suggests that two-stage c-optimal design sometimes works better, but sometimes not 

compared with the adaptive Bayesian c-optimal design. No significant difference is observed 

between the adaptive Bayesian c-optimal design and 8 points uniform design with Bayesian 

optimal weights, which further support our discussion in the previous sections. However, when 

we further investigate the two designs, the 25% quartile of  the adaptive Bayesian c-optimal 
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design are always higher than the 8 points uniform design with Bayesian optimal weights. It 

suggests that the adaptive Bayesian c-optimal design is much safer to use when estimating wide 

range of the ED�� since its worst case is always better than others. As expected, the traditional 8 

points uniform design always works the worst with varied values of the ED� and the mis-

specified model parameters compared with the proposed optimal designs.   
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5. CONCLUSION 

A key objective of dose-finding trials is often to study the dose-response curve or to 

estimate target dose levels of interest such as ED�. In this research, the interest is in conducting 

the robust optimal design to estimate multiple target dose ED�� and it works well for various 

nominal parameter values. 

The robust c-optimal designs under the three sets of nominal model parameters are 

conducted. They work well for estimating multiple ED�� under the assumed true value of 

parameters, however, the design performance reduces dramatically under the mis-specified 

values of model parameter, which indicates that the robust optimal design truly depends on the 

pre-specified model parameters.  

To address the model parameter dependency, the adaptive optimal design for estimating 

multiple ED�� taking into accounts the mis-specified nominal values of parameter is studied. 

Two types of the two-stage adaptive optimal designs are proposed to reduce the impact of 

parameter misspecification. One is the two-stage c-optimal design that incorporates the 

augmented design at the second stage; the other one is the adaptive Bayesian c-optimal design 

that uses the posterior distribution of the model parameter developed from the first stage.  

To overcome the heavy computation issue in searching Bayesian optimal design using 

full posterior distribution, three clustering methods such as K-means, Kernel K-means, and 

Fuzzy c-means are utilized as alternative methods in constructing the Bayesian optimal design. 

Summary statistics of the simulation demonstrates that there is not much change observed in the 

Bayesian optimal design performance among the three clustering methods.  

From the design efficiency plots over the varied sets of parameter values, one can 

observe that adaptive Bayesian c-optimal design and the uniform design with Bayesian optimal 
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weights work reasonable well for estimating the selected ED�� compared with traditional 

uniform design and D-optimal design. However, a minimal difference exists between the 

adaptive Bayesian c-optimal design and the 8 points uniform design with Bayesian optimal 

weights. One potential reason as discussed earlier could be the uniform design with optimal 

weights has 8 equal spaced design points which are relatively close to the adaptive Bayesian c-

optimal design points. Comparable results are found in the later computation of the c-

efficiencies. The c-efficiency results demonstrate that the two-stage c-optimal design works 

slightly better when estimating lower value of ED� (ED#� and EDs�); However, when estimating 

higher value of ED� (ED��, ED�� and ED��), Bayesian c-optimal design and uniform design with 

Bayesian optimal weights become better.  

In summary, this research shows that both the proposed two-stage optimal designs work 

fairly well for estimating multiple ED�� considering the model parameter uncertainty. Compare 

with the Bayesian c-optimal design, the two-stage c-optimal design sometimes works better, 

sometimes not. The Bayesian c-optimal design works similarly with the 8 points uniform design 

with Bayesian optimal weights, but when estimates wide range of the ED��, the Bayesian c-

optimal design is much safer to use because its worst case is always better than the other designs. 

Another result of note is that the uniform design with optimal weights employed the 

compounded c-optimality criteria technique and the Bayesian technique significantly enhanced 

the design performance compared with the traditional uniform design.
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APPENDIX. FLOWCHART FOR OPTIMAL DESIGN CONSTRUCTIONS 
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