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ABSTRACT 

Genetic diversity studies in breeding programs are important to identify parental lines for 

hybridization and introgression of desirable alleles into elite germplasm.   The genetic diversity 

analysis of 283 North Dakota State University (NDSU) advanced durum wheat breeding lines 

developed during the last 20 years indicated that the population was structured according to its 

breeding history.  Total genetic diversity analysis (HT = 0.334) showed adequate level of genetic 

variation.  The results will help in breeding efforts to broaden the genetic base and select lines 

for crossing as well as for genetic and genomic studies to facilitate the combination of desirable 

alleles. The quantitative nature of important target traits, combined with environmental effects, 

makes it difficult to bring the desirable improvement in durum wheat to meet the expectations of 

all the stakeholders involved in the durum wheat industry.  With an objective to identify 

molecular markers for marker-assisted breeding (MAB), the present study attempted to identify 

marker-trait associations for six agronomic and 29 quality traits using a genome-wide association 

study (GWAS) mapping approach.  The study used two types of phenotypic datasets, a historic 

unbalanced dataset belonging to a total of 80 environments collected over a period of 16 years 

and a balanced dataset collected from two environments, to identify the applicability of historic 

unbalanced phenotypic data for GWAS analysis. A total of 292 QTL were identified for 

agronomic and quality traits, with 10 QTL showing major effects (R2 >15%).  Over 45% of QTL 

for agronomic and quality traits were present in both the unbalanced and balanced datasets, with 

about 50% of those present in both environments in the balanced dataset.  Genome-wide 

association mapping studies identified several candidate markers for use in marker-assisted 

selection (MAS) for height, gluten strength, distribution of small kernels, polyphenol oxidase 

(PPO) activity, and yield.   
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GENERAL INTRODUCTION 

Wheat (Triticum spp.) is one of the most widely cultivated crop of all cereals.  It can be 

categorized by kernel texture into hard and soft and further subcategorized according to growing 

season and kernel color (Hoseney and Declour, 2010).  Tetraploid durum possesses the hardest 

kernel of all and is more drought tolerant than hexaploid bread wheat (T. aestivum).  It is 

cultivated in semi-arid regions of the world, such as Mediterranean Europe, the Middle East, 

North Africa, and the North American Great Plains (Elias and Manthey, 2005).  In 2016, U.S. 

durum wheat acreage was an estimated 2.37 million (1.92 million in 2017), with approximately 

62% of the total acreage in North Dakota (58% in 2017) (National Agricultural Statistics 

Service, 2017).       

The agronomic performance of durum wheat has improved significantly worldwide as a 

result of public and private sector breeding efforts.  Most of the cultivars grown in the Northern 

Plains were developed by the durum wheat breeding program established at North Dakota State 

University (NDSU) in 1929 (Joppa and Williams, 1988).  The major focus of the durum wheat 

breeding program at NDSU is to develop durum wheat cultivars possessing characteristics that 

maximize economic return to producers as well as provide excellent quality durum wheat for the 

domestic pasta industry and the international export market.  

A better understanding of the genetic composition of durum wheat’s agronomic and 

quality traits is an essential precondition for more effective and targeted breeding activities 

(Araus et al., 2002; Salekdeh et al., 2009).  Association mapping (AM) is one of the approaches 

in genomics that enables the identification and selection of chromosome regions harboring 

Quantitative Trait Loci (QTL) that control agronomic and quality traits (Tuberosa and Salvi, 

2006; Collins et al., 2008).  The basic objective of AM studies is to detect statistical associations 
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between genotypes and phenotypes in samples of unrelated individuals on the basis of linkage 

disequilibrium (LD), which is the nonrandom association of alleles at different loci (Zondervan 

and Cardon, 2004).  Association mapping analysis offers greater precision in QTL location than 

linkage analysis performed with the population derived from a bi-parental cross due to its 

increased mapping resolution, reduced research time, and greater allele number (Yu and Buckler, 

2006; Rafalski, 2010).  The results of AM experiments are valuable for marker-assisted breeding 

programs as they allow for the identification of the desirable allelic variants at the major loci 

controlling the target traits (Heffner et al., 2009).  Also, AM is a powerful approach for assessing 

genetic diversity in the breeding program.  This information about the genetic diversity and 

population structure in elite breeding material is necessary for crop improvement (Inghelandt et 

al., 2010).  Association mapping enables breeders to assess the allelic combinations selected over 

generations and thus provides genetic haplotypes for future crop improvement through marker-

assisted selection (Kishore et al., 2012).  
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CHAPTER 1. LITERATURE REVIEW 

Evolution of Durum Wheat 

Durum wheat [Triticum turgidum L. var. durum (Desf.)] belongs to the grass family 

Poaceae, which evolved 50-70 million years ago (Mya); the sub-family Pooideae, which 

diverged from Poaceae around 20 Mya; and the tribe Triticeae, from which wheat takes its name 

(Huang et al., 2002; Levy and Feldman, 2002).  Divergence from the tribe resulted in three other 

important cereal crops: barley (Hordeum vulgare L.), rye (Secale cereal), and triticale (× 

Triticosecale).  The tribe Triticeae is presumably relatively young, with critical differentiation 

starting during the Pleistocene Epoch (Sakamoto, 1973).  Comparative mapping has shown 

conserved syntenic relationships among genomes of different species in grass, including 

common wheat (Triticum aestivum), maize (Zea mays ssp. mays L), and sorghum [Sorghum 

bicolor L.) Moench], and rice (Oryza Sativa L), which suggests many of them originated from 

the same ancestor (Moore et al., 1995).  Knowing the evolutionary relationship between these 

species helps in understanding the evolution of the grass genome and aids in the assembly of 

genome sequences from other pooid grasses (Luo et al., 2007). 

The species included in the genus Triticum are Triticum monococum L. (einkorn wheat: 

genome AmAm), Triticum urartu (genome AA), Triticum turgidum L. (genome AABB), Triticum 

aestivum L. (genome AABBDD), Triticum timopheevii (genome AAGG), and Triticum 

zhukovskyi (genome AAAAGG) (http://www.ncbi.nlm.nih.gov).  Triticum urartu exists only in 

the wild form, whereas T. aestivum and T. zhukovskyi exist only in cultivated forms.  The other 

species, T. monococcum, T. turgidum, and T. timopheevii, have both a wild and a domesticated 

form. 
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About 300,000-500,000 years ago, the wild diploid wheat T. urartu hybridized with the B 

genome ancestor that is closely related to the goat grass Aegilops speltoides.  This hybridization 

was followed by chromosome doubling to produce an allotetraploid wild emmer wheat, T. 

turgidum ssp. dicoccoides (2n = 4x = 28, AABB) (Huang et al., 2002; Levy and Feldman, 2002).  

About 12,000 years ago, hunter-gatherers began to cultivate wild emmer, subconsciously 

selecting for desired traits and gradually creating a cultivated emmer (T. dicoccum, 2n=4x=28, 

genome AABB).  About 8,500 years ago, natural mutation changed the ears of emmer to a more 

easily threshed type that later evolved into the free-threshing ears of durum wheat (Dvorak et al., 

2006). 

Domestication and Dissemination of Durum Wheat 

The domestication of plants and animals is the major factor that led to human civilization.  

Domestication was an outcome of the selection process, the purpose of which was to accelerate 

traits usable and desirable by humans (Gepts, 2004).  Durum wheat originated in the 

Mediterranean Sea region and is the most commonly cultivated form of allotetraploid wheat.  

Wheat cultivation began about 12,000 years ago along the Fertile Crescent in what is known as 

the Levantine corridor (Israel, Jordan, Syria, Lebanon, and southern Turkey) (Zohary and Hopf, 

2000).  Genetic analysis of wheat domestication has been achieved using the mapping population 

developed from T. dicoccoides and the cultivated tetraploid wheat ‘Langdon’ (Peleg et al., 2011; 

Peng et al., 2003).  Genetic improvements, such as thicker stems, tougher rachis, looser glumes, 

increased number of grains per spikelet, rapid and uniform germination, and particularly larger 

seeds are probably the most important signs of domestication, but are not necessarily reliable 

indicators (Ayal et al., 2005).  Triticum dicoccoides possessed tough glumes and fragile rachis 

that made it susceptible to shattering, a mechanism of natural seed dispersal.  Upon 
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domestication, each of the major cereals underwent genetic modifications that led to shatter-

resistance phenotypes, allowing early farmers to harvest grain more efficiently (Faris and Gill, 

2002; Ayal et al., 2005).  Yield, grain size, plant height, and heading date are among other traits 

that were modified during the domestication and breeding process (Peng et al., 2003).  

Domestication and breeding for certain traits over time are likely to have narrowed the genetic 

diversity of durum wheat (Thuillet et al., 2005). 

It is essential to trace the domestication process to find functional and regulatory genes 

that were eliminated from cultivars during domestication and breeding.  Although T. dicoccoides 

possesses agriculturally deleterious features, it also possesses important beneficial traits, such as 

resistance to biotic and abiotic stresses, a high protein content, and alpha amylase inhibitors 

(Cakmak et al., 2004; Uauy et al., 2006).  Other traits possessed are a high photosynthetic yield, 

salt and drought tolerance, herbicide resistance, earliness, high nitrogen content, high yield, short 

stature, and a high tillering capacity (Cakmak et al., 2004; Uauy et al., 2006).  Among the 75 

domestication QTL effects for 11 traits, wild QTL alleles of T. dicoccoides for 18 effects (24%) 

were agriculturally beneficial (Peng et al., 2003). 

After domestication occurred, cultivated tetraploid emmer wheat spread east and south 

through the Mesopotamian plain to India and west through Anatolia to the Mediterranean coastal 

region (8,000 years ago), to the Balkans and Danube regions (7,000 years ago), and to Europe 

(7,000 years ago).  Cultivated tetraploid wheat reached the United Kingdom and Scandinavia 

about 5000 years ago.  It was introduced to Central Asia and China about 3,000 years ago from 

what is now Iran, and, later, to Africa from Egypt (Matsuoka, 2011; Ozkan et al., 2011).   

In 1521, durum wheat seeds were introduced to Mexico by the Spaniards.  At the 

beginning of the 1600s, farmers in California planted seeds of durum wheat transported by 
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explorers, traders, settlers, soldiers, and Spanish missionaries.  On the East Coast, immigrants 

from Europe carried these seeds with them, while settlers from Southern Russia introduced 

durum wheat to the Great Plains in what is now Kansas in 1850s. (Damania, 2013). 

U.S. Commercialization of Durum Wheat 

Although durum wheat was introduced to U.S. growers at various times beginning around 

1850, it failed to become a commercial crop because it was maladapted to the humid conditions 

of the Great Plains and possessed different milling properties (Ball, 1930); millers were not 

equipped to process the hard durum wheat grain, so refused to mill it (Paulsen and Shroyer, 

2008).  

Durum wheat was reintroduced to growers after 1900, when various cultivars of hard red 

spring wheat and durum wheat were collected from around the world and evaluated by the U.S. 

Department of Agriculture.  The superior resistance of durum wheat to stem rust during a 1904 

epidemic resulted in a rapid increase in durum production (Olmsted and Rhode, 2011).  This 

increase in production coincided with the failure of the durum wheat crop in Europe in 1911, 

which allowed durum wheat growers in the Northern Plains to sell their durum at a higher price 

than their hard red spring wheat, making durum wheat production an appealing option (Isern, 

2000).  

Durum wheat is milled primarily to produce semolina.  Pasta is made from semolina and 

water that is formed into dough and extruded under vacuum through a die.  Although durum is 

also used to make bread in some parts of the world, this constitutes a relatively small proportion 

of worldwide durum usage (Troccolli et al., 2000) 

A durum wheat breeding program was established at North Dakota State University 

(NDSU) in 1929, and it remains the only public durum wheat breeding program in the United 
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States.  The objectives of the durum wheat breeding program include the improvement of 

agronomic performance, disease resistance, grain quality, semolina quality, and pasta cooking 

quality.  Variation in the genetic traits of durum wheat must be fully surveyed to meet the broad 

requirements for durum grain.  Domestication and selection improved the genetic uniformity of 

the crop, but decreased its genetic diversity.  Most cultivars developed in the Northern Plains and 

Canada possess over 95% of North American germplasm in their background, although to 

increase the genetic diversity in the program at NDSU, germplasm has been introduced from 

Europe, the International Maize and Wheat Improvement Center (CIMMYT), and the 

International Center for Agricultural Research in the Dry Area (ICARDA) (Royo et al., 2009). 

Diversity in Durum Wheat 

Genetic diversity is the basis for genetic improvement and the foundation for survival, 

adaptation and evolution in time and space (Nevo and Beiles, 1989).  In recent times, molecular 

markers have been widely used in wheat breeding programs to assess the genetic diversity 

available to the breeder.  Molecular marker profiles account for the effects due to selection and 

genetic drift that occur over breeding cycles, making it possible to accurately portray the 

relationship among genotypes.  As a result of modern breeding, it has been suggested that 

genetic diversity in wheat has been increasingly narrowed (Autrique et al., 1996), making it more 

difficult to breed for adaptation to biotic stresses, such as fungal pathogens, and abiotic stresses, 

such as drought or salt tolerance.  Autrique et al. (1996) assessed 113 improved cultivars and 

landraces with restriction fragment length polymorphism (RFLP) markers.  They observed a low 

genetic distance (many similar alleles) for improved cultivars and some landraces from Morocco 

and Jordan, while the other landraces from Greece, Italy, Turkey, Ethiopia, Syria, Algeria, and 

Cyprus showed a larger genetic distance.  Other investigations of the genetic diversity of large 
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durum wheat germplasm collections, including both landraces and improved cultivars from 

different growing areas, highlighted the presence of broad genetic variation for morphological, 

agronomic, and quality traits (Martosa et al., 2005; Soleimani et al., 2002; Uddin and Boerner, 

2008; Yildrim et al., 2011).  A substantial level of genetic variation within modern cultivars of 

Canadian durum wheat detected by Amplified Fragment Length Polymorphism (AFLP) exists 

despite rigorous selection pressure in breeding programs.  (Soleimani et al., 2002).  Martosa et al. 

(2005) carried out a study to determine phylogenetic relationships and genetic diversity in durum 

wheat cultivars released in Italy and Spain throughout the 20th century using AFLP markers.  

Results indicated that the extent of genetic diversity in Italian and Spanish durum wheat 

remained constant over 100 years.  High genetic variability of the Turkish landraces of durum 

wheat was reported by Yildirim et al. (2011) using microsatellite markers.  Based on simple 

sequence repeats (SSR) markers, Abouzied et al. (2013) reported moderate genetic variability 

among and within populations of durum wheat cultivars and landraces. 

Molecular Characterization of Durum Wheat 

Tetraploid T. turgidum L. (2n=4x=28, genome AABB) represents a classical example of 

successful evolution through allopolyploidy.  The genome size of tetraploid wheat is estimated to 

be 13,000 Mb (Arumuganathan and Earle, 1991).  Durum wheat is a relatively young polyploid 

with extensive collinearity between the two genomes (Nachit et al., 2001).  

The first genetic map for durum wheat was constructed in 1998 from a population of 65 

recombinant inbred lines (RILs) using 198 RFLP, one polymerase chain reaction (PCR) marker, 

seven biochemical markers, and seven morphological markers.  The total distance covered was 

1,352 cM, with an average of 6.3 cM between two loci (Blanco et al., 1998).  Since that time, 

several types of molecular markers have been used to construct durum wheat linkage maps, 
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including SSR (Roder et al., 1998; Korzun et al., 1999), AFLP (Lotti et al., 2000), and DarT 

(Manovani et al., 2008). 

The abundance and genotyping cost effectiveness of single nucleotide polymorphism 

(SNP) markers led to the large-scale development and utilization of these markers in many crops, 

including wheat.  Single nucleotide polymorphism markers allowed for the discovery of more 

than 2,500 SNP markers, saturating the durum wheat map with a marker density of 0.8 

cM/marker (van Poecke et al., 2013).  Wang et al. (2014) developed a high-density (90K) wheat 

SNP array that included 8,000 SNP markers from durum cultivars. 

 A high-density tetraploid wheat consensus map was created by merging genetic maps 

from 13 independent tetraploid wheat mapping populations.  Ten of them were genotyped with 

the recently developed Illumina 9K and 90K wheat SNP arrays (Cavanagh et al., 2013; Wang et 

al., 2014). The consensus map ended up harboring 26,626 SNP and 791 SSR markers and 

spanning 2,631 cM of all 14 durum wheat chromosomes, with a marker density of 0.087 

cM/marker, corresponding to 11 markers per 1 cM. Such high-resolution molecular maps can be 

applied in marker assisted selections (MAS) for desirable traits, positional cloning, and 

phylogenic studies. 

Genetics of Durum Wheat Agronomic Traits 

Yield, 1000-kernel weight, test weight, plant height, lodging, days to heading, disease 

resistance, and falling number are among agronomic traits that durum breeders evaluate while 

developing cultivars with improved performance.  Most agronomic traits are quantitative in 

nature, controlled by many genes, and highly influenced by environment, 

genotype × environment interaction, and epistasis interaction (McCartney et al., 2005, Li et al., 

2016).  Previous genetic research has uncovered a number of QTL affecting plant height 
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(Worland et al., 1998; Li et al., 2016), heading date (Marza, et al., 2006; Reif et al., 2011; Li et 

al., 2016) and lodging (Keller et al., 1999; Marza et al., 2006; Li et al., 2016).  Durum breeders 

must consider interactions between the above-mentioned and other agronomic and quality traits 

when selecting for superior genotypes.  

Yield 

Grain yield frequently is used as the main criterion for agronomic performance in crops.   

It is a complex, multicomponent trait greatly influenced by various plant morphological and 

physiological characteristics and growing conditions (Mohsin et al., 2009).  Thus, success in 

breeding for improved yield requires combining the yield-related components (traits) associated 

with yield response (Li et al., 2011).  Each yield component has its own genetic system and is 

influenced by environmental variations (Kahrizi et al., 2010).  During the growing season, durum 

wheat may undergo severe weather conditions that can affect potential grain yield, so the ability 

of cultivars to adapt to different environments is an important characteristic (Ceccarelli et al., 

1991).  Yield stability refers to the ability of the plant genotype to express yield potential over a 

wide assortment of environments with minimal loss from the environmental stresses, diseases, 

and pests. 

Days to heading 

Heading date is one of the most important traits in cereal crops (Kitagawa et al., 2012).  

The appropriate transition from the vegetative to the reproductive stage is a critical adaptive trait.  

Crops with the appropriate heading time relative to the target environment can avoid pathogen 

interactions and negative environmental effects (such as hot temperatures), allowing them to 

maximize yield potential (Snape et al., 2001).  Heading time in wheat is determined by three 

major genetic factors: the vernalization requirement, response to photoperiod, and earliness per 
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se (Borlaug, 1983; Kato et al., 1988; McIntosh et al., 2003).  Photoperiod insensitivity (day 

length neutrality) and vernalization responses enable the cultivars to be grown in different 

latitudes and seasons.  Wheat genotypes sensitive to photoperiod require long days to begin 

flowering, while genotypes insensitive to photoperiod flower independent of day length.  

Earliness, the time needed for a plant to reach a certain developmental stage, plays a major role 

in a plant’s adaptation to its environment (Law and Worland, 1997). 

Several studies in the northern Great Plains have found that photoperiod-insensitive lines 

are earlier to head and shorter than their photoperiod-sensitive counterparts; in these studies, the 

grain yield for the insensitive line was the same or higher than for the sensitive line, averaged 

over all environments (Busch et al., 1984; Marshall et al., 1989).  The environmental conditions 

prevailing during the period from grain set to maturity can have a significant effect on grain 

yield.  Photoperiod-insensitive cultivars tend to perform best in warmer, drier environments due 

to their avoidance of heat and moisture stress during grain filling (Fisher and Maurer, 1976; 

Musick and Dusek, 1980; Dyck et al., 2004). 

Plant height  

Plant height is one of the parameters associated with yield (Khush, 1999).  Previous 

genetic research has uncovered a number of genes affecting plant height (Rht genes); however, 

only Rht-B1b (Rht 1), Rht-D1b (Rht 2), and Rht8c have been used extensively in agriculture 

(Borlaug 1968; Worland et al., 1998).  Alleles for reduced height, found at the Rht-B1 and Rht-

D1 loci on chromosomes 4B and 4D, respectively, were first identified in the 1930s on the 

Japanese cultivar Norin 10 (Triticum aestvum L.).  The presence of mutant alleles at either Rht-

B1 or Rht-D1confers a semi-dwarf growth habit, while the presence of alleles at both loci confers 

a dwarf growth habit (Kalous et al., 2011).  
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Plant height is a major agronomic criterion in wheat breeding because it often affects 

grain yield by influencing resistance to lodging, number of tillers, and seeds per plant (Donald 

and Hamblin, 1976).  According to several studies, semi-dwarf wheat has a higher grain yield 

potential and reduced lodging under high input and adequate moisture-growing conditions 

(Waddington et al., 1986; Knott, 1986; Worland and Snape, 2001; Hedden, 2003).  McNeal et al. 

(1972) found that in low-yield environments, tall lines were superior to semi-dwarf ones.  

Kahrizi et al. (2010) reported a positive correlation between plant height with such 

morphological traits as peduncle length, flag length, leaf dry weight, stem dry weight, and spike 

dry weight and leaf area ratio.  McCartney et al. (2005) demonstrated that reduced height at one 

of the major QTL, QHt.crc-4D, was significantly associated with decreased lodging, grain yield, 

test weight, and 1000-grain weight and increased time to maturity. 

Lodging  

Lodging in wheat occurs when the plant shoots are permanently displaced from an 

upright position (Pinthus, 1997).  It may cause up to a 50% yield reduction and often results in 

reduced grain quality, greater drying costs, and a slower harvest (Stapper and Fischer, 1990).  

The main causes of lodging are strong winds, heavy rains, diseases, and pests that damage the 

root, stem, or crown.  Lodging risk can be reduced by introducing the semi-dwarfing genes Rht-

B1b and Rht-D1b into breeding materials (Wilhelm et al., 2013).  However, stem lodging is also 

influenced by other factors, including main shoot weight, stem thickness, and second internode 

diameter (Sarker et al., 2007).  Lodging represents a quantitative trait and is difficult to assess on 

a phenotypic basis.  Few studies have identified QTL for stem diameter (Keller et al., 1999; Hai 

et al., 2005), stem wall width, and stem pushing resistance (Hai et al., 2005).  Ma (2009) showed 

that a gene involved in the biosynthesis of lignin (COMT) was expressed more in a lodging-
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resistant cultivar than a lodging-susceptible cultivar.  Berry and Berry (2015) reported the 

number of QTL associated with lodging and noted that individual QTL with the largest estimated 

effects on lodging resistance were for height, stem diameter, stem strength, root spread, and root 

depth.  Effectively improving the lodging resistance in wheat requires simultaneous selection for 

the traits that contribute to it.   

Leaf disease 

There are three very important leaf fungal diseases in North Dakota: tan spot 

[Pyrenophora tritici-repentis (PTR) (Died.) Drechs.], Septoria/Stagonspora nodorum blotch 

(SNB) [Phaeosphaeria nodorum (E. Müller) Hedjaroude], and Septoria tritici blotch (STB) 

[Zymoseptoria tritici (Desm.) Quaedvlieg & Crous, comb. nov.].  These diseases can cause 

severe yield losses under favorable to pathogenic conditions by reducing the photosynthetic area 

of leaves (Friskop and Liu, 2016).  The need for simultaneous resistance to several diseases, 

change in the pathogen population, and complex genetic control of the trait are challenges when 

breeding for disease resistance.  Several genes and QTL for resistance to tan spot have been 

reported (Faris et al., 1997; Faris and Friesen, 2005; Chu et al., 2008; Chu et al., 2010).  

Septoria/Stagonspora nodorum blotch flag leaf resistance has been reported on chromosome 2A,  

2D, 3A, 3B,  5B, 6B, and 7B (Faris et al., 2009; Adhikari et al., 2011; Francki et al., 2011; 

Gurung et al., 2014).  Resistance to STB was identified using bi-parental populations and 

reported on chromosomes 3A and 6B in spring wheat by Eriksen et al. (2003) and on 

chromosome 2B by Chartrain et al. (2009).  Genome-wide association approaches have been 

used successfully for identifying SNP associated with these diseases, allowing for the 

elimination of long linkage blocks that can limit identification of closely-linked markers 

(Tommasini et al., 2007; Miedaner et al., 2013; Kollers et al., 2014).  
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Fusarium head blight (FHB), commonly known as scab, is presently one of the most 

detrimental fungal diseases for cultivated tetraploid durum wheat.  Fusarium graminearum 

(sexual stage - Gibberella zeae) is a pathogenic, filamentous fungus that infects wheat, barley 

(Hordeum vulgare L.), oats (Avena sativa), and other small grain cereals, causing symptoms of 

FHB.  Symptoms begin to appear at the point of infection in the form of water-soaked brown 

spots present on the glumes that eventually spread up and down the rachis.  The production of 

sporodochia at the base of the infected glumes gives rise to a pinkish color on severely infected 

spikes.  The lesions increase in size until the whole spikelet is covered and spread to the 

neighboring spikelets if the environment is conducive.  Peduncles immediately below the 

inflorescence may become a discolored brown.  With time, tissue of the inflorescence often 

becomes blighted (Gilbert and Tekauz, 1995).  Studies of the genetic structure of populations of 

G. zeae collected from infected cereals in the United States have shown a large diversity among 

these populations (Zeller et al., 2004).  The reason for the diversity may include extensive inter-

population genetic exchange across large geographic regions, while control may include the use 

of resistant host genotypes and fungicides.  While many QTL for FHB resistance have been 

found and are successfully used in hexaploid wheat (Triticum aestvum), most current wheat 

cultivars are highly susceptible, in part due to the narrow genetic diversity for FHB resistance in 

elite durum wheat germplasm (Elias et al., 2005; Gilbert and Tekauz, 1995).  While many QTL 

for FHB resistance have been found and are successfully used in hexaploid wheat (Triticum 

aestvum), to date, a relatively small number of QTL for FHB resistance in durum wheat have 

been identified that provide satisfactory resistance (Prat et al., 2017).  Therefore, ongoing 

research on new FHB virulence and regular surveillance to monitor possible changes in toxin 

chemotypes are important to prevent major FHB outbreaks in the future. 
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Falling number 

 Falling number (FN) is an important agronomic and end-use quality trait in durum wheat.  

It measures the rheological properties (changes in viscosity) of starch and the degree of starch 

damage.  During pre-harvest sprouting caused by wet conditions before harvest, α-amylase 

enzyme activity is increased, resulting in starch damage.  Thus, FN indirectly measures α-

amylase enzyme activity.  Falling number is defined as the time it takes a stirrer-viscometer to 

fall through a heated and ground whole wheat flour-water suspension (MacArthur et al., 1981).  

Low FN values generally indicate greater starch damage caused by higher levels of α-amylase 

enzyme activity.  Values higher than 350 seconds are considered to represent sound wheat 

kernels, lacking α-amylase enzyme activity (Donnelly, 1980).  In durum wheat, Dick et al. 

(1974) found no effect of extensive sprouting on semolina yield or spaghetti cooking quality.  

Donnelly et al. (1980) found that FN values negatively correlated with the percent damage 

values and that sprout damage of 10% or higher had a negative effect on spaghetti cooking 

quality and shelf-life stability. 

Molecular markers associated with FN would be useful in selecting against durum wheat 

lines with low FN in early breeding generations.  Six major QTL located on chromosomes 1B, 

2A, 2B, 6B, and 7B explained 45% of FN variation in hard white spring wheat (Zhang et al., 

2014).  Several studies identified a number of QTL for FN using bi-parental and AM studies and 

reported the association of some QTL for FN with QTL for pre-harvest sprouting, late maturity, 

α-amylase, and seed dormancy (Kunert et al., 2007; Kulwal et al., 2012; Rasul et al., 2009; 

Mohler et al., 2014). 
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Genetics of Durum Wheat End Use Quality Traits 

Although yield stability represents the major breeding goal in developing improved 

durum wheat cultivars, the stability of grain quality parameters is an important requirement for 

the milling and pasta industries (Rharrabti et al., 2003a).  The grain quality of durum wheat is a 

complex characteristic that includes several components (Troccoli et al., 2000).  Grain quality, 

which is controlled genetically as well as influenced by the growing environment, determines 

semolina quality, which in turn determines pasta processing and cooking quality parameters 

(Rharrabti et al., 2003b).  To meet the broad quality requirements of the miller, end-product 

producer, and consumer, high quality durum wheat grain should possess a high protein content, a 

high percent of vitreous kernels, high FN, and a bright yellow color.  Semolina protein quantity 

and quality are the most important components in pasta cooking quality (Dick and Matuso, 

1988).  Protein quality is associated with gluten strength.  Semolina protein contains gliadin and 

glutenin proteins that upon hydration and mixing form a protein network often referred to as 

gluten.  The firmness and resiliency of the cooked pasta products and stability during cooking is 

known to be associated with gluten strength (Sissons, 2008). 

Grain Quality Parameters 

Test weight, 1000-kernel weight, and kernel size 

Test weight, 1000-kernel weight, and kernel size are interrelated.  Test weight is a 

measure of the bulk density of wheat grain expressed in pounds per bushel (lb/bu), kilograms per 

hectoliter (kg/hl), or kilograms per cubic meter (kg m-3).  Grain volume weight as an indicator of 

grain quality is an important parameter for marketing purposes.  For example, the U.S, grade for 

durum wheat is dependent on test weight.  U.S, Nos.1, 2, 3, and 4 grades require a minimum test 

weight of 60.0, 58.0, 56.0, and 54.1 lb/bu, respectively (74.8, 72.3, 70.0, and 67.5 kg/hL, 
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respectively).  Test weight has been reported to be significantly correlated with kernel weight, 

kernel diameter, and kernel size distribution (Barmore et al., 1965; Matsuo and Dexter, 1980).  

Kernel weight alone does not guarantee a high test weight.  Test weight has been reported to be 

highly correlated with packing efficiency, which can be more related to kernel shape than kernel 

size (Yamazaki and Briggle, 1969).   

Thousand-kernel weight (TKW) is a trait important from both an agronomic and quality 

standpoint.  It is one of the most important yield components in wheat.  Thousand-kernel weight 

is more heritable and stable under different environments than other yield components, such as 

spikes per plant and kernels per spike (Xiao and He, 2003).  It is usually used in breeding 

programs to estimate the agronomic yield among various wheat genotypes (Baril, 1992; Troccoli 

et al., 2000).  In addition, breeders and flour millers use1000-kernel weight as a complement to 

test weight (TWT).  

Thousand-kernel weight is an indirect measure of average kernel size and shows a 

positive correlation with semolina yield (Dexter et al., 1987; Abaye et al., 1997).  Like most 

agronomic and quality traits, TKW is a quantitative trait represented by continuous variation in a 

segregating population.  Thousand-kernel weight is highly influenced by the environment during 

grain filling (number of spikes, number of fertile florets per spikelet, and kernel dimensions and 

volume) (Blumenthal et al., 1991; Schuler et al., 1994).  During domestication and high selection 

intensity, genetic diversity for TKW has been reduced and allelic diversity at selected loci 

lowered (Wang et al., 2014).  In durum wheat, Elouafi and Nachit (2004) reported and mapped 

five major QTL for TKW that explained 32% of the total variation, of which 25% was of a 

genetic nature.  They also showed a major QTL for genotype by environment interaction around 

the centromere on chromosome 6B.  Two major QTL for TKW were identified on chromosomes 
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3B and 4B by Russo et al (2014) using SNP markers that corresponded with those identified by 

Prashant et al. (2012) and Patil et al. (2013).  Three QTL for kernel weight, kernel diameter, and 

kernel size distribution were detected on chromosomes 2A, 5B, and 7A (Tsilo et al., 2010).  In 

the study Tsilo et al. (2010) reported a positive correlation for the percentage of large kernels 

with a single-kernel diameter (r = 0.93 at P ≤ 0.001) and a negative correlation of the latter with 

the percentage of medium and small kernels, suggesting that kernel diameter and kernel size 

distribution have some genes in common. 

Test weight is quantitative in nature and is highly influenced by the genotype by 

environment interaction (Rharrabti et al., 2003).  Among the 11 putative QTL associated with 

TWT that were detected on chromosomes 1AL, 1BL, 2BL, 3BS, 3BL, 5AL, 6AL, 6BS, and 7BS, 

five were detected in one environment only, three in two environments, and three  in five or 

more environments. Most of these QTL co-localized with those for TKW (Graziani et al., 2014). 

Patil et al. (2013) identified five QTL for TWT located over five chromosomes. The consistent 

QTL on chromosome 2A between the marker interval Xgwm71.2–Xubc835.4 with a pleiotropic 

effect on TWT and TKW was suggested for use in early generation selection to improve TWT 

and TKW (Patil et al., 2013). 

Grain protein concentration 

Grain protein concentration is an important quality trait in durum wheat for pasta 

manufacturing due to its effect on the firmness of cooked pasta and tolerance to overcooking 

(Dexter and Matsuo, 1977).  Protein quantity is a major determinant for the quality of pasta dried 

at high temperatures, while both protein quantity and its composition are important components 

for high-quality pasta dried at a low temperature (Dick and Matuso, 1988; Novaro et al., 1993).  

Generally, durum wheat grain protein ranges from 10 to 18% at a 12% moisture basis.  Grain 
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protein content of 11% or lower results in a poor-quality pasta regardless of drying temperature 

regimes (D’Egidio et al., 1990).   

Protein content is a quantitative trait with low heritability that is largely influenced by the 

environment, and, in some cases, has been found to be negatively correlated with grain yield 

(Johnson et al., 1985; Oury and Godin, 2007; Blanco et al., 2012).  Elevated air temperature 

during grain filling results in an increase in grain protein percentage due to decreased starch 

synthesis.  Although the increased protein percentage is a positive quality factor, the changes in 

the protein composition due to high air temperature can negate this positive effect.  High air 

temperature during grain filling often results in an increase in the gliadin to glutenin ratio, which 

in turn results in reduced gluten strength and end-product quality (Moldestad et al., 2011).  

Some major QTL for grain protein concentration were detected in a number of 

environments and populations on almost all chromosomes in both hexaploid and tetraploid 

wheat.  In durum wheat, grain protein concentration QTL have been reported on chromosomes 

2AS, 2 BL, 3AS, 4 AL, 7AL, 7AS, and 7BL (Zhang et al., 2008; Raman et al., 2009; Suprayogi 

et al., 2009; Sun et al., 2010; Blanco et al., 2012).  A gene for high grain protein content located 

near the centromere of chromosome 6B of the ‘Langdon’ (DIC-6B) substitution accounted for 

66% of the variation in a mapping population of 85 RILs (Joppa et al., 1997).  Cloning of the 

gene Gpc-B1 on 6BS revealed that its effect on grain protein concentration is due to improved N 

remobilization (Brevis and Dubcovsky, 2010).  Some major QTL have been reported to show no 

reduction in grain yield in some environments, while the same QTL have been associated with a 

reduction in grain yield in others, indicating an environment and genotype by environment 

interaction (Joppa et al., 1997; Groos et al., 2003; Prasad et al., 2003; Borner et al., 2007; 

Suprayogi et al., 2009; Sun et al., 2010; Blanco et al., 2012; Terasawa et al., 2016).  These 
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findings suggest that the use of these QTL is limited to certain environments and genetic 

backgrounds, with additional studies required to determine their utility.  

Kernel vitreousness 

Kernel vitreousness is an important quality factor worldwide.  It is defined as the 

percentage of kernels, based on weight, having a translucent endosperm.  Non-vitreous kernels 

with a starchy endosperm are opaque due to air spaces between starch granules (REF).  The 

degree of kernel translucency, and thus the apparent degree of vitreousness, is related to the 

degree of kernel compactness.  Generally, the more desirable coarse semolina is produced from 

highly vitreous wheats (Hoseney, 1987).  

Durum wheat kernels tend to be harder than hexaploid wheat due to the absence of starch 

granule proteins called puroindolins (Baldwin, 2001).  The puroindoline gene mapped on 

chromosome 5D in bread wheat is absent in tetraploid wheat (AABB) (Igrejas et al., 2002; 

Chantret et al., 2005).  However, the puroindoline gene does not account for the full range of 

variation in kernel hardness, and several minor QTL have been mapped on different 

chromosomes in previous studies in hexaploid wheat (Sourdille et al., 1996).  The puroindoline 

b-2 gene was discovered in the durum wheat Langdon; it has at least two variants in one of the A 

and B genomes in some durum wheat, suggesting that the puroindoline b-2 gene comprises a 

multigene family (Chen et al., 2011). 

Flour- and Semolina-related Characteristics 

Milling extraction 

 Wheat milling yield is an important criterion for the milling industry.  Increases in 

semolina yield mean increases in profits for durum wheat millers.  Several factors can affect the 

extraction rate: the amount of germ, thickness of the bran, size of the grain, kernel size 
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distribution, and depth of the crease (Marshall et al., 1984, 1986; Yoon et al., 2002).  Grain 

hardness also plays an important role in semolina extraction, affecting the endosperm fracture 

pattern, starch damage, particle size, and the ease of separating bran from endosperm (Stenvert, 

1972).  Hard and soft wheat differ in the strength with which starch granules are attached to the 

protein matrix.  Durum wheat has the hardest kernel of all due to the absence of the hardness 

(Ha) locus, which is present in hexaploid wheat on chromosome 5D (Igrejas et al., 2002; 

Chantret et al., 2005).  In the preliminary analysis for hexaploid wheat, two regions were 

identified on chromosomes 3A and 7D that were significantly associated with milling yield, 

accounting for 22% and 19% of genetic variation, respectively. Another region identified with 

AFLP on chromosome 5A accounted for 19% of genetic variation (Parker et al., 1999). 

Ash content 

Ash content is an indicator of semolina/flour contamination with bran.  It is related to 

kernel hardness, kernel size, kernel uniformity and bran thickness (Posner, 2009; Yoon et al., 

2002).  Mineral accumulation in the grain primarily depends on the translocation from the leaves 

to the developing kernels after the onset of senescence (Wardlaw, 1990).  The heritability of ash 

content is greater than that for grain yield in durum wheat, indicating that the trait is under 

genetic control (Araus et al., 1998).  Kernel ash content is highly influenced by environment and 

genotype by environment interaction (Fares et al., 1995).  Favorable growing conditions result in 

increased ash content in the whole grain due to the increased uptake of minerals from the soil 

(Cubadda, 1988).  High correlation has been observed between ash content in the whole grain 

and semolina.  Under drought stress, the re-mobilization of minerals from the vegetative organs 

is much higher than that in well-watered conditions, which leads to a decrease in ash content in 
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the flag leaf at maturity and an increase in ash content in the grain at maturity (Merah et al., 

1999).  

Protein- and dough-related traits 

There are two major wheat protein fractions, glutenins and gliadins that together 

represent about 80% of the total protein in typical wheat flour.  The ratio of the two protein 

fractions determines the strength of gluten that is formed during hydration and mixing.  The 

gliadin: glutenin ratio is affected by environment and predetermines gluten strength and, 

therefore, the quality of the end-product.  Pasta made from semolina that forms a strong gluten is 

generally more resistant to overcooking.  The glutenins are mostly responsible for the elasticity 

of dough, while extensibility is mainly conferred by the gliadins (Shewry et al., 1995).  Glutenin 

consists of high molecular weight (HMW) and low molecular weight (LMW) subunits whose 

genes reside on chromosomes 1A and 1B (Payne and Lawrence, 1983; Payne et al., 1984; 

D'Ovidio and Masci, 2004).  The HMW glutenin subunits (HMW-GS) are particularly important 

for determining dough elasticity (Anjum et al., 2007).  

Different studies have identified the best glutenin subunit alleles, contributing to the 

increase of durum quality in modern cultivars through the breeding process (Peña et al., 1994; 

Ruiz and Carrillo, 1995).  However, several other studies identified QTL associated with gluten 

strength on other chromosomes as well (Blanco et al., 1998; Elouafi et al., 2000; Patil et al., 

2009; Kumar et al., 2013).  Wheat breeding programs evaluate gluten strength predominantly by 

measuring the sodium dodecylsulphate (SDS)-sedimentation volume as a faster test with fewer 

required materials compared to the gluten index test and the alveograph and mixograph methods 

(Zhang et al., 2008); SDS volume has been shown to correlate with gluten strength and spaghetti 

cooking quality (Dexter et al., 1980; D’Egidio et al., 1990).  
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Yellow pigment content 

Yellow pigment found in the endosperm of durum wheat is responsible for the yellow 

appearance of pasta.  Consumers perceive pasta color as an important quality factor.  Processors 

prefer clear, bright yellow semolina, which generally produces a superior end-product.  Yellow 

pigment in durum wheat endosperm is caused primarily by carotenoids, whose content can be 

affected by genotype and growing environment.  Taghouti et al. (2010) reported that variation 

due to genotype was greater than that due to the environment.  These results are similar to other 

studies reporting the greater influence of genotype than environment on yellow pigment content.  

(Rharrabti et al., 2003; Pozniak et al., 2007).  

The genetics of yellow pigment concentration in durum wheat has been studied 

extensively and is controlled largely by genetic factors with additive effects (Elouafi et al., 2001; 

Singh et al., 2009).  The QTL that mapped to chromosomes 7A and 7B have been shown to 

explain in many cases over 50% of the observed phenotypic variability (Parker et al., 1998; 

Elouafiet al., 2001; Zhang et al., 2008).  Other studies have reported minor QTL for color traits 

on both arms of these chromosomes (Blanco et al., 2011; Roncallo et al., 2012).  Pozniak et al. 

(2007) mapped the genes coding for phytoene synthase (Psy) on the 7 and 5 chromosome groups.  

Phytoene synthase is a transferase enzyme involved in the biosynthesis of carotenoids in the 

biosynthesis pathway.  In their study, the Psy1–1 locus co-segregated with the 7B QTL.  Minor 

QTL for yellow pigment content were essentially detected on all the durum wheat chromosomes, 

indicating the complexity of inheritance of this color trait (Parker et al., 1998; Pozniak et al., 

2007; Zhang et al., 2008; Reimer et al., 2008; Colasuonno et al., 2014).  A high level of 

carotenoid pigments in semolina does not, however, solely guarantee a high yellow color for the 

pasta itself.  The degree of yellowness is additionally affected by the semolina extraction rate 
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(Dexter and Matsuo, 1978; Borrelli et al., 1999), oxidative degradation by the lipoxygenase 

(LOX) enzyme during processing, and processing conditions (Borrelli et al 2003).  Lipoxygenase 

levels in durum wheat are cultivar-related and depend on the environment (Troccoli et al., 2000).  

Research by De Simone et al. (2010) showed that the activity of LOX in semolina was 

determined by the transcript level, presence of number of LOX isoforms, and the amount of 

LOX enzyme. 

Polyphenol oxidase 

Polyphenol oxidase (PPO) catalyzes the oxidation of phenolic compounds into o-

quinones in the presence of molecular oxygen.  The generated o-quinones further react with 

amines and thiol groups or undergo self-polymerization to produce dark/brown colored 

polyphenols (Anderson and Morris, 2003).  Although high PPO activity can be beneficial in a 

variety of products, such as prunes, dark raisins, tea, and coffee, the brown color tends to mask 

the yellow color in semolina end-products during processing when it reaches substantial levels 

(Sissons, 2008).  In mature grain, it was observed that wheat pericarp contained the highest PPO 

activity, with little activity found in wheat white flour, and none observed in the embryo (Marsh 

and Galliard, 1986).  Milling wheat grain at a higher flour extraction rate raises the darkening 

effect in end products (Baik et al., 1994).  Polyphenol oxidase activity varies with genotype, and 

durum wheat cultivars have lower PPO activity than common wheat cultivars (Lamkin et al., 

1981). 

Previous studies reported that PPO activity was mainly controlled by the genes located on 

homologous group 2 chromosomes (Si et al., 2012; Zhang et al., 2005). Major QTL for PPO 

activity were detected on chromosome arm 2AL between the markers Ppo-A1 and 
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RAC875_c9845_762 1.4 cM apart. They explained 48.6–58.4 % of the phenotypic variance and 

were identified using the wheat 90 K iSelect array (Zhai et al., 2016). 

Pasta Cooking-related Traits 

 Cooked quality for pasta is determined by its cooked firmness, cooking loss, and cooked 

weight.  Cooked firmness determines the chewing characteristics of pasta, which should be firm 

to the bite (al dente).  Cooking loss is the percent solids lost to the cooking water.   Cooked 

weight measures the water-absorbing capacity of the pasta during cooking.  Durum wheat is 

mainly used for pasta; the cultivars that meet the requirements of high-quality pasta products 

receive premium prices in the global market.  Research has shown a significant positive 

correlation between cooking quality and protein quantity and quality (Dexter and Matsou, 1980; 

Sissons et al., 2005).  Generally, high-protein semolina with strong gluten produces pasta with 

better cooking parameters and tolerance to overcooking as compared to low-protein and weak-

gluten semolina.  QTL affecting pasta firmness and cooking loss were detected on chromosomes 

5A and 7B overlapping with QTL for grain protein content and wet gluten content (Zhang et al., 

2008). 

Genome-wide Association Study (GWAS) vs. Bi-parental QTL Mapping 

Genome-wide association study (GWAS), or association mapping (AM), is an alternative 

approach to traditional bi-parental QTL mapping or linkage mapping (LM).  It enables the 

identification and selection of chromosome regions harboring QTL responsible for phenotypic 

variation (Tuberosa and Salvi, 2006; Collins et al., 2008; Myles et al., 2009).  Although both 

approaches use recombination’s ability to break up the genome into fragments that can be 

correlated with phenotypic variation, AM has advantages over traditional bi-parental QTL 

mapping.  These include: (1) increased mapping resolution, (2) reduced research time, and (3) 
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the ability to detect greater allele number (Yu and Buckler, 2006).  Greater mapping resolution is 

achieved through many rounds of unrelated genotypes in a natural experiment.  Reduced 

research time is achieved by eliminating the step of developing a bi-parental population.  

Association mapping studies detect statistical associations between genotypic and phenotypic 

data in samples of unrelated individuals (Zondervan and Cardon, 2004). The ability to detect 

greater allele numbers also comes from the nature of the population used in AM.  Non-random 

mating has generated complex patterns of population structure and relatedness in crops and wild 

plants (Flint-Garcia et al., 2005; Nordborg et al., 2005).  To avoid false-positive associations 

(Type I errors), it is important to account for population structure and relatedness with kinship 

and Q matrices in AM studies.   

The results of AM experiments are valuable for marker-assisted breeding programs as 

they allow for identification of the desirable allelic variants at the major loci controlling the 

target traits (Heffner et al., 2009).  Also, AM is a powerful approach for assessing genetic 

diversity in the breeding program.  This information about the genetic diversity and population 

structure in elite breeding material is necessary for crop improvement (Inghelandt et al., 2010).  

Association mapping enables breeders to assess the allelic combinations selected over 

generations, providing genetic haplotypes for future crop improvement through MAS (Kishore et 

al., 2012).  

Marker-assisted selection (MAS) in Durum Wheat 

To increase breeding progress, some breeding programs are employing larger population 

sizes and using double haploids, which add to the cost of line development.  To improve the 

selection for quantitative traits, breeders need to find efficient tools and strategies to reduce the 

cost.  Marker-assisted selection, also known as marker-assisted breeding (MAB), provides an 
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opportunity for wheat breeders to introgress/pyramid genes of interest into breeding lines and to 

identify QTL in germplasm to be used as parents.  Marker-assisted selection can be more cost-

effective and precise than extensive phenotyping to incorporate donor genes for traits: (1) that 

are expensive or time-consuming to measure, (2) whose expression is environmental or 

developmental dependent, (3) require backcross breeding for recessive alleles, or (4) require 

pyramiding for desirable traits (Xu and Crouch, 2008).  Marker-assisted selection also offers an 

opportunity for selection in early generations, thus improving the selection response.  Previous 

and on-going work show that markers can be effectively used for genetic assessment and MAB 

in many crops, including durum wheat (Liu et al., 2008; Haeberle et al., 2009; Ruan et al., 2012; 

Kumar et al., 2013; AbuHammad et al., 2016; ).  Gene-based high-throughput genotyping results 

in more effective genetic mapping/genome analysis and opens new opportunities for its 

integration in wheat breeding programs worldwide.  High-density SNP detection platforms have 

been developed for wheat with the ability to detect several thousand SNP and are showing 

promise as a tool for genome-wide association studies and genomic selection strategies (Chao et 

al., 2010; Paux et al., 2010). 

Unbalanced Dataset for QTL Detection Using GWAS 

The collection of phenotypic data requires extensive effort and resources. Breeding 

programs collect large amounts of phenotypic data for selection purposes from their advanced 

breeding lines each year.  However, the number of such advanced breeding lines tested each year 

is relatively small, and some are replaced by other breeding lines, resulting in an unbalanced 

dataset for advanced breeding lines developed over time.  If this historic unbalanced data set 

could be combined with the more affordable marker genotyping, the results could be used for 

genome-wide association studies (GWAS), saving significant resources and providing useful 
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information about marker trait association within individual breeding programs. Applying QTL 

mapping within breeding program activities would greatly advance the utility of QTL detection; 

the marker–QTL associations detected would be immediately useful for MAS. 

Only a limited number of studies have been done comparing the efficacy of unbalanced 

datasets for QTL detection using GWAS. Simulation studies by Wang et al. (2012) estimated the 

optimum number of breeding lines to be greater than 384 for accurately predicting major and 

minor QTL using an unbalanced dataset.     
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CHAPTER 2. GENETIC DIVERSITY OF DURUM  

 

Abstract 

 

Genetic diversity studies in breeding programs are important to identify parental lines for 

hybridization and introgression of desirable alleles into elite germplasm.  Single nucleotide 

polymorphism (SNP) markers are considered effective in detecting genetic diversity in crop 

plants.  In the present study, genetic diversity and genetic structure were investigated using 283 

genotypes from the durum wheat breeding program at North Dakota State University (NDSU), 

using Illumina’s Infinium 90K SNP assay.  The genetic diversity analysis indicated that the 

population was structured according to its breeding history.  The four major principal 

components (PCs) accounting for most of the genetic variation were identified with 3,110 SNP 

markers.  Genetic analysis using 1,308 SNP markers with STRUCTURE also divided the 

genotypes into four major clusters.  The maximum-likelihood tree analysis placed the genotypes 

into clusters and sub-clusters similar to those observed with the PC and STRUCTURE analyses.  

Genetic diversity analysis (HT = 0.334) showed adequate levels of genetic variation.  Genetic 

variation within clusters (HS = 0.249) was shown to be greater than among clusters (DST = 

0.085).  The results from this study could be useful for durum wheat breeding programs to assess 

the genetic diversity of their breeding materials.  This will help in breeding efforts to broaden the 

genetic base and select lines for crossing as well as for genetic and genomic studies to facilitate 

the combination of desirable alleles. 

Introduction 

 

Wheat breeding programs around the world are working to improve grain yield as well as 

quality, disease resistance, and agronomic performance.  Knowledge of the genetic diversity 

within a germplasm collection can aid the selection of parents for crossing, for establishing 
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heterotic groups and can have a significant impact on the improvement of crops (Abdellatifa and 

AbouZeib, 2011).  Assessing the extent and nature of genetic variation in durum wheat (Triticum 

turgidum L. var. durum Desf.) is also important to breeding and genetic resource conservation 

programs.  

Molecular markers are widely used in wheat (Triticum aestivum L.) breeding programs to 

assess the genetic diversity available to the breeder (Barbosa-Neto et al., 1996; Das and Misra, 

2010; Fu et al., 2006).  Single nucleotide polymorphisms (SNPs) are the most abundant type of 

molecular markers, located every 100-300 bp in plants (Edwards et al., 2007).  Recent 

developments in next-generation sequencing technology have significantly facilitated the 

identification of SNPs in wheat.  Single nucleotide polymorphism markers are especially 

effective in detecting genetic diversity because of the large number of loci that are tagged (Ren et 

al., 2013).  Molecular-marker profiles account for the effects from selection and genetic drift that 

occur over breeding cycles, making it possible to portray the relationship among genotypes at a 

very accurate level (Varshney et al., 2005).  

North American hexaploid and tetraploid wheat breeding germplasm was developed from 

a relatively narrow genetic background (Royo et al., 2009; Charmet, 2011).  Due to modern 

breeding effects based on the strict industrial quality standards for durum wheat, genetic 

diversity in wheat has been reduced (DeVita et al., 2007; Maccaferri et al., 2005).  Haudry et al. 

(2007) reported that durum wheat elite germplasm has the lowest diversity among cultivated 

wheat (π = 0.0004 × 10−3).  This narrow genetic diversity is a problem in breeding for adaptation 

to biotic stresses, such as diseases, and abiotic stresses, such as drought or salt tolerance 

(Autrique et al., 1996).   
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Over 67% of durum wheat hectares in the United States are located in North Dakota, and 

about 32% in Montana.  Over 80% of hectares in North Dakota, Montana, and South Dakota are 

planted with durum wheat cultivars developed at NDSU.   Therefore, assessing the genetic 

diversity and genetic structure in the current breeding program at NDSU will aid in better 

understanding the breeding history and dynamics within the breeding program.  The information 

gained will also help to determine new selection strategies for germplasm/cultivar development. 

Materials and Methods 

Plant material 

The present study used a collection of 283 NDSU durum wheat cultivars and inbred lines 

(F5:9) tested in the Uniform Regional Durum Nursery (URDN) from 1997 to 2014. All advanced 

(F4:6 and higher generations) genotypes in the breeding program were evaluated annually at 

single or multiple locations in various types of trials. Thirty-two of the most advanced elite 

experimental lines and cultivars were selected and extensively evaluated annually in URDN 

trials at multiple locations for agronomic, quality, and disease-resistance traits to select the most 

promising lines as future cultivars or parental lines for crossing.   

Genomic DNA extraction and genotyping 

Four seeds from each genotype were planted into potting mix in the greenhouse in the fall 

of 2014.  Three young leaves from each genotype were harvested and sent to the USDA-ARS 

Cereal Crops Genotyping Laboratory in Fargo, North Dakota, for DNA isolation and genotyping.  

The extracted DNA samples were genotyped with the Illumina iSelect BeadChip platform 

containing 90,000 SNPs using the Illumina Infinium Assay protocol (Wang et al., 2014).  The 

genotypes were called using the diploid version of Genome Studio software (Wang et al., 2014).  

The default settings of FastPHASE 1.3 software were used to impute missing loci for the dataset 
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using the “likelihood”-based imputation (Scheet and Stephens, 2006).  The heterozygotes were 

considered missing data.  A total of 8,082 SNP markers were polymorphic.   

Data analysis 

The population structure was determined using a models-based approach as 

implemented in the software STRUCTURE (Pritchard et al., 2000) with burnin/iteration 

combinations (50,000/20,000) and population (K) size 2 to 10 after MAF ≥ 0.5 and LD = 0.01 in 

an admixture model.  Out of a total of 8,082 SNP markers, the total number of SNP markers used 

was 1,308.  To ensure consistent results, 10 independent runs were conducted.  The delta k 

approach of Evanno et al. (2005) was used to determine the uppermost hierarchical level of 

structure.  FST, a measure of population differentiation, was calculated in STRUCTURE using the 

estimated sub-populations.  The population structure was also determined using principal 

component analysis (PCA) with JMP Genomics 6.0 Software for all 8,082 SNP markers with 

MAF ≥ 5%, resulting in 3,110 SNP markers.  After MAF ≥ 0.5 and LD = 0.01 a total of 1,308 

markers were used for cluster analysis. Cluster analysis was conducted via the maximum-

likelihood tree method using SNPhylo software followed by bootstrap analysis with 1,000 

permutations.  The tree was displayed with FigTree v1.4.3 software (Fig. 2-1).  

Genetic diversity was estimated with the total diversity (HT) using POGENE version 1.32 

averaging two iteration of 500 random SNP markers (Nei, 1973; Yeh and Bolyle, 1997).  The 

coefficient of genetic differentiation [the proportion of total variation distributed between 

clusters (GST)] was calculated as DST/HT, where DST is the genetic diversity between clusters 

calculated as HT-HS, where HS is the mean genetic diversity within clusters.  Genetic distances 

between clusters were calculated according to Nei’s genetic distance (Nei, 1972). 
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Results and Discussion 

During the domestication period, about 84% of the diversity in durum wheat was lost 

(Baloch et al., 2017).  To meet the needs of farmers, millers, producers, consumers, and 

exporters, very strict requirements for durum wheat cultivars have been applied, leading to a 

narrow germplasm with these fixed desirable characteristics.  Breeder-adapted germplasm 

collections generally are composed of high-yielding, disease-resistant, and high-quality cultivars 

and advanced lines that are intercrossed in the search for new gene combinations, leading to 

improved durum wheat cultivars.  However, narrow genetic diversity in the elite germplasm may 

jeopardize the continued ability to improve crops.  

Knowledge of genetic diversity and population structure is important for understanding 

the extent of genetic variability in plant breeding programs.  Comprehensive knowledge about 

genetic diversity within breeding programs can remarkably influence the maintenance and usage 

of durum germplasm and facilitate breeding methods and diversification approaches.  The 

genetic diversity can now easily be studied using molecular markers.  Third-generation markers 

provide high resolution, high frequency, cost efficiency, and are a robust alternative to other 

types of markers. 

In this study, a summary of genetic diversity within the NDSU durum wheat breeding 

program was obtained using a panel of 283 cultivars and advanced breeding lines. Cluster 

analysis using the maximum-likelihood method divided the 283 genotypes into two clusters.  The 

small cluster (I – worldwide parent collection) consisted of the European and Tunisian lines, 

while the large cluster (II – core collection) consisted of the rest of the cultivars and genotypes 

(Fig. 2-1).  Cluster II was further divided into six smaller sub-clusters based on the shared nodes 

supported by bootstrap values (Fig. 2-1).   
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Figure 2-1. Rooted maximum-likelihood tree. Two clusters were identified as I and II. Six sub-
clusters were identified in cluster II, designated as II.1, II.2, II.3, II.4, II.5, and II.6, according to 
the breeding purpose/phenotypic performance. Red, purple, green, and blue colors correspond to 
cluster colors identified with PCA and STRUCTURE analysis.  

 

Cultivars developed and released from 1956 to 1980 tend to cluster together, composing 

sub cluster II.1, due to their narrow genetic background (Fig. 2-1).   Sub-cluster II.1 includes 

‘Botno’ (1973), ‘Rugby’ (1975), and ‘Ward’ (1974) developed from multiple crosses, all of 

which included ‘Langdon’ and ‘Wells’ as parents (Quick et al., 1974; Quick et al., 1974-2; Quick 

et al., 1975).  These cultivars are in a cluster of genotypes in the likelihood tree that includes 

‘Mindum’, which was one of the parents of ‘Langdon’ and a leading cultivar from 1920 to 1940 

(Sibbit and Harris, 1948).  Until about 1956, the main breeding goals were to develop durum 

Quality, yield 

II.2 Medium height, strong gluten 

II.5 
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cultivars resistant to stem rust.  Starting in 1956, the semi-dwarf genes were introduced into 

North America, resulting in ‘Cando’ (1975), ‘Calvin’ (1978), ‘Lloyd’ (1983), and ‘Plaza’ (1999) 

(Quick et al., 1976; Quick et al., 1979; Cantrell et al., 1984; Elias et al., 2001).  Semi-dwarf 

genotypes were extensively intercrossed with existing germplasm, resulting in clusters that were 

not clearly defined.  The yields of semi-dwarf cultivars were not as high as expected, so in the 

1970s several high-yielding, medium-height cultivars were released, including ‘Rollette’ (1971), 

‘Ward’ (1972), ‘Rugby’ (1973), ‘Crosby’ (1973), and ‘Botno’ (1973) (Quick et al., 1974a, 

1974b, 1975).  Concurrently, a shift to develop stronger gluten cultivars started in North 

America.  One of the Italian strong-gluten cultivars, ‘Cappelli’, was used to introduce genes to 

the North American genepool (Quick et al., 1980).  ‘Edmore’ (1976) was the first strong-gluten 

cultivar released by NDSU, followed by ‘Vic’ (1979), ‘Monroe’ (1985), and ‘Renville’ (1988) 

(Fig. 2-1).  Sub-cluster II.2 represents the beginning of the development of medium-height lines 

with strong gluten.  Bootstrapping provides assessments of ‘confidence” for each cluster and 

sub-cluster observed in a likelihood tree.  High values (expressed in %) of bootstraps among 

clusters in the maximum-likelihood tree determine clear differentiation between clusters and sub-

clusters.  For example, the branching between the large cluster (II-core collection) and small 

cluster (I – worldwide parents collection), which consists of the European and Tunisian lines, has 

100% bootstrap support; in other words, the pattern was observed 100% of the time (Fig. 2-1).  

Bootstrap values among sub-clusters are high as well, and differentiation of the genotypes among 

them is determined (Fig. 2-1).  

Although some germplasm was introduced from CYMMIT and Europe, most of the 

cultivars that have been developed by the NDSU breeding program have over 95% North 

American germplasm in their background (personal communication with Dr. Elias).  
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Four clusters were defined in PCA (Fig. 2-2).   

 

Figure 2-2. Estimate of the number of clusters according to PCA. The red cluster corresponds to 
cluster I in the maximum-likelihood tree and in STRUCTURE. The green cluster corresponds to 
the green sub-cluster in the maximum-likelihood tree and in STRUCTURE. The blue cluster 
corresponds to the blue sub-cluster in the maximum-likelihood tree and in STRUCTURE. 

 

Four clusters were used from STRUCTURE at K=4 as due to the observed distribution of 

the clusters with a minimum admixture in each. In both the STRUCTURE analysis and PCA, 

one unique cluster included the lines that were developed and evaluated in 2002, 2003, and 2004, 

where Sumai-3, a spring wheat cultivar known for its resistance to Fusarium head blight (FHB) 

caused by Fusarium graminearum Schwabe (telomorph Gibberella zea (Schwein.) Petch., was 

used (the green color in the STRUCTURE, PCA, and likelihood-tree analyses) (Figs. 2-2 and 2-

3).  Another cluster evident in both the STRUCTURE analysis and PCA includes genotypes that 

have ‘Belzer’, ‘Divide’, and ‘Strongfield’ cultivars in their pedigrees (the blue color in the 

STRUCTURE, PCA, and likelihood-tree analyses). ‘Belzer’, ‘Strongfield’ and ‘Divide’ have 

very high-quality characteristics.  Therefore, progeny from the multiple crosses with those 

cultivars form a unique cluster (Figs. 2-2 and 2-3).  The small cluster (the red color in the 
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STRUCTURE, PCA, and likelihood-tree analyses) in the STRUCTURE analysis and PCA 

consisted of the European and Tunisian lines.  The largest cluster was purple in the 

STRUCTURE analysis and PCA and included the core collection and a large admixture due to 

extensive interbreeding within the program (the purple color in the STRUCTURE, PCA, and 

likelihood-tree analyses).  

The four durum wheat clusters showed a total genetic diversity (HT) ranging from 0.156 

(the blue cluster, where Sumai-3 was introduced for FHB resistance) to 0.348 (the red cluster 

that included the European and Tunisian lines) (Table 2-1).  The relatively low value for genetic 

diversity among all genotypes (HT = 0.334) and the low value for genetic diversity among the 

five clusters (DST = 0.085) resulted in a genetic differentiation value (GST) of 0.254, indicating 

that genetic variation was relatively low between clusters (25% of the variability), while most 

diversity lies within the clusters (75%).  Nei’s genetic distance indicates a larger distance 

between cluster II (red) and the other clusters, which corresponds to that found in the maximum-

likelihood tree (Table 2-2).  

Table 2-1. Genetic diversity of the four clusters defined with STRUCTURE analysis and PCA  
 Genotypes HT HS DST GST 
Total 283 0.334 0.249 0.085 0.254 
Cluster I (red) 11 0.348    
Cluster II (green) 23 0.156    
Cluster III (blue) 25 0.247    
Cluster IV (purple) 224 0.246    

Total genetic diversity (HT), genetic diversity within clusters (HS), genetic diversity between 
clusters (DST), and coefficient of genetic differentiation (GST) calculated from SNP markers data 
according to the STRUCTURE analysis (A-1 Table). 
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Table 2-2. Genetic distances (Nei, 1972) between the clusters defined by STRUCTURE analysis 
Clusters I (red) II (green) III (blue) 

II (green) 0.284 ***  

III (blue) 0.228 0.119 *** 

IV (purple) 0.206 0.0.54 0.060 

‘Cluster II’ (red color) represents the worldwide parents collection; ‘cluster IV’ (green color) 
represents crosses where Sumai-3 was used; and ‘Cluster III’ (blue color) represents the 
collection of crosses involving ‘Divide’, ‘Belzer’, and ‘Strongfield’ for quality purposes.  

 

Therefore, due to the narrow genetic base, the structure defined using the maximum-

likelihood tree is not clear-cut, except for a differentiation between the North American core 

collection germplasm and the Tunisian/European lines (the worldwide parents collection), which 

clustered together.  

The two major clusters defined with the maximum-likelihood tree are in accordance with 

the delta K obtained using STRUCTURE analysis, which shows that the most divergent 

STUCTURE groups are defined at k=2 (Evanno et al., 2005).  As more subpopulations (K) are 

applied to the STRUCUTRE analysis, the more clusters coincide with clusters observed in the 

maximum-likelihood tree, where clustering is based on a close relationship of the genotypes.  

However, each population defined with STRUCTURE includes a large percentage of admixture, 

suggesting the interrelatedness of the breeding material within the program.  
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Figure 2-3. Analysis of the genetic structure of the germplasm collection. Each individual is 
represented by a color bar, with the length proportional to the estimated membership in each of 
the four clusters. ‘Cluster 1’ (red color) represents the worldwide parents collection; ‘Cluster 2’ 
(green color) represents crosses where Sumai-3 was used; ‘Cluster 3’ (blue color) represents the 
collection of crosses involving ‘Divide’, ‘Belzer’, and ‘Strongfield’ for quality purposes; and 
‘Cluster 4’ (purple color) represents the core durum wheat germplasm collection.  

 

The durum breeding program at NDSU is in a unique position in that it develops most of 

the cultivars grown in the Midwest, accounting for the majority of durum wheat production in 

the United States.  To date, most of the studies on genetic diversity in durum wheat and other 

crops were conducted with landraces and small samples of modern durum wheat cultivars from 

different breeding programs (Ruiz et al., 2012; Laido et al., 2013; Maccaferri et al., 2003; 

Soriano et al., 2016).  Most of these studies used AFLP, SSR, and DArT markers to conduct their 

research.  The value estimated for the genetic diversity of the NDSU breeding collection (0.334) 

was lower than the values reported by previous studies involving durum wheat landrace and 

modern cultivar collections, which had mean values between 0.48 to 0.68 (Teklu et al., 2006; 

Altintas et al., 2007; Henkrar et al., 2016; Soriano et al 2016).  This may be due to the size of and 

differences within the collections as well as the marker types used.  For example, Soriano et al. 

(2016) reported genetic diversity among a set of 30 modern cultivars from Spain, Italy, France, 

and the United States to be 0.48 using SSR markers.  Similar to this study’s results, Ruis et al. 

(2012) reported a genetic diversity of 0.33 using SSR and DArT markers.  These findings 
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suggest that within specific breeding programs, genetic diversity is narrower than within the 

larger landraces collection due to the use of adapted genetic material for the region of breeding.  

Conclusion 

The current study aimed to understand the genetic structure of a collection of durum 

wheat genotypes and the relationship between them.  Methodologies used to determine the 

structure proved useful for the purposes of the study.  Based on the data from 3,110 SNP 

markers, PCA assigned all genotypes into four clusters determined by genetic relatedness.  

Similar clustering was observed with STRUCTURE analysis at K=4 using 1,308 SNP markers.  

In both analysis, four clusters were identified and defined as: (1) the core collection, (2) the 

worldwide parents collection, (3) sumai-3 crosses, and (4) quality clusters.  The rooted 

maximum-likelihood tree based on 1,308 SNP markers coincided in essence with the clusters 

obtained by PCA and STRUCTURE analysis.  The maximum-likelihood tree and STRUCTURE 

software were helpful in differentiating genotypes based on the release period of varieties and 

breeding purposes.  Genetic diversity analysis (HT = 0.334) indicates the availability of adequate 

genetic diversity in the durum wheat breeding collection despite rigorous selection pressure to 

meet strict industry and market requirements.  Twenty-five percent of differentiation among 

clusters exists (GST).  These results can be helpful in accelerating wheat improvements by 

addressing the patterns of genetic variation within durum wheat so that breeders can maximize 

the level of variation present among clusters and sub-clusters by crossing cultivars with greater 

genetic distance. To increase genetic diversity within breeding programs, new germplasm from 

outside the region, such as from breeding programs in Italy, Spain, France, and North Africa, can 

be considered for crossing.  It is always important, however, to maintain the beneficial quality 

alleles the breeding program built over the years.    
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CHAPTER 3. ASSOCIATION MAPPING FOR AGRONOMIC AND QUALITY TRAITS 

 
Abstract 

Developing new durum wheat [(Triticum turgidum L. var. durum (Desf.)] cultivars with 

superior agronomic and quality characteristics is a key objective of the North Dakota State 

University (NDSU) durum wheat breeding program.  The quantitative nature of important target 

traits, combined with environmental effects, makes it difficult to bring the desirable 

improvement in durum wheat to meet the expectations of all the stakeholders involved in the 

durum wheat industry.  Genetic studies of important durum traits can facilitate cultivar 

development using genomic tools.  With an objective to identify molecular markers for marker-

assisted breeding (MAB), the present study attempted to identify marker-trait associations for six 

agronomic and 29 quality traits using a genome-wide association study (GWAS) mapping 

approach.  The association mapping panel consisted of 243 cultivars and advanced durum wheat 

breeding lines developed during the last 20 years.  The lines were genotyped using Illumina’s 

90K Infinium SNP assay; a total of 4,196 polymorphic markers were used for GWAS.  The study 

used two types of phenotypic datasets, a historic unbalanced dataset belonging to a total of 80 

environments collected over a period of 16 years and a balanced dataset collected from two 

environments, to identify the applicability of historic unbalanced phenotypic data for GWAS 

analysis. A total of 292 QTL were identified for agronomic and quality traits, with 10 QTL 

showing major effects (R2 >15%).  Over 45% of QTL for agronomic traits were present in both 

the unbalanced and balanced datasets, with about 50% of those present in both environments in 

the balanced dataset.  Similarly, for quality traits measured in both datasets, more than 50% of 

the QTL were identified in both datasets.  QTL identified in only one of the datasets could be 

explained by low heritable traits, which are largely influenced by the environment.  Genome-
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wide association mapping studies identified several candidate markers for use in marker-assisted 

selection (MAS) for plant height, gluten strength, distribution of small kernels, polyphenol 

oxidase (PPO) activity, and grain yield.  The molecular markers associated with the important 

traits could be extremely useful in expediting the process of developing improved durum wheat 

cultivars. 

Introduction 

 
Durum wheat is one of the most important crops in the world.  Annual worldwide durum 

wheat production is estimated to be around 36 million tons, with approximately, 2.5 million tons 

produced in the United States (NASS, 2016).  North Dakota is the largest durum-producing state 

in the country.  It accounts for more than 50% of the total U.S. production, which is worth more 

than $300 million per year (NASS 2016).  The market price of durum wheat is generally higher 

compared to other wheat classes, which makes durum wheat attractive for growers; however, a 

number of abiotic and biotic constraints present a challenge for durum production.  Apart from 

grain yield and disease resistance, quality is a strong criterion of durum wheat variety selection.  

Grain quality parameters start with visual appearance, test weight (TWT), 1000-kernel weight 

(TKW), vitreousness (VIT), weather damage (falling number), and protein quantity and quality.  

Durum wheat is the hardest of all wheats (Miller et al., 1982).  During milling, durum wheat 

endosperm is ground into coarse particles called semolina, which is ideal for making pasta and 

couscous.  Some of the important semolina quality parameters include ash content, color, and 

particle-size distribution.  One of the most important dough quality parameters is gluten strength.  

Gluten strength can affect such pasta characteristics as tolerance to overcooking, reduced 

stickiness, and minimal loss of solids during cooking.  
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Phenotypic evaluation for all important quality traits in not feasible in early generations 

due to the large number of lines and limited resources in most breeding programs.  Moreover, the 

availability of grains per line is limited in early generations.  Marker-assisted selection provides 

an opportunity for breeders to identify superior lines in early generations, thus saving significant 

resources and speeding up the process of cultivar development.  Marker-assisted selection can 

benefit traditional breeding because: 1) it can be applied earlier in the life cycle of the plant, 2) it 

can be cost effective compared with conventional trait evaluation procedures, and 3) it can aid in 

selecting genotypes for traits that are difficult to select based on phenotype.  However, the first 

requirement for MAS is to know the genetics of the target trait and identify associated markers.  

Moreover, the benefits of MAS can be best realized when the markers are tightly linked to major 

QTL that explain high phenotypic variation for the trait under consideration (Nakaya and Isobe, 

2012).  

Many important traits are influenced by multiple QTL, their interaction, the environment, 

and the interaction between QTL and environment.  For dissecting these complex traits, two 

genetic tools are most commonly used: linkage analysis (QTL mapping) and association 

mapping (AM).  Both approaches use phenotypic and genotypic data to identify molecular 

markers (QTL) linked to traits of interest for potential use in MAS.  Compared to the traditional 

QTL mapping approach, AM uses a diverse set of germplasm without the need to develop a bi-

parental mapping population and provides a higher genetic resolution than bi-parental 

populations.  To date, AM has been carried out in many crops to identify QTL of interest 

(Tadesse et al., 2015; Muqaddasi et al., 2017).  

Although a large number of QTL have been identified in many crops, the majority have 

not been used in breeding programs (Bernardo, 2008).  Since the beneficial QTL allele can 
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already be fixed in the breeding programs, the marker does not have predictive value in the 

breeding germplasm and, consequently, cannot very useful.  Therefore, detecting QTL using 

breeding lines would greatly improve the usefulness of QTL detection for MAS.  

During the process of developing germplasm and cultivars in a breeding program, a large 

amount of phenotypic data is routinely collected for selected breeding lines in advanced 

generations.  Typically, none of these data is used to gain a better understanding of the 

underlying genetics of traits.  With relatively cheap genotyping techniques, the AM approach for 

identifying QTL could be even more cost-effective if a large amount of phenotypic data routinely 

collected by breeding programs could be used.  However, each year, only a small number of 

advanced breeding lines are evaluated.  Moreover, a few of those are replaced with new lines 

over the next few years, resulting in data from a large collection of advanced breeding lines 

comprised of genotypes that are evaluated in different years and locations, generating 

unbalanced data.  This unbalanced data poses a serious challenge for its use in genomic studies.  

The comparison of unbalanced and balanced data results will aid in examining the utility of an 

unbalanced dataset for the genetic dissection of important traits. The objectives of this study 

were to identify: 1) genomic regions associated with agronomic and quality traits, 2) associated 

markers suitable for MAS, and 3) whether historic unbalanced data is suitable for AM analysis 

and QTL identification.  

Materials and Methods 

 

Plant material and field evaluation 

The experimental population consisted of 243 durum wheat cultivars and inbred lines 

(F5:9) entered into the Uniform Regional Durum Nursery (URDN) from 1997 to 2014 (except in 

2010 and 2011 due to severe weather conditions).  These cultivars and inbred lines were chosen 
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based on the phenotypic data available for the agronomic and quality traits routinely collected 

over the years.  The historic unbalanced data was collected on 243 lines from 1997 until 2014.  

Each year, a subset of those lines was evaluated in five locations in North Dakota (Williston, 

Minot, Langdon, Carrington, and Prosper) in a randomized complete block design (RCBD) with 

four replications.  Some of the lines were replaced each year with new inbred lines and evaluated 

in the same manner.  In 2015, a panel of 256 lines was evaluated together in two locations 

(Prosper and Langdon) to collect balanced data for the traits under study.  Genotypes were 

planted in a 16 × 16 lattice design with two replications.  For both datasets, individual plots 

consisted of four, 2 m-long rows spaced 0.3 m apart.  Plots were harvested with a plot combine 

(HEGE 140), and the grain was collected in individual sacks.  The grain was dried to 

approximately 13% moisture content and stored at 16oC until further processing.  Agronomic and 

quality tests were performed in the Durum Wheat/Pasta Processing Laboratory at NDSU. 

Data collection  

Sample preparation  

Post-harvest cleaning for yield evaluation was conducted using the Carter-Day Dockage 

Tester (Simon-Carter-Day Company, Minneapolis, Minnesota) configured with a number 25 

riddle and a number 2 top sieve and number 2 bottom sieve. 

Before all other tests were conducted and after yield was recorded, samples were cleaned 

again using the Carter-Day Dockage Tester configured with a number 25 riddle, a number 8 top 

sieve, and a number 2 bottom sieve. 

Subsamples from the total amount of seed available were taken and ground into whole-

wheat flour using a Udy Cyclone Mill (UDY Corporation., Boulder, Colorado) fitted with a 60-

mesh sieve and stored in plastic bags at 4°C until tests were performed.  Ash content, protein 
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content, sodium dodecyl sulphate (SDS)-microsedimentation value, falling number, and total 

yellow pigment content tests were performed using the whole-wheat samples.  

Subsamples for milling were taken from the available grain.  Prior to milling, all 

subsamples were tempered in two stages based on grain moisture.  In the first stage, they were 

tempered to 12.5% moisture for at least 72 hours; and in the second stage, they were tempered to 

15% 24 hours before milling.  Durum wheat was milled into semolina using a Quadramat Jr. Mill 

(C.W. Brabender Instruments, Inc., South Hackensack, New Jersey) for the historic unbalanced 

data as well as for the balanced data according to AACC method 26-50.01 (AACC International 

2010) and the NDSU Cereal Sciences Department Lab protocol. Semolina samples were kept at 

4°C until further analysis.   

Phenotypic data was recorded for the agronomic and quality traits discussed in the 

following sections.  

Yield 

Yield data was collected at grain maturity.  Grain yield was determined by harvesting 

each plot with a plot combine (HEGE 140) and collecting the grain in individual sacks. Grain 

was dried in a forced-air dryer to approximately 13% moisture.  The weight of the grain from 

each plot was recorded in grams and then converted to kg ha-1. 

Days to heading 

The number of days to heading was recorded as the number of days from planting until 

the day when 50% of the spikes had completely emerged from 50% of the plants in an individual 

plot. 
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Plant height 

Plant height was estimated as the distance in centimeters from the ground to the tip of the 

spikes, excluding the awns. Plant height was expressed in centimeters (cm). 

Stem lodging 

Stem lodging was evaluated at physiological maturity using a categorical scale from 0 

(all plants in the plot completely upright) to 10 (all plants in the plot completely lodged), 

depending on the deviation of the plants from the vertical position and on the percentage of 

lodged plants per plot.  For example, a score of 5 was recorded when more than 50% of the 

plants in a plot were lodged at an angle of at least 45o from the vertical position. 

Leaf disease 

Foliar leaf disease was evaluated at heading time based on the severity of the lesion area 

from tan spot [caused by Pyrenophora tritici-repentis (Died.) Drechs], Septoria tritici blotch 

(STB) [caused by Mycospharella graminicola (Fückl) J. Schröt. in Cohn], and Septoria nodorum 

blotch (SNB) [caused by Parastagnospora nodorum (Berk.) Castellani & E.G. Germano].  A 

categorical scale from zero (no disease pressure) to 10 (high disease pressure) was used to assess 

the relative percentage of plants affected.  

Test weight, 1000-kernel weight 

Test weight (TWT) was determined according to AACC method 55-10.01 (2010).  

Thousand-kernel weight (TKW) was determined by counting the number of kernels in 10 g of 

clean grain using an electronic seed counter (Seedburo Equipment Company, Chicago, Illinois).  

Kernel size distribution 

Kernel size distribution was performed using a sieve shaker following the NDSU Cereal 

Sciences Department Lab protocol.  Kernels remaining on the top sieve Tyler No.7 (2.92 mm 
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opening) were classified as ‘large’; those that remained on the middle sieve Tyler No. 9 (2.24 

mm opening) were classified as ‘medium’.  Kernels passing through the second sieve were 

classified as ‘small’.  

Vitreousness  

Grain vitreousness was determined by cutting 100 kernels taken at random transversally 

with a farinator (grain splitter) and identifying those not fully vitreous according to the 

appearance of the sectional areas of the endosperm.  

Ash content, moisture content, falling number, and grain protein content  

Approved methods (AACC International, 2010) were used to determine ash content 

(method 08-01.01), moisture content (method 44-15.02), and falling number (method 56-81.03). 

Protein content was determined using an Infratec 1226 Whole Grain Analyzer (FOSS Tecator, 

Höganas, Sweden). 

Semolina extraction 

Semolina extraction was expressed as a percentage weight per weight (w/w) of semolina 

from tempered durum wheat samples. 

Semolina protein 

 Semolina protein content was determined using AACC method 39-25.01 adapted for the 

FOSS Infratec 1241 Grain Analyzer (Foss North America, Eden Prairie, Minnesota). 

Semolina color 

 Semolina color was determined using the Minolta colorimeter CIEL CR410 (Hunter lab 

L, a, b).  Value ‘L’ indicates lightness or brightness, value ‘b’ indicates yellowness, and value ‘a’ 

indicates ‘greenness’. 
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Semolina dough sheet color 

A semolina dough sheet was made using a modified method described by Fu et al. 

(2011).  A total of 30 grams of semolina was hydrated to 38% moisture at 45°C and mixed for 

one minute in a KitchenAid mixer (4.3 L KitchenAid CLASSIC Stand Mixer 5K45SS) at speed 

4.  After mixing, the dough was sheeted twice in a pair of sheeting rolls with a gap of 1 mm.  The 

resulting dough sheet was folded twice and sheeted twice in a pair of sheeting rolls with a gap of 

3 mm without folding.  The smooth dough sheet was transferred to a plastic bag and stored in a 

closed drawer at room temperature.  Color was measured on the dough sheet at intervals of 0.5 

and 24 hours using a Minolta colorimeter CIEL CR410 (Hunter lab L, a, b).   

Total yellow pigment 

Total yellow pigment (TYP) content was determined using the water-saturated n-butanol 

AACC method 14-50.01 (2010) as modified by using 2 g of ground whole meal.  Water-

saturated n-butanol (10 mL) was added to 2 g of whole meal and shaken for two minutes.  After 

resting 30 minutes, the extracts were centrifuged at 12,000 RPM for 10 minutes, and the 

supernatant was carefully transferred to cuvettes.  Absorbance was measured using a 

spectrophotometer (Beckman Coulter DU 720 General Purpose UV/Vis Spectrophotometer) at a 

wavelength of 435.8 nm. Measurements per extracted sample were recorded and values averaged 

and converted to yellow pigment concentration (μg/g) using the extinction coefficient (1.6632) 

for β-carotene (Sims and Lepage, 1968). 

Polyphenol oxidase 

Polyphenol oxidase activity was determined using intact kernels as described by 

Anderson and Morris (2001) using AACC method 22-85.01 (2010).  A 1.5-mL aliquot of 10 mM 

of L-DOPA (L-3,4-dihydroxyphenylalanine) containing 0.02%, v/v Tween-20 as a substrate in a 
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50 mM MOPS [3-(N-morpholino) propane sulfonic acid] buffer with a pH of 6.5 was added to 

five undamaged seeds in a 2-mL microcentrifuge tube.  The tubes were placed on an orbital 

shaker (Glas-Col, Terre Haute, Indiana) and rotated for one hour at room temperature to allow 

the reaction to occur.  Polyphenol oxidase activity was measured as the change in absorbance at 

475 nm using a Beckman Coulter spectrophotometer (Beckman Coulter DU 720 General 

Purpose UV/Vis Spectrophotometer, Fullerton, California).  Each sample was run in duplicate. 

The L-DOPA solution was made fresh daily. 

Sodium dodecyl sulfate (SDS) – micro sedimentation 

The SDS micro-sedimentation test was done using the method described by Dick and 

Quick (1983).  

Mixograph 

Semolina, 10 grams based on 14% moisture, were weighed and water was added based 

on the grain protein content using formula (Y=1.5X + 43.6) as described in AACC method 54-

40A (2000), where Y = amount of water, mL) added to sample and X = protein content at 14% 

mb.  The 10 g bowl mixograph (National Manufacturing, TMCO Division, Lincoln, Nebraska) 

was used to measure the dough mixing strength of semolina.Mixing tolerance was scored using a 

scale of one (weak) to eight (strong). 

Wet gluten and gluten index  

Wet gluten and gluten index were determined with the glutomatic instrument (Perten 

Instruments, Springfield, Illinois) using AACC method 38-12.02 (2010). 

Semolina mixing and extrusion  

 Different approaches for semolina mixing and extrusion were used for the two datasets 

due to the amount of semolina available.  For the historic unbalanced dataset, 1000 g of semolina 
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was hydrated and mixed in a Hobart C-100-T mixer equipped with a pastry knife agitator.  The 

mixer was set on low speed for 10 seconds while distilled water was added, and then on high 

speed for 50 seconds.  The semolina was mixed for an additional two minutes on high speed to 

ensure it reached a complete premix stage.  

Processing was done in a semicommercial-scale pasta extruder (DeMaco, Melbourne, 

Florida) and extruded through an 84-strand 0.043” teflon spaghetti die.  A jacketed extrusion 

tube (23 cm long x 4.4 cm inside diameter) was attached to the pasta extruder to allow a longer 

time for semolina hydration to minimize white specks in the spaghetti.  Actual conditions for 

dough extrusion were a screw rotation speed at 28–29 rpm, a vacuum at 0.8-1.05 kg/cm2, and a 

jacket temperature at 46–48°C.  Room temperature and relative humidity were maintained at 

25oC and 40-45%, respectively.  

For the 2015 balanced dataset, 300 grams of semolina was hydrated and mixed in a 

KitchenAid commercial mixer.  The mixer was set on low speed for 10 seconds while distilled 

water was added and then on high for 50 seconds.  The semolina was mixed for an additional 

two minutes on high to ensure it reached a complete premix stage.  Processing was done using a 

commercial tabletop electric pasta machine (Arcobaleno, Lancaster, PA, model AEX18) and 

extruded through a 35-strand 1.09 mm teflon spaghetti die. 

Spaghetti drying  

Due to the large number of samples evaluated in 2015 and the amount of time needed for 

drying, the drying process was omitted for the 2015 balanced dataset.  Thus, the following 

description of the drying process applies for the historic unbalanced dataset only.  The extruded 

spaghetti was dried in a laboratory pilot-scale dryer (Standard Industries, Fargo, North Dakota) 
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on the low-temperature cycle with a total drying time of 18 hours.  The low-temperature cycle 

typically has an 18-hour total drying time at 40oC (Yue et al., 1999).  

Spaghetti cooking  

Two spaghetti cooking times were used for the two datasets.  In the historic unbalanced 

dataset, dry spaghetti (10 g) was broken into lengths of approximately 5 cm and placed in 300 ml 

of boiling water for 12 minutes. 

However, preliminary research indicated that the optimum cooking time for the fresh 

spaghetti in the 2015 balanced dataset was four minutes.  The optimum cooking time was 

determined using AACC method 66-50 (2000).  Fresh spaghetti (10 g) was cut into lengths of 

approximately 5 cm and placed in 300 ml of boiling water for 4 minutes.  

Cooked weight  

After cooking, samples were rinsed off with distilled water in a Buchner funnel and 

drained.  Spaghetti strips were weighed and reported in grams. 

Cooking loss 

Cooking loss (% weight of solids) was measured by evaporating the cooking water to 

dryness in a forced-air oven at 110oC overnight.  The residue was weighed and reported as 

percentage of the dry spaghetti.  

Cooked spaghetti firmness 

 
Cooked firmness was measured using a plexiglass blade probe attached to a Texture 

Analyzer (Model TA-XT, Texture Technology Corporation, Scarsdale, New York) as described 

by Walsh and Gilles (1971).  Five strands of cooked spaghetti were placed on a plexiglass plate 

and sheared at a 90-degree angle with a plexiglass tooth probe.  A TA-XT2 texture analyzer was 



 

74 
 

used to calculate the area under the curve (g.cm), indicating the amount of work required to shear 

the cooked spaghetti (the CF score).  The average of three CF scores was used to report CF.   

Statistical analysis 
 

The analysis of variance was conducted using the statistical analysis system (SAS) 

computer package version 9.3 (SAS Institute, Inc., 2014).  The unbalanced historic dataset was 

analyzed using a mixed linear model (MLM) with Proc Mixed method III, where genotypes were 

the fixed effects and environments and replicates within environments were the random effects.  

The balanced dataset was analyzed using Proc GLM method III.  Least square (LS) means were 

used for the analyses (Steele and Torrie, 1980).  

The entry means plot-based heritability for all the traits were estimated using the method 

described by Holland et al. (2003).  The variance and covariance parameters were calculated 

using the COVTEST and ASYCOV options of the MIXED procedure (SAS Institute, Inc., 

2011), with environments and genotypes deemed random.  

Trait correlations were calculated and plotted in R 3.0 (R Development Core Team, 

2013) using cor.matrix and corrplot from the corrplot package (Wei and Wei, 2013).  Correlation 

values were considered significantly different from zero at P ≤ 0.05.  

DNA isolation and SNP-marker genotyping and analysis  
 

Four seeds from each genotype were planted into potting mix in the greenhouse in the fall 

of 2014.  Three young leaf tissues from each genotype were harvested and sent to the USDA-

ARS Cereal Crops Genotyping Laboratory in Fargo, North Dakota, for DNA isolation.  The 

extracted DNA samples were genotyped using the Illumina 90K iSelect BeadChip platform, and 

the markers were called using the diploid version of Genome Studio software (Wang et al., 

2014).  FastPHASE 1.3 software with the default settings (Scheet and Stephens, 2006) was used 
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to impute missing loci data using a “likelihood”-based imputation.  The heterozygotes were 

considered missing.  Only markers having a minor allele frequency (MAF) > 0.01 were 

considered for further analysis. 

Linkage disequilibrium for all pairwise comparisons between intrachromosomal SNP was 

computed and the genome-wide LD decay was estimated using JMP Genomics 8.1 software 

(SAS Institute, 2015).  The LD was computed as the squared correlation coefficient (R2) for each 

of the marker pairs.  Genome-wide LD decay was estimated by plotting LD estimates (R2) from 

all 14 chromosomes against the corresponding pairwise genetic distances (cM).  Smoothing 

spline Fit (lambda = 338064.8) was applied to the estimate of LD decay. 

Association mapping (AM) analysis  

Association mapping analysis was done using JMP Genomics 8.1 software (SAS 

Institute, 2015; Zhao et al., 2007).  Population structure (Q matrix), which can be defined as the 

differential relatedness among genotypes, was controlled with principal component analysis 

(PCA).  The identity-by-state (IBS) matrix (K matrix) representing the proportion of shared 

alleles for all pairwise comparisons in each population was applied.  Five regression models to 

analyze marker–trait association were generated:  (1) naive, (2) kinship, (3) kinship plus 

population structure (the first two principle components (PCs) collectively explained 11.3% of 

genotype variation), (4) kinship plus population structure (the first three PCs collectively 

explained 15.46% of genotype variation), and (5) the kinship plus population structure (the first 

four PCs collectively explained 19.2% of genotype variation).  The best model was determined 

according to the Bayesian Information Criterion (BIC), where the lowest BIC value is preferred 

(Ghosh et al., 2006; Zhang et al., 2010).  The P-values of the selected models were later adjusted 
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by calculating the corresponding positive false discovery rate (pFDR) (Benjamini and Yekutieli, 

2001).  Marker–trait associations were considered significant at a pFDR ≤ 0.1. 

Stepwise regression was performed on the significant SNPs associated with each trait to 

estimate the combined variation explained by the minimum number of markers that can be used 

for MAS (Mamidi et al., 2014; Gurung et al., 2014).  

Results 

Phenotypic data analyses of agronomic traits 

Among the most important agronomic traits are yield (YLD), days to heading (DTH), 

height (HT), leaf disease (LD), and lodging (LDG).  Some durum wheat quality traits can be 

considered both agronomic- and quality-related.  Agronomic-related traits in this study’s results 

include falling number (FN), test weight (TWT), 1000-kernel weight (TKW), and kernel size 

distribution, which includes the percentages of small kernels (SK), medium kernels (MK), and 

large kernels (LK).  The statistical parameters for the agronomic-related traits are presented in 

Table 3-1.  There were significant differences among genotypes for all the traits, as noted in the 

range. 

Significant and consistent positive correlations for YLD were observed with TWT and 

TKW (Fig. 3-1). Similar correlations were reported by Bhatt (1973) and Dogan (2009).  Test 

weight and TKW are indirect indicators of both YLD and milling quality.  Yield, TWT, and 

TKW were also significantly correlated with kernel distribution.  Yield, TWT, and TKW showed 

a significant positive correlation with LK, and a negative correlation with MK and SK (data not 

shown).   

A consistent positive correlation was observed for plant HT with TWT and TKW, while 

the correlation of HT and YLD were not consistent, suggesting there are many factors that 

contribute to YLD (Richards, 1992).  In the literature, the relationship between kernel size and 
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HT has been well observed and attributed to harvest index (Mohammadi et al., 2012).  Plant HT 

showed a significant positive correlation with the distribution of LK, and a negative correlation 

with the distribution of MK and SK. Height was consistently negatively correlated with LD, and 

positively correlated with LDG.  Taller plants often show lower levels of leaf infection compared 

to dwarf cultivars, which are nearer to inoculum sources (Eyal, 1971; Eyal et al., 1987).  

However, taller plants are more susceptible to lodging under unfavorable weather conditions, 

such as rains and winds.  Reducing plant height and improving culm stiffness are indirect ways 

to improve plant lodging resistance in durum wheat (Keller et al., 1999).  

Table 3-1. Statistical estimation of agronomic traits at each environment/trial. 

Trait and Env.a Mean Std Devb 
Std Err 

Meanc 
CVd Mine Maxk 

Yield, kg/ha       

Prosper 5337.2 757.5 33.5 14.1 2646.2 7084.9 

Langdon 5534.5 629.1 27.8 11.3 4094.8 7335.0 

Mean LP 5436.9 702.9 21.2 12.9 2646.2 7335.0 

Unbalanced combined 3826.0 242.2 15.8 6.3 2873.3 4514.3 

Lodging, 0-9 
      

Prosper 5.0 1.83 0.12 36.3 0.50 9.0 

Langdon 1.3 1.51 0.10 116.3 0.00 8.0 

Mean LP 3.1 1.36 0.09 42.9 0.25 8.5 

Unbalanced combined 1.5 0.79 0.05 50.3 0.00 5.8 

Leaf disease, 0-9 
      

Prosper 6.5 0.93 0.06 14.1 4.0 8.7 

Langdon 4.1 0.80 0.05 19.4 2.0 6.0 

Mean LP 5.3 0.71 0.05 13.2 3.5 7.1 

Unbalanced combined 4.1 0.79 0.05 18.8 1.8 6.3 

Height, cm       

Prosper 93.6 6.3 0.41 6.7 65.0 120.0 

Langdon 93.6 5.6 0.36 5.9 71.5 120.0 

Mean LP 93.6 5.6 0.36 6.0 68.2 120.0 

Unbalanced combined 87.8 4.9 0.32 5.5 70.2 115.9 

Days to heading        

Prosper 55.7 1.18 0.08 2.1 52.0 59.5 

Langdon 64.2 1.40 0.09 2.1 61.0 68.0 

Mean LP 60.0 1.15 0.07 1.9 56.5 63.5 

Unbalanced combined 61.1 1.00 0.07 1.6 57.8 63.5 
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Table 3-1. Statistical estimation of agronomic traits at each environment/trial (continued) 
 
 

aIdentification of the agronomic traits and environment/experiment where it was evaluated: 
‘Prosper’ stands for the balanced dataset grown at Prosper in 2015, ‘Langdon’ stands for the 
balanced dataset grown in Langdon in 2015, ‘Mean LP’ stands for the mean of the Langdon and 
Prosper experiments, and ‘Unbalanced combined’ stands for the unbalanced dataset that was 
combined over time and locations from 1998 until 2014.  b Standard Deviation; c Standard 
Deviation Mean; d Coefficient of Variance (%);  e Minimum observed phenotypic value; and k 
Maximum observed phenotypic value. 

 

Trait and Env.a Mean Std Devb Std Err 

Meanc CVd Mine Maxk 

Falling number, sec 

Prosper 478.0 41.7 2.7 8.7 393.0 608.5 

Langdon 461.8 57.0 3.6 12.5 322.0 606.0 

Mean LP 469.9 42.4 2.7 9.0 370.7 586.2 

Unbalanced combined 411.0 25.1 1.6 6.1 331.5 494.5 

Test weight 
      

Prosper 56.8 1.68 0.11 2.9 50.02 60.6 

Langdon 60.6 0.97 0.06 1.6 56.6 62.6 

Mean LP 58.7 1.19 0.08 2.0 53.5 61.3 

Unbalanced combined 60.2 0.76 0.05 1.2 57.4 62.1 

Thousand-kernel weight       
Prosper 32.89 2.9 0.19 8.9 20.6 39.9 

Langdon 39.7 2.5 0.16 6.3 30.4 45.9 

Mean LP 36.3 2.4 0.16 6.7 26.4 41.6 
Unbalanced combined 38.2 1.9 0.13 5.0 33.0 43.6 

% Large kernels       
Prosper 39.9 12.1 0.79 30.5 3.3 70.4 

Langdon 62.3 9.04 0.58 14.5 26.0 79.7 

Mean LP 51.1 10.6 0.68 22.5 14.6 75.0 

Unbalanced combined 50.3 7.6 0.50 15.2 23.6 69.4 

% Medium kernels       
Prosper 55.1 9.8 0.64 17.8 28.5 77.3 

Langdon 35.4 8.0 0.52 22.6 19.1 68.1 

Mean LP 45.2 8.0 0.52 17.7 26.8 71.6 
Combined 45.9 6.6 0.44 14.4 24.6 68.3 

% Small kernels       
Prosper 4.9 3.1 0.20 62.5 0.98 28.6 

Langdon 2.2 1.2 0.08 55.7 0.47 8.3 

Mean LP 3.5 2.0 0.13 56.5 1.03 18.5 
Unbalanced combined 4.6 1.4 0.09 30.6 0.56 10.3 
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Correlations among agronomic-related traits showed that most agronomic traits are 

associated with each other based on phenotypic data analysis (Fig. 3-1).  The ANOVA showed 

significant differences among genotypes for agronomic traits.  Environment had a significant 

effect on most of the traits as indicated by a significant genotype by environment interaction 

(A1-A3 Tables).  

Phenotypic data analysis of quality traits 

Quality traits are subdivided into three categories: grain quality parameters, flour- and 

semolina-related characteristics, and pasta cooking-related traits.  Grain quality parameters 

include such traits as grain protein concentration (WPROT) and kernel vitreousness (VIT).  

Flour- and semolina-related characteristics include milling extraction (total extraction, or TEXT) 

and semolina extraction (SEXT), semolina ash content (SASH), protein- and dough-related traits, 

total yellow pigment content, and the polyphenol oxidase activity.  Pasta cooking-related traits 

are determined by cooked firmness, cooking loss, and cooked weight.  Statistical parameters for 

quality traits are presented in Table 3-2.  There were significant differences among genotypes for 

all the traits as noted in the range. 

Grain quality parameters 

The grain protein (WPROT) correlation with YLD was inconsistent over 

experiments/trials, suggesting dilution of the protein in starch during favorable growing 

conditions (Kibitie and Evans, 1984; Chee et al., 1998; Dogan, 2009; Kumar et al., 2017). Grain 

protein consistently positively correlated with kernel vitreousness (VIT) (Fig, 1).  
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Table 3-2. Statistical estimation of grain quality parameters at each environment/trial. 
 

aIdentification of the agronomic traits and environment/ where it was evaluated: ‘Prosper’ stands 
for the balanced dataset grown at Prosper in 2015, ‘Langdon’ stands for the balanced dataset 
grown in Langdon in 2015, ‘Mean LP’ stands for the mean of the Langdon and Prosper 
experiments, and ‘Unbalanced combined’ stands for the unbalanced dataset that was combined 
over time and locations from 1997 until 2014.  b Standard Deviation; c Standard Deviation Mean; 
d Coefficient of Variance (%);  e Minimum observed phenotypic value; and k Maximum observed 
phenotypic value.  
 

Flour- and semolina-related characteristics 

Statistical parameters for flour- and semolina-related characteristics are presented in 

Table 3-3. There were significant differences among genotypes for these traits.  Environment had 

a significant effect on most of the traits as indicated by the significant genotype by environment 

interaction (Tables A1-A3).  

Total extraction and SEXT had no to low positive correlation with TWT, TKW, and 

kernel size distribution, which was unexpected (Fig. 3-1).  However, SASH was negatively 

correlated with YLD, TWT, and TKW, while positively correlated with WPROT.  This suggests 

a negative effect of SK on both YLD and milling. .   

Total yellow pigment was highly positively correlated with color b† and highly negatively 

correlated with color L†, TWT, and TKW (Fig, 1).  A negative correlation of TYP and color b† 

with TWT and TKW may be due to the effect of carotenoids being diluted in wheat endosperm.  

Trait and Env.a Mean 
Std 

Devb 
Std Err 

Meanc 
CVd Mine Maxk 

Whole wheat protein       
Prosper 14.1 0.50 0.03 3.5 12.9 15.6 

Langdon 15.3 0.46 0.03 3.0 13.8 16.4 

Mean LP 14.7 0.41 0.03 2.7 13.3 15.8 
Unbalanced combined 14.4 0.38 0.02 2.6 13.1 15.4 

Vitreousness       
 

Prosper 70.5 10.2 0.66 14.4 43.0 90.5 

Langdon 83.6 5.5 0.36 6.6 64.5 93.5 

Mean LP 77.1 7.0 0.46 9.1 57.7 92.0 
Unbalanced combined 90.2 4.0 0.26 4.4 62.6 100.0 
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Table 3-3. Statistical estimation of flour and semolina quality characteristics at each 
environment/trial. 

Trait and Env.a Mean 
Std 

Devb 
Std Err 

Meanc 
CVd Mine Maxk 

Total extraction        

Unbalanced combined 70.0 0.76 0.05 1.08 67.9 71.7 

Semolina extraction       

Unbalanced combined 63.9 0.86 0.06 1.35 61.3 66.0 

Sedimentation volume       

Prosper 57.3 7.2 0.47 12.6 24.5 77.0 

Langdon 51.2 7.8 0.51 15.3 22.5 75.0 

Mean LP 54.2 7.0 0.46 13.0 23.5 76.0 

Unbalanced combined 50.9 5.8 0.38 11.4 25.1 67.4 

Gluten index       

Prosper 65.2 17.4 1.13 26.8 0.99 96.6 

Langdon 25.4 16.9 1.10 66.4 0.62 72.0 

Mean LP 45.3 15.8 1.02 34.8 1.04 82.7 

Unbalanced combined 57.0 13.8 0.93 24.2 6.88 92.5 

Wet gluten        

Prosper 29.6 2.4 0.16 8.3 16.2 37.3 

Langdon 37.0 2.3 0.15 6.2 29.5 42.4 

Mean LP 33.3 2.0 0.13 6.2 23.5 39.5 

Unbalanced combined 37.3 1.7 0.12 4.6 32.3 42.0 

Glutork       

Prosper 1.80 0.15 0.01 8.5 1.02 2.1 

Langdon 2.23 0.15 0.01 6.9 1.73 2.6 

Mean LP 2.01 0.13 0.01 6.3 1.41 2.3 

Mixograph       

Combined 6.2 0.76 0.05 12.1 2.4 8.2 

Color L†       

Prosper 76.6 1.09 0.07 1.42 73.1 80.6 

Langdon 74.6 0.77 0.05 1.03 72.5 78.0 

Mean LP 75.6 0.76 0.05 1.01 73.3 79.3 
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Table 3-3. Statistical estimation of flour and semolina quality characteristics at each 
environment/trial (continued). 

Trait and Env..a Mean 
Std 

Devb 

Std Err 

Meanc 
CVd Mine Maxk 

Color a†       
Prosper -2.05 0.53 0.03 0 -3.1 0.23 

Langdon -2.63 0.38 0.02 0 -3.5 -1.59 

Mean LP -2.34 0.40 0.03 0 -3.3 -0.78 

Color b†       
Prosper 31.6 1.77 0.11 5.6 24.9 35.8 

Langdon 30.0 1.83 0.12 6.0 21.7 34.4 

Mean LP 30.8 1.72 0.11 5.5 23.3 34.9 
Total yellow pigment       

Prosper 8.7 0.98 0.06 11.1 6.2 11.1 

Langdon 8.0 0.86 0.06 10.6 5.7 10.1 

Mean LP 8.4 0.89 0.06 10.5 6.2 10.5 

Difference in color L† after 24 h      

Prosper 0.80 0.64 0.04 79.3 -0.42 2.87 

Langdon 2.50 1.28 0.08 51.3 0.02 6.55 

Mean LP 1.65 0.74 0.05 44.9 -0.02 4.16 
Difference in color a† after 24 h      

Prosper -0.14 0.21 0.01 0 -0.83 0.55 

Langdon -0.78 0.22 0.01 0 -1.43 -0.17 

Mean LP -0.46 0.18 0.01 0 -0.98 0.01 
Difference in color b† after 24 h      

Prosper 1.38 0.74 0.05 53.3 -0.67 3.7 

Langdon 2.34 0.95 0.06 40.7 -0.47 5.2 

Mean LP 1.86 0.70 0.05 37.6 0.09 4.4 
Pasta color       
Unbalanced combined 8.9 0.26 0.02 2.8 8.1 9.4 

Polyphenol oxidase activity      
Prosper 0.10 0.127 0.008 124.5 0.03 0.60 
Mean LP 0.11 0.111 0.007 95.2 0.03 0.53 
Mean LP 0.109 0.118 0.008 107.5 0.03 0.53 

aIdentification of the agronomic traits and environment/experiment where it was evaluated: 
‘Prosper’ stands for the balanced dataset grown at Prosper in 2015, ‘Langdon’ stands for the 
balanced dataset grown in Langdon in 2015, ‘Mean LP’ stands for the mean of the Langdon and 
Prosper experiments, and ‘Unbalanced combined’ stands for the unbalanced dataset that was 
combined over time and locations from 1998 until 2014.  b Standard Deviation; c Standard 
Deviation Mean; d Coefficient of Variance (%);  e Minimum observed phenotypic value; k  
Maximum observed phenotypic value.  Columns with either balanced or unbalanced combined 
phenotypic data missing means the trait was evaluated in one of the experiments only.  
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Pasta cooking-related traits 

Statistical parameters for pasta cooking-related traits are presented in Table 3-4.  There 

were significant differences among genotypes for these traits.  Environment had a significant 

effect on most of the traits as indicated by the significant genotype by environment interaction 

(Tables A-2 and A-3).  

Grain protein (WPROT) was consistently positively correlated with VIT, WG, FIRM, 

and GLUT and negatively correlated with CWT and CLOSS (Fig. 3-1).  Gluten strength, 

measured by GI, SDS, and MIXO, was significantly positively correlated with spaghetti firmness 

(FIRM), but neither SDS, MIXO, nor GI had a significant correlation with WPROT, CWT, or 

CLOSS (Fig. 3-1).  These findings suggest that both protein quantity and quality/composition 

play an independent role in the end-use product (Ciaffi et al., 1991; Samaan et al., 2006).  

The FN values of the durum wheat flour were negatively correlated to spaghetti cooking 

loss (CLOSS), indicating that low FN values (associated with high α-amylase activities) tended 

to increase the amount of residue in the spaghetti cooking water (Matsuo et al., 1982; Grant et 

al., 1993).  Overall, the correlation analysis showed that the protein quantity and quality 

characteristics were associated with the cooking properties.  
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Table 3-4. Statistical estimation of cooking-related traits at each environment/trial. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

aIdentification of the agronomic traits and environment/experiment where it was evaluated:  
‘Prosper’ stands for the balanced dataset grown at Prosper in 2015, ‘Langdon’ stands for the 
balanced dataset grown in Langdon in 2015, ‘Mean LP’ stands for the mean of the Langdon and 
Prosper experiments, and ‘Unbalanced combined’ stands for the unbalanced dataset that was 
combined over time and locations from 1998 until 2014.  b Standard Deviation; c Standard 
Deviation Mean; d Coefficient of Variance (%);  e Minimum observed phenotypic value; and k 
Maximum observed phenotypic value.  Columns with either balanced or unbalanced combined 
phenotypic data missing means the trait was evaluated in one of the experiments only.  
 

 

Trait and Env.a Mean Std Devb Std Err 

Meanc CVd Mine Maxk 

Fresh pasta firmness       
Prosper 227.6 19.9 1.29 8.76 167.3 279.4 

Langdon 227.6 14.8 0.96 6.54 163.06 267.0 

Mean LP 229.4 13.7 0.89 5.99 179.6 263.3 

Dried pasta firmness       
Combined 5.9 0.33 0.02 5.5 4.5 6.8 

Fresh pasta cooking loss       

Prosper 4.2 0.29 0.02 7.0 3.3 4.9 

Langdon 3.7 0.29 0.02 7.6 2.9 4.5 

Mean LP 3.9 0.20 0.01 4.9 3.4 4.5 

Dried pasta cooking loss       
Combined 6.7 0.22 0.01 3.2 6.2 7.5 
Fresh pasta cooked 

weight 
      

Prosper 19.5 0.89 0.06 4.5 9.7 20.9 

Langdon 19.4 0.33 0.02 1.6 17.9 20.1 

Mean LP 19.5 0.47 0.03 2.4 14.7 20.3 

Dried pasta cooked 

weight 
      

Combined 30.3 0.33 0.02 1.08 28.5 31.5 

Work to shear       

Prosper 17.6 1.7 0.12 10.1 13.1 22.9 

Langdon 16.8 1.2 0.08 7.2 13.2 19.9 

Mean LP 17.3 1.1 0.07 6.6 14.0 20.5 



 

 

a                                                                                                   b 

 

Figure 3-1. Correlation between traits and locations based on adjusted means.  Data showing the relationship between agronomic and 
quality traits in (a) Prosper, (b) Langdon, (c) unbalanced combined, and (d) LP mean.  YLD = yield, HT=height, LDG=lodging, 
LD=leaf disease, TWT=test weight, TKW=thousand kernel weight, WPROT=whole-wheat protein, SDS=sedimentation test, 
GI=gluten index, WG=wet gluten, FIRM=firmness, CLOSS=cooking loss, CWT=cooked weight, TYP=total yellow pigment, 
PPO=polyphenol oxidase, and FN=falling number.  Cells with correlation values not significant at P-value < 0.01 are left blank.   
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c                                                                                                          d               

    

Figure 3-1. Correlation between traits and locations based on adjusted means (continued). Data showing the relationship between 

agronomic and quality traits in (a) Prosper, (b) Langdon, (c) unbalanced combined, and (d) LP mean. YLD = yield, HT=height, 

LDG=lodging, LD=leaf disease, TWT=test weight, TKW=thousand kernel weight, WPROT=whole-wheat protein, 

SDS=sedimentation test, GI=gluten index, WG=wet gluten, FIRM=firmness, CLOSS=cooking loss, CWT=cooked weight, TYP=total 

yellow pigment, PPO=polyphenol oxidase, and FN=falling number. Cells with correlation values not significant at P-value < 0.01 are 

left blank.
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Marker properties and linkage disequilibrium analysis 

A total of 4,196 SNP markers were selected for LD/AM after excluding the markers with 

MAF <1%, missing data points >10%, and markers with no genetic position on the consensus 

map.  Markers were ordered according to the scaled map positions of the SNP marker based on 

the tetraploid wheat consensus map (Maccaferri et al., 2015).  The LD decayed to 0.2 within 5 

cM, on average (Fig. 3-2).  Significantly-associated SNPs that were five or less cM apart and/or 

located between the pairwise LD (R2) ≥ 0.7 were considered a single QTL. 

 

Figure 3-2. Scatter plot showing the linkage disequilibrium (LD) decay across the chromosomes 
(Chr) for 243 durum wheat genotypes.  The genetic distance in centimorgan (cM) is plotted 
against the LD estimate (R2) for pairs of SNPs.  Smoothing Spline Fit, lambda=338064.8, R-
Square 0.56902, and Sum of Squares Error 6804.7. 
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Population structure, kinship analysis, and regression model selection for AM 

Population structure was inferred using PCA.  Principal component analysis showed that 

two, three, and 10 PCs explain a cumulative 11.3, 15.4, and 26.8% of the genotype variation, 

respectively.  The first three PCs clustered the collection into three subpopulations (Fig. 3-3). 

 

Figure 3-3. Principal component (PC) analysis obtained from 4,196 polymorphic SNPs, 
indicating the population structure in 243 durum wheat accessions.  PC1, PC2, and PC3 explain 
6.8, 4.5, and 4.1% of the variation, respectively.  The colors represent three different clusters. 
 

The familial relatedness was estimated using an identity-by-state matrix (K matrix), and 

kinship between accessions was calculated.  A heat map of the marker-based K matrix is 

illustrated in Fig. 3-4.  Some hotspots with related lines were observed on the heat map, 

suggesting intermediate familial relationships among genotypes.  Accounting for the population 

structure and familial relationship between individuals in the AM analysis reduces the number of 

false-positive associations.  Based on the BIC values of the five regression models tested, no 

single model fits best for all traits in different environments (Table 3-5).  For instance, the results 

of the kinship model used for height were 4PC + kinship, 2PC + kinship, 3PC + kinship, and 
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2PC + kinship for Langdon, Prosper, mean Prosper, and Langdon data and unbalanced combined 

datasets, respectively (Table 3-5).  

 

Figure 3-4. Heat map displaying the relationship matrix among durum wheat genotypes.   
The red diagonal represents a perfect relationship of each accession with itself.  The symmetric 

off-diagonal elements represent the relationship measures (Identity-by-state) for pairs of 

accessions.  The blocks of warmer colors on the diagonal show clusters of closely-related 

accessions.
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Table 3-5. Bayesian information criterion (BIC) value for each model. 

Trait Naïve Kinship 2PCs + Kinship 
3PCs + 
Kinship 4PCs +Kinship 

Langdon, 2015 

YLD 3076.8 3065.8 3032.7 3026.3 3026.1 

HT 1512.2 1501.3 1453.7 1453.7 1453.5 

DTH 850.3 839.3 831.9 830.4 829.8 

LD 581.6 518.6 548.1 547.6 513.5 

LDG 884.6 873.7 868 867.9 865.9 

FN 2621.1 2610.1 2594.7 2594.7 2593.9 

TWT 674.8 663.8 657.2 656.3 633.1 

TKW 1131.1 1120.1 1110.7 1073.5 1073.5 
LK 1740.5 1729.5 1721.9 1719.9 1719.5 

MK 1684.6 1673.6 1666.8 1664.9 1664.7 

SK 786.8 775.8 761.9 760 757 

VIT 1507.5 1496.6 1481.6 1435.2 1471.3 
WPROT 320.2 309.3 306.5 306.3 297.3 

SPROT 382.6 371.6 364.9 364.8 353.9 

SDS 1674.3 1663.4 1643.1 1605.4 1639.9 
GI 2040.8 2029.8 2001.1 2000.4 1997.9 

WG 1089.5 1078.6 1070 1066.8 1053.8 

GLUT -203.2 -214.2 -223.4 -224.1 -228.7 

FIRM 1978.8 1967.9 1965.4 1964.8 1958 

WTS 784.2 773.3 770.5 770.4 767.5 

CLOSS 90.7 79.7 78.4 77.8 70.2 

CWT 151.3 140.3 136.4 134.7 126.6 

L 564.8 553.8 549.4 548.5 548.3 

A 225.6 214.7 207.2 202.6 191.6 

B 976.7 924.2 944.4 920.7 931.6 
DIF_B 665.2 654.3 642.4 642.1 640 

DIF_L 807.4 796.5 794.3 794.3 793 

DIF_A -25.2 -36.1 -39 -39 -42.7 

PPO -360.5 -371.4 -377.8 -379.2 -379.4 

TYP 614.8 529.1 551.1 551.1 519.7 

Prosper, 2015 

YLD 3246.3 3235.4 3229.5 3222 3222 
HT 1569.1 1558.1 1506.6 1506.6 1506.6 
DTH 766.6 755.6 747.1 747.1 747.1 
LD 651.6 640.6 634.7 631.1 631.1 
LDG 976.5 965.5 965.2 959 959 
FN 2472.4 2461.4 2452.4 2452.4 2452.4 
TWT 935.7 924.7 914 914 914 
TKW 1202.5 1191.6 1177.4 1176.2 1176.2 
LK 1883.3 1872.4 1855.1 1855 1855 
MK 1781.4 1770.4 1706.3 1706.3 1706.3 
SK 1229.2 1218.2 1212.3 1210.6 1210.6 
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Table 3-5. Bayesian information criterion (BIC) value for each model (continued). 

Trait Naïve Kinship 
2PCs + 
Kinship 

3PCs + 
Kinship 4PCs +Kinship 

VIT 1799.3 1788.3 1773.2 1772.1 1772.1 
WPROT 354.9 271.7 321.6 319.8 319.8 
SPROT 383.3 282.3 353.6 352.4 352.4 
SDS 1634.2 1623.3 1613.2 1611.8 1611.8 
GI 2055.6 2044.7 1975.5 1975.5 1975.5 
WG 1121 1110 1109.5 1107.1 1107.1 
GLUTORK -207.2 -256.2 -219.6 -221.3 -221.3 
FIRM 2119.1 2108.1 2100.4 2100.3 2100.3 
WTSHEAR 967.4 956.5 946.7 946.7 946.7 
CWT 630.2 619.2 619.2 619 619 
CLOSS 104.3 93.4 91.6 90.2 90.2 
L 730.1 719.1 716.7 716.5 716.5 
A 381.6 370.6 369 364.9 364.9 
B 961.9 884.3 899.6 876.3 876.3 
DIF_B 542.9 531.9 518.4 517.3 517.3 
DIF_L 472.3 461.3 456.4 455 455 
DIF_A -57.6 -68.5 -69.8 -74.9 -74.9 
PPO -299.6 -337.5 -321.2 -321.5 -321.5 
TYP 679.5 593 600.3 600.2 600.2 
Unbalanced combined data from 1997-2014 

YLD 1274.2 1181.6 1259.8 1249.3 1249.3 
HT 1417.7 1406.8 1404.1 1404.1 1404.1 
DTH 675.4 664.5 651.3 650.9 650.9 
LD 504.3 493.7 491.8 491.6 491.6 
LDG 515.7 505 503.1 497.6 497.6 
FFN 2183.7 2172.7 2145.1 2144.7 2143.3 

TWT 547.4 536.5 529.9 525.6 517.5 

TKW 979.2 968.2 957.4 957.2 955.3 

LK 1626.6 1615.7 1552 1552 1551.8 

MK 1494 1483.2 1476 1476 1475.8 

SK 836.3 825.4 800.5 799.4 799.4 
VIT  1323.5 1312.6 1293.2 1292.6 1292.1 

WPROT 217.5 206.5 205.5 205.1 204.2 

TEXT 544.2 533.3 533.2 531.6 531.6 
SEXT 603.9 593 590.3 590.3 590.2 

SASH -999.3 -1010.2 -1013.9 -1013.9 -1014 

SPROT 156.5 145.6 143.4 143.4 143.2 

SDS 1498.5 1487.5 1480.6 1480.3 1477.5 

GI 1823.3 1812.5 1729 1787.2 1786.7 
MIXO 545.6 449.1 508.7 507.4 446.3 

FIRM 159.6 148.7 142.3 130.8 90.4 

CWT 150.7 139.8 136.1 135.2 123.2 

CLOSS -29.5 -40.4 -69.4 -83.2 -84.2 

COLOR 40.2 29.3 20.8 14.6 -33.5 

Mean Langdon + Prosper    

YLD 3070.5 3059.5 3011.9 3005.9 3005.8 

HT 1514.2 1503.2 1495.6 1495.2 1495.2 
DTH 751.1 740.2 733.7 731.7 731.7 
LD 522.8 511.8 495.2 492.2 491.4 

LDG 833.9 823 810.4 810.4 807.7 
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Table 3-5. Bayesian information criterion (BIC) value for each model (continued). 
 
Trait Naïve Kinship 2PCs + Kinship 

3PCs + 
Kinship 4PCs +Kinship 

FN 2480.3 2469.3 2466.8 2456.5 2453.5 

TWT 773.3 762.3 742.9 734.6 723.3 

TKW 1115.5 1104.5 1047.4 1044.2 1042.7 

LK 1774.2 1763.2 1727.4 1722.7 1721.4 

MK 1685.7 1674.7 1644.2 1638.8 1638.1 

SK 1025.8 1014.8 971.1 969.8 965.9 

VIT 1622.9 1611.9 1602.7 1591.5 1591.5 
WPROT 263.2 252.3 247.6 232.4 231.3 

SPROT 325.4 314.4 311.1 295.6 293.8 

SDS 1623.2 1612.3 1606.6 1593.2 1592.6 

GI 2007.7 1996.7 1981.9 1967.7 1967.7 
WG 1038.4 1027.4 1017.7 1016.5 1012.6 

GLUT -292.7 -303.7 -311.6 -313.5 -315.8 

FIRM 1940.5 1929.5 1919.5 1917.8 1910.6 

WTSHEAR 754.2 743.2 733.7 727.6 723.8 

LOSS -85.8 -96.8 -98.1 -98.1 -101.8 

CWT 328.7 317.7 317 316.8 315.9 

L 559.8 548.9 544.7 544 544 
A 246.2 235.3 217.6 209.6 198.1 

B 947 936 905 897.9 876.7 

DIF_B 517.8 506.9 486.2 485.3 485.1 

DIF_L 545.7 534.8 527.2 525.8 525.4 

DIF_A -141.8 -152.8 -157.1 -157.1 -157.4 

PPO -334.9 -345.9 -357.6 -358.5 -358.7 

TYP 633.2 542.7 577.8 569.4 560.3 
†2PC, population structure matrix (Q matrix) based on the first two principal components;  
3PC, population structure matrix (Q matrix) based on the first three principal components. 
†Numbers in bold indicate the lowest BIC and best model for each trait.  The best model was used 
to investigate single-nucleotide polymorphism–trait associations. 
 

Association mapping 

Agronomic-related traits 

The majority of the agronomic traits of YLD, DTH, HT, LDG, LD, and FN have low 

heritability and are highly influenced by environmental factors (Tables A-1, A-2, and A-3).  

Grain-related characteristics, such as TWT, TKW, and kernel size distribution (LK, MK, and 

SK), also show low heritability and are highly influenced by environmental factors.  In the 

present study, a total of 106 QTL for agronomic- and grain physical characteristics-related traits 

were detected across all 14 chromosomes.  Most of the QTL reside on chromosomes 1B (13 

QTL) and 4B (14 QTL).   
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For each of these traits, many QTL were identified, suggesting polygenic or quantitative 

genetic control.  The R2 ranged from 1 to 26%.  Out of 106 QTL, 10 QTL for HT, SK, and TKW 

had a major effect (R2 > 10%).  All major QTL except for two (one each for SK and TKW) were 

identified in both locations in the balanced datasets.  Two major QTL, one associated with TKW 

on 4B 22-28.8 cM and another associated with SK on 3B 86.6-88.4 cM, were not detected in the 

unbalanced datasets.  Out of 106 QTL, only 34 were detected in one of the datasets, while the 

majority of the QTL were detected in at least one of the locations in the balanced dataset and 

unbalanced dataset.  The highest number of QTL was detected for HT (21 QTL), and the lowest 

for LD (5 QTL).  All of the QTL for HT were consistent across the unbalanced and means of the 

balanced datasets. A major QTL for HT, explaining over 20% of the phenotypic variation, was 

detected on chromosome 4B (Table 3-6).  

A total of nine QTL located on seven different chromosomes were detected for YLD.  Six 

of them were detected in at least one of the locations (and the mean) in the balanced dataset and 

unbalanced dataset.  The R2 ranged from 0.6 to 8.6%.  Out of 19 total QTL for TKW and TWT 

traits, 10 QTL were detected in both the mean balanced and unbalanced datasets, including one 

QTL with R2> 8% on chromosome 4B (26.4-28.8 cM).  Twenty-nine QTL for kernel distribution 

were detected, with 19 QTL detected in the unbalanced dataset and at least one of the locations 

in the balanced dataset, while 8 QTL were present in both locations and the unbalanced dataset 

(Table 3-6).  Out of the total number of QTL, 22 for YLD, HT, DTH, LDG, TWT, TKW, LK, 

SK, and FN with a cutoff level less than pFDR=0.1 were detected, with 12 QTL identified in 

both the unbalanced and balanced datasets (Supplementary table Excel). 
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Table 3-6. Significant markers associated with agronomic- and grain physical characteristics-
related traits in the Prosper trial, the Langdon trial, and the unbalanced combined data set. 

Traits 

and QTL 
Chr Other associated traits Trialsa Position 

-log10 (P-

value) 
R2¶ 

Days to heading      

 2B - I††, II†, III 44.5-44.8 5.45 9.0 

 2B PPO I††, II†, III†† 114.6-121.2 3.57 5.6 

 5A - 
I††, II††, III†† 55.2-59.2 2.95 3.8 

 6A 
FN, CLOSS, YLD, HT, 
DIF_B, B, L I†, II††, III† 124.8-130.0 5.81 9.4 

 6B - 
II††, III†† 151.0-155.9 2.71 4.0 

 7B - 
I††, II†† 92.9-97.4 2.72 4.0 

Height   
    

 1B GI, SDS, MIXO, FIRM, CWT 
I††, II†, III† 3 3.73 5.8 

 1B 
YLD, FN, LK, MK, LD, 
TKW I††, III†† 35.7 2.07 3.0 

 1B Dif_a, VIT 
I††, III†† 82.7-85.5 2.44 3.6 

 2A - I††, II††, III† 1.6-1.9 3.45 5.4 

 2A - I†, III† 207.1 4.12 6.5 

 2B LDG II††, III† 127.6-132.8 3.46 5.5 

 2B TWT, Dif _a, LDG II††, III†† 172.0 2.43 3.5 

 2B - I††, III†† 189.8 2.70 4.1 

 3B SDS II††, III† 51.9-57.2 3.39 5.4 

 3B YLD, TKW, TWT, LK, SK I†, II† 88.2-88.4 3.91 6.2 

 4A DIF_B I†, II†, III† 156.9-162.8 3.90 6.1 

 4B - I††, II††, III† 3-4.8 3.71 14.6 

 4B TWT, SK, VIT I, II, III 17.7-22.5 9.36 15.7 

 4B 

YLD, HT, CLOSS, A, 
DIF_BYLD, LK, MK, WG, 
A, CLOSS, TKW, LDG, 
TWT, SK, VIT, color 

I, II, III 26.4-28.8 11.92 19.9 

 5A - I††, II†, III†† 80.9 4.73 7.6 

 5B YLD I†, II†† 189.2-193.4 4.11 6.5 

 6A - II††, III†† 62.0-62.1 2.42 3.5 

 6A YLD, DTH, DIF_B, L, A, B I, II†, III† 124.0-126.5 8.0 
13.2 

 7A - II††, III†† 133.8 2.88 
4.3 

 7B FIRM I††, II†† 66.3-67.5 2.27 
3.3 

 7B - I††, II††, III†† 102.6-104.4 2.88 
4.3 

Lodging      
 

 1A SASH, FN II††, III†† 104.3 2.08 3.0 

 1B - II††, III†† 99.7 2.08 3.0 

 2B HT II†, III† 126.6-131.6 3.51 8.6 

 2B - III 137.9 5.28 9.5 
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Table 3-6. Significant markers associated with agronomic- and grain physical characteristics-
related traits in the Prosper trial, the Langdon trial, and the unbalanced combined data set 
(continued). 

 

Traits 

and QTL 
Chr Other associated traits Trialsa Position 

-log10 (P-

value) 
R2¶ 

 2B HT, Dif_a, TWT I††, II††, III† 175.7-181.6 3.24 5.6 

 4A A, B, Color I††, II†† 139.6-139.7 2.46 3.6 

 4B 

YLD, HT, CLOSS, A, 
DIF_BYLD, LK, MK, WG, A, 
CLOSS, TKW, HT, TWT, SK, 
VIT, color 

II††, III 22.5-28.8 5.07 9.1 

 5B - I††, III†† 103.9-108.7 2.13 3.4 

Leaf disease      

 1B GI, SDS, CWT, MIXO I††, III†† 12.8-14.3 2.74 5 

 1B YLD, TKW, HT, FN, LK, MK I† 38-4-38.8 4.18 6.6 

 4B - II† 77.8-83.1 3.05 4.6 

 5B YLD, HT, SK I†, II† 187.1-193.4 3.94 6.2 

 6A - I††, II†† 8.8-10.7 2.55 3.8 

Yield       

 1B  I† 35.7-38.8 4.27 6.8 

 2A GLUT II† 169.3 4.77 7.7 

 2A GI, WG II††, III† 188.5-189.8 4.22 6.8 

 3A LK, MK, SK I†, III† 79.3-80.9 3.69 5.8 

 3B HT, LK, SK, TWT, TKW,  III† 88.2-88.4 4.10 6.6 

 4B 

HT, LDG, LK, MK, SK, TWT, 
TKW, VIT, A,  LDG, HT, 
CLOSS, A, DIF_BYLD, LK, 
MK, WG, A, CLOSS, TKW, 
HT, TWT, SK, VIT, color 

I††, III† 22.5-28.8 3.8 6.1 

 5B LD, HT, SK I, III†† 187.1-190.9 5.32 8.6 

 5B HT, SK I†, III†† 192.5-194.7 4.21 6.7 

 6A 
HT, DTH, L, A, B, TWT, TKW, 
SK, DIF_B 

I, III† 124.8-126.5 5.07 8.2 

Falling number      

 1A LDG, SASH II††, III†† 104.3-110.9 2.27 3.4 

 1B YLD, HT, MK, LK, TKW II††, III†† 35.7-37.2 2.89 4.6 

 4B TKW II††, III†† 97.5-98.9 2.59 3.9 

 5B VIT III 145.2-149.0 5.34 1 

 6A 
YLD, HT, DTH, L, A, B, TWT, 
TKW, SK, DIF_B 

I††, II†, III†† 124.8-130 3.08 4.7 

 6B - III 45.2 5.69 9.4 

 6B - I† 83.4 3.75 5.9 

 7A GLUT I††, II††, III†† 75.2-79.9 2.54 3.8 
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Table 3-6. Significant markers associated with agronomic- and grain physical characteristics-
related traits in the Prosper trial, the Langdon trial, and the unbalanced combined data set 
(continued). 

Traits 

and QTL 
Chr Other associated traits Trialsa Position 

-log10 (P-

value) 
R2¶ 

Test weight     

 2B  II† 53-60.1 3.42 5.3 

 2B LD, SASH III† 174.8-175.6 3.17 5 

 3B  I††, III† 86.6-88.4 3.25 5 

 4A TKW I†, II†, III† 139.6-143.7 4.33 7 

 4B HT, SM, TKW, VIT, YLD I, II† 17.7-22.5 4.06 6.4 

 4B HT, L, SM, TKW, VIT, YLD I, II††, III†† 26.4-28.8 5.24 8.5 

 6A  I†, II††, III 124.8-126.5 5.00 8.2 

Thousand-kernel weight     

 1B  II†, III†† 28.8-33.7 3.58 5.6 

 1B  I††, III†† 50.2-50.6 2.94 4.5 

 3B  I 88.2-88.4 5.62 9.1 

 4A TWT I††, II†† 134.4-139.7 2.51 4 

 4B SM, TWT, VIT, YLD I, II†† 22-28.8 6.52 11 

 4B  III† 98.9 3.76 6 

 5B  I††, III†† 45-48.9 2.86 4.3 

 6A  I††, II††, III†† 64.1-67.9 2.85 4 

 6A SM, TKW, HT I 124.8-127.1 5.81 9.5 

 6B  II††, III†† 65.5-67.1 2.29 3.3 

 6B  I††, II††, III†† 91.5-92.6 2.37 3.4 

 7B  I††, II†† 62.7-66.3 2.78 4.2 

% Large kernel distribution     

 1B  I††, II††, III†† 33.7-35.7 2.83 4.3 

 1B MED I††, II††,III† 50.2-54.8 3.06 5 

 3A  I†, II†† 21.3 3.20 4.9 

 3A TKW, YLD, MED, SM I††, II† 79.3-80.9 3.00 4.6 

 3B MED II†, III† 48.9-51.9 3.53 5.5 

 3B  I† 88.2-88.4 3.18 5 

 4A TKW, TWT I††, II†† 134.6-139.7 2.27 3.3 

 4B 
HT, YLD, VIT, TWT TKW, 
Color 

I, II† 22.5-28.8 5.55 9 

 6A  I† 125.6 3.39 5.3 

 6B  I††, II† 155.9 4.71 8 

 7A  I††, III†† 172.9-176.2 2.64 4 
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Table 3-6. Significant markers associated with agronomic- and grain physical characteristics-
related traits in the Prosper trial, the Langdon trial, and the unbalanced combined data set 
(continued). 

Traits 

and QTL 
Chr Other associated traits Trialsa Position 

-log10 (P-

value) 
R2¶ 

% Medium kernel distribution     

 1B  I††, II††, III†† 33.7-35.7 2.64 4 

 1B L I††, II††, III† 48.7-50.3 3.00 4.9 

 3A YLD, TKW, SM, L I††, II†† 79.3-80.9 2.56 3.8 

 3B L II†, III†† 48.9-51.9 3.72 5.6 

 4B HT, L, SM, TKW, YLD I†, III†† 22.5-28.8 4.36 6.9 

 6B  II† 155.9 4.63 7.4 

 7A  III† 90.9 3.37 5.6 

% Small kernel distribution     

 3A YLD, TKW, L, MED I, II††, III† 79.3-79.5 6.21 10.1 

 3B - I, II†† 86.6-88.4 12.31 20.1 

 4A TWT, TKW, L, MED I†, II† 41.3-41.6 3.15 4.8 

 4A TKW, TWT, LK I, II† 139.6-143.7 5.37 8.7 

 4B HT, TWT, TKW I, II†, III†† 17.7-22.5 7.23 10 

 4B L, TWT, TKW, YLD, HT I, II†, III† 26.4-28.8 6.87 11.2 

 5B HT, YLD I†, III†† 189.2-193.4 4.25 6.7 

 6A HT, TKW I, II††, III†† 124.0-139.9 14.59 23.6 

 6B  I†††, II† 155.9 3.88 6.1 

 7B  I†, III†† 86.4-92.9 3.71 5.8 

 7B  I†, III†† 112.5 3.75 5.9 
a I, Prosper trial; II, Langdon trial; III, unbalanced combined data set where an SNP marker was 
detected above the pFDR value 

c cM, marker position on the consensus map 
† SNP marker that in that trial (environment) was detected above –log10 (P value) of 3, but below 
the pFDR value 
†† SNP marker that in that trial (environment) was detected above –log10 (P value) of 2, but 
below the pFDR value 
¶R2, proportion of phenotypic variation explained by the individual marker 

 

Quality-related traits 

Quality-related traits include 25 traits for both the unbalanced and balanced datasets.  

Most quality traits were interrelated, which was reflected in their significant correlations and that 

they shared a common locus (Fig. 3-1, Tables 3-7 to 3-11).  Quality traits were divided into three 

groups, including grain quality, flour and semolina quality, and pasta cooking quality parameters.  
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Grain quality parameters include grain protein (WPROT) and VIT.  Flour and semolina quality 

characteristics were further subdivided into milling quality (TEXT, SEXT, and SASH), protein 

and gluten strength-related parameters (SPROT, SDS, GI, WG, and GLUT), and semolina- and 

pasta color-related parameters.  Cooking quality parameters were measured with FIRM, CLOSS, 

and CWT.  

Table 3-7. Genetic location and single nucleotide polymorphism (SNP) loci significantly 
associated with durum kernel characteristics across three datasets. 

Traits and 

QTL 
Chr Other associated traits Trialsa Position 

-log10 (P-

value) 
R2¶ 

Grain protein        

 5B SPROT, Color II††, III†† 204.7-206.1 2.86 4.4 

 7A SPROT, WG II†, III† 59.5-62.5 3.02 4.7 

 7B FIRM I††, III†† 62.2-62.7 2.31 3.4 

Kernel vitreousness      

 1B  II††, III†† 88.2-93.5 2.51 3.8 

 1B  I††. III†† 150.9-152.5 2.30 3.4 

 2B  I††, III†† 183.1-188.6 2.45 3.6 

 3A  III† 41.6 3.60 5.7 

 3B  I††, II†† 100.15-100.9 2.54 3.8 

 4B 
HT, L, MED, SM, 
TKW, TWT, YLD, 
Color 

II 17.7-22.5 5.63 9.1 

 4B  II† 26.4-28.8 3.34 8.6 

 5A  III† 14.3 4.09 6.6 

 5B  III 2.8 5.87 9.8 

 5B SPROT, WPROT III 135-1-135.6 3.35 5.3 

 5B - III 140.5-145.2 9.74 16.3 

 5B FN III 146.14-149 9.74 16.3 

 6B - III 54.6-58 5.62 9.3 

 7A  I††, II†† 59.5-62.5 2.84 4.2 
a I, Prosper trial; II, Langdon trial; III, unbalanced combined data set where an SNP marker was 
detected above the pFDR value 

c cM, marker position on the consensus map 
† SNP marker that in that trial (environment) was detected above –log10 (P value) of 3, but below 
the pFDR value 
†† SNP marker that in that trial (environment) was detected above –log10 (P value) of 2, but 
below the pFDR value 
¶R2, proportion of phenotypic variation explained by the individual marker 
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Three QTL for WPROT and 14 QTL for VIT reside on all chromosomes except 1A, 2A, 

4A, and 6A (Table 3-7).  All QTL for WPROT were present in both means across environments 

in both the balanced and unbalanced dataset.  Major QTL for VIT were found in the unbalanced 

dataset only on chromosome 5B (Table 3-7).  

Milling-related traits are represented by TEXT, SEXT, and SASH and were evaluated in 

the unbalanced dataset only.  Four QTL on chromosomes 2A, 2B, 4A, and 5A were associated 

with both TEXT and SEXT, while two QTL on chromosomes 6B and 7A were only detected for 

SEXT (Table 3-8).  No common QTL were detected for TEXT or SEXT with TWT, TKW, and 

YLD.  

Semolina protein- (SPROT) and five gluten strength-related traits were presented by 27 

QTL across eight chromosomes (Table 3-9).  Two major QTL on chromosome 1B were common 

for SDS, GI, and MIXO and consistent in two locations of both the balanced and unbalanced 

datasets.  
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Table 3-8. Genetic location and single nucleotide polymorphism (SNP) loci significantly 
associated with durum milling-related characteristics across three datasets. 

Traits and 

QTL 
Chr Other associated traits Trialsa Position 

-log10 (P-

value) 
R2¶ 

Total extraction      

 2A  III†† 145.9 2.23 3.3 

 2B SEXT III 158.3-161.5 5.14 8.5 

 4A  III† 25.8 3.18 5.0 

 5A  III†† 127.5-128.3 2.07 3.0 

Semolina extraction      

 2A  III†† 145.8-145.9 2.99 3.6 

 2B TEXT III†† 161.5 2.66 4.1 

 4A  III† 25.2-25.8 3.10 4.8 

 5A  III†† 127.5-128.3 2.25 3.3 

 6B - III†† 114.5 2.16 3.2 

 7A TYP, B III† 102.3-102.4 3.13 4.9 

Semolina ash       

 1A LDG, FN III†† 102.8-105.5 2.17 3.2 

 4A  III† 39 3.13 4.9 

 5B Dif_a III†† 0.9-6.5 2.45 3.7 

 6A  III† 45.2 3.12 4.9 

 6A  III† 117.7-118.2 3.10 4.8 

 6B  III†† 131.8-135.2 2.11 3.1 

 7A  III†† 70.7 2.23 3.3 

 7A  III†† 136.4 2.06 3.3 
a I, Prosper trial; II, Langdon trial; III, unbalanced combined data set where an SNP marker was 
detected above the pFDR value 

c cM, marker position on the consensus map 
† SNP marker that in that trial (environment) was detected above –log10 (P value) of 3, but below 
the pFDR value 
†† SNP marker that in that trial (environment) was detected above –log10 (P value) of 2, but 
below the pFDR value 
¶R2, proportion of phenotypic variation explained by the individual marker 
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Table 3-9. Genetic location and single nucleotide polymorphism (SNP) loci significantly 
associated with durum protein- and gluten strength-related characteristics across three datasets. 

Traits and 

QTL 
Chr Other associated traits Trialsa Position 

-log10 (P-

value) 
R2¶ 

Semolina protein      

 1B WPROT I††, III†† 111.7 2.11 3.2 

 5B WPROT, Color II††, III† 204.7-206.1 3.14 5.0 

 6A FIRM I††, II† 111.9-113.5 3.33 5.1 

 7A WPROT, WG I††, III 59.5-59.8 3.31 5.2 

 7A FIRM II††, III†† 114 2.64 3.3 

Sedimentation volume      

 1A GI, FIRM, CWT I†, II†, III† 1.3-4.6 4.73 7.7 

 1A  I††, II†† 48.1-49.7 2.51 3.7 

 1B CWT, FIRM, GI, MIXO I†, II†, III 0.3-6.1 5.2 8.7 

 1B CWT, FIRM, GI, MIXO I†, II, III 15.2-15.7 6.11 1.0 

 2B  I††, III†† 169.3-170.9 2.49 3.7 

 3A  I††, II††, III†† 79.5 2.86 4.3 

 3B  I††, II†† 51.9-56.9 2.77 4.2 

 3B  II††, III†† 75.5-79.1 2.91 4.4 

 4A  I††, II† 0 3.31 5.1 

 6A CLOSS I††, II†† 67.9-69.1 2.62 3.9 

 7B  I†, II†† 65.5 3.18 4.9 

       

Gluten index      

 1A SDS, FIRM, CWT II† 1.3 3.67 5.7 

 1B CWT, SDS, FIRM, MIXO I†, II††, III† 1.3-3 4.30 7.3 

 1B 
CWT, SDS, FIRM, 
MIXO, GLUT I†, II†, III 

12.8-15.7 6.59 
11.0 

 2A  I††, III†† 189.8 2.47 3.9 

 3A  I†, II†† 170.1-176.9 3.49 5.1 

 3B  I††,II†, III†† 75.5-79.1 3.15 4.8 

 6A  I†, II††, III†† 67.9-72.4 3.47 5.4 

 7B  I††, II††, III†† 169.8-175.9 2.67 3.3 
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Table 3-9. Genetic location and single nucleotide polymorphism (SNP) loci significantly 
associated with durum protein- and gluten strength-related characteristics across three datasets 
(continued). 

Traits and 

QTL 
Chr 

Other associated 

traits 
Trialsa Position 

-log10 (P-

value) 
R2¶ 

Wet gluten       

 2A  I††, III†† 186.2-189.8 2.86 4.3 

 2B GLUT II†, III† 146.8 3.24 5.3 

 2B  I 181.6 5.17 8.3 

 4B  II†, III†† 22.5-28.8 3.48 5.4 

 4B  I††, III†† 60 2.48 3.7 

 6A  II† 112.9 3.80 6.0 

 6B  II† 155.9 4.28 6.8 

 7A 
GLUT, SPROT, 
WPROT 

I††, III†† 59.5 
2.69 4.3 

Mixogram score      

 1B CWT, FIRM, GI, SDS III 3-6.1 5.72 9.5 

 1B 
CWT, FIRM, GI, 
SDS, GLUT 

III 15.2-15.7 5.64 
9.3 

 2A  III†† 197.6 2.49 3.8 

 3B  III†† 75.5-75.6 2.49 3.7 

 7B  II† 169.8-173.1 3.51 5.6 

Glutork       

 2A  I††, II†† 169.3-171 2.67 4.0 

 2B WG I† 181.6 4.56 7.3 

 3A  II† 71.6-74.4 3.08 4.7 

 6A  I††, II†† 3-6.6 2.51 3.7 

 6A  I††, II†† 71.8-42.4 2.65 3.9 

 6B  II† 155.9 3.04 4.6 

 7A  II† 75.2 3.38 5.2 
a I, Prosper trial; II, Langdon trial; III, unbalanced combined data set where an SNP marker was 
detected above the pFDR value 

c cM, marker position on the consensus map 
† SNP marker that in that trial (environment) was detected above –log10 (P value) of 3, but below 
the pFDR value 
†† SNP marker that in that trial (environment) was detected above –log10 (P value) of 2, but 
below the pFDR value 
¶R2, proportion of phenotypic variation explained by the individual marker 
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A total of 48 QTL were identified for nine color traits measured in both datasets.  ‘Color’ 

represents spaghetti color and was only measured in the unbalanced dataset.  Two QTL for 

‘color’ on chromosomes 4A and 4B were also detected for col_a, col_b, dif_b, and TYP 

measured in the balanced dataset (Table 3-10).  A consistent common QTL for TYP and col_b 

was detected on chromosome 7A at 180-181.8 cM.  One QTL on chromosome 7B was not only 

detected for TYP and col_b, but also for dif_b and the ‘color’, suggesting its involvement in 

color degradation during processing.  

Table 3-10. Genetic location and single nucleotide polymorphism (SNP) loci significantly 
associated with color-related traits in durum wheat across three datasets. 

Traits and 

QTL 
Chr Other associated traits Trialsa Position 

-log10 (P-

value) 
R2¶ 

Color_a       

 1A PPO II†† 6.6 2.69 4.0 

 3A  II† 20.9 3.31 5.1 

 3B  I 88.2-88.4 5.65 9.2 

 4A Color_b, color, Dif_b 
I†, II† 139.2-143.7 4.73 

7.6 

 4B 
Col_b24, color, dif_b, 
HT, SK I† 

22.5-28.8 
3.64 5.7 

 6A Color_L, Dif_b I† 124-125.6 4.51 7.2 

Color_b       

 2B TYP II†† 6.6-8.3 2.14 3.1 

 4A Color_a, color, dif_b II†† 139.7 2.50 3.7 

 5A  I††, II†† 52.9 2.46 3.6 

 6A  I††, II†† 124.8-129.4 2.50 3.7 

 7A TYP, Dif_b I†, II†† 180.3-181.8 3.31 5.1 

 7B  I†, II†† 195.9-196.5 4.37 6.9 

Color_L       

 2A  I††, II†† 189.8 2.91 4.4 

 5A  I† 148.8 3.10 4.7 

 6A  I††, II†† 0.1-3.1 2.28 3.3 

 6A Color_a, Dif_b I† 124.8 3.25 5.0 

Color       

 4A  III† 23.7-25.6 3.04 4.7 

 4A Color_a, color_b, Dif_b III† 139.7 3.56 5.6 

 4B 
HT, SK, color_a, 
color_b, Dif_b, TKW, 
VIT, YLD, LK, MK III† 

26.4-28.8 
3.25 5.1 

 6A  III† 90.6-95.9 3.13 4.9 
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Table 3-10. Genetic location and single nucleotide polymorphism (SNP) loci significantly 
associated with color-related traits in durum wheat across three datasets (continued). 

Traits and 

QTL 
Chr Other associated traits Trialsa Position 

-log10 (P-

value) 
R2¶ 

 7B  III† 124.1 3.05 4.7 

Difference in color a      

 1B  II† 87.8-89.1 3.70 5.8 

 1B  II† 109-109.8 3.02 4.6 

 2B  I† 171.1 3.33 5.1 

 5A  II† 26.2-27.9 4.1 6.6 

 6A - I 71.8-72.4 3.81 6.0 
Difference in color b      

 3B  I††, II†† 86.4-89.4 2.29 3.3 

 4A  I†, II†† 159.5 3.53 5.5 

 4B 
HT, SK, TKW, LK, MK, 
TWT, VIT, YLD I†, II†† 

18.4-28.8 
3.37 5.2 

 4B  I††, II†† 115.5 2.87 4.3 

 5A  I††, II†† 26.2-26.5 2.42 3.6 

 6A Color_a, Color_L I† 124.8-126.5 3.23 5.0 

 7B  I††, II†† 112.5 2.77 4.2 

 7B  I†, II† 120.4-123.2 3.16 4.8 

 7B  I†, II†† 138.3-140.4 3.54 5.5 

Difference in color L      

 2B  I†, II† 17.7-19 4.22 6.7 

 2B  I††, II†† 183.1-189 2.48 3.7 

 7A  II† 90.9-91.8 3.06 4.7 

 7A  II† 184.1 3.16 4.8 

 7B PPO II† 13.8 3.69 5.8 

Total yellow pigment      

 2B Color_b I††, II†† 8.3 2.27 3.4 

 3B  I† 88.2-88.4 3.28 5.0 

 4A  I††, II†† 139.2 2.72 4.1 

 7A Color_b, Dif_b I†, II†† 180.3-181.8 3.22 5.0 

 7B  I††, II†† 132.9 2.12 3.0 

 7B - I††, II†† 187.5 2.54 3.8 

 7B  I††, II†† 196.5 2.39 3.5 

Polyphenol oxidase activity      

 1A A I, II† 6.6 5.14 8.3 

 1B  I††, II†† 150.9-152 2.61 3.9 

 2B  I, II† 113.2-118.7 5.14 8.3 

 2B  I†, II 120.2-124.9 6.67 11.0 
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Table 3-10. Genetic location and single nucleotide polymorphism (SNP) loci significantly 
associated with color-related traits in durum wheat across three datasets (continued). 

Traits and 

QTL 
Chr 

Other associated 

traits 
Trialsa Position 

-log10 (P-

value) 
R2¶ 

 2B  I††, II†† 131.6 2.18 3.1 

 3A  I†, II† 149.5-154.3 4.02 6.3 

 3A  I, II 163.8-167.4 7.49 12.3 

 3A  I, II 169.5-174.4 9.03 15.0 

 3A  I, II 176.6-179.7 7.49 8.4 

 3A  I, II 183.8-184 7.49 12.3 

 3B  I, II 190.4 9.03 15.0 

 3B  I, II 198.5-205.1 9.03 15.0 

 5A - I††, II†† 136.3-141.4 2.48 3.6 

 5A  I††, II† 167.1-167.4 3.39 5.2 

 5B  I†, II 63.4 5.95 9.7 

 6A  I†, II† 105.7 3.84 6.0 

 6B  I†, II† 27.1 5.15 8.3 

 7B Dif_L I††, II†† 13.8-15 2.77 4.2 
a I, Prosper trial; II, Langdon trial; III, unbalanced combined data set where an SNP marker was 
detected above the pFDR value 

c cM, marker position on the consensus map 
† SNP marker that in that trial (environment) was detected above –log10 (P value) of 3, but below 
the pFDR value 
†† SNP marker that in that trial (environment) was detected above –log10 (P value) of 2, but 
below the pFDR value 
¶R2, proportion of phenotypic variation explained by the individual marker 

 
Pasta cooking parameters, such as cooked firmness (FIRM), cooking loss (CLOSS), work 

to shear (WTS), and cooked weight (CWT) were identified on fresh pasta in the balanced dataset 

from both the Langdon and Prosper locations grown in 2015.  Pasta cooking parameters were 

taken on dry spaghetti in the unbalanced dataset.  A total of 31 QTL were identified for cooking-

related traits (Table 3-11).  Nine QTL were identified in the unbalanced dataset only, 10 QTL at 

the Prosper and two QTL at the Langdon locations only, while six QTL were identified in both 

the mean balanced and unbalanced datasets.  Five major QTL (R2>10) were identified for CWT 

at the Prosper location only.   
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Table 3-11. Genetic location and single nucleotide polymorphism (SNP) loci significantly 
associated with pasta cooking-related properties across three datasets. 

Traits and 

QTL 
Chr Other associated traits Trialsa Position 

-log10 (P-

value) 
R2¶ 

Firmness       

 1A SDS, GI, CWT III† 1.3-5.2 3.27 5.1 

 1B CWT, GI, MIXO, SDS II††, III† 3-8.5 4.93 8.1 

 3A CWT I††, II†† 7.3-9 2.71 4.1 

 3B CWT, CLOSS I†, II† 4.2-6 3.75 5.9 

 3B CWT, TWT, SK I††, II†† 79.1-86.9 2.51 3.8 

 5A CWT III† 113.7 4.10 6.6 

 6A SPROT, WG III† 113.5 4.24 6.9 

 6B TKW III† 92.6 3.63 5.8 

 7A 
CWT, TYP, B, DIF_B, 
DIF_L I††, II†† 180.3-184.1 2.82 4.2 

 7B 
HT, TKW, SDS, 
WPROT I††, III†† 62.2-67.3 2.90 4.5 

Cooking loss       

 2A  II† 151.2-154.6 3.99 6.3 

 3A  I† 21.3 4.21 6.7 

 3B WTS I††, II† 7.1-9.6 3.75 5.9 

 4A  I††, III†† 129.3, 134.6 2.45 3.6 

 4B  III† 22.5-28.8 3.27 5.1 

 4B - I 105.5-106 3.85 6 

 6A SDS III† 68.3 3.73 6 

 6A  II††, III†† 127.1-130.0 2.56 3.8 

 6B  II† 65.1-65.5 3.00 4.6 

Work to shear      

 2B - I††, II†† 153.4 2.32 3.4 

 3B CWT, FIRM I† 6 4.43 7 

 5A FIRM I† 114.9-115.8 3.20 4.9 

 7A FIRM, CWT II† 184.1 3.02 4.6 

Cooked weight      

 1B FIRM, GI, MIXO, SDS I†, III† 1.3-8.5 4.33 6.9 

 1B FIRM, GLUT, GI, SDS III† 15.2 4.7 7.7 

 1B  I 27.6 6.11 10 

 1B  III† 50.3-54.8 3.47 5.5 

 2A  III 143.2 4.90 8 

 2B  I† 44.5-44.7 3.88 9.1 

 2B - I† 53.4-56.4 3.40 5.3 

 2B  I†, III† 80.6-84 4.77 7.8 

 2B  I 124.5-129.8 8.17 14 

 3A CLOSS I†, III†† 9-12.5 3.85 6 
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Table 3-11. Genetic location and single nucleotide polymorphism (SNP) loci significantly 
associated with pasta cooking-related properties across three datasets (continued). 

Traits and QTL Chr Other associated traits Trialsa Position 
-log10 (P-

value) 
R2¶ 

 3A  I 165.9-172.5 7.32 12 

 3B  I 79.1 8.14 13 

 3B SMALL I 86.6-89.4 6.64 11 

 5A - I 134.5-140.6 3.33 5.1 

 5A  I††, III†† 153.6-156.5 2.61 3.9 

 6B FIRM, TKW I† 92.6 3.37 5.2 

 7A  I† 148.1 3.41 5.3 

 7A  III† 180.3 3.26 5.1 

 7B  I††, III†† 62.7-65.5 2.47 3.6 
a I, Prosper trial; II, Langdon trial; III, unbalanced combined data set where an SNP marker was 
detected above the pFDR value 

c cM, marker position on the consensus map 
† SNP marker that in that trial (environment) was detected above –log10 (P value) of 3, but below 
the pFDR value 
†† SNP marker that in that trial (environment) was detected above –log10 (P value) of 2, but 
below the pFDR value 
¶R2, proportion of phenotypic variation explained by the individual marker 

 

A high genetic variation (R2 ranged between 7% and 10%) was identified on 

chromosomes 1B for FIRM and CWT and 2B for CWT in both the mean balanced and 

unbalanced datasets (Table 3-11).  Differences in spaghetti type (dry vs. fresh) during cooking 

might account for the low number of shared QTL between the two datasets. 

Pleiotropic QTL 

Co-localized or closely linked QTL may help in improving several traits simultaneously 

when desirable alleles for each trait are contributed by the same parent.  Many QTL for 

agronomic traits showed a pleiotropic effect and were associated with quality traits, including 

kernel size and weight, semolina ash content, PPO, semolina/spaghetti color, and gluten strength 

(Tables 6-11).  Eighty out of 106 QTL for agronomic-related traits co-localized with other 

agronomic- and quality-related traits.  
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The genomic region on chromosome 4B harbored the largest number of co-localized 

QTL associated with multiple traits, including YLD, HT, LK, MK, SK, TWT, TKW, VIT, LDG, 

WG, and ‘color’ (Tables 6-11).  Six out of eight genomic regions associated with YLD were also 

associated with kernel characteristics, especially the SK distribution trait.  Only one minor QTL 

was detected for YLD associated with GI and WG in both the mean balanced and unbalanced 

datasets.  Genomic regions on chromosomes 4A and 4B for TWT and TKW were associated 

with each other, as well as with HT, VIT, and YLD (Tables 6 and 7). 

Three genomic regions on chromosomes 5B, 6A, and 7A were associated with WPROT, 

SPROT, WG, and FIRM.  Three genomic regions on chromosomes 1A and 1B were associated 

with gluten strength, CWT, and FIRM.  Considering that two independent QTL for GI and 

WPROT were both associated with FIRM may suggest that both gluten quantity and quality 

affect pasta FIRM.  Out of 24 QTL for five cooking-related traits, six genomic regions harbored 

QTL for GI, SDS, and MIXO, while two harbored QTL for WPROT and WG. 

Color-related traits were mainly measured in the balanced dataset, with only ‘color’ being 

measure in the unbalanced dataset.  Two genomic regions on chromosomes 4A and 4B were 

pleiotropic and associated with color-related, agronomic, and kernel characteristic traits.  Two 

genomic regions harbored QTL for TYP and color_b. 

Discussion 

Ongoing improvement of the agronomic and quality performance of genotypes is always 

a breeding objective in wheat breeding programs worldwide.  Identifying genetic regions and 

dissecting the genetic makeup of key traits can enable wheat genotypes to be improved using 

MAS, which in turn can allow for a more efficient utilization of resources in breeding operations.  
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Agronomic-related traits 

Six parameters related to the agronomic performance of durum wheat were studied, 

including YLD, DTH, HT, LDG, LD, and FN.  Many studies have investigated the variation in 

DTH and flowering time due to their importance to plant adaptability in different growing 

environments (Zhang et al., 2009; Xu et al., 2005).  In the present study, the small number of 

QTL that explained the correspondingly small amount of phenotypic variation suggests a low 

genetic variation for DTH.  It also suggests that favorable genotypic variation is already fixed in 

breeding populations over time.  The QTL for DTH identified on chromosome 5A were near the 

QTL for earliness per se reported by Kato et al. (2002) and Chu et al. (2008) and associated with 

earliness per se genes that modify heading date independent of vernalization and photoperiod 

(Hoogendoorn, 1985).  A major QTL for DTH was earlier reported on homologous group 2 

(Heidari et al., 2012) near the QTL identified in the present study on chromosome 2B at 114.6-

121.2 cM (Table 3-6).  The significant negative correlation between DTH and LD may suggest 

that later heading genotypes avoid foliar diseases better.  The lack of correlation between YLD 

and DTH and a single common genomic region harboring QTL for DTH and YLD may suggest 

that a nearly optimum balance for earliness and YLD potential has been attained in the NDSU 

durum wheat breeding program. 

Several plant and grain characteristics controlled by several genes and highly influenced 

by environmental conditions determine grain YLD in wheat.  Pfeiffer et al. (2000) suggested that 

a nearly optimal balance in YLD components had been reached in modern elite durum wheats 

under optimal growing conditions.  Pleiotropic QTL on chromosomes 3A and 4B were identified 

for grain YLD and kernel characteristics, which were expected due to the positive correlation of 

YLD with TWT, TKW, and kernel size distribution.  Semi-dwarf wheat varieties, with their low 
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susceptibility to LDG and high tillering ability and harvest index, were a major factor in the 

success of wheat production using a high fertilizer input (Brancourt_Hulmel et al., 2003).  A 

major genomic region on chromosome 4B (17.7-28.8 cM) was identified near the known major 

dwarfing gene Rht1 (Gale et al., 1995; Gale and Youssefian, 1985; Pearce et al., 2011).  The 

Rht1 gene is gibberellic acid-insensitive (GA), meaning that dwarf mutants of this type show a 

reduced response or complete insensitivity to GA application (Verma et al., 2005). The observed 

association between lower yield and reduced height was in line with other studies (Brandle and 

Knott, 1986; Singh et al., 2001).  

In previous studies, grain yield QTL were reported on all chromosomes with the 

exception of chromosomes 3D and 5D (Huang et al., 2006; Kuchel et al., 2007; Kumar et al., 

2007).  The stable QTL on 3A in the present study was near the QTL for TKW, HT, kernel 

number per spikelet, and spike number per square meter identified by Shah et al. (1999) and 

Borner et al. (2002); this makes it a suitable marker for MAS for YLD.  

Independent QTL for LDG on chromosomes 1B, 2B, and 5B suggest that development of 

LDG-tolerant genotypes could be possible without any negative effect on other traits.  Keller et 

al. (1999) identified a QTL associated with LDG and culm stiffness on chromosome 5B at the 

124-136 cM interval, which is near QTL for LDG identified in the present study.  

The plant materials showed significant variation for FN.  The QTL on chromosome 6B 

for FN was near an earlier-reported QTL for seed dormancy (Singh et al., 2010) and late 

maturity, α-amylase (LMA) (Kunert et al., 2007), which corresponds to the Amy-1B gene 

(Emebiri et al., 2010).  QTL on chromosomes 1A and 5B for FN were also near QTL for seed 

dormancy reported in previous studies (Singh et al., 2010; Zhang et al., 2014).  
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Identification of major and minor QTL for agronomic-related traits and grain 

characteristics confirm their polygenic nature (Sun et al., 2009; Wu et al., 2015; Kumar et al., 

2016).  The identification of QTL for grain weight and size on all chromosomes except 5A also 

shows their wide distribution as reported in previous studies (Peng et al., 2003; Elouafi and 

Nachit, 2004; Blanco et al., 2006; Kumar et al., 2016).  Major QTL associated with TWT, KWT, 

LK, MK, and SK were identified on chromosome 4B (17.7-28.8 cM).  The same region was 

associated with HT and YLD, suggesting the pleiotropic effect of the dwarfing gene Rht-B1, 

which is located near the detected QTL (Cutbert et al., 2008; Singh et al., 2001).  This genomic 

region on chromosome 4B was found highly syntenous to rice chromosome 3 (Kumar et al., 

2016), which harbors two cloned genes for grain length, width, and YLD (Fan et al., 2006; Mao 

et al., 2013; Zhang et al., 2012). 

Quality-related traits 

Grain quality (WPROT and VIT), flour and semolina quality, and pasta cooking quality 

(FIRM, CWT, CLOSS, and WTS) parameters are discussed in the following sections.   

Grain quality 

Grain protein and kernel vitreousness (VIT) are important grain characteristics associated 

with many grain, flour, semolina, and pasta quality traits, including milling and pasta firmness.  

A high percentage of vitreous kernels maximizes semolina yield (Dexter et al., 1989).  Protein 

content, which is one the most important quality traits in durum wheat, showed a positive 

correlation with kernel vitreousness in this study, which corresponds with the results of other 

studies (Sissons, 2004; Bilgin et al., 2010; Sieber et al., 2015).  Vitreous areas of the endosperm 

are known to be higher in protein than mealy ones (Matsuo and Dexter, 1980; Dexter et al., 

1994).  
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QTL for grain protein were previously identified on all chromosomes (Lie et al., 2012; 

Bogard et al., 2013; Echeverry-Solarte et al., 2016; Kumar et al., 2017).  A limited number of 

QTL for grain protein in this study may be due to the low genetic diversity within the genotypes.  

The QTL on chromosome 7A was located near a QTL identified in earlier studies (Groos et al., 

2003; Prasad et al., 2003, Sun et al., 2010).  QTL on chromosomes 5B and 7B were not 

previously reported in durum wheat and may be novel for grain protein.  No co-locations 

between QTL for grain yield and grain protein were observed in this study, suggesting the 

possibility of independent improvement of these traits (Blanco et al., 2012).  Such QTL could be 

important for improving grain protein through MAS without an impact on yield.  

One common QTL for VIT and WPROT was identified on chromosome 5B at 140.5-

143.7 cM. There was a positive phenotypic correlation between the two traits in all 

environments, corresponding with the results of previous studies (Sissons, 2004; Pagnotta et al., 

2005; Bilgin et al., 2010; Sieber et al., 2016).  The relationship, however, remains controversial 

in the literature (Autran et al., 1986; Longin et al., 2013; Pinheiro et al., 2013). 

Identification of major and minor QTL for traits affecting milling quality parameters 

confirm their polygenic nature (Kumar et al., 2016; Sun et al., 2009; Wu et al., 2015).  The 

majority of the QTL were associated with two or more milling-related characteristics, suggesting 

that these loci either have a pleiotropic effect or are tightly linked (Kumar et al., 2016; Russo et 

al., 2014; Hessler et al., 2002).  Similar results were reported in other studies and were also 

expected based on phenotypic analysis (Fig. 3-1).  

Durum wheat flour- and semolina-related characteristics  

Milling quality. The aim of the durum wheat grain milling process is to maximize 

semolina and minimize flour production through successive steps of grinding and sieving 
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(Posner, 2009).  The process is complex as it depends on different factors, such as the moisture 

content of the grain, impurities and broken durum wheat kernels, the size and texture of the 

grain, and grain protein content (Gonzales, 1995).  

Durum wheat flour- and semolina-related characteristics in this study included three 

traits: TEXT, SEXT, and SASH.  Test weight and kernel weight are known to be positively 

correlated with SEXT; however, in this study, no significant correlation between these traits was 

observed (Marshall et al., 1986; Matsuo and Dexter, 1980; Bilgin et al., 2010).  This could be 

due to the small genetic variation for SEXT in this study (Table 3-3).  All of the QTL for TEXT 

were identified for SEXT as well.  A QTL for semolina yield was identified earlier in the same 

region on chromosome 7A using diverse germplasm from around the world (Clarke et al., 2008).  

The QTL on chromosome 1B could be the same as the QTL reported by Zhang et al. (2008).  

The QTL on chromosomes 2B and 6B were not previously reported and could be novel.  

Semolina ash is a complex trait; however, a decrease in grain weight always results in 

lower extraction rates or increased ash content (Breseghello and Sorrells, 2007; Brevis et al., 

2010).  Ash content affects pasta color and has been associated with LDG and FN on 

chromosome 1A and change in color a (Dif_a) on chromosome 5B.  QTL for SASH on 

chromosomes 1B and 6A were also reported in earlier studies (Zhang et al., 2008).  

Protein- and dough-related traits. The quantity and quality of gluten are considered the 

most important parameters for pasta production.  Therefore, to maintain and enhance market 

share, selecting for gluten strength is one of the primary criterion in durum wheat breeding 

programs.  This requires an understanding of the genetic control of this trait and an ability to 

exploit the possibilities for using MAS.  
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The protein- and dough-related characteristics measured in this study included semolina 

protein (SPROT), gluten index (GI), wet gluten (WG), sedimentation volume (SDS), mixogram 

score (MIXO), and glutograph (GLUT).  Gluten index (GI), SDS, and MIXO were highly 

correlated in the present study (Fig. 3-1).  While QTL for gluten strength in both tetraploid and 

hexaploid wheat have been identified on most wheat chromosomes, the major and most 

consistent QTL across environments are located on chromosome 1B (Conti et al., 2011; Patil et 

al., 2009; Elouafi et al., 2000; Kumar et al., 2013).  This corresponds with the present study, 

where two consistent QTL measured with GI, SDS, and MIXO (explaining 7 to 11% of the 

phenotypic variation) and located 15 cM apart were detected on the distal part of the long arm of 

chromosome 1B.  In addition, the other QTL for gluten strength on chromosome 1A explains 

about 6% of the phenotypic variation.  Previous studies show that the high molecular weight 

glutenin subunits (HMW-GS) are particularly important for determining dough elasticity and 

correlated positively with dough baking quality (Anjum et al., 2007).  Group 1 chromosomes 

harbor genes for glutenins subunits: HMW-GS loci (Glu-A1, Glu-B1, and Glu-D1) on their long 

arms (Payne and Lawrence, 1983) and LMW-GS loci (Glu-A3, Glu-B3, and Glu-D3) on their 

short arms (D’Ovidio and Masci, 2004).  In the present study, QTL for GI, SDS, and MIXO 

detected on homologous chromosomes 1 were also co-located with QTL for FIRM.  Although 

QTL for gluten strength parameters on chromosomes 3B and 7B showed a minor contribution 

toward phenotypic variation (3-6%), they were consistent across environments and datasets.  

Conti et al. (2011) also reported QTL for gluten strength on chromosome 3B.  The QTL on 

chromosomes 6A and 7B were earlier reported by Patil et al. (2009) and Kumar et al. (2013). 

The majority of the earlier studies identified QTL for protein quality and gluten strength 

using mainly the SDS method and a bi-parental mapping population.  Association mapping 
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population and use of SNP markers can identify the location of the QTL for gluten strength more 

precisely.  

In the present study, QTL for WG and GLUT were identified on chromosomes 1B, 2A, 

2B, 6A, and 7A.  They shared more common QTL for semolina protein content (SPROT) than 

gluten strength (GI, SDS, MIXO), suggesting the importance of protein quantity and quality for 

dough strength and pasta production (D’Egidio et al,, 1990; Sissons, 2008).  Lower heritability of 

these traits suggests influence by the environment, which was also demonstrated by the 

inconsistency in QTL identification across datasets. 

Color-related traits. Eight color-related traits were measured in the present study, 

including dough color a†, color b†, color L† before and after 24 hours, indicated pigment loss 

(dif_a, dif_b, dif_L), dried pasta color (‘color’), total yellow pigment (TYP) in whole-wheat 

flour, and polyphenol oxidase (PPO) in whole wheat flour.  As expected, color-related traits were 

inherently correlated.  Four overlapping QTL were identified for TYP and dough color b† on 

chromosomes 2B and 7A.  Dough color a†, dough color b†, pigment loss measured as difference 

in dough color b† after 24 hours, and overall spaghetti color had overlapping QTL on 

chromosomes 4A, 4B, and 7A.  Essentially all the QTL for dough color b†, a†, ,and TYP had 

been identified earlier (Hessler et al., 2002; Carrera et al., 2007; Garbus et al., 2009; Verlotta et 

al., 2010; Parker et al., 1998; Mares and Cambell, 2001; Diaye et al., 2017; Poznial et al., 2012 

Pozniak et al., 2007; Zhang and Dubkovsky, 2008).  Major QTL for yellowness were detected on 

chromosomes 7A and 7B for both common (Parker et al., 1998; Mares and Cambell, 2001) and 

durum wheat (Zhang et al., 2008).  

In durum wheat, chromosome 4B has two Lpx-1 genes, Lpx-B1.1 and Lpx-B1.2.  

Previous studies show that deletion of Lpx-B1.1 is associated with a carotenoid pigment 
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degradation during pasta processing (Hessler et al., 2002; Carrera et al., 2007; Garbus et al., 

2009; Verlotta et al., 2010).  The semi-dwarfing gene Rht-B1b was found linked to Lpx-B1.1 in 

durum wheat (Peng et al., 1999) (Diaye et al., 2017; Poznial et al., 2012).  This study found the 

same QTL associated with pigment loss and HT on chromosome 4B in the region between 18.4 

to 28.8 cM.  Markers for pigment loss on chromosome 4B did not show an association with 

dough color b† and TYP, confirming that Lpx-B1.1 deletion has an effect on LOX activity during 

processing, but not on initial semolina or pasta color (Borelli et al., 1999; Carrera et al., 2007).  

The QTL on chromosomes 6A, 7A, and 7B showed no association with differences in 

grain size or shape, suggesting a more direct effect on the accumulation of carotenoid pigments.  

In tetraploid wheat, the distal region on chromosomes 7A and 7B has been associated with TYP 

(Pozniak et al., 2007; Zhang and Dubkovsky, 2008).  QTL for color b† and TYP on chromosome 

7B were in the same vicinity as the previously-reported Phytoene synthase 1 locus (PSY-B1) 

(Pozniak et al., 2007). 

For pasta color a† (green-red chromaticity), the four loci detected on chromosomes 1B, 

2B, 4A, and 4B suggest complex genetic control of this trait.  Considering the overlapping QTL 

on chromosome 3B, 4A, and 4B with QTL for color, col_b, and dif_b, as well as the negative 

correlation between dough color a† and b† (R=-0.26) and pigment loss as measured by color a† 

and b† (R=-0.63),  a genetic linkage between these two traits could be suggested.  Therefore, 

much effort should focus on breaking the LD to facilitate selecting against redness in dough 

color.  This study’s findings and those by Diaye et al. (2017) support the undesirable association 

between pasta redness and pasta yellowness.  The positive correlation between dif_b and dif_L 

(r=0.31), as well as the negative correlation between dif_L and dif_a (-0.41) and dif_b and Dif_a 

(r=-0.63) and a single QTL on chromosome 6A associated with col_b and dif_b, may suggest an 
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indirect masking effect of col_a on col_L by directly influencing col_b, especially in semolina 

dough over time.   

Previously-reported QTL for polyphenol oxidase (PPO) activity were independent from 

other color-related traits, suggesting that its effect on pasta quality is due to a browning reaction 

rather than the influence of semolina color components (Zhai et al., 2016).  Two QTL were co-

localized for PPO and dif_L on chromosome 7B and color_a on chromosome 1A.  Correlation of 

the PPO trait with other agronomic or quality traits was not significant; however, suggesting a 

minor effect of co-localized QTL on color-related traits.  A major QTL for PPO on chromosome 

2B was located in a proximate region compared to the earlier-reported QTL by Beecher et al. 

(2012) and Si et al. (2012).  In hexaploid wheat, PPO activity is mainly controlled by the genes 

located on chromosomes 2A and 2D (Zhang et al., 2005; He et al., 2007; Wang et al., 2009).  

Previously-reported major QTL for PPO on chromosome 2A in tetraploid wheat could not be 

identified in the present study (Watanabe et al., 2006).  The major QTL for PPO on 3A and 3B 

seem to be novel and could be attributed to different sources of germplasm used in this study.  

Cooking-related traits 

QTL for four cooking-related traits (FIRM, CLOSS, WTS, and CWT) were overlapping 

with QTL for gluten strength on chromosome 1B and WPROT on chromosome 7B.  Zhang et al. 

(2008) reported QTL for mixograph peak height and width near the QTL for firmness and 

cooking loss on chromosome 1B.  Whole-wheat protein, GI, and SDS are positively correlated 

with pasta firmness and inversely correlated with CLOSS.  Independent QTL for firmness on 

chromosomes 6A and 7A suggest that other parameters than protein quantity and quality affect 

pasta firmness and cooking loss.  For instance, genes responsible for amylose synthesis are 

reported on chromosome 7A (Miura et al., 1999).  



 

118 
 

Applicability of using unbalanced historic phenotypic data for identification of QTL/marker trait 

associations  

The collection of phenotypic data requires extensive effort and resources.  Breeding 

programs collect large amounts of phenotypic data from advanced breeding lines every year for 

selection purposes.  However, the number of such advanced breeding lines tested each year is 

relatively small, and some of these lines are replaced by other breeding lines, resulting in an 

unbalanced dataset of advanced breeding lines developed over time.  Combining existing historic 

unbalanced dataset with affordable marker genotyping could be a reliable and useful method for 

genome-wide association studies (GWAS).  This could save significant resources and provide 

useful information about marker trait associations in breeding programs.  

The present study used data from 243 lines grown at different times over 16 years at five 

locations and found that unbalanced data could be efficiently used for QTL detection.  Most of 

the major and minor QTL for agronomic and quality traits were identified using both the 

balanced and unbalanced datasets.  Over 45% of QTL for agronomic traits were present in both 

the unbalanced and balanced datasets, with about 50% of those present in both locations in the 

balanced dataset.  Similarly, over 50% of the quality traits measured were identified in both 

datasets.  In most instances, the significance of the QTL in the unbalanced dataset (p-value) were 

commensurate with those in the balanced data set.  These observations also corresponded with 

the phenotypic data, where all the correlations for agronomic and quality traits between the 

balanced and unbalanced datasets were above r=0.55 and over half of the traits above r=0.75 

(SDS, GI, DTH, HT, TKW, MK, and LK).  The correlations of traits related to cooking between 

the two datasets were a little bit lower, but still significant (r=20 for CLOSS and r=41 for FIRM), 
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which might be explained by the difference in cooking methods (dry spaghetti vs. fresh spaghetti 

cooking).    

Mixograph data that measured gluten and dough strength were only available from the 

unbalanced dataset, however, QTL for MIXO detected in that dataset were located in the same 

genomic regions as those for gluten strength (measured with different approaches), which was 

present in both datasets.   

A limited number of studies have compared the efficacy/accuracy of using unbalanced 

datasets for QTL detection with GWAS.  Wang et al. (2012) estimated the optimum number of 

lines to be 384 and above for accurately predicting major and minor QTL.  Dawson et al. (2013) 

used yield data collected from 168 locations over 17 years to show the usefulness of an 

unbalanced dataset for genomic prediction.  While they used a unique set of genotypes each year, 

the genotypes in the present study overlapped.  The phenotypic correlation of the traits was also 

comparable between the balanced and unbalanced datasets.  Yield shows a significant positive 

correlation with HT, TWT, and kernel weight and a negative correlation with LD in both 

datasets.  Gluten index was highly positively correlated with SDS and mixograph score in both 

datasets.  In both datasets, the GI was positively correlated with FIRM, however, WG had a 

higher correlation with FIRM and WPROT.  Based on correlations among traits in both datasets, 

common trends can clearly be observed.  

Candidate markers for MAS 

Applying markers in plant breeding enables selection of superior genotypes for the traits 

that are difficult and expensive to phenotype.  It allows breeders to make decisions in early 

generations and advance superior genotypes in a timely manner.  Marker assisted breeding 

allows breeders to hasten the process of transferring desirables alleles.  In the present study, 
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some markers identified for gluten strength, HT, YLD, PPO, and SK were considered promising 

for MAS in the durum wheat breeding program.  

Gluten strength  

Gluten strength was measured using three different methods: SDS, GI, and mixogram 

score.  Marker IWB70674 on chromosome 1B at 15.2 cM was significant and constant in all 

locations and both datasets. The pFDR value was low in the unbalanced dataset and LP dataset 

and present in both the Langdon and Prosper locations for GI and SDS.  It was also detected by 

the mixogram score, which was only measured in the unbalanced dataset with a pFDR value less 

than 0.1.  A single marker explained about 9-11% of phenotypic variation in the tests that 

measured gluten strength. The marker IWB70674 on 1B was most significant for gluten strength 

as it had a stable and major effect.  The SNP IWB6234 detected for SDS could also be useful for 

MAS as it was detected in all datasets.  Based on the information for these two markers, two 

haplotypes are present for gluten strength measured by SDS, GI, and the mixograph (Table 3-

12). 

Plant height 

One of the strongest marker-trait associations was identified on chromosome 4B in the 

region 17.7 to 28.8 cM with markers in that genomic region being in high linkage disequilibrium.  

This genomic region was highly positively associated with YLD, TWT, TKW, and SK.  The 

SNP marker IWB72203 had a pFDR value less than 0.01 in both datasets, as well as both 

locations, with the highest R2 = 19%; thus having the strongest association for height. The SNP 

marker IWA4773 on chromosome 6A also showed a low pFDR value and was consistent across 

environments.  SNP marker IWB7419 on chromosome 1B had a slightly higher p-value; 

however, the R2 = 5-6% and was consistent over environments.   
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Table 3-12. Phenotypic means and t-test p-values for population with various combinations of 
markers for gluten strength. 

 

Marker 

applicable for 

MAS 

Phenotype Number 

of 

genotypes  

Phenotypic 

mean  

Range of the 

phenotypic trait 

Actual nucleotide 

IWB70626      
Unbalanced High GI 

haplotype 
179 60.2 22.8 - 92.5 G 

 Low GI 
haplotype 

42 43.9 9.2-69.5 T 

t-test   6.66236E-06   
Mean PL      
 High GI 

haplotype 
191 47.6 12.9 - 82.8 G 

 Low GI 
haplotype 

49 36.7 1.04-64.7 T 

t-test   5.44463E-05   
IWB6234 and IWB70626    
Unbalanced High GI 

haplotype 
14 69.0 50.9-87.6 GC 

 Low GI 
haplotype 

35 44.8 9.2-69.5 TT 

   7.45444E-07   
IWB70626      
Unbalanced High SDS 

haplotype 
187 52.3 39.0-67.4 C 

 Low SDS 
haplotype 

47 45.6 25.2-54.6 T 

t-test   1.15538E-12 

 
  

Mean PL High SDS 
haplotype 

190 55.3 38.8-74.8 C 

 Low SDS 
haplotype 

49 50.1 23.5-65.5 T 

t-test   2.50915E-05   
      
IWB6234 and IWB70626    
Unbalanced High SDS 

haplotype 
15 58.4 49.4-65.3 GC 

 Low SDS 
haplotype 

39 45.0 25.2-50.9 TT 

t-test   7.08108E-11 

 
  

Mean PL High SDS 
haplotype 

15 66.3 57.3-74.8 GC 

 Low SDS 
haplotype 

39 49.0 23.5-61.8 TT 

   5.93077E-10 

 
  

IWB70626     C 
Unbalanced High Mixo score 187 6.5 4.9-8.3 T 
 Low Mixo Score 47 5.5 2.5-6.6  
t-test   3.29702E-12   
IWB6234 and IWB70626    
 High Mixo score 15 6.7 5.8-7.5 GC 
 Low Mixo Score 39 5.4 2.5-6.6 TT 
t-test   2.758E-07   
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Table 3-13. Phenotypic means and t-test p-values for population with various combinations of 
markers for plant height. 

 

 

Using markers and their combinations (haplotypes), it is possible to select for height 

using MAS in cases where a desired height is needed or for prediction purposes. 

Yield 

Yield is a complex trait influenced by both genotype and environment.  Markers on 

chromosomes 2A, 3B, and 5B in the present study were shown to be good candidates for MAS 

for YLD together improving it by 23% and 36 % in the combined and PL datasets, respectively.  

The yield trait on chromosome 2A was also associated with gluten strength; on chromosome 3B 

with HT, kernel size distribution, TWT, and TKW; and on chromosome 5B with LD, HT, and 

kernel distribution (Table 3-14).   

Marker 

applicable for 

MAS 

Phenotype Number of 

genotypes  

Phenotypic 

mean  

Range of the 

phenotypic trait 

Actual nucleotide 

IWB72203      
Unbalanced Tall plants 215 88.7 76.8-115.9 A 
 Short plants 19 78.8 70.2-87.2 C 
t-test   1.362E-07   
Mean PL      
 Tall plants 221 94.6 76.8-120.0 A 
 Short plants 18 82.0 68.3-95.0 C 
t-test   3.11888E-06   
IWA4773    
Unbalanced Tall plants 230 88.0 70.2-116.0 A 
 Short plants 4 78.1 75.0-81.7 C 
t-test   0.006898452   
Mean PL Tall plants 235 93.9 68.3-120.0 A 
 Short plants 4 76.6 69.8-87.2 C 
t-test   0.019759805   
IWB7419      
Unbalanced Tall plants 5 99.6 90.6-116.0 G 
 Short plants 229 87.6 70.2-99.6 A 
t-test   0.050899634   
Mean PL Tall plants 5 105.7 98-120.0 G 
 Short plants 235 93.4 68.3-103.5 A 
t-test   0.088551171   
IWB72203 and IWA4773    
Unbalanced Tall plants 214 88.7 76.3-116.0 AA 
 Short plants 3 76.9 75.0-79.7 CC 
t-test   0.012078517   
Mean PL Tall plants 220 94.6 76.8-120.0 AA 
 Short plants 3 73 69.8-76.8 CC 
t-test   0.007815881   
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Small kernel distribution 

 
Three markers were significantly associated with the percentage of small kernel 

distribution (Table 3-15).  The results for the unbalanced dataset were likely more pronounced 

due to a smaller genotypic effect and GxE interaction.  Marker combinations used to identify low 

and high percent SK showed a lower t-test value as compared to using markers individually, 

suggesting the usefulness of several markers for MAS.   

Table 3-14. Phenotypic means and t-test p-values for population with various combinations of 
markers for yield. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Marker 

applicable for 

MAS 

Phenotype Number 

of 

genotypes  

Phenotypic 

mean  
Range of the 

phenotypic trait 
Actual 

nucleotide 

IWB25863      
Unbalanced High yields 3 63.2 60.7-66.1 C 
 Low yields 231 56.9 42.8-67.1 T 
t-test   0.05612303   
Mean PL      
 High yields 3 1753.3 1647.0-1869.4 C 
 Low yields 236 1618.1 1049.5-2063.5 T 
t-test   0.167899275   
IWB73293    
Unbalanced High yields 230 57.1 48.0-67.2 T 
 Low yields 4 49.1 42.8-54.9 C 
t-test   0.068940789   
PL High yields 235 1624.5 1183.5-2063.5 T 
 Low yields 4 1337.7 1049.5-1565.5 C 
t-test   0.110380431   
IWB40750      
Unbalanced High yields 224 57.2 45.9-67.2 T 
 Low yields 10 51.7 42.8-59.7 C 
t-test   0.00592538   
Mean PL High yields 229 1632.8 1315.9-2063.5 T 
 Low yields 10 1321.5 1049.5-1729.9 C 
t-test   0.000375448   
IWB25863 and IWB73293 and IWB40250    
Unbalanced High yields 3 63.2 60.7-66.1 CTT 
 Low yields 2 48.8 42.8-55 TCC 
t-test   0.238382221   
Mean PL High yields 3 1753.3 1647.01-1869.4 CTT 
 Low yields 2  1122.31 1049.5-1195.1 TCC 
t-test   0.013666514   
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Table 3-15. Phenotypic means and t-test p-values for population with various combinations of 
markers for small kernel distribution. 

 

 

 

 

 

 

 

 

 

PPO activity 

 

QTL strongly associated with PPO were identified on chromosomes 1A (IWA5150), 2B 

(IWA1488), 3A (IWB69399), and 3B (IWB23604) (Table 3-16).  All SNP markers had low 

pFDR values.  Due to the low minor allele frequency (MAF), the ability to detect QTL was low, 

but because the pFDR was low, this association is probably not a false positive.  

Table 3-16. Phenotypic means and t-test p-values for population with various combinations of 
markers for PPO activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Marker 

applicable for 

MAS 

Phenotype Number 

of 

genotypes  

Phenotypic 

mean  
Range of the 

phenotypic trait 
Actual 

nucleotide 

IWB7614 and IWB7940 and IWB72203   
Unbalanced Low % SK 207 4.4 0.6-8.8 TAA 
 All other lines 24 6.2 3.5-10.4 CGC 
t-test   4.33044E-05   
Mean PL      
 Low % SK 215 3.2 1.0-10.5 TAA 
 All other lines 24 6.6 2.9-18.5 CGC 
t-test   0.000283574   

Marker 

applicable for 

MAS 

Phenotype Number 

of 

genotypes  

Phenotypic 

mean  
Range of the 

phenotypic trait 
Actual 

nucleotide 

IWA5150   
Mean PL Low PPO 237 0.11 0.04-0.54 T 
 All other lines 2 0.41 0.34-0.48 G 
t-test   0.140956287   
IWA1488      
PL      
 Low PPO 235 0.10 0.04-0.54 A 
 All other lines 4 0.43 0.038-0.048 G 
t-test   0.000149301   
IWB69399      
Mean PL Low PPO 229 0.10 0.038-0.048 A 
 All other lines 10 0.38 0.06-0.54 G 
   2.20191E-05   
IWB23604 Low PPO 231 0.10 0.038-0.490 T 
Mean PL All other lines 8 0.422 0.10-0.54 G 
   0.000360083   
IWA1488 + IWB69399 + IWB23604    
Mean PL Low PPO 228 0.95 0.038-0.480 AAT 
 All other lines 11 0.43 0.10-0.54 GGG 
   7.32631E-07   
IWA5150 + IWA1488 + IWB69399 + IWB23604   

Mean PL Low PPO 225 0.09 0.04-0.50 TAAT 
 All other lines 14 0.40 0.06-0.54 GGGG 
t-test   2.56311E-06   
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Conclusion 

 

The present study combined a large amount of multi-environment unbalanced historic 

and balanced phenotypic data from durum wheat with high-density Infinium SNP marker data to 

identify marker-trait associations (MTAs) for agronomic and quality traits.  The study also 

attempted to find out if the unbalanced data collected over the years could be useful for GWAS. 

Genome-wide association studies revealed that QTL/MTAs for agronomic and quality traits are 

distributed on all durum wheat chromosomes.  A genomic region near Rht-B1 on 4BS showed a 

stable and pleiotropic effect on HT, TWT, TKW, kernel size distribution, and LDG and could be 

an important region for MAS to improve these traits.  Haplotypes were proposed for MAS for 

HT and SK distribution; however, the TKW and TWT phenotypic distribution was not 

vast/diverse enough to identify candidate QTL for MAS.  Markers associated with major QTL 

for gluten strength on chromosomes 1A and 1B; PPO activity on chromosomes 1A, 2B, 3A, and 

3B; and yield on chromosomes 3A, 2B, and 5B could also be excellent candidates for MAS in 

durum wheat breeding programs.  Yield is a highly complex trait, influenced by many factors.  

Genome-wide selection for improving yield is one of the promising approaches.  Therefore, the 

haplotypes suggested for YLD improvement in this study can serve as a preliminary step for 

identifying promising genotypes in the early breeding stages through MAS. Common QTL 

detected in both the unbalanced historic and balanced datasets suggest the practicality of using 

unbalanced data from breeding trials for identifying MTAs.  Breeders annually obtain 

phenotypic information on a large number of genotypes, which could be beneficial if combined 

to produce a large population size, eliminating the need to develop special population for 

identifying major QTL. 
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APPENDIX 

 



 

 
 

Table A-1. Unbalanced combined data for agronomic traits measured in RCBD over 5 locations and 19 years. 

Trait MS H¶ SE# 

 G Y L Y*L Rep (Y*L) Y*G L*G G*Y*L Error   

YLD 288.65** 33021* 405434** 16496** 223.44** 77.41* 106.55** 65.87** 31.92 0.096 0.018 

HT 4015.26 9910.28* 210039 4860.97** 143.752** 30.27 104585** 30.21** 18.10 0.539 0.025 

DTH 28.12 5698.48** 27814** 1223.38** 5.69** 23.48** 2.17** 1.46** 0.76 0.476 0.028 

LD 5.57** 80.52 374.79* 44.84** 4.55** 1.95 3.40** 2.28** 0.83 0.168 0.029 

LDG 19.68** 124.34 3.55 54.46** 6.04** 2.43 64.64** 2.09** 0.90 0.202 0.029 

*, ** Significance at P < 0.05, 0.01, respectively 
¶ Heritability on plot basis calculated for the genotypes. # Standard error for heritability 
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Table A-2. Unbalanced combined data for quality traits. 

Trait MS H¶ SE# 

 G L Rep(L) G*L Error   

GI 3531.53** 6918.65** 3226.44** 116.41** 91.77 0.655 0.021 

WG 44.04** 766.45* 773.30** 7.69** 5.43 0.291 0.025 

TKW 39.93** 1430.98** 845.01** 5.05** 4.35 0.389 0.025 

TWT 6.73** 191.06** 136.88** 1.31** 0.90 0.309 0.025 

VIT 47310** 32988** 300035** 16500 152094 0.223 0.021 

WPROT 1.92** 87.19* 88.74** 0.41** 0.35 0.209 0.020 

SPROT 1.45** 82.62* 79.82** 0.36** 0.27 0.194 0.020 

TEXT 6.96** 546.61** 89.63** 1.24* 1.07 0.288 0.024 

SEXT 8.84** 405.46** 79.43** 1.28 1.20 0.338 0.024 

SASH 0.008** 0.313** 0.233** 0.002** 0.002 0.224 0.022 

Color 0.62** 14.42** 9.59** 0.12** 0.10 0.272 0.025 

MIXO 12.09** 8.95 11.54** 0.54** 0.42** 0.551 0.023 

CWT 1.87** 37.84** 24.67** 0.72** 0.60 0.088 0.011 

CLOSS 0.54** 13.48 18.44** 0.21** 0.16 0.116 0.017 

FIRM 1.85** 136.52* 135.37** 0.28** 0.22 0.262 0.022 

LK 612.69** 19047.00** 14882.00** 63.17* 55.36 0.446 0.024 

MK 480.25** 14540.00** 11904.00** 57.17* 50.91 0.103 0.025 

SK 19.73** 548.75** 461.29** 5.74** 4.38 0.178 0.020 

SDS 643.98** 2636.55** 1953.89** 28.72** 21.77 0.574 0.023 

FN 9310.93** 405182.00** 204655.00** 1933.29** 1386.54 0.237 0.021 

*, ** Significance at P < 0.05, 0.01, respectively 
¶ Heritability on plot basis calculated for the genotypes. # Standard error for heritability 
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Table A-3. Balanced data for agronomic and quality traits.  

Trait MS H¶ SE# 

 L Rep(L) G G*L Error   

YLD 834397.83** 389897.53** 87005.17** 51552.76** 15951.47 0.207 0.048 

HT 0.64 108.18** 127.59** 16.65 14.05 0.642 0.028 

DTH 18900.69** 7.17** 6.37** 1.52** 0.99 0.487 0.036 

LD 1507.75** 0.35 2.21** 0.99** 0.48 0.295 0.043 

LDG 3518.55** 64.73** 7.61** 3.82** 2.26 0.236 0.042 

FN 75455.91** 311858.10** 7185.25** 2882.20** 1610.02 0.322 0.042 

VIT 43076.09** 14301.21** 205.03** 72.65** 45.93 0.358 0.040 

TWT 3471.20** 137.55** 5.76** 2.18** 0.50 0.400 0.046 

TKW 11597.96** 227.56** 24.11** 6.49** 3.19 0.476 0.038 

WPROT 382.30** 7.05** 0.69** 0.26** 0.10 0.385 0.043 

SPROT 570.61** 5.66** 0.86** 0.27** 0.10 0.447 0.042 

LK 124362.67** 85.63 370.71** 86.91** 32.01 0.545 0.037 

MK 96229.79** 77.85* 257.10** 64.67** 25.09 0.518 0.038 

SK 1801.29** 11.24** 15.84** 5.84** 0.95 0.426 0.047 

GI 405220.08** 6920.06** 1000.44** 176.54** 78.81 0.619 0.032 

SDS 9123.01** 5242.92** 210.49** 28.01** 16.62 0.670 0.027 

GLUT 47.78** 0.61** 0.07** 0.03** 0.01 0.297 0.056 

WG 14402.79** 235.27** 18.30** 6.49** 2.16 0.411 0.043 

L* 1030.62** 13.72** 2.29** 1.30** 0.75 0.195 0.042 

a* 77.01** 6.09** 0.66** 0.22** 0.11 0.403 0.041 

b* 645.64** 18.65** 11.63** 1.19** 0.75 0.730 0.023 

Dif_L 585.54** 47.02** 7.45 7.29 6.60 0.005 0.033 

Dif_a 97.65** 0.38** 0.13** 0.08* 0.06 0.169 0.038 

Dif_b 219.48** 0.38 1.90** 0.95** 0.64 0.232 0.041 

TYP 128.28** 7.16** 3.33** 0.24** 0.14 0.803 0.018 

PPO 0.0486** 0.0026 0.0568** 0.0018** 0.0011 0.905 0.009 

CLOSS 52.68** 38.04** 0.16 0.18** 0.14 0.103 0.045 

CWT 2.79 8.81** 0.85 0.85 0.80 0.156 0.044 

*, ** Significance at P < 0.05, 0.01, respectively 
¶ Heritability on plot basis calculated for the genotypes. # Standard error for heritability 
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Figure A-1. Manhattan plots showing P-values for single-nucleotide polymorphism (SNP) 

markers associated with (A) plant height; (B) sedimentation value (SDS); (C) kernel vitreousness 

in Langdon, North Dakota in 2015.  The horizontal dotted red line indicates significant threshold 

at P-value = 0.001. The black horizontal line indicates significant threshold at positive false 

discovery rate (pFDR) = 0.1.  
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Figure A-2. Manhattan plots showing P-values for single-nucleotide polymorphism (SNP) 

markers associated with (A) yield; (B) plant height; (C) leaf disease; (D) test weight; (E) 1000-

kernel weight; (F) percent of large kernels; (G) percent of medium kernels; (H) percent of small 

kernels; (I) polyphenol oxidase activity (PPO); (J) sedimentation value (SDS); (K) gluten index; 

(L) Difference in A color; (M) spaghetti cooked weight; and (N) cooking loss in Prosper, North 

Dakota in 2015.  The horizontal dotted red line indicates significant threshold at P-value = 0.001. 

The black horizontal line indicates significant threshold at positive false discovery rate (pFDR) = 

0.1. 
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Figure A-2. Manhattan plots showing P-values for single-nucleotide polymorphism (SNP) 

markers associated with (A) yield; (B) plant height; (C) leaf disease; (D) test weight; (E) 1000-

kernel weight; (F) percent of large kernels; (G) percent of medium kernels; (H) percent of small 

kernels; (I) polyphenol oxidase activity (PPO); (J) sedimentation value (SDS); (K) gluten index; 

(L) Difference in A color; (M) spaghetti cooked weight; and (N) cooking loss in Prosper, North 

Dakota in 2015 (continued).  The horizontal dotted red line indicates significant threshold at P-

value = 0.001. The black horizontal line indicates significant threshold at positive false discovery 

rate (pFDR) = 0.1. 
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Figure A-2. Manhattan plots showing P-values for single-nucleotide polymorphism (SNP) 

markers associated with (A) yield; (B) plant height; (C) leaf disease; (D) test weight; (E) 1000-

kernel weight; (F) percent of large kernels; (G) percent of medium kernels; (H) percent of small 

kernels; (I) polyphenol oxidase activity (PPO); (J) sedimentation value (SDS); (K) gluten index; 

(L) Difference in A color; (M) spaghetti cooked weight; and (N) cooking loss in Prosper, North 

Dakota in 2015 (continued).  The horizontal dotted red line indicates significant threshold at P-

value = 0.001. The black horizontal line indicates significant threshold at positive false discovery 

rate (pFDR) = 0.1. 
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Figure A-2. Manhattan plots showing P-values for single-nucleotide polymorphism (SNP) 

markers associated with (A) yield; (B) plant height; (C) leaf disease; (D) test weight; (E) 1000-

kernel weight; (F) percent of large kernels; (G) percent of medium kernels; (H) percent of small 

kernels; (I) polyphenol oxidase activity (PPO); (J) sedimentation value (SDS); (K) gluten index; 

(L) Difference in A color; (M) spaghetti cooked weight; and (N) cooking loss in Prosper, North 

Dakota in 2015 (continued).  The horizontal dotted red line indicates significant threshold at P-

value = 0.001. The black horizontal line indicates significant threshold at positive false discovery 

rate (pFDR) = 0.1. 
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Figure A-2. Manhattan plots showing P-values for single-nucleotide polymorphism (SNP) 

markers associated with (A) yield; (B) plant height; (C) leaf disease; (D) test weight; (E) 1000-

kernel weight; (F) percent of large kernels; (G) percent of medium kernels; (H) percent of small 

kernels; (I) polyphenol oxidase activity (PPO); (J) sedimentation value (SDS); (K) gluten index; 

(L) Difference in A color; (M) spaghetti cooked weight; and (N) cooking loss in Prosper, North 

Dakota in 2015 (continued).  The horizontal dotted red line indicates significant threshold at P-

value = 0.001. The black horizontal line indicates significant threshold at positive false discovery 

rate (pFDR) = 0.1. 
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Figure A-3. Manhattan plots showing P-values for single-nucleotide polymorphism (SNP) 

markers associated with (A) yield; (B) height; (C) kernel vitreousness; (D) percent of large 

kernels; (E) percent of small kernels; (F) total milling extraction; (G) sedimentation value (SDS); 

(H) gluten index; (I) mixograph score; (J) falling number weight; (L) cooked spaghetti firmness; 

and (M) cooking loss in combined data from 1997-2014.  The horizontal dotted red line indicates 

significant threshold at P-value = 0.001. The black horizontal line indicates significant threshold 

at positive false discovery rate (pFDR) = 0.1. 
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Figure A-3. Manhattan plots showing P-values for single-nucleotide polymorphism (SNP) 

markers associated with (A) yield; (B) height; (C) kernel vitreousness; (D) percent of large 

kernels; (E) percent of small kernels; (F) total milling extraction; (G) sedimentation value (SDS); 

(H) gluten index; (I) mixograph score; (J) falling number weight; (L) cooked spaghetti firmness; 

and (M) cooking loss in combined data from 1997-2014 (continued).  The horizontal dotted red 

line indicates significant threshold at P-value = 0.001. The black horizontal line indicates 

significant threshold at positive false discovery rate (pFDR) = 0.1. 
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Figure A-3. Manhattan plots showing P-values for single-nucleotide polymorphism (SNP) 

markers associated with (A) yield; (B) height; (C) kernel vitreousness; (D) percent of large 

kernels; (E) percent of small kernels; (F) total milling extraction; (G) sedimentation value (SDS); 

(H) gluten index; (I) mixograph score; (J) falling number weight; (L) cooked spaghetti firmness; 

and (M) cooking loss in combined data from 1997-2014 (continued).  The horizontal dotted red 

line indicates significant threshold at P-value = 0.001. The black horizontal line indicates 

significant threshold at positive false discovery rate (pFDR) = 0.1. 
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Figure A-3. Manhattan plots showing P-values for single-nucleotide polymorphism (SNP) 

markers associated with (A) yield; (B) height; (C) kernel vitreousness; (D) percent of large 

kernels; (E) percent of small kernels; (F) total milling extraction; (G) sedimentation value (SDS); 

(H) gluten index; (I) mixograph score; (J) falling number weight; (L) cooked spaghetti firmness; 

and (M) cooking loss in combined data from 1997-2014 (continued).  The horizontal dotted red 

line indicates significant threshold at P-value = 0.001. The black horizontal line indicates 

significant threshold at positive false discovery rate (pFDR) = 0.1. 
 


