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ABSTRACT 

The steady increase in corn based ethanol production has resulted in a dramatic rise in the 

supply of its co-product known as distillers’ dried grain with solubles (DDGS). Currently, the 

main outlet for DDGS is the animal feed industry, but the presence of fibers makes them 

indigestible by non-ruminants such as swine and poultry. Separation of fiber from DDGS would 

increase the nutritional value of DDGS with higher protein and fat contents and reduced fiber 

content. The fiber from DDGS can be separated through a physical separation process known as 

elusieve. The DDGS fiber has the potential to be used as a fiber filler in thermoplastic 

composites. This research project evaluates DDGS fiber as a filler in thermoplastic composites. 

The fibers from corn hull and DDGS have been used as fillers at 30% and 50% fiber loading in 

high density polyethylene (HDPE) composites and compared against a standard oak fiber filler 

composites at a lab scale. DDGS and corn fiber composites showed comparable mechanical 

properties as the oak wood fiber HDPE composites. Further evaluation was completed on the 

performance of composite samples at commercial scale with six combinations of oak fiber, corn 

hull fiber and DDGS fiber with fiber loading maintained at 50%, and then samples were exposed 

to UV accelerated weathering for 2000 h. The UV weathering decreased the mechanical 

properties of all the exposed samples compared to the unexposed samples. Also, UV weathering 

resulted in a severe chain scission of the HDPE polymer, increasing their crystallinity. The 

performance of mercerized or sodium hydroxide (NaOH) treated DDGS fiber as filler was 

investigated by characterizing the effects of treated and untreated DDGS fibers on physical, 

mechanical, and thermal properties of HDPE composites. The NaOH treated DDGS fiber at 25% 

loading showed consistent improvement in flexural and tensile modulus of elasticities of the 

composites compared to the neat HDPE.  
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DISSERTATION ORGANIZATION 

This dissertation is comprised of the following sections: general introduction, four 

numbered chapters, general conclusions, and recommendations for future work. Chapter 1 is a 

general literature review that covers topics on the development of different natural fiber 

composites and problems associated with the development of natural fiber composites. Chapter 

2, entitled “Fiber from DDGS and Corn Grain as Alternative Fillers in High Density 

Polyethylene Polymer Composites”, summarizes the effect of adding hull fiber from corn grain 

and distiller’s dried grain with solubles (DDGS) on material properties at two filler loadings of 

30 and 50% weight in high density polyethylene composites.  Chapter 3, entitled “Performance 

of UV weathered HDPE composites containing hull fiber from DDGS and corn grain”, presents 

the effects of UV exposure on DDGS and corn grain fiber composites. Chapter 4, entitled 

“Mercerization of DDGS fiber for improvement in material properties in high density 

polyethylene composites”, describes the effect of mercerized DDGS fiber as filler in HDPE 

composites. Chapter 4 is followed by the general conclusions from the overall project and some 

recommendations for future work. 
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GENERAL INTRODUCTION 

Composites are the materials that are made of two or more components combined to 

obtain a new material with properties better than those of the individual components. The 

advancements in fiber reinforced polymer and cement materials have led to them being used as 

the preferred building materials over the traditional concrete and steel materials [1].  The natural 

fiber polymer composites offer numerous advantages such as availability in abundance, light 

weight, non-abrasiveness, renewability, biodegradability, and high specific stiffness [2]. Many 

natural fibers such as coir [3], flax [4], hemp [5], bamboo [6], kenaf [7], abaca [8], and jute [9] 

have been used as reinforcing agents or fillers in the composite materials. Agricultural 

byproducts such as bagasse and fiber residues from wheat, corn, soybean, rice, and cotton can 

also be used as fillers in polymer composites [10-14].  

The corn based ethanol industry has been growing steadily with proportionate increase in 

the generation of its major co-product known as distiller’s dried grain with solubles (DDGS), 

mainly sold as animal feed due to its high protein content [15]. The presence of hull fiber in 

DDGS makes it difficult for the non-ruminants to digest it [16]. A physical separation process 

known as elusieve can separate DDGS into two fractions- a DDGS fraction with enhanced fat 

and protein content, and a fiber fraction [15]. The fiber fraction has the potential to be used as a 

filler in polymer composites [17, 18].  

The outdoor applications of wood composites currently dominate the commercial market 

for natural fiber filled polymer composites. These composites in an outdoor application undergo 

various environmental stresses such as heat, moisture, and microbial attack. The ultraviolet (UV) 

rays cause the scission of polymer chains and attack the integrity of the fiber structure [17]. 

Natural fibers being hydrophilic in nature have poor interfacial bonding with the hydrophobic 

polymer matrices. This incompatibility leads to high moisture absorption causing dimensional 
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instability of composites, poor stress transfer, and loss of mechanical properties. This mismatch 

between the fiber and the matrix can be improved by chemical treatments such as mercerization, 

physical treatments, and coupling agents. The chemical treatment such as mercerization of fibers 

improves interfacial bonding. The characteristic features of mercerization are swelling of fiber, 

solubilization of hemicelluloses and lignin, reduction in degree of polymerization of cellulose, 

and higher mechanical interlocking sites on the mercerized fiber [19].  

Research Objectives and Their Hypotheses 

 

The overall objective of this research project was to evaluate the performance of corn hull 

fiber and DDGS fiber, two agricultural byproducts, as fillers in thermoplastic composites. The 

specific objectives of this research were to: 

I. Evaluate the performance of corn hull and DDGS fibers as fillers in high density 

polyethylene (HDPE) from petroleum based and bio based sources. 

II. Evaluate the durability of corn and DDGS fiber filled high density polyethylene 

composites produced at a commercial scale under UV and moisture weathering. 

III. Evaluate the effect of mercerization of DDGS fibers in improving interfacial bonding 

with HDPE in composites.  

The underlying research hypotheses for the three objectives are: 

(1) The corn hull and DDGS fibers have the molecular structure suitable for binding; 

therefore, these fibers can be used as alternative fillers in thermoplastics composites.  

(2) The presence of very small amount of lignin, a main precursor to the initiation of UV 

degradation in wood composites, in corn hull and DDGS fibers may help in resisting the 

degradation effects of UV weathering in their composites.  



 

4 

(3) The mercerization of DDGS fiber will increase the surface roughness thus increasing 

the interacting sites on the fiber surface for better mechanical interlocking with the HDPE 

matrix. 
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CHAPTER 1. LITERATURE REVIEW 

Fiber Reinforced Composites 

Fiber reinforced composites comprises of synthetic fibers such as carbon, glass, and 

aramid incorporated in a polymer matrix to meet high strength/high modulus requirements for 

different material applications [20]. But in the last few decades, numerous concerns over 

environmental protection, proper degradation of synthetic composites at the end of their life 

cycle, and greenhouse gas emissions (GHG) have prompted the research community all over the 

world to explore other alternatives to the synthetic fiber composites. There has been a great surge 

from both academic institutions as well as by the composite industries to include natural fibers in 

place of synthetic fibers in polymer composites. The United States Department of Agriculture 

(USDA) and the Department of Energy (DOE) have set targets of having at least 10% of all basic 

chemical building blocks to be created from renewable and plant based sources in 2020 and 

increasing this contribution to 50% by 2050 [21].  

The numerous advantageous characteristics that natural fibers possess over glass fibers 

have led to their much-gained popularity in the composite industries. The ease of processing, 

renewability, sustainability, biodegradability, non-abrasiveness, low cost, and high specific 

strength make them desirable as reinforcement or filler in polymer composites [20].  

Polymers can be mainly classified into two classes, thermoplastic and thermosetting.  

Commonly used matrices in thermoplastic composites are polypropylene (PP), polyethylene 

(PE), and poly vinyl chloride (PVC); while thermosetting matrices used are phenolic, epoxy and 

polyester [22]. 

Natural Fibers  

There are two types of plants known as primary and secondary plants based on their 

utilization. Primary plants are plants that are grown for their fiber which include jute, hemp, 
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kenaf and sisal. Secondary plants are plants from which the fibers are produced as a byproduct. 

Examples of secondary plants are pineapple, oil palm, and coir. Fibers could be obtained from 

woody or non-woody plants. The plant fibers from non-woody plants can be categorized into six 

types (Fig.1.1) which are bast fibers, leaf fibers, seed fibers, core fibers, and grass and reed 

fibers.        

 

Fig.1.1. Different types of plant based natural fibers 

All types of cellulosic fibers can be used as reinforcement or filler in plastics including 

flax, hemp, jute, straw, wood fiber, rice husks, wheat barley, oats, rye, grass, kenaf, sisal, 

hyacinth, banana fiber, and pineapple leaf fiber. The main advantages of using lignocellulosic 

fibers are that they are neutral sources causing less net emission of carbon dioxide back to the 

environment at disposal, readily available at a much lower cost than synthetic fiber, and can be 

recycled easily. Though synthetic fibers have found extensive usage in composite materials for a 
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long time, their severe impact on environment cannot be ignored. The lignocellulosic fibers are 

renewable, widespread and easily available in comparison to glass or carbon fibers [23].  

Natural fibers can have drastically different properties than synthetic fibers such as glass. 

For example, density of glass fibers is around 2500 kg/m3 whereas density of plant fibers is in 

the range of 1300-1600 kg/m3 (Table 1.1). Some of these fibers have specific strength quite 

comparable to glass fibers. 

Table 1.1. Properties of different natural fibers and E-glass [24]  

 

Agricultural Residues 

The utilization of agricultural residues has several advantages such as their availability, 

abundance and worldwide production. The agricultural residues are about one tenth to one eighth 

the price of agricultural fibers that can provide inexpensive sustainable composite properties 

[25]. Sunflower stalk, corn stalk and bagasse fibers have improved tensile, flexural and impact 

properties when combined with a coupling agent in thermoplastic composites [26]. The green 

renewable composites with wheat straw, corn stover, soy stalks and their hybrids with 

Fibers Density 

(g/cm3) 

Diameter 

(mm) 

Tensile 

strength 

(MPa) 

 

Young’s 

Modulus 

(GPa) 

Elongation 

at break 

(%) 

Price 

(USD/kg) 

Flax 1.5 40-600 345-1500 27-39 2.7-3.2 3.11 

Hemp 1.47 25-250 550-900 38-70 1.6-4 1.55 

Jute 1.3-1.49 25-250 393-800 13-26.5 1.16-1.5 .925 

Kenaf 1.5-1.6 2.6-4 350-930 40-53 1.6 .378 

Ramie 1.5-1.6 .049 400-938 61.4-128 1.2-3.8 2 

Sisal 1.45 50-200 468-700 9.4-22 3-7 .65 

Curaua 1.4 7-10 500-1100 11.8-30 3.7-4.3 .45 

Abaca 1.5 10-30 430-813 33.1-33.6 2.9 .345 

E-glass 2.55 15-25 2000-3500 70-73 2.5-3.7 2 
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polylactide showed that the combination of agricultural residues can lower the cost concerns 

related with supply chain of the natural fibers [26]. The advantages of natural fiber fillers include 

biodegradability and superior material performance evidenced with rice husk and bagasse fibers 

 [26]. The addition of rice husk and bagasse fibers at high loading increased the tensile and 

flexural properties and biodegradability of the composites. The use of DDGS as a fiber filler with 

polyhydroxyalkanoate [27], PLA [28], polypropylene [29] and Polyethylene [30] resulted in 

desirable material properties. 

DDGS  

DDGS is used as feed ingredients for livestock at a very low price. The value of DDGS 

as feed is measured in terms of its digestibility, total digestible nutrients, net energy, amino acid 

and mineral profiles [31]. The composition of DDGS is shown in Table 1.2. 

The presence of cellulose and hemicelluloses in fiber portion of DDGS has been the 

focus of several studies. Firstly, these polysaccharides are not easily digestible by non-ruminants 

(swine and poultry). So, the fiber portion was of little value as feed ingredient to non-ruminants. 

Secondly, cellulose to ethanol based processes can make use of these extra polysaccharide 

sources to increase the feedstock for cellulosic bioethanol.   
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Table 1.2. Composition of DDGS on a dry basis [32] 

 

 

 

 

 

 

DDGS Production  

The corn ethanol production has seen a steady increase in the last few decades to 55 

billion liters in 2015 [33]. Currently, more than 90% of the corn ethanol industries employ some 

variation of the dry grind process for ethanol production. The dry grind ethanol process differs 

from the corn wet milling process, as it lacks the steeping step at the front end (Fig. 1.2). Also, it 

uses little or no fractionation of the corn kernel components prior to saccharification of the starch 

and fermentation [34]. In this process, the whole grain is ground by a hammer mill into a course 

powder with a mean diameter of 1mm. In the next step, the mill corn is liquefied with the 

addition of enzyme, followed by a saccharification step, where starch in corn is converted into 

simple sugars. These sugars are next fermented by yeast cells. After fermentation, the slurry of 

yeast cells and unfermented residuals from corn grain flour pass through a stripper where ethanol 

is recovered. The portion left after separating ethanol is called whole stillage. The whole stillage 

consists of fiber, oil, protein, other unfermented grains and yeast cells. The whole stillage is 

centrifuged to produce a liquid fraction called thin stillage and a solid fraction known as wet 

distiller’s grain (WDG). A part of thin stillage is recycled to slurry the ground grain. The 

remaining thin stillage is concentrated through multiple effect evaporators to produce a syrup 

called condensed distiller’s solubles (CDS). The WDG is dried to obtain distiller’s dried grain 

(DDG). When CDS is mixed with WDG and dried, it is called distiller’s dried grain with 

Components Mean (%) 

Crude protein 31.3 

Crude fat 11.9 

Crude fiber 10.2 

Starch 5.1 

ADF 17.2 

Ash 4.6 
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solubles (DDGS) [31]. The dry solid residue remaining after ethanol production is known as the 

DDGS.   

Corn    Milling   Liquification    Saccharification   Fermentation    Distillation      Dehydration    Ethanol 

                                    Enzyme                     Yeast, CO2 

                                      

                                                     Whole stillage 

 

Centrifuge 

 

 

                        Wet distiller’s grain (WDG)     Thin stillage 
                                      drying              

                                                                                                                                                                                                                                            

DDG                       Evaporation 

                                   

                                                                Condensed distiller’s solubles (CDS) 
                                                       drying             drying 

                                                                  

 

Fig.1.2. Different steps involved in the dry grind corn ethanol process 

Separation of DDGS Fibers  

Elutriation or aspiration process was used to separate fiber fraction from DDGS [16]. In 

this process, DDGS particles under upward air flow are separated with combined effects of 

density, shape and size characteristics. When a particle falls, it experiences a downward 

gravitational force which is balanced by the upward drag and buoyancy force known as its 

terminal velocity [32]. The air velocity must be greater than the terminal velocity of the DDGS 

fraction and lower than the terminal velocity of non-fiber fractions to separate the fiber fraction.  

The flat shape of DDGS fiber combined with low mass would experience higher drag force thus 

possessing lower terminal velocity than less flat non-fiber DDGS fraction [32]. The drawback of 

this process is that the less dense and bigger DDGS fiber particles can be easily mixed with more 

dense and smaller non-fiber particles under air flow. To overcome this problem, a sieving step 

DDGS 
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was added to the existing elutriation process. By sieving DDGS into different sieve fractions and 

air classifying these sieve fractions separately, the mixing of small sized non-fiber can be 

effectively eliminated. The DDGS particles are first sieved into four to five sieving fractions and 

each fraction is elutriated to collect DDGS fibers except for the smallest sieve fraction which has 

lower fiber and higher protein and oil contents. The combination of elutriation and sieving is 

known as elusieve (Fig. 1.3) [15]. The use of elusieve for DDGS fiber separation was performed 

to add value to the corn ethanol production process. The elusieve process used on DDGS/corn 

flour results into two products- DDGS fraction with enhanced oil and protein content or corn 

flour with starch content, and elusieve fiber. Elusieved DDGS with increased protein and oil 

content and lower fiber has several advantages to offer such as improved digestibility in non-

ruminants and increased nutritional value. Elusieved DDGS fraction can be worth $5-20 per ton 

more than DDGS with lower fat and protein content [32]. Economic analysis for employing 

elusieve process for fiber separation in already existing dry grind ethanol plant processing corn at 

2030 metric tonnes/day was estimated to be 1.1 yr [15]. The capital investment in this process 

was low due to simple equipment, sifters and aspirators. 



 

12 

 

Fig. 1.3. Schematic of elusieve processing (Reprinted with permission from Elsevier) [44] 

DDGS as a Filler in Polymer Composites 

The role of DDGS as a filler in polymer composites has been explored in last few years. 

The inclusion of DDGS in polyethylene and polypropylene at 20 or 30% fiber content showed 

comparable tensile and flexural modulus to glass composites and had decreased tensile strength. 

The results showed that DDGS can be used as filler in plastics [35]. DDGS as a filler in poly 

(lactic acid) at 20% loading showed DDGS is a cost effective biodegradable filler for PLA 

composites that can provide resulted in enhanced mechanical properties in the PLA composites 

[36]. The use of DDGS showed its effectiveness as a filler in polyhydroxyalkanoate (PHA) 

polymer in preserving the dynamic mechanical properties and glass transition temperature of the 

material [37]. The interaction of DDGS with a coupling agent named methylene diphenyl 
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diisocyanate (MDI) in PLA polymer resulted in 25% increase in young’s modulus at 20% DDGS 

loading and 1% MDI [38]. In poly (butylene adipate-co-terephthalate) or PBAT polymer 

composite increase in DDGS loading from 20 to 30% enhanced the tensile but flexural strength 

of the material decreased [39]. The biodegradation of PBAT matrix was enhanced by the 

addition of DDGS. 

Factors Influencing Properties of Natural Polymer Composites 

Properties of natural fiber polymer composites are influenced by type, size, shape, 

composition, loading, dispersion, and orientation of fibers, matrix type, interfacial bonding, and 

composite manufacturing process [40]. For example, certain plant fibers such as flax and cotton 

has very high aspect ratio and specific strength resulting in stronger composites. Similarly, high 

cellulose content and even dispersion in the polymer matrix can result in better composite 

properties. 

Polymer-Fiber Interaction 

Natural fiber based composites suffer from poor interfacial adhesion between natural 

fibers and polymer matrix because natural fibers are polar and polymer matrices are non-polar. 

Cellulosic fibers are hydrophilic in nature and absorb moisture whereas polymer matrices are 

hydrophobic. The different polarities of natural fibers and polymer matrices results in weak 

interfacial bond between them. This weak fiber-resin chemical bonds break easily through 

hydrolytic reactions and swelling of the resin when exposed to moisture [40].  

It is of utmost importance that the fiber and matrix have good bonding to handle the 

stress from the applied load. The interaction between fiber and matrix can be improved by some 

physical or chemical modification to the fiber. Physical treatments include solvent extraction, 

laser, γ-ray and UV bombardment. Chemical modifications include acetylation, sialylation, alkali 

treatment, bleaching, grafting and other treatments reducing moisture sensitivity.  The best 
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chemical treatment of the fiber is one that allows the fiber and matrix to bond through covalent 

forces [41]. In addition, chemical treatment of fibers sometimes coupling agents such as silanes 

and maleic anhydride (MA) are used [41]. 

UV Weathering 

In outdoor applications such as decking, fencing, sliding, window framing, and roof tiles, 

the natural fiber polymer composites are affected by exposure to UV radiations. The poor 

resistance to UV rays can raise concern to their long-term performance. The UV degradation is 

initiated by sunlight which is enhanced by several environmental factors such as moisture, 

temperature, and air pollutants present in the outdoor environment. The degradation of natural 

fiber and polymer components in a composite material can occur through different degradation 

mechanisms.   

The degradation of polyolefins originates from excited polymer-oxygen complexes 

introduced by catalyst residues, hydroperoxide groups, carbonyl groups and double bonds 

formed during polymer manufacturing. The degradation of the polyolefins can be initiated even 

by a small amount of these impurities [17].   

The main precursor to photochemical degradation of polyolefins are carbonyl groups as 

they initiate the degradation process of polymers after absorbing the UV light [42]. The 

degradation of polymers can occur via Norrish type I and II reactions as presented in Fig. 1.4 

[43].  The Norrish type I reaction involves the production of free radical intermediates because of 

cleaving of aldehydes and ketones that terminate via crosslinking or chain scission [43]. The 

termination step of chain scission and cross linking compete under photodegradation process. 

The chain scission results in lowering of molecular weight whereas the crosslinking increases the 

molecular weight by increasing the bonding between the polymer chains [43].  
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Fig. 1.4. Different mechanism of polymer degradation. a) Norrish I, b) Norrish II (Reprinted 

with permission from Elsevier) [43] 

The type II reactions produce carbonyl and terminal vinyl groups and terminate through 

chain scission of the polymer chains [43].  The outcome of chain scission is an increase in chain 

mobility due to reduction in the density of chain entanglements in the amorphous phase, thereby 

allowing shorter molecules to crystallize faster.  

The effect of weathering on lignocellulosic fiber initiates from lignin which is susceptible 

to UV radiation. This UV absorption by lignin leads to formation of lignin moieties with α-

carbonyl, biphenyl and ring conjugated double bond structures [44]. These free radicals may 

cause the degradation of lignin and induce photo oxidation of hemicellulose and 

depolymerization of cellulose [44]. Quinonoid compounds formed from lignin degradation are 

responsible for the color change in the lignocellulosic fibers under UV weathering.   
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The result of the photodegradation of the natural fiber polymer composites is the 

degradation of the surface of the materials. The weakening of fiber-matrix adhesion results into 

increased moisture absorption, matrix cracking, surface instability, swelling of fiber and loss in 

structural integrity and strength [17]. Several chemical modifications such as isocyanate, maleic 

anhydride, silane, and acrylic acid have been reported to neutralize the effect of 

photodegradation [45]. The mechanism of a coupling agent is to create a cross linking with the 

polyolefins and hydroxyl group in a fiber through specific functional groups present in the 

structure [45].  

The accelerated weathering study of wood/polyolefins has been reported widely by 

various researchers [43]. The studies have shown the presence of wood causes discoloration of 

the composites because of an increase in carbonyl index [43].  The carbonyl index had similar 

impacts on the composites, but these effects were found to be restricted to the surface due to 

screening effect of the fiber particles [43].  

Surface Modifications of Natural Fiber Fillers 

Natural fibers are hydrophilic in nature. The hydrophilicity of fibers means high degree 

of moisture absorption by them resulting in dimensional instability of the materials. Polymers are 

hydrophobic causing poor adhesion with hydrophilic fiber. The weak bonding at the fiber-

polymer interface results in ineffective stress transfer, affecting mechanical properties of the 

fiber filled composite materials. The main goals of doing surface modification of fibers are to 

improve the interfacial bonding between matrix and fiber and to increase surface roughness and 

wettability of fibers leading to enhancement of mechanical properties of natural fiber reinforced 

composites. Surface modification of a fiber that can be performed through various physical and 

chemical treatments. Physical treatments include corona discharge, cold plasma, gamma-ray and 

UV bombardment [46]. Chemical treatments such as mercerization (alkali), grafting, acrylation, 
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permanganate, acetylation, silane and peroxide have already been used effectively on the natural 

fibers [46]. 

Physical treatments of fiber change the physical structure and surface properties of a fiber 

thus improving adhesion between the fiber and the matrix [46].  Corona discharge activates 

surface energy of cellulose thus affecting the melt viscosity of composites [46]. Cold plasma 

improves the functional properties of a fiber. Cold plasma causes chemical implantation, etching, 

polymerization, free radical formation, and crystallization.  Physical treatments are energy 

intensive in comparisons to the chemical treatments, which are less energy consuming. Of all the 

chemical treatments used for improving fiber surface properties, only alkali and acetylation are 

the most used chemical methods.  Alkali treatment is the preferred method for its effectiveness 

and low cost over other chemical methods.  

Mercerization  

Mercerization or alkali treatment is the most commonly used chemical treatment of fiber 

fillers in thermoplastic or thermoset composites. The mechanism of alkali treatment is to cause 

swelling of the fiber thus changing their fine structure and morphology [47]. The hydroxyl 

groups present in the cellulose structure are broken down in the alkaline environment, forming 

water molecules and get removed from the fiber structure as shown in the equation 1.1 [47].  

   Fibre-cell-OH + NaOH                  Fibre cell-O-Na+ + H2O + impurities (Equation 1.1) 

Alkali treatment directly influences the cellulosic fibril, the degree of polymerization and 

the solubilization of hemicellulose and lignin [47]. The outcomes of alkali treatment of a fiber to 

be used as filler or reinforcing agent in a polymer are: increased roughness for better mechanical 

interlocking and increase in possible reaction sites as the amount of cellulose exposed on the 

fiber surface increases [47]. Several concentrations (1, 2, 4, and 10%) of alkali were reported for 
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treating sisal fiber reinforced composites [48]. The results showed that the maximum tensile 

strength obtained from the 4% alkali treatment. Another study with sisal fiber reinforced 

polyester showed that higher concentrations up to 10% NaOH can weaken or damage the fiber 

due to excess delignification where 5% NaOH showed highest tensile strength [49].  

Conclusions 

The dramatic increase in the production of DDGS, a byproduct of corn ethanol process, 

demands to develop value added product to increase sustainability of the corn ethanol industry. 

The DDGS fiber is indigestible by swine and poultry and can be used effectively separated from 

DDGS using elusieve process. The DDGS fiber could potentially be a suitable alternative as a 

filler in polymer composites. The UV exposure of the natural fiber composites leads to loss of 

structural integrity, surface degradation, scission of polymer chains, and color fading. DDGS and 

corn fiber, with its very low lignin content, could potentially reduce the UV degradation in 

polymer composites when used as a filler. To improve the interfacial bonding between 

DDGS/corn fiber and the polymer matrix, fibers can be subjected to physical and chemical 

treatments. Alkali treatment is the most cost-effective method to modify the fiber surface and to 

improve the fiber matrix adhesion.  
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CHAPTER 2. FIBERS FROM DDGS AND CORN GRAIN AS ALTERNATIVE FILLERS 

IN POLYMER COMPOSITES WITH HIGH DENSITY POLYETHYLENE FROM BIO-

BASED AND PETROLEUM RESOURCES1 

Abstract 

The steady increase in production of corn based ethanol fuel has dramatically increased 

the supply of its major co-product known as distiller’s dried grain with solubles (DDGS). Large 

amount of DDGS and corn flour are used as an animal feed. The elusieve process can separate 

DDGS or corn flour into two fractions: DDGS fraction with enhanced protein and oil content or 

corn flour fraction with high starch content, and hull fiber. This study investigated the feasibility 

of using fiber from DDGS and corn grain as alternative fillers to wood fiber in high density 

polyethylene (HDPE) composites made with two different sources of polymers. Two fiber 

loading rates of 30% and 50% were evaluated for fiber from DDGS, corn, and oak wood 

(control) to assess changes in various physical and mechanical properties of the composite 

materials. Two HDPE polymers, a bio-based HDPE with a melt index of 0.34 g/10 min 

(Braskem), and a petroleum based HDPE with a melt index of 11.5 g/10 min (Marlex) were also 

compared as substrates. The low-melt index composite with 30% DDGS fiber loading showed 

the highest impact resistance (80 J/m) among all the samples. The flexural properties showed no 

significant difference between the two HDPE composites.   

 

                                                 

 

1 Chapter 2 consists of a revised version of a scientific manuscript that was approved for 

publication in October 2017 in the Journal of Polymers and the Environment. Authors: Pankaj 

Pandey, Sreekala Bajwa and Dilpreet Bajwa. Pankaj designed and conducted the experiments in 

this work, and is first and corresponding author of the manuscript. The co-authors provided 

advice throughout the work and assisted in the editing. 
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Introduction 

The importance of corn grain as major animal feed and renewable feedstock for ethanol 

production is well established. The production of corn in 2010 was 316 × 109 kg of which 42.9% 

was used as animal feed and 41.8% was used for ethanol production [1]. The US Corn ethanol 

production has seen tremendous growth in the last two decades, from 5 billion liters in 1995 to 

55 billion liters in 2015 [2]. Currently, more than 90% of ethanol facilities employ dry grind 

processing over wet milling due to savings on capital costs [3]. This process generates roughly 

0.33 kg each of ethanol, DDGS and carbon dioxide for every 1 kg of corn grain processed [4]. 

The DDGS produced from corn ethanol process dramatically increased from 2.7 × 109 kg in 

2000 to 40 × 109 kg by 2015 [2]. If the ethanol industry expands at a modest 10-15% per year, 

the supply of DDGS is projected to reach around 70 × 109 kg by 2020 [4]. The DDGS is the non-

fermentable remnants of the corn grain and yeast cells that contains approximately 26.8-33.7% 

protein, 39.2-61.9% carbohydrates (including fibers), 3.5-12.8% oils, and 2.0-9.8% ash all 

measured on dry weight basis [5]. DDGS has traditionally been used as livestock feed due to its 

high protein content and is used at low inclusion levels in swine and poultry diets because of 

high fiber content [6].  

Corn grain is a major source of feed in livestock, swine and poultry industries due to its 

high starch content (~70%). The fiber in corn is not easily digested by non-ruminants such as 

poultry and swine. Also, during the corn ethanol production, only the starch fraction is utilized 

by the enzymes with fiber fraction remain unused. To enhance the feed value and to increase the 

productivity of corn ethanol production, the separation of fiber with elusieve process was 

developed [7,8].  The elusieve process is a combination of elutriation and sieving process which 

can separate DDGS or corn flour into two fractions: DDGS fraction with enhanced protein and 

oil content or corn flour with high starch content, and the hull fiber. Removal of the crude fiber 
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from DDGS and corn flour can improve the feed value in the poultry industry [9,10]. Therefore, 

alternate uses of fibers from DDGS and corn flour is to be explored to sustain the economic 

viability and reduce the environmental impact of corn ethanol production and corn agriculture. 

The hull fiber from DDGS or corn flour can potentially be used as a filler in natural fiber filled 

polymer composites.  

In recent years, biocomposites that use agricultural fibers as fillers or reinforcement have 

gained attention as it adds value to agriculture and use a renewable source of fiber [11-13]. These 

composites are light in weight, easy to process, have comparable specific properties with 

synthetic composites, and cost effective. Despite having these advantages, the mismatch in 

chemical nature of fiber and polymer leads to an ineffective interfacial interaction between them. 

The fibers are hydrophilic in nature whereas the polymers are hydrophobic. This incompatibility 

between the fiber and the matrix results in an ineffective stress transfer and make them 

susceptible against the moisture absorption causing subsequent dimensional instability [13]. The 

interaction between the natural fiber and the polymer matrix can be improved by several methods 

such as chemical treatment (silane treatment [14], graft polymerization [15] and alkali [16]), and 

physical modifications [17]. 

Currently, there are no reported studies that investigated how bio-based HDPE will 

perform in comparison to a petroleum-based HDPE when used with corn or DDGS fiber as the 

filler. Bio-based HDPE is derived from ethylene gas which is likely similar in purity to that used 

in petroleum-based HDPE, and thus differences between the two types of HDPE will be due to 

differences in the polymerization process. A few studies have shown that DDGS can potentially 

be used as a raw material in different types of composites [4, 18, 19]. Our own preliminary 

research indicated that fiber from DDGS and corn substantially increased the water absorption 

but showed comparable mechanical properties to composites made with wood fiber. The aim of 
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this study was to investigate the feasibility of using fiber from DDGS and corn grain as potential 

fillers against oak fillers in thermoplastic composites with HDPE as the substrate and to evaluate 

a commercially available bio-based HDPE with low melt index against a petroleum based HDPE 

with high melt index.   

Materials and Methods 

Design of Experiment 

A lab experiment was designed to evaluate the hypothesis the properties of HDPE 

composites made with the fibers from corn and DDGS will be comparable as with wood fiber. 

The experiment included 3 fiber types, two fiber loading rates and two different types of high 

density polyethylene. The three fiber types were DDGS fiber, corn grain fiber and oak wood 

fiber. The two loading rates used were 30% and 50% by weight. The loading rates of 30% and 

50% were chosen because of the limitations with the lab-scale twin screw extruder that was not 

able to handle more than 50% fiber loading. A total of 12 formulations (3 fiber × 2 loadings × 2 

HDPE) were designed for the extrusion run (Table 2.1). The composites contained 4% talc to 

uniformly distribute the heat and smooth the extrusion process. These twelve formulations were 

replicated five times to generate enough samples for testing all the physico-mechanical 

properties.  
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Table 2.1. Different composite sample formulations designed for the study 

 

Formulation 

 

Fiber Loading 

(wt %) 

 

            HDPE 

 

 

Talc  

(wt %) 

Marlex 

(wt %) 

Braskem 

(wt %) 

Corn 30, Marlex 30 66 - 4 

DDGS 30, Marlex 30 66 - 4 

Oak 30, Marlex 30 66 - 4 

Corn 50, Marlex 50 46 - 4 

DDGS 50, Marlex 50 46 - 4 

Oak 50, Marlex 50 46 - 4 

Corn 30, Braskem 30 - 66 4 

DDGS 30, Braskem 30 - 66 4 

Oak 30, Braskem 30 - 66 4 

Corn 50, Braskem 50 - 46 4 

DDGS 50, Braskem 50 - 46 4 

Oak 50, Braskem 50 - 46 4 

 

Materials  

Three different types of natural fibers from DDGS, corn grain, and oak wood were used 

as fillers in the study. The DDGS was supplied by Blue Flint Ethanol, USA, and elusieved at 

Mississippi State University. Mississippi State University also provided the elusieved corn grain 

fiber. Oak wood fiber was obtained from Southern Wood Services LLC (Macon, GA,  USA). All 

three fibers were first passed through a 1 mm screen in a Wiley mill (Model 4, Thomas 

Scientific, NJ, USA). The screened fibers were particle sized in the range of 20-30 mesh (0.595-

0.841 mm) in a Ro tap shaker (W.S. Tyler® Ro-Tap® 8in Sieve Shaker, USA). The oak wood 

flour mainly composed of cellulose (45.7%), hemicellulose (24.8%), and lignin (27. 6%) [20]. 

The composition of DDGS and corn fiber in terms of neutral detergent fiber (NDF), protein, 

starch, fat, and ash are shown in Table 2.2. The bulk densities of the fibers were measured by 
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taking 100 g each of the dried fiber in a 250 ml graduated cylinder and leveling them inside by 

gently tapping the cylinder from outside. The bulk densities measured for DDGS, corn, and oak 

fiber were 446.9 kg/m3, 437.3 kg/m3, and 331.1 kg/m3, respectively. 

Table 2.2. Composition of hull fiber from corn grain and DDGS and oak fiber on a dry basis 

 

Two different types of high density polyethylene (HDPE) polymers used in this study 

were Marlex 9012 (Chevron Philips, The Woodlands, TX,  USA), and Braskem SGF 4950 

(Braskem, Sau Paulo, Brazil). The Marlex 9012 was produced from steam cracking of petroleum 

based resources whereas Braskem SGF4950 was produced from ethylene obtained from catalytic 

dehydration of sugarcane ethanol. Braskem claims their HDPE to have the same technical 

properties, appearance and versatility of applications as HDPE from fossil source. Both the 

HDPEs were obtained in the pellet form. The major difference between the two HDPEs was their 

melt flow index (MFI) (Table 2.3), which resulted from different polymerization processes, not 

from the ethylene source. 

 

 

 

 

 

Components Corn fiber (%) DDGS fiber (%) Oak fiber (%) 

NDF 49.2 46.93 98.1 

Protein 7.88 21.07 - 

Starch 31.85 3.34 - 

Fat 3.08 8.14 - 

Ash 1.37 4.46 0.41 
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Table 2.3. Properties of the two HDPEs, Marlex and Braskem used in the study, as reported by 

the manufacturers   

 

Composite Manufacturing 

All the fibers were first oven dried at 105 °C for 24 h to bring down the moisture content 

to less than 1%. In the next step, the dried fibers were hand mixed with HDPE and talc for all the 

formulations presented in Table 2.1. The homogeneous mixture was then compounded in a twin-

screw co-rotating extruder (Leistriz Micro 18 GL 40 D, NJ, USA). The extruder had seven 

different temperature zones set at the following temperatures of 160 °C, 193 °C, 199 °C, 204 °C, 

207 °C, 210 °C, and 213 °C sequentially from feed section to melting section. The die 

temperature at the exit was maintained at 213 °C. The screw rotation of the extruder was set at 

150 rpm. The material was extruded into 3 mm diameter strands that were cooled by passing 

through a water bath and pelletized with a BT25 pelletizer (Scheer Bay Co., Bay City, MI, 

USA). The pelletized composite material was oven dried overnight at 80 °C. The test specimens 

were manufactured with a mini injection molder (Model SIM- 5080, Technoplas Inc., MA, USA) 

set at 200 °C into dog bone samples of 12.5 mm by 3.5 mm cross sectional size at the center, and 

65 mm length.  

 

 

 

Polymer Properties 

 

Marlex 9012 

(Petroleum based) 

 

Braskem SGF 4950 

(Bio-based) 

 

Test Method 

 

Density, g/cm3  

 

0.952 

 

0.956 

 

ASTM D1505 

 

Melt flow index (190 °C/ 

2.16 kg), g/10 min  

 

11.5 

 

0.34 

 

ASTM D1238 

 

Tensile yield strength, MPa  
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30 

 

ASTM D638 

 

Flexural modulus, MPa  

 

1270 

 

1350 

 

ASTM D790 
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Characterization of Physical, Mechanical and Thermal Properties  

Melt Flow Index (MFI) 

The MFI of the composite materials was determined in accordance with ASTM D1238 

standard. using an extrusion plastometer (Tinius Olsen, Model MP 600, USA). The composite 

pellets were tested in five replicates at 2.16 kg load and 190 °C. The MFI was recorded as the 

amount of material that would pass through the nozzle of the plastometer in 10 min. The two 

HDPEs were subjected to Nuclear Magnetic Resonance (NMR) spectroscopy to understand the 

differences in their molecular structure. NMR was performed by dissolving 50 mg/ml of each 

HDPE in deuterated chloroform, and then scanning the solution with a 400 MHz NMR 

spectrometer (Bruker LC-MS, USA).  A plot of chemical shift in ppm on x-axis versus intensity 

on y-axis was obtained.  

Water Absorption  

The long term water absorption of composites samples was quantified as specified by 

ASTM D570 standard. Five samples from each formulation was tested for percentage moisture 

gain at 24h increments until the samples were saturated. The samples were immersed in water at 

24 °C in a water bath for testing their water absorption properties. The composite samples used 

for the test were 30 mm long, 12.5 mm wide, and 3.5 mm thick.  

Specific Gravity  

The samples were tested for their specific gravity using a specific gravity balance based 

on ASTM D792 standard. A non-corrosive wire cage was used to suspend the samples in water 

so that the weight of samples in water set at 24 °C can be measured. The sample dimensions used 

for the test were 30 mm long, 12.5 mm wide, and 3.5 mm thick.   
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Flexural Properties 

The flexural properties of the samples were measured according to the ASTM D790 

standard that specifies three-point bending test method for unreinforced and reinforced plastics.  

The samples used for the test were 63 mm long, 12.5 mm wide and 3.5 mm thick. A crosshead 

speed of 1.3-1.4 mm/min was selected based on the span length of the samples. The universal 

testing machine from Instron (Model 5567, USA) with a 2 kN load cell was used for the test. 

Impact Strength  

The impact strength of the samples was tested in accordance with ASTM D256 standard. 

The notched samples were tested for their impact resistance properties with an Izod impact tester 

(Tinius Olsen, Model Impact 104, USA). The sample dimensions used were 63 mm x 12.5 mm x 

3.5 mm with a notch of 2 mm. The fractured surfaces of samples were examined with a JEOL 

JSM-6490LV scanning electron microscope (JEOL USA, Inc., Peabody MA, USA) at an 

accelerating voltage of 15 KV. The samples were first attached to cylindrical aluminum mounts 

with silver paint (SPI Products, West Chester, PA, USA) and then sputter coated with a 

conductive layer of gold-palladium (Cressington 108 Auto, Ted Pella Inc., Redding, CA, USA). 

Coefficient of Linear Thermal Expansion (CLTE) 

The change in length of the samples under constant heat exposure was measured using 

the dynamic mechanical analyzer (DMA Q800, TA Instruments, USA). The sample dimensions 

used for the test were 63 mm x 12.5 mm x 3.5 mm. A temperature ramp of 3 °C/min and 

temperature range of 30 °C to 50 °C were used for carrying out the test.  

Differential Scanning Calorimetry (DSC) 

The thermal properties of the polymers and composites were determined using a 

differential scanning calorimeter (DSC Q20, TA Instruments USA). A reference pan (empty 

from inside) and a sample pan with sample weight of around 5-7 mg were placed on raised 
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platforms on the sensors and both were subjected to heating-cooling-heating cycles. Nitrogen gas 

was purged at 50 mL/min to provide controlled sample/atmosphere interactions without any 

thermal degradation. The pans were first heated from 25 °C to 200 °C at the rate of 10 °C/min 

and then kept at 200 °C isothermally for one minute to erase the thermal history before cooling 

again back to 25 °C. The cooling rate could not be controlled. During the cooling step, the heater 

simply shut off until the DSC cell cooled to 25 °C before heating the samples again to 200 °C at 

the rate of 10 °C/min in the second heating cycle. The room temperature remained the same (23 

°C) during the DSC runs, so the cooling step that may have some variation among different 

samples was assumed to be similar. The crystallization temperature (Tc) and crystallization 

enthalpy (ΔHc) were calculated from the cooling run. The values of melting temperature (Tm), 

melting enthalpy (ΔHm) and the percentage crystallinity (Xc) were calculated from the second 

heating run. The crystallinity of HDPE was measured as   

                                                       𝑋𝑐 =

∆𝐻𝑚

𝑊𝑝

∆𝐻𝑚100
× 100%                                   (Equation 2.1) 

where ∆Hm is the experimental melting enthalpy of the composites, ∆Hm100 is the theoretical 

melting enthalpy of the fusion for 100% crystalline HDPE polymer (293 J/g) [21]. The Wp is the 

weight fraction of the HDPE in the composites corrected on the weight basis. 

Statistical Analysis 

To determine the statistical significance at α = 0.05, Fishers Least Square Difference 

(LSD) tests were performed on all 12 sets of samples using Minitab 17 (Minitab Inc., Penn State 

University, PA, USA). The error bars in the bar graphs represents the standard deviation of the 

sample. 
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Results and Discussion 

The extrusion operation with 30% loading was much smoother than with 50% loading. 

The extruded strands broke and required more pressure to extrude when the fiber loading was 

50% for Braskem composites due to its low MFI and high fiber content. Also, the injection 

molded samples showed more exposed fiber (poor encapsulation) with 50% fiber loading while 

the samples with 30% loading had very smooth surface with completely encapsulated fibers 

(Table 2.4).  

Table 2.4. Melt Flow Index (MFI) of Marlex and Braskem composite samples with their 

standard deviations. The letters in the bracket show the statistical significant difference between 

the composite formulations at α=0.05 

*As reported by the manufacturers 

 

Melt Flow Index (MFI) of Composite Samples 

The fiber fillers decreased the MFI, compared to neat polymers (Table 2.1 & 2.4). This 

decrease in MFI was expected as both the type of fiber and fiber surface characteristics impacts 

the entanglement and mobility of the polymers [22]. Increase in fiber loading from 30 to 50% 

further decreased the MFI by one-third to one-ninth (Table 2.4), and thereby limiting the ability 

to flow smoothly. Of all the formulations with Marlex substrate, 50% corn composites showed 

the lowest MFI followed by 50% wood composites. The 30% DDGS composites showed the 

highest MFI of 6.02 g/10 min followed by 30% wood and 30% corn composite samples. Of all 

the Braskem composite samples, 30% corn and 30% DDGS fiber composites exhibited MFI 

Fiber type with loading Marlex HDPE (g/10 min) Braskem HDPE (g/10 

min) 

Neat HDPE 11.5* 0.34* 

Corn 30 3.57 + 0.03 (c) 0.42 + 0.07 (f) 

DDGS 30 6.02 + 0.48 (a) 0.30 + 0.01 (f, g) 

Oak 30 4.44 + 0.15 (b) 0.16 + 0.01 (f, g) 

Corn 50 0.39 + 0.09 (f) 0.11 + 0.01 (g) 

DDGS 50 1.97 + 0.15 (d) 0.11 + 0.01 (g) 

Oak 50 1.22 + 0.07 (e) 0.11 + 0.01 (g) 
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comparable to that of neat Braskem polymer. Other composite formulations had more than 50% 

decrease in MFI to the neat Braskem polymer. A high MFI is preferred as it saves energy and 

time during extrusion and injection molding.  The NMR peak in 1.0-1.5 ppm range shows that 

Braskem polymer has more CH3 groups than Marlex polymer (Fig 2.1 & 2.2). Also the 

proportion of CH2 (2.0-2.5 ppm) and CH3 (1.0-1.5 ppm) groups in Braskem corresponds to more 

alkyl groups respectively than in Marlex polymer. This explains the major difference in the MFI 

as polymers with branched chains flow more slowly than linear chains.  

 

Fig. 2.1. NMR spectra for Braskem, the bio-based HDPE made from sugarcane ethanol 

(chemical shift on x-axis vs intensity on y-axis) 

 

Fig. 2.2. NMR spectral of Marlex, the petroleum based HDPE (chemical shift on x-axis vs 

intensity on y-axis) 
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Water Absorption Properties 

The moisture absorption in natural fiber polymer composites is inherent as natural fibers 

being hydrophilic in nature have poor interfacial bonding with the hydrophobic polymer 

matrices. The absorption of moisture results in swelling of natural fibers and weakening of 

adhesion at the interface between the polymer and the fiber. The swelling and shrinking under 

exposure to water followed by drying change the internal packing of fibers and cause 

dimensional instability, causing degradation of physical and mechanical properties of the 

composites [23]. The long term water absorption behavior of Marlex composites over 600 h 

show that corn and DDGS fibers at 50% loading showed the highest saturation moisture 

absorption of approximately 23 and 15% respectively (Fig. 2.3). This high absorption can be a 

result of high amount of hemicelluloses in the fibers [24] and to the presence of relatively high 

amount of un-encapsulated fibers in the composites. The wood-HDPE composites showed a low 

moisture absorption of less than 5% at both 30 and 50% fiber loadings. Despite of having lower 

bulk density, the oak fiber composites showed better resistance to moisture absorption than 

DDGS and corn fiber composites. This is most likely due to the long spindle shape of oak fiber 

that interacts better with the HDPE matrix than granular and irregular shaped fibers such as 

DDGS and corn fiber [20]. The 30% DDGS loading followed the same trend as was also 

observed for 50% DDGS in HDPE matrix [25]. Also, 30% corn and 30% DDGS composite 

samples showed moisture gain comparable to 50% oak composites. Composites with 30% oak 

showed the lowest water absorption. 
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Fig. 2.3. Effect of fiber filler type and fiber loadings on water absorption of polymer composite 

samples containing Marlex HDPE as the substrate 

In Braskem composites, the samples with 30% DDGS and 50% DDGS fiber loading 

showed the largest moisture absorption of 9% and 5.5% respectively over a period of 336 h (Fig. 

2.4). All other composite samples with Braskem showed moisture absorption of less than 3%. 

The Braskem composites showed significantly lower moisture absorption than the Marlex 

composites. The higher branched chain structure of Braskem polymer most likely had higher 

interlocking sites for fiber than Marlex polymer resulting in higher moisture resistance 

than the Marlex composites. 
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Fig. 2.4. Effect of fiber type and fiber loadings on water absorption of polymer composite samples 

containing Braskem as the substrate 

Specific Gravity Test 

In many composite applications, a low specific gravity is preferred as it indicates low 

density and weight. Similar to many commercially available wood plastic composites, the lab 

samples exhibited specific gravities slightly above one, but well below 1.2 (Fig. 2.5). In the 

Marlex composites, all three fillers exhibited lower specific gravities at 30% loading than at 50% 

loading. The Braskem samples showed a similar trend with corn and DDGS samples at higher 

loading. An increase in fiber loading from 30 to 50% increased the specific gravity and therefore, 

density of the composite samples with both types of HDPEs. 
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Fig. 2.5. Specific gravity (ratio) of composite samples made with two different HDPEs and three 

fiber types at two fiber loading rates measured at 24 °C. Different letters in the label show 

statistically significant difference between the different formulations at α = 0.05 

Flexural Properties  

When a sample is under flexural load, the material is subjected to the highest tensile and 

compressive stresses on the bottom and top surfaces, respectively. Therefore, the sample will fail 

under the weaker of the two properties. The Marlex composites showed no significant difference 

in their flexural stiffness or modulus between the fiber filler types (Fig. 2.6). An increase in filler 

loadings from 30 to 50% neither led to any improvement nor decline in the flexural stiffness 

properties of composite material with Marlex polymer. Both the corn and DDGS composite 

samples behaved as good as the control samples at both the loadings. This indicated that corn 

and DDGS fiber can replace oak as potential fillers at both 30 and 50% loadings to obtain the 

same flexural stiffness values. On the other hand, in the Braskem composite samples, only 50% 

corn showed a significant improvement in the stiffness of 49% when compared with its 30% 

corn sample (Fig. 2.6). No significant difference was observed between 30% corn, 30% DDGS, 

30% oak and 50% DDGS and 50% oak samples. 
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Fig. 2.6. Flexural stiffness of thermoplastic composite samples made with two different HDPEs 

and three fiber types at two fiber loading rates. Different letters in the label show statistically 

significant difference between the different formulations at α = 0.05 

Composites containing Marlex and Braskem HDPE showed similar flexural strengths. 

Marlex composite samples with 30% corn and 30% DDGS fibers were stronger than 30% oak 

samples, and similar to 50% oak samples under flexure (Fig. 2.7). This means that the corn and 

DDGS fiber fillers at 30% loading can replace 30% oak in HDPE composite samples for the 

better flexural strength. An increase in fiber loading from 30 to 50% did not affect flexural 

strength of Marlex composites except in the case of corn fiber filler. With corn fiber filler, an 

increasing fiber loading from 30 to 50% decreased flexural strength by 24%. In Braskem 

composites, no significant difference was observed in flexural strength between the fillers except 

for 50% DDGS fiber which exhibited lower flexural strength (Fig. 2.7). This decrease at higher 

fiber loading can be attributed to the poor adhesion between the fiber-matrix surface leading to 

micro cracks formation and non-uniform stress transfer due to agglomeration of fiber within the 

matrix [26]. 
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Fig. 2.7. Flexural strength of composite samples made with two different HDPEs and three fiber 

types at two fiber loading rates. Different letters in the label show statistically significant 

difference between the different formulations at α = 0.05 

Impact Strength 

The impact strength of a composite is the energy required to completely break the 

specimen by the means of crack initiation and propagation. The notched impact strength 

basically measures the energy needed to propagate the existing crack from the notched tip which 

acts as a stress concentrating point. The neat Marlex and Braskem HDPEs showed impact 

strength of 100 and 150 J/m, respectively (not shown in Fig. 2.8). The higher molecular weight 

of the Braskem polymer than the Marlex polymer (high MFI corresponds to the low molecular 

weight) allows it to absorb higher energy during the fracture. Overall, Braskem composite 

samples showed better impact than Marlex. In the Marlex composite samples, all fiber fillers 

resulted in similar impact strengths at 30% loading (Fig. 2.8). Also, when the filler loading 

increased from 30 to 50%, both corn and DDGS samples exhibited a significant drop of 33 and 

42% in impact strength, respectively. The higher loading means larger interface between the 

fiber and the polymer matrix. Poor interfacial bonding helps in crack propagation through the 

formation of micro-cracks in the micro-spaces between them. In Braskem composites, 30% 

DDGS sample exhibited the highest impact strength of 80 J/m and performed even better than 
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50% oak samples (Fig. 2.8). The corn samples at 30 and 50% loadings showed the lowest impact 

strength of 41 and 44 J/m respectively. The DDGS sample showed a decrease of 30% in impact 

strength when the loading increased from 30 to 50%. The Braskem samples exhibited 

significantly higher impact strength than the Marlex composites for 30% DDGS, 30% oak, and 

50% DDGS samples. 

 

Fig. 2.8. Impact strength of notched composite samples made with two different HDPEs and 

three fiber fillers at two fiber loading rates. Different letters in the label show statistically 

significant difference between the different formulations at α = 0.05 

The SEM micrographs of impact fracture of composite samples show that corn samples 

had severe irregular surface fractures than DDGS and oak samples (Fig. 2.9). These fractures 

represent the interfacial area between the fiber and the matrix. The pulled out traces of fillers 

were seen in all the composite samples. The role of fibers in stress propagation is crucial as they 

act as stress transferring medium to the crack propagation in the materials. The appearance of 

fractured fiber in DDGS and oak wood indicate better interfacial bonding in their composites 

than the corn samples.  
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Fig. 2.9. Scanning electron microscopy images of the impact fractured samples at various filler 

loadings. a Corn 30, b DDGS 30, c Oak 30, d Corn 50, e DDGS 50, f Oak 50 

 

Coefficient of Linear Thermal Expansion (CLTE) 

The CLTE is a measure of dimensional stability when a material is exposed to extreme 

temperatures. This is especially important in outdoor applications. A low CLTE value is 

a d 

b e 

c f 
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preferred as it indicates less thermal expansion with increasing temperatures. The 50% oak and 

50% DDGS samples showed the lowest CLTE values among the Marlex composites whereas 

30% DDGS exhibited the highest CLTE (Fig. 2.10). In the Braskem composites, the 30% DDGS 

sample showed significantly higher CLTE value than all other formulations. The CLTE of a 

composite is an outcome of the mismatch between a fiber and a matrix. Plant fibers exhibit 

negative CLTE while polymers exhibit positive CLTE. Therefore,  composites with good 

interfacial bonding tend to show very small positive CLTE. The fibers affects the CLTE of 

polymer composites by restricting the opening of polymer chain during heating [27].  

 

Fig. 2.10. Coefficient of Linear Thermal Expansion of composite samples made with two 

different HDPEs and three fiber types at two fiber loading rates. Different letters in the label 

show statistically significant difference between the different formulations at α = 0.05 

Thermal Properties  

The DSC scans illustrated the effect of fillers on the thermal behavior of the composites. 

The DSC plots of both the polymers and their filler composites are presented in Fig. 2.11 a & b 

and the values of their melting temperature (Tm), crystallization temperature (Tc), heat of fusion 

(ΔHm), heat of crystallization (ΔHc), and the percentage crystallinity (Xc) are presented in 

Table 2.5. The neat Braskem polymer had higher crystallinity than the neat Marlex polymer. The 
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addition of fillers at both 30 and 50% loadings showed a slight increase in Tm for both the 

Marlex and Braskem composites. This increase in Tm can be attributed to the presence of fibers 

which hamper the melt flow ability of the polymers. The inclusion of fibers decreased the height 

of the thermograms and increased their crystallization peak widths compared to the neat 

polymers. This increase in the width of the exothermic peak signifies the slow nucleation rate 

and possibly uneven growth of crystallites. The decrease in crystallinity can be explained by the 

mechanical restraints provided by the fibers which affects the ability of HDPE chains to 

crystallize. The change in ΔHf was most likely from the structural imperfections introduced 

during the processing of materials and due to the presence of filler [28].  The slight increase in 

Tc shows nucleating effects of fillers in HDPE composites. The increase in Tm and Tc had no 

specific correlation with the type of filler and their loadings. Of all the composites, only 30% oak 

and 50% DDGS samples showed higher Xc (%) than the neat polymers in both the Marlex and 

Braskem composites. The chemical components of the fillers play a crucial role in their 

interactions with the polymer chains. The higher Xc and ΔHm and ΔHc for these two samples 

exhibit the effective nucleating capabilities of these fillers which eventually helps in the 

spherulite growth. 
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(a) 

 

(b)                  

Fig. 2.11. The DSC plots from the cooling step for (a) Marlex composites and (b) Braskem 

composites  
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Table 2.5. Thermal properties of Marlex and Braskem composites obtained from the DSC runs: 

melting temperature (Tm), heat of fusion (ΔHm), crystallization temperature (Tc), heat of 

crystallization (ΔHc) and degree of crystallinity (Xc) 

 

Conclusions 

The role of fibers from DDGS and corn grain as fillers in HDPE composite was 

investigated in the study, along with the impact of a biobased HDPE in comparison to a 

petroleum based HDPE. The bio-based Braskem composites exhibited a much lower MFI than 

that of petroleum-based Marlex composites. As noted in the introduction, bio-based HDPE is 

derived from ethylene gas which is likely similar in purity to that used in petroleum-based 

HDPE; thus, the low MFI of the Braskem HDPE was due to the polymerization process used to 

produce that HDPE. The inclusion of fiber fillers at both 30 and 50% decreased the MFI value 

greatly. The Braskem composite samples absorbed less moisture than Marlex based composite 

samples, low water absorption being a preferred quality in natural fiber HDPE composites. The 

flexural strength and modulus were similar for composites made with the bio-based Braskem and 

Sample Name Tm   

(°C) 

ΔHm  

(J/g) 

Tc  

(°C) 

ΔHc  

(J/g) 

Xc 

(%) 

Neat Marlex 130.95 188.00 119.31 166 64.16 

Corn 30, Marlex 132.08 177.27 122.6 147.59 60.50 

DDGS 30, Marlex 132.02 161.36 122.17 142.00 55.07 

Oak 30, Marlex 131.95 198.94 122.65 165.91 67.90 

Corn 50, Marlex 133.97 149.41 122.16 130.22 50.99 

DDGS 50, Marlex 131.87 198.76 122.17 171.59 67.84 

Oak 50, Marlex 134.5 161.39 122.32 126.76 55.08 

Neat Braskem  134.03 214.30 121.95 193.10 73.14 

Corn 30, Braskem 135.96 175.00 122.46 155.76 59.73 

DDGS 30, Braskem 135.80 191.21 122.08 170.61 65.26 

Oak 30, Braskem 134.86 246.06 122.45 216.06 83.98 

Corn 50, Braskem 137.67 198.46 122.24 175.17 67.73 

DDGS 50, Braskem 135.92 245.65 122.17 205.80 83.84 

Oak 50, Braskem 136.63 145.20 122.23 131.00 49.55 
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petroleum-based Marlex as the HDPE source. Braskem composite samples also exhibited high 

impact strength compared to Marlex. The natural fiber fillers from DDGS and corn grain showed 

better flexural strength than oak fiber at 30% loading, which means oak fiber can be replaced by 

DDGS and corn fibers, without affecting its flexural strength. Braskem composites with 30% 

DDGS fiber filler showed the best impact strength properties. Higher fiber loading tended to 

provide more thermal stability to the composite samples by decreasing its thermal 

expansion. Incorporation of fillers increased the crystallization temperature of all the composite 

samples exhibiting their nucleating capabilities in the HDPE polymers. 
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CHAPTER 3. PERFORMANCE OF UV WEATHERED HDPE COMPOSITES 

CONTAINING HULL FIBER FROM DDGS AND CORN GRAIN2 

Abstract  

The availability of distiller’s dried grain with solubles (DDGS), the main co-product of 

corn ethanol production, exceeds its demand as feedstuff. A physical separation process named 

elusieve can separate the hull fiber from DDGS or corn flour to obtain DDGS with enhanced 

protein and oil content, or corn flour with higher starch content. This study was performed to 

investigate the potential of using the hull fiber separated with elusieve process on DDGS or corn 

flour as fillers in high density polyethylene (HDPE) composites at the commercial scale. 

Additionally, the degradation effects of UV accelerated weathering on this material were 

investigated. Commercial scale composite samples were made with six combinations of oak 

fiber, corn hull fiber and DDGS fiber, with the fiber loading maintained at 50%, and then the 

samples were subjected to UV accelerated weathering for 2000 h. The unexposed DDGS 

samples showed better resistance to moisture absorption (less than 5%) than the corn filler 

samples (18%). The specific gravity for all the filler composites was more than one for both 

unexposed and UV weathered composites. The DDGS fiber also showed higher flexural 

properties in oak25/DDGS25 than other filler composites. For all samples, the accelerated 

weathering resulted in a lightening during the first 1000 h of exposure, followed by a darkening 

at 2000 h of UV exposure. Overall, the UV weathering resulted in a chain scission of the HDPE 

polymer increasing the crystallinity of the polymer in the weathered filler composites.   

                                                 

 

2 Chapter 3 consists of a scientific manuscript that was approved for publication in July 2017 in the 

Journal of Industrial Crops and Products. Authors: Pankaj Pandey, Sreekala Bajwa, Dilpreet Bajwa and 

Karl Englund. Pankaj designed and conducted the experiments in this work and is the first and the 

corresponding author of the manuscript. The co-authors provided advice throughout the work and assisted 

in the editing. 



 

49 

Introduction 

Over the last few decades, natural fiber polymer composites have gained markets in 

building, landscaping and automobile applications because of their durability, low density, easy 

processing, high specific strength and stiffness, all at a low cost [1,2]. These composites are 

generally considered for non-structural components for indoor applications as well as outdoor 

products such as fencing, decking, and pavements [3,4]. In addition, agricultural residues and 

cellulosic byproduct streams have been investigated as alternate fiber fillers in polymer 

composites [5,6]. However, there is very limited research on the long-term performance of these 

polymer composites with agricultural byproduct as fillers under weathering agents such as UV 

light and moisture [7,8].  

The external factors such as UV light, heat, moisture, and humidity together affect the 

integrity of the fiber-matrix structures in a composite causing photodegradation. The weathering 

of natural fibers results in the degradation of lignin into water soluble products such as 

carboxylic acids, quinone, and hydroperoxy radicals [9]. The polyolefins degrade due to the 

presence of chromophores such as catalyst residues, carbonyl groups, hydroperoxide group, and 

double bonds formed during the polymer manufacturing [10]. The degradation by carbonyl 

groups cause the most noticeable photodegradation through either of two reactions called as 

Norrish I or Norrish II reactions [11]. These two reactions have unique mechanisms: Norrish I 

reaction generates free radicals which ultimately results into either cross linking between chains 

or chain scission whereas Norrish II leads to the formation of carbonyl and terminal vinyl groups 

with chain scission [11].   

Distiller’s dried grains with solubles (DDGS) is the main co-product of corn ethanol from 

the dry grind process. It is the unfermented portion of the corn grain remaining in the 

concentrated form after the starch is utilized. The expansion of corn ethanol industries in the US 
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resulted in the dramatic increase in the production of DDGS from 9 million tons in 2005 to 40 

million tons in 2015 [12]. Currently, DDGS is mainly used as a feed supplement for livestock 

and poultry, as only low levels of DDGS are acceptable as a feed supplement for non-ruminants 

because of its high fiber content [13]. A physical separation process named elusieve can separate 

hull fiber from both corn grain flour and DDGS to enhance the feed value by increasing the 

protein and oil content [14,15]. The DDGS with higher protein and oil content attracts $5-20 

more per ton because of the added nutritional value compared to the unprocessed DDGS 

containing hull fiber [16]. The benefits of DDGS without the hull fiber include increased weight 

gain in birds and a larger portion of the feed can be supplemented by elusieved DDGS [17,18]. 

The hull fibers extracted from DDGS and corn grain have shown good potential as a filler in 

polymer composites [19]. However, the long-term performance of composite containing DDGS 

fiber filler under UV moisture weathering has not been evaluated.  

This study investigated the impact of accelerated UV weathering on the physico-

mechanical, surface color, and surface degradation properties of the HDPE composites 

containing hull fiber from DDGS and corn grain. 

Materials and Methods 

 Materials 

An experiment was conducted at commercial scale to compare hull fibers from DDGS, 

corn grain and oak wood fiber as full or partial filler in HDPE composites. The DDGS was 

obtained from Midwest Ag Energy Group (ND, USA), and elusieved at Mississippi State 

University (MS, USA); the DDGS fiber had 46.9% neutral detergent fiber (NDF), 21.1% protein, 

3.3% starch, and 8.1% fat by dry weight. The elusieved corn grain fiber was also obtained from 

Mississippi State University (MS, USA); the corn grain fiber had 49.2% NDF, 7.9% protein, 

31.9% starch, and 3.1% fat by dry weight. The oak wood fiber was obtained from Southern 
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Wood Services LLC (GA, USA); the oak wood fiber consisted of cellulose (45.7%), 

hemicellulose (24.8%), and lignin (27.6%) by dry weight. The HDPE polymer (Petrothene LB 

010000 (melt flow index: 0.50 g/10 min, density 0.953 g/cm3, tensile yield strength 27.3 MPa, 

and flexural modulus of elasticity 1275 MPa) was obtained from Equistar Chemicals (TX, USA). 

Zinc stearate (ZnSt) was used in some formulations to act as a lubricant during extrusion, and 

talc was used as an inorganic filler.  

Composite Manufacturing 

The fibers from DDGS, corn, and oak were ground in a Wiley mill (Model 4, Thomas 

Scientific, NJ, USA) with a 1 mm sieve, and subsequently sieved through a 30-60 mesh (0.250 

mm-0.595 mm) with a Ro-tap shaker (W.S. Tyler® Ro-Tap® 8in Sieve Shaker, 230V/50Hz, 

USA). The sized fibers were then oven dried at 105 °C until the moisture content was less than 

1%. Prior to extrusion, all the components were mixed in the exact proportions specified for each 

formulation (Table 3.1). The mixture was then compounded and extruded with a counter rotating 

twin screw (L/D ratio of 28) Cincinnati extruder (Milacron, OH, USA) with five heating zone 

temperatures set between 160-180 °C. The sample material was extruded into bars with a 

rectangular profile of 35 mm wide and 10 mm thick. 

Table 3.1. Formulation of the HDPE composite samples containing six different combinations of 

fiber fillers. All weight (wt) percentages are computed on dry basis 

*25/25a- Denotes 25 percent by weight of each fiber in the mixed fiber composite 

 

Sample Name  

 

 

Fiber Loading, 

% wt  

 

Polymer 

% wt 

 

Lubricant 

% wt 

 

Talc 

% wt 

 Oak50 50 42 4 4 

 Corn50 50 42 4 4 

DDGS50 50 46 - 4 

 Oak25/Corn25 25/25a* 42 4 4 

 Oak25/DDGS25 25/25a* 46 - 4 

Corn25/DDGS25 25/25a* 46 - 4 
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UV Weathering 

To simulate natural weathering conditions, the composite samples were placed in a QUV 

accelerated weathering tester (QUV/Spray, Q-Lab Co., USA) for a duration of 2000 h according 

to ASTM G154 [20]. The weathering cycle consisted of 8 h of UV exposure (UV-A lamps) at 60 

°C, followed by a 4 h condensation cycle without UV lights at 50 °C. The UV irradiance used 

was 0.89 W/m2 at 340 nm wavelength. The surface color of the samples was recorded three 

times: prior to UV weathering, at 1000 h of weathering and at 2000 h. The lightness (L) and 

chromaticity coordinates (a, b) were recorded with an X-rite color checker (X-Rite, Grand rapids, 

MI, USA). The weathered samples were conditioned at room condition for 30 days before 

performing the following physico-mechanical and characterization techniques on composite 

materials.  

Composite Material Testing 

Composite samples before and after weathering were tested for water absorption, specific 

gravity, flexural, compression, and impact strength. Five samples were tested from each 

formulation before and after weathering to avoid potential biases due to homogeneity of material 

and testing conditions. 

Water Absorption 

The water absorption of both unexposed and weathered composite samples was recorded 

according to the ASTM D570-98 [21]. Sample coupons in the size of 75 mm × 35 mm × 10 mm 

were cut, and dried at 50 °C for 24 h before immersing them in a water bath set at 23 °C. The 

weight gain by each sample was recorded every 24 h for 18 days for the unexposed samples and 

every 24 h for 15 days for the weathered samples. The reported results are the average of five 

samples. 
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Specific Gravity 

 The specific gravity of the composite material was tested in accordance with Method A 

of ASTM D792 [22]. The test was performed to measure the specific gravity as the ratio of the 

mass of a given volume of a sample measured at 23 °C to the same volume of tap water at the 

same temperature with an analytical balance, a wire, a wooden block, and a small bucket as 

immersion vessel. The mass of the samples was first recorded in air before immersing it in the 

water with the wire cage to measure the weight loss of the sample in water. Five samples were 

used for the test. 

Flexural Properties 

 The flexural properties of both unexposed and weathered samples were tested according 

to the ASTM D7264 [23], a three-point bending test method for polymer composites. The 

weathered samples were first dried in an oven at 105 °C for 24 h to ensure the moisture content 

was same as those of the unexposed samples. The UV exposed surface of the weathered samples 

was used on the compression side for the test; the test samples had a span to depth ratio of 20:1. 

The crosshead motion rate was calculated based on the depth of the samples used in the test and 

a universal testing machine (Test Resources Inc, MN, USA) was used for testing the materials. 

Five samples were tested for each formulation. 

Compression Properties 

 The compression properties of the unexposed and UV weathered composite samples 

were measured in accordance with ASTM D6108 [24]. The crosshead rate was controlled in 

order to have a strain rate of 0.76 mm/mm/min. Sample coupons of 28 mm × 14 mm × 9.5 mm 

were placed between the compression platens in the universal testing machine (Test Resources 

Inc, MN, USA) to obtain compressive strength and modulus of elasticity (MOE). Five samples 

were tested for each formulation. 
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Impact Strength 

 The impact strength for notched samples were measured in accordance with ASTM 

D256 [25]. The sample dimensions used for the test were 63 mm × 12.5 mm × 3.5 mm with a 

notch of 2 mm cut in the middle of the sample. An Izod impact tester (Tinius olsen, Model 

Impact 104, USA) was used for reporting the impact strength of the samples. Five samples were 

tested for each formulation. 

Surface Analysis  

Light Microscopy Images 

The surface morphology of UV weathered samples was compared with the unweathered 

samples by inspecting the specimens under a light microscope SZM 7045 (AmScope, Irvine, CA, 

USA) at a magnification of 30X.  

Color Change 

 The change in surface color of the weathered composites was measured with an X-rite 

color checker (X-Rite, Grand rapids, MI, USA) using L*, a*, and b* coordinates in the CIELAB 

color system, where L*, a* and b* represent the lightness and the chromaticity coordinates, 

respectively. Each specimen was marked at the same three distinct locations to record the 

changes in L*, a*, and b* values at 0 h (before UV weathering),1000 h, and 2000 h of UV 

weathering. The color change (∆E) was calculated according to the following Euclidean 

equation:  

                                       ∆E = √(∆𝐿 ∗2+  ∆𝑎 ∗2+  ∆𝑏 ∗2)                     (Equation 3.1) 

where ∆L*, ∆a*, and ∆b* are the total changes in L*, a*, and b* values after a specific period of 

weathering. An increase in L* value means the sample is lightening. A positive ∆a* indicates a 

color shift toward red, and a negative ∆a* signifies a color shift toward green. A positive ∆b* 

signifies a shift toward yellow, and a negative ∆b* signifies a shift toward blue. 
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Thermal Analysis 

Thermal Stability 

 The thermal properties of the fillers and composites were determined with a 

ThermoGravimetric Analyzer (TGA) and Differential Scanning Calorimeter (DSC). The thermal 

stability of oak, corn, and DDGS fibers were determined with a Q500 Thermal Gravimetric 

Analyzer (TA instruments, USA). Two types of DDGS were analyzed for TGA: untreated, and 

heat treated at 105 °C. About 30 mg of fibers were placed in a platinum pan and heated from 25 

°C to 800 °C at a ramp rate of 20 °C/min under a 60 mL/min air flow. The results were analyzed 

with TA instruments Universal Analysis software.  

Thermal Transition  

 The DSC of the unexposed and UV weathered composites were measured by a 

differential scanning calorimeter (DSC Q20, TA Instruments, USA). The samples were prepared 

by scrapping the surface of the composites by knife up to a depth of 0.3 mm. Approximately 3-5 

mg of samples were placed in a hermetically sealed aluminum pan. These samples were 

compared to an empty reference pan during three consecutive heating-cooling-heating cycles. 

They were first heated from 25 °C to 200 °C at a heating rate of 10 °C/min and kept isothermally 

at 200 °C for 3 min to erase their previous thermal history.  In the next step, the samples were 

cooled off to 25 °C; the cooling rate was not controlled. The variation occurring during the 

cooling rate were assumed to be similar for all the composite samples. Finally, the samples were 

heated again to 200 °C at 10 °C/min and kept isothermally at 200 °C for another 3 min. Nitrogen 

gas was purged (50 mL/min) to prevent thermal degradation of samples during all DSC runs. The 

first cooling run determined the crystallization temperature (Tc) and crystallization enthalpy 

(ΔHc) of the samples whereas the percentage crystallinity (Xc%), heat of fusion (ΔHf) and 
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melting temperature (Tm) were measured from the second heating run. The crystallinity was 

measured as   

                                                     𝑋𝑐% =

∆𝐻𝑚

𝑊𝑝

∆𝐻𝑚100
× 100%                               (Equation 3.2) 

where ∆Hm is the experimental melting enthalpy of the composites, ∆Hm100 is the theoretical 

melting enthalpy of the fusion for 100% crystalline HDPE polymer (293 J/g) [26]. The Wp is the 

weight fraction of the HDPE in the composites corrected on the weight basis. 

Statistical Analysis 

In order to determine the statistical significance at α = 0.05, first the two sample t-test 

was performed to compare the means of unweathered sample with UV weathered samples. To 

identify the impact of different filler types in unexposed and unweathered samples, Fishers Least 

Square Differene (LSD) tests were performed on all 12 sets of samples at α = 0.05 using Minitab 

17 (Minitab Inc., Penn State University, PA, USA). The error bars in the bar graphs represent the 

standard deviation of the sample. 

Results and Discussion 

During the initial commercial trials, the composites containing DDGS fiber filler did not 

extrude smoothly. After heat treatment of the fiber at 105°C, the extrusion was smooth and easy. 

Therefore, heat treated DDGS fibers were used in all the samples used in this study. Also, no 

lubricant was used in samples containing DDGS fiber as our past trials at lab scale indicated that 

the fat in the DDGS fiber provided adequate lubrication. Composite samples containing oak and 

corn fiber fillers were aided with ZnSt as the lubricant during extrusion. The impact of UV 

weathering on the morphology and physico-mechanical properties of the six different composite 

formulations is described below. 
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Visual Appearance and Surface Morphology  

The visual inspection of UV weathered samples performed at 1000 h showed 

discoloration of all the composite samples as a result of degradation of the composites’ surface 

(Fig. 3.1). This discoloration is caused by bleaching of natural fiber and degradation of the 

HDPE under UV exposure, which are reported to occur mostly in the first 700 h [27]. The 

composite samples with corn fiber filler showed fiber protrusion together with visible micro 

cracks on the surface whereas the samples with oak and the DDGS fiber fillers showed only a 

whitening effect (Fig. 3.1). When the samples were exposed for another 1000 h, all the samples’ 

surface turned darker due to an oxidation reaction on the surface as reported by [28]. Vigorous 

fiber protrusion of corn fiber-filled composite samples showed the detrimental effect of UV and 

condensation cycles on the integrity of their composites. The presence of starch and proteins in 

corn-filled composites may have played a crucial role in their degradation behavior. The oak 

filler was highly susceptible to discoloration due to the specific chromophore groups present in 

the lignin. The corn starch degradation by UV light may have resulted in the cleavage of 

glycosidic bonds, shortening of amylose chains, and a debranching of the amylopectin due to the 

formation of free radicals [29]. The proteins are susceptible to photo oxidation which denatures 

their primary structure and leads to the formation of protein carbonyls [30].  
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Fig. 3.1. The visual pictures taken for (1) Oak50, (2) Corn50, (3) DDGS50, (4) Oak25/Corn25, (5) 

Oak25/DDGS25, and (6) Corn25/DDGS25 composite samples at 0 h, 1000 h, and 2000 h 

Before weathering, the surface of all the composites showed good encapsulation of the 

fibers by the HDPE matrix (Fig. 3.2). After 2000 h of UV exposure, all the samples showed 

cracks on the surface showing polymer breakage and degradation, and exposure of the previously 

encapsulated fiber fillers. The cracks in natural fiber polymer composite is a common 

phenomenon due to the polymer chain scission which allows polymer to crystallize quickly 

leading to surface cracking during UV accelerated weathering [31]. Sometimes, spontaneous 

cracking of HDPE also occurs from secondary crystallization also known as chemicrystallization 

[32].  

25 mm  25 mm 25 mm 
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Fig. 3.2. Light microcope images taken for unweathered and weathered samples for (1) Oak50, (2) 

Corn50, (3) DDGS50, (4) Oak25/Corn25, (5) Oak25/DDGS25, and (6) Corn25/DDGS25 at the 

magnification of 30X 
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Color Change During UV Weathering 

The composite treatment with 50% oak fiber filler showed the highest change in surface 

color, which was indicated by a lightness (∆L*) change of 23.4, due to UV weathering (Fig. 3.3). 

The corn50 treatment showed the lowest change in surface color of 4.2 after 1000 h of UV 

exposure. The lignin present in the oak fiber oxidizes due to the transformation of paraquinone to 

hydroquinone causing a photobleaching effect [33]. The lightness change was the highest at 1000 

h exposure but decreased dramatically at 2000 h exposure, showing a darkening effect. The 

corn50 composites exhibited a negative ∆L*, between 1000 h and 2000 h exposure, indicating 

that the samples became darker due to severe effects of UV radiations along with condensation 

cycles. The lightening due to UV weathering is most likely from photo degradation of both fiber 

fillers and the HDPE. The natural fibers and HDPE react to UV light via different mechanism of 

degradation. The change in ∆a* and ∆b* for all the composites were small and negative at both 

1000 h and 2000 h exposures signifying a color shift towards blue-green. The change in ∆E, the 

total color change observed in the composites, followed almost the same pattern as of ∆L*. The 

change in ∆E was higher than reported for HDPE fiber composites together with coupling agent 

[7].  
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Fig. 3.3. Changes in lightness (∆L*), chromaticity coordinates (∆a* and ∆b*) and total color 

change (∆E) as a function of weathering time in HDPE composites containing 6 different fiber 

filler combinations of Oak50, Corn50, DDGS50, Oak25/Corn25, Oak25/DDGS25, and 

Corn25/DDGS25 under unexposed and weathered conditions 

 

-10

-5

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000

∆
L

*

Weathering Time (h)

Oak50 Corn50

DDGS50 Oak25/Corn25

Oak25/DDGS25 Corn25/DDGS25

-8

-7

-6

-5

-4

-3

-2

-1

0

0 1000 2000

∆
a
*

Weathering Time (h)

-12

-10

-8

-6

-4

-2

0

0 1000 2000

∆
b

*

Weathering Time (h)

0

5

10

15

20

25

30

0 1000 2000

Δ
E

Weathering Time (h)



 

62 

Thermal Degradation of Fiber Fillers 

The thermal degradation of fibers recorded with a TGA showed that the three fibers had a 

slight difference in thermal degradation (Fig. 3.4). The degradation of oak and corn fibers 

occurred in two and three steps, respectively. The first degradation occurred in the temperature 

range of 250-300 °C in which 55% and 68% weight loss was observed for corn and oak fibers 

respectively (Fig. 3.4 & 3.5). The second step occurred at 300-350 °C and the third step at 400-

600 °C leading to complete degradation of the fibers. The untreated and heat treated DDGS 

fibers showed similar decomposition behavior between 150-400 °C with approximately 65% and 

60% weight loss, respectively. This temperature range was important as the DDGS fiber 

composites were manufactured in this temperature range. The degradation of both raw and heat 

treated DDGS occurred mainly in two steps: the first stage of 150- 250 °C corresponding to the 

thermal degradation of hemicelluloses, and the second step of 250- 375 °C corresponding to the 

thermal degradation of cellulose [34].  The untreated DDGS fiber did not show a third 

degradation peak whereas the heat treated DDGS fiber showed a small peak between 450 °C and 

500 °C which is attributed to degradation of aromatic rings of lignin and of the residue formed 

during the first degradation step. The final weight loss percentage for untreated and heat treated 

DDGS at 800 °C was about 75% and 84% respectively.  
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Fig. 3.4. The thermogravimetric curves of corn, heat treated DDGS, oak, and raw DDGS fibers              

 

Fig. 3.5. The differential thermogravimetric curves of corn, heat treated DDGS, oak, and raw 

DDGS fibers 

Thermal Properties of Composites  

The melting and crystallization curves obtained with a differential scanning colorimeter 

helps to determine the changes in the melting temperature (Tm), crystallization temperature (Tc), 

heat of fusion (ΔHf), heat of crystallization (ΔHc) and percent crystallization (Xc%) before and 
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after weathering (Table 3.2, Fig. 3.6). The different fiber filler treatments did not show much 

difference in Tm and Tc. The similar Tc in unexposed and UV weathered samples shows that 

fillers had no effect on the nucleation. However, the heat of fusion, heat of crystallization and 

degree of crystallinity were significantly lower for the corn50 composite. The addition of the 

fiber fillers to HDPE changes the crystallinity of the polymer composites. (Table 3.2). The 

corn50 fiber filled composites hindered the growth of crystals resulting in a decrease in 

crystallinity to 38% compared to the calculated crystallinity of 59% for the neat HDPE polymer 

(not shown in the Table 3.2). The increase in Xc (%) of composites after UV weathering can be 

attributed to the chain scission of the polymer during the UV accelerated weathering. The chain 

scission reduces the density of entanglements in the amorphous region thus allowing small 

molecules to crystallize easily due to their high mobility [11].  
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Table 3.2. Thermal properties of unexposed and UV weathered composites under Oak50, Corn50, 

DDGS50, Oak25/Corn25, Oak25/DDGS25, and Corn25/DDGS25 fiber filler treatments, obtained 

with a differential scanning calorimeter. The properties listed include melting temperature (Tm), 

crystallization temperature (Tc), heat of fusion (ΔHm), heat of crystallization (ΔHc) and degree of 

crystallinity (Xc%) 

 

All the UV weathered samples showed a decrease of 8-12°C in Tm and 3-11°C in Tc. 

The decrease in Tm for UV weathered composites can be due to the smaller and less thermally 

stable crystal molecules formed after degradation and recrystallization, and due to the presence 

of defects like carbonyl and hyperoxides [33]. The decrease in Tc is likely due to the 

characteristic delay in the crystallization at lower temperature as it requires greater super cooling 

for the germination to occur. In addition, the chain scission of polymer chains causes small 

molecules to crystallize easily. The UV weathered composites showed higher heat of fusion 

(ΔHf) than their unexposed samples due to their increased crystallinity resulting from the 

chemicrystallization.  

Properties Oak50 Corn50 DDGS50 Oak25/Corn25 Oak25/DDGS25 Corn25/DDGS25 

Tm (°C) 

(unexposed) 
130.5 133.1 134.4 134.2 134.1 132.4 

Tc (°C) 

(unexposed) 
122.9 122.8 122.8 122.7 123.0 122.8 

ΔHf (J/g) 

(unexposed) 
103.6 47.8 93.3 75.5 88.0 88.4 

ΔHc (J/g) 

(unexposed) 
91.3 48.9 89.2 76.7 89.2 89.9 

Xc % (unexposed) 74.2 38.9 69.2 61.4 65.3 65.6 

Tm (°C)  (UV 

weathered) 
121.4 123.7 124.0 122.2 124.1 123.9 

Tc (°C)   (UV 

weathered) 
112.1 119.5 114.5 114.3 114.7 114.6 

ΔHf (J/g)  (UV 

weathered) 
121.7 66.5 98.2 71.4 100.2 105.5 

ΔHc (J/g)  (UV 

weathered) 
96.9 55.5 72.4 58.9 80.8 60.5 

Xc % (UV 

weathered) 
98.9 54.1 72.9 58.0 74.3 78.3 
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Fig. 3.6. The melting temperature curves for (a) Unexposed and (b) UV weathered composites 

for Oak50, Corn50, DDGS50, Oak25/Corn25, Oak25/DDGS25, and Corn25/DDGS25 

composites  

Water Absorption  

The composite samples before and after weathering exhibited a linear relationship 

between the percentage moisture gain against the square root of time (Fig. 3.7) with the 

exception of one formulation. The UV weathered composite containing 50% of oak fibers 

showed a distinctly different bilinear trend that was also reported for other HDPE composites 

containing natural fibers [35]. The linear trend between water absorption and the square root of 

time indicate that the composite materials followed the Fick’s diffusion law during the uptake of 

water. The unexposed samples with 50% corn fiber filler (corn50) showed the highest moisture 

absorption of 18% after 15 days, whereas composites with 50% oak or 50% DDGS fiber filler 

showed much lower moisture absorption of 5% each. This affinity of corn50 composite for water 

can be attributed to the presence of hygroscopic starch in addition to the cellulose and 

hemicelluloses. The abundance of these carbohydrates in the corn fiber filler made it susceptible 

to moisture by serving as entry points for water. The appearance of micro-cracks on the 

composite surface also favored the moisture absorption in corn50 composites. The absorbed 
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water leads to swelling of the fiber causing the formation of micro cracks and dimensional 

instability of the composites. When the corn fiber filler was mixed with oak or DDGS fibers as in 

oak25/corn25 and corn25/DDGS25 composites respectively, the moisture absorption decreased 

to a moderate level of 5 to 11% after 18 days. The unweathered composites containing oak and 

DDGS fiber fillers absorbed the least moisture showing the role of hydrophobic lignin, fat and 

proteins in resisting the moisture. The 24 h water absorption of all composites materials before 

weathering varied from 1% to 3.9%, which is comparable to the values reported for 

commercially available wood plastic composites [36].  

The moisture absorption of composites samples after 2000 h of weathering followed 

similar trends as those of the unexposed samples with the only exception observed for the 

samples with 50% oak fiber filler. The moisture absorption of Oak50 samples was four and half 

times higher than the unexposed oak50 sample. This jump in moisture gain was expected as the 

UV exposure oxidizes lignin on the surface leaving the composite surface rich in cellulose and 

hemicelluloses allowing high water absorption. The composite samples with corn and DDGS 

fiber fillers were degraded by the UV weathering and showed 50 to 100% increase in water 

absorption after 9 days of exposure to water. The UV weathering approximately doubled the 24-

h water absorption for all samples except the Oak50 samples. This increase in water absorption 

was expected as UV weathering degraded both the polymer and the natural fiber in the 

composite, making the fibers more susceptible to water.  
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Fig. 3.7. The water absorption of (a) unexposed, and (b) UV weathered samples of HDPE 

composite materials containing different fiber fillers such as Oak50, Corn50, DDGS50, 

Oak25/Corn25, Oak25/DDGS25, and Corn25/DDGS25 

Specific Gravity  

The specific gravity of composite samples is important as they are often used as a 

replacement for wood in building and outdoor applications. For applications replacing wood, a 

specific gravity close to or less than one is preferred. The composite samples with various fiber 

filler combinations showed average specific gravities of 1.07 to 1.12 before weathering and 1.06 

to 1.14 after weathering (Fig. 3.8). These values are well within the range of the 0.7 to 1.46 

reported for commercially available wood plastic composites [36]. The lowest specific gravity of 

1.06 was observed for the UV weathered corn50 sample. Weathering did not influence the 

specific gravity of the composite materials, except for composites with oak fiber filler. There was 

a significant difference between weathered and unexposed samples with 50% oak filler.  
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Fig. 3.8. Specific gravity of HDPE composites containing fiber fillers such as Oak50, Corn50, 

DDGS50, Oak25/Corn25, Oak25/DDGS25 and Corn25/DDGS25 under unexposed and UV 

weathered conditions. Different letters in the label show that there is significant difference 

between those treatments at α = 0.05 

Flexural Properties of the Composites 

The flexural stiffness of the unexposed composites showed wide variations, where the 

50% oak fiber filler treatment showed the highest values of 3039 MPa. The 50% corn and 50% 

DDGS fiber fillers showed lower stiffnesses or modulus of elasticities (MOEs) of 1444 MPa and 

1710 MPa, respectively (Fig. 3.9). Mixing corn or DDGS fiber with oak fiber increased the 

composite stiffness by about 53% for both types of fibers. The combination of corn and DDGS 

in corn25/DDGS25 composite showed a lower MOE of 1628 MPa compared with the control. 

The high flexural performance with Oak50 can be attributed to its prismatic shape which allows 

higher aspect ratio than the lamellar shaped hull fibers (Fig. 3.10).  

The UV weathering decreased the stiffness of all composite samples. The 50% corn filler 

sample showed the highest drop in flexural stiffness of approximately 50%. The corn filler 

composite with partial substitution of either oak or DDGS filler showed a decrease in MOE of at 

least 40% compared with the same unexposed composite. The DDGS50 sample also showed a 
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drop of around 30% due to UV weathering compared with the unexposed sample. The UV 

weathering and moisture absorption resulted in micro cracks in HDPE matrix due to swelling of 

fiber particles which reduces the efficiency of stress transfer between the fiber and the matrix.  

 

Fig. 3.9. Flexural stiffness of unexposed and UV weathered materials containing fiber fillers 

such as Oak50, Corn50, DDGS50, Oak25/Corn25, Oak25/DDGS25, and Corn25/DDGS25. 

Different letters show the significant difference between those treatments at α = 0.05 
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Fig. 3.10. Scanning electron microscope (SEM) images of the fractured surface showing the 

fiber-polymer interface for composite samples (1) Oak50, (2) Corn50, (3) DDGS50, (4) 

Oak25/Corn25, (5) Oak25/DDGS25, and (6) Corn25/DDGS25 

The fractured surface of UV exposed composite samples was examined under scanning 

electron microscope (SEM) to understand the failure mechanism and fiber-matrix adhesion of the 

composite materials (Fig.3.10). All the samples showed a common mechanism of defibrillation 

of the matrix under flexure load, of which corn50 and DDGS50 samples showed higher fiber pull 

outs compared with other samples. The fiber pull outs show that corn and DDGS fiber had poor 

interfacial bonding with the matrix.  

The composite samples containing oak25/DDGS25 fibers each exhibited the highest 

flexural strength, which was similar to the oak50 samples (Fig. 3.11). The DDGS50 samples 

Fiber pull outs 

Ruptured matrix 

Fiber pull out 



 

72 

showed high flexural strength similar to that of Oak50 but slightly less than the oak25/DDGS25. 

The Corn50 samples showed the lowest flexural strength of 10 MPa. The UV exposure of 

composite samples significantly reduced the flexural strength of all composite materials except 

those with 50% oak fiber filler. The DDGS fiber filled sample showed higher loss in flexural 

strength than corn filled samples. The oak25/corn25 sample showed the highest loss in flexural 

strength of 32% due to weathering. The screening effect by oak fiber doesn’t allow the UV light 

and moisture to penetrate deeper from the surface layer may explain the retention of strength in 

oak50 composite [37]. The extensive surface degradation of corn samples resulted into 

ineffective stress transfer causing loss of flexural strength.  

 
Fig. 3.11. Flexural strength of unexposed and UV weathered materials containing fiber fillers such 

as Oak50, Corn50, DDGS50, Oak25/Corn25, Oak25/DDGS25, and Corn25/DDGS25. Different 

letters show the significant difference between those treatments at α = 0.05 

 Compression Properties of the Composites 

The effect of UV weathering on filler composites showed a significant change in the 

compressive MOE properties (Fig. 12). The corn50 and DDGS50 fiber filled composites showed 

no changes in the MOE after UV weathering. The composite samples containing oak fiber filler 

showed an increase in MOE after UV weathering. This increase in MOE shows that the 
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combination of oak with either of corn or DDGS at 25% fiber loading interacts well with each 

other.  

 
Fig. 3.12. The compressive MOE of both unexposed and UV weathered samples from Oak50, 

Corn50, DDGS50, Oak25/Corn25, Oak25/DDGS25, and Corn25/DDGS25 composites. Different 

letters show the significant difference between different filler treatments in unexposed and UV 

weathered samples measured at α = 0.05 

 

The compressive strength properties showed no significant difference between the 

unexposed and UV weathered samples except with oak25/Corn25 and corn25/DDGS25 

treatments (Fig. 3.13). The DDGS50 sample showed higher strength than corn50 sample after 

weathering indicating that DDGS fiber is a good fiber filler for outdoor applications where the 

material will be subjected to UV weathering. When mixed with either corn or oak the DDGS 

composites showed a drop in strength in the UV weathered samples. The compressive strength 

did not follow the same behavior as of compressive stiffness.  
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Fig. 3.13. The compressive strength of both unexposed and weathered samples from Oak50, 

Corn50, DDGS50, Oak25/Corn25, Oak25/DDGS25, and Corn25/DDGS25 composites. Different 

letters show the significant difference between different filler treatments in unexposed and UV 

weathered samples measured at α = 0.05 

Impact Strength     

All composite samples showed relatively similar impact strength in the range of 8.95-11 

J/m (Fig. 3.14). The UV weathering of the composite materials caused a significant drop in 

impact strength in oak25/Corn25 treatment, and a significant increase in Corn50 treatment. This 

may be due to the same fiber loading in the HDPE matrix and to the limited penetration of UV 

degradation through the top surface layer. The embrittlement caused by UV weathering to 

exposed surface layer is not transferred to the inner surfaces.       
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Fig. 3.14. The impact strength of both unexposed and weathered samples from Oak50, Corn50, 

DDGS50, Oak25/Corn25, Oak25/DDGS25, and Corn25/DDGS25 composites. Different letters 

show the significant difference between different filler loadings in unexposed and UV weathered 

samples measured at α = 0.05 

Conclusions 

The results indicate that hull fiber from corn grain and DDGS can be viable as full or 

partial alternatives for wood fiber in HDPE composites. They exhibited properties that may be 

favorable or unfavorable for specific applications for example, the DDGS fiber filled composites 

can be a material of choice for applications where low moisture absorption is required and UV 

exposure is expected. Additionally, replacing a part of oak in mixed fiber composite with DDGS 

can be a viable option for applications where good flexural properties are required. The corn 

fiber composites showed poor moisture resistance and stress transfer efficiency in both 

unexposed and weathered composites. From the aesthetics aspect, DDGS and corn samples 

showed much less discoloration compared with oak50 sample. Although the color change was 

not high after 2000 h exposure time, the photodegradation of the surface disrupted the integrity 

of the material and the formation of micro cracks was very common. The fiber type did not have 

any effect on melting and crystallization temperature for both unexposed and UV weathered 
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samples. The accelerated UV weathering did not change the impact resistance of the composites 

but resulted into the drop in melting and crystallization transition temperatures for all the 

composite samples. The chain scissions and reduction of chain entanglements are common 

effects of UV weathering in the composite materials.  
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CHAPTER 4. MERCERIZATION OF DDGS FIBER FOR IMPROVED 

PERFORMANCE AS A FILLER IN THERMOPLASTIC COMPOSITES 

Abstract 

The increase in the production of distiller’s dried grain with soluble (DDGS), a major co-

product of corn ethanol process, provides an excellent opportunity to develop value-added 

products. The fibers from DDGS, separated by elusieve process, were treated in a sodium 

hydroxide (NaOH) solution to investigate their performance as fillers in high density 

polyethylene (HDPE) composites. The composite material properties were characterized by 

water absorption, tensile, flexural, and impact tests. Composite samples were manufactured with 

NaOH treated DDGS fiber at 25% and 50% loading. Addition of both untreated and NaOH 

treated 25% DDGS fiber to HDPE resulted in moisture absorption of less than 5%. At 50% fiber 

loading, composites with untreated DDGS fiber exhibited 15% moisture absorption compared to 

25% moisture absorption observed for alkali treated DDGS fiber, after 30 days of water 

exposure. The addition of treated and untreated DDGS fibers increased the tensile modulus but 

decreased the tensile strength of composites compared to neat HDPE. Under flexural load, the 

composite with 25% alkali treated DDGS fiber composite samples showed higher flexural 

modulus and flexural strength than untreated 25% DDGS composites.  An increase in fiber 

loading from 25% to 50% decreased impact resistance of composites with both untreated and 

alkali treated DDGS fibers. The thermal stability of composites with alkali treated DDGS fibers 

increased in the temperature range of 150-230 °C, corresponding to hemicellulose degradation, 

in comparison to those with untreated DDGS fiber.   
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Introduction 

The depletion of petroleum resources and negative impacts of conventional synthetic 

fiber composites on environment have stimulated the interest of automobile, aircraft, building 

and packaging industries to replace petroleum based analogs with sustainable materials. Natural 

fibers are a suitable replacement for synthetic fibers in polymer composites.  Natural fibers have 

several advantages such as abundance, low cost, biodegradability, high sound absorption, 

fracture resistance, low density, acceptable specific strength and easy processing [1, 2]. 

The natural fibers are polar in nature, whereas polymers are non-polar materials. This 

mismatch in properties results in poor compatibility between the fiber and the polymer matrix, 

resulting in poor interfacial bonding and high moisture absorption by fibers. Weak interfacial 

adhesion prevents the stress transfer from the matrix to the fiber under applied load. The 

interaction between the fibers and matrix can be improved by changing in the surface properties 

of the fiber. Natural fibers can be modified through physical or chemical treatments. Physical 

treatments change structural and surface properties of the natural fibers by changing the surface 

energy, thus increasing their compatibility with the polymer and improving their mechanical 

bonding to polymers. Different physical treatments such as corona discharge [3], cold plasma 

[4], gamma-ray [5] and UV bombardment [6] and chemical treatments such as mercerization 

(alkali) [7-9], grafting [10-12], acrylation [13], permanganate [14], acetylation [15-17], silane 

[18] and peroxide [19] have already been used effectively on the natural fibers. 

Alkali treatment is a simple, inexpensive and effective method for surface modification 

of fibers. Alkali treated fibers have been reported to show increased surface area, which in turn 

leads to better interfacial bonding with polymer matrix [8,9]. 

Distillers’ dried grain with solubles (DDGS) is the main co-product produced from corn 

ethanol fermentation. The production of DDGS has seen tremendous increase in the last few 



 

81 

years [20]. The fiber fraction of DDGS isolated by a physical separation process named elusieve 

[21]. This separated DDGS fibers have the potential to be used as filler in polyolefin composites 

[22].    

Currently, there are no reported studies that investigated how mercerization or sodium 

hydroxide (NaOH) treatment of DDGS fiber affects their performance as fillers in HDPE 

composites. The aim of this study was to investigate the performance of NaOH treated DDGS 

fibers compared to untreated DDGS fibers as fillers in HDPE composites.   

Materials and Methods 

Materials 

The DDGS was supplied by Midwest Ag Group (Underwood, ND), and the DDGS fibers 

were separated using an Elusieve process at Mississippi State University (Starkville, MS). The 

polymer used was Marlex 9006 high density polyethylene (HDPE), manufactured by Chevron 

Philips (The Woodlands, TX). The neat HDPE had a density of 0.952 (g/cm3), melt Index of 5.2 

g/10 min measured at 190 °C with 2.16 kg, tensile yield strength of 18 MPa and flexural 

modulus of 612 MPa. The sodium hydroxide (NaOH) pellets were obtained from Sigma Aldrich 

(Fargo, ND). 

Mercerization  

The DDGS fiber was first sized and screened through a 1 mm sieve using a Wiley mill 

(Model 4, Thomas Scientific, Swedesboro, NJ). The material was again screened to obtain fiber 

in the range of 0.250 mm-0.595 mm (30-60 mesh) using a Ro-Tap shaker (W.S. Tyler® Ro-

Tap® 8in Sieve Shaker, Mentor, OH). After screening, the DDGS fiber was dried in an oven for 

24 h at 105 °C to bring the moisture content below 1%.  

The DDGS fibers were mercerized by immersing the fibers in a 0.1M NaOH solution in a 

500 ml Erlenmeyer flask, kept at room temperature (~24 °C) for 1 h. After the 1 h treatment, the 
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fibers were washed by the tap water until the pH observed was 7, indicating all the NaOH 

residue was removed. The treated fibers were next oven dried at 105 °C for 24 h. The 

composition analysis of untreated and NaOH treated DDGS fibers was performed by AOAC 

methods [23].  

Manufacturing of Composites 

A laboratory experiment was conducted with two fiber treatments (NaOH treated and 

untreated), and two fiber loading (25% and 50% by weight) factors, resulting in four types of 

composites. Samples were also made from neat HDPE for comparison. To manufacture 

composite samples, the dried fibers were mixed with the HDPE at two different fiber loadings of 

25 and 50 weight % and compounded in a twin-screw co-rotating extruder (L/D ratio of 18, 

Leistriz Micro 18 GL/-40 D, Allendale, NJ). The extruder barrel zones were set at temperatures 

between 160-195 °C and the die temperature was set at 195 °C. The extruder was operated at 150 

rpm. The material was extruded into 3 mm diameter strands that were cooled through a water 

bath, before pelletizing with a BT25 pelletizer (Scheer Bay Co., Bay City, MI). The pelletized 

composite material was oven dried overnight at 80 °C before injection molding into test 

specimens. The test specimens were manufactured with an injection molder (Model SIM- 5080, 

Technoplas Inc., Norwood, MA) set at 190 °C into dog bone samples of 12.5 mm by 3.5 mm 

cross sectional size at the center, and 65 mm length. The composite samples were stored in a 

sealed plastic bags before performing various tests.  

Fiber Characterization 

The morphologies of untreated and alkali treated DDGS fibers were examined under a 

Leitz Laborlux microscope (Laborlux S, Leitz, Wetzlar, Germany) for fiber surface 

characteristics. The images were captured using a 40X magnification. 
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 The thermal properties of the NaOH treated and untreated DDGS fibers were determined 

using a Q500 Thermal Gravimetric Analyzer (TA instruments, New Castle DE, USA). About 30 

mg of fibers were placed in a platinum pan and heated from 25 °C to 800 °C at a ramp rate of 20 

°C/min under a 60 mL/min air flow. The results were analyzed with TA instruments Universal 

Analysis software.  

Characterization of Physical and Mechanical Properties of Composites 

Melt Flow Index (MFI) 

The MFI of the neat HDPE and the composite materials was determined in accordance 

with ASTM D1238 [24] standard using an extrusion plastometer (Tinius Olsen, Model MP 600, 

USA). The HDPE and composite pellets were tested in five replicates at 2.16 kg load and 190 °C. 

The MFI was recorded as the amount of material that would pass through the nozzle of the 

plastometer in 10 min.  

Water Absorption 

The long term water absorption of composites was quantified as specified by ASTM 

D570 [25] standard. The samples were immersed in water at 24 °C in a water bath.  Five samples 

from each formulation were tested for percentage moisture gain at 24 h increments, and the test 

continued until the sample weight change stabilized. The composites used for the test were 30 

mm long, 12.5 mm wide, and 3.5 mm thick.  

Tensile Properties 

The tensile properties such as stiffness and strength of the samples were measured 

according to ASTM D638 [26]. The samples used for the test were 63 mm long, 10 mm wide in 

the center and 3.5 mm thick. The crosshead speed was set at 5 mm/min. The universal testing 

machine Instron (Model 5567, Norwood, MA, USA) installed with a 2 kN load cell was used for 

the test. 
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Flexural Properties 

The flexural properties such as stiffness and strength of the samples were measured 

according to the ASTM D790 [27] standard that specifies three-point bending test method for 

unreinforced and reinforced plastics.  The samples used for the test were 63 mm long, 12.5 mm 

wide and 3.5 mm thick. A crosshead speed of 1.3 mm/min was selected based on the span length 

of the samples. The flexural properties were evaluated using universal testing machine as 

described earlier.  

Impact Strength 

The impact strength of the samples was tested in accordance with ASTM D256 [28] 

standard. The notched samples were tested for their impact resistance properties using an Izod 

impact tester (Tinius Olsen, Model Impact 104, Horsham, PA, USA). The sample dimensions 

were 63 mm x 12.5 mm x 3.5 mm (LxWxH) with a notch of 2 mm. The microscopy images of 

the impact fractured sample were examined under a Leitz Laborlux S digital microscope at 40X 

magnification.  

Statistical Analysis 

To compare the properties of composites from different groups, Fishers Least Square 

Difference (LSD) tests were performed on all the 10 treatments using Minitab 17 (Minitab Inc., 

Penn State University, PA, USA). The error bars in the bar graphs represent the standard 

deviation of the group. 

Results and Discussion 

Composition Analysis of Untreated and NaOH Treated DDGS Fibers 

The composition analysis of DDGS fibers showed that NaOH treated DDGS fibers had 

higher NDF concentration due to solubilization and loss of hemicelluloses and lignin during 

alkali treatment (Table 4.1). The alkali treatment of 0.1 M for a residence time of 1h proved to be 
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strong enough for solubilization of protein,starch, and fat contents that was present in the 

untreated DDGS fibers.  

Table 4.1. Composition of untreated and NaOH treated DDGS fibers computed on a dry basis, 

performed by Animal Sciences lab (NDSU) 

 

 

 

 

 

 

 

Morphology of Untreated and Alkali Treated DDGS Fibers 

The NaOH treated fibers exhibited cleaner untreated DDGS fibers (Fig. 4.1a &b). The 

effects of alkali treatment include solubilization of hemicelluloses, lignin, wax, and oil covering 

the surface of the fiber [29]. The yellowish appearance of untreated DDGS fiber was mainly 

from the oil present on the surface which was not visible for the alkali treated DDGS fiber. The 

alkali treated DDGS fibers showed rough surface and more cellulose exposure which helps in 

improving the fiber-matrix adhesion.   

 

Fig. 4.1. The microscopy images of a. untreated DDGS fiber and b. alkali treated DDGS fiber at 

40X magnification 

 

Components Untreated DDGS fiber (%) NaOH treated DDGS fiber (%) 

NDF 53.20 76.8 

Protein 34.21 15.62 

Starch 4.04 1.54 

Fat 4.04 0.81 

Ash 4.45 3.02 

a b 
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Thermogravimetric Analysis of DDGS Fibers 

The thermogravimetric curves showed difference in the degradation rate of alkali treated 

DDGS as compared to the untreated DDGS fiber (Fig. 4.2 & 4.3). Alkali treated DDGS fiber 

lost 10% weight around 100 °C, representing moisture loss from the fiber. The thermal 

degradation of alkali treated DDGS fiber remained constant between 150 and 230 °C 

temperature range, corresponding to hemicellulose degradation. The higher degradation in alkali 

treated DDGS fiber in the hemicellulose range is an indication that mercerization partially 

solubilized the hemicellulose in treated DDGS fiber. Between 230 and 360 °C temperature 

range, corresponding to cellulose degradation, the alkali treated and untreated DDGS fiber 

showed weight loss of approximately 64 and 68% respectively.  At the end of the test, DDGS 

fibers showed a final weight loss percentage of around 75%.  

   

Fig. 4.2. Thermogravimetric curves for untreated and alkali treated DDGS fibers   
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Fig. 4.3. Differential thermogravimetric curves for untreated and alkali treated DDGS fibers 

showing their thermal degradation 

 

Melt Flow Index (MFI) of DDGS composites  

The addition of DDGS fiber in HDPE polymer decreased its MFI as expected (Table 4.2). 

The addition of 25% untreated or NaOH treated DDGS reduced the MFI from 5.2 to 3.93 and 3.5 

g/10 min, respectively. The MFI decreased further to 1.7 and 0.98 g/10 min for untreated and 

NaOH treated fibers respectively when the loading of fibers was increased to 50%. The presence 

of fibers hampers the ability of HDPE chains to flow smoothly, thus reducing the MFI. 

Table 4.2. Melt flow index of neat HDPE and untreated and NaOH treated DDGS composites 

* + indicates the standard deviation of the treatment 

** letters in parentheses indicate significant difference between the treatments at α = 0.05 
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Sample Formulations MFI- Untreated  

(g/10 min) 

MFI- Alkali treated  

(g/10 min) 

Neat HDPE 5.2 + 0.40 (a)*  

DDGS25 (25% DDGS fiber) 3.93 + 0.20 (b)** 3.51 + 0.18 (c) 

DDGS50 (50% DDGS fiber) 1.7 + 0.16 (d) 0.98 + 0.31 (e) 
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Water Absorption of Composites 

The composite samples with 25% untreated or alkali treated DDGS fiber absorbed less 

than 5% moisture after an exposure time of 30 days (Fig. 4.4). The low moisture absorption by 

the DDGS25 samples indicates that the HDPE polymer sufficiently encapsulated DDGS fibers, 

thus inhibited the entry of moisture in the composites. When the DDGS fiber loading was 

increased to 50%, the composite samples exhibited high moisture absorption after the initial 24 

h. The untreated DDGS50 samples showed consistently higher moisture absorption than the 

alkali treated DDGS50 up to 264 h after which the alkali treated DDGS50 samples started to 

absorb moisture more rapidly than the untreated samples. The final moisture absorption of alkali 

treated DDGS50 samples was around 25% compared to 15% observed for the untreated 

DDGS50 sample after 30 days. The alkali treatment removes lignin, pectin, waxy substance and 

natural oil covering the surface of cell wall, thus exposing cellulose fibrils [30]. Change in 

morphology may create more void to water penetrate inside the alkali treated samples. It is also 

possible that the fiber encapsulation was relatively poor for composite with 50% fiber loading h 

contributing to higher water absorption.  
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Fig. 4.4. The moisture absorption of untreated and alkali treated DDGS composite samples at 

25% and 50% fiber loadings plotted against square root of time 

Tensile Properties of DDGS Composites 

The inclusion of DDGS fiber in HDPE matrix resulted in significant increase in the 

tensile modulus (Fig. 4.5). The DDGS25 composite samples exhibited increased stiffnesses that 

were 35% and 46% higher for the untreated and alkali treated samples respectively than the neat 

HDPE sample. This increase was most likely due to higher tensile stiffness of DDGS fiber and 

fiber encapsulation by matrix at 25% fiber loadings. When the fiber loading increased to 50%, 

the tensile stiffness of the untreated and NaOH treated DDGS50 samples showed an increase of 

51% and 142%, respectively, compared to the neat HDPE. The alkali treated DDGS50 composite 

had the highest tensile stiffness of 1428 MPa. In addition, alkali treated DDGS25 sample showed 

tensile stiffness comparable to the untreated DDGS50 sample.  
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Fig. 4.5. Tensile modulus of neat HDPE, untreated and alkali treated DDGS fiber composites. 

Different letters in the label show statistically significant difference between the different 

formulations at α=0.05 

The DDGS fiber filled composites showed reduced tensile strength than the neat HDPE 

(Fig. 4.6). The tensile strength of a material is determined by the weakest part of a sample which 

is the interfacial region of a composite sample due to the incompatibility between the hydrophilic 

fiber and hydrophobic matrix. When the fiber loading increased from 25 to 50%, the tensile 

strength decreased as the interfacial adhesion between the fiber and the matrix further weakened. 

This may be due to the inadequate wetting of the fiber by the matrix, leading to crack formation 

in the interfacial area. Also, the higher fiber loading leads to voids in the interfacial areas in the 

composites [31]. The alkali treatment of fibers had no effect on the tensile strength of 

composites. The tensile strength decreased by about 25% when neat HDPE was filled with 50% 

DDGS fiber.  
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Fig. 4.6. Tensile strength of neat HDPE, untreated and alkali treated DDGS fiber composites. 

Different letters in the label show statistically significant difference between the different 

formulations at α=0.05     

Flexural Properties of Composites 

The inclusion of untreated DDGS fiber at 25% loading into HDPE resulted in a 23% 

decrease in flexural stiffness whereas all other composite treatments showed an increase in 

flexural stiffness (Fig. 4.7). For example, addition of treated DDGS fiber increased flexural 

stiffness by 24%. This increase in flexural stiffness of alkali treated DDGS25 sample was due to 

improved interaction between the fiber and the matrix. The modulus of a composite is 

determined by the modulus of fiber and matrix, fiber content and orientation. When the fiber 

loading was increased to 50%, the untreated DDGS50 samples showed an increase in stiffness of 

59% whereas alkali treated DDGS50 exhibited similar stiffness as of the alkali treated DDGS25 

when compared to the neat HDPE.  
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Fig. 4.7. Flexural stiffness of neat HDPE, untreated and alkali treated DDGS fiber composites. 

Different letters in the label show statistically significant difference between the different 

formulations at α=0.05 

The tensile strength of DDGS composites at 25% loading showed that alkali treatment 

improved the tensile strength, indicating improved interfacial bonding between the fiber and the 

HDPE matrix (Fig. 4.8). At 50% fiber loading, the flexural strength of composites with treated 

and untreated DDGS fiber fillers were similar, and comparable to those of composites with 25% 

untreated fiber.  The alkali treated DDGS25 sample had higher flexural strength than both the 

untreated and alkali treated DDGS50 samples by 23 and 42%, respectively.  

 
Fig. 4.8. Flexural strength of neat HDPE, and untreated and alkali treated DDGS fiber 

composites. Different letters in the label show statistically significant difference between the 

different formulations at α=0.05 
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Impact Strength of Composites 

The notched impact strengths of composite samples decreased with increase in filler 

loadings from 25 to 50% (Fig. 4.9). The impact strength of composites is dependent on the fiber 

concentration, shape, orientation, and interfacial area between the fiber and the matrix [32].  The 

neat HDPE sample showed the highest impact strength of 71 J/m. Addition of the fiber filler 

reduced the impact strength to up to one seventh. The composite samples with 25% alkali treated 

DDGS had higher impact strength than untreated DDSG25 indicating improvement in interfacial 

bonding between the treated fiber and the matrix.  

 

Fig. 4.9. Impact strength of neat HDPE, and untreated and alkali treated DDGS fiber composites. 

Different letters in the label show statistically significant difference between the different 

formulations at α=0.05 

The microscopy images of impact fractured DDGS samples showed DDGS fiber loading 

of 25% had better fiber encapsulation by the HDPE matrix than for the 50% DDGS samples (Fig. 

4.10). The NaOH treated DDGS fiber had much cleaner surface than than the untreated fiber 

showing the effectiveness of alkali treatment in increasing the surface roughness. The fiber loading 

of 50% showed agglomeration of fibers with irregular deposits of HDPE matrix illustrating the 

weak fiber matrix interactions. In addition, some fibers at the fractured surface showed no traces 

of the matrix exhibiting poor encapsulation by the HDPE polymer at 50% loading. The poor 
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dispersion of fibers and ineffective enacapsulation of fibers by the HDPE matrix at 50% loadings 

are consistent with the impact resistance results.     

  

  

Fig. 4.10. Microscopy images of impact fractured DDGS composite surface examined at 

magnification of 40X. Figure show composites with a. 25% Untreated DDGS fiber, b. 25% NaOH 

treated DDGS fiber, c. 50% untreated DDGS fiber and d. 50% NaOH treated DDGS fiber 

Conclusions 

The alkali treatment of DDGS fiber resulted in the solubilization of non-cellulosic 

components and increased surface roughness. Alkali treatment of DDGS fibers decreased the 

water absorption of composite materials during the first 10 days of water exposure, after which 

the composite with 50% alkali treated DDGS showed sharp increase in water absorption. The 

addition of DDGS fibers in HDPE increased the modulus properties of the composite samples 

but decreased the strength properties limiting their applications to non-structural materials. The 

poor encapsulation of the DDGS fibers and weak interfacial bonding resulted in decreased 
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strength properties. The composite samples with NaOH treated DDGS fiber at 25% loading 

showed increased flexural properties. This may be attributed to better interfacial interaction due 

to the mechanical interlocking pockets in the NaOH treated fiber for HDPE matrix. The high 

fiber loading of 50% led to ineffective encapsulation of the fibers by the matrix. 
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CHAPTER 5. GENERAL CONCLUSIONS 

In recent years, the production of distiller’s dried grain with solubles (DDGS) has 

increased proportionately with increase in the production of corn based ethanol. The fiber 

component in DDGS is not easily digestible by poultry and swine. The separation of fiber makes 

the DDGS amenable to the non-ruminants and increases its nutritional characteristics due to 

higher protein and oil contents. This dissertation focuses on exploring the feasibility of using 

DDGS fibers as fillers in thermoplastic composites.   

The DDGS 30% composites showed better flexural strength than oak 30% composites, so 

they can replace the oak fiber for applications requiring similar flexural properties. The DDGS 

30% composites exhibited the highest impact strength and melt flow index. The major drawback 

of using DDGS fibers as fillers were their high affinity for water absorption at both 30 and 50% 

loadings.  

For further evaluation of the DDGS composite performance under accelerated 

weathering, a commercial scale study was conducted. The hypothesis for the study was that 

DDGS has very low lignin which degrades material when exposed to outdoor weather. The less 

decolorization and constant water absorption of DDGS composites after UV weathering justifies 

the hypothesis. There was a loss of flexural properties for all the composite samples but the 

combination of DDGS and oak fiber, each at 25% loading, showed similar properties to the oak 

fiber composites. The photodegradation of the high density polyethylene (HDPE) was the 

common effect leading to severe chain scissions and decreased material properties.    

In another hypothesis, mercerization or sodium hydroxide (NaOH) treatment of DDGS 

fibers was considered to improve their performance as fillers in HDPE composites. The 

mercerized DDGS fiber at 25% loading showed better stiffness properties than the untreated 
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DDGS fibers at the same loadings. The high fiber loading of 50% did not show increase in 

material properties. 

The role of DDGS fiber as filler is very effective in terms of cost savings. The DDGS is 

available at a very low cost and replacing a part of expensive plastics by DDGS fiber can present 

a great opportunity in material engineering.   
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CHAPTER 6. RECOMMENDATIONS FOR FUTURE WORK 

The inclusion of DDGS and corn hull fiber in HDPE composite has shown potential to be 

used as an alternative filler. Our investigations showed that DDGS and corn hull fibers can act as 

alternative to oak wood fiber to obtain comparable mechanical properties.  

 The accelerated weathering of composites from hull fibers from corn grain and DDGS 

showed better resistance to color fading and higher resistance to moisture after 2000 h of UV 

weathering compared to oak composites. However, DDGS fiber composites mostly resulted in 

lower mechanical properties than oak-based composites. The performance of DDGS fiber filled 

composite materials can be enhanced by adding coupling agents. Therefore, future research 

should focus on the impact of coupling agent for improved material properties.  

Alkali treatment of DDGS fiber has shown increase in tensile and flexural stiffness at 

25% loadings. The mercerization of DDGS fiber can be optimized by considering variables such 

as sodium hydroxide concentration, residence time and the effect of heating at different 

temperatures. Because the DDGS fiber has high amount of carbohydrates and proteins, unlike 

any other natural fiber, a chemical method that can selectively solubilize protein and oil without 

interfering with cellulose and hemicellulose, should be investigated in the future.      

 

 

 

 

 

 

 

 


