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ABSTRACT 

Net blotch is an economically important foliar disease of barley that occurs in two 

distinct forms: Spot Form Net blotch (SFNB) and Net Form Net Blotch (NFNB) caused by the 

necrotrophic fungal pathogens Pyrenophora teres f. maculata (Ptm) and Pyrenophora teres f. 

teres (Ptt), respectively. The recent emergence and the identification of both Ptm and Ptt isolates 

virulent on popular ND malting barley varieties have warranted the identification of new 

resistance sources. Association mapping was conducted on 2,062 diverse barley accessions 

phenotyped at the seedling stage with four diverse P. teres f. maculata isolates and genotyped 

with the 9k Illumina barley iSelect chip. A total of 138 significant marker-trait associations 

(MTA; −log10P value > 3.0) corresponding to 27 resistance loci were identified of which 21 loci 

were novel and six corresponded to previously characterized SFNB resistance QTL. Further, two 

higly resistant lines PI67381 and PI84314 were crossed with the two susceptible cultivars 

Tradition and Pinnacle grown in the Upper Midwestern US to develop three bi-parental 

recombinant inbred line (RIL) mapping populations of Tradition x PI67381, Pinnacle x PI67381 

and Pinnacle x PI84314. These RIL populations were phenotyped with six diverse Ptm isolates 

and genotyped using PCR-GBS. MapDisto and Qgene were used to analyze the data and a total 

of twelve QTL were identified on chromosome 2H, 3H, 4H, 6H and 7H, of which nine were 

previously reported and the remaining three are considered novel. These resistances and the 

markers delimiting the QTL are being utilized to develop prebreeding lines by introgressing 

SFNB resistance into the cultivars Pinnacle and Tradition utilizing marker assisted selection. The 

barley line CI5791 exhibits a high level of resistance to diverse Ptt isolates collected from 

around the world. A forward genetics approach and an exome capture-mediated mapping-by-

sequencing identified a candidate HvWRKY6 transcription factor gene required for NFNB 
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resistance on chr 3H. We hypothesize that the HvWRKY6 gene function as a component of a 

conserved basal defense mechanism, which regulates the expression of other defense response 

genes that restrict lesion growth. The resistance/susceptibility loci identified in this study will 

facilitate the development of net blotch resistant cultivars.  
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CHAPTER 1. LITERATURE REVIEW 

Introduction 

Barley (Hordeum vulgare L.) is one of the oldest and most important cultivated cereal 

crops worldwide, which falls in the family Poaceae (formerly called Gramineae), and tribe 

Triticeae of the grass family. It is mostly used for malting, animal feed, and human consumption 

(Poehlman, 1994). Among the cereals, it ranks fourth in terms of annual production after wheat, 

corn, and rice, with 145 million tonnes of production and 49.4 million hectares cultivated 

globally in 2014 (FAO, 2014). In the United States, barley is a major crop after wheat, corn and 

soybean with production mostly concentrated in the Northern Great Plains to the Pacific 

Northwest (Minnesota, North Dakota, Montana, Idaho, and Washington). North Dakota has 

consistently ranked in the top three positions in terms of both barley production and area 

harvested in the US. The US barley production in 2015 was 214.297 million bushels where 

North Dakota alone contributed 67.2 million bushels accounting for nearly one third of the US 

barley production (USDA 2017). Today, both six-rowed and two-rowed varieties are commonly 

grown in the US.  

Barley is produced in areas where the growing season is relatively short and climatic 

conditions are cool and dry (Mathre, 1997). Based on row type, it is divided into two groups: 

two-rowed and six-rowed. The central floret is fertile, and the two laterals are sterile in two-

rowed barley whereas all three florets are fertile in six-rowed type. Similarly, based on the 

growth habit, it is divided into spring and winter barley. Spring barley doesn’t require 

vernalization and is usually sown in spring especially in the Northern Great Plains. Winter types 

are primarily planted in the fall in the southern states. Spring barley is mainly grown for malting 
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purposes and cultivated over larger areas in the US, whereas winter barley is grown mainly for 

feed/forage purposes.  

Columbus brought barley to Central America in 1494 on his second voyage, but the 

warm climate of the region was not appropriate for barley growth (Thacher, 1903). Successful 

establishment of barley in North America occurred later, in the eastern colonies, and 

subsequently in the southwest US during the Spanish mission movement (Wendorf et al., 1979, 

and Wiebe, 1978). The first barley varieties grown in the early American settlements were the 

cultivars Chevalier and Thorpe which were two-rowed late maturing varieties commonly grown 

in England (Wiebe, 1978). Eventually, barley was introduced into all the colonies, where it was 

in demand as a grain for brewing and became an important crop by the middle of the 17th 

Century. In the 1850s, six-rowed varieties were reported as more common than two-rowed in 

New York. The University of Wisconsin experiment farm began distributing the six-rowed 

barley cultivar Manchuria around 1873, which spread rapidly from farm to farm. 

North Dakota, Montana and Idaho have been the top three barley producing states in the 

US for the last 50 years (NASS, 2016), most of which is grown for malting, with a smaller 

portion grown for animal feed. In the past, six-rowed varieties were considered better for 

malting, but breeders have incorporated desirable malting characters in modern varieties of both 

types. Recently, there has been increased attention on hulless barley in the US to create a new 

market for feed barley as well as ethanol production (Thomason et al., 2005). 

Evolution and Domestication of Barley 

Cultivated barley (Hordeum vulgare) is one of the 32 Hordeum species and is the only 

species that is grown commercially. It is an annual diploid inbreeding species with chromosome 

numbers of 7 (2n= 2x =14) with a large genome of approximately 5,000 Mb (Bennett et al., 
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1976, Wenzl et al., 2004). Cultivated barley and its close wild relative are morphologically 

similar and hybridize easily. As a result, it has been proposed that both the cultivated and wild 

types are subspecies of H. vulgare, with cultivated barley designated as H. vulgare subsp. 

vulgare and the wild type referred to as H. vulgare subsp. spontaneum (Bothmer et al., 1958).  

Barley (Hordeum vulgare L. subsp. vulgare) was one of the first crops domesticated 

(Zohary et al., 2013). The actual series of events leading to barley domestication and the physical 

locations where barley was first domesticated, are not known with certainty, despite over 100 

years of speculation and accumulation of a variety of data. Since modern barley is closely 

identical to present day Hordeum vulgare subsp. spontaneum C. Koch, it is speculated that 

cultivated barley is derived from this weedy relative. The presence of wild barley grains in 

several pre-agricultural pre-pottery Neolithic sites indicated that the cultivation of the wild 

relative H. vulgare subsp. spontaneum started long before modern barley (Harlan and Zohary, 

1966; Tanno and Willcox, 2012; Weiss et al., 2006). Gathering ~23,000-year-old barley grain 

remnants in large quantities in Ohalo II, a location on the shore of the Sea of Galilee (Israel), 

provided evidence of the gathering and possible cultivation of wild barley at this early prehistoric 

time (Kislev et al., 1992; Weiss et al., 2008). 

The Fertile Crescent spanning Israel, Jordan, Syria, Turkey, Iraq, and Iran is widely 

accepted as the primary region of barley domestication which occurred about 12,000 to 9,500 

years ago, (Badr et. al., 2000, Weiss et al., 2006, Willcox, 2008 and 2013). However, an 

excavated site in southern Egypt where grains resembling both wild and cultivated barley were 

found was reportedly 17,000-18,300 years old (Wendorf et al., 1979). This finding predates other 

archaeological evidence where barley (Hordeum vulgare) remains were discovered about 10,000 
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years ago, about the same time that domesticated wheat is present in the Fertile Crescent (Harlan, 

1979). Subsequently, barley was spread throughout Europe, Asia, and Africa.  

Although, the Fertile Crescent is widely accepted as the origin of barley domestication, 

there are several controversies to this theory. Brown et al., (2009) and Abbo et al., (2010) 

hypothesized that multiple domestication events had occurred in more than one center based on 

the most recent genetic analysis and archeological record. Molina-Cano et al., (1987, 1999, and 

2005) speculated Morocco as another domestication sites of barley based on RFLP, chloroplast 

DNA and morphology. The reason Morocco was considered as a domestication site may be due 

to a hybridization event with cultivated barley (Blattner and Badani Mendez, 2001). Similarly, 

Ethiopia has also been reported as the possible domestication sites of barley (Bekele,1983, 

Negassa, 1985 and Orabi et al., 2007). The huge phenotypic variation found in the Ethiopian 

barley collections is thought to be the reason that it might be another origin of barley 

domestication (Negassa, 1985). Morrell et al., (2007) has acclaimed the Himalayas (Tibet, Nepal 

and India) as the next domestication site because abundant evidence of early barley culture has 

been discovered in these areas. The Himalayan region was proposed as a possible domestication 

site because of the presence of six-rowed barley with the brittle rachis trait (Badr et al., 2000) 

Important traits associated with the domestication process have been reviewed by 

Pourkheirandish and Komatsuda (2007). Brittle rachis types (btr1 and btr2), row number (vrs1), 

hull status (nud), and dormancy (QTLs SD1 and SD2) are some of the important domestication 

traits in barley accumulated during the domestication process. All modern barley genotypes are 

either homozygous for the btr1 or btr2 alleles (most European and Western Asian barlies are 

btr1/Btr2 and East Asian barlies are Btr1/btr2), and double homozygous btr1 and btr2 lines have 

not been identified (Pourkheirandish et al., 2015, Komatsuda, 2015). The cloning and 
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characterization of the barley Btr genes helps to study the evolution and domestication of 

different clade- and species-specific mechanisms of seed dispersal systems in grasses. These loci, 

and several others, are associated with the ‘domestication syndrome’, a set of characters shared 

among many domesticated crops. The ‘domestication syndrome’ was described by Harlan (1992) 

and reviewed by Gepts (2004). As compared with the wild barley, the cultivated barlies have 

relatively broader leaves, shorter stems and awns, tough ear rachis, shorter and thicker spikes, 

and larger grains (Yun et al., 2005). 

In short, available evidence supports the idea that multiple domestication events have 

occurred, or barley is polyphyletic (Molina-Cano et al., 1999, Willcox, 2005, Azhaguvel and 

Komatsuda, 2007; Komatsuda et al., 2007) or in contrast, it may be monophyletic or has one 

domestication site (Abbo et al., 2010, Badr et al., 2000, and Blattner, 2001). This contradictory 

evidence found in different studies may likely be due to the method of analysis particularly when 

generating the phylogenetic trees, study materials, and different markers/traits. Still, these 

contradictions exemplify the complexity of the questions. Analyzing sequenced domestication 

genes may offer the best hope to clarify these confounding queries, and recent progress appears 

to be facilitating this goal. 

Net Blotch of Barley 

Net blotch is a foliar disease of barley caused by the necrotrophic fungal pathogen 

Pyrenophora teres Drechsler (anamorph Drechslera teres [Sacc.] Shoemaker), that causes 

considerable barley yield and quality loss in growing regions around the world (Steffenson et al., 

1991). This pathogen has a wide host range that includes all cultivated as well as wild species of 

barley and related species from the genera Bromus, Avena, and Triticum (Shipton et al., 1973, 

Liu et al., 2011). Net blotch occurs in two distinct forms: Spot Form Net blotch (SFNB) and Net 
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Form Net Blotch (NFNB) caused by Pyrenophora teres f. maculata (Ptm) and Pyrenophora 

teres f. teres (Ptt), respectively. These diseases are often favored by high humidity, precipitation 

and cool conditions, that are conducive to net blotch epidemics and can lead to significant yield 

loss (Mathre, 1997, Ma et al., 2004, McLean et al., 2009). Besides the leaves, these pathogens 

can also infect, leaf sheaths, stems and kernels, thus affecting the kernel size and malt quality 

(Grewal et al., 2008, Liu et al., 2011). The estimated yield loss due to this disease ranges from 

10-40% on average and can be 100% when the host is susceptible, and the environment is 

favorable (Mathre, 1997, McLean et al., 2009). Jayasena et al., (2007) reported 23-44% yield 

loss due to SFNB and for every 10% increase in disease severity on the top three leaves, there 

was 0.4 t/ha yield loss on average. Kinzer et al., (2015) determined that for every 1% increase in 

SFNB severity, there is a 0.77% yield loss in the barley yield in North Dakota. Steffenson et al., 

(1991) observed significant reduction in 1000-kernel weight from 18.5-31.6% due to NFNB. 

The symptoms of both SFNB and NFNB on resistance and susceptible hosts are different. 

Initially, both SFNB and NFNB appear as a small pinpoint dark brown necrotic spot on the leaf. 

These pinpoint dark brown necrotic lesions do not increase markedly in size in resistant 

genotypes for both SFNB and NFNB.  In SFNB, the pinpoint spot increases in size to form 

circular or elliptical dark brown lesions surrounded by a chlorotic region and coalesce together 

later in the season (Smedegard-Petersen, 1971, Liu et al., 2011) on susceptible hosts. Therefore, 

the SFNB symptoms often get confused with another foliar disease spot blotch of barley caused 

by Cochliobolus sativus.  

Although, the initial symptoms of NFNB on susceptible hosts is identical to SFNB, the 

later symptoms are entirely different and NFNB got its nomenclature based on the symptoms. 

The pinpoint spots increase in size to form net like patterned lesions with longitudinal and 
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transverse necrotic stripes surrounded with chlorosis that coalesce together (Liu et al., 2011). 

Lightfoot and Able (2010) have shown that Ptm is more localized within epidermal cells whereas 

Ptt can infect beyond the epidermal cell causing cell death relatively far away from the 

penetration sites.  

Both Ptm and Ptt are morphologically identical (conidia and mycelium), but produce 

very distinct symptoms on the host and are genetically distinct (Smedegard-Peterson, 1971, 

McClean et al., 2009, Liu et al., 2011). Several molecular markers are available to correctly 

identify these two pathogens such as simple sequence repeats (SSRs) (Keiper et al., 2008, Liu et 

al., 2012), Amplified Fragment Length Polymorphism (AFLP) (Leisova et al., 2005 and 2006, 

Serenius et al., 2005 and 2007), randomly amplified polymorphic DNA (RAPD) (Campbell et 

al., 1999, Taylor et al., 2001, Williams et al., 2001), and SNP markers specific to the mating type 

genes (Lu et al., 2010). Williams et al., (2001) identified primer sets that can amplify a 411 bp 

size DNA fragment from Ptm and 378 bp size from Ptt. A real-time PCR based assay was 

developed to quantify Ptm from diseased barley tissue (Leisova et al., 2006). Recently, Poudel et 

al., (2017) developed a set of 12 sequence-specific PCR markers based on the expressed regions 

spread across the fungal genome that can precisely identify both Ptt, Ptm and their hybrids. Thus, 

molecular tools have been developed to precisely discriminate between the two 

diseases/pathogens. This is important when diagnosing the causal agent for disease management 

and when studying pathogen population genetics and diversity. 

Life Cycle of Pyrenophora teres f. teres and Pyrenophora teres f. maculata 

The life cycles of Ptt and Ptm are almost identical and involve both asexual and sexual 

stages. Both Ptt and Ptm are residual borne pathogens that can overwinter as pseudothecia 

(sexual fruiting bodies) or conidia on plant stubbles (Mathre, 1997). It takes up to six months to 
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develop a fertile pseudothecia under field condition when temperatures range between 10-15 0C 

(Shipton et al., 1973). However, it takes about two months under laboratory conditions to form 

pseudothecia. Following the growing season, pseudothecia actively release ascospores as far as 

35 cm into the air, which act as a primary source of inoculum (Jordan, 1981, Deadman and 

Cooke, 1989). Alternatively, the mycelia and conidia that overwinter on plant stubbles or 

infected seed may also serve as a primary source of inoculum (Shipton et al., 1973). The 

ascospores germinate under 95-100% relative humidity, form appresoria, and produce 

penetration pegs that directly penetrate host epidermal cells to initiate intracellular growth and 

colonization (Hargreaves and Keon, 1983). After successfully infecting the host, Pyrenophora 

teres produces conidia throughout the growing season in multiple cycles (polycyclic), which 

serves as a source of secondary inoculum. Conidia are often disseminated via rain splash and 

wind to neighboring plants or fields (Mathre, 1997). Towards the end of the growing season, 

either pseudothecia are developed on the plant stubble, or conidia and mycelia overwinter on 

stubble or infected kernels, which serves as a primary source of inoculum for the next growing 

season. However, only Ptt has been shown to transfer across generations via infected seed to the 

subsequent growing seasons (Mathre, 1997, Leisova et al., 2005). Although it is not common, 

Smedegard-Peterson (1972) found Ptt pycnidia on the host and in culture.  

Genetic Diversity and Mating Types of Ptt and Ptm 

Pyrenophora teres is a heterothallic ascomycetes fungus that requires opposite mating 

types. Sexual reproduction is a major factor contributing to the vast genetic diversity present 

within P. teres natural populations (McDonald, 1963, Rau et al., 2007). Both forms, Ptt and Ptm, 

have two opposite mating types: MAT1-1 or MAT1-2 that are controlled by a single MAT locus 

(Rau et al., 2003, Liu et al., 2012). Genetic variation has been observed within Ptt and Ptm field 
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populations suggesting that sexual reproduction occurs frequently under natural conditions (Rau 

et al., 2003; Lehmensiek et al., 2010; Serenius et al., 2005, Liu et al., 2012, Poudel et al., 2017). 

The segregation of MAT1-1 and MAT1-2 in 1:1 ratios in field populations of Ptt and Ptm 

suggests that sexual reproduction frequently takes place in natural populations (Bogacki et al., 

2010, Lu et al., 2010, Rau et al., 2007, Serenius et al., 2005 and 2007, Ksasia et al., 2015). 

Sexual reproduction has been reported in Ptm population in Australia, South Africa, and Finland 

and contributed to the rapid change in the diversity of the pathogen population leading to disease 

epidemics (Karki et al., 1986, Tekauz, 1990, Arabi et al., 2003, Jalli et al., 2011, McLean et al., 

2014). Using AFLP markers, Rau et al., (2003) suggested that asexual reproduction is more 

prevalent in Ptt populations than Ptm in Sardinian, Italy. However, digenic and multilocus 

linkage disequilibrium analyses showed that significant levels of sexual reproduction also occur. 

Lehmensiek et al., (2010) also reported that asexual reproduction is common within Ptm and Ptt 

populations.  

Sexual reproduction results in diverse genotypes, thus, facilitating high levels of genetic 

variability within populations by producing recombinant genotypes that have new combinations 

of virulence and or avirulence alleles that evade deployed resistances. It is essential to evaluate 

pathogen population in a given geographical region prior to the deployment of resistances as one 

can deploy effective resistance to the existing predominant pathotypes, but if virulence on the 

resistance exists in the pathogen population, even at low levels, the deployed resistance will only 

remain effective for a very short period of time due to selection pressure. As popular resistant 

barley cultivars are grown over vast acreage (monoculture), with time selection pressure exerted 

by these resistance genes or lack of susceptibility targets, select for the virulent isolates, which 

rapidly become prevalent, thus resistances are no longer effective and lead to disease epidemics. 
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Therefore, breeding programs must consider the pathogen genetics and virulence profiles present 

in the local pathogen population in order to deploy effective and durable resistances (Liu et al., 

2011).  

Molecular marker technology has aided in the identification of the two net forms, but has 

also allowed for the more precise characterization and tracking of pathogen populations, which 

can be correlated with virulence patterns and distribution. However, this requires the thorough 

characterization of virulence loci and the extensive study of pathogen populations. Genetic 

mapping studies to characterize virulence loci are currently best achieved through association 

mapping using natural pathogen populations (Dalman et al., 2013, LeBoldus et al., 2015). The 

understanding of virulence present in pathogen populations is essential when developing 

resistant cultivars (McLean et al., 2010, Williams et al., 2001, Lu et al., 2010).  

Because of the very close relationship between Ptt and Ptm and their different virulence 

profiles on barley, the possible cross hybridization of the two pathogens and possible novel 

virulences in the hybrid isolates is a concern. The possibility of cross hybridization between Ptm 

and Ptt was first demonstrated under laboratory conditions (Campbell et al., 1999, Campbell and 

Crous, 2003, Rau et al., 2003, Jalli, 2011). The hybrid progeny of Ptm and Ptt produced under 

these laboratory conditions produce an intermediate jagged-type lesions on the host (Campbell 

and Crous, 2003; Jalli, 2011) and it was shown that the artificially produced hybrids of Ptt and 

Ptm have different virulence profiles than each of the parental isolates, and exhibited virulent 

reactions on barley lines to which both parental isolates were avirulent (Jalli, 2011). Cross 

hybridization between Ptm and Ptt isolates have been reported in the Southwestern Cape of 

South Africa using RAPD and AFLP markers (Campbell et al., 2002 and 2003). Similarly the 

naturally occurring hybrids, PTM-15 and PTM-16, were discovered in Tovacov, Czec Republic 
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(Leisova et al., 2005) and the hybrids SNB172 and WAC10721 were discovered in Western 

Australia (Lehmensiek et al., 2010; McLean et al., 2014). Although Ptm and Ptt can intercross it 

has been established that sexual reproduction between the two net forms is very rare and unlikely 

under natural conditions and the stability of the hybrids that do infrequently occur are still 

questionable; possibly due to fitness penalties on the hybrids (Smedegard-Peterson, 1971, 

McLean et al., 2014, Campbell et al., 2002 and 2003, Jayasena et al., 2004). Interestingly, 

Campbell et al., (1999 and 2002) demonstrated that a few hybrid progenies from two sensitive 

parental isolates were insensitive to commercial fungicides. Therefore, if hybrids are stable, 

theoretically, they could be more virulent than either of the parental isolates or more resistant to 

commercial fungicides, thus overcoming the existing host resistances or sensitivity to fungicides 

(Jalli, 2011, McLean et al., 2014). However, the appearance of these hybrids has not materialized 

as a threat and due to their very low frequency is not currently a major concern.  

The variation in P. teres f. teres population was first reported in the United States by Pon 

(1949). Peever and Milgroom (1994) observed 46% genetic variation between populations of Ptt 

isolates collected from Germany, the US, and Canada using RAPD markers, which is most likely 

due to limited migration of the pathogen thereby limiting gene flow. However, two populations 

from Canada exhibited less genetic variation (5%), which was probably due to the collection of 

the populations from the same geographic region, not more than 20 km apart. Rau et al., (2003) 

collected 150 isolates from six geographically different locations in Sardinan, Italy, and based on 

the symptoms 55% of the isolates were Ptt and 45% were Ptm with one location predominantly 

containing only Ptt isolates. The AFLP analysis clustered these Ptt and Ptm isolates into two 

distinct groups, with no intermediates, suggesting no sexual reproduction occurring between the 

two forms in these areas. Jonsson et al., (2000) utilized RAPD markers to study the genetic 
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structure of two Swedish population of Pyrenophora teres each consisting of 64 isolates. They 

observed high levels of genetic variability within each population and low levels of gametic 

disequilibrium indicating that sexual recombination was prevalent. Consistent with the results of 

Peever and Milgroom (1994), similar results of low variation (only 5.3%) between fields was 

observed, which was most likely due to the proximity of the fields (~20 km). Serenius et al., 

(2007) studied the global genetic structure of 278 isolates collected from Northern Europe 

(Finland, Russia, Sweden, United Kingdom, Denmark, and the Czech Republic), North America 

(Canada and the United States) and Australia using AFLP markers. High genetic variation was 

observed between Ptt isolates (FCT =0.238) originating from Northern Europe, North America 

and Australia which was also consisted with Peever and Milgroom’s (1994) observations. The P. 

teres population from Australia clearly separated into two subgroups of Ptt and Ptm. The mating 

types MAT1-1 and MAT1-2 were also observed in equal proportion of 1:1 suggesting the 

prevalence of sexual reproduction. Liu et al., (2012) observed 40 distinct haplotypes using 13 

SSR markers in the Ptt population consisting of 75 isolates collected in Fargo and Langdon, 

North Dakota. These 75 Ptt isolates were also evaluated on 22 barley differential lines 

identifying 49 pathotypes. These results indicated high genetic and phenotypic variation in the 

Eastern North Dakota Ptt population. However, clonal reproduction within populations were also 

observed in Ptt samples collected in three site-years: Fargo 2005, Langdon 2005, and Fargo 

2007, showing that asexual reproduction was also common. The pairwise marker comparisons 

showed significant gametic disequilibrium and the presence of both mating types in the Ptt 

population, indicating the occurrence of sexual reproduction in the populations, but at a low rate. 

McLean et al., (2010) detected high genetic diversity among 44 Ptm isolates using sequenced-

tagged microsatellite markers and the two mating types were found at a 1:1 ratio indicating the 
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prevalence of sexual reproduction. Although, they found very high genetic diversity in the Ptm 

population, the pathogenic diversity was low and did not correlate with genetic diversity. This 

result was consistent with Serenius et al., (2005) who reported low pathogenic diversity from a 

Ptm population with high genetic diversity. This could be due to the rapid evolution of whole 

genomes across a population as compared to the individual evolution of virulence/avirulence 

genes (Serenius et al., 2005, Liu et al., 2011).  Similarly, Wu et al., (2003) observed a high 

degree of genetic diversity within each population of Ptt and Ptm using RFLP markers using a 

set of differential lines. The higher genetic diversity of Ptm (23%) and Ptt (40%) than previously 

reported was observed in South Australia using SSR markers (Bogacki et al., 2010). 

Steffenson and Webster (1992) characterized 91 Ptt isolates collected from 1984-1986 in 

California inoculated on 22 barley differential lines identifying 13 distinct pathotypes with 

28.6% of the isolates representing the most common pathotype (3-10-15-19-21) and less than 7% 

representing the least common pathotype ‘0’, which were not virulent on any of the hosts. They 

speculated that the variation in the population was due to the occurrence of sexual reproduction 

in the California Ptt population. Five pathogenic groups were identified among 23 isolates of Ptt 

and Ptm based on their infection response on 11 barley genotypes and none of the barley lines 

were highly resistant to all isolates used in the study (Arabi et al., 2003). Wu et al., (2003) 

observed 15 pathotypes from the collection of 23 Ptt isolates based on their reactions on 25 

barley differential lines. The barley lines originating from China exhibited resistance and the 

barley line Prato exhibited susceptible reactions to the Ptt isolates collected from California. 

However, the opposite reaction was observed where the Chinese barley lines were susceptible, 

and Prato was resistance to ND Ptt isolates (Steffenson and Webster, 1992, Liu et al., 2012). 

This showed that the genetic and phenotypic variation of the Ptt isolates collected from different 
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geographic regions harbor different virulent/avirulent genes because of different host-pathogen 

evolution and selection pressures exerted by distinct host genotypes.  

The genetic variation of P. teres f. maculata populations have been studied using separate 

differential sets with few lines common between at least two studies in the USA, Canada, 

Australia, and Mediterranean region (Khan and Tekauz, 1982, Bockelman et al., 1983, Karki and 

Sharp, 1986, Arabi et al., 1992, and McLean et al., 2010). Twenty Ptm pathotypes in Western 

Canada were detected based on their reaction on 11 differential lines and none of the resistance 

present in these differentials was effective against all the isolates used in the study (Tekauz 

1990). Khan and Tekauz (1982) also detected significant pathogenic variation between isolates 

collected from Western Australia and Canada based on their reaction on 15 breeding lines. Wu et 

al., (2003) reported four pathotypes from geographically diverse isolates collected from 

Denmark, New Zealand, Australia, Canada and Norway. Similarly, Grewal et al., (2008) 

observed variation in the virulence profile of both Ptt and Ptm isolates using 42 barley lines from 

Canada, Australia and some international barley (Korea, Ethiopia, Germany, United Kingdom) 

of which only 3 barley lines were resistance to all isolates. This variation in germplasm and the 

isolates suggested that the molecular markers linked with the resistance loci may not be 

applicable to all breeding programs for crop improvement. Gupta et al., (2001) reported that the 

virulence profile of Ptt has not changed through the last 19 years where as variability in the Ptm 

population over this span of time was observed. Gupta et al., (2012) grouped ninety-nine Ptm 

isolates into seven isolate groups (IGs) based on their infection responses on 26 differential 

barley lines in Western Australia. Interestingly, Tuohy et al., (2006) were unable to detect 

pathogenic variation among the Ptt and Ptm isolates collected within Ireland and Northern 

Europe. Recently, Akhavan et al., (2016) found 16 and 13 pathotype group among 39 Ptt and 27 
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Ptm isolates, respectively using barley differential sets in Canada. Observation of seven new 

pathotypes along with the absence of three previously reported pathotypes in the study indicated 

a shift in the virulence profile of the pathogen population. Wu et al., (2003) identified 15 

pathotypes out of 23 Ptt isolates and 4 pathotypes out of 8 Ptm isolates using differential lines 

suggesting high genetic diversity in both the Ptt and Ptm populations. Consistence with other 

studies, Kinzer et al., (2015) identified 54 virulence group from a collection of 177 Ptm isolates 

collected in ND, USA, and reported 92% genetic variation with in the populations whereas low 

variation of about 8% among the population, suggesting the presence of high genetic variation 

within this local pathogen population.  

The genetic structure of fungal population helps us to understand how rapidly a pathogen 

is evolving and provides important information for the intelligent deployment of resistance to the 

ever-changing pathogen population (Liu et al., 2011, Serenius et al., 2007). To date characterized 

resistances to SFNB and NFNB do not correlate, hence pathologists and breeders need to 

consider them as different disease when deploying resistance. Also, the high levels of pathogenic 

and genetic diversity in both Ptm and Ptt population across barley growing regions of the world 

suggests that it is crucial to pyramid resistances when deploying resistant barley cultivars. 

Host Resistance and Susceptibility 

Growing resistance cultivar is an effective strategy to reduce the yield and quality losses 

inflicted by this disease. However, historically Upper Midwestern barley breeding programs 

have devoted limited resources and time into deploying resistances to both SFNB and NFNB as 

compared to other diseases that have been considered a major threat to production like fusarium 

head blight, spot blotch and stem rust. Thus, the commercial cultivars grown in the region are 
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susceptible to moderately susceptible to both of these diseases, which are current threats to 

barley production in the Northern Great Plains and Canada.  

Several studies have shown that some NFNB resistances are dominant in nature and are 

inherited in a Mendelian fashion (Geschele, 1928). NFNB resistance and/or susceptibility QTL 

have been identified across all seven barley chromosomes (reviewed in Liu et al., 2011) 

suggesting that resistance to NFNB is very complex, comprised of either dominant or recessive 

resistance (dominant susceptibility), incompletely dominant genes, and/or quantitative 

resistances or susceptibilities (Mode and Schaller, 1958, Bockelman et al., 1977, Ho et al., 1996, 

Friesen et al., 2006, Abu Qamar et al., 2008, Richards et al., 2016, Koladia et al., 2017a). Three 

incomplete dominant resistance genes Pt1, Pt2 and Pt3 were identified against Ptt isolates 

collected in California (Mode and Schaller, 1958). Bockelman et al., (1977) reported single 

dominant resistance genes to NFNB designated as Rpt1a (chr 3H), Rpt3d (chr 2H), Rpt1b (chr 

3H), and Rpt2c (chr 5H) using trisomic analysis. Rpt1a was mapped from Tifang, Rpt3d and 

Rpt1b from CI7584, and Rpt2c from CI9819, respectively. Ho et al., (1996) reported a recessive 

resistance (dominant susceptibility) gene on chromosome 2H in barley line Leger that was 

effective against Ptt isolates WRS102 and WRS858 and was shown to be linked with the row 

type gene Vrs1. Steffenson et al., (1996) identified three major QTL at the seedling stage and 

seven QTL at the adult plant stage in a Steptoe x Morex DH population. Fetch et al., (2008) 

identified 18 spring barley lines from a collection of ~5000 barley accession that were resistant 

to both net form net blotch isolate ND89-19 and spot blotch (C. sativus) at adult stage. Out of 

these 18 accessions, none of which contained Mid-western US germplasm in their pedigree, they 

identified 8 barley lines (CI2291, CI7021, PI58228, PI83794, PI428626, PI434771, PI467387, 
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and Tx7934) that were highly resistance to both net blotch and spot blotch at both the seedling 

and adult plant stages. 

A major QTL designated QRpt6 from the barley line TR251 located at the centromeric 

region of barley 6H was shown to be effective against both net blotch forms at the seedling and 

adult plant stages (Grewal et al., 2008 and 2010). Besides QRpt6, they also identified QTL on 

2H, 4H, 5H and 6H against Ptt isolate WRS858 effective at the seedling stage and on 3H, 5H, 

6H, and 7H against Ptt isolate WRS1607 effective at adult stage. QRpt6 was further validated in 

two RIL population of “MEH#486 x Harrington” and “McLeod X CDC Helgason” (Grewal et 

al., 2012). Ma et al., (2004) mapped one resistance gene Rpt in the cultivar Chevron against the 

Ptt isolate ND89-19 that explained 64% of phenotypic variation and was flanked by the RFLP 

markers Xksua3b and Xwg719d, which were 25.9 cM apart on the short arm of chromosome 6H. 

Manninen et al., (2006) identified Rpt5 on chromosome 6H effective against Ptt isolates 84-28-

01 (USA), 92-46/15 (Canada), 80-12 (UK) and 27-36 (Australia). One major QTL tightly linked 

with marker Bmag0173 was reported at the centromeric region of chromosome 6H against 

isolate 0-1, 15A and ND89-19 (Friesen et al., 2006). A single dominant resistance gene was also 

identified in the lines CIho 2291, CIho 5098, and Nomini against Ptt isolate ND89-19 (O’Boyle 

et al., 2011). The gene in CIho2291 designated as Rpt-CIho2291 was mapped to a 34.3 cM 

interval region on chromosome 6H flanked by the SSR markers Bmag0173 and Bmag0500 

whereas the gene in Nomini designated as Rpt-Nomini was mapped to a 9.2 cM region on 

chromosome 6H between the markers Bmag0344a and Bmag0103a (O’Boyle et al., 2014). Cakir 

et al., (2011) reported QTLs on 2H, 3H, 4H and 6H against isolate NB50 effective at the seedling 

stage and adult plant stage (adult plant resistance: APR) QTL on 3H, 5H and 6H against Ptt 

isolates NB324 and NB329.  
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Similarly, Wonnenberger et al., (2017b) also identified QTL on chromosome 3H, 4H, 5H, 

6H, and 7H in Norwegian barley lines using the DH population of cultivar Arve and Lavrans. 

Recently, Koladia et al (2017a) mapped two dominant QTL in the barley line CI5791 on 

chromosome 3H and 6H in a CI5791 x Tifang RIL population using nine geographically distinct 

Ptt isolates. The CI5791 6H QTL was shown to be effective against all isolates used in the study 

whereas the CI5791 3H resistance was effective against only two Japanese isolates. Similarly, a 

dominant 3H QTL was also identified from Tifang in the same population and confered 

resistance to four Ptt isolates from Denmark, Brazil, and two California isolates, indicating that it 

might be allelic to CI5791 or these QTL represent two linked resistance genes (Koladia et al., 

2017a). Besides these dominant resistances in barley against Ptt, recessive resistance genes 

(dominant susceptibility genes) have also been reported. Abu Qamar et al., (2008) mapped two 

major recessive resistance gene, rpt.r and rpt.k, to an  ~5.9 cM interval at centromeric region of 

chromosome 6H in a Rika and Kombar population. The rpt.r and rpt.k genes were found in 

repulsion and were effective against Ptt isolates 6A and 15A, respectively. This region was 

further saturated to ~3.3 cM interval using EST-based marker (Liu et al., 2010b). Richards et al., 

(2016) further saturated this region to ~0.24 cM by utilizing synteny with Brachypodium 

distachyon. Allele analysis of the candidate genes in the region suggested that the major 

susceptibility locus conferring susceptibility to Ptt is probably conditioned by a single gene 

designated as Spt1 and cvs Rika and Kombar harbor different alleles of Spt1 conferring 

susceptibility to California Ptt isolate 6A and 15A. Additionally, Richards et al., (2017) 

identified 16 resistance/ susceptibility QTL loci effective against diverse isolates of NFNB using 

genome-wide association mapping on 957 barley lines from a worldwide barley collection, of 

which QRptts-3HL, QRptts-4HS, QRptts-5HL.1, QRptts-5HL.2, and QRptts-7HL.1 were novel 
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QTL. Similarly, Wonnenberger et al., (2017a) identified 13 QTL on all seven chromosomes 

utilizing an association mapping approach using a collection of 209 Nordic spring barley lines. 

The QTL on chromosome 3H (58.31-61.29 cM) and 6H (54.10-59.33) were reported to be 

effective at both seedling and adult plant stages. The resistance barley cultivar Heartland is the 

current resistance source being utilized in Canada and Minnesota breeding program whose 

resistance has not been characterized (Steffenson and Smith, 2006).  

Relatively, few SFNB resistance sources has been identified and mapped to date as 

compared with NFNB. Thus, resistance to SFNB is less understood as compared to NFNB. 

Williams et al., (1999) screened 96 barley lines with a mixture of 5 different isolates of P. teres f. 

maculata and identified only 4 lines: Galleon (Australia), WI2976 (Australia), OK82850 (USA), 

and Dairokkaku (Japan) that were resistance to SFNB. Similar results were obtained where 

limited sources of SFNB resistance were identified by McLean et al., (2012) by screening 95 

barley lines at the seedling stage in Australia and Canada. They identified only 2 resistant lines 

Esperance Orge 289 and TR3189 that were resistant to all isolates at the seedling stage. 

However, 15 barley lines were resistance to two Canadian isolates and a mixture of Australian 

isolates at the adult stage. Neupane et al., (2015) identified only 15 resistant lines that were 

resistance to diverse Ptm isolates collected from the USA, Australia, New Zealand, and Denmark 

which accounted for less than 1% of a world barley core collection consisting of 2,062 

accessions. All these results suggested that broad resistance to SFNB is rare.  

Previous studies identified major and minor resistance QTL effective against specific Ptm 

isolates spread across all seven barley chromosomes. These QTL are identified either by using 

biparental mapping population including both RIL and Double Haploid (DH) population (Ho et 

al., 1996, Steffenson et al., 1996, William et al., 1999 and 2003, Molnar et al 2000, Friesen et al., 
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2006, Grewal et al., 2008, Manninen et al., 2000, and 2006, Cakir et al., 2011) or association 

mapping approaches (Tamang et al., 2015, Wang et al., 2015, Burlakoti et al., 2017). The 

majority of which are different than the NFNB resistance loci (reviewed in Liu et al., 2011). The 

Rpt4 QTL on chromosome 7H from the cultivar Galleon was the first SFNB dominant resistance 

reported and has been utilized in Australian barley breeding programs (Williams et al., 1999 and 

2003). This Rpt4 gene was further confirmed in the barley lines CI9214, Keel and Tilga 

(Williams et al., 2003). They also mapped an adult plant resistance QTL on chromosome 7H 

(140-170 cM) close to Rpt4 and on chromosome 5H (20-40 cM) in barley line Galleon and 

VB9104. Another source that has been utilized in Australian breeding programs is the Ha4 gene 

that confers resistance to the cereal cyst nematode (Heterodera avenae) and SFNB at adult stage 

(Arabi et al., 1992, Karakousis et al., 2003). Ho et al., (1996) reported a dominant gene from the 

barley line Leger to Ptm isolate WRS857, but didn’t provide the location because of the low 

marker density, thus the gene wasn’t linked with any of the markers used in their study. Grewal 

et al., (2008) identified three QTL:  QRpts4 on 4H, QRpt7 on 7H, and QRpt6 on 6H against 

SFNB isolate WRS857 in TR251 using a CDC Dolly x TR251 DH population. The QRpt6 was 

shown to be effective against both net blotch forms as well as effective at both seedling and adult 

plant stages (Grewal et al., 2012). QTL Rpt6 on chromosome 5H (R2=65-84%) near the marker 

HVLEU was reported in line CI9819 against two Finnish isolates P1332 and P1333 (Manninen 

et al., 2006). One unnamed QTL on 4H was detected against SFNB isolate NZKF2 (New 

Zealand) explaining 64% of the phenotypic variation in a SM89010 x Q21861 DH population 

(Friesen et al., 2006). A new QTL in cultivar Baudin was also detected on the short arm of 

chromosome 6H (~23.9 cM) effective at both seedling and adult stages against Ptm isolates 

95NB104, 95NB117, and WAC11160 (Cakir et al., 2011). 



 

21 

Recently, association mapping has been utilized to map SFNB resistance gene using 

different barley populations. Wang et al., (2015) conducted an association mapping study on elite 

breeding lines from the Northern region barley breeding programs of Australia and identified 29 

QTL of which 22 confer resistance at both the seedling and adult plant stages, 2 QTL at the 

seedling stage only, and 5 QTL at adult plant stage only. In association mapping using 1,480 

barley lines (worldwide barley collection), 27 distinct loci were identified of which 6 were 

consistent with previously reported loci and 21 were novel loci with QTL identified across all 

seven barley chromosomes (Tamang et al., 2015; Chapter 2 of this dissertation). Burlakoti et al., 

(2017) conducted an association study of SFNB with 376 advanced breeding lines from four 

barley-breeding programs in the Upper Midwest of United States. They reported 10 QTL 

effective against Ptm isolate SFNB-MT09 on chromosomes 2H, 3H, 5H, 6H, and 7H.  

However, genes involved in SFNB resistance have not been cloned and characterized yet 

and none of these resistance loci have been utilized in barley breeding program in North Dakota, 

hence, the majority of the barley cultivars grown in this region are moderately susceptible to 

susceptible to SFNB. Similarly, barley lines CI5791, Heartland, and Algerian exhibiting high 

level resistance to all Ptt isolates collected from ND and would be excellent sources of resistance 

to NFNB in the Northern Great Plains. However, a few documented isolates that have overcome 

the remarkable resistance present in the line CI5791 have been reported. Arabi et al., (1992) 

reported that CI5791 is susceptible to R5 and S5 biotypes of Ptt. CI5791 resistance has also been 

compromised by Moroccan Ptt isolates as indicated by seedling virulence of the isolates SM25-

2, SM25-3, and SM40-3 (Personal communication with Dr. Timothy Friesen). Recently, 

Akhavan et al., (2016) also reported one Ptt isolate that has overcome the CI5791 resistance in 

Western Canada. Due to the complex genetics resistance/ susceptibility and polygenic nature of 
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resistance in the host as well as availability of rare resistance sources, breeding for resistance to 

SFNB and NFNB is a challenge. Although there are a few SFNB and NFNB common resistance 

loci effective at both the seedling and adult plant stages to specific isolates, the majority of the 

resistance gene are different. This suggests that breeders have to treat these two forms of net 

blotch as different disease when deploying resistance. 

Toxins and Host Selective Effectors 

P. teres f. teres and P. teres f. maculata both induce necrotic lesions surrounded by 

chlorosis on the leaves of susceptible barley. These lesions, that are the result of pathogen 

colonization, facilitate nutrient extraction and ultimately sporulation by this necrotrophic 

pathogen. The chlorotic areas surrounding the necrotic lesions are typically free of hyphal 

growth and associated with diffusible toxins (Smedegard-Peterson, 1977) and proteinaceous 

effectors (Liu et al., 2011). These proteinaceous toxins and the effectors are the weapon of the 

pathogen to infect the host and play important roles in disease development.  

Two phyto-toxins designated as toxin A and B were isolated and purified from culture 

filtrates of Ptt and Ptm isolates that alone produced symptoms on barley (Smedegard-Petersen, 

1977). Toxin A was more effective than toxin B in producing symptoms on the host. However, 

the symptoms produced by the toxins were not as typical as the pathogen produced symptoms 

suggesting that the toxins don’t necessarily determine pathogenicity, but contributed to the 

isolate virulence (Smedegard-Petersen, 1977). Later, Bach et al., (1979) isolated a new toxin 

called toxin C from the same isolates. These three toxins were found to be chemically and 

structurally similar to aspergillomarasmine A. Toxin A was identified as N-(2-amino-2-

carboxyethyl) aspartic acid, toxin B was anydroaspergillomarasmine A, and toxin C as 

aspergillomarasmine A. Among these 3 toxins, toxin C was the most active and induced necrotic 
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lesions surrounded with light-yellow chlorosis, toxin A produced dark-yellow chlorotic 

symptoms with less necrosis and toxin B produced slight symptoms on susceptible barley 

(Weiergang et al., 2002). The author also showed that the toxin A can produce chlorosis between 

48-72 hrs and necrosis began to appear after 120 hrs of post treatment. Friss et al., (1991) 

discovered that toxin A serves as the precursor of toxin C and toxin C can convert into toxin B 

without any enzymatic catalyst under low pH level in culture.  

Another proteinaceous metabolite toxin isolated and purified from both Ptt and Ptm was 

able to induce necrotic spots identical to net blotch symptoms on susceptible barley (Sarpeleh et 

al., 2007). However, this toxin produced minimal symptoms on resistant line CI9214 and no 

symptom on non-host wheat, triticale, rye and faba bean, which suggested that this toxin is a host 

selective toxin (Sarpeleh et al., 2007). This toxin was highly heat stable and its activity was light 

and temperature dependent which was similar to SnTox1 produced by Stagonospora nododrum 

and PtrToxA by Pyrenophora tritici-repentis (Sarpeleh et al., 2007 and 2008, Manning et al., 

2009, Liu et al., 2012). Additionally, another low molecular weight compound (LMWCs) that 

produced chlorosis on barley leaves was also identified by Sarpeleh et al., (2008). Recenlty, Liu 

et al., (2015) identified another proteinaceous effector designated as PttNE1 from Ptt isolate 0-1 

by intracellular wash fluids (IWFs) from the susceptible barley cultivar Hector. PttNE1 was able 

to produce necrosis on Hector (susceptible) but no symptoms on the resistant cultivar NDB112. 

The sensitivity to these IWFs was mapped to the centromeric region of chromosome 6H using a 

Hector x NDB112 RIL population (Liu et al., 2015).  

Necrotrophic fungal pathogens are shown to produce necrotrophic effectors (NE) also 

known as host-specific toxins (HSTs). HSTs are small secreted proteins or low molecular weight 

metabolites and are key pathogenicity/virulence factors of the pathogen. Dothideomycete 
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necrotrophic effectors were shown to predominantly interacting with corresponding dominant 

susceptibility proteins or gene products following an inverse gene-for-gene model resulting in 

susceptible reactions which is known as necrotrophic effector-triggered susceptibility (NETS) 

(Friesen et al., 2008, Liu et al., 2012 and 2015). In the inverse gene-for-gene model, necrotrophic 

pathogens hijack the plant resistance pathway by triggering programmed cell death (PCD), 

oxidative burst, accumulation of reactive oxygen species (ROS), and DNA laddering on sensitive 

hosts, which are hallmarks of typical biotrophic resistance reactions (Liu et al., 2015). However, 

the necrotrophs are able to utilize these innate host immunity responses to facilitate colonization, 

nutrients acquisition from the dying cells, and ultimately sporulation.  

 The identification and characterization of pathogen virulence/ avirulence or effector 

genes and functional characterization of their protein products will facilitate the understanding of 

the barley-P. teres interactions at the molecular level. The ability to cross P. teres and resulting 

genetic analyses have been utilized to clone pathogen virulence and avirulence genes which 

typically directly encode proteinatious effector proteins. Weiland et al., (1999) were the first to 

create a P. teres mapping population of the parental isolates 0-1 and 15A to study the genetics of 

their virulence/avirulence on the barley cultivar Harbin. They mapped the AvrHar locus utilizing 

this P. teres f. teres biparental population showing that it was a single host-parasite genetic 

interaction between a single dominant gene in the host and a single avirulence gene in the 

pathogen that resultsed in an incompatible interaction (resistance). Lai et al., (2007) identified 

two additional avirulence genes AvrPra1 and AvrPra2 using the same fungal population and 

AFLP markers. These avirulence genes control the virulence of Ptt isolate 0-1 on cultivar Prato. 

Interestingly, the AvrPra2 mapped to the same linkage group of AvrHar but they segregated in 

repulsion suggesting that these might be the different allele at the same locus. Beattie et al., 
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(2007) identified another avirulence gene designated as Avrheartland, which determines avirulence 

on the cultivar Heartland using a biparental Ptt population of the two Canadian isolates 

WRS1607 and WRS1906. Afanasenko et al., (2007) studied the segregation pattern of host 

resistance genes and the pathogen virulence/avirulence gene using twelve F2 barley population 

developed by crossing diverse sets of barley resistance lines with susceptible barley and two 

pathogen population (181-6 X A80 and H-22 X 92-178/9). They reported gene-for-gene 

interactions in the barley-Ptt pathosystem where resistance in the host is mostly isolate specific 

governed by one or two genes and the avirulence gene in Ptt is also governed by one or two 

genes.   

Shjerve et al., (2014) used a bi-parental mapping population derived from a cross 

between isolate 15A and 6A and identified four virulence QTL (VK1, VK2, VR1, and VR2) 

associated with pathogen virulence. Susceptibility to progeny isolates that possessed single 

virulence genes mapped to the same centromeric regions of chromosome 6H in a Rika x Kombar 

DH population. This result suggested that 15A and 6A each produces two different unique 

necrotrophic effectors that have single or multiple targets at the same 6H region of the barley 

genome. Recently, Koladia et al., (2017b) identified 9 unique QTLs associated with 

virulence/avirulence factor of P. teres f. teres utilizing biparental population developed with the 

parental isolates BB25 (Denmark) and FGOH04Ptt-21 (Fargo, ND). Out of the 9 QTL identified, 

3 major QTL contributed greater than 45% of the phenotypic variation, whereas the remaining 6 

minor QTL contributed less than 20% of the phenotypic variation. They speculated that the 

variation in virulence of Ptt populations is associated with multiple loci with small effects 

resulting in the quantitative nature of virulence.  



 

26 

Further investigation or in-depth analyses of Mendalized interactions is required to 

determine if effector protein encoding genes acts in an inverse gene-for-gene relationship with 

corresponding sensitivity protein encoding genes in barley or if they function in a gene-for-gene 

interaction that results in avirulence. Inverse gene-for-gene action has been demonstrated in the 

wheat-Stagonospora nodorum and wheat-P. tritici repentis pathosystems (Friesen et al., 2007; 

Faris et al., 2010; Tan et al., 2010, Liu et al., 2012). Recently, Richards et al., (2016) identified a 

candidate dominant Ptt susceptible gene Spt1 in barley that follows the inverse gene-for-gene 

interaction model but the corresponding avirulence genes in Ptt have yet to be identified. 

Although, there are several studies reporting dominant susceptibility (recessive resistance) genes 

in barely against P. teres f. teres, there are currently no susceptibility genes reported in barley 

corresponding with P. teres f. maculata (Liu et al., 2011). But its logical to predict that this 

inverse gene-for-gene interaction may also exists in the barley-P. teres f. maculata pathosystem 

too.  

Association Mapping 

The ultimate goal of genetic mapping is to identify the actual gene that controls the 

phenotype of interest. However, at the resolution that we currently have in barley we typically 

map markers that are in close proximity to the genetic factors (genes) controlling the trait of 

interest. Historically, bi-parental genetic linkage mapping was the most commonly used 

approach to map genes or QTL where two parents with polymorphic phenotype were crossed to 

make the population. One advantage of bi-parental mapping is detection of rare alleles 

contributing to the phenotype. However, the drawbacks of bi-parental mapping are the time and 

cost of population development and the limited number of meiotic events (Zhu et al., 2008).  
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The association mapping (AM) approach is an alternative tool to genetically map genes 

or QTL at high resolution, which overcomes some of the limitations of biparental mapping (Zhu 

et al., 2008, Flint-Garcia et al., 2003). The advantages of AM include higher resolution which 

depends upon the linkage disequilibrium (LD) of the population utilized where a large pool of 

historical recombination events will provide the best resolution but to utilize this mapping power 

you must obtain a high level of marker density. Also, AM utilizes existing germplasm collections 

eliminating the need to develop mapping populations. Thus, AM is a powerful tool to identify 

marker-trait association (MTA) present in populations and has the potential to identify candidate 

genes very quickly compared to the tried and true positional cloning techniques that relied on 

generating very large bi-parental recombinant populations. However, there is a possibility of 

getting false positive MTAs when there is a failure to adequately account for population structure 

or kinship in the analyses and/or the optimal model/s are not selected for the analyses (Flint-

Garcia et al., 2003, Yu et al., 2006).  

Currently, AM is gaining popularity in plants and has been used to detect the markers 

associated with different complex traits in various plant species such as barley (Tamang et al., 

2015, Burlakoti et al., 2017, Richards et al., 2017, Wang et al., 2015), wheat (Triticum aestivum) 

(Breseghello and Sorrels 2006, Tommasini et al., 2007), rice (Oryza sativa) (Agrama et al., 

2007), Corn (Zea mays)  (Kump et al., 2011), Soybean (Glycine max)  (Wang 2008, Mamidi et 

al., 2011), Arabidopsis (Ehrenreich et al., 2009, Aranzana et al., 2005), Potato (Solanum 

tubersum)  (Malosetti et al., 2007), and Canola (Brassica napus)  (Honsdorf et al., 2010, Zou 

2010). Recently, AM has been utilized to map both SFNB (Wang et al., 2015, Tamang et al., 

2015, Burlakoti et al., 2017) and NFNB (Richards et al., 2017 and Wonnenberger et al., 2017a) 

resistance loci in different barley population with great success.  
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WRKY Transcription Factors 

Transcription is the first step in gene expression, which is regulated by transcription 

factors (TFs). More than 1500 TFs were identified and clustered into 34 families that either 

activate or suppress the expression of genes (Reichmann et al., 2000). A typical TF contains a 

DNA binding domain (DBD) that recognizes a short motif in the target DNA sequence (typically 

10 nucleotides) called transcription factor binding sites (TFBSs) which either positively or 

negatively regulate gene expression to achieve cellular homeostasis (Riechmann et al., 2000; 

Guo et al., 2005; Mitsuda and Ohme-Takagi, 2009). Eulgem (2006) observed various 

Arabidopsis TF family representatives that bind to promoter regions of defense-related genes 

either to activate or repress them. Based on their DNA binding domain, TFs are classified into 

several groups including the P2/ERF (APETALA 2/Ethylene-Responsive Element Binding 

Factor), NAC (No Apical Meristem, ATAF1/2, Cup-Shaped Cotyledon 2), SBP (Squamosa-

Promoter Binding Protein) and WRKY superfamilies that are involved in diverse biotic/abiotic 

stress, developmental and physiological responses (Phukan et al., 2016).  

WRKY TFs contains a highly conserved amino acid sequence WRKYGQK at their N-

terminus and zinc-finger-motif (C-C-H-H/C) at their C-terminus (Eulgem et al., 2000, Robtzek et 

al., 2001). WRKY proteins bind to a specific W-box element (TTGACT), which can occur as 

hexamers (TTGAC/T), palindromes (TGACC/T-A/GTCA), or tandem repeats (TGACC/C-

TGACC/T) in promotor regions of the target genes either to activate or repress gene function 

(Rushton et al., 2010, Agarwal et al., 2011, Eulgem et al., 2000, Yu et al., 2001). WRKY genes 

may have W-boxes in their own promoter regions suggesting that it is self-regulated, or it might 

be regulated by other WRKY transcription factors (Eulgem, 2005). In Arabidopsis, the WRKY 

superfamily consists of more than seventy WRKY TFs and is one of the largest TF families 
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(Robtzek et al., 2001 and 2002). WRKY TFs have been found to be involved in diverse plant 

physiological activities such as pathogen defense responses, biotic stress, senescence, root 

growth, etc. (Robtzek et al., 2001 and 2002, Skibbe et al., 2008) and to several abiotic stresses 

such as wound responses and nutrient deficiency (Kasajima et al., 2010, Chen et al., 2009, Li et 

al., 2017).  

Several studies have provided evidence that WRKY TFs are the integral part of the plant 

immune system including PTI, ETI, and systemic acquired resistance (SAR) (Eulgem and 

Somssich, 2007; Rushton et al., 2010). Genetic studies have shown that WRKYs can either 

positively or negatively regulate the plant defense responses (Eulgem and Somssich, 2007, 

Robatzek et al., 2001 and 2002). AtWRKY6 regulates both plant defense response against 

Pseudomonas syringae pv. Tomato, as well as senescence in Arabidopsis (Robatzek et al., 2002). 

This AtWRKY6 regulates SIRK gene (Senescence-Induced Receptor like serine/threonine protein 

Kinase) that encodes a receptor-like kinase, which is exclusively localized to the plant cell 

nucleus (Robatzek et al., 2002). AtWRKY6 has also been found to be involved in several abiotic 

stress responses including responses to boron deficiency, phosphorous deficiency, and acts as a 

positive regulator of Abscisic Acid Signaling (ABA) during seed germination and early seedling 

development in Arabidopsis (Kasajima et al., 2010, Li et al., 2017, Yun et al., 2016). WRKY3 

and WRKY6 regulate defense response in tobacco (Nicotiania attenuate) against herbivore 

Manduca sexta larvae during feeding and their interaction also plays a role in defense responses 

(Skibbe et al, 2008). They observed that the host susceptibility to herbivore in the knockout 

plants are associated with impaired Jasnomate (JA) accumulation thereby interrupting the JA 

signaling pathway. However, the resistance to M. sexta in Nicotiania did not change with 

overexpression of either WRKY3 and/or WRKY6.  
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In Arabidopsis, the bacterial effectors, AvrRPS4 and PopP2, interacts with WRKY TFs 

interfering with the WRKY-dependent defenses (Sarris et al., 2015). The WRKY52 binding 

domain has been integrated in Arabidopsis RPS4/RRS1 NLR complex as a decoy forming an 

intramolecular guardee of the NLR that recognizes the bacterial effectors AvrRPS4 and PopP2, 

and activate the defense response by direct interaction with the bacterial effectors and the NLR 

gene product. NLR-WRKY interactions were also observed in AtWRKY16/TTR1, and AtWRKY19 

suggesting involvement in ETI defense related responses (Rushton et al., 2010). This system has 

been characterized as an example of the integrated decoy model (Cesari et al., 2014) and has 

been discovered in different pathosystem such as rice- Magnaporthe oryzae (Zhai et al., 2014, 

Cesari et al., 2013), barley- Puccinia graminis (Wang et al., 2013), wheat- Puccinia triticina 

(Loutre et al., 2009), and Papaya-Fusarium oxysporum (Brotman et al., 2012) but with other 

integrated sensory domains that don’t represent WRKY TFs.  

Several WRKY TFs have been reported in other plant species that plays important role in 

defense response to pathogens. About 45 WRKYs has been reported in barley (Mangelsen et al., 

2008). HvWRKY1 and HvWRKY2 in barley were found to repress PTI by interfering with the 

intracellular mildew A (MLA) protein (Shen et al., 2007; Chang et al., 2013). However, Meng 

and Wise (2012) identified HvWRKY10, HvWRKY19, and HvWRKY28 as a positive regulator of 

ETI in barley against Blumeria graminis. Similarly, at least 109 WRKY TFs have been reported 

in rice (Oryza sativa) (Ross et al., 2007). The upregulation of OsWRKY13, OsWRKY31, 

OsWRKY45, OsWRKY53 and OsWRKY47 were found to be associated with the enhanced 

resistance in rice against Magnaporthe oryzae (Chujo et al., 2007; Wei et al., 2013). Wang et al., 

(2007) observed increase wax deposition on the leaf surface at infection sites of Magnaporthe 

oryzae, which were associate with overexpression of OsWRKY89. Similarly, in capsicum, 



 

31 

CaWRKY6 regulates CaWRKY40 which activate resistance to Ralstonia solanacearum as well as 

adds tolerance to high-temperature and humidity (Cai et al., 2015) 

In addition to positive regulators in Arabidopsis defense, WRKY TFs can also function as 

negative regulators. WRKY53 has dual function depending upon the pathogen type: it positively 

regulated the plant response to P. syringae while negatively affected plant defense to Ralstonia 

solanacearum (Murray et al., 2007; Hu et al., 2008). Similarly, Journot-Catalino et al., (2006) 

identified WRKY11 and WRKY17 as a negative regulator of basal defense responses in 

Arabisopsis. Li et al., (2004) observed similar result of enhanced resistance to the biotroph 

Erysiphe cichoracearum and increase in susceptibility to bacterial necrotroph Erwinia 

carotovora subsp carotovora with the upregulation of WRKY70 in Arabidopsis and reported 

WRKY70 as a positive regulator of SAR and JA. The TFs WRKY38 and WRKY62 were also 

found to be negative regulators of plant basal defense response to the bacterial pathogen P. 

syringae (Mao et al., 2007, Kim et al., 2008). They observed reduction in disease resistance with 

overexpression of WRKY38 and/or WRKY62. Both WRKY38 and WRKY62 interact with Histone 

Deacetylase 19 (HDA19) and interfere with its resistance function. WRKY38 and WRKY62 can 

be induced in a NPR1 (Nonexpressor of Pathogenesis-related genes 1) dependent manner either 

by virulent P. syringae or SA (salicylic acid). Xing et al., (2008) observed WRKY48 TF 

negatively influenced SAR by altering the expression of Pathogenesis-Related gene 1 (PR1) in 

Arabidopsis against P. syringae. They observed resistance reactions in loss-of-function 

Arabidopsis mutants, which was associated with increased SA regulation of PR1. The 

overexpression of WRKY48 in transgenic Arabidopsis (gain-of-function) resulted in 

susceptibility, which was associated with reduced expression of PR1 genes. Grunewald et al., 

(2008) identified WRKY23 as the negative regulator to plant defense response against cyst 
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nematode Heterodera schachtii. WRKY genes can also mediate cross talk between Jasmonic 

acid (JA) and SA signaling pathways (Li et al., 2004).  

Summary 

Net blotch of barley caused by the necrotrophic fungal pathogen Pyrenophora teres is a 

major foliar disease in major barley-growing regions throughout the US and the world (Liu et al., 

2011). Net blotch occurs in two forms: SFNB caused by P. teres f. maculata and NFNB caused 

by P. teres f. teres. Although these two pathogens are closely related, their interactions with 

hosts are distinct. So, they should be treated separately while breeding and deploying resistance. 

Since the positive identification of SFNB in 2010, it has been found each year throughout the 

state of ND and is now considered a major threat in the Northern Great Plains because the 

isolates collected from this region are more virulent than any other isolates collected from other 

parts of the world (Liu and Friesen, 2010). Currently, both SFNB and NFNB are emerging as 

major barley disease in ND, Montana, and Eastern Idaho. Studies on SFNB resistance sources 

are behind relative to NFNB, thus resistances to SFNB are not well understood as compared to 

NFNB. Our objective was to identify and map the resistance sources of SFNB through 

association mapping and biparental-mapping approach; and to begin to identify and characterize 

an important NFNB dominant resistance gene from the line CI5791.  
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CHAPTER 2. ASSOCIATION MAPPING OF SEEDLING RESISTANCE TO SPOT 

FORM NET BLOTCH IN A WORLDWIDE COLLECTION OF BARLEY 

Abstract 

Spot form net blotch (SFNB), caused by the necrotrophic fungal pathogen Pyrenophora 

teres f. maculata, is an important foliar disease of barley in major production regions around the 

world. Deployment of adequate host resistance is challenging because the virulence of P. 

teres f. maculata is highly variable and characterized minor-effect resistances are typically 

ineffective against the diverse pathogen populations. A world barley core collection consisting of 

2,062 barley accessions of diverse origin and genotype were phenotyped at the seedling stage 

with four P. teres f. maculata isolates collected from the United States (FGO), New Zealand 

(NZKF2), Australia (SG1), and Denmark (DEN 2.6). Of the 2,062 barley accessions phenotyped, 

1,480 were genotyped with the Illumina barley iSelect chip and passed the quality controls with 

5,954 polymorphic markers used for further association mapping analysis. Genome-wide 

association mapping was utilized to identify and map resistance loci from the seedling disease 

response data and the single nucleotide polymorphism (SNP) marker data. The best among six 

different regression models was identified for each isolate and association analysis was 

performed separately for each. A total of 138 significant (−log10P value > 3.0) marker-trait 

associations (MTA) were detected. Using a 5 cM cutoff, a total of 10, 8, 13, and 10 quantitative  

 

1The material in this chapter is reprinted under a Creative Commons Attribution License 

(https://creativecommons.org/licenses/by/4.0/) applied by the Phytopathology journal from the 

article Tamang, P., Neupane, A., Mamidi, S., Friesen, T. L., and Brueggeman, R. 2015. 

Association Mapping of Seedling Resistance to Spot Form Net Blotch in a Worldwide Collection 

of Barley. Phytopathol. 105:500-508. Prabin Tamang and Anjan Neupane conducted the 

experiments. Prabin Tamang and Sujan Mamidi analyzed the data. Prabin Tamang wrote and 

revised the manuscript according to the suggestions of the co-authors and reviewers. 
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trait loci (QTL) associated with SFNB resistance were identified for the FGO, SG1, NZKF2, and  

DEN 2.6 isolates, respectively. Loci containing from 1 to 34 MTA were identified on all seven  

barley chromosomes with one locus at 66 to 69 cM on chromosome 2H common to all four 

isolates. Six distinct loci were identified by the association mapping (AM) analysis that 

corresponded to previously characterized SFNB resistance QTL identified by biparental 

population analysis (QRpt4, QRpt6, Rpt4, Rpt6, Rpt7, and a QTL on 4H that was not given a 

provisional gene or QTL nomenclature). The 21 putative novel loci identified may represent a 

broad spectrum of resistance and or susceptibility loci. This is the first comprehensive AM study 

to characterize SFNB resistance loci underlying broad populations of the barley host and P. 

teres f. maculata pathogen. 

Introduction 

Net blotch of barley (Hordeum vulgare L.) caused by the necrotrophic fungal 

pathogen Pyrenophora teres Drechsler (anamorph: Drechslera teres [Sacc.] Shoem.) is a 

destructive pathogen in many barley-growing regions throughout the world (Liu et al., 2011). 

This pathogen is separated into the net and spot forms based on predominant disease symptoms 

with the causal agents being P. teres f. teres and P. teres f. maculata, respectively (Smedegård-

Petersen, 1971). Spot form net blotch (SFNB) has emerged as a major leaf spot disease in several 

barley-growing regions of the world including regions of Australia, Canada, Europe, South 

Africa, and recently the United States (Karki et al., 1986, Khan and Tekauz, 1982, Liu et al., 

2011, Mathre, 1997, McLean et al., 2009, Tekauz, 1990). Although SFNB had previously been 

reported in the Upper Midwestern United States, it was not considered a problem (Liu and 

Friesen, 2010). However, since it was identified in North Dakota in 2006, it has become a major 

concern for growers in the Northern Great Plains due to what may be increased virulence as 
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indicated by comparison with isolates collected in other parts of the world (Neupane et al., 

2015). 

The prevalence and increase of SFNB epidemics may be due to a combination of 

different factors including minimum or no-till practices, high-density cropping, cultivation of 

predominantly susceptible varieties, and shifts of virulence in the pathogen populations due to 

selection by popularly grown varieties (Liu et al., 2011, McLean et al., 2009). In years when 

environmental conditions are conducive to disease and susceptible varieties are grown, SFNB 

can cause 10 to 40% yield losses in barley (Jayasena et al., 2007, Khan and Tekauz, 1982, 

Mathre, 1997, Murray and Brennan, 2010). Chemical control, cultural practices, and host 

resistance are all commonly used to manage SFNB (Brown et al., 1993, Jordan and Allen, 1984, 

McLean et al., 2010, Youcef-Benkada et al., 1994), yet deployment of high-quality resistant 

cultivars would be the most efficient and environmentally friendly means of disease 

management. 

Wide ranges of pathogenic variability in P. teres f. maculata populations have been 

reported within and across distinct geographic regions (Gupta and Loughman, 2001, Steffenson 

and Webster, 1992, Tekauz, 1990, Tuohy et al., 2006). Based on what is known in other well-

characterized cereal host−Dothidiomycete necrotrophic pathosystems (Friesen et al., 2008, 

Friesen et al., 2010, Oliver et al., 2012), it is expected that P. teres produces a diversity of 

necrotrophic effectors (previously known as host specific/selective toxins) that target distinct 

susceptibility genes in barley resulting in quantitative susceptibility (Liu and Friesen., 2010, 

McLean et al., 2009). Resistant varieties lacking these multiple sensitivity genes are uncommon, 

thus sources of resistance that are effective against diverse SFNB populations are rare. 
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Quantitative trait loci (QTL) analysis of SFNB infection types on biparental barley 

mapping populations identified resistance/susceptibility genes on barley chromosomes 2H 

(Molnar et al., 2000), 4H (Friesen et al., 2006, Grewal et al., 2008), 5H (Manninen et al., 2006), 

6H (Grewal et al., 2008), and 7H (Grewal et al., 2008, Williams et al., 1999, Williams et al., 

2003). These QTL and the markers linked with resistance may be specific to these genotypes and 

may represent interactions specific to narrow populations of both the host and pathogen. 

 Association mapping (AM) presents an alternative approach to biparental mapping that 

can efficiently capture diverse marker-trait associations (MTA) (Flint-Garcia et al., 2003, Myles 

et al., 2009, Zhu et al., 2008). This approach has been used effectively in diverse crop plants for 

many traits including complex yield traits in rice (Agrama et al., 2007), resistance genes/QTL in 

maize (Kump et al., 2011), wheat (Breseghello and Sorrells, 2006, Ghavami et al., 2011, 

Tommasini et al., 2007), potato (Malosetti et al., 2007) and iron deficiency chlorosis (IDC) in 

soybean (Mamidi et al., 2014, Wang et al., 2008), flowering time in Arabidopsis (Aranzan et al., 

2005, Ehrenreich et al., 2009), and quality traits in canola (Honsdorf et al., 2010, Zou et al., 

2010). In barley, different marker types have been identified that are associated with phenotypes 

including resistance to the diseases spot blotch, Fusarium head blight, powdery mildew, and leaf 

rust (Berger et al., 2013, Massman et al., 2011, Roy et al., 2010). Loci contributing to other 

important yet complexly inherited agronomic traits including malting quality (Beattie et al., 

2010, Gutierrez et al., 2010), yield and yield stability (Kraakman et al., 2004), flowering time 

(Ivandic et al., 2002), water-stress resistance (Ivandic et al., 2003), salt tolerance (Pakniyat et al., 

1997), and winter-hardiness (Von Zitzewitz et al., 2011) have also been identified utilizing AM. 

 The objective of this study was to use the AM approach on a large population of barley 

genotypes from around the world to identify loci that contribute to resistance against diverse 
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SFNB isolates collected from four important barley-producing regions. The identification of 

single nucleotide polymorphism (SNP) markers associated with SFNB resistance loci and/or 

lacking susceptibility genes from resistant lines identified from the world barley core collection 

(BCC; USDA-ARS National Small Grains Collection) will facilitate the deployment of effective 

and durable SFNB resistance via marker-assisted selection or genome-wide selection strategies. 

Materials and Methods 

Plant Materials and Phenotyping  

A geographically diverse sample of 2,062 barley core collection (BCC) accessions 

comprising cultivars, breeding lines, landraces, and genetic stocks were obtained from the 

National Small Grain Collection, Aberdeen, Idaho (Supplementary Table 2.1). The lines were 

grown in the greenhouse at the USDA, Fargo, North Dakota, USA during 2011 and 2012. Three 

seeds of each barley line were planted in single cones (3.8 cm diameter and 20 cm long) and 

were placed into cone racks bordered with the susceptible barley cultivar (cv) Robust. Each cone 

contained 3 seedlings and was evaluated collectively as a single replicate. Barley lines CIho-

14219 and PI 67381 were used as resistant checks and the cultivar Robust was used as the 

susceptible check.  

 Four geographically diverse isolates of P. teres f. maculata FGOB10Ptm-1 (FGO), SG1, 

NZKF2, and DEN2.6 collected in the USA, Australia, New Zealand, and Denmark, respectively, 

were used to evaluate the barley lines for SFNB disease reaction. Fungal inoculum preparation, 

inoculation, and incubation used for the AM analyses described in this manuscript were 

performed and described in Neupane et al., 2015, which is published as an adjoining manuscript. 

Three independent replicates were performed for each isolate and the mean of the three replicates 
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was considered for further analysis. Disease was evaluated 7 days after inoculation using the 1 to 

5 rating scale as described in Neupane et al. (2015).  

Genotyping  

Of the 2,417 barley accessions genotyped with the barley 9k Illumina Infinium iSELECT 

assay through the triticeae coordinated agriculture project (T-CAP), 2,062 of the barley 

accessions were evaluated for their reaction to the P. teres f maculata isolates (Neupane et al., 

2015). The genotyping was performed and described by Muñoz-Amatriaín et al. (2014) and the 

data were obtained from The Triticeae Toolbox (T3) website (http://malt.pw.usda.gov/t3/ 

sandbox/barley/). For this AM analysis we utilized the 6,244 quality SNPs that passed the quality 

control criteria and 1,480 unique iCore spring barley lines that were previously described 

(Munoz-Amatrain et al., 2014). Throughout the manuscript the analyses relied on the marker 

positions, which were previously determined and published as the iSelect consensus map 

(Munoz-Amatrain et al., 2014). 

Association Mapping 

Imputation and Marker Properties 

All missing genotypic data were imputed using a “likelihood” based imputation with 

default settings in fastPhase 1.3 (Scheet et al., 2006). The minor allele frequency (MAF) for 

markers was estimated using the FREQ procedure in SAS 9.3 and the markers that had MAF < 

5% were removed from further analysis. The structure, kinship, and AM were also performed 

separately utilizing all the markers, the markers that have MAF > 1% and the markers > 5% 

MAF which are reported in the manuscript. From the results, there were very minor changes 

between the analyses in terms of significant markers or the number of QTL identified. 

javascript:popRefFull('b46')
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Linkage Disequilibrium and LD Decay 

Linkage disequilibrium (LD) was estimated as the squared allele frequencies correlation 

(R2) for each of the pair-wise comparison of the markers using the Corr procedure in SAS 9.3. 

Linkage disequilibrium decay graphs were plotted with genetic (cM) distance versus R2 for all 

inter-chromosomal marker pairs using nonlinear regression (Remington et al., 2001). The 

expected decay of LD was estimated using the formula described by Mamidi et al. (2011) 

Population Structure, Principal Component Analysis, and Relationship Matrix 

To prevent linkage bias in estimation of population structure (Q), principal component 

analysis (PCA) and relationship matrix (K-matrix), a subset of markers that had an LD <0.5 with 

every other marker combination were used (Weber et al., 2008). STRUCTURE 2.3 was used to 

estimate the number of sub-populations. The admixture model was used with a burn-in of 20,000 

and 50,000 iterations for subpopulation numbers (k) ranging from 1 to 15 considering the allele 

frequencies to be independent. Five runs for each k value were performed and the posterior 

probability was determined for each run. The optimum number of subpopulations was 

determined using the Δk approach (Evanno et al., 2005) implemented in Structure harvester (Earl 

and Von Holdt., 2011).  

 Principal component analysis (PCA) was performed in SAS 9.3 to estimate PCs that 

controlled the population structure in the regression model. The number of principal components 

that explained ~25% of the cumulative variation in the population were selected to be included 

as cofactors in the association analysis (Mamidi et al., 2014, Stich and Melchinger, 2009). An 

identity by state (IBS) matrix (Zhao et al., 2007) to control the population relatedness was 

estimated as a Gower similarity ratio implemented in the distance procedure in SAS 9.3.   
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Marker-Trait Association Model Testing 

Six different linear regression models were tested for marker-trait associations - Naive, 

PC, Q, kin, PC+kinship, Q+kinship (Mamidi et al., 2014). Three models that did not have 

kinship were estimated in SAS 9.3 and three models that had the kinship matrix as a random 

effect were estimated using GEMMA 0.90 (Zhou and Stephen, 2012). Three general-linear 

models (GLMs) considered only the fixed effects while the remaining three mixed-linear models 

(MLMs) considered both the fixed and random effects. The underlying linear equation for the 

sixth model was  

Y = Xα + Qβ + Kv + Ɛ 

In this model, Y was a vector for phenotypic observation, X was a matrix of alleles of the 

markers, α was the fixed effects related to the SNP markers, Q was the population structure, β 

was a vector of the fixed effects related to population structure, K was the subpopulation 

numbers, v was a vector of the random effects related to the relatedness among the individuals, 

and Ɛ was a vector of the residual effects. For each model, the positive false discovery rate 

(pFDR) was estimated for all markers using the PROC MULTTEST in SAS 9.3 to correct for 

multiple marker-trait association (Storey, 2002). For the selection of best model, a rank based 

mean square difference (MSD) was used (Mamidi et al., 2014) based on the suggestion of Yu et 

al. (2006) of random errors. MSD values were calculated between the observed p-values and 

expected p-values. Expected p-values were estimated by dividing the rank of observed p-value 

with number of makers used in this study. The model with the lowest MSD value was considered 

the best model. Markers were considered significant if the P -value was less than 0.001. The 

amount of phenotypic variation (R2) was estimated for each significant marker using a simple 

regression using the REG procedure in SAS 9.3. Multiple R2 values for significant markers were 
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calculated using stepwise regression implemented in the Reg procedure in 9.3 (Mamidi et al., 

2014). The allelic means of the significant markers were estimated in SAS Brown et al., 1993.3 

using the Means procedure. Further, a QTL was defined as the region that harbors multiple 

significant markers (p < 0.001) within a distance at which the whole genome LD decay 

stabilizes. The position of the significant markers was obtained from a core consensus map 

developed by Muñoz-Amatriaín et al. (2014). 

Results 

Phenotypic Analysis Across Barley Accession 

A total of 2,062 spring BCC accessions were evaluated for their reaction to the four P. 

teres f maculata isolates, (FGO, NZKF2, SG1 and DEN2.6) by Neupane et al. (2015). The 

manuscript describing the phenotypic analyses and results is published as an adjoining 

manuscript (Neupane et al., 2015). Of the 2,062 accessions reported in Neupane et al., 2015, only 

1480 accessions were utilized in our analysis due to marker data not passing QC and redundant 

genotypes being eliminated as determined by Muñoz-Amatriaín et al. (2014).  

Marker Properties 

Of the 2,062 barley accessions evaluated for their reaction to the P. teres f. maculata 

isolates (Neupane et al., 2015), 1,947 barley accessions were genotyped with a total of 6,244 

SNP markers. Of the 1,947 spring barley accessions genotyped, 467 were removed due to 

genetic redundancy or inconsistent passport data, leaving 1,480 spring barley accessions in the 

AM analysis (Munoz-amatriain et al, 2014). Approximately 0.43% of the missing genotypic data 

were imputed. Out of 6,244 SNPs, only 5,954 markers that had an MAF > 0.05 were used for 

further analysis. Based on the LD coefficient (r2; correlation squared between markers), 4,402 
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markers that had LD > 0.5 with at least one other marker were removed for estimating the 

confounding factors for population structure and relatedness. 

Linkage Disequilibrium 

A non-linear regression model estimates the average genome wide LD decay across the 

genome using the inter-chromosomal comparison of LD. The whole genome wide LD decay was 

extended up to 5 cM at r2 ≥ 0.1 (Fig 2.1).  

 

Fig 2.1. Pattern of linkage disequilibrium (LD) decay created by plotting r2 values against the 

genetic distance (cM) for the whole genome. The curve shows nonlinear regression of r2 on a 

weighted genetic distance. 

 

Population Structure, Principal Component Analysis, and Relationship Matrix 

A subset of 1,842 markers that had a LD < 0.5 with any other marker in the subset was 

used to analyze the population structure, PCA, and relationship matrix. The Bayesian-based 

clustering approach in STRUCTURE revealed 8 subpopulations by the Δk approach (Fig 2.2). 

The number of barley accessions in each subpopulation varied between 94 (subpopulation 4) and 

238 (subpopulation 2). Accounting for this population structure in the AM analysis reduces the 

number of false-positive QTL identified. 
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Fig 2.2. A graph with Δk and number of subpopulations. The Bayesian-based clustering 

approach in STRUCTURE revealed eight subpopulations by the Δk approach (Evanno et al. 

2005). The peak represents the appropriate number of subpopulation.  

 

 Six PCs that explained about 25% of the variation were used as cofactors in the mixed 

model. The first PC explained 7.92% of the variation followed by PC2 that explained 6.12%.  

AM Analyses 

FGO Isolate 

For the AM analyses, the four isolates were analyzed separately and the average score of 

the three replicates for each isolate was used for the phenotypic data. Out of the six models tested 

for the FGO isolate, the model with only kinship (IBS) was the best with an MSD of 0.001. A 

total of 29 SNP markers were found to be significantly associated with resistance against isolate 

FGO at a cutoff of P < 0.001. The 29 markers were located on all seven barley chromosomes, 

with one marker on chromosome 1H, two on 2H, six on 3H, one on 4H, two on 5H, four on 6H, 

and four on 7H (Table 2.1). There was no marker position information for the remaining nine 

markers. The P values of significant markers had a range of 4.37E-09 to 3.43E-04. The MAF for 

the significant markers ranged from 7.91 to 49.80. The R2 (phenotypic variation) for all 

significant markers was up to 4.5% (Table 2.1). Based on a cutoff of 5 cM, a total of 10 loci 

associated with resistance were identified. Of the loci associated with resistance, one was 
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identified on chromosome 1H (114.3 cM), two on chromosome 2H (69.55 and 137.44 cM), one 

on 3H (99.26 to 99.66 cM), one on 4H (99.68 cM), one on 5H (31.86 cM), one on 6H (59.01 to 

60.21 cM), and three on 7H (26.35 to 26.92, 109.0, and 133.84 cM) (Fig. 3D). From the stepwise 

regression, 17 markers were included in the model and cumulatively explained 18.78% of the 

phenotypic variation. All 10 loci associated with resistance contained markers that were included 

in the stepwise regression.  

Table 2.1. SNP markers significantly associated with resistance/susceptibility to P. teres f. 

maculata isolate FGO. 

 
Marker Chra cMa,b R2 (%)c MAFd  P-valuee pFDRf 

11_21392 1H 114.3 0.0330 13.446 3.09 0.152 

12_11504 2H 69.55 0.0185 9.392 3.02 0.170 

SCRI_RS_155161 2H 137.44 0.0003 31.62 3.75 0.069 

SCRI_RS_221787 3H 99.26 0.0006 26.55 4.24 0.039 

SCRI_RS_164704 3H 99.26 0.0004 26.42 3.73 0.069 

SCRI_RS_133339 3H 99.56 0.0002 27.64 3.67 0.069 

SCRI_RS_211929 3H 99.66 0.0007 27.43 4.25 0.039 

SCRI_RS_235791 3H 99.66 0.0006 27.5 4.13 0.042 

12_30423 3H 99.66 0.0013 32.43 3.56 0.080 

SCRI_RS_131671 4H 99.68 0.0044 45.473 3.12 0.152 

SCRI_RS_108416 5H 31.86 0.0033 39.26 4.66 0.038 

SCRI_RS_205100 5H 31.86 0.0033 39.39 4.27 0.039 

SCRI_RS_213566 6H 59.01 0.0316 26.892 3.11 0.152 

SCRI_RS_188243 6H 59.21 0.0279 8.24 8.36 0.000 

SCRI_RS_186193 6H 59.21 0.0252 10.27 6.25 0.001 

12_30144 6H 60.21 0.0417 32.64 4.22 0.039 

12_30530 7H 26.35 0.0192 36.01 3.55 0.080 

SCRI_RS_179528 7H 26.92 0.0091 41.689 3.08 0.152 

SCRI_RS_112204 7H 109 0.0086 49.8 3.76 0.069 

SCRI_RS_202130 7H 133.84 0.0191 35.81 4.44 0.039 

SCRI_RS_195914 N/A N/A 0.0258 11.28 4.04 0.047 

SCRI_RS_136604 N/A N/A 0.0372 8.72 3.77 0.069 

SCRI_RS_45644 N/A N/A 0.0450 7.91 3.67 0.069 

SCRI_RS_237419 N/A N/A 0.0183 33.85 3.51 0.083 

SCRI_RS_224297 N/A N/A 0.0185 33.78 3.46 0.088 

SCRI_RS_158011 N/A N/A 0.0185 33.716 3.37 0.105 

SCRI_RS_188305 N/A N/A 0.0361 8.784 3.34 0.107 

SCRI_RS_209824 N/A N/A 0.0418 32.973 3.28 0.118 

SCRI_RS_156620 N/A N/A 0.0000 41.959 3.16 0.149 
a N/A indicates that the marker was not anchored to the consensus map  

b Genetic distances in centimorgans (cM) 
c Phenotypic variation explained by individual markers 
d Minor allele frequency (MAF) 
d Minor allele frequency (MAF) 
f False discovery rate (FDR) 
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SG1 Isolate 

For the SG1 isolate, the model with structure and kinship (IBS) was the best model with 

MSD = 0.000668. A total of 17 markers were significant of which two are on 1H, five on 2H, 

one on 3H, two on 4H, two on 5H, and one on 6H. The remaining four markers did not have any 

position information (Table 2.2). The MAF values for all significant markers had a range of 6.08 

to 32.97. The P values for the significant markers ranged between 1.60E-05 and 3.76E-05. 

The R2 (phenotypic variation) for all significant markers was up to 5.68% (Table 2.2). There 

were eight loci identified that contained markers significantly associated with resistance with two 

being located on chromosome 1H (50 and 98.45 cM), one on 2H (65.71 to 66.11 cM), one on 3H 

(88.17 cM), two on 4H (32.43 and 47.17 cM), one on 5H (31.86 cM) and one on 6H (101.83 cM) 

(Fig. 3C). From the stepwise regression, seven markers were included in the model and 

cumulatively explained 7.74% of the phenotypic variation. 

Table 2.2. SNP markers significantly associated with resistance/susceptibility to P. teres f. 

maculata isolate SG1. 

 
Marker Chra cMa,b R2 (%)c MAFd  P-valuee pFDRf 

11_20810 1H 50 0.001 38.649 3.17 0.271 

SCRI_RS_188909 1H 98.45 0.008 27.365 3.22 0.262 

SCRI_RS_151535 2H 65.71 0.000 27.905 3.98 0.147 

SCRI_RS_175065 2H 65.81 0.000 24.73 3.76 0.157 

SCRI_RS_154617 2H 66.11 0.000 23.58 4.8 0.064 

11_10325 2H 66.11 0.000 24.73 3.52 0.181 

11_10733 2H 66.11 0.000 24.865 3.36 0.207 

SCRI_RS_159340 3H 88.17 0.042 10.068 3.65 0.157 

12_30907 4H 32.43 0.005 11.351 3.11 0.287 

SCRI_RS_9296 4H 47.17 0.003 20.338 3.09 0.287 

SCRI_RS_108416 5H 31.86 0.008 39.257 3.71 0.157 

SCRI_RS_205100 5H 31.86 0.008 39.392 3.48 0.181 

SCRI_RS_151574 6H 101.83 0.000 30.946 3.04 0.300 

SCRI_RS_209824 N/A N/A 0.057 32.97 4.65 0.064 

SCRI_RS_139690 N/A N/A 0.020 6.08 4.42 0.071 

11_20336 N/A N/A 0.000 49.662 3.82 0.157 

SCRI_RS_8401 N/A N/A 0.001 47.568 3.45 0.181 
a N/A indicates that the marker was not anchored to the consensus map  

b Genetic distances in centimorgans (cM) 
c Phenotypic variation explained by individual markers 
d Minor allele frequency (MAF) 
d Minor allele frequency (MAF) 
f False discovery rate (FDR) 
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NZKF2 Isolate 

Out of the six models tested, the best model for the isolate NZKF2 data were structure and 

kinship (IBS) with an MSD = 0.001829. From the 54 markers identified as significant, two were 

located on 2H, 12 on 3H, 21 on 4H, one on 5H, three on 6H, and seven on 7H (Table 2.3). The 

remaining eight markers did not have marker position information. The P values of the markers 

had a range of 3.75E-12 to 9.77E-04. The MAF values for all significant markers ranged from 5.14 

to 49.19. The R2 (phenotypic variation) for all significant markers was up to 15.97% (Table 2.3). 

A total of 13 loci associated with resistance to NZKF2 were identified, two on 2H (23.76, 69 cM), 

three on 3H (53.4, 99.26 to 103.86, and 153.39 cM), three on 4H (53.67 to 57.32, 103.48 to 103.58, 

and 117.13 cM), one on 5H (111.56 cM), one on 6H (59.21 cM), and three on 7H (78.07, 133.84, 

and 145.68 to 150.36 cM) (Fig. 3B). From the stepwise regression, 23 markers were included in 

the model and together explained 44.35% of the phenotypic variation. All 113 loci containing 

markers associated with resistance were included in the stepwise regression. 

Table 2.3. SNP markers significantly associated with resistance/susceptibility to P. teres f. 

maculata isolate NZKF2 

 
Marker Chra cMa,b R2 (%)c MAFd  P-valuee pFDRf 

SCRI_RS_152744 2H 23.76 0.004 39.46 3.03 0.095 

12_20878 2H 69 0.071 5.14 3.12 0.084 

SCRI_RS_127994 3H 53.42 0.083 25.2 5.03 0.005 

12_30785 3H 53.42 0.084 24.19 4.21 0.019 

SCRI_RS_221787 3H 99.26 0.001 26.55 3.41 0.061 

SCRI_RS_164704 3H 99.26 0.001 26.42 3.25 0.071 

SCRI_RS_225641 3H 99.46 0.002 27.64 3.01 0.098 

SCRI_RS_133339 3H 99.56 0.001 27.64 3.84 0.03 

SCRI_RS_235791 3H 99.66 0.001 27.5 4.11 0.02 

SCRI_RS_211929 3H 99.66 0.001 27.43 3.95 0.025 

12_30423 3H 99.66 0.001 32.43 3.56 0.052 

SCRI_RS_167825 3H 103.46 0.048 29.46 4.14 0.02 

SCRI_RS_163092 3H 103.86 0.048 28.04 4.05 0.021 

SCRI_RS_156315 3H 153.39 0.030 42.7 3.07 0.091 

SCRI_RS_157310 4H 53.67 0.011 37.16 3.38 0.061 

SCRI_RS_128723 4H 54.66 0.139 30.95 5.93 0.001 

SCRI_RS_155554 4H 54.66 0.119 30.41 5.56 0.002 

SCRI_RS_208828 4H 54.66 0.154 37.43 5.53 0.002 

SCRI_RS_221172 4H 54.66 0.137 35.2 4.99 0.005 

11_20135 4H 54.95 0.087 22.3 11.43 0 
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Table 2.3. SNP markers significantly associated with resistance/susceptibility to P. teres f. 

maculata isolate NZKF2 (continued). 
 

a N/A indicates that the marker was not anchored to the consensus map  

b Genetic distances in centimorgans (cM) 
c Phenotypic variation explained by individual markers 
d Minor allele frequency (MAF) 
d Minor allele frequency (MAF) 
f False discovery rate (FDR) 

 

DEN2.6 Isolate 

Out of the six models tested for the DEN 2.6 isolate, the best model identified was structure 

and kinship (IBS) with an MSD = 0.000577. A total of 38 markers were highly significant with 

one marker on 1H, one marker on 2H, four markers on 3H, 20 on 4H, one on 5H, three on 6H, and 

one on 7H (Table 2.4). The remaining seven markers did not have any marker position information. 

Marker Chra cMa,b R2 (%)c MAFd  P-valuee pFDRf 

11_10262 4H 54.95 0.128 43.31 9.57 0 

12_31462 4H 54.95 0.132 28.24 7.24 0 

11_20450 4H 54.95 0.055 17.91 4.37 0.016 

11_20412 4H 54.95 0.077 46.22 4.28 0.017 

SCRI_RS_168496 4H 54.95 0.134 27.36 4.14 0.02 

SCRI_RS_141730 4H 54.95 0.160 33.58 4.09 0.02 

SCRI_RS_228477 4H 54.95 0.132 26.89 3.72 0.039 

11_10568 4H 54.95 0.138 41.22 3.69 0.039 

12_30839 4H 54.95 0.037 28.11 3.5 0.053 

11_20020 4H 54.95 0.106 37.84 3.26 0.071 

11_10509 4H 55.64 0.065 40.47 3.41 0.061 

SCRI_RS_189180 4H 57.32 0.136 47.09 3.49 0.054 

SCRI_RS_148330 4H 103.48 0.090 18.65 3.24 0.071 

SCRI_RS_192689 4H 103.58 0.017 40.27 4.34 0.016 

11_21035 4H 117.13 0.119 47.23 3.04 0.094 

12_11298 5H 111.56 0.003 11.69 5.18 0.004 

SCRI_RS_188243 6H 59.21 0.018 8.24 7.49 0 

SCRI_RS_176650 6H 59.21 0.010 20.41 4.56 0.012 

SCRI_RS_186193 6H 59.21 0.014 10.27 3.21 0.073 

12_11477 7H 78.07 0.003 10.07 3.23 0.071 

12_11536 7H 78.07 0.003 10.07 3.23 0.071 

12_31000 7H 78.07 0.003 10.07 3.23 0.071 

SCRI_RS_202130 7H 133.84 0.006 35.81 4.47 0.013 

11_20847 7H 145.68 0.009 40.95 3.55 0.052 

11_10687 7H 146.03 0.012 40.54 3.4 0.061 

12_10677 7H 150.36 0.019 10.81 3.07 0.091 

SCRI_RS_208732 N/A N/A 0.128 43.51 9.93 0 

SCRI_RS_147636 N/A N/A 0.124 44.12 8.74 0 

11_21017 N/A N/A 0.062 16.82 4.01 0.022 

12_20803 N/A N/A 0.002 14.26 3.51 0.053 

SCRI_RS_156237 N/A N/A 0.039 31.62 3.35 0.064 

SCRI_RS_133327 N/A N/A 0.120 24.32 3.26 0.071 

SCRI_RS_145381 N/A N/A 0.002 48.78 3.19 0.074 

SCRI_RS_146785 N/A N/A 0.002 49.19 3.17 0.077 
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The P values ranged between 9.65E-15 and 4.99E-04. The MAF values for all significant markers 

ranged from 5.16 to 46.22. The R2 (phenotypic variation) for all significant markers was up to 

14.78% (Table 2.4). Analysis of the isolate DEN 2.6 data identified a total of six loci with markers 

associated with resistance with one locus being on 1H (88.25 cM), one on 2H (69 cM), three on 

3H (53.42, 65.16, and 150.19 to 154.47cM), three on 4H (53.77 to 54.95, 59.22, and 96.6 to 96.99 

cM), one on 5H (111.56 cM), one on 6H (59.21 cM), and one on 7H (0 cM) (Fig. 3A). From the 

stepwise regression, 20 markers were included in the stepwise regression model. The significant 

markers included in the stepwise regression together explained 37.1% of the phenotypic variation 

for this isolate and markers from all 10 loci were included. 2H, 3H, 4H, 6H, and 7H in this study. 

Table 2.4. SNP markers significantly associated with resistance/susceptibility to P. teres f. 

maculata isolate DEN2.6. 

 
Marker Chra cMa,b R2 (%)c MAFd  P-valuee pFDRf 

11_20792 1H 88.25 0.015 31.689 3.02 0.141 

12_20878 2H 69 0.086 5.135 3.11 0.127 

SCRI_RS_127994 3H 53.42 0.077 25.203 3.07 0.131 

11_21305 3H 65.16 0.052 37.7 3.95 0.033 

SCRI_RS_229623 3H 150.19 0.029 16.55 3.38 0.088 

12_10014 3H 154.47 0.053 22.03 3.47 0.086 

SCRI_RS_168580 4H 53.77 0.031 16.22 3.39 0.088 

SCRI_RS_184107 4H 53.77 0.031 16.22 3.39 0.088 

12_30878 4H 53.87 0.024 14.257 3.21 0.111 

SCRI_RS_128723 4H 54.66 0.147 30.95 7.51 0.000 

SCRI_RS_155554 4H 54.66 0.124 30.41 5.85 0.001 

SCRI_RS_208828 4H 54.66 0.148 37.43 5.49 0.002 

SCRI_RS_221172 4H 54.66 0.141 35.2 5.47 0.002 

11_20135 4H 54.95 0.109 22.3 14.02 0.000 

11_10262 4H 54.95 0.145 43.31 10.33 0.000 

11_20412 4H 54.95 0.094 46.22 5.76 0.001 

11_20450 4H 54.95 0.069 17.91 5.62 0.001 

12_31462 4H 54.95 0.124 28.24 5.34 0.002 

11_20472 4H 54.95 0.057 20.34 4.46 0.013 

12_30839 4H 54.95 0.039 28.11 3.71 0.054 

SCRI_RS_168496 4H 54.95 0.130 27.36 3.42 0.088 

SCRI_RS_141730 4H 54.95 0.149 33.581 3.08 0.131 

SCRI_RS_147712 4H 59.22 0.097 17.43 3.97 0.033 

SCRI_RS_163033 4H 59.22 0.095 17.3 3.35 0.092 

11_20762 4H 96.6 0.075 37.432 3.22 0.111 

12_10666 4H 96.99 0.075 38.51 3.3 0.099 

12_11298 5H 111.56 0.001 11.69 4.19 0.021 

SCRI_RS_188243 6H 59.21 0.024 8.24 8.77 0.000 

SCRI_RS_176650 6H 59.21 0.014 20.41 5.32 0.002 

SCRI_RS_186193 6H 59.21 0.020 10.27 4.27 0.018 
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Table 2.4. SNP markers significantly associated with resistance/susceptibility P. teres f. 

maculata isolate DEN2.6 (continued). 
 

a N/A indicates that the marker was not anchored to the consensus map  

b Genetic distances in centimorgans (cM) 
c Phenotypic variation explained by individual markers 
d Minor allele frequency (MAF) 
d Minor allele frequency (MAF) 
f False discovery rate (FDR) 

  

Marker Chra cMa,b R2 (%)c MAFd  P-valuee pFDRf 

11_21419 7H 0 0.013 41.284 3.14 0.121 

SCRI_RS_208732 N/A N/A 0.144 43.51 10.17 0.000 

SCRI_RS_147636 N/A N/A 0.139 44.12 9.28 0.000 

11_21017 N/A N/A 0.082 16.82 6.1 0.001 

SCRI_RS_161627 N/A N/A 0.015 9.12 3.62 0.063 

SCRI_RS_114164 N/A N/A 0.082 26.351 3.28 0.100 

SCRI_RS_156237 N/A N/A 0.041 31.622 3.18 0.113 

SCRI_RS_168610 N/A N/A 0.098 18.311 3.01 0.142 
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Fig 2.3. Association mapping of spot form net blotch (SFNB) isolates on the world barley core collection 

(BCC). Panels A to D show Manhattan plots generated from the disease reaction to four isolates of 

Pyrenophora teres f. maculata: A, isolate DEN 2.6 from Denmark; B, isolate NZKF2 from New Zealand; C, 

isolate SG1 from Australia; and D, isolate FGO from Fargo, ND (United States). All colored pixels represent 

single nucleotide polymorphism markers from the 9K Illumina genotyping on the seven barley chromosomes; 

from blue at the top as chromosome 1H and light blue at the bottom as chromosome 7H. All markers above the 

LOD threshold of 3.0 (P value(-log10)) were significantly associated with SFNB resistance/susceptibility. 

Resistance/susceptibility loci are designated as colored bars. Orange bars are loci common to several isolates, 

yellow are specific to a single isolate, and gray are loci corresponding to quantitative trait loci (QTL) regions 

previously identified by biparental mapping. E, A map of the seven barley chromosomes is shown as colored 

vertical bars with chromosome designations given. The 27 resistance loci detected in these analyses are shown 

as horizontal bars with approximate centimorgan values given to the left and known SFNB resistance 

genes/QTL nomenclatures provided on the right. 
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Discussion 

The BCC represents a worldwide base of diversity allowing for the use of historical 

recombination for association mapping of variation in responses to isolates of P. 

teres f. maculata; the cause of SFNB. The distribution of SFNB infection types across the BCC 

accessions analyzed indicated that susceptibility or resistance is polygenic in nature consistent 

with previous studies (Liu et al., 2011, McClean et al., 2012, Williams et al., 1999, Williams et 

al., 2003). The phenotyping data coupled with robust genotyping of the BCC accessions 

challenged with diverse P. teres f. teres isolates allowed for the capture of multiple MTAs. This 

AM analysis is the first report of AM of SFNB resistance in barley and includes worldwide 

diversity of the host challenged with isolates from regions around the globe. 

The power of a mixed model to harness historical recombination events using AM is 

dependent on phenotyping, markers, population structure, and relatedness, thus requiring the 

testing of multiple models to determine which ones performed best for the specific isolate being 

analyzed (Atwell et al., 2010, Flint and Mackay, 2009, Mamidi et al., 2014). The mixed model 

which accounted for both population structure (Q) and kinship (K) was the best model for the 

Australian isolate SG1, the New Zealand isolate NZKF2, and the Denmark isolate DEN 2.6, 

whereas the model which only accounted for kinship was the best model for the U.S. isolate 

FGO. The AM analyses utilizing these models identified a total of 138 significant 

(−log10(P)value > 3.0) MTAs. Using a 5 cM cutoff to define a QTL, a total of 10, 8, 13, and 10 

loci associated with SFNB resistance/susceptibility were identified for FGO, SG1, NZKF2, and 

DEN 2.6, respectively. A total of 10 of the 41 loci identified were common to two or more of the 

isolates, resulting in a total of 27 distinct loci with six consistent to previously identified QTL 

and the remaining 21 representing putative novel SFNB resistance loci. 
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The analysis for MTAs was also conducted utilizing the more stringent positive false 

discovery rate (pFDR) < 0.1 (Tables 1 to 4). These analyses resulted in a reduction from the 138 

significant markers using P value down to 105 significant markers using pFDR. The more 

stringent pFDR analysis reduced the number of significant loci identified to 7, 1, 13, and 7 loci 

for FGO, SG1, NZKF2, and DEN 2.6, respectively. The reduction of the FGO, SG1, and DEN 

2.6 isolates from 10, 8 and 10 to 7, 1, 7 significant loci, respectively, is due to the higher 

stringency of pFDR analysis. The MTAs defining the locus on Ch 2H at ∼69 cM (Fig. 3) was the 

one locus that was common to all four isolates and remained significant for SG1 using 

both P value and pFDR. Two other markers at one of the seven remaining loci that was 

significant using P value and were not significant with pFDR corresponded to the previously 

identified Rpt6 QTL (Fig. 3). Since these two independent phenotyping data sets both identified 

these specific MTAs corresponding to a known resistance locus, it is unlikely that the loss of this 

locus using pFDR was due to a false association when using the P value. Thus, the P value 

analysis that identified two significant common markers between isolates SG1 and FGO 

indicates that these two isolates may carry effectors that target common host susceptibility genes 

underlying this locus, but these MTAs were eliminated when the pFDR was used. This suggested 

that when running association analyses on a diverse host population for complex quantitative 

traits the stringent pFDR may eliminate some important MTAs or loci so here we reported all 

loci identified using the less stringent P value analyses. However, the pFDR values were left in 

the tables for comparison. 

 We detected MTAs that corresponded to six loci on four chromosomes that were 

previously identified and mapped at low resolution by biparental QTL analyses. A common 

locus for isolates NZKF2 and DEN 2.6 was identified on chromosome 4H at position 53.67 to 
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59.22 cM explaining up to 16% of the phenotypic variation. There are 36 significant markers for 

the NZKF2 and DEN 2.6 isolates at this locus with the markers for NZKF2 having the highest 

significance of any MTAs in the analysis. Neither of the genes underlying these SNP markers are 

predicted to encode susceptibility target/biotrophic resistance-like proteins, as characterized in 

the Stagonospora nodorum−wheat pathosystem (Farris et al., 2010). However, there are other 

significant SNP markers in the region in resistance-like genes such as leucine-rich receptor-like 

protein kinases. This region resides in the same region as QRpts4 as reported by Grewal et al. 

(2008), which explained 21% of the phenotypic variation in a doubled haploid (DH) population 

of CDC Dolly (susceptible) and TR251 (resistant). The QTL region reported by Friesen et al. 

(2006) on chromosome 4H using the NZKF2 isolate on the DH population of SM89010/Q21861 

is proximal to this region, but is close to the NZKF2, DEN 2.6, and FGO common locus at 99.68 

to 103.58 cM that explained 8.3% of the phenotypic variation and the NZKF2 specific locus at 

117.13 cM explaining 11.7% of the phenotypic variation. 

Using the FGO and SG1 isolates, two identical markers were identified 

(SCRI_RS_108416 and SCRI_RS_205100) on chromosome 5H at position 31.86 that explained 

0.1% of the phenotypic variation. This locus is probably the Rpt6 QTL reported by Manninen et 

al. (2006) that explained up to 84% of the phenotypic variation in a DH population derived from 

Rolfi (susceptible) and CI 9819 (resistant) using Finnish isolates. The reason for low phenotypic 

variation in our study might be due to the different populations and different isolates. 

 The MTAs detected on chromosome 6H at position 58.9 to 60.2 cM were common for 

DEN 2.6, NZKF2, and FGO and the phenotypic variation explained by this common locus was 

as high as 4%. This locus is located at a similar genetic interval as the previously 

described QRpt6 QTL reported by Grewal et al. (2008) in the Canadian breeding line TR251. 
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This locus from line TR251 also exhibited resistance to net form net blotch (NFNB). Qamar et 

al. (2008) also identified an NFNB resistance locus at the QRpt6 region on chromosome 6H, 

cosegregating with microsatellite marker Bmag0173 and Bmag0807 (Qamar et al., 2008). The 

highly significant markers SCRI_RS_188243 (gene MLOC_73854.4) and SCRI-RS-186193 

(gene MLOC_16471.1) for the FGO, NZKF2, and DEN 2.6 isolates were identified on 

chromosome 6H at 59.2 cM. These two common markers, with the gene 

designations MLOC_73854.4and MLOC_16471.1, are predicted to encode an unknown protein 

and an SPla/RYanodine receptor (SPRY) domain-containing protein, respectively. These two 

markers explained up to 2.8 and 2.3% of the phenotypic variation, respectively. From this AM 

panel data, it is premature to consider the genes containing these SNP markers as candidate host 

susceptibility or resistance genes; however, there are other markers and genes annotated in the 

region that code for R-like genes including NBS-LRR and serine/threonine protein kinase genes. 

The Rpt4 gene located on the long arm of chromosome 7H was the first SFNB resistance 

gene described in the cultivar Galleon. Later, Rpt4 was mapped in several breeding lines and 

varieties such as CI9214, Keel, Chebec, and Tilga (Williams et al., 1999, and 2003); however, 

this gene was not utilized in Australian breeding programs due to its lack of effectiveness at the 

adult plant stage (Williams et al., 1999). We identified one locus at the Rpt4 region (26.4 to 26.9 

cM) that explained up to 3% of the phenotypic variation with the U.S. isolate FGO, but 

interestingly was not detected using the Australian isolate SG1. This QTL may represent the 

seedling resistance gene Rpt4 identified on the long arm of chromosome 7H (position 6.9 to 25.6 

cM) flanked by the restriction fragment length polymorphic markers Xpsr117(D) and Xcdo673 

(Williams et al., 1999). A minor effect locus at position 0.7 cM was also detected on 

chromosome 7H against isolate DEN 2.6 and a locus common to isolates FGO and NZKF2 was 
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identified at position 132.6 to 133.8 cM explaining up to 5.1% of the phenotypic variation. We 

also identified two other loci at 109 cM and 145.68 to 150.36 cM close to this region that were 

identified using the FGO and NZKF2 isolates, respectively. Any of these loci could be the same 

as the QRpt7gene reported by Williams et al. (Williams et al., 2003) on chromosome 7H at 

position 116 to 134 cM. The identification of all six well-characterized SFNB resistance loci 

suggests that these AM analyses were robust and that the remaining 21 novel resistance loci may 

represent putative new sources of SFNB resistance or lack of susceptibility that could also be 

utilized in resistance breeding efforts. 

The last remaining SFNB QTL previously reported by Molnar et al. (2000) was reported 

as a major resistance gene on chromosome 2H. However, the location was not precise so it is 

difficult to determine if any of the 2H loci identified in this AM analysis are the same as that 

reported by Molnar et al. (2000). We detected MTAs on chromosome 2H at ∼24, 69, and 137 cM 

(Fig. 3). The locus identified at ∼69 cM was the only locus identified with all four isolates tested 

(Fig. 3), and explained up to 5.6% of the phenotypic variation. Thus, this may be the best 

candidate for the major resistance reported by Molnar et al. (Molnar et al. 2000), but due to the 

low resolution of the mapping in the Leger × CI 9831 DHL population this is only speculation. 

We have possibly detected all the major and minor SFNB resistance QTL previously 

reported on barley chromosomes 2H, 4H, 5H, 6H, and 7H (Friesen et al., 2006, Grewal et al., 

2008, Ho et al., 1996, Manninen et al., 2006, Molnar et al., 2000, Williams et al., 1999, Williams 

et al., 2003) and new QTL present on all seven barley chromosomes. Similarly, NFNB resistance 

QTL have been identified throughout the genome (Liu and Friesen, 2010); however, resistance to 

both forms of the net blotch pathogen were rarely identified in similar locations (Grewal et al., 

2008, Manninen et al., 2006), suggesting that the majority of resistances are distinct for the 
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different forms of P. teres and in regard to breeding, the two need to be treated as separate 

diseases. Growing barley cultivars with genetic resistance to SFNB and NFNB is the most 

sustainable strategy of disease management (Liu et al., 2011, McLean et al., 2014). However, the 

diversity of virulence/avirulence genes within the pathogen populations and complexity of the 

interaction with host susceptibility targets and resistance genes requires robust genetic 

characterization of both the host and pathogen to understand the underlying genetic interactions 

involved. To date, only 11 different genotypes from the primary barley germplasm pool had been 

genetically characterized for SFNB resistance, thus deeper screening was required to identify 

diverse resistances or lack of functional susceptibility targets. This was accomplished in this 

study utilizing AM to capture diverse loci associated with SFNB resistance/susceptibility. 

A recent review of host specific toxins (also referred to as necrotrophic effectors) 

produced by the Pleosporales necrotrophic pathogens in the Dothideomycete class suggested that 

necrotrophic effectors (NE) predominantly interact with dominant host susceptibility gene 

products (Stergiopoulos et al., 2013). These interactions followed the inverse-gene-for-gene 

model (Friesen et al., 2010) or NE triggered susceptibility (NETS) model (Liu et al., 2014, 

Sjherve et al., 2014), resulting in quantitative susceptibility to these pathogens which can also be 

viewed as quantitative recessive resistance. The reports of proteinaceous and nonproteinaceous 

toxins being produced by P. teres f. maculata and P. teres f. teres (reviewed in Liu et al. 2011) 

as well as mapping of distinct P. teres f. teres virulence QTL targeting regions of dominant 

susceptibility in barley (Liu et al., 2014, Sjherve et al., 2014), suggests that the NETS model may 

be at least partially responsible for virulence in P. teres f. maculata. Thus, the accumulation of 

distinct NE genes spread throughout the genome of the pathogen that theoretically interact with 

host susceptibility genes, facilitates the pathogens ability to induce disease. The diversity of NEs 
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within pathogen populations explains the variability in virulence of P. teres f. maculata isolates 

collected from around the world and may explain why Tekauz (1990) was unable to identify 

effective resistance sources against isolates collected in western Canada. 

P. teres f. maculata collections from local and global fungal populations show wide 

variations for virulence on differential barley lines (reviewed in Liu et al. 2011). This indicates 

that the variability in virulence gives the pathogen the potential to shift the population toward the 

prevalence of NEs that target susceptibility factors within popular cultivars resulting in what 

appears to be virulence on the limited sources of resistance present (Arabi et al., 2003, 

Bockelman et al., 1983, Khan and Tekauz, 1982, Liu et al., 2011, McClean et al., 2009, Sjherve 

et al., 2014, Tekauz, 1990, Wu et al., 2003). The frequency of virulent genotypes in pathogen 

populations can rapidly increase as popular cultivars with incomplete resistance or lack of some 

susceptibility exert selection pressure. Also, these sexual pathogen populations allow for 

recombination of virulence genes giving rise to new possibly more virulent isolates containing 

several effectors that were selected for and brought together by recombination. Because of these 

complex interactions, breeding strategies focused on developing highly resistant lines must 

combine multiple loci, with some lacking host susceptibility targets and possibly others 

harboring active resistance loci. Knowledge of these host−pathogen genetic interactions and the 

genes/loci determining both lack of susceptibility and resistance is critical for intelligent 

deployment of SFNB resistant lines. These AM analyses provide very important information on 

these susceptibility/resistance loci but to effectively utilize new loci containing nonfunctional 

SFNB susceptibility targets and/or resistance from the BCC, further genetic characterization of 

the host−pathogen genetic interactions through targeted biparental populations of both the host 

and pathogen is needed. We are further validating the distinct QTL identified by preparing DH 
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and recombinant inbred line populations by crossing susceptible malting cultivars with highly 

resistant BCC accessions that we determined are missing the susceptibility targets or containing 

the major resistances. These populations will expedite the development of elite breeding lines 

that can be utilized in the development of resistant cultivars that can be grown in the upper 

Midwestern region of the United States and elsewhere, whether the mechanism is through the 

removal of susceptibility factors or the incorporation of resistance. 
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CHAPTER 3. QTL MAPPING OF SPOT FORM NET BLOTCH SUSCEPTIBILITY/ 

RESISTANCE LOCI IN UPPER MIDWESTERN US TWO- AND SIX-ROWED BARLEY 

CULTIVARS  

Abstract 

Spot form net blotch (NFNB), caused by the necrotrophic fungal pathogen Pyrenophora 

teres f. maculata (Ptm) is a devastating foliar disease of barley that has the potential to cause 

significant yield and quality losses. The disease has recently emerged as a major concern in the 

Northern Great Plains of the US and is a major problem in many barley growing regions across 

the world, including Africa, Australia, Canada and Europe. Identifying and deploying resistance 

or the removal of susceptibility loci from elite germplasm is an economic and effective way to 

manage the disease. Three recombinant inbred line (RIL) populations were developed from 

crosses of the two popular upper Midwestern malting barley cultivars, Tradition and Pinnacle, 

with the two resistant barley lines, PI67381 and PI84314, that were shown to have broad 

resistances to diverse isolates collected from across the globe. The three RIL populations, 

Tradition X PI67381 (T67381 consisting of 120 individuals), Pinnacle X PI67381 (P67381 

consisting of 117 individuals), and Pinnacle X PI84314 (P84314 consisting of 115 individuals) 

were phenotyped at the seedling stage in the greenhouse with six geographically distinct Ptm 

isolates: FGO (Fargo, USA), PA14 (Montana, USA), CA17 (Montana, USA), SG1 (Australia), 

NZKF2 (New Zealand) and DEN2.6 (Denmark). Population specific PCR-GBS panels were 

developed from Illumina 9K SNP array data and used to genotype all three populations. 

MapDisto and Qgene were used to analyze the data and quantitative trait loci (QTL) were 

identified on chromosome 2H, 3H, 4H, 6H and 7H. A common QTL among all three RIL 

population were detected on chr 2H (R2=14-40%) and 7H (R2=24-80%). A total of 12 QTLs 
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were identified of which nine were previously reported and the remaining three QTL: QRptm-

2H-77-83, QRptm-2H-141-152, and QRptm-7H-92-95 are considered novel. These novel 

resistances and the markers delimiting these QTLs can be utilized in barley breeding programs to 

develop SFNB resistant cultivars utilizing marker assisted selection. 

Introduction 

Barley, Hordeum vulgare, the oldest known domesticated cereal crop is still very 

important because of its use in malting and the production of beer and spirits, which effects 

economies worldwide. It is also important in specific regions of the world due to its application 

as human food and animal feed. Currently there are several diseases that threaten barley 

production, and net blotch caused by the necrotrophic fungal pathogen Pyrenophora teres is an 

economically important foliar disease in barley growing regions around the world. The disease 

net blotch occurs in two distinct forms: spot form net blotch (SFNB) caused by P. 

teres f. maculata (Ptm) and net form net blotch (NFNB) caused by P. teres f. teres (Ptt). Both 

Ptm and Ptt are morphologically identical (conidia, mycelium), but genetically separate into 

different species that produce distinct symptoms on susceptible host genotypes (Smedegard-

Peterson, 1971, McClean et al., 2009, Liu et al., 2011). Therefore, the host-parasite genetic 

interactions occurring in these two pathosystem are considered distinct, thus must be considered 

as separate diseases when deploying genetic resistances.  

Spot form net blotch is favored by cool and moist conditions which occur during the 

barley growing season in the Northern Great Plain of the United States. It is an emerging foliar 

disease in major barley growing regions across the world, which includes Australia, Canada, 

Europe, South Africa, and the United States (Khan and Tekauz, 1982, Liu et al., 2010 and 2011). 

Karki and Sharp (1986) reported SFNB in the upper Midwestern United States as early as 1981 



 

83 

but at the time the low incidence of disease was not a concern and therefore limited studies were 

conducted on the disease in the region. However, after SFNB was reported in 2010 by Liu et al. 

(2010), in North Dakota, and Lartey et al., (2013) at the Montana and North Dakota border, and 

reports of minor field epidemics causing ~75% reductions in yield on popular six- and two-

rowed malting varieties, barley pathologists, breeders, growers and end users are becoming more 

concerned by the threat of SFNB. This concern is certainly warranted in the region as the 

presence of highly virulent isolates are being detected that are more virulent than foreign isolates 

collected around the world where SFNB has caused major problems for the barley industry 

(Neupane et al., 2015).  

The SFNB pathogen can overwinter in plant stubble, soil, and seed. Under favorable 

conditions, SFNB can cause yield losses of 10-40% (Mathre, 1997), but there have been reports 

of losses nearing 75% on the barley cultivar Tradition under irrigation near the North Dakota and 

Montana border. Chemical fungicides and cultural practices can help manage the disease; 

however, host resistance is the most economic method of reducing yield and quality losses. 

Resistances or susceptibilities to SFNB are quantitative in nature and the highly diverse 

population of Ptm have made understanding resistance or susceptibility mechanism difficult as 

the underlying mechanisms of resistance appear to be quite complex (Liu et al., 2011). This 

pathogen can reproduce sexually, and virulence profiles of populations can shift and change 

rapidly (Arabi et al., 2003, Karki et al., 1986, Tekauz, 1990., McLean et al., 2014). The rapid 

changes in virulence and shifts in profile of Ptm populations and the complex resistance 

mechanism has posed a major challenge to deploying effective and durable resistances (Khan 

and Tekauz, 1982, Arabi et al., 1992, Gupta et al., 2001, McLean et al., 2009, 2012, Liu et al., 

2010, 2011). Relatively, few SFNB resistance sources have been identified and mapped to date 
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compared to NFNB, thus breeding for SFNB and understanding resistance mechanisms is 

lagging in comparison. However, since both diseases seem to occupy and possibly compete in 

the same environmental niches there have been reports of “ebb and flow” between the 

predominate forms of the disease in the same regions across time (Louw et al., 1996, Arabi et al., 

1992, McLean et al., 2009, Liu et al., 2010), thus resistance to both forms must be considered in 

most barley growing region.   

Several previous studies had already reported major and minor quantitative trait loci 

(QTL) resistances against SFNB located across all seven barley chromosomes. These studies 

primarily relied on bi-parental mapping population including both Recombinant Inbred Line 

(RIL) and Double Haploid (DH) populations (Ho et al., 1996, Steffenson et al., 1996, William et 

al., 1999 and 2003, Molnar et al., 2000, Friesen et al., 2006, Grewal et al., 2008, Manninen et al., 

2000 and 2006, Cakir et al., 2011). Recently, a few studies have utilized the association mapping 

approach (Tamang et al., 2015, Chapter 2, Wang et al., 2015, Burlakoti et al., 2017).  

Williams et al., (1999 and 2003) first reported the Rpt4 gene/ QTL as a dominant 

resistance gene on chromosome 7H in the cultivar Galleon that was effective at the seedling 

stage. Similarly, other QTL have been mapped to chromosome 1H (Tamang et al., 2015), 2H 

(Ho et al., 1996, Molnar et al., 2000, Cakir 2011, Burlakoti et al., 2017, Tamang et al. 2015); 3H 

(Wang et al., 2015, Burlakoti et al., 2017); 4H (Steffenson et al 1996, Friesen et al., 2006, 

Grewal 2008, Wang et al., 2015), 5H (Manninen et al., 2006, Burlakoti et al., 2017), 6H (Grewal 

2008, Manninen et al 2000, Cakir 2011, Burlakoti et al., 2017, Tamang et al., 2015), and 7H 

(Wang et al., 2015, Tamang et al., 2015, Burlakoti et al., 2017). Therefore, the resistance to 

SFNB is complex and polygenic in nature. However, utilization of these identified resistances 

has only recently been selected for in the North Dakota barley breeding program, hence, the 
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majority of the barley cultivars grown in the region are moderately susceptible to susceptible to 

the regional population of SFNB (Ransom et al., 2014).  

In our previous association mapping study utilizing a world barley core collection, we 

identified 27 distinct loci on all seven barley chromosomes with 6 consistent to previous studies 

and the remaining 21 representing novel loci which may be resistance or susceptibility loci to P. 

tere f. maculata isolates (Tamang et al., 2015, chapter 2). Two barley lines, PI67381 and 

PI84314, showed broad resistance with low infection types (resistance) to four diverse isolates 

collected from geographically distinct regions of the world (Neupane et al., 2015). These two 

barley accessions were selected to develop RIL populations by crossing with popular six- and 

two-rowed barley cultivars (Tradition and Pinnacle) grown in North Dakota, which are 

susceptible to many of the regional SFNB isolates. Here, we report on the QTL mapping using 

three RIL populations developed from these crosses.  

Materials and Methods 

Plant Materials 

Three recombinant inbred line (RIL) populations consisting of 120, 117, and 115 F2:7 

individuals of Tradition X PI67381 (T67381), Pinnacle X PI67381 (PI67381), and Pinnacle X 

PI84314 (PI84314), respectively, were developed by single-seed descent. Both PI67381, an 

advanced breeding line from Turkistan and PI84314, a landrace from Uzbekistan were highly 

resistance to four diverse P. teres f. maculata isolates collected from geographically distinct 

regions of the world (Neupane et al., 2015) and were used as the resistant parents in the crosses. 

The 6-rowed cultivar Tradition released by Anhauser-Busch in 2003 and the 2-rowed cultivar 

Pinnacle released by North Dakota State University in 2006 were used as the SFNB susceptible 

parents in the crosses.  
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Disease Phenotyping 

Six geographically diverse isolates of P. teres f. maculata, FGOB10Ptm-1 (FGO), CA17, 

PA14, SG1, NZKF2, and DEN2.6, were used to phenotype all three RIL populations. The isolate 

FGO was collected in North Dakota, USA (Carlsen et al., 2017); CA17 and PA14 were collected 

in Montana, USA; SG1 was collected in Australia (Carlsen et al., 2017); NZKF2 was collected in 

New Zealand and DEN2.6 in Denmark (All isolates were obtained from Dr. Timothy Friesen, 

USDA). Four Ptm isolates FGO, SG1, DEN2.6 and NZKF2 were previously utilized in an 

association mapping study (Tamang et al., 2015; chapter 2). The Ptm isolates PA14 and CA17 

were recently collected from Montana, USA, and are relatively new isolates from a highly 

virulent population of P. teres f. maculata (Personal communication with Dr. Timothy Friesen). 

The three RIL populations were phenotyped with each isolate at the seedling stage in the 

greenhouse. The experimental design, inoculum preparation, inoculation, disease assessment and 

rating scale were performed as described in Neupane et al., 2015. Briefly, inoculum was 

prepared by growing fungal mycelium plugs on V8-PDA media (150 ml V8 juice, 10 g Difco 

PDA, 3 g CaCo3, 10 g agar, and 850 ml H2O) and spores collected as previously described 

(Neupane et al., 2015). Three seeds of each RIL were planted in single cones (3.8 cm diameter 

and 20 cm long) and placed in cone racks bordered with the susceptible parent cvs Tradition and 

Pinnacle to minimize edge effect. The resistant parents PI67381 and PI84314 were used as the 

resistant checks whereas Tradition and Pinnacle were used as susceptible checks. Inoculation 

was performed when the seedlings were at the 2 leaf stage (~2 weeks old). Disease severity was 

evaluated 7 days after inoculation (DAI) using the 1-5 rating scale described in Neupane et al., 

(2015). Each cone containing three seedlings was scored collectively as a single replicate. At 
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least three independent replicates were assessed for each isolate and the average values of the 

three replicates were utilized for further analyses.  

Segregation Analysis 

 Tradition X PI67381 F2s were phenotyped at the seedling stage in green house with the 

FGO isolate. Single F2 individuals were planted in a single container similar to the RIL 

population. A chi-square test was performed to identify if resistance/susceptibility was 

predominantly governed by single dominant resistance or susceptibility gene following a 3:1 

segregation ratio.  

Genotyping by Sequencing 

The T3 database (www.triticeaetoolbox.org/barley) 9k Illumina Infinium iSELECT chip 

SNP data was mined for polymorphic markers between the parental genotypes and utilized to 

develop population specific PCR genotyping-by-sequencing (PCR-GBS) SNP marker panels. 

The population specific polymorphic marker panels developed contained a total of 365, 351, and 

328 markers for the T67381, PI67381, and PI84314 populations, respectively. The markers were 

developed ensuring to cover all 7 barley chromosomes with an average density of ~5 cM per 

marker. Primer development, DNA extraction, PCR cycle parameters, library preparation, and 

sequencing on the Ion Torrent PGM were performed as previously described in Richards et al., 

(2016). Briefly, the 22 base pair (bp) CS1 adaptor (5’-ACACTGACGACATGGTTCTACA-3’) 

(Fluidigm) was added to the 5’ end of all the SNP specific forward primers and the CS2 adaptor 

(5’-TACGGTAGCAGAGACTTGGTCT-3’) was attached to the 5’ end of all the reverse 

primers. Barcoded adaptor primers were designed that contained Ion Torrent A-adaptor sequence 

(a unique 12 nucleotide barcode) and the CS1 adaptor sequence at the 3’ end (5’-

CCATCTCATCCCTGCGTGTCTCCGACTCAG(NNNNNNNNCGAT)ACACTGACGACATG 

http://www.triticeaetoolbox.org/barley
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GTTCTACA-3’). A universal reverse primer was designed containing the Ion Torrent P1 adaptor 

sequence and the CS2 adaptor sequence at the 3’ end (5’- CCACTACGCCTCCGCT 

TTCCTCTCTATGGGCAGTCGGTGATTACGGTAGCAGAGACTTGGTCT-3’). Primers 

were then multiplexed by adding 5 ml of each forward and reverse primer (100 mM) into a 

sterile 1.5 ml tube with nuclease-free water to a final volume of 1 ml. Each single PCR reaction 

contained 1.5 µl genomic DNA, 1 µl of primer pool (100 nM each primer), and 2.5 µl Platinum 

Multiplex PCR Master Mix (Life Technologies) for a total reaction volume of 5 µl in a 96-well 

PCR plate. The primary PCR program was set as: denaturation at 94o for 10min, 10 cycles of 94o 

for 20 secs and 64o-56o touchdown decrease by 0.8o per each cycle for 1 min, followed by 20 

cycles of 94o for 20 secs, 57o for 1 min, and 68o for 30 secs, and final extension of 72o for 3 min. 

The PCR plate was centrifuged briefly and 15 µl nuclease free H2O was added to each well. To 

ensure successful amplification 2 µl of each sample was separated on a 1% agarose gel. After 

varification of the amplification products the genotype specific samples were barcoded. The 

barcoding PCR reactions consisted of 11.6 µl of H2O, 4 µl Promega GoTaq Buffer (1X), 0.3 µl 

dNTPs (500 µM), 1 µl universal reverse primer (100 nM), 1 µl barcode adaptor primer (0.4 µM), 

0.1 µl Promega Taq polymerase (1 unit), and 2 µl DNA from each diluted primary PCR reaction, 

in 96-well PCR plates. The barcoding PCR parameters were the same as the primary PCR 

amplification. The PCR plates were centrifuged briefly, and each sample pooled by aliquoting 5 

µl from each well into 1.5 ml tubes then purified using the E.Z.N.A Cycle Pure Kit. The purified 

sequencing libraries were amplified in a reaction consisted of 19.3 µl H2O, 6 µl GoTaq Buffer 

(5X), 1 µl Ion Torrent ABC1 primer (10 pM), 1 µl Ion Torrent P1 primer (10 pM), 0.5 µl dNTPs 

(500 µM), and 0.2 µl Promega GoTaq polymerase (1 unit). To ensure library amplification two 

PCR reactions of each library were run, one with taq polymerase and the second without taq 
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polymerase, concurrently with the PCR parameters of initial denaturation at 95o for 5 min, 8 

cycles of 94o for 30 secs, 62o for 30 secs, and 72o for 30 secs, and final extension with 72o for 7 

min. The amplified libraries were then quantified using the Qubit Fluorometer (Life 

Technologies) with the Qubit dsDNA High Sensitivity quantification kit. The final libraries were 

diluted to ~3 pg/µl and sequenced on the Ion Torrent PGM utilizing the Ion PGM Template OT2 

200 Kit, Ion PGM Sequencing 200 Kit v2, and an Ion 318 Chip (Life Technologies). 

Linkage Mapping and QTL Analysis 

The average disease severities from three independent replicates of the phenotyping 

assays were used for SFNB resistance/susceptibility QTL mapping. A total of 365, 351, and 328 

markers were used to genotype the T67381, PI67381, and PI84314 populations, respectively. We 

filtered individual SNP calls for a minimum genotype quality of 10, minimum read depth of 3. 

The markers with more than 30% missing data and MAF < 25% were removed from further 

analysis. Linkage maps were developed for T67381, PI67381, and PI84314 populations, 

respectively using MapDisto 2.0 (Lorieux, 2012). A command ‘find groups’ was used to make 

marker linkage groups with a logarithm of the odds (LOD) value of 3.0 and rmax of 0.3. The 

‘AutoOrder’, ‘AutoCheckInversions’, and ‘AutoRipple’ commands were used to develop a 

linkage map at a logarithm of the odds (LOD) of 3.0 and Kosambi mapping function was used to 

calculate the genetic distances. Final linkage maps were developed using ‘Automap’ command 

for QTL analysis. QTL analysis was conducted in QGene 4.0 (Johanes and Nelson 2008) using 

composite interval mapping (CIM) to identify resistance/ susceptibility QTL to SFNB. A 

permutation test with 1,000 iterations was performed to find LOD threshold at significance level 

α=0.05 and 0.01. 
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Results 

Trait Evaluations 

The average disease reactions of all three RIL populations to all six Ptm isolates ranged 

between 1.0-4.0 using the 1-5 rating scale described by Neupane et al. (2015). Barley line 

PI67381 and PI84314 exhibited average reactions of 1.4 and 1.3, respectively, and were 

consistently resistant to all the Ptm isolates assayed (Table A1, A2, and A3). Tradition and 

Pinnacle exhibited average reactions of 2.7 and 2.8, respectively. The average disease reactions 

in all three population ranges between 1.3-4.0, 1.2-3.8, 1.0-3.5, 1.2-3.5, 1.0-2.3, and 1.0-2.5 for 

the FGO, PA14, CA17, SG1, DEN2.6, and NZKF2 isolates, respectively, (Table A1, A2, and 

A3). Most of the RIL progenies exhibited intermediate infection types (ITs), but some of the 

progeny exhibited lower ITs than the resistant parents (PI67381 and PI84314) and higher ITs 

than the susceptible parents (Tradition and Pinnacle) indicating transgressive segregation (Table 

A1, A2, and A3; Fig 3.1). The US isolate FGO was the most virulent showing the highest ITs on 

the resistant and susceptible parents as well as progeny and the Denmark isolate DEN2.6 was the 

least virulent showing the lowest average ITs (Table A1, A2, and A3).  
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Fig 3.1. The seedling disease reaction type (IT) distributions of three F2:7 RIL populations A. 

Tradition X PI67381, B. Pinnacle X PI67381, and C. Pinnacle X PI84314 phenotyped with six P. 

teres f. maculata isolates FGO, PA14, CA17, SG1, DEN2.6 and NZKF2. The disease was scored 

based on 1-5 rating scale with 1 being highly resistant and 5 being highly susceptible. Most of 

the RIL progenies exhibited intermediate ITs, but some progenies exhibited extreme phenotypes 

compared to the resistant and susceptible parents indicating transgressive segregation. The 

parental disease reactions are indicated by arrows in the histograms (PI67381=1.4, PI84314=1.3, 

Tradition=2.7, and Pinnacle=2.8). The X-axis represents the ITs and the Y-axis represents the 

number of barley lines. 
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Segregation Analysis Results 

A χ2 analysis of the T67381 F2 phenotypic data based on 113 F2 individuals indicated that 

the ratio did not significantly deviate from a 3:1 single gene segregation ratio, which segregated 

in 1 resistance to 3 susceptible (χ2=1.30, p=0.05, Fig 3.2, Table 3.1). This suggested that the 

phenotype is predominately governed by one single dominant susceptibility gene contributed by 

the susceptible parental line Tradition.  

Table 3.1. Segregation analyses for resistance/susceptibility to P. teres f. maculata isolate FGO 

in an F2 population of 113 individuals derived from a Tradition X CI67381 cross.  

 

Resistant F2 Susceptible F2 χ2
 (1:3) 

23 90 1.30* 

*Non-significant at p=0.05 level.  

 

 
Fig 3.2. Histograms showing the seedling infection type distribution of Tradition X PI67381 F2 

individuals inoculated with the P. teres f. maculata isolate FGO. The histogram resembles 

bimodal distribution of the disease reaction at a cutoff of 2 (resistant=<2 and susceptible=>2). 

The disease was scored based on 1-5 rating scale with 1 being highly resistant and 5 being highly 

susceptible. The X-axis represents the disease reaction type and the Y-axis represents the number 

of lines. 

 

QTL Mapping 

From the total 365, 351, and 328 polymorphic markers utilized in the population specific 

PCR-GBS panels designed for the T67381, P67381, and P84314 populations, 234, 200, and 215 

markers produced quality calls, respectively, and were used to develop the genetic linkage maps. 
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The resulting maps contained 7 linkage groups corresponding to the 7 barley chromosomes (Fig 

3.3, 3.4, and 3.5). These maps accounted for a total genetic map length of 1088.5, 1093.98, and 

1079.7 cM for the T67381, P67381, and P84314 populations, respectively. This resulted in an 

average marker density of 1 marker/ 5.04 cM across all three populations.  

 

Fig 3.3. Linkage map of the Tradition X PI67381 RIL population developed using Qgene 

software with 234 SNP markers showing the seven barley chromosomes. The left side of each 

chromosome shows the cM position based on the barley POPSEQ map (Mascher, et al., 2013) 

and the right side represents the markers. 

 

 

Fig 3.4. Linkage map of the Pinnacle X PI67381 RIL population developed using Qgene 

software with 200 SNP markers showing the seven barley chromosomes. The left side of each 

chromosome shows the cM position based on the barley POPSEQ map (Mascher, et al., 2013) 

and the right side represents the markers. 
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Fig 3.5. Linkage map of the Pinnacle X PI84314 RIL population developed using Qgene 

software with 215 SNP markers showing the seven barley chromosomes. The left side of each 

chromosome shows the cM position based on the barley POPSEQ map (Mascher, et al., 2013) 

and the right side represents the markers. 

 

The average number of markers per chromosome was 33.4, 28.6, and 30.7 for the 

T67381, P67381, and P84314 populations, respectively. The number of markers ranged from 28 

on chromosome 1H and 3H to 42 on 5H in T67381 while it was 16 markers on 6H to 35 markers 

on 5H in the P67381 population and 27 on 1H to 35 on 5H for the P84314 population.  

The LOD thresholds at a significance level of 0.05 and 0.01, were calculated by 1000 

permutations, and are shown in Table 3.2. The LOD threshold values (α=0.05) were used to 

determine significant QTL against each of the 6 Ptm isolates in the T67381, P67381, and P84314 

populations, respectively. Quantitative trait loci (QTLs) were mapped to barley chromosomes 2H, 

3H, 4H, 6H, and 7H in this study. 
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Table 3.2. LOD threshold level at a significance level of α=0.05 and 0.01 calculated by 1000 

permutations for three RIL populations. 

  

  Tradition X PI67381 Pinnacle X PI67381 Pinnacle X PI84314 

Isolates 0.05 0.01 0.05 0.01 0.05 0.01 

FGO 3.75 5.04 3.50 4.52 3.66 5.00 

PA14 3.85 5.00 3.54 4.61 3.69 4.99 

CA17 3.77 4.79 3.57 4.85 3.65 4.83 

SG1 3.70 4.83 3.62 4.67 3.85 5.19 

DEN2.6 3.81 5.10 3.54 4.90 3.78 4.98 

NZKF2 3.73 4.80 3.60 4.62 3.84 4.69 

 

Chromosome 2H QTL 

A common QTL QRptm-2H-1-31 was mapped on chr 2H at 1.08 to 31.74 cM with LOD 

values ranging from 3.92-6.49, 3.85-7.61, and 3.70-12.38 in all three populations against all 

isolates assayed except SG1 and DEN2.6 in T67381; CA17, SG1 and NZKF2 in P67381; and 

FGO in P84314. The flanking SNP markers were 11_21377 (13.19 cM) and 12_30631 (19.42 

cM) in the T67381; SCRI_RS_168604 (11.49 cM) and SCRI_RS_153798 (31.74 cM) in the 

P67381; and 12_31446 (1.08 cM) and SCRI_RS_168604 (11.49 cM) in the P84314 populations. 

The R2 value for these QTL ranged between 14-22%, 15-27%, and 15-40% in the T67381, 

P67381, and P67381 population, respectively (Fig 3.6A, 3.6B, 3.6C, 3.11 and Table 3.3, 3.4 and 

3.5).  

Another QTL QRptm-2H-77-83 was identified between SNP markers 11_20947 (77.34 

cM) and 12_31445 (83.59) with a LOD value of 6.07 for the DEN2.6 isolate in the T67381 

population (R2 =20%) (Fig 3.6A, 3.11, Table 3.3 and 3.6). Similarly, in the P67381 population, a 

QTL QRptm-2H-126-137 was mapped on chr 2H between markers 11_10429 (126.63 cM) and 

SCRI_RS_155161 (137.44) for FGO isolate with a LOD value of 5.1 and R2 =18% (Fig 3.6B, 

3.11, Table 3.4 and 3.6).  
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In the P84314 population, one QTL was mapped between the SNP markers 12_10579 

(149.60 cM) and 11_20715 (152.83 cM) with a LOD value of 4.50 for the FGO isolate (R2 

=17%) and another QTL between markers 11_20141 (141.70 cM) and 11_21088 (144.2 cM) 

with a LOD value of 6.29 for the PA14 (R2 =25%) (Fig 3.6C, 3.11, Table 3.5 and 3.6). This QTL 

was designated QRptm-2H-141-152. 

              
Fig 3.6. Composite interval mapping of ch. 2H showing significant SFNB resistance/ 

susceptibility QTL in three RIL populations; A. Tradition X PI67381, B. Pinnacle X PI67381, 

and C. Pinnacle X PI84314. The QTL analyses were performed with a global collection of P. 

teres f. maculata isolates FGO (purple), PA14 (orange), CA17 (gray), SG1 (yellow), DEN2.6 

(blue), and NZKF2 (green). Chromosome 2H is shown with the markers on y-axis and LOD 

values on x-axis. The red dotted line represents the LOD threshold calculated by 1000 

permutations at a 0.05 significance level. The LOD and R2 values for each QTL are presented in 

Tables 3.3, 3.4, and 3.5.  

 

Chromosome 3H QTL  

In the T67381 population, a QTL QRptm-3H-81-88 was identified against CA17 isolate 

on chr 3H with a LOD value of 4.52 and (R2=16%) between the flanking markers 12_31018 

(81.11 cM) and SCRI_RS_159340 (88.17 cM) (Fig 3.7A, 3.11, Table 3.3 and 3.6). Similarly, in 

the P84314 population, a QTL QRptm-3H-56-65 on chr 3H was identified between markers 

A                                             B                                           C 

      2H                                       2H                                     2H 
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12_30467 and 11_21305 positioned at 56.79–65.16 cM. QRptm-3H-56-65 had a LOD value of 

4.47 with the SG1 isolate (R2 =20%) (Fig 3.7B, 3.11, Table 3.5 and 3.6).  

 

         
Fig 3.7. Composite interval mapping of chr 3H showing significant SFNB resistance/ 

susceptibility QTL in two RIL populations; (A) Tradition X PI67381 and (B) Pinnacle X 

PI84314, with the P. teres f. maculata isolates CA17 (gray) and SG1 (yellow), respectively. 

Chromosome 3H is shown with the markers on the y-axis and LOD values on x-axis. The red 

dotted line represents the LOD threshold calculated by 1000 permutations at a 0.05 significance 

level. The LOD and R2 values for each QTL are presented in Tables 3.3, and 3.5.  

 

Chromosome 4H QTL  

The QTL, QRptm-4H-58-64, on chr 4H was identified at ~58.1-64.45 cM in the T67381 

population with Ptm isolates DEN2.6 and NZKF2 with LOD scores of 7.84 and 10.88, 

respectively. The QRptm-4H-58 -64 QTL mapped to an interval between SNP markers 11_20924 

(58.82 cM) and 11_11513 (64.45 cM) (Fig 3.8A, 3.11, Table 3.3 and 3.6) and R2=26-34%.  

In the P67381 population, a second QTL was mapped between the SNP markers 

11_10269 (120.53 cM) and 11_20272 (125.11 cM) with LOD values of 3.74 and 11.80 (R2=14-

38%) (Fig 3.8B, Table 3.4 and 3.6) with Ptm isolates DEN2.6 and NZKF2, respectively. 

Similarly, the same QTL was detected in the P84314 population with LOD values of 4.54 and 

3H 3H 

A                                            B         
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7.77 with the same two isolates, DEN2.6 and NZKF2 (R2=17-28%) (Fig 3.8C, 3.11, Table 3.5 

and 3.6), respectively. This QTL at 120.53-125.11 cM was given the nomenclature QRptm-4H-

120-125. 

          
 

Fig 3.8. Composite interval mapping of chr 4H showing significant SFNB resistance/ 

susceptibility QTL in three RIL populations; A. Tradition X PI67381, B. Pinnacle X PI67381, C. 

Pinnacle X PI84314.  The QTL analyses were performed with P. teres f. maculata isolates 

DEN2.6 (blue) and NZKF2 (green). Chromosome 4H is shown with the markers on y-axis and 

LOD values on x-axis. The red dotted line represents the LOD threshold calculated by 1000 

permutations at a 0.05 significance level. The LOD and R2 values for each QTL are presented in 

Tables 3.3, 3.4 and 3.5.  

 

Chromosome 6H QTL  

A QTL in the T67381 population was identified at 59.33 to 64.29 cM having the flanking 

markers 11_10377 and 12_10758 with a LOD value of 4.34 and a R2=15% against Ptm isolate 

NZKF2 (Fig 3.9A, 3.11, Table 3.3, and 3.6). Similarly, a QTL was identified at the 55.9-64.78 

cM region between the markers 11_20675 and 11_10220 in the P84314 population with a LOD 

value of 12.2 (FGO), 8.52 (PA14), and 4.30 (CA17) (Fig 3.9B, 3.11, Table 3.5 and 3.6). The R2 

values for this QTL against FGO, PA14, and DEN2.6 were 39%, 32% and 17%, respectively. 

This QTL in T67381 and P84314 on chr 6H was designated as QRptm-6H-55-64 (Table 3.6).  

A                                         B                                     C 

4H 4H 4H 
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Fig 3.9. Composite interval mapping of chr 6H showing significant SFNB resistance/ 

susceptibility QTL in two RIL populations; A. Tradition X PI67381, and B. Pinnacle X PI84314. 

The QTL analyses were performed with the P. teres f. maculata isolates FGO (purple), PA14 

(orange), DEN2.6 (blue), and NZKF2 (green). Chromosome 6H is shown with the markers on 

the y-axis and LOD values on the x-axis. The red dotted line represents the LOD threshold 

calculated by 1000 permutations at a 0.05 significance level. The LOD and R2 values for each 

QTL are presented in Tables 3.3, and 3.5.  

 

Chromosome 7H QTL  

A major QTL on chr 7H was identified to isolates FGO, CA17, PA14 and SG1 in the 

T67381, P67381, and P84314 populations. This QTL was mapped at 119.33 -125.55 cM between 

SNP markers 12_30368 and 11_11243 with LOD values of 18.67 to 41.77 (R2=51-80%) in the 

T67381 population (Fig 3.10A, 3.11, Table 3.3 and 3.6). For the P67381 population the QTL was 

positioned between the SNP markers 12_30368 (119.33 cM) and SCRI_RS_225155 (137.76 cM) 

with LOD values of 11.80 to 19.63 (R2=43-56%) (Fig 3.10B, 3.11 Table 3.4). In the P84314 

population, this QTL was detected between markers 11_20247 (117.1 cM) and 11_10182 

(133.92 cM) against isolate PA14 with a LOD value of 6.24 (R2=24%) (Fig 3.10C, 3.11 and 

Table 3.5). This QTL was designated as QRptm-7H-119-137.  

6H                                             6H 

A                                          B                                             
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Similarly, in the P84314 population, a QTL close to QRptm-7H-119-137 was detected on 

chr 7H between markers SCRI_RS_154003 (138.76 cM) and 11_10797 (141.37 cM) against 

FGO (R2=15%), between 11_10687 (146.03) and 12_30761 (147.63) against SG1 (R2=28%), and 

between 11_11012 (157.08 cM) and 11_10999 (160.25 cM) against NZKF2 (R2=26%) with 

LOD value of 3.82, 6.55, and 7.17, respectively (Fig 3.10C, 3.11, Table 3.6). This QTL was 

given nomenclature as QRptm-7H-138-160. 

With the DEN2.6 isolate, another QTL designated QRptm-7H-92-95 was detected 

between the markers 11_21448 (92.0 cM) and 12_30806 (95.7 cM) with a LOD value of 4.27 

(R2=15%) in the P67381 population (Fig 3.10B, 3.11, Table 3.6) 

        
Fig 3.10. Composite interval mapping of chr 7H showing significant SFNB resistance/ 

susceptibility QTL in the three RIL populations; A. Tradition X PI67381, B. Pinnacle X 

PI67381, and C. Pinnacle X PI84314. The QTL analyses were performed with a global 

collection of P. teres f. maculata isolates FGO (purple), PA14 (orange), CA17 (gray), SG1 

(yellow), DEN2.6 (blue), and NZKF2 (green). Chromosome 7H is shown with the markers on 

the y-axis and LOD values on the x-axis. The red dotted line represents the LOD threshold 

calculated by 1000 permutations at a 0.05 significance level. The LOD and R2 values for each 

QTL are presented in Tables 3.3, 3.4 and 3.5.  

  

A                                          B                                          C 

7H                                     7H                                       7H 
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Table 3.3. Quantitative trait loci (QTL) associated with resistance/susceptibility to diverse P. 

teres f. maculata isolates in the Tradition X PI67381 population, showing genetic positions (cM), 

flanking markers, phenotypic variation explained by the QTL, and the isolates for which the 

source of resistance/susceptibility were detected. 

Chromosome Isolate Flanking Markers Interval (cM) LOD R2 

2H FGO 11_21377- 12_30631 13.19-19.42 5.54a 19 

  PA14 11_21377- 12_30631 13.19-19.42 6.49 a 22 

  CA17 11_21377- 12_30631 13.19-19.42 5.44a 19 

  NZKF2 11_21377 - 12_30631 13.19-19.42 3.92  14 

  DEN2.6 11_20947- 12_31445  77.1-83.9 6.07 a 21 

3H CA17 12_31018 - SCRI_RS_159340 81.11-88.17 4.52 16 

4H DEN2.6 11_20924 - 11_11513  58.1-64.45 7.84 a 26 

  NZKF2 11_20924 - 11_11513  58.1-64.45 10.88 a 34 

6H NZKF2 11_10377 -12_10758 59.33-64.29 4.34 15 

7H FGO 12_30368 - 11_11243 119.33-125.55 18.67 a 51 

  PA14 12_30368 - 11_11243 119.33-125.55 41.77 a 80 

  CA17 12_30368 - 11_11243 119.33-125.55 37.89 a 77 

  SG1 12_30368 - 11_11243 119.33-125.55 34.44 a 73 
a Significant LOD with threshold set at a significance level α=0.01 

R2 Phenotypic variation explained by each QTL against the respective P. teres f. maculata isolates. 

Table 3.4. Quantitative trait loci (QTL) associated with resistance/susceptibility to diverse P. 

teres f. maculata isolates in the Pinnacle x PI67381 population, showing genetic positions (cM), 

flanking markers, phenotypic variation explained by the QTL, and the isolates for which the 

source of resistance/susceptibility were detected. 

Chromosome Isolate Flanking Markers Interval (cM) LOD R2 

2H FGO SCRI_RS_168604 - SCRI_RS_153798  11.49- 31.74 7.61a 27 

  PA14 SCRI_RS_168604 - SCRI_RS_153798 11.49- 31.74 3.85a 15 

  DEN2.6 SCRI_RS_168604 - SCRI_RS_153798  11.49- 31.74 7.00a 24 

 FGO 11_10429 - SCRI_RS_155161 126.63- 137.44 5.11a 19 

4H DEN2.6 11_20269 - 11_20272  120.53-125.11 3.74 14 

  NZKF2 11_20269 - 11_20272  120.53-125.11 11.80a 38 

7H FGO 12_30368 - SCRI_RS_225155  119.33-137.76 13.84a 43 

  PA14 12_30368 - SCRI_RS_225155  119.33-137.76 19.63a 56 

  CA17 12_30368 - SCRI_RS_225155  119.33-137.76 17.54a 52 

  SG1 12_30368 - SCRI_RS_225155  119.33-137.76 16.00a 49 

  DEN2.6 11_21448- 12_30806  92.00- 95.7 4.27 15 
a Significant LOD with threshold set at a significance level α=0.01 

R2 Phenotypic variation explained by each QTL against respective P. teres f. maculata isolates. 
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Table 3.5. Quantitative trait loci (QTL) associated with resistance/susceptibility to diverse P. 

teres f. maculata isolates in the Pinnacle x PI84314 population, showing genetic positions (cM), 

flanking markers, phenotypic variation explained by the QTL, and the isolates for which the 

source of resistance/susceptibility are effective against. 

Chromosome Isolate Flanking Markers Interval (cM) LOD R2 

2H PA14 12_31446 - SCRI_RS_168604 1.08- 11.49 11.57a 40 

 CA17 12_31446 - SCRI_RS_168604 1.08- 11.49 3.70 15 

  SG1 12_31446 - SCRI_RS_168604 1.08- 11.49 5.00a 19 

  DEN2.6 12_31446 - SCRI_RS_168604 1.08- 11.49 4.11 18 

  NZKF2 12_31446 - SCRI_RS_168604 1.08- 11.49 12.38a 40 

2H FGO 12_10579 - 11_20715  149.6- 152.83 4.50 17 

  PA14 12_10579- 11_20715  149.6- 152.83 6.29a 25 

3H SG1 12_30467- 11_21305  56.79-65.16 4.47 20 

4H DEN2.6 11_10269 - 11_20272 120.53-125.11 4.54 17 

  NZKF2 11_10269 - 11_20272 120.53-125.11 7.77a 28 

6H FGO 11_20675 - SCRI_RS_209933 55.9- 64.78 12.2a 39 

  PA14 11_20675 - SCRI_RS_209933 55.9- 64.78 8.52a 32 

  DEN2.6 11_20675 - SCRI_RS_209933 55.9- 64.78 4.30 17 

7H FGO SCRI_RS_154003 -11_10797 138.76-141.37 3.82 15 

  PA14 11_20247-11 _10182 117.10-133.92 6.24a 24 

  SG1 11_10687-12 _30761 146.03-147.63 6.55a 28 

  NZKF2 11_11012 -11_10999 157.08-160.25 7.17a 26 
a Significant LOD with threshold set at a significance level α=0.01 

R2 Phenotypic variation explained by each QTL against respective P. teres f. maculata isolates. 
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Table 3.6. QTLs detected in all three populations, with chromosome, their position relative to 

the POPseq positions, and phenotypic variation explained by the QTL against the global set of P. 

teres f. maculata isolates.  

QTLs Population Isolate Chr Interval (cM)a R2 (%)b Referencesc 

QRptm-2H-1-31 T67381, P67381, P84314 
FGO, PA14, CA17, 

DEN2.6, NZKF2 
2H 1.08-31.74 14-40 

Burlakoti et al., 2017  

(SFNB-2H-8-10) 

QRptm-2H-77-83 T67381 DEN2.6 2H 77.34-83.89 21 Novel 

QRptm-2H-126-137 P67381 FGO 2H 126.63-137.44 19 Tamang et al., 2015 

QRptm-2H-141-152 P84314 FGO, PA14 2H 141.6-152.83 17-25 Novel 

QRptm-3H-56-65 P84314 SG1 3H  56.79-65.16 20 

Tamang et al., 2015 

Wang et al., 2015 (QRptm3-2) 

Burlakoti et al., 2017  

(SFNB-3H-58.64) 

QRptm-3H-81-88 T67381 CA17 3H 81.11-88.17 16 
Tamang et al., 2015 

QRptm-4H-58-64 T67381 DEN2.6, NZKF2 4H 58.10-64.45 26-34 
Grewal et al., 2008 (QRpts4) 

Tamang et al., (2015) 

QRptm-4H-120-125 P67381, P84314 DEN2.6, NZKF2 4H 120.53-125.11 14-38 Wang et al., 2015 (QRptm4-2) 

QRptm-6H-55-64 T67381, P84314 FGO, PA14, DEN2.6 6H 55.9- 64.78 15-33 Tamang et al., 2015 

QRptm-7H-92-95 P67381 DEN2.6 7H 92.00-95.7 15 Novel 

QRptm-7H-119-137 T67381, P67381, P84314 

FGO, PA14, CA17, SG1 7H 
119.33-137.55 24-80 

William et al., 1999 and 2003 (Rpt4) 

Grewal et al., 2008 (QRpts7) 

Wang et al., 2015 (QRptm7-3) 

Tamang et al., 2015  

QRptm-7H-138-160 P84314 FGO, SG1, NZKF2 7H 138.76-160.25 15-28 

Tamang et al., 2015 

Wang et al., 2015 

aInterval position (cM) of QTL. 
bPhenotypic variation explained by each QTL. 
cPreviously reported QTL associated with SFNB resistance/susceptibility.   

R2 Phenotypic variation explained by each QTL against respective P. teres f. maculata isolates. 
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Fig 3.11. Composite interval QTL mapping of spot form net blotch (SFNB) resistance/ susceptibility on 

three; A. Tradition X PI67381, B. Pinnacle X PI67381, and C. Pinnacle X PI84314, RIL populations 

against the collection of P. teres f. maculata isolates FGO (purple), PA14 (orange), CA17 (gray), SG1 

(yellow), DEN2.6 (blue), and NZKF2 (green). The disease was scored based on 1-5 rating scale with 1 

being highly resistant and 5 being highly susceptible. The position of the markers is shown on the x-axis 

with the seven barley chromosomes (divided with lines) and the y-axis representing the LOD values. The 

red dotted line represents the LOD threshold calculated by 1000 permutations at a 0.05 significance level. 

The red box represents the loci common between all three RIL population. The Blue box represents the 

loci common between at least two population. The gray boxes represent the loci specific to Ptm isolates 

and the population. A total of 12 QTL were identified in this study.  
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Discussion 

QTL mapping is efficient at identifying major and minor loci/genes that contribute to 

phenotypic variation in complex or quantitative host-parasite genetic interactions resulting in 

compatibility (susceptibility) or incompatibility (resistance) when robust phenotyping data is 

available. The QTL analyses of the complex barley-P. teres f. maculata interactions are the first 

steps toward identifying resistance/susceptibility loci present within specific bi-parental 

populations, that can be utilized in SFNB resistance deployment. Also, from a more basic 

research perspective, these analyses are also a first step in the identification and cloning of the 

genes underlying the QTL. However, to achieve this goal in quantitative resistance mechanisms 

it is important to be able to Mendalize interactions, which requires QTL or genetic analyses from 

both the host resistance/susceptibilitys and the corresponding pathogen virulence loci. 

This study was conducted to identify QTL conferring seedling resistance/susceptibility to 

P. teres f. maculata in the three bi-parental mapping populations: Tradition X PI67381, Pinnacle 

X PI67381, and Pinnacle X PI84314. Two susceptible cultivars Tradition and Pinnacle were used 

to develop RIL population with a common resistance source in order to determine if these two 

susceptible cultivars possess the same or different susceptibility gene. Diverse isolates from 

different geographic regions were utilized because geographically distinct pathogen populations 

evolved separately gaining and/or conserving different virulence gene profiles.  Thus, identifying 

broader spectrum resistance QTL/genes that can be incorporated into elite upper Midwestern US 

malting barley lines is important especially since SFNB has become a major problem in the 

Northern Great Plains. This has been exemplified by the apparent increased virulence in the 

pathogen population of Western North Dakota and Eastern Montana as compared to isolates 

collected in other parts of the US and world. 
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To date, relatively, few SFNB resistance sources have been identified and mapped as 

compared with NFNB.  Therefore, resistance or susceptibility to SFNB is not well characterized 

and represents a significant knowledge gap in a very important barley-SFNB pathosystem. The 

SFNB resistance is quantitative in nature and the high diversity in the Ptm population presents a 

major challenge in genetically characterizing these complex interactions (Liu et al., 2011, Wang 

et al., 2015). This complexity along with the rapid change and diversity in Ptm virulence profiles 

poses a major challenge in breeding for resistance (Khan and Tekauz 1982, Arabi et al 1992, 

Gupta et al 2001, McLean et al 2009 and 2012, Liu et al 2010 and 2011, Wang et al., 2015). 

Although, comparatively many more SFNB resistance studies have been performed at the 

seedling stage in the past, as compared to adult plant resistance (APR) analyses, some QTL 

appear to be common to both growth stages (Grewal et al., 2008, Cakir et al., 2003, Wang et al., 

2015). Thus, some markers targeting QTL identified at the seedling stage should also incorporate 

resistance that is effective in the field at the adult stages. However, further field studies are 

warranted to learn more about APR resistance mechanisms and to determine which QTL or 

genes provide effective resistance at both the seedling and APR stages. However, seedling 

resistance is important as adult plant resistance because seedling resistance plays an important 

role in minimizing the disease epidemics in the field as net blotch is polycylic in nature.  

Recently, Burlakoti et al., (2017) reported a QTL located on chr 2H designated SFNB-

2H-8-10 (R2=1.5-4.3%) in an association mapping panel consisting mostly of advanced breeding 

lines from Upper Midwest breeding programs. The QTL was identified using a local isolate 

collected from Montana designated SFNB-MT09. We also identified a common QTL QRptm-

2H-1-31 localized to the same region as SFNB-2H-8-10 on 2H (1.08-31.74 cM; R2=14-40%) in 

all three bi-parental populations. This QTL provides resistance against several of the isolates in 
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all three populations, including the majority of the US isolates suggesting that QRptm-2H-1-31/ 

SFNB-2H-8-10 may represent a broad-spectrum resistance effective against a wide range of Ptm 

isolates. Interestingly, it also appears to be present in some of the elite upper midwestern adapted 

lines thus may not need to be introgressed from the unadapted resistant materials investigated 

here.  

Three other QTL were identified on 2H in different positions. In T67381, the QTL 

QRptm-2H-77-83 was identified against isolate DEN2.6 (R2=21%) and is 8 cM away from the 

QTL (69.0 cM) identified by Tamang et al., (2015) with the same isolate DEN2.6. Thus, these 

two QTL may be distinct and it could be novel. Similarly, in P67381, QTL QRptm-2H-126-137 

(R2=19%) was identified at 126.63-137.44 cM on chr 2H against isolate FGO. Tamang et al., 

(2015) also detected a QTL at 137.44 cM with the same isolate FGO, so this QTL is probably the 

same QTL identified in the AM analysis (Tamang et al., 2015, chapter 2). Similarly, in P84314, a 

QTL QRptm-2H-141-152 was mapped to 141.6-152.83 cM against FGO and PA14 (R2=17-25 

%). Ho et al., (1996) and Molnar et al., (2000) reported QTL on chr 2H but did not provided any 

approximate position due to the lack of marker density and information in the Leger X CI9831 

DH population. The 2H QTL QRptm-2H-141-152 identified in this study could be any of the 

QTL reported by Ho et al., (1996), and Molnar et al., (2000) or could also be a novel locus.  

One QTL QRptm-3H-81-88 was identified on chr 3H in the T67381 population with Ptm 

isolate CA17 at 81.11-88.17 cM and explained 16% phenotypic variation. Tamang et al. (2015) 

reported a QTL in the same region on chr 3H at 88.17 cM with the SG1 isolate. So, the QTL 

QRptm-3H-81-88 identified here could be the same QTL identified by Tamang et al., (2015). 

However, the QTL SFNB-3H-91.88 reported by Burlakoti et al. (2017) may not be the same loci 

as QRptm-3H-81-88 that was identified in this study, as they are 3 cM apart but they are 
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probably the same QTL. Another QTL QRptm-3H-56-65 was detected on 3H only in the P84314 

population at 56.79-65.16 cM against the SG1 isolate and explains 20% of the phenotypic 

variation. Tamang et al., (2015) reported QTL at 53.42 cM against the isolate NZKF2 and at 

53.42 and 65.16 cM against the isolate DEN2.6. Wang et al., 2015 reported QRptm3-2 at 57.16 

cM against the Australian isolate SNB331; and Burlakoti et al., (2017) reported SFNB-3H-58.64 

at 58.64 cM. Thus, QRptm-3H-56-65 is probably the same as one of these previously reported 

QTL. However, it is probably not the same gene previously reported by Tamang et al., (2015) 

associated with NZKF2 in the association mapping panel as it is ~3 cM apart from QTL QRptm-

3H-56-65. In a separate study, we identified a HvWRKY6 transcription factor gene via mutant 

analysis and exome capture that maps close to this QTL at 50.7 cM in the NFNB highly resistant 

line CI5791. The HvWRKY6 mutation results in expansion of the typical pinpoint necrotic fleck 

lesions exhibited on the highly resistant line CI5791 resulting in NFNB isolates forming SFNB 

susceptible type lesions on the otherwise highly resistant genotype (Tamang et al., unpublished; 

chapter 4). Thus, the 3H QTL may correspond with the HvWRKY6 transcription factor that is 

required for NFNB resistance but also functions similarly in SFNB resistance/susceptibility 

signaling but has some functional or transcriptional regulation polymorphism against both SFNB 

and NFNB. Interestingly, a NFNB resistance QTL also maps directly on top of the WRKY6 

transcription factor gene as well (Koladia et al., 2017).  

We detected the QTL QRptm-4H-58-64 at ~58.10-64.45 cM on chr 4H in the T67381 

population (R2=26-34%) with the isolates DEN2.6 and NZKF2. This same QTL was also 

reported in an association mapping study (Tamang et al., 2015), reported on 4H at 53.67-59.22 

cM using the same isolates, DEN2.6 and NZKF2.. Thus, it is likely that this is the same QTL and 

is specific to DEN2.6 and NZKF2. This QTL is ~ 4 cM away from QRpts4, (50-54 cM) 
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identified by Grewal et al., (2008) in a different mapping population which was effective against 

both SFNB and NFNB. So, it is probably the same gene previously reported by Grewal et al., 

(2008). Another QTL QRptm-4H-120-125 (R2=14-38%) on chr 4H was identified in the P67381 

and P84314 populations with DEN2.6 and NZKF2. This QTL resides very close (~3 cM) to the 

QRptm4-2 QTL previously reported at 128.9 cM (Wang et al., 2015), which is effective at both 

the seedling and adult plant stages. Therefore, this QTL QRptm-4H-120-125 may correspond 

with QRptm-4-2. Friesen et al., (2006) also reported a QTL on 4H against NZKF2 in a double 

haploid population derived from a SM89010 x Q21861 population that could correspond with 

either of the two QTLs identified in this study.  

Barley chromosome 6H harbors a very complex region that confers resistance/ 

susceptibility to both SFNB and NFNB (Gupta et al., 2001, Friesen et al., 2006, Liu et al., 2011, 

Wang et al., 2015, Richards et al., 2016, Koladia et al., 2017). The QTL QRptm-6H-55-64 on 6H 

was detected in T67381 (59.33-64.29 cM) with Ptm isolate NZKF2 and in P84314 (55.9- 64.78 

cM) using the FGO, PA14, and DEN2.6 isolates and explained 15-33% of the phenotypic 

variation. This QTL might be the same loci identified by Tamang et al., (2015, chapter 2) at 

59.01-60.21 against Ptm isolates FGO, DEN2.6, and NZKF2. This QTL is at least 11 cM away 

from QRpt6 (75-78 cM), which is reported to be effective against both SFNB and NFNB isolates 

(Grewal et al., 2008) and Manninen et al., (2000) also reported a QTL on 6H but did not provide 

any specific position, thus it is difficult to determine if they are the same QTL.  

QTL Rpt4 was the first reported dominant resistance gene against Ptm on chromosome 

7H in the cultivar Galleon effective at the seedling stage (William et al., 1999 and 2003). QRpt7 

(116-134 cM) reported by Grewal et al., (2008), QRptm7-3 (115.75 cM) by Wang et al., (2015), 

and QTL at 133.84 cM (marker SCRI_RS_202130) against NZKF2 by Tamang et al., (2015) are 
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close to Rpt4. We also identified a major QTL explaining a high level of the phenotypic variation 

(R2=24-80%) on 7H in the T67381, P67381, and P84314 populations that is effective against 

isolates FGO, PA14, CA17, and SG1 that lies in the same region as Rpt4, QRpt7, and QRptm7-3. 

We believe that this 7H QTL designated QRptm-7H-119-137 is the same as those previously 

reported. However, analysis of T67381 F2 individuals segregated in 3 susceptible to 1 resistant 

when phenotyped with the most virulent local Ptm isolate FGO suggesting that the gene 

conferring resistance is recessive or more appropriately conferring dominant susceptibility. Thus, 

we hypothesize that QRptm-7H-119-137 is probably a dominant susceptibility locus (recessive 

resistance) expressed in Pinnacle and Tradition, which was not reported for Rpt4, QRpt7, or 

QRptm7-3. Thus, if these QTL/genes truly conferred dominant resistance then QRptm-7H-119-

137 could be considered a novel dominant susceptibility gene or recessive resistance gene.  

Similarly, we identified another QTL QRptm-7H-138-160 on chr 7H at 138.76-160.25 

cM against Ptm isolate FGO, SG1 and NZKF2 adjacent to QRptm-7H-119-137 explaining 

phenotypic variation of 15-28%. This QTL 7H-138-160 could be the same QTL as Rpt4 

(William et al., 1999 and 2003) or QRptm7-4 (152.90 cM) and QRptm7-5 (159.30 cM) on chr 7H 

(Wang et al., 2015) or the same as QTL identified by Tamang et al., (2015) at 145.68-150.36 cM 

with SNP markers 11_20847, 11_10687, and 12_10677 against isolate NZKF2. Since, several 

previous studies have repeatedly reported resistance/susceptibility loci against Ptm isolates 

collected around the world on barley chromosome 7H, we speculate that 7H harbors multiple 

loci effective against SFNB (Williams et al., 1999, and 2003, Grewal et al., 2008, Wang et al., 

2015, Tamang et al., 2015). Another QTL QRptm-7H-92-95 on 7H was detected at 92.0-95.7 cM 

with the isolate DEN2.6 (R2=15%) in the P67381 population which is ~8 cM away from the QTL 

(100-112 cM) effective in APR reported by Williams et al., (2003). This is probably the same 
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QTL previously reported, but since it is ~8 cM distal to the previously reported QTL, it could 

represent a novel locus.  

From the three RIL populations and six isolates used a total of 12 QTL were identified on 

chromosomes 2H, 3H, 4H, 6H, and 7H. Common QTL were mapped on chr 2H and 7H in all 

three population, on chr 4H in the P67381 and P84314 population, and on chr 6H in T67381 and 

P84314 populations. Distinct QTL were mapped to 2H, 3H, 4H, and 7H in all three populations 

(Table 3.3, 3.4, 3.5, and 3.6, Fig 3.11). Some isolate specific QTL in one population are not 

detected on the other which could be due to the diversity of Ptm virulence or avirulence genes 

present in the isolates, which probably produce several host selective necrotrophic effectors that 

could have multiple susceptibility targets in the host to facilitate colonization and disease 

(Shjerve et al., 2014, Liu et al., 2011). In some populations, there may not be polymorphism in 

the effector targets or the isolate is missing the effector/s.  

Our results confirmed previously identified QTL for SFNB (William et al., 1999 and 

2003, Molnar et al., 2000, Friesen et al., 2006, Grewal et al., 2008, Manninen et al., 2000, and 

2006, Cakir et al., 2011, Tamang et al., 2015, Wang et al., 2015, and Burlakoti et al., 2017). 

Besides these previously described QTL, we identified 3 novel seedling resistance loci 

designated: QRptm-2H-77-83, QRptm-2H-141-152, and QRptm-7H-92-95. These resistances and 

the SNP markers delimiting the QTL are being utilized to develop prebreeding lines by 

introgressing SFNB resistance into the cultivars Pinnacle and Tradition via marker assisted 

selection. Further studies are required to determine if any of these seedling QTL are effective at 

the adult plant stage. Also, we are utilizing gamma irradiation to create mutants of cultivar 

Tradition to clone and study the gene/loci responsible for resistance/ susceptibility to SFNB.  
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CHAPTER 4. EXOME CAPTURE-MEDIATED MAPPING-BY-SEQUENCING 

IDENTIFIES THE HvWRKY6 GENE AS REQUIRED FOR NET FORM NET BLOTCH 

RESISTANCE IN BARLEY LINE CI5791 

Abstract 

 Host resistance is a desirable and effective means of controlling disease to maximize crop 

yield and quality. The barley line CI5791 exhibits a high level of resistance to diverse 

Pyrenophora teres f. teres (Ptt) isolates collected from around the world; the causal agent of the 

disease net form net blotch. To identify genes involved in this resistance mechanism, CI5791 

seed was γ-irradiated and two mutants were identified at the M2 generation and designated as 

CI5791-γ3 and CI5791-γ8. The phenotyping and genotyping of CI5791-γ3 x -γ8 and CI5791-γ8 

x -γ3 F1s suggested that these two mutations are allelic to each other. Analysis of CI5791-γ3 x 

Heartland and CI5791-γ8 x Heartland F2 populations segregated in 3 resistances to 1 susceptible 

ratio showing that the susceptibility was due to the mutation in a single dominant gene. 

Genotyping via PCR-GBS and phenotyping of the 34 homozygous susceptible mutants from the 

CI5791-γ3 x Heartland F2 population with Ptt isolate 0-1 followed by genetic mapping delimited 

the mutation to an ~75 cM interval flanked by the SNP markers 11_20742 and 11_21493 on 

chromosome 3H. Exome capture mediated by mapping-by-sequencing identified a single 

mutated gene on chr 3H at ~50.7 cM which is the ortholog of the Arabidopsis WRKY6 

transcription factor, designated as HvWRKY6. Analysis of the full length HvWRKY6 gene 

sequences from the resistant line CI5791, the moderately susceptible line Morex, and susceptible 

line Tifang revealed that they are identical, thus, HvWRKY6 appears to be conserved. BSMV-

VIGS experiment showed that the specific silencing of the candidate HvWRKY6 gene results in a 

susceptible phenotype when inoculated with Ptt isolate 0-1. Thus, it appears the HvWRKY6 gene 
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functions as a component of a conserved basal defense mechanism, which regulates the exression 

of other defense response genes that restrict lesion growth and pathogen spread in CI5791.    

Introduction 

Net blotch, caused by Pyrenophora teres is an economically important foliar disease of 

barley (Hordeum vulgare L.) in major growing regions worldwide. This disease exists in two 

forms; net form net blotch (NFNB) caused by Pyrenophora teres f. teres (Ptt) and spot form net 

blotch (SFNB) caused by Pyrenophora teres f. maculata (Ptm) (Steffenson and Webster 1992, 

Smedegard-Peterson 1971). Although, these two pathogens are morphologically identical 

(conidia and mycelium), their genetics as well as host-pathogen interactions are quite distinct 

(Liu et al., 2011), thus they are considered as different diseases. The symptoms of NFNB first 

appear as a small dark brown necrotic lesion that expand over time forming longitudinal and 

transverse striated necrotic lesions, net like in appearance, that are commonly surrounded by 

chlorosis on susceptible host genotypes. Whereas the symptoms of SFNB also first appear as a 

small dark brown necrotic lesion that expand over time producing elliptical necrotic lesions that 

are also typically surrounded by chlorosis.  

The barley line CI5791, is an Ethiopian breeding line, that is highly resistant to most Ptt 

isolates collected from North America and isolates tested from barley growing regions 

worldwide (Mode and Schaller 1958; Steffenson and Webster 1992; Wu et al., 2003; Koladia et 

al., 2017, Richards et al., 2016). However, CI5791 resistance has been compromised by a few 

Canadian and French isolates (Akhavan et al., 2016; Arabi et al., 1992), and some recently 

collected Moroccan isolates that are moderately virulent on CI5791 (Personal communication 

with Dr. Timothy Friesen). Although, CI5791 resistance is remarkably broad and effective, it is 

apparent that the pathogen has the molecular repertoire to overcome the resistance. Yet, CI5791 
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can still be considered an excellent source of resistance to be utilized in breeding programs, but 

should be complemented with other genes to ensure its durability and effectiveness against the 

diverse Ptt populations.  

Several previous studies mapped NFNB resistance genes with different resistance 

specificities to the centromeric region of barley chromosome 6H, thus, this locus has been 

considered a complex region hypothesized to harbor multiple dominant resistance genes 

(Steffenson et al., 1996, Cakir et al, 2003, Wu et al., 2003, Friesen et al., 2006, Koladia et al., 

2017). In contrast, several other studies had reported recessive resistance genes, or more 

appropriately dominant susceptibility genes, in the same region of 6H (Abu Qamar et al., 2008, 

Liu et al., 2011 and 2015, Richards et al., 2016). Koladia et al., (2017) recently mapped two 

dominant resistance QTL contributed by CI5791 on chromosome 3H and 6H using a CI5791 x 

Tifang recombinant inbred line (RIL) population when mapping resistance to nine 

geographically distinct Ptt isolates, individually. The major CI5791 6H QTL was shown to be 

effective against all isolates used in the study whereas the CI5791 3H resistance was effective 

against only two Japanese isolates. Interestingly, a 3H QTL was also contributed by Tifang and 

shown to provide resistance against the Ptt isolates Br. Pteres (Brazil), BB06 (Denmark), 6A and 

15A (California, USA). Bockelman et al., (1977) were the first to report dominant resistance on 

chromosome 3H contributed by the barley line Tifang using trisomic analysis which is probably 

the same dominant resistance QTL detected by Koladia et al., (2017). 

Exome capture is a cost-effective yet powerful molecular tool that targets the coding 

regions (exons) of a specific species and is useful for reducing the complexity of genomes to 

identify polymorphism within expressed genes across populations. This tool has facilitated the 

efficient identification of polymorphism within coding regions that contribute to disease in 
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humans, other animals and plants (Choi et al., 2009, Wang et al., 2010, Raca et al., 2011, 

Bamshad et al., 2011, Cosart et al., 2011, Mascher et al., 2013, 2014 and 2016, Warr et al., 2015, 

Russell et al., 2016). An exome capture array specific to barley (Hordeum vulagre) has been 

developed based on RNAseq, cDNA, and EST sequences available at the time of development. 

The array represents 61.6 mega base pairs of coding sequence of the complex ~5.6 Gb barley 

genome (Mascher et al., 2013). Since its development, it has been used to study the 

domestication and evolution of barley by resequencing and identifying the variants in the coding 

regions of wild barley (Hordeum sponteneum), and land races (Hordeum vulgare) including 

ancient barley germplasm (Russell et al., 2016, Mascher et al., 2016). Richards et al., (2016) 

identified the Rpr2 gene in cv Morex utilizing the exome capture which was hypothesized as a 

key component of a basal resistance pathway that recognizes a spore coat protein of two diverse 

pathogens, Puccinia graminis f. sp. tritici and Ptt.  Mascher et al., (2014) identified the HvMND 

gene that governs increased tiller numbers utilizing mapping-by-sequencing and exome capture 

in barley. It was demonstrated that the method could easily be applied to analyse and discover 

genes underlying mutant phenotypes that were generated via irradiation or chemical 

mutagenesis. Resistance gene enrichment sequencing (RenSeq) technology and single-molecule 

real-time (SMRT) sequencing (SMRT RenSeq) are another form of exome capture that were 

specifically designed to rapidly identify disease resistance gene (R gene) in plants that fell into 

the nucleotide binding site-leucine rich repeat (NLR) class of immunity receptors (Jupe et al., 

2013, Witek et al., 2014, Steuernagel et al., 2016). A cDNA RenSeq method was also utilized to 

reduce the number of candidate R-genes to be analyzed accelerating the identification of R genes 

in tomato (Andolfo et al., 2014).  
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The WRKY transcription factors are one of the largest groups of transcription regulators 

consisting of a highly conserved amino acid sequence WRKYGQK at their N-terminus and a 

zinc-finger-motif (C-C-H-H/C) at their C-terminus (Eulgem et al., 2000, Bakshi et al., 2014). 

WRKY proteins bind to specific W-box elements (TTGAC/T) in the promotor regions of their 

targeted genes, thereby, either activating or repressing transcription (Rushton et al., 2010, Agarwal et 

al., 2011, Eulgem et al., 2000, Yu et al., 2001). WRKY TFs are known to be important in diverse 

plant physiological activities such as pathogen defense responses, and abiotic stress responses 

such as wounding, nutrient deficiency, salt stress (Kasajima et al., 2010, Chen et al., 2009, Li et 

al., 2017, Cai et al., 2017, Hichri et al., 2017), and developmental processes including 

senescence, and root growth (Robtzek et al., 2001 and 2002, Skibbe et al., 2008). Studies have 

shown that WRKYs can either positively or negatively regulate plant defense responses (Eulgem 

and Somssich, 2007, Robatzek et al., 2002). In wheat, the TaWRKY70 TF identified within the 

fusarium head blight QTL-2DL governs resistance against Fusarium graminarium by regulating 

the three downstream resistance genes TaACT, TaDGK, and TaGLI (Kage et al., 2017).  

AtWRKY6 regulates both plant defense responses against Pseudomonas syringae pv. tomato as 

well as senescence in Arabidopsis (Robatzek et al., 2002). WRKY3 and WRKY6 regulate defense 

response in Nicotiania attenuate against the herbivore Manduca sexta larvae (Skibbe et al, 

2008). In Arabidopsis, the RPS4/RRS1 dual NLR mechanism has an integrated WRKY domain 

on the RRS1 NLR that is hypothesized to function as a decoy that detects the bacterial effectors 

AvrRPS4 and PopP2 to stop disease development (Sarris et al., 2015). Other WRKY gene 

families have also been reported to play vital roles in defense responses in rice against 

Magnaporthe grisea (rice blast) and Xanthomonas oryzea (bacterial leaf blight) (Liu et al., 2007, 

Shimono et al., 2007, Wang et al., 2007). In contrast, WRKY11 and WRKY17 function as 

negative regulators of basal defense responses in Arabisopsis (Journot-Catalino et al., 2006). Li 
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et al., (2004) reported enhanced resistance to the biotroph Erysiphe cichoracearum whereas there 

was an increase in susceptibility to the bacterial necrotroph Erwinia carotovora 

subsp carotovora following the upregulation of WRKY70 in Arabidopsis. The TFs WRKY38 and 

WRKY62 were also found to be negative regulators of plant basal defense responses to the 

bacterial pathogen P. syringae and the compromised immunity was associated with 

overexpression of either TF (Mao et al., 2007, Kim et al., 2008). Grunewald et al., (2008) 

identified WRKY23 as the negative regulator of plant defense response against the cyst nematode 

Heterodera schachtii. Therefore, the previous research shows that the WRKY TFs can play both 

a positive and negative role in the regulation of defense responses, thus are part of a complex 

system of intertwined regulatory elements that orchestrate a finely balanced immunity 

mechanism in plants. 

 Here we report the identification and characterization of the HvWRKY6 gene in barley 

line CI5791 which is required for the high level of resistance against the necrotrophic pathogen 

P. teres f. teres utilizing forward genetics followed by exome capture for mapping-by-

sequencing. We hypothesize that the HvWRKY6 gene functions as a component of the resistant 

pathway which is required for Ptt resistance by contributing to the restriction of lesion growth in 

the highly resistant barley line CI5791.  

Materials and Methods 

Mutant Development 

The Ethiopian barley line CI5791 is highly resistant to most NFNB isolates collected 

worldwide. CI5791seed was -irradiated to develop a mutant population. Briefly, ~500 gram of 

seed was hydrated in an air tight container with 60% glycerol for about 7-10 days. The hydrated 

seed were irradiated with 35 kilorad (350 Gy) gamma rays in a Gammator (M38-4, Radiation 
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Machinery Corporation, New Jersey, USA) prior to planting. Approximately, 1,400 M1 seed 

were planted in trays and allowed to self to generate the M2 generation. Approximately, 10,000 

M2 seedlings, derived from the original 1,400 M1 individuals were screened by inoculating with 

the Ptt isolate LDNPtt-19 collected from Langdon, North Dakota. Planting, inoculum 

preparation, inoculation and disease reading were performed as described in Friesen et al., 

(2006). After identifying putative mutants these seedlings were transplanted to 15.24 cm (6 inch) 

pots and allowed to self to generate the M3 generation seed. The M3 generation seed was planted 

in conetainers and screened with Ptt isolate 0-1 using three replicates with wt CI5791 and the 

susceptible barley cultivar Robust as resistant and susceptible checks, respectively. The planting, 

inoculum preparation, inoculation and disease reading was again performed as described in 

Friesen et al., (2006). 

Mapping Populations and Phenotyping 

Two F2 mapping populations were developed by crossing CI5791-γ3 and CI5791-γ8 

homozygous mutant M3 individuals with the NFNB resistance barley line Heartland. Heartland is 

a spring six-rowed feed barley that was developed at the Agriculture Canada Research Station, 

Brandon, Manitoba and registered and released in 1984 (Therrien et al., 1985). Heartland was 

shown to be resistant to three major Canadian races of P. teres f. teres before its release and was 

hypothesized to contain a similar dominant resistance gene as CI5791 at the ch. 6H locus. The 

planting, inoculum preparation, inoculation and disease reading for the 120 F2 individuals from 

each of the CI5791-γ3 and CI5791-γ8 x Heartland populations were performed as described in 

Friesen et al., (2006). The progenies were phenotyped in the greenhouse at the seedling stage 

using the Ptt isolate 0-1 that has similar virulence as the isolate LDNPtt-19, which was used to 

identify the original CI5791-γ3 and CI5791-γ8 mutants from the M2 generation. In short, the 
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individual F2 seeds were planted in single cones and placed in a rack bordered with the 

susceptible barley cv Robust. The barley seedlings were grown in the greenhouse until the 

secondary leaf was fully expanded (~2 weeks) and then placed in environmentally controlled 

growth chamber after inoculations were performed as described in Friesen et al., (2006). Disease 

reading was performed 7 days after inoculation (DAI) using 1-5 rating scale (Neupane et al., 

2015) for CI5791-γ3 x Heartland and 1-10 rating scale developed by Tekauz (1985) for CI5791-

γ8 x Heartland. The CI5791-γ3 x Heartland F2 susceptible individuals using a rating cutoff of >2 

representing homozygous CI5791 genotype at the mutant region were used for mapping the 

gene. We utilized PCR-Genotyping by sequencing (PCR-GBS) to genotype CI5791-γ3 x 

Heartland F2 homozygous susceptible lines (a total of 34 lines representing 68 recombinant 

gametes) on the Ion Torrent PGM as described before in chapter 3. A PCR-GBS marker panel 

designed for polymorphism between Tradition and PI67381 consisiting of 365 markers 

(Appendix C1) was used to genotype all 34 susceptible F2 lines. The disease severity of 34 

CI5791-γ3 x Heartland F2 homozygous susceptible lines along with the genotypic data were used 

for QTL mapping using MapDisto 2.0 (Lorieux, 2012) and Qgene 3.0 (Johanes and Nelson 

2008) as described in chapter 3. Single marker regression was used to identify the susceptible 

QTL in the γ3 x Heartland F2 population. CI5791 and the two mutants were also phenotyped with 

the two Moroccan Ptt isolates SM36-2 and SM36-3 that were shown to be moderately virulent 

on CI5791.  

Allelism Test 

Reciprocal crosses were made between CI5791-γ3 and CI5791-γ8 to determine if the two 

putative independent mutants were allelic. Six F1s of CI5791-γ3 x CI5791-γ8 and ten F1s of 
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CI5791-γ8 x CI5791-γ3 were phenotyped with the Ptt isolate 0-1 and genotyped utilizing 

primers specific to the putative mutant gene identified in the region delimiting the mutation.  

DNA Extraction, Exome Capture and Sequencing 

Genomic DNA (gDNA) of the CI5791-γ3 and CI5791-γ8 mutants and wild type (wt) 

CI5791 were isolated from at least 5 embryos extracted from seeds soaked overnight on petri 

plates with Whatman filter paper and ~20 ml of H20. The gDNA extractions were performed 

using the PowerPlant Pro DNA Isolation Kit (MoBio Laboratories, Inc.) following the 

manufacturer’s protocol. The extracted embryo gDNA was quantified using the Qubit 

Fluorometer (Life Technologies) with a Qubit dsDNA High Sensitivity Kit. To test if the DNA 

was degraded it was visualized on a 1% agarose gel containing GelRed (Biotum). DNA that 

showed an intact band with an ~15-20 kb molecular weight band with minimal lower molecular 

weight smearing was considered to have adequate integrity for downstream exome capture 

library preparations. 

The NimbleGen SeqCap EZ Library preparation kit and manufacturer’s protocol was 

followed to prepare exome capture libraries of wt CI5791, CI5791-γ3, and CI5791-γ8. 

Approximately 1.2 µg of gDNA of each sample were randomly fragmented to an average size of 

~180-220 base pairs (bp) in a 20 µl reaction consisting of 2 µl Fragmentase Reaction Buffer v2 

(10X), 1 µl MgCl2 (10 mM), and 2 µl dsDNA Fragmentase enzyme (New England Biolabs). The 

fragmentation reactions were allowed to proceed at 37o C for 30 min and inactivated by adding 5 

µl of 0.50 M ethylenediaminetetraacetic acid (EDTA). Fragmented DNA samples were then 

purified with an AMPure XP bead purification kit (Agencourt) following the manufacturer’s 

protocol. The Agilent Bioanalyzer (Agilent Technologies 2100) was used to confirm the target 

fragmented size of 180-220 bp using the Agilent DNA 1000 kit.  
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The KAPA DNA Library Preparation Kit for Illumina was used to perform the end 

repair, A-tailing and adapter ligation to the fragmented DNA for sequencing. A total of 70 µl of 

end repair reactions (8 µl H2O, 7 µl end repair buffer (10x), 5 µl end repair enzyme, and 50 µl of 

fragmented DNA samples) were incubated for 30 min at 20oC to produce blunt-ended 5’ 

phosphorylated fragments. The end repair reaction was purified and eluted using AMpure XP 

beads as described above. To each tube containing beads with end-repaired DNA, A-tailing 

reactions (42 µl H2O, 5 µl A-tailing buffer (10x), and 3 µl A-tailing enzyme) were incubated at 

30oC for 30 minutes. The A-tailed DNA was again purified with an AMPure XP bead 

purification kit (Agencourt) following the manufacturer’s protocol. Adapter ligation reactions 

(50 µl) were prepared (10 µl ligation buffer (5x), 5 µl T4 DNA Ligase, 30 µl H2O, and 5 µl 

unique adaptor (10 µM)) and mixed with the beads containing A-tailed DNA and incubated at 

20oC for 15 min. The bead bound adapter ligated DNA was immediately purified using 50 µl of 

PEG/NaCl solution. The samples were mixed thoroughly and incubate for 15 minutes to allow 

the DNA to bind the beads and placed back on the magnetic block. The cleanup was performed 

using the Ampure XP bead purification kit (Agencourt) following the manufacturer protocol and 

50 µl of DNA was eluted using elution buffer (10 mM Tris-HCL, pH 8.0).  

The Pippin Prep instrument (Sage Science) was used to select DNA fragments between 

250-450 bp from the exome capture libraries. The library amplification reactions (25 µl of 

KAPA HiFi HotStart ReadyMix (2X), 5 µl PCR Primer Premix (5 µM), and 20 µl DNA sample 

library was amplified via PCR. The amplification parameters were 98oC initial denaturation, 

seven cycles of 98oC for 15 sec, 60oC for 30 sec, and 72oC for 30 sec with a final extension of 

72oC for 60 sec. The resulting amplicons were purified by mixing with 90 µl of DNA 

purification beads (SeqCap EZ Pure Capture Kit, Roche Nimblegen) following the same 
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cleaning process as described above. After 10 minutes of drying, the beads were resuspended in 

52 µl of nuclease free water and 50 µl of the DNA was eluted representing the exome capture 

library ready for hybridization. The Agilent DNA 1000 kit and Agilent Bioanalyzer were used to 

confirm that the library was free of contaminants and to determine the target fragment size 

distribution.  

All the DNA libraries were pooled together in equal volume by mass. To prepare the 

hybridization sample, 1 µg of pooled sample was mixed with 2 nmol Multiplex Hybridization 

Enahancing Oligo pool and 5 µl COT Human DNA. The multiplexed exome capture library pool 

was dried in a DNA vacuum concentrator for ~45 minutes at high temperature (+60oC). The 

dried sample was then mixed with 7.5 µl hybridization buffer (2X) and 3 µl hybridization 

component A, vortexed for 10 sec and centrifuged at maximum speed for 10 sec followed by 

incubation at +95oC for 10 minutes to denature the DNA. After a quick 10 sec centrifugation, the 

multiplexed exome capture library was mixed with a 4.5 µl aliquot of EZ Library 

(120426_Barley_BEC_DO4.EZ library) in a 0.2 ml tube, briefly vortexed, centrifuged and 

incubated at 47oC for 72 hours (lead +57 oC).  

The hybridized DNA library was washed twice using the Roche Nimblegen wash kit. The 

bead bound DNA sample was amplified in 50 µl KAPA HiFi HotStart ReadyMix, 10 µl Post-

LM-PCR Oligos 1 & 2 (5 µM) and 20 µl of DNA sample with initial denaturing at 98oC for 45 

sec, 14 cycles of 98oC for 15 sec, 60oC for 30 sec, and 72oC for 30 sec, followed by final 

extension at 72oC for 1 min. The amplified sample was purified using the SeqCap EZ Pure 

Capture Bead kit as previously described. The concentration, size distribution, and quality of the 

amplified captured multiplex DNA sample was performed using the Agilent bioanalyzer 2100 as 

described before. The amplified library was sequenced on a single Illumina NextSeq flowcell 
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producing 150 bp single end reads at the USDA-ARS Cereal Genotyping Laboratory (Fargo, 

North Dakota).  

Bioinformatics Analysis 

The resulting exome capture sequencing reads from CI5791 wt, CI5791-γ3, and CI5791-

γ8 were imported into CLC Genomics Workbench v8.0.1 and quality trimmed using default 

settings. Trimmed reads were aligned to the barley cultivar Morex draft reference genome 

(IBGSC 2012) using the Burrows-Wheeler aligner ‘mem’ algorithm with default settings (Li and 

Durbin 2010). SAM tools “bedcov’ was used to calculate the read depth within each exome 

capture target region. Coverage was calculated by dividing the depth count by the length of the 

capture target. Targets were considered putatively absent if coverage was less than 1. Variants 

were detected in SAMtools (Li et al., 2009) using the ‘mpileup’ command and the output was 

filtered with VCFtools (Danecek et al., 2011). Parameters used to filter the data included a 

genotype quality of >10, read depth of >2, and to only include insertions or deletions. Putative 

insertions in the mutant lines were deleted from the dataset in MS Excel. Variant calls containing 

missing data were excluded from further analysis. Additionally, only variants in which the wt 

CI5791 sample had a homozygous genotype and had an overall variant quality > 100 were 

retained in the dataset. POPSEQ positions of Morex WGS contigs were obtained from the barley 

genome database (ftp://ftpmips.helmholtz-muenchen.de/plants/barley/public_data/popseq_IPK/) 

and used to annotate the variant call data (Mascher et al., 2013). The POPSEQ positions of the 

markers flanking the QTL identified in the segregating F2 population (Fig 4.4), described above, 

were obtained and used to identify exome capture targets within the mapped region. BAM files 

from the analysis were imported into CLC Genomics Workbench version 8.0.3 (Qiagen) for the 

visualization of sequence alignments (Fig 4.5). 



 

128 

STS Marker Development and Mutation Validation 

Based on the identified nucleotide deletions detected in the mutants, mutant specific 

sequence tagged site (STS) markers was developed. Two primer sets were developed specific to 

wt CI5791 and the CI5791- γ8 mutant. Primers WRKY6-F1 (5’ GCCGCTGGTTCTCGTCG 

TTCATGCG 3’) and WRKY6-Wt-R1 (5'- TAGTCGACGACGACGGGGCGTCCC -3') only 

produce an amplicon from wt CI5791 (Fig. 4.8) whereas the primer combination of WRKY6-F1 

and WRKY6-Mt-R2 (5'- TAGTCGACGACGACGGGGCGT CCG -3') will only produce an 

amplicon from the CI5791-γ8 mutant due to designing specificity in the 3 bases at the 3’ 

terminus of the primer that are specific to the 1 bp deletion discovered in the CI5791-γ8 mutant 

from the exome capture data. The polymerase chain reactions (PCR) were optimized so the 

discriminant amplicons were specific to the wt or mutant genotypes. The PCR amplification 

program was set as: denaturation at 95o for 5 min, 25 cycles of 95o for 30 secs, 76o for 1 min, and 

76o for 30 secs, and final extension of 72o for 5 min. Wildtype CI5791, Heartland, CI5791-γ3, 

CI5791-γ8, homozygous susceptible F2 individuals from two populations, and 15 randomly 

selected resistance F2 lines (CI5791-γ8 x Heartland) were genotyped with the wt and mutant 

specific primers. The F1 reciprocal cross between CI5791-γ3 and CI5791-γ8 were also genotyped 

with these primer sets. All PCR amplicons were visualized on 1% agarose gels with GelRed 

(Biotum). 

HvWRKY6 Allele Sequencing and Analysis 

 To determine if there is allelic variation between resistant and susceptible barley 

cultivars, we sequenced HvWRKY6 from CI5791 (resistant), cv Tifang (susceptible) and cv 

Morex (susceptible). We designed four primer pairs at 1 kb interval to sequence the entire gene 

including the promoter region (~3,544 bp) (Table B6). The gDNA extractions were performed as 
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described before and were quantified using the Qubit Fluorometer (Life Technologies) with a 

Qubit dsDNA Broad Sensitivity Kit. PCR parameters were initial denaturation at 95 °C for 5 

minutes, 35 cycles of 94 °C for 30 seconds, 60 °C for 60 seconds, and 72 °C for 60 seconds, 

followed by a final extension at 72 °C for 5 minutes. PCR amplicons were visualized on a 1% 

agarose gel containing GelRed (Biotum) and purified using an E.Z.N.A Cycle Pure 

centrifugation column (Omega Bio-tek) following the manufacturer’s protocol. Purified PCR 

products, ~40 ng, were sent to GenScript for sequencing following their guidelines.  

RNA Extraction, cDNA Synthesis, and qPCR 

Quantitative PCR (qPCR) was conducted to measure differential regulation of the 

HvWRKY6 gene upon interaction with Ptt isolates in compatible (susceptible) or incompatible c 

barley lines. The isolates Ptt 0-1, SM36-2, and SM36-3 were used to inoculate CI5791 (resistant) 

and the barley line Tifang (susceptible) was inoculated with Ptt isolate 0-1 only. Primers were 

designed across exons 1 and exon 2 (Fig 4.13A): wrky6-qpcr-F2 (5'-

GTTCCTGCCGTTACTGTCCTCATC-3') and wrky6-qpcr-R2 (5'- 

TCGCCATCAAGAAGGAGGACCTCAC-3'), that specifically amplify ~120 bp from cDNA 

and ~270 bp from gDNA. At least three biological replications were collected from each mock 

(water + tween 20) and Ptt inoculated plants. Tissues from the first leaves were collected at time 

point 0 (non-inoculated control), 5 min, 30 min, 1 hr, 2 hr, 4 hr, 6 hr, 12 hr, 24 hr, 48 hr, 72 hr, 

96 hr, 120 hr, 144 hr, 168 hr, post inoculation. Tissue samples were immediately flash frozen in 

liquid nitrogen and stored at -80oC for further processing. Total RNA was extracted from the 

collected tissue using a RNeasy Plant Mini Kit (Qiagen) following the manufacturer’s 

instruction. The total RNA was quantified using the QUBIT fluorometer and the Qubit RNA BR 

assay kit (Life Technologies) per the manufacturer’s instructions. To ensure RNA integrity and 



 

130 

that the RNA was free of gDNA contamination, 1 µl of total RNA was denatured in 4 volumes of 

denaturing buffer (Formaldehyde Load Dye, Ambion) at 80oC for 5 min and visualize on a 1% 

agarose gel with GelRed (Biotum). RNA samples with the four-intact ribosomal RNA (rRNA) 

bands at the expected molecular weights of ~ 3.4, 1.8, 1.5, and 1.1 kb corresponding to the 

nuclear 28S and 18S rRNAs and the 23S and 16S plastid rRNAs, respectively, without high 

molecular weight gDNA contamination were considered as quality RNA and used for cDNA 

synthesis. The GoScriptTM Reverse Transcription System (Promega) was used to synthesize 

cDNA following the manufacturer’s protocol. Briefly, ~1 µg of total RNA was mixed with 

oligo(dT)15 primer (0.5 µg) and incubate at 70oC for 5 minutes. The RNA sample was then 

mixed with 15 µl of reverse transcription reaction mix (GoScriptTM Reaction Buffer (5X), MgCl2 

(1.5 mM), PCR Nucleotide Mix (0.5 mM each dNTP), Recombinant RNasin Ribonuclease 

Inhibitor (20 units), and Reverse Transcriptase) and incubated at 25oC for 5 min followed by 

42oC for 60 min and inactivated at 70oC for 15 minutes. The 20 µl cDNA synthesis reactions 

were mixed with 80 µl H2O (1:5). A 10 µl qPCR reaction was prepared by mixing 4 µl of diluted 

cDNA, 5 µl SsoAdvanced Universal SYBR Green Supermix (Bio-Rad), and 0.5 µl of each 

forward and reverse primer (10 µM). qPCR was conducted in a CFX96 Real-time system 

thermalcycler (Bio-Rad) with cycling parameters of 95 °C for 30 sec followed by 40 cycles of 

95°C for 15 seconds and 60°C for 30 seconds; 65°C for 30 sec; and 60 cycles of temperature 

increasing from 60°C to 95°C with fluorescence readings acquired at 0.5°C increments per cycle. 

Three technical replications were used for each biological rep. The barley HvSnor14 gene was 

used as the reference to normalize HvWRKY6 gene expression. Efficiency of qPCR for 

HvWRKY6 and Snor14 primers were calculated by generating a standard curve with a 10-fold 

serial dilution starting from 200 pg of PCR amplified template of HvWRKY6 and Snor14. 
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Differential expression was calculated by using ∆∆CT method on Biorad CFX Manager 3.1 

software. A t-test was performed to check the significance of difference at p<0.05 using a 

standard error of mean of 1. 

BSMV-VIGS 

 The barley stripe mosaic virus-virus induced gene silencing (BSMV-VIGS) system was 

exploited to functionally validate the HvWRKY6 as required for resistance in the barley line 

CI5791. A unique 65 bp sequence was selected from the HvWRKY6 gene by performing a 

BLASTn search against the low and high confidence gene list in the IPK barley database 

(http://webblast.ipk-gatersleben.de/barley_ibsc/) to reduce the cross amplification and off target 

silencing of other WRKY TF homologs in the barley genome. Two primer pairs based on the 5’ 

and 3’ termini of this unique sequence were designed with NotI and PacI adaptor sequences 

attached to the 5’ ends of the respective primers. These adaptors were reciprocally utilized in 

order to develop sense and antisense constructs. The first primer set was designed with a NotI 

adaptor on the forward primer and PacI adaptor on the reverse primer and the second set with the 

PacI adaptor on the forward primer and NotI adaptor on the reverse primer.  

First Primer set 

WRKY6_KD_NtFP1-  GGAGCGGCCGCACGCCATGCCGCTAAACGTCG 

WRKY6_KD_PcRP1-  GGATTAATTAAGCCGGGCATCGGAACATGGAAC 

Second Primer set 

WRKY6_KD_PcFP1 - GGATTAATTAAACGCCATGCCGCTAAACGTCG 

WRKY6_KD_NtRP1- GGAGCGGCCGCGCCGGGCATCGGAACATGGAAC 

These two primer sets were used to clone the unique 65 bp HvWRKY6 fragment into the 

γRNA strand of the BSMV-VIGS infectious cDNA clone PSL38.1 in both sense and anti-sense 
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orientations. First, the two primer sets were used to produce the gene specific amplicon from 

CI5791 cDNA in 20 µl PCR reactions consisting of 2 µl cDNA template, 0.5 µl of each forward 

and reverse primers (10 µM), 0.3 µl dNTPs (500 µM), 0.2 µl GoTaq (1.25 units), 4 µl GoTaq 

buffer (10x) and 12.5 µl H2O. The PCR cycle parameters had an initial denaturation at 95oC for 5 

min, followed by 35 cycles of 95oC for 30 sec, 60oC for 30 sec, and 72oC for 30 sec followed by 

a final extension of 72oC for 5 min. The amplicon was purified using an E.Z.N.A Cycle Pure 

centrifugation column (Omega Bio-tek). The purified PCR product was digested in a 30 µl 

reaction consisting of 0.5 µl NotI HF (NEB), 0.5 µl PacI (NEB), 3 µl Cut Smart Buffer (NEB), 

11 µl H2O, and 15 µl PCR product. The digestion reaction was allowed to incubate at 37oC for 2 

hours followed by inactivation at 65oC for 20 min. The BSMV vector PSL38.1-MCS for cloning 

the target amplicon was also digested with 3 units of NotI and PacI double digestion reactions 

using 5 µg of plasmid in a 30 ul reaction. Digested PCR product (2 µl) was mixed thoroughly in 

an 8 µl ligation reaction mix comprised of 1 µl of predigested vector (~80ng), 1 µl ligation buffer 

(10X), 1 µl T4 DNA ligase, and 5 µl H2O and incubate at 4oC for 24 hours. Chemically 

competent Top 10 E. coli cells (ThermoFisher scientific) were then transformed with the ligation 

mix according to manufacturer protocol and inoculated into 250 µl of Luria Broth (LB) liquid 

media and incubate at 37oC with 230 rpm shaking for 1 hour. A total of 100 µl of each 

transformation was plated onto LB agar plates with 100 µg/ml ampicillin and incubated 

overnight (~12 hrs) at 35oC. Ten random colonies were picked from each transformation and 

inoculated into 2 ml of LB broth (5g NaCl, 5g tryptone, 2.5g yeast extract, and 500 ml H2O and 

ampicillin (100 µg/ml)) in 12 ml borosilicate culture tubes and incubated overnight with shaking 

at 230 rpm at 37oC. The cell cultures were transferred to a 2-ml microcentrifuge tube and 

centrifuged at 12000 rcfs for 5 min to pellet the cells and the waste supernatant was discarded. 
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The plasmid DNA was extracted from the pelleted cells using the PureYield Plasmid miniprep 

System (Promega) following the manufacturer’s protocol.  

The BSMV tripartite viral genomic RNAs (α and ß, and γ genomes) with the γ fragment 

containing the unique 65 bp fragments of the CI5791 HvWRKY6 allele cloned in both the sense 

and anti-sense orientations, were synthesized via in vitro transcription using the mMESSAGE 

mMACHINE T7 Transcription Kit (ThermoFisher Scientific) according to manufacturer 

protocol. 20 μl reactions of each the α genome, ß genome, γ-HvWRKY6 sense, and γ-HvWRKY6 

antisense genomes were combined with 370 μl FES buffer (100 ml GP buffer, 5 g sodium 

pyrophosphate decahydrate, 5 g bentonite, 5 g celite, up to 500 ml H2O) as BSMV-VIGS 

inoculum. A total of 20 μl of each the α genome, ß genome, and γ genome were combined with 

390 μl FES buffer for the BSMV-VIGS control inoculum.  

Single seeds of the barley line CI5791 were planted per conetainer and placed on racks. 

Newly emerged secondary leaves still whorled at ~10-11 days old seedling stage were inoculated 

with either 5 µl of each tripartite RNAs or BSMV-VIGS control virus (both in FES buffer). 

Approximately 40 individual plants were inoculated with each BMSV-VIGs experimental RNA 

and control RNA. Plants were first misted heavily and then inoculated by gently rubbing the 

leaves with 5 µl of each BSMV-VIGs construct. After incubation in mist chamber for 24 hrs at 

100% humidity, inoculated plants were moved back to the growth chamber set at 21oC with a 12 

hr photoperiod. Once typical BSMV symptoms, mottling and striping, appeared on the expanded 

or expanding tertiary leaves, plants were inoculated with Ptt isolate 0-1 as previously described 

in Friesen et al., (2006). Inoculum preparation, inoculation, and disease reading were performed 

as described before. The barley line CI5791 and cv Robust were used as a resistance and a 
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susceptible check, respectively. Disease reading was performed 7 and 12 days after Ptt 

inoculation (Fig 4.8, Table B5 and B6) using 1-10 scale developed by Tekauz (1985).  

Tissue samples from each of the BSMV-WRKY6 and BSMV-pBS control constructs 

were collected before and after inoculation with Ptt isolate 0-1. At least four biological 

replications were collected for both BSMV knockdown and BSMV control samples. RNA was 

extracted as described previously using RNeasy Plant Mini Kit (Qiagen). RNA was visualized on 

1% gel with GelRed (Biotum) to ensure RNA integrity. The GoScriptTM Reverse Transcription 

System (Promega) was used to synthesize cDNA following the manufacturer’s protocol. qPCR 

was conducted as described previously to quantify the amount of HvWrky6 gene silencing in 

VIGS-WRKY6 plants compared to control construct.  

Results 

Mutant Identification and Validation  

To identify genes involved in the effective and broad NFNB resistance present in barley 

line CI5791 seed was γ-irradiated and ~10,000 M2 seedlings originating from ~1,400 M1 

individuals were screened. After inoculation and scoring, 8 putative mutant individuals were 

identified by phenotyping with Ptt isolate LDNPtt-19 and allowed to self to the M3 generation. 

After phenotyping M3 individuals in replicated trials, 2 individual mutant lines were identified 

that visually had similar susceptible phenotypes that resembled susceptible SFNB reactions. The 

original barley line CI5791 and the resistant line used in the mutant mapping population 

development, cv Heartland, exhibited highly resistance reactions (pin point necrotic lesions) to 

Ptt isolate 0-1 with average disease reaction of 1.0 (Fig 4.1, Table B1), respectively, based on the 

1-10 rating scale developed by Tekauz (1985). The phenotypes of the two putative independent 

mutants, CI5791-γ3 and CI5791-γ8, whose resistance had been compromised after γ-irradiation 
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showed average disease scores of 3.5 and 6.0, respectively (Fig 4.1, Table B1 and B2). The 

disease reactions on the two putative mutants were consistently atypical NFNB reactions, but 

rather resembled more typical SFNB symptoms with elliptical lesions often surrounded by a 

yellow halo. The lesions also appeared distinct with less coalescence over time that is typically 

observed with NFNB susceptible interactions (Fig. 4.1). However, inoculation of CI5791-γ3 and 

CI5791-γ8 with the Moroccan Ptt isolates SM36-2 and SM36-3 that show virulence on CI5791 

resistance had average disease scores of 6.5 and 7, respectively (Fig 4.2 and 4.3, Table B3), and 

more closely resembled net type symptoms. Wildtype CI5791 exhibited moderately susceptible 

reaction of 3.5-4 infection types and cv Hockett exhibited resistance reaction of 1 infection type 

with Ptt isolates SM36-2 and SM36-3 (Fig 4.2 and 4.3, Table B3), respectively based on 1-10 

rating scale (Tekauz ,1985). The barley cultivar Robust, Hector, and Tifang exhibited susceptible 

reactions with average disease scores of 8.5, 9.0 and 8.0, respectively, to all isolates used in this 

study (Fig 4.1, 4.2, and 4.3, Table B1, B2, and B3).  

 
                                                                           

Fig 4.1. Phenotypic reaction of CI5791, Heartland, CI5791-γ3, CI5791-γ8, CI5791-γ3 x -γ8 F1 

and CI5791-γ8 x -γ3 F1 to Ptt isolate 0-1. CI5791 and Heartland showed resistant reactions. 

Robust, CI5791-γ3, CI5791-γ8, CI5791-γ3 x -γ8 F1 and CI5791-γ8 x -γ3 F1 showed susceptible 

reactions that resembled spot type lesions. The disease was scored based on 1-10 rating scale 

where 1 is highly resistant and 10 is highly susceptible. 
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Fig 4.2. Phenotype reactions of Hector, Hockett, CI5791, CI5791-γ3, and CI5791-γ8 with Ptt 

isolate SM36-2. Hockett showed resistant reactions, and CI5791 showed moderately susceptible 

reactions. Hector, CI5791-γ3, and CI5791-γ8 showed susceptible reactions. The disease was 

scored based on 1-10 rating scale where 1 is highly resistant and 10 is highly susceptible. 

 

 
Fig 4.3. Phenotyping reaction of Hector, Hockett, CI5791, CI5791-γ3, and CI5791-γ8 with Ptt 

isolate SM36-3. Hockett showed resistant reactions, and CI5791 showed moderately susceptible 

reactions. Hector, CI5791-γ3, and CI5791-γ8 showed susceptible reactions. The disease was 

scored based on 1-10 rating scale where 1 is highly resistant and 10 is highly susceptible. 

 

The validated M2 mutants, CI5791-γ3 and CI5791-γ8, were crossed with cv Heartland 

and the F1 plants were allowed to self to produce a F2 populations. The F2 populations, CI5791-

γ3 x Heartland and CI5791-γ8 x Heartland, containing 111 and 116 F2 individuals, respectively, 

were challenged with Ptt isolate 0-1. The phenotype analyses using a 2 reactions type as a cutoff 

for resistance/susceptibility for CI5791-γ3 x Heartland F2 with the SFNB 1-5 rating scale and 
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type 4 reaction type as a cutoff for resistance or susceptibility CI5791-γ8 x Heartland F2 on the 

NFNB 1-10 scalec, showed segregation ratios not significantly different from 3 resistant: 1 

susceptible as would be expected for a single recessive mutant gene (Table 4.1 and Table B1). 

This suggested that the mutation that compromised the CI5791 resistance was a single gene in 

both mutants showing that a single functional gene required for resistance was mutated in each 

mutant line.  

Table 4.1. Segregation of CI5791-γ3 x Heartland and CI5791-γ8 x Heartland F2 individuals 

inoculated with Ptt isolate 0-1. 

 

Populations Resistant F2 Susceptible F2 χ2 (3:1)* 

CI5791-γ3 F2s 77 34 1.87 

CI5791-γ8 F2s 89 27 0.26 

*Non-significant at p=0.05 level.  

 

Since the F2 phenotyping data determined that a single recessive mutation was 

responsible for the susceptible phenotype in both putative independent mutants, reciprocal 

crosses between CI5791-γ3 and -γ8 were made to determine if these mutated genes were distinct. 

Six CI5791-γ3 x -γ8 and ten CI5791-γ8 x -γ3 F1 individuals were challenged with Ptt isolate 0-1. 

It was observed that all the CI5791-γ3 x -γ8 and CI5791-γ8 x -γ3 F1 individuals showed the 

susceptible reactions similar to each of the mutant parental lines with an average score of 6.45 

and 6.25, respectively using the NFNB 1-10 rating scale (Fig 4.12, Table B3).  

Mutant Mapping 

 The putative homozygous susceptible or homozygous mutant F2 individuals from the 

CI5791-γ3 x Heartland population, as determined by their susceptible phenotype showing the 

characteristic SFNB-like lesions, were genotyped using a PCR-GBS SNP marker panel 

containing 365 highly polymorphic SNP markers evenly spread throughout the barley genome 

(Table C1). After utilizing our SNP calling pipeline as described in chapter 3, we identified 123 
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polymorphic SNP markers spread across the 7 barley chromosomes (Fig 4.4). The QTL mapping 

utilizing the genotyping of the 34 CI5791-γ3 x Heartland F2 homozygous susceptible lines, 

representing 68 recombinant gametes localized the mutation to chromosome 3H within an ~75 

cM interval flanked by the SNP markers 11_20742 (POPSEQ position; chr=3H cM=15.15) and 

11_21493 (POPSEQ position; chr=3H cM=90.33) (Fig 4.5). The most significant marker 

11_10444 (POPSEQ position; chr=3H cM=74.99) had a LOD score of 71. 

 

 

Fig 4.4. Linkage map of 34 CI5791-γ3 x Heartland F2 susceptible individuals developed with 

123 polymorphic SNP markers showing seven barley chromosomes using Qgene software. 

 

 
Fig 4.5. The CI5791-γ3 x Heartland F2 homozygous susceptible lines were used to generate a 

QTL map of resistance/susceptibility to Ptt isolate 0-1 using single marker regression analysis. 

The Y-axis represents LOD values and X-axis represents the PCR-GBS SNP markers. The most 

significant marker was 11_10444 (74.99 cM) with a LOD value of 71. 
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Exome Capture Sequencing and Analysis 

Sequencing of wt CI5791, CI5791-γ3 and CI5791-γ8 gDNA enriched via exome capture 

on a single Illumina NextSeq flowcell resulted in a total of 111,251,482; 103,796,564; and 

120,530,567 reads, respectively. This parallel sequencing of the three exome captured genotypes 

represented a very balanced library. The deletion variant analysis resulted in the identification of 

a 1 bp deletion in the predicted coding region of the MLOC_68299.2 gene model in CI5791-γ8 

that is within the mapped mutant region identified on chr 3H (Fig 4.5). The single base deletion 

in the MLOC_68299.2 gene model is within the second predicted exon, of the barley paralog of 

the Arabidopsis WRKY transcription factor 6 gene, HvWrky6. Coverage analysis and 

visualization of read alignments showed that MLOC_68299.2 (HvWrky6) is completely deleted 

from the CI5791-γ3 mutant (Fig 4.7). 

Characterization of the Candidate Gene 

 The variant analysis of the exome capture data pinpointed a single base pair deletion in 

the barley gene model MLOC_68299.2 from the CI5791-γ8 mutant in the second exon, which 

results in a frame shift and predicted translation of a non-functional 148 amino acid (aa) 

truncated protein. The analysis also showed that MLOC_68299.2 was completely deleted from 

the CI5791-γ3 mutant, as no sequence reads mapped to the gene model from the reference 

sequences. The MLOC_68299.2 gene spans 8,026 bp of genomic DNA localized to barley chr 

3H at ~50.7 cM based on POPSEQ positions (Mascher et al., 2013). MLOC_68299.2 is 

predicted to transcribe a 1,707 nucleotides mRNA consisting of 6 exons (Fig 4.13A) that is 

predicted to encode a 569 aa functional protein (~59.67 kDa). The MLOC_68299.2 gene model 

is predicted to contain WRKY transcription factor domains including the highly conserved 

WRKYGQK DNA binding aa motif (Fig 4.13A). Homology searches utilizing NCBI BLASTP 
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identified the candidate MLOC_68299.2 predicted protein as an ortholog of the Arabidopsis 

WRKY transcription factor 6, thus, MLOC_68299.2 was designated as HvWRKY6. The 

predicted HvWRKY6 protein has 50% aa identity and 59% aa similarity with the Arabidopsis 

WRKY6 protein (query cover 89% and e-value 4e-130) (Fig 4.6). A reciprocal result was obtained 

when the AtWRKY6 protein was used as the query on the IPK barley blast server, identifying 

only one matching WRKY protein corresponding to the candidate MLOC_68299.2 gene. Thus, 

MLOC_68299.2 appears to represent the only AtWRKY6 orthalog in the barley genome.  

Interproscan SMART domain identified a conserved WRKY domain (300-360 aa) in HvWRKY6 

with high confidence prediction (http://smart.embl.de/) (Letunic et al., 2015). Analysis of the full 

length HvWRKY6 gene sequence from CI5791, Morex, and Tifang were identical suggesting that 

the gene is conserved across both resistant and susceptible barley genotypes.  

 

Fig 4.6. Amino acid alignment of HvWRKY6 and AtWRKY6. An * (asterisk) indicates fully 

conserved residue, A : (colon) indicates conservation between groups of strongly similar 

properties roughly equivalent to scoring > 0.5 in the Gonnet PAM 250 matrix, and a . (period) 

indicates conservation between groups of weakly similar properties roughly equivalent to scoring 

≤0.5 and > 0 in the Gonnet PAM 250 matrix.  

http://smart.embl.de/
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Validation of HvWRKY6 Function in CI5791 NFNB Resistance 

 The primers (WRKY6-F1 and WRKY6-Mt-R2) designed to specifically produce a 

HvWRKY6 amplicon from the CI5791-γ8 mutant utilizing 3’ terminus specificity of the 

WRKY6-Mt-R2 primer to the single nucleotide deletion specifically produced an amplicon from 

CI5791-γ8 gDNA and did not produce any amplicons from wt CI5791, Heartland or CI5791-γ3 

(complete gene deletion) gDNA (Fig 4.7 and 4.8). Whereas, the wild type specific primer pair 

(WRKY6-F1+WRKY6-Wt-R1) amplified only from wt CI5791 and Heartland (Fig 4.8) with no 

amplicons produced in either mutant.  

 

Fig 4.7. Sequence alignment of MLOC_68299.2 sequence reads from CI5791-γ3, CI5791-γ8 and 

wt CI5791 with the reference genome sequence of cv Morex. There are only 3 reads in CI5791-

γ3, and ~2,000 reads in CI5791-γ8 and wt CI5791 confirming a complete gene deletion in 

CI5791-γ3 and a single bp deletion in CI5791-γ8.  
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Fig 4.8. Genotyping of Heartland, CI5791, CI5791-γ3, and CI5791-γ8 with wt and CI5791-γ8 

mutant specific primers. The wt specific primers amplified only from Heartland and wt CI5791. 

The mutant specific primers amplified only from CI5791-γ8 and no amplification in CI5791-γ3 

as it is missing the entire gene sequence.  

 

All homozygous susceptible F2 individuals from both the CI5791-γ3 x Heartland and 

CI5791-γ8 x Heartland populations showed mutant HvWRKY6 genotype when genotyped with 

CI5791-γ8 mutant specific primers (WRKY6-F1+WRKY6-Mt-R2) or wt specific primers (Fig 

4.9 and 4.10). This was determined by no observed amplification with either primer pair on the 

CI5791-γ3 x Heartland F2 individuals which is consistent with the entire gene deletion detected 

with the exome capture experiment (Fig 4.9). With the CI5791-γ8 x Heartland F2 individuals 

there was amplicons produced with the mutant specific primer pair (WRKY6-F1+WRKY6-Mt-

R2) but no observed amplification with the wt specific primer pair, which is consistent with 1 bp 

deletion detected with the exome capture experiment (Fig 4.10). Fifteen randomly selected 

resistant F2 individuals from the CI5791-γ8 x Heartland showed a 1 homozygous: 2 heterozygous 

genotype segregations (Fig 4.11). This genotyping perfectly linked the genetic mutation with the 

mutant phenotype in this small F2 population representing 68 recombinant gametes. Also, the 

genotypes of all the reciprocal F1 (CI5791-γ3 x CI5791-γ8 or CI5791-γ8 x CI5791-γ3) 

individuals had CI5791-γ8 mutant like genotype, lacking a wt allele, further providing the 

evidence that these two mutants CI5791-γ3 and CI5791-γ8 are allelic to each other (Fig 4.1 and 

4.12). 
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Fig 4.9. Genotyping of 34 susceptible F2 individuals of the CI5791-γ3 x Heartland with wild type 

specific (top part) and mutant specific primers (bottom part). No amplification was observed 

with either primer pairs on all susceptible F2 individuals, which is consistent with the entire gene 

deletion detected in CI5791-γ3.   

 

 

Fig 4.10. Genotyping of 27 susceptible F2 individuals of the CI5791-γ8 x Heartland with wild 

type specific (top part) and mutant specific primers (bottom part). WT primer pairs did not 

amplify from any of the 27 individuals whereas the CI5791-γ8 mutant primer pair amplified 

from all 27 indviduals suggesting that the CI5791-γ8 mutation corresponds with the mutant 

phenotype.  
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Fig 4.11. Genotyping of 15 CI5791-γ8 x Heartland F2 resistant individuals with the primer pair 

specific to 1 bp deletion within MLOC_68299.2 in the CI5791-γ8 mutant which segregated in 1 

homozgyous to 2 heterozygous resistant individuals. Sample 3, 10, 11, 14, and 15 are 

homozygous resistant and the remaining 10 are heterozygous resistant F2 individuals. CI5791, 

Heartland, CI5791-γ3, and CI5791-γ8 were also genotyped as a positive control. 

 

 

Fig 4.12. Genotyping of 6 CI5791-γ3 x-γ8 F1 (left) and 10 CI5791-γ8 x-γ3 F1 (right) individuals 

with wild type (wt) specific (top part) and mutant specific primers (bottom part). The wt primer 

pair did not produce amplicons from any of the F1 individuals (top) whereas the CI5791-γ8 

mutant specific primer pair produced amplicons from all F1 indviduals (bottom) supporting the 

the conclusion that the two independent mutants are allelic. 

 

BSMV-VIGS  

The barley stripe mosaic virus (BSMV) tripartite genome was utilized to develop 

HvWRKY6 post transcriptional gene silencing constructs (Fig 4.13B). The disease reaction in the 

BSMV-WRKY6 inoculated plants targeted for post transcriptional gene silencing of HvWRKY6 
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were significantly more susceptible than the BSMV-pBS virus inoculated controls at both 7 and 

12 days post inoculation (dpi) when inoculated with Ptt isolate 0-1 (Fig 4.13C, Table 4.2). The 

BSMV-pBs virus control inoculations did not show the shift from resistance towards 

susceptibility. However, qPCR examining HvWRKY6 transcript levels did not show a significant 

difference in HvWRKY6 gene expression between the BSMV- WRKY6 and BSMV-pBS 

inoculated plants post NFNB reading.  

Table 4.2. Phenotypic analysis of BSMBV-VIGS plants inoculated with Ptt isolate 0-1. 

 

Days post inoculation (dpi) VIGS Knockdown VIGS Control Pr > |t| 

7 dpi 4.67 ± 1.17 3.06 ± 1.09 <.0001 

12 dpi 6.00 ± 1.79 2.99 ± 1.23 <.0001 
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Fig 4.13. A. HvWRKY6 transcription factor gene and protein structure showing location of 

primers used for qPCR and BSMV-VIGS constructs. B. Barley stripe mosaic virus tripartite 

genome utilized to develop HvWRKY6 post transcriptional gene silencing constructs. C. Results 

of BSMV-VIGS experiments showing that the specific silencing of the candidate HvWRKY6 

gene results in susceptible reaction when inoculated with P. teres f. teres isolate 0-1. The 

BSMV-VIGS pBs vector control does not show the shift from resistance towards susceptibility.  

 

qPCR 

The qPCR experiment conducted on wt CI5791 inoculated with the Ptt isolate 0-1 

showed that HvWRKY6 is upregulated at 4 hours post inoculation (hpi) at least 5 fold until 6 hpi, 

7 DAI 

 

 

 

 

 

 

 

 

 

 

12 DAI 
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then it gradually decreases and maintains a level of ~1-fold upregulation until 168 hpi (Fig 4.14). 

With the Morrocan Ptt isolate SM36-3, which is moderately virulent on CI5791, HvWRKY6 was 

upregulated 1 hpi by 1.6 fold and increases to 12.6 fold upregulation at 4 hpi, 4 fold upregulation 

at 6 hpi, 16 fold at 12 hpi, and maintained at least 5 fold upregulation after 96 through 168 hpi 

(Fig 4.14). When susceptible cultivar Tifang was challenged with Ptt isolate 0-1, HvWRKY6 was 

upregulated 2.8 folds at 30 minutes post inoculation to 22 fold at 6 hpi, 4.8 fold at 12 hpi, 9 folds 

at 24 hpi, and maintained at least 8 folds after 96 through 168 hpi (Fig 4.14). The qPCR analyses 

confirmed that the expression of HvWRKY6 in line CI5791 was significantly higher with the 

moderately virulent Ptt isolate 36-3 than the avirulent isolate 0-1 between 1-4hrs, and 96 -168 

hrs. Similarly, the expression of HvWRKY6 in the susceptible line Tifang challenged with the 

virulent Ptt isolate 0-1 was much higher and significantly different than 36-3 and 0-1 on CI5791 

at the times between 30 min through 2 hrs and 96 hrs through 168 hrs. This suggested that the 

HvWRKY6 gene may function as a component of signaling pathway which is required for 

resistance by restricting the lesion growth in CI5791 and mediates defense response when not or 

slightly expressed whereas acts as a negative regulator of the plant basal defense response when 

highly expressed. This result of negative regulator of plant defense response when highly 

expressed is consistence with previous studies where overexpression of WRKY TF function as 

negative regulator of the plant defense response (Journot-Catalino et al., 2006, Li et al., 2004, 

Mao et al., 2007, Kim et al., 2008, Xing et al., 2008).  
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Fig 4.14. Relative expression of HvWRKY6 in resistant cv CI5791 inoculated with Ptt isolate 0-1 

(blue) and moderatly virulent isolate SM36-3 (orange); and the susceptible cv Tifang inoculated 

with Ptt isolate 0-1 (Gray). Y-axis represents the fold change and x-axis represents the time point 

at which the leaf samples were collected. Overall, the expression of HvWRKY6 is higher during 

the Tifang compatible reaction challenged with isolate 0-1 compared to CI5791 with isolate 0-1 

and SM36-3. 

 

Discussion 

Utilizing forward genetics, genetic mapping, and mapping-by-sequencing, the CI5791-γ3 

and CI5791-γ8 mutation was localized to a region of barley chromosome 3H and a candidate 

gene identified based on two independent mutations, a single bp and whole gene deletion, in the 

CI5791-γ8 and CI5791-γ3 mutants, respectively, using exome capture. The 1 bp and whole gene 

deletion are in line with the reports that γ -irradiation cause 1 to 10 kb deletions (Morita et al., 

2009). The independent mutations underlying the mutant phenotype were within the HvWRKY6 

gene, an ortholog of the Arabidopsis WRKY TF 6. We further validated the gene via post 

transcriptional gene silencing as being required for the high level of CI5791 resistance, thus, we 

hypothesize that HvWRKY6 is required for NFNB resistance responses.  
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The two independent mutants CI5791-γ3 and CI5791-γ8 exhibited susceptible symptoms 

to Ptt isolates that are not typical NFNB symptoms, but rather resemble SFNB lesions when 

inoculated with the Ptt isolates LDNPtt-19 and 0-1. The symptoms exhibited on the mutants are 

dark brown elliptical necrotic lesions that are surrounded by an expanding yellow chlorotic 

margin. The chlorosis expands and eventually coalesces with other lesions suggesting underlying 

pathogen growth, yet the necrotic regions remain relatively confined and elliptical resembling a 

SFNB type of susceptible reaction. Therefore, we initially phenotyped CI5791-γ3 x Heartland F2 

population using a 1-5 SFNB rating scale as described in Neupane et al., (2015). However, the 

CI5791-γ8 x Heartland F2 population, BSMV-VIGS experiment, and CI5791-γ3 x CI5791-γ8 

and reciprocal cross F1s were phenotyped using the NFNB 1-10 rating scale as described by 

Tekauz et al., (1985) as this mutant is related with NFNB disease resistance/ susceptibility. 

Interestingly, the mutant symptoms when inoculated with the two Moroccan isolates resemble 

typical net type lesions with enlarged chlorosis that coalesced and longitudinal and vertical 

striation visible but not as prominent as seen in typical NFNB susceptible interactions. Thus, we 

speculate that the HvWRKY6 transcription factor may function in restricting the growth of the 

pathogen. In a typical CI5791 resistance reaction the pathogen apparently penetrates the host as 

indicated by the formation of the pin point lesions, yet the pathogen growth is arrested early in 

the infection process and the lesion growth is stopped. This CI5791 major resistance gene maps 

to the centromeric region of chromosome 6H, which was the initial gene we were targeting in the 

mutant screening and we suspected would represent some form of immunity receptor. However, 

the first two mutants we identified were allelic and mapped to the 3H QTL locus and appear to 

be transcription factors that could play a role in arresting pathogen colonization and spread.  
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Necrotrophic pathogens often produce several host specific necrotrophic effectors (NE) 

including low molecular weight metabolites and small secreted proteins that interact with 

dominant host susceptibility genes (Wolpert et al., 2002, Liu et al 2011, Stergiopoulos et al., 

2013, Liu et al., 2012 and 2015, Shjerve et al., 2014). These interactions often follow the 

inverse-gene-for-gene model triggering programmed cell death (PCD) to facilitate necrotrophic 

fungal growth resulting in compatible interactions or a susceptible reaction called necrotrophic-

effector triggered susceptibility (NETS) (Friesen and Faris 2010, Faris et al., 2010, Liu et al., 

2015). Ptt is a necrotrophic pathogen that has been shown to produce proteinaceous effector 

designated as PttNE1 that targets dominant susceptibility gene/s on chr 6H in barley (Liu et al., 

2015) in an inverse gene-for-gene manner resulting in NETS. However, the CI5791 dominant 

resistance mechanism appears to follow the gene-for-gene model and possibly represents an R-

gene-Avr gene interaction that results in an early dominant resistance response. The HvWRKY6 

gene appears to be a highly conserved transcription factor that is required for arresting pathogen 

spread after penetration. Thus, we hypothesize that it may be activated early in the response 

providing early resistance, which translates into preventing further proliferation of the fungus 

after penetration and thereby limiting the growth of the lesions. Ptt 36-2 and 36-3 isolates may 

have produced some other virulence effectors or have a variable avr gene that evades early 

recognition and activation of the resistance signaling pathway resulting in a moderately 

susceptible reaction in CI5791. Yet, this more prolific early pathogen growth and the chlorosis 

results in a high level of susceptibility in the HvWRKY6 mutants suggesting that HvWRKY6 plays 

a role in sequestering pathogen spread after penetration and pathogen establishment in the host. 

The qPCR analysis was performed because there appeared to be no polymorphism in the 

primary amino acid sequence of the HvWRKY6 protein from a small number of resistant and 
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susceptible genotypes, suggesting that functional polymorphism between resistant and 

susceptible interactions may be occurring at a differential transcription level. The qPCR data 

showed that differential expression of HvWRKY6 occurrs in the barley line CI5791 in response to 

pathogen challenge as early as 1 hpi with the moderately virulent Ptt isolates 36-3 and 4 hpi with 

the avirulent Ptt isolate 0-1. Similary, in the susceptible cultivar Tifang, the differential 

expression occurred as early as 30 minutes after inoculation and reached a maximum of 22 fold 

upregulation at 6 hpi. Overall, the expression level in the susceptible cultivar Tifang with Ptt 

isolate 0-1 was significantly higher than CI5791 with 0-1 and 36-3. BSMV-VIGS experiment 

showed the specific silencing of the candidate HvWRKY6 gene results in a susceptible phenotype 

when inoculated with Ptt isolate 0-1, however, VIGS qPCR result showed no significant 

differences in HvWRKY6 gene suppression/ expression in both the BSMV- HvWRKY6 or BSMV- 

pBs control virus post transcriptional gene silencing plants. However, BSMV-VIGS experiments 

are notorious for inconsistent silencing levels, thus these expression analyses need to be repeated 

with more biological replications.  

The data generated in this study shows that the HvWRKY6 gene functions in NFNB 

resistance and probably plays a role in the activation of defense genes that are required to restrict 

lesion growth. However, the data showing that the gene is expressed at higher levels at the later 

time points in compatible interactions shows that the differential upregulation of this gene does 

not correlate with resistance. The loss of function in mutants suggested a positive role of 

HvWRKY6 but the time course qRCR analysis doesn’t suggest a role of differential regulation 

describing its positive role. Since, the disruption of the HvWRKY6 gene produces a predicted 

non-functional protein in the two independent mutants, which were susceptible to Ptt isolate 0-1 

we must posite a predominantely positive role of HvWRKY6 in the NFNB resistance responses. 
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Thus, it is likely that HvWRKY6 is involved in a basal resistance and doesn’t represent the gene 

that underlies the 3H dominant resistance QTL reported by Koladia et al., (2017) as there 

appears to be no primary gene polymorphism between CI5791 and Tifang or expression 

differences that could explain its functional polymorphism in a CI5791 x Tifang population, but 

the possibility can’t be ruled out.  

Several studies have provided evidence that WRKY TFs are an integral part of the plant 

immune system including roles in PTI, ETI, and systemic acquired resistance (SAR) (Eulgem 

and Somssich, 2007, Li et al., 2004, Rushton et al., 2010). Certain WRKY DNA-binding factor 

may serve as a component in a signal transduction pathway in plant cells in response to 

pathogens and regulate the expression of certain plant defense genes (Reichmann et al., 2000). 

AtWRKY6 regulates both plant defense responses against Pseudomonas syringae pv. tomato as 

well as senescence in Arabidopsis, which regulates the SIRK gene (Senescence-Induced Receptor 

like serine/threonine protein Kinase) that encodes a receptor-like kinase that is exclusively 

localized to the plant cell nucleus (Robatzek et al., 2002). In wheat, TaWRKY70 TF was 

identified as a strong candidate gene within Fusarium head blight QTL-2DL that governs 

resistance against Fusarium graminarium by regulating the three downstream resistance genes 

TaACT, TaDGK, and TaGLI (Kage et al., 2017). Thus, we hypothesize that HvWRKY6 may 

regulate other defense related genes that are required to restrict pathogen/ lesion growth.  

Thus, utilizing forward genetics, mapping-by-sequencing, exome capture and next 

generation sequencing data, we identified the HvWRKY6 gene that is required for NFNB 

resistance in barley line CI5791. We propose that the HvWRKY6 transcription factor positively 

functions to regulate defense response genes, which are required for resistance in CI5791 to 

delimit the growth of the pathogen in the host.  
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 CHAPTER 5. CONCLUSION 

Net blotch is an economically important foliar disease of barley that occurs in two 

distinct forms: Spot Form Net blotch (SFNB) and Net Form Net Blotch (NFNB) caused by 

Pyrenophora teres f. maculata (Ptm) and Pyrenophora teres f. teres (Ptt), respectively. This 

disease has a potential to cause an average yield loss of 10-40%. Chemical fungicides and 

cultural practices can help manage the disease; yet host resistance is the most economic method 

of managing this disease to reduce yield and quality losses. However, historically Upper 

Midwestern barley breeding programs have devoted less time and limited resources into 

deploying resistances to both forms of net blotch because it was not considered economically 

important to barley production as compared to other diseases like fusarium head blight, spot 

blotch and stem rust. Thus, the commercial cultivars grown in the region are moderately 

susceptible to susceptible to both of these diseases, which are current threats to barley production 

in the Northern Great Plains (ND, Montana, and Eastern Idaho) and Canada. The presence of 

highly virulent isolates is being detected in this region compared to isolates collected from other 

regions around the world. Therefore, it is critical to identify and deploy resistance against net 

blotch in this region to minimize the threat posed by these two diseases.  

Genome-wide association mapping was conducted on 2,062 world barley core collection 

accessions which were phenotyped at the seedling stage with 4 geographically distinct Ptm 

isolates collected from the United States (FGO), New Zealand (NZKF2), Australia (SG1), and 

Denmark (DEN 2.6 and genotyped with the 9k Illumina barley iSelect chip. The association 

mapping study identified 27 distinct loci associated with SFNB resistance/ susceptibility of 

which 6 loci were previously reported and the remaining 21 were novel loci representing a broad 

spectrum of resistance/ susceptibility loci. Further, the two higly resistant lines PI67381 (2-
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rowed) and PI84314 (6-rowed) that were identified from the world barley core collections were 

crossed with two popular malting cultivars Tradition (6-rowed) and Pinnacle (2-rowed) grown in 

the Upper Midwestern US. Three recombinant inbred line (RIL) mapping populations of 

Tradition x PI67381, Pinnacle x PI67381 and Pinnacle x PI84314 were developed. The RIL 

populations were genotyped using PCR-GBS and phenotyped at the seedling stage with six 

diverse SFNB isolates from the United States (FGO, PA14 and CA17), New Zealand (NZKF2), 

Australia (SG1), and Denmark (DEN 2.6). QTL analysis identified a total of twelve quantitative 

trait loci (QTL) on chromosome 2H, 3H, 4H, 6H and 7H, of which nine were previously reported 

and the remaining three QTL: QRptm-2H-77-83, QRptm-2H-141-152, and QRptm-7H-92-95 are 

novel. These resistances and the markers delimiting the QTL are being utilized to develop 

prebreeding lines by introgressing SFNB resistance into the cultivars Pinnacle and Tradition 

utilizing marker assisted selection.  

The barley line CI5791 exhibits a high level of resistance to diverse Ptt isolates collected 

from around the world. To identify genes involved in this CI5791 resistance, a forward genetic 

approach was used to identify two mutants designated as CI5791-γ3 and CI5791-γ8 by 

phentotyping with Ptt isolates. The mutation was mapped to chr 3H in CI5791-γ3 x Heartland F2 

population. Exome capture mediated mapping-by-sequencing identified a candidate HvWRKY6 

transcription factor gene required for NFNB resistance. We hypothesize that the HvWRKY6 gene 

function as a component of a resistance pathway, which is required for resistance by restricting 

lesion growth in CI5791. The resistance/susceptibility loci identified in this study will facilitate 

the development of net blotch resistant cultivars.   
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APPENDIX A. DISEASE PHENOTYPE OF THREE RIL POPULATIONS TO SIX 

GEOGRAPHICALLY DIVERSE P. TERES F. MACULATA ISOLATES 

Table A1. The average seedling infection types for the Tradition X PI67381 RIL population with 

the global collection of P. teres f. maculata isolates using a 1-5 rating scale (Neupane et al., 

2015). 

SN Lines FGO PA14 CA17 SG1 DEN2.6 NZKF2 

1 T67381-1 1.8 2.0 1.7 1.8 1.7 1.7 

2 T67381-2 3.2 3.3 3.3 2.8 2.3 2.0 

3 T67381-3 2.2 1.8 1.7 2.0 1.8 1.8 

4 T67381-4 2.0 2.3 2.3 2.2 1.7 1.5 

5 T67381-5 1.8 2.0 1.7 1.7 1.7 1.0 

6 T67381-6 1.3 1.2 1.0 1.2 1.5 1.0 

7 T67381-7 3.7 3.2 3.3 2.5 2.0 1.5 

8 T67381-9 3.0 3.3 3.3 2.7 1.7 2.0 

9 T67381-10 1.8 2.3 2.3 2.0 1.2 1.2 

10 T67381-11 2.5 3.0 3.0 2.3 1.8 2.0 

11 T67381-12 3.0 3.0 3.0 3.2 2.2 1.8 

12 T67381-13 2.2 2.5 2.7 2.3 2.0 2.0 

13 T67381-14 1.7 1.5 1.7 1.2 1.7 1.5 

14 T67381-16 2.8 2.8 2.8 2.5 1.0 1.5 

15 T67381-17 1.3 2.0 2.0 1.5 1.7 2.0 

16 T67381-18 2.8 3.2 3.0 2.5 1.3 2.0 

17 T67381-19 2.8 3.5 3.5 2.8 2.0 1.7 

18 T67381-21 2.7 2.7 2.3 2.0 2.0 1.7 

19 T67381-22 2.2 2.8 2.7 2.2 1.8 1.3 

20 T67381-23 2.5 3.0 2.3 2.3 2.2 1.8 

21 T67381-24 1.3 1.3 1.2 1.2 1.7 1.0 

22 T67381-25 2.3 3.0 2.5 2.5 1.3 1.3 

23 T67381-26 1.7 1.8 1.8 1.8 1.8 1.7 

24 T67381-27 3.2 3.2 3.0 2.5 1.7 1.3 

25 T67381-28 1.8 2.0 2.0 1.3 2.2 2.2 

26 T67381-29 3.0 2.8 2.8 2.5 1.3 1.0 

27 T67381-30 2.8 3.3 3.2 2.8 1.8 1.7 

28 T67381-31 2.8 3.7 3.2 2.5 1.8 1.5 

29 T67381-32 2.3 3.0 2.7 2.5 1.7 1.3 

30 T67381-33 2.2 2.3 2.3 2.3 1.2 1.3 

31 T67381-34 1.7 1.7 1.7 1.5 2.0 2.0 

32 T67381-37 2.3 2.8 3.0 2.2 1.5 1.7 

33 T67381-38 3.0 3.2 3.0 2.5 2.2 2.3 

34 T67381-39 1.7 2.0 1.8 1.3 1.7 1.7 

35 T67381-40 3.3 3.8 3.0 2.5 2.2 1.8 

36 T67381-41 2.8 3.0 3.0 2.5 1.7 2.0 

37 T67381-42 3.0 3.0 3.0 2.3 1.8 1.8 
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Table A1. The average seedling infection types for the Tradition X PI67381 RIL population with 

the global collection of P. teres f. maculata isolates using a 1-5 rating scale (Neupane et al., 

2015) (continued). 

SN Lines FGO PA14 CA17 SG1 DEN2.6 NZKF2 

38 T67381-43 2.7 2.3 2.5 2.0 1.8 1.5 

39 T67381-44 2.0 1.8 2.2 1.7 1.5 2.0 

40 T67381-45 2.8 3.3 3.0 2.7 1.5 1.8 

41 T67381-46 2.3 3.0 2.8 2.2 1.7 1.5 

42 T67381-47 2.0 2.2 2.0 1.7 1.5 1.3 

43 T67381-48 2.5 2.8 2.7 2.5 1.5 1.8 

44 T67381-49 3.0 3.2 3.3 2.7 1.7 2.0 

45 T67381-50 1.7 1.7 1.5 1.2 1.3 1.5 

46 T67381-51 2.2 2.0 1.8 1.5 1.8 1.5 

47 T67381-52 3.2 3.5 3.2 3.0 1.3 2.0 

48 T67381-53 1.5 2.0 2.0 1.2 1.5 1.7 

49 T67381-54 2.7 3.5 3.0 2.7 1.5 1.7 

50 T67381-55 1.8 1.7 1.5 1.5 1.2 1.5 

51 T67381-56 2.2 2.0 1.8 1.7 1.7 2.0 

52 T67381-57 3.0 3.0 3.0 2.5 1.7 1.5 

53 T67381-58 1.8 2.2 2.0 1.5 1.5 1.7 

54 T67381-59 1.5 1.5 1.5 1.8 2.0 1.5 

55 T67381-60 2.0 2.3 2.3 1.5 1.3 1.7 

56 T67381-61 2.0 2.3 2.7 2.3 1.8 1.8 

57 T67381-62 3.0 3.3 3.3 2.5 1.8 2.0 

58 T67381-63 1.8 2.0 1.8 2.0 1.8 2.2 

59 T67381-64 1.8 1.8 2.0 1.7 2.0 1.8 

60 T67381-65 1.8 1.8 1.8 1.8 1.8 2.0 

61 T67381-66 2.7 2.7 3.2 2.5 2.0 1.7 

62 T67381-67 1.8 1.8 1.7 1.7 2.3 2.0 

63 T67381-68 2.0 1.8 1.7 1.5 1.8 1.7 

64 T67381-69 1.8 1.8 1.8 1.8 1.7 1.5 

65 T67381-72 2.7 2.8 2.7 2.5 1.8 1.5 

66 T67381-73 1.8 2.3 2.3 2.2 1.2 1.2 

67 T67381-74 1.5 1.2 1.3 1.2 1.0 1.3 

68 T67381-75 2.3 3.0 2.8 2.5 1.5 1.0 

69 T67381-76 2.8 3.0 3.0 2.5 1.7 1.3 

70 T67381-77 1.8 1.8 1.7 1.3 2.0 1.7 

71 T67381-78 2.0 1.7 1.8 1.8 1.7 2.2 

72 T67381-79 1.7 1.7 2.0 1.3 1.3 1.2 

73 T67381-80 1.5 1.2 1.3 1.3 1.8 1.7 

74 T67381-81 2.7 2.8 2.3 2.7 1.7 1.5 

75 T67381-82 2.3 2.8 2.8 1.8 2.2 1.8 

76 T67381-83 3.0 3.3 3.0 3.0 1.7 1.7 

77 T67381-85 3.2 3.3 3.0 2.7 1.8 1.7 

78 T67381-86 1.5 1.7 1.5 1.2 1.2 1.5 

79 T67381-87 3.0 3.0 3.0 2.5 1.7 1.5 
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Table A1. The average seedling infection types for the Tradition X PI67381 RIL population with 

the global collection of P. teres f. maculata isolates using a 1-5 rating scale (Neupane et al., 

2015) (continued). 

SN Lines FGO PA14 CA17 SG1 DEN2.6 NZKF2 

80 T67381-88 2.0 2.2 2.0 1.5 1.7 1.5 

81 T67381-89 1.7 1.8 1.5 1.8 2.0 1.5 

82 T67381-90 1.7 2.0 1.8 1.7 1.5 1.2 

83 T67381-91 1.5 1.8 2.0 1.7 1.3 1.0 

84 T67381-92 2.5 2.5 2.8 2.5 1.2 1.2 

85 T67381-93 3.0 3.2 3.0 3.0 2.0 1.5 

86 T67381-94 3.0 3.3 3.0 2.5 1.3 1.5 

87 T67381-97 3.0 3.3 2.8 2.8 2.2 1.7 

88 T67381-98 2.2 2.0 2.0 1.7 1.3 1.5 

89 T67381-100 2.5 3.0 3.0 2.2 2.0 1.5 

90 T67381-101 2.8 3.3 3.0 2.8 1.5 1.2 

91 T67381-102 2.8 3.0 3.0 2.5 1.5 1.3 

92 T67381-103 1.7 1.3 1.5 1.3 1.8 1.7 

93 T67381-104 2.7 3.0 3.0 2.5 1.8 1.3 

94 T67381-105 3.0 2.7 2.8 2.7 2.0 1.7 

95 T67381-106 2.0 2.0 2.0 1.5 1.7 1.3 

96 T67381-107 2.1 2.5 2.5 2.0 1.7 1.3 

97 T67381-109 2.8 3.3 3.0 3.0 1.8 1.8 

98 T67381-110 2.3 2.5 2.5 2.2 1.8 1.8 

99 T67381-111 1.7 1.5 1.7 1.5 1.8 1.5 

100 T67381-112 2.5 2.5 2.5 2.3 1.5 1.3 

101 T67381-113 2.0 1.5 1.8 1.7 2.0 1.5 

102 T67381-114 1.5 1.5 1.3 1.8 1.5 1.5 

103 T67381-115 1.8 2.5 2.2 2.2 1.7 1.3 

104 T67381-117 2.0 2.0 1.8 2.0 2.0 1.8 

105 T67381-118 3.3 3.0 3.0 2.3 1.3 1.3 

106 T67381-119 1.3 1.2 1.0 1.3 1.2 1.2 

107 T67381-120 2.2 2.2 2.0 1.8 1.8 1.7 

108 T67381-121 2.7 3.0 2.8 2.7 1.5 1.7 

109 T67381-122 2.3 2.7 2.3 2.2 2.2 2.0 

110 T67381-123 3.0 3.0 3.0 2.5 1.3 1.3 

111 T67381-124 2.0 1.8 1.7 1.5 1.8 2.0 

112 T67381-125 2.7 2.5 2.3 2.7 2.0 1.5 

113 T67381-126 2.2 2.5 2.3 2.3 1.2 1.2 

114 T67381-127 1.8 2.0 1.8 1.3 1.3 1.3 

115 T67381-128 1.7 1.8 2.0 1.5 1.5 1.7 

116 T67381-129 2.0 2.0 2.0 1.7 2.0 1.8 

117 T67381-132 1.7 1.8 1.8 2.0 2.0 1.3 

118 T67381-133 2.0 2.0 2.0 2.0 1.7 1.5 

119 T67381-134 2.0 2.3 2.2 1.8 1.5 1.2 

120 T67381-135 2.5 3.0 2.5 2.3 1.5 1.5 

121 Tradition 3.0 3.0 3.0 2.7 2.3 2.3 

122 PI67381 1.5 1.5 1.3 1.5 1.3 1.2 
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Table A2. The average seedling infection types for the Pinnacle X PI67381 RIL population with 

the global collection of P. teres f. maculata isolates using a 1-5 rating scale (Neupane et al., 

2015). 

SN Lines FGO PA14 CA17 SG1 DEN2.6 NZKF2 

1 P67381-1 2.8 2.8 2.8 2.0 1.7 1.5 

2 P67381-2 2.0 1.7 2.0 1.8 1.5 1.2 

3 P67381-3 3.0 3.0 3.0 2.7 2.0 1.8 

4 P67381-4 2.5 2.0 2.0 2.2 2.2 1.5 

5 P67381-5 3.7 3.3 3.0 3.2 2.3 2.0 

6 P67381-6 3.0 2.5 2.8 3.0 1.8 1.5 

7 P67381-7 2.2 - - - 1.5 1.8 

8 P67381-8 2.8 3.0 3.0 2.7 1.7 1.7 

9 P67381-9 2.7 2.5 2.7 2.8 1.3 1.0 

10 P67381-10 2.5 2.0 2.0 2.0 1.8 1.7 

11 P67381-11 2.0 1.5 1.7 1.7 1.3 1.2 

12 P67381-12 2.7 1.8 2.2 2.2 1.7 2.0 

13 P67381-13 2.8 2.5 3.0 3.0 2.0 1.5 

14 P67381-14 3.2 2.3 2.8 2.5 1.5 1.5 

15 P67381-15 2.2 2.0 1.5 2.0 1.3 1.3 

16 P67381-16 1.5 - - - 2.0 1.8 

17 P67381-17 4.0 3.3 3.5 3.0 2.3 1.8 

18 P67381-18 3.5 - 2.0 - - 2.0 

19 P67381-19 2.2 2.5 2.0 2.7 1.2 1.5 

20 P67381-20 2.7 2.2 2.5 2.2 2.3 1.8 

21 P67381-21 2.7 2.3 2.3 2.7 1.8 1.7 

22 P67381-22 3.3 3.3 3.0 3.2 2.3 1.5 

23 P67381-23 3.2 2.7 2.5 3.3 1.5 1.2 

24 P67381-24 2.7 2.8 3.0 2.8 1.8 1.7 

25 P67381-25 2.3 2.0 2.0 2.0 1.3 1.2 

26 P67381-26 3.3 2.7 2.7 3.2 1.5 1.2 

27 P67381-27 2.3 2.3 2.2 2.8 1.3 1.5 

28 P67381-28 2.8 2.5 2.2 2.7 1.8 1.8 

29 P67381-29 2.5 2.8 2.7 2.7 1.8 1.3 

30 P67381-30 3.3 3.2 3.0 3.0 1.5 1.7 

31 P67381-31 2.8 2.0 2.7 2.2 1.5 2.0 

32 P67381-32 2.3 1.5 2.0 2.0 1.3 1.3 

33 P67381-33 3.2 3.0 2.8 3.2 1.7 1.8 

34 P67381-34 3.2 2.7 3.0 2.7 1.5 1.8 

35 P67381-35 1.5 1.5 1.5 1.8 1.3 1.5 

36 P67381-36 2.8 1.7 1.8 2.0 1.7 1.2 

37 P67381-37 2.8 2.5 2.7 2.3 1.8 2.0 

38 P67381-38 3.8 3.3 3.0 3.3 1.7 1.8 

39 P67381-39 3.0 2.8 3.0 3.0 1.3 1.8 

40 P67381-40 2.7 2.5 2.7 2.3 1.5 1.5 

41 P67381-41 3.3 - - - 1.5 1.5 

42 P67381-42 2.7 2.3 3.0 3.0 2.0 1.8 



 

166 

Table A2. The average seedling infection types for the Pinnacle X PI67381 RIL population with 

the global collection of P. teres f. maculata isolates using a 1-5 rating scale (Neupane et al., 

2015) (continued). 

SN Lines FGO PA14 CA17 SG1 DEN2.6 NZKF2 

43 P67381-43 2.8 2.3 2.0 2.7 2.3 2.0 

44 P67381-44 2.5 2.3 2.0 2.5 1.8 1.5 

45 P67381-45 1.7 1.5 1.5 2.0 1.5 1.3 

46 P67381-46 3.5 3.2 3.0 3.2 1.8 1.8 

47 P67381-47 1.8 1.3 2.0 1.8 1.0 1.0 

48 P67381-48 2.8 2.5 2.7 2.8 2.0 1.7 

49 P67381-49 2.5 2.2 2.2 2.7 1.5 1.2 

50 P67381-50 - - 3.0 - 1.5 1.5 

51 P67381-51 3.0 2.7 2.8 2.8 1.5 1.7 

52 P67381-52 2.0 2.3 2.3 1.7 1.5 1.5 

53 P67381-53 3.0 2.5 2.3 2.5 1.8 1.7 

54 P67381-54 3.2 3.0 3.0 2.5 2.0 1.8 

55 P67381-55 1.8 2.0 1.8 2.0 1.5 1.3 

56 P67381-56 2.3 1.8 2.0 1.8 1.2 1.2 

57 P67381-57 3.0 3.0 2.8 3.0 1.7 1.8 

58 P67381-58 2.5 2.3 2.8 2.7 1.8 1.8 

59 P67381-59 3.7 3.5 3.2 3.3 2.3 2.0 

60 P67381-60 2.3 2.2 2.0 2.2 2.2 2.0 

61 P67381-61 3.0 2.7 2.8 2.8 1.7 1.7 

62 P67381-62 3.0 2.8 3.0 3.0 1.7 1.7 

63 P67381-63 3.0 2.5 2.5 2.3 2.0 1.7 

64 P67381-64 2.8 2.2 2.5 2.0 2.0 1.8 

65 P67381-65 2.8 2.2 2.5 2.2 1.7 2.0 

66 P67381-66 2.5 3.0 3.0 3.3 1.5 1.5 

67 P67381-67 1.8 1.7 2.2 2.0 1.5 1.2 

68 P67381-68 3.2 2.5 2.5 3.2 1.7 1.7 

69 P67381-69 2.0 1.5 1.5 1.5 1.8 1.7 

70 P67381-70 2.2 2.2 2.3 2.0 1.7 1.3 

71 P67381-71 3.0 2.3 2.2 2.3 1.8 2.0 

72 P67381-72 1.8 - 2.8 - 1.5 1.5 

73 P67381-73 1.8 1.7 1.8 1.8 1.5 1.0 

74 P67381-74 3.5 2.7 2.8 2.8 1.8 1.8 

75 P67381-75 3.8 3.2 3.0 3.0 1.8 1.8 

76 P67381-76 3.8 3.3 2.7 3.5 2.0 2.0 

77 P67381-77 2.8 2.0 2.7 2.5 1.8 2.0 

78 P67381-78 3.2 2.8 2.8 3.0 1.8 2.2 

79 P67381-79 2.5 2.5 2.3 2.8 2.0 - 

80 P67381-80 2.5 2.2 2.2 2.2 2.0 2.0 

81 P67381-81 2.0 2.7 2.7 3.2 1.2 1.3 

82 P67381-82 2.2 2.0 2.0 1.8 1.8 1.7 

83 P67381-83 3.2 3.0 2.8 3.3 1.8 2.0 

84 P67381-84 2.0 2.0 2.2 2.0 1.7 1.7 
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Table A2. The average seedling infection types for the Pinnacle X PI67381 RIL population with 

the global collection of P. teres f. maculata isolates using a 1-5 rating scale (Neupane et al., 

2015) (continued). 

SN Lines FGO PA14 CA17 SG1 DEN2.6 NZKF2 

85 P67381-85 2.0 1.8 2.2 1.7 1.8 1.5 

86 P67381-86 3.0 2.8 2.8 3.0 1.5 1.0 

87 P67381-87 2.0 1.8 2.0 1.8 1.3 1.5 

88 P67381-88 2.7 2.3 2.0 2.0 1.8 1.8 

89 P67381-89 2.0 1.8 1.8 2.0 1.0 1.2 

90 P67381-90 2.2 2.2 2.3 2.2 1.7 1.5 

91 P67381-91 2.2 2.3 2.0 2.0 1.8 1.5 

92 P67381-92 2.7 2.5 2.2 2.5 2.0 1.8 

93 P67381-93 - - - 3.5 2.0 2.0 

94 P67381-94 2.5 2.7 3.2 2.3 1.8 1.5 

95 P67381-95 2.7 2.2 2.0 2.3 1.5 1.5 

96 P67381-96 - 2.5 - - 2.0 1.5 

97 P67381-97 3.0 2.7 3.0 3.0 1.5 1.3 

98 P67381-98 2.7 2.3 2.3 2.3 1.7 1.5 

99 P67381-99 2.2 2.2 2.3 2.0 1.3 1.2 

100 P67381-100 - 2.5 - - 1.5 1.0 

101 P67381-101 2.7 2.3 2.3 2.7 1.7 1.7 

102 P67381-102 2.0 2.0 1.8 1.8 1.7 1.3 

103 P67381-103 3.2 3.0 2.8 3.0 1.5 1.5 

104 P67381-104 2.5 2.3 1.8 2.0 1.7 1.8 

105 P67381-105 2.5 2.0 1.8 1.8 1.8 2.0 

106 P67381-106 3.0 2.7 2.8 3.0 1.5 1.7 

107 P67381-107 2.0 2.0 1.5 2.0 1.7 1.8 

108 P67381-108 2.8 1.8 2.2 3.0 1.7 1.2 

109 P67381-109 3.0 2.8 2.8 3.2 1.8 1.7 

110 P67381-110 3.0 2.8 2.7 3.0 1.8 2.0 

111 P67381-111 2.5 3.0 2.8 3.2 1.7 1.5 

112 P67381-112 2.5 2.3 2.0 2.3 1.7 1.8 

113 P67381-113 2.5 - - - 1.5 1.5 

114 P67381-114 2.5 2.2 2.3 2.7 1.5 1.3 

115 P67381-115 3.0 2.8 3.0 3.3 1.7 1.5 

116 P67381-116 3.2 3.0 2.5 3.0 1.7 1.5 

117 P67381-117 3.3 3.0 3.2 3.0 1.7 2.0 

118 Pinnacle  3.3 3.2 3.0 2.8 2.3 2.3 

119 PI67381 1.5 1.2 1.5 1.5 1.3 1.0 
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Table A3. The average seedling infection types for the Pinnacle X PI84314 RIL population with 

the global collection of P. teres f. maculata isolates using a 1-5 rating scale (Neupane et al., 

2015). 

SN Lines FGO PA14 CA17 SG1 DEN2.6 NZKF2 

1 P84314-1 1.8 2.2 2.0 2.2 1.5 1.5 

2 P84314-2 2.7 2.8 2.8 2.5 2.0 2.2 

3 P84314-3 2.0 2.0 2.0 - 1.5 1.3 

4 P84314-4 2.2 1.8 1.7 1.8 1.5 1.3 

5 P84314-5 2.7 2.8 2.5 2.5 1.2 1.7 

6 P84314-6 - - - - - - 

7 P84314-7 2.8 3.0 2.7 2.5 1.8 1.8 

8 P84314-8 2.2 2.5 2.3 2.0 1.2 1.2 

9 P84314-9 2.5 - - - 1.5 1.5 

10 P84314-10 3.0 - - - 2.0 2.3 

11 P84314-11 3.0 - - - 1.5 - 

12 P84314-12 2.3 2.7 2.7 2.2 1.7 1.5 

13 P84314-13 2.2 2.5 3.0 2.3 1.3 1.2 

14 P84314-14 2.8 3.2 3.0 2.7 1.7 1.7 

15 P84314-15 2.7 2.5 2.5 2.3 1.8 2.0 

16 P84314-16 2.7 3.0 2.5 2.3 1.8 1.8 

17 P84314-17 1.8 2.2 2.0 2.7 1.3 1.3 

18 P84314-18 3.2 3.0 2.8 3.0 1.8 1.7 

19 P84314-19 2.3 2.7 2.2 2.0 1.3 1.3 

20 P84314-20 2.5 2.8 2.8 2.8 1.7 1.7 

21 P84314-21 2.8 2.7 2.5 2.3 2.0 1.8 

22 P84314-22 3.7 3.3 2.8 3.0 1.8 2.0 

23 P84314-23 2.3 2.5 2.5 2.3 1.7 1.5 

24 P84314-24 2.8 2.7 2.5 2.7 1.8 2.0 

25 P84314-25 3.2 3.2 2.5 2.8 1.7 1.8 

26 P84314-26 2.5 3.0 2.0 - 1.5 1.8 

27 P84314-27 2.5 2.0 1.5 - 1.5 1.8 

28 P84314-28 2.5 - - - 1.5 1.5 

29 P84314-29 3.3 2.8 3.0 2.0 1.8 2.0 

30 P84314-30 3.0 2.5 2.3 - 1.5 1.3 

31 P84314-31 3.2 3.2 2.8 2.8 1.8 1.8 

32 P84314-32 2.5 3.2 2.5 2.3 1.8 1.8 

33 P84314-33 2.3 2.5 2.5 2.0 1.8 2.0 

34 P84314-34 2.5 2.8 2.5 3.0 1.5 1.7 

35 P84314-35 2.8 2.5 1.8 2.3 2.3 2.0 

36 P84314-36 2.5 2.8 2.3 2.8 2.2 1.5 

37 P84314-37 2.0 2.2 2.0 2.0 1.5 1.3 

38 P84314-38 2.3 2.2 2.0 2.5 1.7 1.2 

39 P84314-39 3.0 3.2 2.5 2.7 2.3 2.3 

40 P84314-40 2.0 - - - 1.5 2.0 

41 P84314-41 2.7 2.3 2.2 2.8 1.5 1.5 

42 P84314-42 2.3 2.7 2.8 2.5 1.8 1.8 
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Table A3. The average seedling infection types for the Pinnacle X PI84314 population with the 

global collection of P. teres f. maculata isolates using a 1-5 rating scale (Neupane et al., 2015) 

(continued). 

SN Lines FGO PA14 CA17 SG1 DEN2.6 NZKF2 

43 P84314-43 3.2 2.0 1.8 2.2 1.8 1.3 

44 P84314-44 2.5 2.2 1.8 2.3 1.5 1.7 

45 P84314-45 2.7 2.8 3.0 2.7 2.3 2.0 

46 P84314-46 2.2 2.3 2.7 2.0 1.5 1.3 

47 P84314-47 3.2 3.2 2.3 2.3 1.8 1.8 

48 P84314-48 3.0 3.3 3.0 3.0 1.7 1.3 

49 P84314-49 2.2 2.0 2.0 2.0 1.5 1.2 

50 P84314-50 3.2 2.5 2.7 2.3 1.3 1.3 

51 P84314-51 2.7 2.8 2.5 2.8 2.0 1.7 

52 P84314-52 3.7 2.8 2.5 2.5 1.7 1.5 

53 P84314-53 3.5 3.2 2.8 2.8 1.8 2.0 

54 P84314-54 3.0 - - - 2.0 2.0 

55 P84314-55 2.8 3.0 2.3 2.5 1.7 1.8 

56 P84314-56 2.3 3.2 2.3 3.0 2.2 1.8 

57 P84314-57 3.2 2.8 2.3 2.5 1.7 1.5 

58 P84314-58 - - - - - - 

59 P84314-59 2.5 2.2 2.2 2.3 1.7 1.3 

60 P84314-60 2.0 2.2 2.2 2.3 1.8 1.7 

61 P84314-61 1.5 - - - 1.8 1.8 

62 P84314-62 2.0 2.5 1.8 2.0 1.2 1.7 

63 P84314-63 3.2 3.2 3.0 2.7 2.2 2.2 

64 P84314-64 2.5 3.0 2.3 2.8 1.8 1.7 

65 P84314-65 1.5 - - - 1.0 1.0 

66 P84314-66 2.5 2.5 2.2 2.3 1.2 1.3 

67 P84314-67 2.8 3.0 2.8 2.7 1.3 1.5 

68 P84314-68 2.5 - - - 1.5 1.8 

69 P84314-69 3.0 3.0 2.8 2.5 1.5 1.3 

70 P84314-70 3.0 3.0 3.0 - 2.0 1.8 

71 P84314-71 2.7 2.8 2.7 2.8 1.8 2.0 

72 P84314-72 2.7 2.7 1.8 2.3 1.2 1.2 

73 P84314-73 2.5 3.0 3.0 - 2.0 2.0 

74 P84314-74 2.7 2.7 2.3 2.8 1.3 1.5 

75 P84314-75 2.8 2.5 3.0 2.3 1.7 1.7 

76 P84314-76 3.3 2.8 2.7 2.3 2.0 1.8 

77 P84314-77 2.3 2.5 2.5 2.5 1.5 1.3 

78 P84314-78 1.8 2.0 2.0 2.0 1.3 1.3 

79 P84314-79 3.3 3.3 3.0 2.8 2.3 2.2 

80 P84314-80 3.0 2.8 2.2 2.8 1.3 1.5 

81 P84314-81 2.8 2.8 2.5 2.5 1.3 1.5 

82 P84314-82 2.5 2.8 2.7 2.7 2.0 1.5 

83 P84314-83 2.3 2.5 2.7 2.8 1.5 1.8 

84 P84314-84 2.3 2.0 2.2 2.0 1.2 1.3 

85 P84314-85 3.3 3.3 3.0 2.8 1.7 1.5 

86 P84314-86 3.3 3.5 2.8 3.0 1.8 2.0 
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Table A3. The average seedling infection types for the Pinnacle X PI84314 population with the 

global collection of P. teres f. maculata isolates using a 1-5 rating scale (Neupane et al., 2015) 

(continued). 

SN Lines FGO PA14 CA17 SG1 DEN2.6 NZKF2 

87 P84314-87 2.3 2.8 2.5 2.5 1.5 1.5 

88 P84314-88 1.8 1.5 1.7 2.0 1.0 1.0 

89 P84314-89 2.2 2.7 2.0 2.5 1.3 1.2 

90 P84314-90 2.8 3.0 2.5 - 1.8 2.0 

91 P84314-91 3.0 3.0 3.0 - 1.5 1.5 

92 P84314-92 2.0 2.2 1.8 2.0 1.3 1.3 

93 P84314-93 2.7 2.3 2.0 2.0 1.8 1.7 

94 P84314-94 2.8 3.0 2.7 2.7 1.5 1.5 

95 P84314-95 2.5 2.0 2.0 2.0 1.2 1.3 

96 P84314-96 3.3 3.5 3.2 3.3 1.8 1.8 

97 P84314-97 3.0 2.8 2.5 2.5 1.7 1.8 

98 P84314-98 3.2 3.2 2.8 3.0 2.5 2.2 

99 P84314-99 2.8 3.2 2.7 2.3 1.5 1.8 

100 P84314-100 3.0 3.2 3.0 3.0 1.7 1.8 

101 P84314-101 2.2 2.3 2.0 2.5 1.2 1.0 

102 P84314-102 2.5 2.5 2.3 2.5 1.7 1.5 

103 P84314-103 3.3 2.8 2.2 2.5 1.7 1.7 

104 P84314-104 3.2 2.8 2.5 2.5 1.8 1.7 

105 P84314-105 2.2 2.2 2.2 2.2 1.3 1.5 

106 P84314-106 2.3 2.2 2.2 2.5 1.8 1.8 

107 P84314-107 2.3 2.0 2.0 - 1.0 1.3 

108 P84314-108 2.5 2.8 2.3 2.5 1.5 1.8 

109 P84314-109 3.3 3.0 2.7 2.8 2.0 1.7 

110 P84314-110 2.2 2.5 2.0 - 1.5 1.5 

111 P84314-111 2.0 - - - 1.8 1.5 

112 P84314-112 3.0 2.8 2.0 2.8 1.7 1.7 

113 P84314-113 2.5 2.2 2.0 2.3 1.7 1.7 

114 P84314-114 3.0 3.2 3.2 2.8 1.8 1.8 

115 P84314-115 3.0 3.0 3.0 2.7 1.7 1.7 

116 Pinnacle 2.8 3.3 3.0 2.8 2.5 2.3 

117 PI84314 1.3 1.8 1.5 1.5 1.0 1.0 
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Table A4. Average seedling reaction type of Tradition X PI67381 F2 population to Ptm isolate 

FG0 using 1-5 rating scale (Neupane et al., 2015).  

SN Entry Dis. Score 

1 PI67381xTradition F2-1 1.5 

2 PI67381xTradition F2-2 1.5 

3 PI67381xTradition F2-3 1.5 

4 PI67381xTradition F2-4 2.0 

5 PI67381xTradition F2-5 1.5 

6 PI67381xTradition F2-6 1.5 

7 PI67381xTradition F2-7 1.5 

8 PI67381xTradition F2-8 1.5 

9 PI67381xTradition F2-9 2.0 

10 PI67381xTradition F2-10 1.5 

11 PI67381xTradition F2-11 1.5 

12 PI67381xTradition F2-12 1.5 

13 PI67381xTradition F2-13 1.5 

14 PI67381xTradition F2-14 1.5 

15 PI67381xTradition F2-15 1.5 

16 PI67381xTradition F2-16 2.0 

17 PI67381xTradition F2-17 1.5 

18 PI67381xTradition F2-18 1.5 

19 PI67381xTradition F2-19 2.0 

20 PI67381xTradition F2-20 1.5 

21 PI67381xTradition F2-21 1.5 

22 PI67381xTradition F2-22 1.5 

23 PI67381xTradition F2-23 1.5 

24 PI67381xTradition F2-24 1.5 

25 PI67381xTradition F2-25 1.5 

26 PI67381xTradition F2-26 1.5 

27 PI67381xTradition F2-27 2.0 

28 PI67381xTradition F2-28 1.5 

29 PI67381xTradition F2-29 4.0 

30 PI67381xTradition F2-30 3.0 

31 PI67381xTradition F2-31 3.0 

32 PI67381xTradition F2-32 3.0 

33 PI67381xTradition F2-33 3.5 

34 PI67381xTradition F2-34 3.0 

35 PI67381xTradition F2-35 3.0 

36 PI67381xTradition F2-36 3.0 

37 PI67381xTradition F2-37 3.5 

38 PI67381xTradition F2-38 3.0 

39 PI67381xTradition F2-39 3.5 

40 PI67381xTradition F2-40 3.0 

41 PI67381xTradition F2-41 3.5 
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Table A4. Average seedling reaction type of Tradition X PI67381 F2 population to Ptm isolate 

FG0 using 1-5 rating scale (Neupane et al., 2015) (continued).  

SN Entry Dis. Score 

42 PI67381xTradition F2-42 3.5 

43 PI67381xTradition F2-43 3.5 

44 PI67381xTradition F2-44 3.0 

45 PI67381xTradition F2-45 3.0 

46 PI67381xTradition F2-46 3.0 

47 PI67381xTradition F2-47 3.5 

48 PI67381xTradition F2-48 3.5 

49 PI67381xTradition F2-49 3.5 

50 PI67381xTradition F2-50 3.0 

51 PI67381xTradition F2-51 3.5 

52 PI67381xTradition F2-52 3.0 

53 PI67381xTradition F2-53 3.0 

54 PI67381xTradition F2-54 3.0 

55 PI67381xTradition F2-55 3.0 

56 PI67381xTradition F2-56 3.5 

57 PI67381xTradition F2-57 3.5 

58 PI67381xTradition F2-58 3.5 

59 PI67381xTradition F2-59 3.5 

60 PI67381xTradition F2-60 3.0 

61 PI67381xTradition F2-61 3.0 

62 PI67381xTradition F2-62 3.0 

63 PI67381xTradition F2-63 3.5 

64 PI67381xTradition F2-64 3.5 

65 PI67381xTradition F2-65 3.5 

66 PI67381xTradition F2-66 3.0 

67 PI67381xTradition F2-67 3.0 

68 PI67381xTradition F2-68 3.5 

69 PI67381xTradition F2-69 3.0 

70 PI67381xTradition F2-70 3.5 

71 PI67381xTradition F2-71 3.5 

72 PI67381xTradition F2-72 3.0 

73 PI67381xTradition F2-73 3.0 

74 PI67381xTradition F2-74 3.0 

75 PI67381xTradition F2-75 3.0 

76 PI67381xTradition F2-76 3.0 

77 PI67381xTradition F2-77 3.0 

78 PI67381xTradition F2-78 3.0 

79 PI67381xTradition F2-79 3.0 

80 PI67381xTradition F2-80 3.5 

81 PI67381xTradition F2-81 3.0 

82 PI67381xTradition F2-82 3.0 

83 PI67381xTradition F2-83 3.5 
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Table A4. Average seedling reaction type of Tradition X PI67381 F2 population to Ptm isolate 

FG0 using 1-5 rating scale (Neupane et al., 2015) (continued).  

SN Entry Dis. Score 

84 PI67381xTradition F2-84 3.0 

85 PI67381xTradition F2-85 3.5 

86 PI67381xTradition F2-86 3.0 

87 PI67381xTradition F2-87 3.0 

88 PI67381xTradition F2-88 3.0 

89 PI67381xTradition F2-89 3.5 

90 PI67381xTradition F2-90 3.0 

91 PI67381xTradition F2-91 3.0 

92 PI67381xTradition F2-92 3.5 

93 PI67381xTradition F2-93 3.0 

94 PI67381xTradition F2-94 3.0 

95 PI67381xTradition F2-95 3.0 

96 PI67381xTradition F2-96 3.0 

97 PI67381xTradition F2-97 3.5 

98 PI67381xTradition F2-98 3.5 

99 PI67381xTradition F2-99 3.0 

100 PI67381xTradition F2-100 3.0 

101 PI67381xTradition F2-101 3.0 

102 PI67381xTradition F2-102 3.0 

103 PI67381xTradition F2-103 3.5 

104 PI67381xTradition F2-104 3.0 

105 PI67381xTradition F2-105 3.0 

106 PI67381xTradition F2-106 3.0 

107 PI67381xTradition F2-107 3.0 

108 PI67381xTradition F2-108 3.0 

109 PI67381xTradition F2-109 3.0 

110 PI67381xTradition F2-110 3.5 

111 PI67381xTradition F2-111 3.5 

112 PI67381xTradition F2-112 3.5 

113 PI67381xTradition F2-113 3.0 
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APPENDIX B. DISEASE PHENOTYPE OF CI5791, HEARTLAND, CI5791-γ3, CI5791-

γ8, CI5791-γ3 X -γ8 F1, CI5791-γ8 X -γ3 F1, CI5791-γ3 X HEARTLAND F2 AND CI5791-

γ8 X HEARTLAND F2 POPULATIONS PHENOTYPED WITH PTT ISOLATES  

Table B1. Seedling disease reactions of 111 CI5791-γ3 X Heartland F2 individuals to Ptt isolate 

0-1 based on the 1-5 SFNB rating scale. Disease reactions above 2 were considered susceptible.  

SN CI5791-γ3 X Heartland F2  Score 

1 γ3/ HL-1 2.0 

2 γ3/ HL-2 1.0 

3 γ3/ HL-3 1.5 

4 γ3/ HL-4 1.0 

5 γ3/ HL-5 1.0 

6 γ3/ HL-6 1.0 

7 γ3/ HL-7 1.0 

8 γ3/ HL-8 2.0 

9 γ3/ HL-9 1.0 

10 γ3/ HL-10 1.0 

11 γ3/ HL-11 1.0 

12 γ3/ HL-12 1.5 

13 γ3/ HL-13 1.0 

14 γ3/ HL-14 1.5 

15 γ3/ HL-15 1.0 

16 γ3/ HL-16 1.5 

17 γ3/ HL-17 1.0 

18 γ3/ HL-18 1.0 

19 γ3/ HL-19 1.0 

20 γ3/ HL-20 1.0 

21 γ3/ HL-21 2.0 

22 γ3/ HL-22 1.0 

23 γ3/ HL-23 1.0 

24 γ3/ HL-24 1.0 

25 γ3/ HL-25 3.0 

26 γ3/ HL-26 3.5 

27 γ3/ HL-27 4.0 

28 γ3/ HL-28 4.0 

29 γ3/ HL-29 4.5 

30 γ3/ HL-30 4.0 

31 γ3/ HL-31 4.5 

32 γ3/ HL-32 4.5 

33 γ3/ HL-33 4.5 

34 γ3/ HL-34 3.5 



 

175 

Table B1. Seedling disease reactions of 111 CI5791-γ3 X Heartland F2 individuals to Ptt isolate 

0-1 based on the 1-5 SFNB rating scale. Disease reactions above 2 were considered susceptible 

(continued). 

SN CI5791-γ3 X Heartland F2  Score 

35 γ3/ HL-35 3.5 

36 γ3/ HL-36 4.5 

37 γ3/ HL-38 3.5 

38 γ3/ HL-39 4.0 

39 γ3/ HL-40 4.0 

40 γ3/ HL-41 4.5 

41 γ3/ HL-42 4.0 

42 γ3/ HL-43 4.0 

43 γ3/ HL-44 4.5 

44 γ3/ HL-45 1.0 

45 γ3/ HL-46 1.0 

46 γ3/ HL-47 1.5 

47 γ3/ HL-48 1.0 

48 γ3/ HL-49 1.0 

49 γ3/ HL-50 1.0 

50 γ3/ HL-51 2.5 

51 γ3/ HL-1 1.0 

52 γ3/ HL-2 1.0 

53 γ3/ HL-3 2.0 

54 γ3/ HL-4 1.0 

55 γ3/ HL-5 1.0 

56 γ3/ HL-6 1.5 

57 γ3/ HL-7 1.0 

58 γ3/ HL-8 1.0 

59 γ3/ HL-9 1.0 

60 γ3/ HL-10 1.0 

61 γ3/ HL-11 1.5 

62 γ3/ HL-12 1.0 

63 γ3/ HL-13 1.0 

64 γ3/ HL-14 1.0 

65 γ3/ HL-15 1.0 

66 γ3/ HL-16 1.0 

67 γ3/ HL-17 1.0 

68 γ3/ HL-18 1.0 

69 γ3/ HL-19 1.0 

70 γ3/ HL-20 1.0 

71 γ3/ HL-21 1.0 

72 γ3/ HL-22 1.0 

73 γ3/ HL-23 1.0 

74 γ3/ HL-24 1.0 

75 γ3/ HL-25 1.0 
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Table B1. Seedling disease reactions of 111 CI5791-γ3 X Heartland F2 individuals to Ptt isolate 

0-1 based on the 1-5 SFNB rating scale. Disease reactions above 2 were considered susceptible 

(continued). 

SN CI5791-γ3 X Heartland F2  Score 

76 γ3/ HL-26 1.0 

77 γ3/ HL-27 1.0 

78 γ3/ HL-28 1.5 

79 γ3/ HL-29 1.0 

80 γ3/ HL-30 1.5 

81 γ3/ HL-31 1.0 

82 γ3/ HL-32 1.5 

83 γ3/ HL-33 1.5 

84 γ3/ HL-34 1.0 

85 γ3/ HL-35 1.0 

86 γ3/ HL-36 1.5 

87 γ3/ HL-37 1.0 

88 γ3/ HL-38 2.0 

89 γ3/ HL-40 3.5 

90 γ3/ HL-41 4.0 

91 γ3/ HL-42 4.0 

92 γ3/ HL-43 4.0 

93 γ3/ HL-44 3.5 

94 γ3/ HL-45 3.0 

95 γ3/ HL-46 3.5 

96 γ3/ HL-47 4.0 

97 γ3/ HL-48 5.0 

98 γ3/ HL-49 4.5 

99 γ3/ HL-50 4.0 

100 γ3/ HL-51 4.0 

101 γ3/ HL-52 1.0 

102 γ3/ HL-53 1.0 

103 γ3/ HL-54 1.0 

104 γ3/ HL-55 1.0 

105 γ3/ HL-56 1.0 

106 γ3/ HL-57 1.0 

107 γ3/ HL-58 1.0 

108 γ3/ HL-59 1.0 

109 γ3/ HL-60 1.0 

110 γ3/ HL-61 3.0 

111 γ3/ HL-62 3.5 

112 CI5791-γ3 3.5 

113 CI 5791 1.0 

114 Heartland 1.0 
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Table B2. Seedling disease reactions of 116 CI5791-γ8 X Heartland F2 individuals to Ptt isolate 

0-1 based on the 1-10 NFNB rating scale. Disease reactions above 3 were considered susceptible.  

SN CI5791-γ8 X Heartland Score 

1 γ8/ HL - 1 6.0 

2 γ8/ HL - 2 7.0 

3 γ8/ HL - 3 6.5 

4 γ8/ HL - 4 6.0 

5 γ8/ HL - 5 5.0 

6 γ8/ HL - 6 5.5 

7 γ8/ HL - 7 8.0 

8 γ8/ HL - 8 6.0 

9 γ8/ HL - 9 6.5 

10 γ8/ HL - 10 7.5 

11 γ8/ HL - 12 4.5 

12 γ8/ HL - 13 6.0 

13 γ8/ HL - 14 6.5 

14 γ8/ HL - 15 7.0 

15 γ8/ HL - 16 8.5 

16 γ8/ HL - 17 6.5 

17 γ8/ HL - 18 9.0 

18 γ8/ HL - 19 7.5 

19 γ8/ HL - 20 6.5 

20 γ8/ HL - 21 7.0 

21 γ8/ HL - 22 5.5 

22 γ8/ HL - 23 8.0 

23 γ8/ HL - 24 6.5 

24 γ8/ HL - 25 6.0 

25 γ8/ HL - 26 6.0 

26 γ8/ HL - 27 7.5 

27 γ8/ HL - 28 7.5 

28 γ8/ HL - 29 2.0 

29 γ8/ HL - 30 1.0 

30 γ8/ HL - 31 1.5 

31 γ8/ HL - 32 1.0 

32 γ8/ HL - 33 1.5 

33 γ8/ HL - 34 1.5 

34 γ8/ HL - 35 1.0 

35 γ8/ HL - 36 1.5 

36 γ8/ HL - 37 1.5 

37 γ8/ HL - 38 1.0 

38 γ8/ HL - 39 1.5 

39 γ8/ HL - 40 1.5 

40 γ8/ HL - 41 1.5 

41 γ8/ HL - 42 1.5 
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Table B2. Seedling disease reactions of 116 CI5791-γ8 X Heartland F2 individuals to Ptt isolate 

0-1 based on the 1-10 NFNB rating scale. Disease reactions above 3 were considered susceptible 

(continued). 

SN CI5791-γ8 X Heartland Score 

42 γ8/ HL - 43 1.0 

43 γ8/ HL - 44 2.5 

44 γ8/ HL - 45 2.0 

45 γ8/ HL - 46 2.0 

46 γ8/ HL - 47 2.2 

47 γ8/ HL - 48 1.0 

48 γ8/ HL - 49 1.0 

49 γ8/ HL - 50 1.0 

50 γ8/ HL - 51 1.5 

51 γ8/ HL - 52 1.0 

52 γ8/ HL - 53 1.5 

53 γ8/ HL - 54 1.0 

54 γ8/ HL - 55 2.0 

55 γ8/ HL - 56 1.5 

56 γ8/ HL - 57 2.0 

57 γ8/ HL - 58 1.5 

58 γ8/ HL - 59 2.0 

59 γ8/ HL - 60 1.5 

60 γ8/ HL - 61 1.0 

61 γ8/ HL - 62 1.0 

62 γ8/ HL - 63 1.5 

63 γ8/ HL - 64 2.5 

64 γ8/ HL - 65 2.0 

65 γ8/ HL - 66 1.0 

66 γ8/ HL - 67 1.5 

67 γ8/ HL - 68 1.0 

68 γ8/ HL - 69 1.0 

69 γ8/ HL - 70 1.5 

70 γ8/ HL - 71 1.0 

71 γ8/ HL - 72 1.0 

72 γ8/ HL - 73 1.0 

73 γ8/ HL - 74 1.0 

74 γ8/ HL - 75 2.0 

75 γ8/ HL - 76 1.5 

76 γ8/ HL - 77 1.5 

77 γ8/ HL - 78 1.0 

78 γ8/ HL - 79 1.5 

79 γ8/ HL - 80 1.5 

80 γ8/ HL - 81 1.0 

81 γ8/ HL - 82 2.0 

82 γ8/ HL - 83 1.5 
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Table B2. Seedling disease reactions of 116 CI5791-γ8 X Heartland F2 individuals to Ptt isolate 

0-1 based on the 1-10 NFNB rating scale. Disease reactions above 3 were considered susceptible 

(continued). 

SN CI5791-γ8 X Heartland Score 

83 γ8/ HL - 84   1.5 

85 γ8/ HL - 86 1.0 

86 γ8/ HL - 87 1.0 

87 γ8/ HL - 88 1.0 

88 γ8/ HL - 89 1.5 

89 γ8/ HL - 90 1.0 

90 γ8/ HL - 91 2.0 

91 γ8/ HL - 92 2.5 

92 γ8/ HL - 93 2.0 

93 γ8/ HL - 94 1.5 

94 γ8/ HL - 95 1.5 

95 γ8/ HL - 96 2.0 

96 γ8/ HL - 97 2.0 

97 γ8/ HL - 98 1.5 

98 γ8/ HL - 99 1.5 

99 γ8/ HL - 100 1.5 

100 γ8/ HL - 101 1.0 

101 γ8/ HL - 102 1.0 

102 γ8/ HL - 103 1.5 

103 γ8/ HL - 104 1.0 

104 γ8/ HL - 105 1.0 

105 γ8/ HL - 106 2.0 

106 γ8/ HL - 107 2.0 

107 γ8/ HL - 108 2.0 

108 γ8/ HL - 109 1.5 

109 γ8/ HL - 110 1.5 

110 γ8/ HL - 111 2.0 

111 γ8/ HL - 112 1.0 

112 γ8/ HL - 113 1.5 

113 γ8/ HL - 114 1.5 

114 γ8/ HL - 115 1.0 

115 γ8/ HL - 116 1.5 

116 γ8/ HL - 117 1.0 

117 CI5791-γ3 6.5 

118 CI5791-γ8  6.0 

119 Heartland  1.5 

120 CI5791 1.5 

121 Robust 8.5 

 122 Tifang 8.0 
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Table B3. Seedling disease phenotype of CI5791-γ3, CI5791-γ8, CI5791, Hockett, and Hector to 

the Ptt isolates SM36-2 and SM36-3 collected in Morocco. 

Lines Ptt SM-36-2 Ptt SM36-3 

CI5791-γ3  6.5 6.0 

CI5791-γ8 7.0 6.5 

CI5791 4.5 3.5 

Hockett 1.0 1.0 

Hector 9.5 8.0 

Table B4. Seedling disease phenotype of reciprocal cross between CI5791-γ3 and CI5791-γ8 F1s 

to Ptt isolate 0-1. 

SN Plants Disease score 

1 CI5791-γ8/-γ3 - 1 6.5 

2 CI5791-γ8/-γ3 - 2 7.5 

3 CI5791-γ8/-γ3 - 3 7.0 

4 CI5791-γ8/-γ3 - 4 6.0 

5 CI5791-γ8/-γ3 - 5 5.5 

6 CI5791-γ8/-γ3 - 6 6.5 

7 CI5791-γ8/-γ3 - 7 5.5 

8 CI5791-γ8/-γ3 - 8 7.0 

9 CI5791-γ8/-γ3 - 9 7.0 

10 CI5791-γ8/-γ3 - 10 6.0 

11 CI5791-γ3/-γ8 - 1 5.5 

12 CI5791-γ3/-γ8 - 2 9.0 

13 CI5791-γ3/-γ8 - 3 5.5 

14 CI5791-γ3/-γ8 - 4 6.0 

15 CI5791-γ3/-γ8 - 5 6.0 

16 CI5791-γ3/-γ8 - 6 5.5 

17 CI5791-γ3 6.0 

18 CI5791-γ8  5.5 

19 CI5791 1.5 

20 Heartland 1.5 

21 Robust 8.5 
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Table B5. Phenotypic analysis of BSMV-VIGS plants inoculated with Ptt isolate 0-1 at 7 DAI 

(days after inoculation). 

Plants VIGS Knockdown Plants MCS 

1 5.3 1 2.3 

2 5.3 2 2.0 

3 5.3 3 5.3 

4 2.0 4 3.3 

5 4.3 5 2.3 

6 4.3 6 2.0 

7 5.0 7 2.0 

8 6.0 8 2.3 

9 6.8 9 4.8 

10 5.8 10 2.3 

11 3.3 11 2.0 

12 5.0 12 4.3 

13 4.3 13 3.0 

14 2.3 14 2.8 

15 5.3 15 3.3 

16 4.3 16 2.3 

17 4.8 17 4.3 

18 3.0 18 3.0 

19 5.3 19 4.3 

20 2.3 20 5.0 

21 4.8 21 2.0 

22 6.0 22 4.0 

23 5.0 23 3.0 

24 3.3 24 5.0 

25 6.0 25 3.8 

26 5.8 26 3.0 

27 6.3 27 2.3 

28 5.0 28 2.3 

29 4.3 29 3.3 

30 3.0 30 2.0 

31 6.0 31 2.8 

32 3.8 32 2.8 

33 5.0 33 2.8 

34 6.0 CI 5791 1.3 

35 4.8 Robust 8.0 

36 5.0   

37 5.0   

38 3.3   

39 4.8   
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Table B6. Phenotypic analysis of BSMV-VIGS plants inoculated with Ptt isolate 0-1 at 12 DAI 

(days after inoculation). 

Plants VIGS Knockdown Plants MCS 

1 5.0 1 1.0 

2 5.0 2 2.0 

3 7.3 3 2.0 

4 6.3 4 2.0 

5 4.3 5 1.3 

6 3.8 6 4.3 

7 6.3 7 2.8 

8 4.8 8 2.3 

9 3.3 9 2.3 

10 5.3 10 2.3 

11 8.3 11 2.3 

12 5.3 12 2.3 

13 7.3 13 2.3 

14 10.0 14 5.3 

15 9.0 15 3.3 

16 8.3 16 4.3 

17 9.0 17 2.3 

18 7.3 18 4.3 

19 3.3 19 4.3 

20 4.3 20 3.0 

21 5.0 21 - 

22 3.3 22 4.3 

23 6.8 23 3.3 

24 3.3 24 3.3 

25 7.3 25 5.0 

26 5.0 26 2.0 

27 7.0 27 2.0 

28 4.3 28 2.3 

29 5.3 29 6.3 

30 6.3 30 2.8 

31 7.3 31 3.3 

32 5.3 32 4.3 

33 7.3 33 2.0 

34 7.3 CI 5791 1.3 

35 7.0 Robust 9.5 
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Table B7. Primer sequences used to amplify the whole HvWRKY6 gene for sequencing.  

Primers Sequence (5'-3') 

Wrky6-gen-F1 GATGAGCATCCAGTAAGCTGTCACTG 

Wrky6-gen-R1 GACTAACAGGTGCAACGATGCG 

Wrky6-gen-F2 CGAGGAAGTTGGAGCTCATGAGC 

Wrky6-gen-R2 CTCCGACTCACGAGGTACTATTC 

Wrky6-gen-F3 CACGATGGCACTCTCGTTCTTG 

Wrky6-gen-R3 GGCAGCTTGGCTTCTTGAACTTG 

Wrky6-gen-F4 CTTCTTCTCGTCGGAGAAGAAGTC 

Wrky6-gen-R4 CTACTATTCCTCGTGCAGTACGTG 
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APPENDIX C. RIL POPULATION SPECIFIC PCR GBS SNP MARKERS PANELS 
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Table C1. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Tradition and PI67381 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information.  

SN Markers Chr cM Forward Primers Reverse Primers 

1 11_21067 1H 2.44 ACACTGACGACATGGTTCTACATTGTTCCCAACAGGGAAAGG TACGGTAGCAGAGACTTGGTCTCTAGCCTGATGAATGAAGAC 

2 12_31144 1H 4.98 ACACTGACGACATGGTTCTACAGAAAAGAAGTGATTCGCCCG TACGGTAGCAGAGACTTGGTCTTGCAGAAGTTCAAGACCCTG 

3 12_30933 1H 6.68 ACACTGACGACATGGTTCTACATCAGAAGAGTGCAGCATAAC TACGGTAGCAGAGACTTGGTCTTCAGTTTGATACTTTGCCTG 

4 11_21174 1H 9.34 ACACTGACGACATGGTTCTACAAGAAAGGACGTCGAAACGAG TACGGTAGCAGAGACTTGGTCTATCGCCGGGTGATACAGATG 

5 12_30919 1H 12.50 ACACTGACGACATGGTTCTACAAAGATCAGTGCGCAATAACG TACGGTAGCAGAGACTTGGTCTGCTAGGTGCTGCTGATGTTT 

6 12_30588 1H 15.90 ACACTGACGACATGGTTCTACAAGTTTCGACACAGACACAGG TACGGTAGCAGAGACTTGGTCTCTGACATGTACGATGATGTG 

7 12_30948 1H 20.31 ACACTGACGACATGGTTCTACAATGGCGAGCTCGACTTGTTC TACGGTAGCAGAGACTTGGTCTCGGGTGCGTGTTTCTGAAC 

8 11_20371 1H 21.97 ACACTGACGACATGGTTCTACATGGTTGTAACAAGTCGCGAG TACGGTAGCAGAGACTTGGTCTGAGACCGATAATCGACAAGC 

9 11_20712 1H 26.32 ACACTGACGACATGGTTCTACATCATTTGTTGCCCTCTGGTG TACGGTAGCAGAGACTTGGTCTAAACCCTAGAATGTACACGG 

10 11_21048 1H 31.24 ACACTGACGACATGGTTCTACAAGGAGAAGAAGGCGGAGGTG TACGGTAGCAGAGACTTGGTCTTTCCAGAGCTGATCCATGTC 

11 11_20617 1H 35.60 ACACTGACGACATGGTTCTACATCTCCCTGAAACATGGAACC TACGGTAGCAGAGACTTGGTCTACAGATAGGAAATTCACTGC 

12 11_21072 1H 36.71 ACACTGACGACATGGTTCTACATTGCCGAAGATGGTGGTGAG TACGGTAGCAGAGACTTGGTCTATCCCGGCATAGACGACAG 

13 12_30336 1H 42.17 ACACTGACGACATGGTTCTACAGCAGTTTATATTCCGGTGTG TACGGTAGCAGAGACTTGGTCTACACTGAGTCAACGTAGTGC 

14 12_10314 1H 46.53 ACACTGACGACATGGTTCTACATGGCTTGTGGAATTGAGGAC TACGGTAGCAGAGACTTGGTCTTATAACTTCGGTGGACGCTG 

15 12_30683 1H 49.10 ACACTGACGACATGGTTCTACAAGAGCCCACTGTACACTATC TACGGTAGCAGAGACTTGGTCTCTGGATGACAGACTACAAGC 

16 11_20810 1H 50.00 ACACTGACGACATGGTTCTACAAAGGCGGCTAGTGCTAATTC TACGGTAGCAGAGACTTGGTCTATTCTTGCTACGCCATCGAG 

17 12_30110 1H 50.30 ACACTGACGACATGGTTCTACAGTTCTCCTCTACCTCTAGTG TACGGTAGCAGAGACTTGGTCTTATCATCCATGCTCGCTCTG 

18 12_30343 1H 52.08 ACACTGACGACATGGTTCTACATCTGCTGGAGAACAAGGTAG TACGGTAGCAGAGACTTGGTCTTTTTTGCACATTCCAGCGCC 

19 11_20997 1H 54.14 ACACTGACGACATGGTTCTACACTTATCGTTGGTGGGATTGC TACGGTAGCAGAGACTTGGTCTCGCACATCCTACTTCATCAG 

20 12_30753 1H 56.50 ACACTGACGACATGGTTCTACAGCAGATTATCATGCTATGCC TACGGTAGCAGAGACTTGGTCTGATCGCTAGCCATCATTCAG 

21 12_30304 1H 59.07 ACACTGACGACATGGTTCTACACTCCTTGCAAGATGCAGATG TACGGTAGCAGAGACTTGGTCTGATTCTAGCGGCGAACCATC 

22 11_10617 1H 59.07 ACACTGACGACATGGTTCTACACATTCCATGTGTCCGGCAAG TACGGTAGCAGAGACTTGGTCTAGGGTAAGCTCCTGACGAAG 

23 11_10002 1H 64.93 ACACTGACGACATGGTTCTACACGACGACAATACACAACACC TACGGTAGCAGAGACTTGGTCTGTTCGGTGCGTCTGTTTTTG 

24 12_10166 1H 69.73 ACACTGACGACATGGTTCTACAAGTGGGCGTTGATGTGATTC TACGGTAGCAGAGACTTGGTCTAACGGTCGACAAACCGTAAG 
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Table C1. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Tradition and PI67381 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

SN Markers Chr cM Forward Primers Reverse Primers 

25 11_10279 1H 72.86 ACACTGACGACATGGTTCTACATGTACTCTTTTGCGACGCTG TACGGTAGCAGAGACTTGGTCTACCACATGAATGTCCAGCAG 

26 11_20990 1H 74.12 ACACTGACGACATGGTTCTACAAGTAACACTGGACACACACC TACGGTAGCAGAGACTTGGTCTGCCATAATTGAGAGGCTGTG 

27 11_10471 1H 83.15 ACACTGACGACATGGTTCTACAGACAGGAGGTTCAACATAGC TACGGTAGCAGAGACTTGGTCTTGGTGGCCAGTTTTTACTAC 

28 11_20149 1H 94.48 ACACTGACGACATGGTTCTACATAATGTGAGAAATTTTGATAT TACGGTAGCAGAGACTTGGTCTTCAAGACCTTGTGGTTTGGC 

29 SCRI_RS_188909 1H 98.45 ACACTGACGACATGGTTCTACACAGCACGTAACATCTGCATC TACGGTAGCAGAGACTTGGTCTATCCAGCTACTAGAGTGGAC 

30 12_20187 1H 101.05 ACACTGACGACATGGTTCTACAAAGGACCTCGACAAGGAGGA TACGGTAGCAGAGACTTGGTCTGAGCTCCAGCACAGTCTTG 

31 11_20909 1H 104.10 ACACTGACGACATGGTTCTACATCGGCGGCGGCGATGTCCT TACGGTAGCAGAGACTTGGTCTGCCACGAGAACGGCTTCCT 

32 11_20844 1H 109.53 ACACTGACGACATGGTTCTACACATTCAGCACAAGACACTAC TACGGTAGCAGAGACTTGGTCTGATGTCTCTTCGTGGTTCTC 

33 12_30014 1H 114.98 ACACTGACGACATGGTTCTACAATATATCCAAAGTGCTGTCG TACGGTAGCAGAGACTTGGTCTATCAGCTCTGGGACGGCTTG 

34 11_10854 1H 122.29 ACACTGACGACATGGTTCTACACAGGGATTCCAATACCACAC TACGGTAGCAGAGACTTGGTCTTTGTTCAACCAAACGAGTGC 

35 11_20908 1H 126.60 ACACTGACGACATGGTTCTACAGATTGACGAGGCGGTGATAC TACGGTAGCAGAGACTTGGTCTCAAAGGAAGGAACCGAATGC 

36 12_11443 1H 128.27 ACACTGACGACATGGTTCTACACACTGTACTCAGAAGAATAGG TACGGTAGCAGAGACTTGGTCTATGATGGTGGTGGTAGTCAG 

37 12_10808 1H 131.46 ACACTGACGACATGGTTCTACATTATACCCTTCAAGCAGCGG TACGGTAGCAGAGACTTGGTCTGCAGAGGCTAATAAAGCAAC 

38 12_10693 1H 132.54 ACACTGACGACATGGTTCTACAAAGTCCCATGGGAGAATCAG TACGGTAGCAGAGACTTGGTCTTCTTGCCACCAATGGTGAAC 

39 11_11105 1H 142.16 ACACTGACGACATGGTTCTACAGAGATCTGGGAAGCTTAGAC TACGGTAGCAGAGACTTGGTCTTTTGGTGCTCTGTACAAGGG 

40 11_10590 1H 142.74 ACACTGACGACATGGTTCTACAACAACACAGCGAAAACGAAC TACGGTAGCAGAGACTTGGTCTTGACGAGACTGCACTAGGTA 

41 12_31081 1H 145.82 ACACTGACGACATGGTTCTACAAACTGCTTGGATGGAACCAC TACGGTAGCAGAGACTTGGTCTGCCTCATTTCTGAGATAGTG 

42 11_10326 2H 7.29 ACACTGACGACATGGTTCTACACTCCATGGGATACCCATGTC TACGGTAGCAGAGACTTGGTCTTCAAGAAACGGTGATGGTGC 

43 11_21377 2H 13.19 ACACTGACGACATGGTTCTACAAGCAGCAGCTACTTGCAAAC TACGGTAGCAGAGACTTGGTCTACTGCCAAAGAGACGATTGC 

44 12_30631 2H 19.42 ACACTGACGACATGGTTCTACAATTTATGGACGAGGCAACTG TACGGTAGCAGAGACTTGGTCTATGAGAACTGCTCTCGCGTG 

45 SCRI_RS_152744 2H 23.76 ACACTGACGACATGGTTCTACACATCAAGAAAGAAGCCGGAG TACGGTAGCAGAGACTTGGTCTACGTACTCGGCGTCCACCA 

46 11_10943 2H 25.53 ACACTGACGACATGGTTCTACACCAACACTAACGGTAACAGC TACGGTAGCAGAGACTTGGTCTTCGCCGTTTTCACTCTTCAG 

47 12_10777 2H 30.36 ACACTGACGACATGGTTCTACAGAGAGGCCACGTCAATCAAT TACGGTAGCAGAGACTTGGTCTTCTGAGGTTGGTAGATAGGG 

48 11_10216 2H 40.73 ACACTGACGACATGGTTCTACAAAGTCTTGATCCAGCCTTGC TACGGTAGCAGAGACTTGGTCTCGCCTAGTCTTAATGTCTGG 
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Table C1. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Tradition and PI67381 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

SN Markers Chr cM Forward Primers Reverse Primers 

49 11_10891 2H 44.54 ACACTGACGACATGGTTCTACAGGAGATGACAAGAAACCCAC TACGGTAGCAGAGACTTGGTCTATTGCTGGATCATCTGGCAC 

50 11_21304 2H 47.35 ACACTGACGACATGGTTCTACATCAAGGACATGCGCTTCAG TACGGTAGCAGAGACTTGGTCTCTTGTTGACGAGCGCGAAG 

51 11_10919 2H 53.26 ACACTGACGACATGGTTCTACATAAAGGGCAAGGAAAAGCGG TACGGTAGCAGAGACTTGGTCTCCTGATAAGCTACAGCATGA 

52 12_30432 2H 54.31 ACACTGACGACATGGTTCTACAAGAACAACCGAGTCATGTGC TACGGTAGCAGAGACTTGGTCTGTTCCATGCACCCATGATGA 

53 12_30703 2H 63.08 ACACTGACGACATGGTTCTACAGATCTGTAGCGTTGTACTCC TACGGTAGCAGAGACTTGGTCTCTCACATTGTCATGCTTCCC 

54 11_21005 2H 64.70 ACACTGACGACATGGTTCTACATAAACACCACACGACCGAAG TACGGTAGCAGAGACTTGGTCTGTTCCATTGGTGCTTGCTTG 

55 SCRI_RS_151535 2H 65.71 ACACTGACGACATGGTTCTACAGACCTTGACACAGTAAAAGC TACGGTAGCAGAGACTTGGTCTAGGTCATCTGCTGTTGCATC 

56 SCRI_RS_175065 2H 65.81 ACACTGACGACATGGTTCTACACACATCATCACAAGCTAACG TACGGTAGCAGAGACTTGGTCTTTCCCTTAGCTATGGGAGTG 

57 SCRI_RS_154617 2H 66.11 ACACTGACGACATGGTTCTACAAGTTCGTGACGCACGAGATG TACGGTAGCAGAGACTTGGTCTATCCAGATGATGCACCTGAG 

58 11_10733 2H 66.11 ACACTGACGACATGGTTCTACACACAGAGACGCACACAAATC TACGGTAGCAGAGACTTGGTCTGATGCCACAGATGAGCTATG 

59 11_10325 2H 66.11 ACACTGACGACATGGTTCTACAAATGGAGTCGAATGGACGAG TACGGTAGCAGAGACTTGGTCTGTCACATGGATTACTGACCC 

60 12_10927 2H 67.89 ACACTGACGACATGGTTCTACATCATGAAGGTATGGCTTCCG TACGGTAGCAGAGACTTGGTCTCAATTCTTAGGAGGAGACAG 

61 12_10485 2H 68.80 ACACTGACGACATGGTTCTACAAAAGAAACCCACTGCTCCAG TACGGTAGCAGAGACTTGGTCTTGTGGTTGTCTCTCAAACCG 

62 12_10099 2H 69.00 ACACTGACGACATGGTTCTACAATGTAGTCGCGGCGCTGGAA TACGGTAGCAGAGACTTGGTCTTGGGCGTCGAGTACAAAGTC 

63 11_20532 2H 69.55 ACACTGACGACATGGTTCTACAGCAGATCCCAACAAAAGACG TACGGTAGCAGAGACTTGGTCTATCCCTCGATGTAGTGTCTG 

64 11_10265 2H 75.18 ACACTGACGACATGGTTCTACACCACGGTACAGCGAAAATTC TACGGTAGCAGAGACTTGGTCTCTCTCGATCCTTCTAGGTTG 

65 11_20947 2H 77.34 ACACTGACGACATGGTTCTACATCGATGTGTAGATAGACCGC TACGGTAGCAGAGACTTGGTCTTACCCCCCAGAAAAACGTTC 

66 11_10196 2H 81.26 ACACTGACGACATGGTTCTACACAACTGCATTCCCTGGTTAC TACGGTAGCAGAGACTTGGTCTCGTTCTCGTATCTCTGGTTG 

67 12_31445 2H 83.59 ACACTGACGACATGGTTCTACAAAAGCACATATGTTGATGGC TACGGTAGCAGAGACTTGGTCTCCGTTCCTTTCTAGTTTCTC 

68 11_21242 2H 86.84 ACACTGACGACATGGTTCTACATCGGGAAAAAGGTCCAATAG TACGGTAGCAGAGACTTGGTCTTGTTTGCACAGCAAGCTTCC 

69 12_30900 2H 90.99 ACACTGACGACATGGTTCTACAAGCAGGCCGAGATTCTGGAG TACGGTAGCAGAGACTTGGTCTAGATACACCTTGCGGGCTG 

70 12_10936 2H 93.14 ACACTGACGACATGGTTCTACAAGTAATCCTGGAGCCACCTG TACGGTAGCAGAGACTTGGTCTCTGGACAGGAGGCTGTACAT 

71 11_10214 2H 99.04 ACACTGACGACATGGTTCTACACATGGCAGCTAAGCCCTAAG TACGGTAGCAGAGACTTGGTCTGGACGACGAGGAGTAAATAG 

72 11_21175 2H 101.98 ACACTGACGACATGGTTCTACACCACCGCGTACTTAATTGTG TACGGTAGCAGAGACTTGGTCTCGCAATCCAAATCCAGTCAC 

73 11_10398 2H 106.90 ACACTGACGACATGGTTCTACATAGACGGCTTTATTTGGCAG TACGGTAGCAGAGACTTGGTCTAAGCCACGGTGATTGATGAC 
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Table C1. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Tradition and PI67381 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

SN Markers Chr cM Forward Primers Reverse Primers 

74 12_30480 2H 108.14 ACACTGACGACATGGTTCTACAATGCGGCTCGGATGTGTATC TACGGTAGCAGAGACTTGGTCTACGAACTTACCTTGATGCGG 

75 12_30555 2H 112.22 ACACTGACGACATGGTTCTACATTCCGACCATCACTTGAGAG TACGGTAGCAGAGACTTGGTCTTCAATCCTGAGAACAAGGAC 

76 11_20099 2H 121.76 ACACTGACGACATGGTTCTACACGTTTTCGACGCAGAGTTGT TACGGTAGCAGAGACTTGGTCTCGTGCAAGTCGCAGAAGAG 

77 11_10128 2H 124.50 ACACTGACGACATGGTTCTACATTCTGGACGGTGAGCTTGAC TACGGTAGCAGAGACTTGGTCTCCAAGAAGATCGGTGAGGAC 

78 11_10429 2H 126.63 ACACTGACGACATGGTTCTACATGATGGGCGCATTGACTATG TACGGTAGCAGAGACTTGGTCTTTCTCATTGTTCTTCGCCCG 

79 12_31095 2H 131.66 ACACTGACGACATGGTTCTACAAGTGGGCGTTCTTCTTGATG TACGGTAGCAGAGACTTGGTCTAGAAGGACTGCTACCACGAG 

80 12_10739 2H 135.51 ACACTGACGACATGGTTCTACACTGAAACACCCAACACTTGC TACGGTAGCAGAGACTTGGTCTTTTGACTAGCAACCCATGCC 

81 SCRI_RS_155161 2H 137.44 ACACTGACGACATGGTTCTACATGCTGTCCAATCTGAAGCTG TACGGTAGCAGAGACTTGGTCTTCTTGATGCTCAATGTGCTG 

82 11_10092 2H 137.44 ACACTGACGACATGGTTCTACATCGACTGCAACAAGCTTCAC TACGGTAGCAGAGACTTGGTCTCGAACACATGCAGAAAGCAG 

83 11_20141 2H 141.70 ACACTGACGACATGGTTCTACAAGCAGCAGTGATGAAGTTGG TACGGTAGCAGAGACTTGGTCTAGAGACGATGCAGTCGTTGG 

84 12_31100 2H 143.07 ACACTGACGACATGGTTCTACAATGGCCTTAGTGTCTCTTCC TACGGTAGCAGAGACTTGGTCTAGAAAAGGCTGTCCCTTTGG 

85 11_21125 2H 145.20 ACACTGACGACATGGTTCTACAGCCTCAGCCAGAATAGTAAG TACGGTAGCAGAGACTTGGTCTAAAGTCTTCCATGGAAGCCC 

86 12_30106 2H 150.78 ACACTGACGACATGGTTCTACAGATGCCGACCTCCATGAATC TACGGTAGCAGAGACTTGGTCTGTGGCATACGGGTTCAACTG 

87 12_30341 2H 155.26 ACACTGACGACATGGTTCTACATGTCCATGTGATAGGTGACG TACGGTAGCAGAGACTTGGTCTATAGGAAATGGCTTGGGCTG 

88 12_30352 2H 157.42 ACACTGACGACATGGTTCTACATGCTGAAGAGCTCCTGGTAG TACGGTAGCAGAGACTTGGTCTTACTGCGGGTTCTGCCGGT 

89 12_10181 2H 162.06 ACACTGACGACATGGTTCTACACACCGCAAATCCCATGGATG TACGGTAGCAGAGACTTGGTCTGGCGTAAACATGATAATTACC 

90 11_20943 2H 166.65 ACACTGACGACATGGTTCTACAGGGTTATCGATCTGTTCTGC TACGGTAGCAGAGACTTGGTCTCGAAGAAGGCATGCAAGAAC 

91 12_30823 2H 168.93 ACACTGACGACATGGTTCTACAACCATCACAACCAAGGTGAG TACGGTAGCAGAGACTTGGTCTTGATGACCACCTTGTCGATG 

92 11_10072 2H 171.55 ACACTGACGACATGGTTCTACAGAGTGTCTTGTCCTTGTTGC TACGGTAGCAGAGACTTGGTCTGTATCCAAACCTCTGAGGAC 

93 12_31180 2H 175.48 ACACTGACGACATGGTTCTACAACGGATGAGATTCAGGAAGC TACGGTAGCAGAGACTTGGTCTAACCATGTGCATGCATGTCC 

94 11_10085 2H 177.38 ACACTGACGACATGGTTCTACACACATAGTCTCGGCTATTCC TACGGTAGCAGAGACTTGGTCTCAGTAGCATGTTGGTGGTTG 

95 12_31428 3H 0.00 ACACTGACGACATGGTTCTACAGGCGGTGAGGAGGTAGGTG TACGGTAGCAGAGACTTGGTCTGCATCCTCTCCGGATTCTTC 

96 11_20252 3H 6.46 ACACTGACGACATGGTTCTACATTCCTGAATGTCTCCTATGC TACGGTAGCAGAGACTTGGTCTAAACGCCCTGCATTAGCGAC 

97 11_21398 3H 8.86 ACACTGACGACATGGTTCTACAGCTCACTTGTTCAATGCACC TACGGTAGCAGAGACTTGGTCTATGATTGCTTCCGAAGACCC 

98 12_30818 3H 12.23 ACACTGACGACATGGTTCTACACTACTTCTTGGCCGCGGAC TACGGTAGCAGAGACTTGGTCTATCGTCACGCCCCTCTTCTC 
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Table C1. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Tradition and PI67381 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

SN Markers Chr cM Forward Primers Reverse Primers 

99 11_20742 3H 24.63 ACACTGACGACATGGTTCTACAATCAGCACCGTGTACTTGGG TACGGTAGCAGAGACTTGGTCTCTTGGTCTCGACCACATTGC 

100 11_20968 3H 35.40 ACACTGACGACATGGTTCTACATCGTCAATGGTGATCTCCTC TACGGTAGCAGAGACTTGGTCTGAAGGTGATAGTCTCCAAGG 

101 12_30571 3H 38.19 ACACTGACGACATGGTTCTACACAAGGCGTCGATTTCTTCTC TACGGTAGCAGAGACTTGGTCTGAAGTCGCCAGCTGTTGAAG 

102 11_10026 3H 40.34 ACACTGACGACATGGTTCTACAAGGAGCCACGTCGAGATTTC TACGGTAGCAGAGACTTGGTCTCTTTGAAGCCGGAGTTCATC 

103 12_10968 3H 44.82 ACACTGACGACATGGTTCTACACCGAGATGCTTCTACTGTTC TACGGTAGCAGAGACTTGGTCTGAATCCCGCCCTGCTGAAC 

104 SCRI_RS_127994 3H 53.42 ACACTGACGACATGGTTCTACACAACATCACCACCGGGGTC TACGGTAGCAGAGACTTGGTCTTTGTTCACCTGGTACACCAC 

105 12_30467 3H 56.79 ACACTGACGACATGGTTCTACAATTCTTCGATGATGGCGGAC TACGGTAGCAGAGACTTGGTCTGCAAAATGGCCTCAACTTCG 

106 11_20583 3H 58.31 ACACTGACGACATGGTTCTACATTCAATCGCTGACCCGCAC TACGGTAGCAGAGACTTGGTCTCGGATGGGGATCTCATATAC 

107 12_30009 3H 59.39 ACACTGACGACATGGTTCTACAACTCCCTCCTTACAAGCAAC TACGGTAGCAGAGACTTGGTCTCTCTACGTACATATCCTGGC 

108 11_10373 3H 61.94 ACACTGACGACATGGTTCTACACCGAATCACCGAGAAATAGG TACGGTAGCAGAGACTTGGTCTCTGCAAGCAAATAAAGTGGC 

109 12_30616 3H 65.44 ACACTGACGACATGGTTCTACAGGTGAAGCAATCACGAGTTC TACGGTAGCAGAGACTTGGTCTCTAGGGTTGAGCTTACTAGG 

110 12_30399 3H 67.53 ACACTGACGACATGGTTCTACAACTCTTGTCGTGTGGTACTC TACGGTAGCAGAGACTTGGTCTGCTTTAGAGATATTGTACAG 

111 11_20115 3H 71.74 ACACTGACGACATGGTTCTACAGTGAACCTTGTATATTCTG TACGGTAGCAGAGACTTGGTCTCAGAACCACAAGCTGTAGAC 

112 12_31262 3H 73.21 ACACTGACGACATGGTTCTACACATCCTAGCATATCCCATCC TACGGTAGCAGAGACTTGGTCTGCCGCTTCAATCACATCTGC 

113 11_10444 3H 78.93 ACACTGACGACATGGTTCTACATTCTCGTAGTTCCTGAGCTG TACGGTAGCAGAGACTTGGTCTTAGGGTGGATCTCCTCCTAC 

114 12_31018 3H 81.11 ACACTGACGACATGGTTCTACATGGCTATGGCGTTGTTGAAG TACGGTAGCAGAGACTTGGTCTTCCTGAAAACTTGAGGCCAG 

115 12_31367 3H 85.85 ACACTGACGACATGGTTCTACAGCTTTATCGACCATTCCAGC TACGGTAGCAGAGACTTGGTCTCAAGGGTCGAATTGTGCAAG 

116 SCRI_RS_159340 3H 88.17 ACACTGACGACATGGTTCTACAGACTGCCTACGTTTCTTTGG TACGGTAGCAGAGACTTGGTCTCATTGGTGGCTTAGTAGCAG 

117 12_30250 3H 88.17 ACACTGACGACATGGTTCTACAACAGATCCAAGGTGAAGAGC TACGGTAGCAGAGACTTGGTCTTTCTCTTCTATCGGGGACTC 

118 11_20626 3H 91.33 ACACTGACGACATGGTTCTACAAACAGGCTTCTAGCTTTGGG TACGGTAGCAGAGACTTGGTCTGAGTTTGCGAAAGGTCAAGC 

119 11_21493 3H 95.25 ACACTGACGACATGGTTCTACACGGGCCTTGATTGATTTTGC TACGGTAGCAGAGACTTGGTCTCCAGGTGGCAGTGAAAAAAC 

120 SCRI_RS_221787 3H 99.26 ACACTGACGACATGGTTCTACAGAGTGGAGTGGTTGCTGCTT TACGGTAGCAGAGACTTGGTCTACCCGCGCGTGGGTGAGTC 

121 SCRI_RS_164704 3H 99.26 ACACTGACGACATGGTTCTACATTTCGTAGAGGCCATCGTAG TACGGTAGCAGAGACTTGGTCTCACATGGTATTATTATTTCCC 

122 SCRI_RS_225641 3H 99.46 ACACTGACGACATGGTTCTACAAAGTGATGATGATGCTGCCG TACGGTAGCAGAGACTTGGTCTCCCCTTCACCAGATCTGCAT 

123 SCRI_RS_133339 3H 99.56 ACACTGACGACATGGTTCTACATGACAGAGAGAACGAACTCC TACGGTAGCAGAGACTTGGTCTTTTGGCCCATGGATCAAGTG 
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Table C1. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Tradition and PI67381 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

SN Markers Chr cM Forward Primers Reverse Primers 

124 12_30423 3H 99.66 ACACTGACGACATGGTTCTACAGAAGTCAATACCGATTGTAG TACGGTAGCAGAGACTTGGTCTTGTTGGCAAGAGTTGCCTCC 

125 SCRI_RS_211929 3H 99.66 ACACTGACGACATGGTTCTACAAAGTACTACGCCGACGACTG TACGGTAGCAGAGACTTGGTCTTGGTTTTCTGGGTCTTCACG 

126 SCRI_RS_235791 3H 99.66 ACACTGACGACATGGTTCTACATGGCGACCATCAAAGCAAAG TACGGTAGCAGAGACTTGGTCTGCACATGAGGATGTGTGTTG 

127 SCRI_RS_167825 3H 103.46 ACACTGACGACATGGTTCTACACTCGGGTACAGACACCATTC TACGGTAGCAGAGACTTGGTCTTAGCAGCGGCCATCTATCTC 

128 12_31329 3H 103.83 ACACTGACGACATGGTTCTACAAATGAAGTGTTCGGCGACAG TACGGTAGCAGAGACTTGGTCTTCAGAGTTCATGTTCTGGG 

129 SCRI_RS_163092 3H 103.86 ACACTGACGACATGGTTCTACAACAGGTTCTTAGTTGCGGTG TACGGTAGCAGAGACTTGGTCTAAGAACCAGTGCTGTCAGAG 

130 11_10584 3H 105.98 ACACTGACGACATGGTTCTACATGCTCGGACAGAGACGTGA TACGGTAGCAGAGACTTGGTCTTGCTGGGCTTTCTCGACGAT 

131 11_20944 3H 109.12 ACACTGACGACATGGTTCTACAGGAGAACATTCCACATTAG TACGGTAGCAGAGACTTGGTCTATACAACGAGGCATCTGAGC 

132 11_21405 3H 111.70 ACACTGACGACATGGTTCTACAAATTGATCCCCATGACTCCC TACGGTAGCAGAGACTTGGTCTTGCAGTCATCAAATTCAGCG 

133 12_30081 3H 115.86 ACACTGACGACATGGTTCTACATGAATGGCCATTGCCATGAG TACGGTAGCAGAGACTTGGTCTCACACTTGCAAGTACCACAC 

134 12_10188 3H 118.27 ACACTGACGACATGGTTCTACAGAAGATCCATTCTCATGCTG TACGGTAGCAGAGACTTGGTCTAATGCCTAAATGTATGCAG 

135 12_30973 3H 121.02 ACACTGACGACATGGTTCTACACTGAAAACAGATGGTGTAA TACGGTAGCAGAGACTTGGTCTCCACATATCATTGTTACCTTG 

136 11_20085 3H 126.41 ACACTGACGACATGGTTCTACAATGGAGGACGAATAGGGAGG TACGGTAGCAGAGACTTGGTCTCTCCCGTTTGTCCAAAACTG 

137 12_30367 3H 128.53 ACACTGACGACATGGTTCTACACAACGGTCCGATTTGCACTC TACGGTAGCAGAGACTTGGTCTTTGTGTTTGTGGACACTAGC 

138 12_21386 3H 133.66 ACACTGACGACATGGTTCTACAACATAGTACAGTAGCAAGGG TACGGTAGCAGAGACTTGGTCTTTCGCTGAAGAACCCACTTG 

139 11_11436 3H 145.65 ACACTGACGACATGGTTCTACATGCATCGGACGGTATACTTC TACGGTAGCAGAGACTTGGTCTGGATTGCTTGTTCCTAATGG 

140 12_20198 3H 147.80 ACACTGACGACATGGTTCTACAAGCAGCAGCTTGCCATCGAG TACGGTAGCAGAGACTTGGTCTTTGGCAAGCTAGGTAGCAAG 

141 SCRI_RS_229623 3H 150.19 ACACTGACGACATGGTTCTACAAGAGAAGAAGAGGAGCAACC TACGGTAGCAGAGACTTGGTCTATGAGACCGGGTCGAGAATG 

142 11_11411 3H 151.23 ACACTGACGACATGGTTCTACACACTCCCATATGGTGGATCA TACGGTAGCAGAGACTTGGTCTGCTTGGGGTGAACGTCATTG 

143 SCRI_RS_156315 3H 153.39 ACACTGACGACATGGTTCTACACATCATAGATACAGCCTGCC TACGGTAGCAGAGACTTGGTCTTATCAGCAGTGGATGAAGCC 

144 12_30055 3H 162.85 ACACTGACGACATGGTTCTACACCACCCACAGTTCAGGAAAC TACGGTAGCAGAGACTTGGTCTAAGGATTAAAGGCGCTGACC 

145 12_30135 3H 164.42 ACACTGACGACATGGTTCTACACAGGGTCCCAGAATTTATAG TACGGTAGCAGAGACTTGGTCTGTACTGGTCATCAAAGTGAA 

146 12_30764 4H 0.71 ACACTGACGACATGGTTCTACATCCAGGACGCCGTGCTCTA TACGGTAGCAGAGACTTGGTCTCGGAGCCGACGAGGGGCTT 

147 11_10409 4H 4.11 ACACTGACGACATGGTTCTACAAGCACTTTGGAAACAGTGGG TACGGTAGCAGAGACTTGGTCTGAATTTCCCATGAAGAGGTG 

148 12_31458 4H 14.13 ACACTGACGACATGGTTCTACAGCAGTTTCAAAAGCAATCTC TACGGTAGCAGAGACTTGGTCTCAGCTTTCTGCTGTTATGTTC 
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Table C1. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Tradition and PI67381 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

SN Markers Chr cM Forward Primers Reverse Primers 

149 12_30540 4H 16.13 ACACTGACGACATGGTTCTACATGTATGGAGTGTCCATGGAG TACGGTAGCAGAGACTTGGTCTCACACCGTTTTATCAAATC 

150 12_30150 4H 18.47 ACACTGACGACATGGTTCTACAGGTAAACCACCACTTCTTGC TACGGTAGCAGAGACTTGGTCTCATCCCATCTATCCTGAAAC 

151 11_10223 4H 22.43 ACACTGACGACATGGTTCTACACGTCGGTAGACGAGAGAAG TACGGTAGCAGAGACTTGGTCTTTTCGCTCGGTGTCCAAAAC 

152 11_20777 4H 31.64 ACACTGACGACATGGTTCTACAGATGAGGATGTCCTCCATTG TACGGTAGCAGAGACTTGGTCTTCCAAGAAGATTCCCGATGC 

153 11_21374 4H 32.68 ACACTGACGACATGGTTCTACAGGAGCAAACGTGTTAGTTGG TACGGTAGCAGAGACTTGGTCTATACCCAAGATTGTCGGCAC 

154 12_30863 4H 38.44 ACACTGACGACATGGTTCTACACTACCAGCTCTTCCAGCAG TACGGTAGCAGAGACTTGGTCTATTGAGTTCAGCATCAAGGG 

155 12_10860 4H 42.69 ACACTGACGACATGGTTCTACACGCATGAATGATGCTACCAC TACGGTAGCAGAGACTTGGTCTTCGCTAACCTGCAAGCACAC 

156 12_30992 4H 46.19 ACACTGACGACATGGTTCTACATTGAACTGAACTGCAGCAGG TACGGTAGCAGAGACTTGGTCTGAGATGGACGTGCTCTTTTC 

157 SCRI_RS_9296 4H 47.17 ACACTGACGACATGGTTCTACATCTCCCATTTCCTGCTCTTC TACGGTAGCAGAGACTTGGTCTTCCATTTCGAGAAGCTCACC 

158 12_30328 4H 47.94 ACACTGACGACATGGTTCTACAAACAGCTACCTCCGGCAGA TACGGTAGCAGAGACTTGGTCTACGTAGAGCGCGTCGGCGT 

159 11_11180 4H 50.70 ACACTGACGACATGGTTCTACATGTTAGGAGGTGAGTTGTCG TACGGTAGCAGAGACTTGGTCTGTCTTATCAGCACACCTATC 

160 11_20939 4H 52.67 ACACTGACGACATGGTTCTACATGTTCCTGCCATACGTCGAG TACGGTAGCAGAGACTTGGTCTTCACTGCCTCGATGTCAATG 

161 SCRI_RS_157310 4H 53.67 ACACTGACGACATGGTTCTACAATGTCCTCCCCGTCCTTCAC TACGGTAGCAGAGACTTGGTCTCTCCTCGCCGCCGAAGAAG 

162 SCRI_RS_184107 4H 53.77 ACACTGACGACATGGTTCTACAATGTACTCAAGCTACACGCC TACGGTAGCAGAGACTTGGTCTTAGGGCCTGGTACAGGTTG 

163 11_10093 4H 53.87 ACACTGACGACATGGTTCTACAAGTTTCATGAGGACTGCATC TACGGTAGCAGAGACTTGGTCTTTTCAATTCTACCGGCGCCC 

164 SCRI_RS_128723 4H 54.66 ACACTGACGACATGGTTCTACACATTGTCAACGGGAAAGAGG TACGGTAGCAGAGACTTGGTCTCTCTGCAACATCCTTTTCCC 

165 SCRI_RS_155554 4H 54.66 ACACTGACGACATGGTTCTACACGCAAATCGGTTTCAAGCAC TACGGTAGCAGAGACTTGGTCTTCCAGAGAGACTGATACAAC 

166 SCRI_RS_221172 4H 54.66 ACACTGACGACATGGTTCTACAACCAGCTGCTAAGATTGCTC TACGGTAGCAGAGACTTGGTCTAGTGGAAGGCCATAACGAAC 

167 SCRI_RS_208828 4H 54.66 ACACTGACGACATGGTTCTACAGGGAACTGTTGTAGTACTGG TACGGTAGCAGAGACTTGGTCTAACAATGTAGCACCAGCAAC 

168 11_20472 4H 54.95 ACACTGACGACATGGTTCTACAACGAAATGGACGCGTCAAAG TACGGTAGCAGAGACTTGGTCTCCTTCCTGTTTGGCTCAAAG 

169 11_10262 4H 54.95 ACACTGACGACATGGTTCTACATAGAGACCCAGAGACTAACC TACGGTAGCAGAGACTTGGTCTGCCAGTGCTTATGAAGGAAC 

170 11_20412 4H 54.95 ACACTGACGACATGGTTCTACATCTGCTTCGAGACCCTGAAC TACGGTAGCAGAGACTTGGTCTTGCCTAACCCGGCGAAGTG 

171 SCRI_RS_228477 4H 54.95 ACACTGACGACATGGTTCTACAGGGAGGAAGAGATGTGTTTG TACGGTAGCAGAGACTTGGTCTACTGCTACGTAATGAACTCC 

172 SCRI_RS_168496 4H 54.95 ACACTGACGACATGGTTCTACACCACGACTCCATTAGGGATG TACGGTAGCAGAGACTTGGTCTTATGCGTACAAGTCACCACC 

173 12_30839 4H 54.95 ACACTGACGACATGGTTCTACAGTCAGTGAAGCCTTTGAGTC TACGGTAGCAGAGACTTGGTCTGAAAGTCACATAAGCATGCC 
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Table C1. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Tradition and PI67381 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

SN Markers Chr cM Forward Primers Reverse Primers 

174 11_10509 4H 55.64 ACACTGACGACATGGTTCTACATGGCCCTCTTATATATCCCC TACGGTAGCAGAGACTTGGTCTGCAAACTGCTTGGCAAAACC 

175 SCRI_RS_189180 4H 57.32 ACACTGACGACATGGTTCTACAGTCGAATTTCTTGTGTGGGC TACGGTAGCAGAGACTTGGTCTTGCTAGCTATCCAGCTCAAG 

176 11_20924 4H 58.82 ACACTGACGACATGGTTCTACATCAGTGGAGTGTGATACCAG TACGGTAGCAGAGACTTGGTCTTCAGTGGACCTTTCAGAAGC 

177 SCRI_RS_163033 4H 59.22 ACACTGACGACATGGTTCTACAATACCAAAGGTGCTTGAGCG TACGGTAGCAGAGACTTGGTCTATGTCTACCGCCGATGTATC 

178 SCRI_RS_147712 4H 59.22 ACACTGACGACATGGTTCTACATACCACACCTCAGCAAACTC TACGGTAGCAGAGACTTGGTCTGTCAAATGTCCAGGTAAAGG 

179 11_10606 4H 60.28 ACACTGACGACATGGTTCTACAGGGCACAACTTACTTGCTTA TACGGTAGCAGAGACTTGGTCTATGTTCATTGCTCCCATCTC 

180 11_20072 4H 62.96 ACACTGACGACATGGTTCTACACAGCAGTCTCTTACAATCAC TACGGTAGCAGAGACTTGGTCTACGGTGGTACACTTTCAGAG 

181 11_11513 4H 64.45 ACACTGACGACATGGTTCTACAGTTCAACCACCATCATCCAC TACGGTAGCAGAGACTTGGTCTGGACAGAGCACCCAAGTTTG 

182 11_10309 4H 67.91 ACACTGACGACATGGTTCTACAACACACACAACACACAAGGG TACGGTAGCAGAGACTTGGTCTAGATCGGCCGTGGAACCATT 

183 11_11004 4H 70.33 ACACTGACGACATGGTTCTACATGTCGAGCTAGACATGTCTG TACGGTAGCAGAGACTTGGTCTGCAAATGAAAGAGACGCTCC 

184 11_11500 4H 74.05 ACACTGACGACATGGTTCTACAGGTGCAGACTACCACACAAG TACGGTAGCAGAGACTTGGTCTATAAGATGTGTGTGATTGGC 

185 12_31246 4H 78.11 ACACTGACGACATGGTTCTACAGGATCGAGATTATGACAGGC TACGGTAGCAGAGACTTGGTCTGGCTAACAGAAGAGGTTTCC 

186 11_20178 4H 80.52 ACACTGACGACATGGTTCTACAGCATGAACGTACAACATCCC TACGGTAGCAGAGACTTGGTCTTGACGAATGTGTCACCACTG 

187 11_10588 4H 83.34 ACACTGACGACATGGTTCTACAGACCTTGGTGTCTTCACAAC TACGGTAGCAGAGACTTGGTCTGCTAGCCAAGTTGTTTCCAG 

188 12_30718 4H 94.74 ACACTGACGACATGGTTCTACAAAGGGCACAATGTCAACCTG TACGGTAGCAGAGACTTGGTCTTAAGGCCGCATTGATCACCG 

189 11_20762 4H 96.60 ACACTGACGACATGGTTCTACAGTTATGGAAAGTAGAGGGAC TACGGTAGCAGAGACTTGGTCTGGCAAAGTTGACGAAATCTG 

190 SCRI_RS_131671 4H 99.68 ACACTGACGACATGGTTCTACACAGTGAAACTCATGATCCCC TACGGTAGCAGAGACTTGGTCTGCTGCCAACATAAACTCTTC 

191 11_10510 4H 100.38 ACACTGACGACATGGTTCTACAAGCCGGAAAATTTCCTCCTC TACGGTAGCAGAGACTTGGTCTCTTGAAGTAGACGGATAGGC 

192 SCRI_RS_148330 4H 103.48 ACACTGACGACATGGTTCTACAAAATCTGCTTGGCCTGTACG TACGGTAGCAGAGACTTGGTCTTACGATTTGTGCCTGTCCTC 

193 SCRI_RS_192689 4H 103.58 ACACTGACGACATGGTTCTACAATTTCGTGTGCTCCAGAACC TACGGTAGCAGAGACTTGGTCTTACCACGAGCACGACGAAG 

194 11_20974 4H 105.14 ACACTGACGACATGGTTCTACAATGGCGACTTGACCACAAAC TACGGTAGCAGAGACTTGGTCTAAGTACAAGGCAGAGACTCC 

195 12_30385 4H 108.85 ACACTGACGACATGGTTCTACATAGCTTGTGTACACTCGGAC TACGGTAGCAGAGACTTGGTCTACACTATGTCCCCTTGGGAG 

196 12_31138 4H 112.79 ACACTGACGACATGGTTCTACAGCTTGGTTGGGACTTTTAGG TACGGTAGCAGAGACTTGGTCTTACACACCGGTATACATTGC 

197 11_10697 4H 117.33 ACACTGACGACATGGTTCTACACTCTAACCACTTCTACGTGC TACGGTAGCAGAGACTTGGTCTCCCGTTCGATGTCGATTTAC 

198 11_11186 4H 123.54 ACACTGACGACATGGTTCTACATACTCCAGTCCTGTGCTTAG TACGGTAGCAGAGACTTGGTCTAGCGGTGGATGGACAATTGG 
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Table C1. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Tradition and PI67381 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

SN Markers Chr cM Forward Primers Reverse Primers 

199 12_30873 4H 125.11 ACACTGACGACATGGTTCTACAACAGCAAATTTGAATGGGTG TACGGTAGCAGAGACTTGGTCTGAAACTTGAGGTGTATCTTTG 

200 12_31422 4H 127.26 ACACTGACGACATGGTTCTACACAGTGAGTACATTAGCTCTAC TACGGTAGCAGAGACTTGGTCTAAAAGGAAACAAACTGCTC 

201 12_30824 4H 129.68 ACACTGACGACATGGTTCTACAGACCGTCGGTGTAGAAAATG TACGGTAGCAGAGACTTGGTCTTCAACATCCCAATCCCACAG 

202 12_30975 5H 3.66 ACACTGACGACATGGTTCTACACATACAATGAGTAATGACGTG TACGGTAGCAGAGACTTGGTCTGGTACAATACAATACCAAAAG 

203 11_20206 5H 6.55 ACACTGACGACATGGTTCTACACCGTCTTGGTTGGTTTCGAC TACGGTAGCAGAGACTTGGTCTAGGTCCATATCACCTCTTCC 

204 12_31094 5H 10.10 ACACTGACGACATGGTTCTACACCTCAAATCCTACGAGCTTC TACGGTAGCAGAGACTTGGTCTCCAGGTTTTTGCGAAAACCG 

205 11_20010 5H 11.32 ACACTGACGACATGGTTCTACAAACACCTTTCGAAGGGCAAC TACGGTAGCAGAGACTTGGTCTGGAATTCACAGGCAATCTCG 

206 11_21065 5H 21.24 ACACTGACGACATGGTTCTACACCATGGTGGTGATCAGCAG TACGGTAGCAGAGACTTGGTCTTCTGGTTCGTCGGCCTCGGT 

207 11_20386 5H 28.56 ACACTGACGACATGGTTCTACAAGAACTCCAGGCTAGGTTAC TACGGTAGCAGAGACTTGGTCTTCTCCATCGATCTGACCTAC 

208 SCRI_RS_108416 5H 31.86 ACACTGACGACATGGTTCTACACTACTGCATTAGCAACAAGG TACGGTAGCAGAGACTTGGTCTAACTCCCCTCCTTGAGAAAG 

209 SCRI_RS_205100 5H 31.86 ACACTGACGACATGGTTCTACACAGCTTCAAGTCGCTTATGG TACGGTAGCAGAGACTTGGTCTCTATGATCTCAAGCAGCAGG 

210 11_10580 5H 33.22 ACACTGACGACATGGTTCTACACAGAGCACATGCTACTAAAC TACGGTAGCAGAGACTTGGTCTGCCGATGGTCAGATTTGCTC 

211 11_10621 5H 35.35 ACACTGACGACATGGTTCTACACCTTTCCAACCTTAAGAAGC TACGGTAGCAGAGACTTGGTCTTGTCAGGAACTTGATCAGGG 

212 11_20845 5H 37.62 ACACTGACGACATGGTTCTACACGATCGGCTTTATGATAGGC TACGGTAGCAGAGACTTGGTCTTCTGCTCCGAAGCAGGAAAG 

213 11_20729 5H 41.33 ACACTGACGACATGGTTCTACACAAGCATTGGATTGTTGCCG TACGGTAGCAGAGACTTGGTCTCACCAGAAGCTTTTGGTGC 

214 11_10252 5H 43.92 ACACTGACGACATGGTTCTACATCCTTGAACTTCTCCGTCAC TACGGTAGCAGAGACTTGGTCTCGAACATAATGCTGCAGGAG 

215 11_20239 5H 44.20 ACACTGACGACATGGTTCTACAACAACAGCTTCATTGCTGCC TACGGTAGCAGAGACTTGGTCTTGATGATATCCACACCGACC 

216 12_30538 5H 44.99 ACACTGACGACATGGTTCTACATTCGATCAAACCCCTCATGC TACGGTAGCAGAGACTTGGTCTTGGAGGGTGATTGATCTTTG 

217 12_30745 5H 46.21 ACACTGACGACATGGTTCTACATGTTAAGCAAGCCGGTGAAC TACGGTAGCAGAGACTTGGTCTTGAAGGCCTAGTACCTTCTG 

218 11_10641 5H 50.88 ACACTGACGACATGGTTCTACAACTCCTACTTCAACAAGGTC TACGGTAGCAGAGACTTGGTCTGAAGAGGCCCAACAATCTTG 

219 12_20350 5H 53.77 ACACTGACGACATGGTTCTACAACTAGCTTTCTTGCCGACAC TACGGTAGCAGAGACTTGGTCTTACATGTCCAGATGTCCTAC 

220 11_21309 5H 55.83 ACACTGACGACATGGTTCTACAGAGATAGTGAAGTTTGGGAG TACGGTAGCAGAGACTTGGTCTTCCTCATTGGAAAGGGCTTC 

221 11_20236 5H 59.03 ACACTGACGACATGGTTCTACATGCCGATGAGGCGATTATTC TACGGTAGCAGAGACTTGGTCTGCAATTGAATCGACCCTGTG 

222 11_20645 5H 64.25 ACACTGACGACATGGTTCTACACCACACGCTGCAAATACATC TACGGTAGCAGAGACTTGGTCTCCTGTACCTTCGCTTTCTTG 

223 12_10674 5H 68.83 ACACTGACGACATGGTTCTACATAATAAGGCTTCCGACGGAG TACGGTAGCAGAGACTTGGTCTGCCACCTGCTTGAATGGATG 
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Table C1. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Tradition and PI67381 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

SN Markers Chr cM Forward Primers Reverse Primers 

224 11_20497 5H 73.15 ACACTGACGACATGGTTCTACATCGGATACAACCATGAGAGC TACGGTAGCAGAGACTTGGTCTCGGTCTGGTTGATCTTCTTG 

225 11_10518 5H 76.34 ACACTGACGACATGGTTCTACAAAGACAGCCTCGACATCATC TACGGTAGCAGAGACTTGGTCTAGTAGTTTCCTCAACACGTC 

226 11_21421 5H 83.08 ACACTGACGACATGGTTCTACATGCTGCTGCTGTTTATGGTG TACGGTAGCAGAGACTTGGTCTGATTGACTAGATACTGTGGC 

227 11_11350 5H 84.96 ACACTGACGACATGGTTCTACAGAATCTCTTCGTCGTCGATG TACGGTAGCAGAGACTTGGTCTCGCGAGGGTAGAACATCATT 

228 11_20549 5H 87.71 ACACTGACGACATGGTTCTACAAGTTGGAGATGCAGATGCAG TACGGTAGCAGAGACTTGGTCTCATGAGGAGATGAGAAGAAC 

229 12_10752 5H 90.68 ACACTGACGACATGGTTCTACAGGTCAAGTGCTCACAACAAC TACGGTAGCAGAGACTTGGTCTTCTCGCTCTTTCTTCCTTCC 

230 12_30456 5H 95.65 ACACTGACGACATGGTTCTACACTTCTGCAGGAGTGACATTG TACGGTAGCAGAGACTTGGTCTTCATTGCAGTGTCTGCTCTC 

231 11_11200 5H 99.58 ACACTGACGACATGGTTCTACAACCTTTGTTTTGCTTGCAGG TACGGTAGCAGAGACTTGGTCTGAAGCGCTCATCAACCATAC 

232 11_11507 5H 111.56 ACACTGACGACATGGTTCTACAGGGCACAATTTGTTACATAG TACGGTAGCAGAGACTTGGTCTTAGCCTTCCTTCATTGTGCC 

233 11_21422 5H 112.78 ACACTGACGACATGGTTCTACACTGAAAATGACCTCCAAGGG TACGGTAGCAGAGACTTGGTCTAGCAGGGCTATGATTCCTCT 

234 11_20653 5H 115.53 ACACTGACGACATGGTTCTACAATACCACTTGTGATCCGAGG TACGGTAGCAGAGACTTGGTCTGACCAGGAATTGACTGGAAG 

235 12_30067 5H 117.63 ACACTGACGACATGGTTCTACAATTGATGTCGAGAACCGGAG TACGGTAGCAGAGACTTGGTCTCGAGAAGAACAAAGCACCTG 

236 11_21247 5H 119.72 ACACTGACGACATGGTTCTACATCCGTTCCCGTTTGTTACAC TACGGTAGCAGAGACTTGGTCTGGCTCCATTTTTATGTAACTG 

237 11_10845 5H 128.80 ACACTGACGACATGGTTCTACACAACAGCGATCCAAGCTTCC TACGGTAGCAGAGACTTGGTCTCATGGACTAGCCTTGACTTC 

238 11_20551 5H 130.93 ACACTGACGACATGGTTCTACATCCAGAAAGCTGAGAGCATC TACGGTAGCAGAGACTTGGTCTCAATGATCATATCTGAGGCG 

239 11_20375 5H 132.00 ACACTGACGACATGGTTCTACAAAAGGGCCTCAGACTTCAAG TACGGTAGCAGAGACTTGGTCTGTACGACAAGGAGAAACTGC 

240 11_20100 5H 135.42 ACACTGACGACATGGTTCTACATGGTGAAGAGGGCCGAGAAG TACGGTAGCAGAGACTTGGTCTTTCTTGATGTCGGCTTCGC 

241 12_31050 5H 137.22 ACACTGACGACATGGTTCTACATTGTCGTGCTGCCCTTGGAA TACGGTAGCAGAGACTTGGTCTTTCAGGGAGAAGAGTCCATC 

242 12_31165 5H 138.44 ACACTGACGACATGGTTCTACAGCCCAACGTCATCGTACGAA TACGGTAGCAGAGACTTGGTCTTCCAGAAGAAGGCCAAGGAC 

243 12_31221 5H 142.71 ACACTGACGACATGGTTCTACACTTTGCGAAGCACGTTTCTC TACGGTAGCAGAGACTTGGTCTAACTTTGCCATGGAAGGAAG 

244 11_10217 5H 144.86 ACACTGACGACATGGTTCTACATGGTCTCCACAAACATGACG TACGGTAGCAGAGACTTGGTCTGATAGGCTCCGTAGATCAAG 

245 11_10582 5H 149.41 ACACTGACGACATGGTTCTACAACGTAGCTAAGAGACCAAAC TACGGTAGCAGAGACTTGGTCTTGGAGTTGTTCTCCATGACC 

246 11_21018 5H 153.47 ACACTGACGACATGGTTCTACAGCGAATGTTCTAGACCTTAC TACGGTAGCAGAGACTTGGTCTCTCTGGGACAATGGAAGTAG 

247 12_30162 5H 156.70 ACACTGACGACATGGTTCTACAATGTGAAGACGGAGCTGTAG TACGGTAGCAGAGACTTGGTCTAAACAACACCCAAGGTCCAC 

248 11_20829 5H 158.18 ACACTGACGACATGGTTCTACATTCTCCTCCTTGATGTCACC TACGGTAGCAGAGACTTGGTCTTGTTCCTTGTGATGAGCACG 
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Table C1. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Tradition and PI67381 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

SN Markers Chr cM Forward Primers Reverse Primers 

249 11_20826 5H 161.41 ACACTGACGACATGGTTCTACAACCAAGGCGAGGAGGAGAGA TACGGTAGCAGAGACTTGGTCTGCTCCTCCCCTTTCTTTTTG 

250 11_10869 5H 163.16 ACACTGACGACATGGTTCTACAGCTGCTACACACATGAATTG TACGGTAGCAGAGACTTGGTCTCTAAGATGAAGCTCTGGCTC 

251 11_10600 5H 165.57 ACACTGACGACATGGTTCTACAACGATGCCCTCCTTGACGA TACGGTAGCAGAGACTTGGTCTAAAAGTGTGCCGGGACAATG 

252 11_20536 5H 167.35 ACACTGACGACATGGTTCTACAACACATTGGGCAAGGTTCAC TACGGTAGCAGAGACTTGGTCTGAGGCTTGCAAAAAGCTTGG 

253 11_21138 5H 169.97 ACACTGACGACATGGTTCTACATCCAGCTCAGCAATGTTGTC TACGGTAGCAGAGACTTGGTCTCAGGAGGTCAGTTTAAGTGC 

254 12_30494 5H 171.16 ACACTGACGACATGGTTCTACATCATCCAGTTCAGCGCCTTC TACGGTAGCAGAGACTTGGTCTTCTTGGTGTGCATGGTGAAG 

255 12_30504 5H 172.25 ACACTGACGACATGGTTCTACAGCACCATCACTATCATGCAG TACGGTAGCAGAGACTTGGTCTAATCTGTTGCTCCATGGCTG 

256 12_31352 5H 176.52 ACACTGACGACATGGTTCTACAATCGAGTTCTACCGGCACTG TACGGTAGCAGAGACTTGGTCTGCTTGATGAGGTTGAACAC 

257 11_10310 5H 177.50 ACACTGACGACATGGTTCTACATAGGAGAGGGAGCAAAACAG TACGGTAGCAGAGACTTGGTCTGAGAATCTTTACTTGACCCG 

258 11_11364 5H 179.67 ACACTGACGACATGGTTCTACAGTTCTCCAGGAAACAACCAG TACGGTAGCAGAGACTTGGTCTCGGACGGAGTAACTTTTTA 

259 12_10322 5H 181.11 ACACTGACGACATGGTTCTACAGCGCCACCATGTTACGACC TACGGTAGCAGAGACTTGGTCTAGTGAGTGGCAGACACAGAG 

260 12_31123 5H 184.75 ACACTGACGACATGGTTCTACACACCGTGCCTTTCTTAGAAG TACGGTAGCAGAGACTTGGTCTTCCATCGACATCCTTAAGGG 

261 11_20232 6H 0.00 ACACTGACGACATGGTTCTACATGTGACGAATTTCTCGAGCC TACGGTAGCAGAGACTTGGTCTCAAGGATGATGATTGAGGGC 

262 11_20212 6H 2.86 ACACTGACGACATGGTTCTACACTTGTCGTCAATGGCGTAAG TACGGTAGCAGAGACTTGGTCTTCATCGACCGAGGCCGAGAA 

263 12_30651 6H 5.44 ACACTGACGACATGGTTCTACAAGCTCCATGCTACCTATGAG TACGGTAGCAGAGACTTGGTCTTGGCCAATTCCTTCATCTCC 

264 11_21204 6H 7.56 ACACTGACGACATGGTTCTACACTCTATCTTCTATTCTCATC TACGGTAGCAGAGACTTGGTCTACAGATAATCCGCCTCTACC 

265 11_21032 6H 11.35 ACACTGACGACATGGTTCTACAAATCTCTGCATAAGAGCAGG TACGGTAGCAGAGACTTGGTCTCATCAAGGAAGCTGGAGGTG 

266 11_20415 6H 15.16 ACACTGACGACATGGTTCTACAGCTGTCATCTTTCTCGAGTC TACGGTAGCAGAGACTTGGTCTGTAAGAAACTTCTCCACCAG 

267 11_20315 6H 25.77 ACACTGACGACATGGTTCTACACTAGGAGGAAAGTGCCGTC TACGGTAGCAGAGACTTGGTCTTCAAGAAGAACGTGGAGCTG 

268 11_10136 6H 27.19 ACACTGACGACATGGTTCTACAACAGGTCGCTTGAGGGTATG TACGGTAGCAGAGACTTGGTCTGCCTTGGGAAGATAACAAGC 

269 11_20745 6H 31.59 ACACTGACGACATGGTTCTACACATTCAGATTCATTCCTTGC TACGGTAGCAGAGACTTGGTCTCGTCGGTCTGTGTAGTTAGC 

270 12_30697 6H 33.39 ACACTGACGACATGGTTCTACATAGGACGGTGCATCCATTTG TACGGTAGCAGAGACTTGGTCTGAAGATAGGGACTGAAGCTG 

271 12_31485 6H 35.29 ACACTGACGACATGGTTCTACATCCTGATAAAGGCAGGAGTC TACGGTAGCAGAGACTTGGTCTAGTTGTGCGGCTGTTTGTCC 

272 11_10799 6H 38.12 ACACTGACGACATGGTTCTACACCATTTCCCCTAGGAATCAG TACGGTAGCAGAGACTTGGTCTCTTCCATCTCACCCAAGAAC 

273 11_10427 6H 41.35 ACACTGACGACATGGTTCTACAGAACAGGTACCACAAATGGG TACGGTAGCAGAGACTTGGTCTAGAACCACTGTCTACGAAAC 
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Table C1. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Tradition and PI67381 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

SN Markers Chr cM Forward Primers Reverse Primers 

274 12_30521 6H 44.61 ACACTGACGACATGGTTCTACAGTTCCCATCACAAAACCAGC TACGGTAGCAGAGACTTGGTCTTTCGCATACCTGCAATGCTG 

275 12_30516 6H 51.74 ACACTGACGACATGGTTCTACAACATTCCCGATTCAGACGAC TACGGTAGCAGAGACTTGGTCTATCCTTTCTTCGGAGTCCTC 

276 11_10462 6H 53.84 ACACTGACGACATGGTTCTACATGTCCCAACACCATTCAGAG TACGGTAGCAGAGACTTGGTCTAGTGGCACAGAAGCAAAGAG 

277 11_20675 6H 55.90 ACACTGACGACATGGTTCTACATTGGGCGTACGAGGAGTATG TACGGTAGCAGAGACTTGGTCTTTCACCAGCACCTGGTCCTC 

278 11_10962 6H 58.34 ACACTGACGACATGGTTCTACATCTTGCCATCAGGCCTCAAC TACGGTAGCAGAGACTTGGTCTTCAGCCATGTTCTTGCTACC 

279 SCRI_RS_213566 6H 59.01 ACACTGACGACATGGTTCTACACGGTCATTATCATGGTTAGG TACGGTAGCAGAGACTTGGTCTGGATCCCCAACAAATCAAAC 

280 SCRI_RS_176650 6H 59.21 ACACTGACGACATGGTTCTACAAAATGAGGATGTCGCAGGTG TACGGTAGCAGAGACTTGGTCTAATCCAGCACAGCTTCTGTC 

281 SCRI_RS_186193 6H 59.21 ACACTGACGACATGGTTCTACATACGAGTCGGAGAAGTCAGC TACGGTAGCAGAGACTTGGTCTAAGTACACCTTCCGCTTCGC 

282 SCRI_RS_188243 6H 59.21 ACACTGACGACATGGTTCTACACCAAGGTCAAACTCTTTGCC TACGGTAGCAGAGACTTGGTCTGCAGCTCTCAGGATTTGAAG 

283 11_10377 6H 59.33 ACACTGACGACATGGTTCTACACTCCATGGCCTTGATCAAAG TACGGTAGCAGAGACTTGGTCTCCAGATGAACTTCAAGCGTC 

284 12_11253 6H 62.91 ACACTGACGACATGGTTCTACATAAGCTTTGCTTGCTGTGCC TACGGTAGCAGAGACTTGGTCTAGTCCACCGTTTAGTGTCTC 

285 12_10758 6H 64.29 ACACTGACGACATGGTTCTACATAGGCAACGAACCAAGTCTC TACGGTAGCAGAGACTTGGTCTTGGAACGGATAGGTTTGGTC 

286 11_20058 6H 65.38 ACACTGACGACATGGTTCTACAGAGTTGGGAACTTGGCATAC TACGGTAGCAGAGACTTGGTCTGATTTGTGCTGCCAAATGCC 

287 11_11483 6H 69.79 ACACTGACGACATGGTTCTACATCATCGTGGAGCTCTAGGAC TACGGTAGCAGAGACTTGGTCTGTATACAGTAGGCTAGAGCG 

288 11_10455 6H 72.29 ACACTGACGACATGGTTCTACAGCTGTAAGCAATGTCTTCCG TACGGTAGCAGAGACTTGGTCTGACGACAAAATGGTACAAGG 

289 11_10124 6H 73.83 ACACTGACGACATGGTTCTACAAGGACTAAACCCTCTGTCTG TACGGTAGCAGAGACTTGGTCTCAATAAGCTAAAGCAAGAC 

290 11_20892 6H 74.18 ACACTGACGACATGGTTCTACATGAAAACCATTGCCCCGAAG TACGGTAGCAGAGACTTGGTCTTATGAACATCTCGGGTCCTG 

291 12_31111 6H 76.62 ACACTGACGACATGGTTCTACAGGCGAAACCACAGATGGTTG TACGGTAGCAGAGACTTGGTCTAACAGCAACTGGAGGATTGG 

292 11_20682 6H 77.70 ACACTGACGACATGGTTCTACAAGGAGGACGAGCAGCAGC TACGGTAGCAGAGACTTGGTCTTGACACTTGTGACAGTTCGG 

293 11_10220 6H 80.31 ACACTGACGACATGGTTCTACAGTGTTTGTGTACATGGTGCG TACGGTAGCAGAGACTTGGTCTTTTCCCTGCACATGCTTCTC 

294 11_11246 6H 81.48 ACACTGACGACATGGTTCTACAGGTGCAATCCATTGTTGTTG TACGGTAGCAGAGACTTGGTCTAGTTCAGCATCCCCAGTGAC 

295 12_30698 6H 88.85 ACACTGACGACATGGTTCTACAAAGTACACACGGCAAGGAAG TACGGTAGCAGAGACTTGGTCTACTGCTAGCTAACCGGAAAC 

296 11_10400 6H 92.12 ACACTGACGACATGGTTCTACATTATTCGCGCCACCAGATTG TACGGTAGCAGAGACTTGGTCTGACCATGCTTCTTCATCTGC 

297 12_30151 6H 97.15 ACACTGACGACATGGTTCTACAACGGCGGCTACTACACGCT TACGGTAGCAGAGACTTGGTCTTTGCACTCCACGAACGGCTC 

298 11_20972 6H 99.15 ACACTGACGACATGGTTCTACAGAGTTTGACAACAGCGCTTC TACGGTAGCAGAGACTTGGTCTAGTCATGAGATCCTGTACAC 
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Table C1. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Tradition and PI67381 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

SN Markers Chr cM Forward Primers Reverse Primers 

299 12_31353 6H 100.53 ACACTGACGACATGGTTCTACAGTTTTGCCACATTGAAAGGAG TACGGTAGCAGAGACTTGGTCTAGCAACGGTAAAATACGGGC 

300 SCRI_RS_151574 6H 101.83 ACACTGACGACATGGTTCTACAACGCTCATGACGTGCCACTA TACGGTAGCAGAGACTTGGTCTATCGGCGGTCGGGATCAGAA 

301 12_31115 6H 102.03 ACACTGACGACATGGTTCTACAAACCACACCAACTGACTTGC TACGGTAGCAGAGACTTGGTCTGCATGAACAAAACCGACGAG 

302 11_20379 6H 105.23 ACACTGACGACATGGTTCTACAATAAGCCACTGCTCCCCTTC TACGGTAGCAGAGACTTGGTCTCGAGTAGGAGTATGTCACTG 

303 11_20036 6H 110.59 ACACTGACGACATGGTTCTACATCCTATCGTTTGGCTTTCGG TACGGTAGCAGAGACTTGGTCTTAGGAGAGTCAGCGCAGAAG 

304 11_20355 6H 113.05 ACACTGACGACATGGTTCTACAATCCATGATACAGCCTAGTG TACGGTAGCAGAGACTTGGTCTCCCCAGTTTCAATTGATTCC 

305 12_30734 6H 116.37 ACACTGACGACATGGTTCTACACTTCATCCGTTTCACCGTTC TACGGTAGCAGAGACTTGGTCTTCAGACAGAGCAGAATGCAG 

306 11_10107 6H 122.64 ACACTGACGACATGGTTCTACATTGAGGTGGTCTAGATGCAG TACGGTAGCAGAGACTTGGTCTACCGCATACCCTCCAAAAAG 

307 11_11187 6H 124.72 ACACTGACGACATGGTTCTACAAATTGCTCCCTTGAAACCGC TACGGTAGCAGAGACTTGGTCTTCAGTCAGGTGATTATGTTG 

308 11_20868 6H 129.12 ACACTGACGACATGGTTCTACAGGTAGCTTTATGTATGGCGG TACGGTAGCAGAGACTTGGTCTTTCGCCGCCGTTCTGCTCTT 

309 11_20537 6H 139.39 ACACTGACGACATGGTTCTACAGCAAGGACGATAGGTAGATG TACGGTAGCAGAGACTTGGTCTCATCCAGCATGCCTACAATC 

310 11_21419 7H 0.00 ACACTGACGACATGGTTCTACACATGGTCTTGCAGACATTCC TACGGTAGCAGAGACTTGGTCTCTTGATCGTCAAGAGAAGTG 

311 11_10682 7H 1.08 ACACTGACGACATGGTTCTACACGCCTAGTTTAGTGGCTGGT TACGGTAGCAGAGACTTGGTCTCTGGAAATCTAAGATGAACC 

312 11_20710 7H 2.47 ACACTGACGACATGGTTCTACATGCCATTGCTGCAAGGATAG TACGGTAGCAGAGACTTGGTCTACAATTCATCCCCACCTCTC 

313 11_20242 7H 4.52 ACACTGACGACATGGTTCTACACCTGGTCATCCTTGATGCTG TACGGTAGCAGAGACTTGGTCTTTTTCGCCGAGTGGAACAAG 

314 12_11035 7H 6.29 ACACTGACGACATGGTTCTACACCAGGTGTATCTGAATAAGAC TACGGTAGCAGAGACTTGGTCTTGCAGCTGAAAATCCAATAG 

315 11_20245 7H 9.82 ACACTGACGACATGGTTCTACATGCACTAGTTCTTGCCCATC TACGGTAGCAGAGACTTGGTCTGGAGAAATTCCAGGGCTATC 

316 11_10841 7H 12.97 ACACTGACGACATGGTTCTACAGCTTTGAAGCATGATCGGAC TACGGTAGCAGAGACTTGGTCTATTCGGTTGACCACAAGCTC 

317 11_21437 7H 15.44 ACACTGACGACATGGTTCTACACCAGACAATGTTCAAGGTCC TACGGTAGCAGAGACTTGGTCTTATCTCATTCTCGCACCCTC 

318 11_21050 7H 17.23 ACACTGACGACATGGTTCTACACTTGTCCAATGGACGAAAGG TACGGTAGCAGAGACTTGGTCTTGTAAACAGAAGGCGTGGTG 

319 11_20722 7H 19.22 ACACTGACGACATGGTTCTACAGGAGGCAACATCTCTGATAG TACGGTAGCAGAGACTTGGTCTAAATGCCTGATGTCGCGATG 

320 11_20495 7H 22.12 ACACTGACGACATGGTTCTACACGCATTGACGCTTCCTTTTG TACGGTAGCAGAGACTTGGTCTAGTCTAAGGACAACGGACAC 

321 12_30530 7H 26.35 ACACTGACGACATGGTTCTACATACGAGGTGCACGGCCTCAT TACGGTAGCAGAGACTTGGTCTGGTCGTGGTAGATGTGGTC 

322 12_30780 7H 29.62 ACACTGACGACATGGTTCTACATTGGTGAAGGCCGCAGCAAC TACGGTAGCAGAGACTTGGTCTGGTGGGGTTCTACCAGAAG 

323 12_30219 7H 32.88 ACACTGACGACATGGTTCTACAGAAACTCACCAAATCCATCG TACGGTAGCAGAGACTTGGTCTAAGTCCGTGACATACCCTAC 
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Table C1. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Tradition and PI67381 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

SN Markers Chr cM Forward Primers Reverse Primers 

324 11_20993 7H 34.74 ACACTGACGACATGGTTCTACATACAGCGAATGGATCGATGA TACGGTAGCAGAGACTTGGTCTTTTGGAAGCGGGACATGCTC 

325 12_30895 7H 38.31 ACACTGACGACATGGTTCTACACACCTGCAGGCAGTATAAAG TACGGTAGCAGAGACTTGGTCTCAGCTTATGTACGTACTCTC 

326 11_10838 7H 40.46 ACACTGACGACATGGTTCTACACGTTGAGAATTGCGAAGGAC TACGGTAGCAGAGACTTGGTCTCAGTCATCAGCATAAGTTCC 

327 11_10576 7H 46.89 ACACTGACGACATGGTTCTACACGACAATTCCGGAGAAGATG TACGGTAGCAGAGACTTGGTCTTCTCCCCCATTTTTGCTTTC 

328 12_30545 7H 56.83 ACACTGACGACATGGTTCTACACTGACTACTGAGTGCCTAAC TACGGTAGCAGAGACTTGGTCTCGAAACCCCCTTCAGTTTAG 

329 12_10959 7H 61.04 ACACTGACGACATGGTTCTACAGATTTCATCCACCTCGCGAC TACGGTAGCAGAGACTTGGTCTCAATTCAGAGCTGCCACTTC 

330 12_30880 7H 63.28 ACACTGACGACATGGTTCTACACAGTCTCGGTATATGGGAAG TACGGTAGCAGAGACTTGGTCTCCATGGGATTGACGTGTTTG 

331 11_10050 7H 66.61 ACACTGACGACATGGTTCTACAATTCGTGAGGCAGATGGGTG TACGGTAGCAGAGACTTGGTCTACTCGTTATGATCGTGAAGC 

332 12_30149 7H 67.99 ACACTGACGACATGGTTCTACATTACAAGCACGATCAGGGAG TACGGTAGCAGAGACTTGGTCTGGTAAAGTAAAAGGTGGAGG 

333 11_11348 7H 71.76 ACACTGACGACATGGTTCTACATAGCTAGCTAGAGCTACCTG TACGGTAGCAGAGACTTGGTCTAGCTTAGGACAATCAGCTGG 

334 12_30997 7H 74.84 ACACTGACGACATGGTTCTACACTCGCCGGAGAGAGAAGAA TACGGTAGCAGAGACTTGGTCTTTGCCCAGCCCTTTCCCTC 

335 12_30344 7H 76.06 ACACTGACGACATGGTTCTACAACCAAGGAAGGAACAGTGCG TACGGTAGCAGAGACTTGGTCTATCTTCCTCATCTCCTCTCC 

336 11_10700 7H 78.07 ACACTGACGACATGGTTCTACAGATGGTAACTCATGTCCAAC TACGGTAGCAGAGACTTGGTCTAGGTGCCCCTTTGTCTATGG 

337 12_10982 7H 80.47 ACACTGACGACATGGTTCTACAAGATGAGGGTGGAGATGAAC TACGGTAGCAGAGACTTGGTCTGTCGCTTCGATGACTCCTTC 

338 12_30565 7H 81.07 ACACTGACGACATGGTTCTACATTCTACAACCAATTGATGCC TACGGTAGCAGAGACTTGGTCTCTGAGAGATGAGGCATAATAC 

339 12_30998 7H 82.16 ACACTGACGACATGGTTCTACACCACGACTACATGCTGAAAC TACGGTAGCAGAGACTTGGTCTGCAGTGGCTTTGATCATGAG 

340 11_20083 7H 84.09 ACACTGACGACATGGTTCTACATCTGATTCTGAGGGCATGTC TACGGTAGCAGAGACTTGGTCTTTCCGCGTTGAGAATGAGTG 

341 12_30996 7H 87.29 ACACTGACGACATGGTTCTACAAAGGATCAACTATGGCGGTC TACGGTAGCAGAGACTTGGTCTCTGAACCCAGCAGGAGAATC 

342 12_30026 7H 89.15 ACACTGACGACATGGTTCTACACCGTTGGTGAAGGAGAAAAC TACGGTAGCAGAGACTTGGTCTCTTTTCAGCTAACTTTGGCG 

343 11_21448 7H 92.00 ACACTGACGACATGGTTCTACATAACAGACGACGACGCTTAC TACGGTAGCAGAGACTTGGTCTTGTACTGCTGTTTCCTCCTG 

344 11_21201 7H 95.02 ACACTGACGACATGGTTCTACAAATGTGGAGAGCATTGTGCC TACGGTAGCAGAGACTTGGTCTATCCTTCCCACCTTTCTTGC 

345 11_20808 7H 99.90 ACACTGACGACATGGTTCTACAATTCCTGCCACGACCATAAG TACGGTAGCAGAGACTTGGTCTCCCTCGATCCATATCGATAG 

346 12_31440 7H 102.19 ACACTGACGACATGGTTCTACAAGCCACGGGTCTTCGACAT TACGGTAGCAGAGACTTGGTCTATGACGACGCTCCTTCATCC 

347 11_20824 7H 107.49 ACACTGACGACATGGTTCTACAACTCGTAAGTAACGTCGTGC TACGGTAGCAGAGACTTGGTCTTGACCTTTGGAAACTCCAAG 

348 SCRI_RS_112204 7H 109.00 ACACTGACGACATGGTTCTACAAAGCAATGGCTCAATTGCCG TACGGTAGCAGAGACTTGGTCTACACCATCCATGATCCATCC 
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Table C1. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Tradition and PI67381 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

SN Markers Chr cM Forward Primers Reverse Primers 

349 11_10853 7H 110.40 ACACTGACGACATGGTTCTACAGCTAACCTAAGGGAGCATTG TACGGTAGCAGAGACTTGGTCTGCTGTGTACCTTAAAATTGC 

350 11_20247 7H 117.10 ACACTGACGACATGGTTCTACAGATATCACTCCATTTCAAGG TACGGTAGCAGAGACTTGGTCTTGCGTGGATCCTATTTTTGG 

351 12_30368 7H 119.33 ACACTGACGACATGGTTCTACAAACCAAGAGAATCACAACCC TACGGTAGCAGAGACTTGGTCTTCGACGGAGAGGGTTTAATG 

352 11_11243 7H 125.55 ACACTGACGACATGGTTCTACAGGGCTTTTTGTGTACACAAT TACGGTAGCAGAGACTTGGTCTACGTTTGGTGGGCATGTGTA 

353 12_10543 7H 132.76 ACACTGACGACATGGTTCTACAAAAGGATGAATCGCCAAAGG TACGGTAGCAGAGACTTGGTCTTTCTCTGCCACAAAGTAAGG 

354 SCRI_RS_202130 7H 133.84 ACACTGACGACATGGTTCTACACTCTCCATTTCCATTTTGGG TACGGTAGCAGAGACTTGGTCTGTGTTCCATGATGGTGTTCG 

355 11_10182 7H 133.92 ACACTGACGACATGGTTCTACACACCAAATGCTGTGAACGAC TACGGTAGCAGAGACTTGGTCTCCTGAAACGTAATTCGCATC 

356 11_10861 7H 138.76 ACACTGACGACATGGTTCTACACATGTACAGAGTACCGTAGG TACGGTAGCAGAGACTTGGTCTCTACCAGTACATCACTAGCG 

357 11_10797 7H 141.37 ACACTGACGACATGGTTCTACATGAACACCGGCCTAATTACC TACGGTAGCAGAGACTTGGTCTTGCGCTTTCAGGAACAACAG 

358 11_20847 7H 145.68 ACACTGACGACATGGTTCTACAGCGAAGAAGAACTTGTCCTC TACGGTAGCAGAGACTTGGTCTAAGGTGCAATCCTAGTAGGG 

359 12_30761 7H 147.63 ACACTGACGACATGGTTCTACACTATCGATGACCTTGAGAATG TACGGTAGCAGAGACTTGGTCTCTTGACCTCAATTTGGTTAGC 

360 12_20640 7H 152.51 ACACTGACGACATGGTTCTACATAGCAATAAGGGCCGTGTAG TACGGTAGCAGAGACTTGGTCTCTAAGTGGCACACCTTTATG 

361 11_11275 7H 156.69 ACACTGACGACATGGTTCTACACGGCGACGATGGAGGTCAT TACGGTAGCAGAGACTTGGTCTGCAGCTCAAAGAACGGATTC 

362 11_11012 7H 157.08 ACACTGACGACATGGTTCTACATGGAGGAGGAAGAGGAGGT TACGGTAGCAGAGACTTGGTCTTTGTCGTACTGCTCGTGCTC 

363 11_20586 7H 161.09 ACACTGACGACATGGTTCTACATCAGTTTCGACAGGATCTGG TACGGTAGCAGAGACTTGGTCTACAAGAAGCCCGGAATCATC 

364 11_20185 7H 166.55 ACACTGACGACATGGTTCTACAGGAAAGAGTGACCATCTAGG TACGGTAGCAGAGACTTGGTCTGTGCTCCTTGCGGTGTTAG 

365 12_10378 7H 167.58 ACACTGACGACATGGTTCTACATGGTGAACTCGGCCAGCGTT TACGGTAGCAGAGACTTGGTCTGTAGCGGGAGCTGCCAGAC 
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Table C2. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Pinnacle and PI67381 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information. 

SN Marker Chr cM Forward Primers Reverse Primers 

1 12_30969 1H 1.36 ACACTGACGACATGGTTCTACAAAGTTGCCTTAATGACTGGG TACGGTAGCAGAGACTTGGTCTGCTTGAAGCTGAAGACAGAC 

2 12_31144 1H 4.98 ACACTGACGACATGGTTCTACAGAAAAGAAGTGATTCGCCCG TACGGTAGCAGAGACTTGGTCTTGCAGAAGTTCAAGACCCTG 

3 SCRI_RS_66630 1H 5.68 ACACTGACGACATGGTTCTACACATGATATCTGCTTGAGTGG TACGGTAGCAGAGACTTGGTCTCAGTATATATATCCAGTTCAC 

4 11_21226 1H 10.35 ACACTGACGACATGGTTCTACAATCCTCATCAGGTATTCGGC TACGGTAGCAGAGACTTGGTCTTCCCCTGCTCATTCAGTTTG 

5 SCRI_RS_130592 1H 17.20 ACACTGACGACATGGTTCTACATGACGTCCACGTACTACTAC TACGGTAGCAGAGACTTGGTCTCTTGGCCGCCACTGAACAT 

6 11_10030 1H 21.99 ACACTGACGACATGGTTCTACAGATGAACCGAAGTATGCACC TACGGTAGCAGAGACTTGGTCTTTTCCTCCGCTTTGAAGGTG 

7 SCRI_RS_124926 1H 26.32 ACACTGACGACATGGTTCTACAGTCGTATGATCCACGTGATG TACGGTAGCAGAGACTTGGTCTGCAACCTTTGCGATCATCTC 

8 11_10757 1H 28.78 ACACTGACGACATGGTTCTACACTTGTCGTATGAGGCTCTTG TACGGTAGCAGAGACTTGGTCTTGCAGGGCGTCGTCGACTA 

9 11_21048 1H 31.24 ACACTGACGACATGGTTCTACAAGGAGAAGAAGGCGGAGGTG TACGGTAGCAGAGACTTGGTCTTTCCAGAGCTGATCCATGTC 

10 12_31177 1H 37.10 ACACTGACGACATGGTTCTACATAATGAGGATGCAGCCAGAG TACGGTAGCAGAGACTTGGTCTCATGCCCAGGTTGGAACAC 

11 12_30336 1H 42.17 ACACTGACGACATGGTTCTACAGCAGTTTATATTCCGGTGTG TACGGTAGCAGAGACTTGGTCTACACTGAGTCAACGTAGTGC 

12 12_10314 1H 46.53 ACACTGACGACATGGTTCTACATGGCTTGTGGAATTGAGGAC TACGGTAGCAGAGACTTGGTCTTATAACTTCGGTGGACGCTG 

13 11_21095 1H 47.92 ACACTGACGACATGGTTCTACAAGACGTCCACCAAGAAGAAC TACGGTAGCAGAGACTTGGTCTTGTCACTTCGGCAGAAATGG 

14 12_30710 1H 51.86 ACACTGACGACATGGTTCTACACGAACTTATCGATGAGGCTG TACGGTAGCAGAGACTTGGTCTCATCACAAAGCACCACTGAC 

15 11_10176 1H 59.01 ACACTGACGACATGGTTCTACATTGGCCTGCCATTCTCTTTC TACGGTAGCAGAGACTTGGTCTTTACAGAGAGCCTTGGCATC 

16 11_10002 1H 64.93 ACACTGACGACATGGTTCTACACGACGACAATACACAACACC TACGGTAGCAGAGACTTGGTCTGTTCGGTGCGTCTGTTTTTG 

17 12_31464 1H 64.93 ACACTGACGACATGGTTCTACATGGCCCCACATATGCATCAG TACGGTAGCAGAGACTTGGTCTCCTGAGGTGACCATGATTTG 

18 12_10166 1H 69.73 ACACTGACGACATGGTTCTACAAGTGGGCGTTGATGTGATTC TACGGTAGCAGAGACTTGGTCTAACGGTCGACAAACCGTAAG 

19 11_20229 1H 71.70 ACACTGACGACATGGTTCTACAATGAGGCCAAGATTGAGGTG TACGGTAGCAGAGACTTGGTCTGTCCCTGATGTGAAGCAATG 

20 11_20990 1H 74.12 ACACTGACGACATGGTTCTACAAGTAACACTGGACACACACC TACGGTAGCAGAGACTTGGTCTGCCATAATTGAGAGGCTGTG 

21 SCRI_RS_181353 1H 78.25 ACACTGACGACATGGTTCTACAGCTGAAATTCAAAGAGCAGAG TACGGTAGCAGAGACTTGGTCTCACCTTGAGTGGAAAGATCG 

22 SCRI_RS_9158 1H 82.45 ACACTGACGACATGGTTCTACACACCCTCGCTTTCTGCATC TACGGTAGCAGAGACTTGGTCTAAATCGAGTGGTCCGGATTC 

23 11_20792 1H 88.25 ACACTGACGACATGGTTCTACAAAACAGTTGCCAGCTTCCAC TACGGTAGCAGAGACTTGGTCTAGTGCTACTGCATAATCAGG 

24 11_21373 1H 90.98 ACACTGACGACATGGTTCTACACCTTCTCCAAGTCATCCATC TACGGTAGCAGAGACTTGGTCTGGCAATGTCCGAAAGAAACC 

25 11_20149 1H 94.48 ACACTGACGACATGGTTCTACATAATGTGAGAAATTTTGATAT TACGGTAGCAGAGACTTGGTCTTCAAGACCTTGTGGTTTGGC 

26 SCRI_RS_188909 1H 98.45 ACACTGACGACATGGTTCTACACAGCACGTAACATCTGCATC TACGGTAGCAGAGACTTGGTCTATCCAGCTACTAGAGTGGAC 

27 12_31152 1H 101.05 ACACTGACGACATGGTTCTACACTCCAGTAACAATCGACGTG TACGGTAGCAGAGACTTGGTCTATTTGTCCGGTCGTCCAAAC 
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Table C2. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Pinnacle and PI67381 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

SN Marker Chr cM Forward Primers Reverse Primers 

28 11_20267 1H 105.52 ACACTGACGACATGGTTCTACAAAGCAAAGCAGGAAGCTGAG TACGGTAGCAGAGACTTGGTCTGAGAGCCTCTCTCTAGCTTC 

29 12_30532 1H 109.53 ACACTGACGACATGGTTCTACACTGCACGTCATCATGATGTC TACGGTAGCAGAGACTTGGTCTCAACAACAGGTTCAGAGTCG 

30 12_30014 1H 114.98 ACACTGACGACATGGTTCTACAATATATCCAAAGTGCTGTCG TACGGTAGCAGAGACTTGGTCTATCAGCTCTGGGACGGCTTG 

31 11_20908 1H 126.60 ACACTGACGACATGGTTCTACAGATTGACGAGGCGGTGATAC TACGGTAGCAGAGACTTGGTCTCAAAGGAAGGAACCGAATGC 

32 SCRI_RS_189967 1H 129.42 ACACTGACGACATGGTTCTACAGCACCTTCTTCAGCATCTTC TACGGTAGCAGAGACTTGGTCTACAGACACTCTCGTACCCTG 

33 12_10808 1H 131.46 ACACTGACGACATGGTTCTACATTATACCCTTCAAGCAGCGG TACGGTAGCAGAGACTTGGTCTGCAGAGGCTAATAAAGCAAC 

34 12_10693 1H 132.54 ACACTGACGACATGGTTCTACAAAGTCCCATGGGAGAATCAG TACGGTAGCAGAGACTTGGTCTTCTTGCCACCAATGGTGAAC 

35 SCRI_RS_196025 1H 136.75 ACACTGACGACATGGTTCTACATAGCTACCTTGTTAGGCTCC TACGGTAGCAGAGACTTGGTCTCCTAACACTACATAGGGTGC 

36 11_10590 1H 142.74 ACACTGACGACATGGTTCTACAACAACACAGCGAAAACGAAC TACGGTAGCAGAGACTTGGTCTTGACGAGACTGCACTAGGTA 

37 12_31081 1H 145.82 ACACTGACGACATGGTTCTACAAACTGCTTGGATGGAACCAC TACGGTAGCAGAGACTTGGTCTGCCTCATTTCTGAGATAGTG 

38 12_21415 2H 5.39 ACACTGACGACATGGTTCTACATTTCTCCAAACGGTCCTTCG TACGGTAGCAGAGACTTGGTCTTTTTGGCTCTACAGACATAG 

39 11_10326 2H 7.29 ACACTGACGACATGGTTCTACACTCCATGGGATACCCATGTC TACGGTAGCAGAGACTTGGTCTTCAAGAAACGGTGATGGTGC 

40 SCRI_RS_168604 2H 11.49 ACACTGACGACATGGTTCTACATGGACCTCGTCCGCTTCTAC TACGGTAGCAGAGACTTGGTCTTCAGGGTTGACCTCGATGAC 

41 11_21377 2H 13.19 ACACTGACGACATGGTTCTACAAGCAGCAGCTACTTGCAAAC TACGGTAGCAGAGACTTGGTCTACTGCCAAAGAGACGATTGC 

42 SCRI_RS_152744 2H 23.76 ACACTGACGACATGGTTCTACACATCAAGAAAGAAGCCGGAG TACGGTAGCAGAGACTTGGTCTACGTACTCGGCGTCCACCA 

43 11_10943 2H 25.53 ACACTGACGACATGGTTCTACACCAACACTAACGGTAACAGC TACGGTAGCAGAGACTTGGTCTTCGCCGTTTTCACTCTTCAG 

44 SCRI_RS_153798 2H 31.74 ACACTGACGACATGGTTCTACACACGATCGAGTTCATCATCC TACGGTAGCAGAGACTTGGTCTAATGCAGGTCGATCGATCGG 

45 SCRI_RS_131218 2H 35.04 ACACTGACGACATGGTTCTACAAAGATCAACAGCAGCAGCCC TACGGTAGCAGAGACTTGGTCTTCACTTCCGTCGTGGCCTCT 

46 11_10216 2H 40.73 ACACTGACGACATGGTTCTACAAAGTCTTGATCCAGCCTTGC TACGGTAGCAGAGACTTGGTCTCGCCTAGTCTTAATGTCTGG 

47 SCRI_RS_182371 2H 44.54 ACACTGACGACATGGTTCTACAACTTGCTTGGGACTAAAGGC TACGGTAGCAGAGACTTGGTCTGGCAATTACCACACTGCAAC 

48 SCRI_RS_174935 2H 51.96 ACACTGACGACATGGTTCTACACATGTACCAGTTCGTCAGTC TACGGTAGCAGAGACTTGGTCTACTGGACTGATGCTAGACTG 

49 11_10919 2H 53.26 ACACTGACGACATGGTTCTACATAAAGGGCAAGGAAAAGCGG TACGGTAGCAGAGACTTGGTCTCCTGATAAGCTACAGCATGA 

50 12_30432 2H 54.31 ACACTGACGACATGGTTCTACAAGAACAACCGAGTCATGTGC TACGGTAGCAGAGACTTGGTCTGTTCCATGCACCCATGATGA 

51 SCRI_RS_221843 2H 62.91 ACACTGACGACATGGTTCTACAAAACATGGACGAGGCGGT TACGGTAGCAGAGACTTGGTCTCCAGAAGCTAGCTGCCTTTC 

52 SCRI_RS_151535 2H 65.71 ACACTGACGACATGGTTCTACAGACCTTGACACAGTAAAAGC TACGGTAGCAGAGACTTGGTCTAGGTCATCTGCTGTTGCATC 

53 SCRI_RS_175065 2H 65.81 ACACTGACGACATGGTTCTACACACATCATCACAAGCTAACG TACGGTAGCAGAGACTTGGTCTTTCCCTTAGCTATGGGAGTG 

54 11_10733 2H 66.11 ACACTGACGACATGGTTCTACACACAGAGACGCACACAAATC TACGGTAGCAGAGACTTGGTCTGATGCCACAGATGAGCTATG 
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Table C2. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Pinnacle and PI67381 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

55 12_10927 2H 67.89 ACACTGACGACATGGTTCTACATCATGAAGGTATGGCTTCCG TACGGTAGCAGAGACTTGGTCTCAATTCTTAGGAGGAGACAG 

SN Marker Chr cM Forward Primers Reverse Primers 

56 11_20532 2H 69.55 ACACTGACGACATGGTTCTACAGCAGATCCCAACAAAAGACG TACGGTAGCAGAGACTTGGTCTATCCCTCGATGTAGTGTCTG 

57 11_21144 2H 72.44 ACACTGACGACATGGTTCTACAAGCAATCGCTGGGCTTTTTG TACGGTAGCAGAGACTTGGTCTTTCACGATCCTTACCCTTTC 

58 11_10265 2H 75.18 ACACTGACGACATGGTTCTACACCACGGTACAGCGAAAATTC TACGGTAGCAGAGACTTGGTCTCTCTCGATCCTTCTAGGTTG 

59 SCRI_RS_150 2H 78.02 ACACTGACGACATGGTTCTACAAGATCGCAGATGGTCTGTTG TACGGTAGCAGAGACTTGGTCTAACACCTTGCTGTGGCAAAC 

60 11_10287 2H 90.99 ACACTGACGACATGGTTCTACAGGTTCATCGTCACTAGGAAG TACGGTAGCAGAGACTTGGTCTTAGACCTGCCACCAATGAAG 

61 SCRI_RS_219074 2H 95.24 ACACTGACGACATGGTTCTACATGCCTTTCTGTTTGCCTCTG TACGGTAGCAGAGACTTGGTCTTGCTAAAAGAAGGCCGGATG 

62 11_10214 2H 99.04 ACACTGACGACATGGTTCTACACATGGCAGCTAAGCCCTAAG TACGGTAGCAGAGACTTGGTCTGGACGACGAGGAGTAAATAG 

63 12_30216 2H 101.98 ACACTGACGACATGGTTCTACACGAGACACTAGAGACACTTC TACGGTAGCAGAGACTTGGTCTCAGATGACCAGGCATGGTTT 

64 11_10398 2H 106.90 ACACTGACGACATGGTTCTACATAGACGGCTTTATTTGGCAG TACGGTAGCAGAGACTTGGTCTAAGCCACGGTGATTGATGAC 

65 12_30480 2H 108.14 ACACTGACGACATGGTTCTACAATGCGGCTCGGATGTGTATC TACGGTAGCAGAGACTTGGTCTACGAACTTACCTTGATGCGG 

66 12_30555 2H 112.22 ACACTGACGACATGGTTCTACATTCCGACCATCACTTGAGAG TACGGTAGCAGAGACTTGGTCTTCAATCCTGAGAACAAGGAC 

67 11_20099 2H 121.76 ACACTGACGACATGGTTCTACACGTTTTCGACGCAGAGTTGT TACGGTAGCAGAGACTTGGTCTCGTGCAAGTCGCAGAAGAG 

68 11_10128 2H 124.50 ACACTGACGACATGGTTCTACATTCTGGACGGTGAGCTTGAC TACGGTAGCAGAGACTTGGTCTCCAAGAAGATCGGTGAGGAC 

69 11_10429 2H 126.63 ACACTGACGACATGGTTCTACATGATGGGCGCATTGACTATG TACGGTAGCAGAGACTTGGTCTTTCTCATTGTTCTTCGCCCG 

70 12_10739 2H 135.51 ACACTGACGACATGGTTCTACACTGAAACACCCAACACTTGC TACGGTAGCAGAGACTTGGTCTTTTGACTAGCAACCCATGCC 

71 11_21220 2H 136.66 ACACTGACGACATGGTTCTACAGCCGCCTAAACTTCTGAATC TACGGTAGCAGAGACTTGGTCTTTACAAGGGTCAAGCTGCTG 

72 SCRI_RS_155161 2H 137.44 ACACTGACGACATGGTTCTACATGCTGTCCAATCTGAAGCTG TACGGTAGCAGAGACTTGGTCTTCTTGATGCTCAATGTGCTG 

73 11_20141 2H 141.70 ACACTGACGACATGGTTCTACAAGCAGCAGTGATGAAGTTGG TACGGTAGCAGAGACTTGGTCTAGAGACGATGCAGTCGTTGG 

74 12_31100 2H 143.07 ACACTGACGACATGGTTCTACAATGGCCTTAGTGTCTCTTCC TACGGTAGCAGAGACTTGGTCTAGAAAAGGCTGTCCCTTTGG 

75 11_21088 2H 144.20 ACACTGACGACATGGTTCTACATATGGAGCATATGGATGCAG TACGGTAGCAGAGACTTGGTCTCTATCACCCATGGAAACACC 

76 11_21125 2H 145.20 ACACTGACGACATGGTTCTACAGCCTCAGCCAGAATAGTAAG TACGGTAGCAGAGACTTGGTCTAAAGTCTTCCATGGAAGCCC 

77 12_10579 2H 149.60 ACACTGACGACATGGTTCTACATCATCTCGTTGCATATGCCC TACGGTAGCAGAGACTTGGTCTTCCGAACACCCTTCTTCATC 

78 12_10579 2H 149.60 ACACTGACGACATGGTTCTACATCATCTCGTTGCATATGCCC TACGGTAGCAGAGACTTGGTCTTCCGAACACCCTTCTTCATC 

79 11_20715 2H 152.83 ACACTGACGACATGGTTCTACACAGCCAGTGGACTTAATGTG TACGGTAGCAGAGACTTGGTCTTTTGCTCCACACAACGGTAG 

80 11_21181 2H 155.66 ACACTGACGACATGGTTCTACATCTATACTGGAGGCAGGTAG TACGGTAGCAGAGACTTGGTCTATGGAAAGGAGGTTTTCCGC 

81 11_11023 2H 160.19 ACACTGACGACATGGTTCTACAGACATGGCAAGAGTACATTC TACGGTAGCAGAGACTTGGTCTCGTGACGAAGTGAAATGGAC 
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Table C2. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Pinnacle and PI67381 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

SN Marker Chr cM Forward Primers Reverse Primers 

82 SCRI_RS_155544 2H 163.96 ACACTGACGACATGGTTCTACATTTCGCAATGCGGTGATTGG TACGGTAGCAGAGACTTGGTCTGGAATGTGGGTTAGGCCTTG 

83 SCRI_RS_230497 2H 164.26 ACACTGACGACATGGTTCTACATGCTTTTGCCCCACTCACTC TACGGTAGCAGAGACTTGGTCTCACATCCTCAAAATAGTTTCG 

86 12_31180 2H 175.48 ACACTGACGACATGGTTCTACAACGGATGAGATTCAGGAAGC TACGGTAGCAGAGACTTGGTCTAACCATGTGCATGCATGTCC 

87 11_10085 2H 177.38 ACACTGACGACATGGTTCTACACACATAGTCTCGGCTATTCC TACGGTAGCAGAGACTTGGTCTCAGTAGCATGTTGGTGGTTG 

88 SCRI_RS_206020 2H 179.38 ACACTGACGACATGGTTCTACATGCTGTGCCACCGATCGAGA TACGGTAGCAGAGACTTGGTCTTACCTTCTCTTTGGCAGCTC 

89 12_31428 3H 0.00 ACACTGACGACATGGTTCTACAGGCGGTGAGGAGGTAGGTG TACGGTAGCAGAGACTTGGTCTGCATCCTCTCCGGATTCTTC 

90 SCRI_RS_1804 3H 3.89 ACACTGACGACATGGTTCTACAGCCTCTTCTTCAAGTAGACG TACGGTAGCAGAGACTTGGTCTAGCCCTACATACACTCGAAG 

91 11_20252 3H 6.46 ACACTGACGACATGGTTCTACATTCCTGAATGTCTCCTATGC TACGGTAGCAGAGACTTGGTCTAAACGCCCTGCATTAGCGAC 

92 11_20529 3H 8.33 ACACTGACGACATGGTTCTACATCTGGAACATGCCCTTCTTG TACGGTAGCAGAGACTTGGTCTGCGCCAAGGCCAACTCGTT 

93 11_21398 3H 8.86 ACACTGACGACATGGTTCTACAGCTCACTTGTTCAATGCACC TACGGTAGCAGAGACTTGGTCTATGATTGCTTCCGAAGACCC 

94 12_30818 3H 12.23 ACACTGACGACATGGTTCTACACTACTTCTTGGCCGCGGAC TACGGTAGCAGAGACTTGGTCTATCGTCACGCCCCTCTTCTC 

95 SCRI_RS_97417 3H 18.72 ACACTGACGACATGGTTCTACAGTTGCTGAATGAAAGCGATG TACGGTAGCAGAGACTTGGTCTGCAACAAGTACAGGCTTCAG 

96 11_20742 3H 24.63 ACACTGACGACATGGTTCTACAATCAGCACCGTGTACTTGGG TACGGTAGCAGAGACTTGGTCTCTTGGTCTCGACCACATTGC 

97 SCRI_RS_161041 3H 26.28 ACACTGACGACATGGTTCTACACACAAAGTGTGGACATGGAG TACGGTAGCAGAGACTTGGTCTACGTTTCTGTGGGATGCAAG 

98 SCRI_RS_189757 3H 31.88 ACACTGACGACATGGTTCTACACCACCTTTGACGCCAAGAAG TACGGTAGCAGAGACTTGGTCTTCTCCTGAACTCCAAGCAAC 

99 SCRI_RS_144410 3H 33.28 ACACTGACGACATGGTTCTACATGAAGCTGGTGAGAGCCGC TACGGTAGCAGAGACTTGGTCTTCTGCTTCCCAAACTTGCTG 

100 12_30431 3H 40.48 ACACTGACGACATGGTTCTACACTTCCCTTGGAGGTCTTTTG TACGGTAGCAGAGACTTGGTCTCGCTGCATATAATCGGAACC 

101 12_10968 3H 44.82 ACACTGACGACATGGTTCTACACCGAGATGCTTCTACTGTTC TACGGTAGCAGAGACTTGGTCTGAATCCCGCCCTGCTGAAC 

102 12_31298 3H 46.64 ACACTGACGACATGGTTCTACAGCAGCGTTCGGGAAAAAATG TACGGTAGCAGAGACTTGGTCTACAATTGCCTGTTTCAGCCG 

103 11_20356 3H 55.57 ACACTGACGACATGGTTCTACATAGAAACAGGAGCCAGTTGC TACGGTAGCAGAGACTTGGTCTACTGTAGCTCATGAGCTCAC 

104 12_30467 3H 56.79 ACACTGACGACATGGTTCTACAATTCTTCGATGATGGCGGAC TACGGTAGCAGAGACTTGGTCTGCAAAATGGCCTCAACTTCG 

105 11_10373 3H 61.94 ACACTGACGACATGGTTCTACACCGAATCACCGAGAAATAGG TACGGTAGCAGAGACTTGGTCTCTGCAAGCAAATAAAGTGGC 

106 11_21305 3H 65.16 ACACTGACGACATGGTTCTACAGGTATTCCAAGGATCCTCAG TACGGTAGCAGAGACTTGGTCTGTCCCTGGTTATGCTTGATG 

107 12_30399 3H 67.53 ACACTGACGACATGGTTCTACAACTCTTGTCGTGTGGTACTC TACGGTAGCAGAGACTTGGTCTGCTTTAGAGATATTGTACAG 

108 11_20115 3H 71.74 ACACTGACGACATGGTTCTACAGTGAACCTTGTATATTCTG TACGGTAGCAGAGACTTGGTCTCAGAACCACAAGCTGTAGAC 

109 SCRI_RS_153148 3H 75.71 ACACTGACGACATGGTTCTACAGATCCTAAAGGAGGACTAGC TACGGTAGCAGAGACTTGGTCTATGCCTGCCATAGCATACTC 

110 11_10444 3H 78.93 ACACTGACGACATGGTTCTACATTCTCGTAGTTCCTGAGCTG TACGGTAGCAGAGACTTGGTCTTAGGGTGGATCTCCTCCTAC 
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Table C2. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Pinnacle and PI67381 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

SN Marker Chr cM Forward Primers Reverse Primers 

111 12_31018 3H 81.11 ACACTGACGACATGGTTCTACATGGCTATGGCGTTGTTGAAG TACGGTAGCAGAGACTTGGTCTTCCTGAAAACTTGAGGCCAG 

112 12_31367 3H 85.85 ACACTGACGACATGGTTCTACAGCTTTATCGACCATTCCAGC TACGGTAGCAGAGACTTGGTCTCAAGGGTCGAATTGTGCAAG 

113 SCRI_RS_159340 3H 88.17 ACACTGACGACATGGTTCTACAGACTGCCTACGTTTCTTTGG TACGGTAGCAGAGACTTGGTCTCATTGGTGGCTTAGTAGCAG 

114 SCRI_RS_120503 3H 92.98 ACACTGACGACATGGTTCTACATCAACCGCAAGTTCGCCTTC TACGGTAGCAGAGACTTGGTCTTTGATCCAGTCCTCCTTCTC 

115 12_10344 3H 94.03 ACACTGACGACATGGTTCTACACAGAAGGTCAGAGAGATTGC TACGGTAGCAGAGACTTGGTCTAGTATCGCCATGAGTGCAAG 

116 11_21495 3H 94.03 ACACTGACGACATGGTTCTACAGCACAAGGGCTGAACATAAC TACGGTAGCAGAGACTTGGTCTTGCTGAGAAACAACCTAGTG 

117 12_30342 3H 94.03 ACACTGACGACATGGTTCTACATGAGAGTCGAGACTTGAGAG TACGGTAGCAGAGACTTGGTCTTCTTGCCAGGTAAGAGTGTC 

118 11_21493 3H 95.25 ACACTGACGACATGGTTCTACACGGGCCTTGATTGATTTTGC TACGGTAGCAGAGACTTGGTCTCCAGGTGGCAGTGAAAAAAC 

119 SCRI_RS_221787 3H 99.26 ACACTGACGACATGGTTCTACAGAGTGGAGTGGTTGCTGCTT TACGGTAGCAGAGACTTGGTCTACCCGCGCGTGGGTGAGTC 

120 SCRI_RS_164704 3H 99.26 ACACTGACGACATGGTTCTACATTTCGTAGAGGCCATCGTAG TACGGTAGCAGAGACTTGGTCTCACATGGTATTATTATTTCCC 

121 SCRI_RS_225641 3H 99.46 ACACTGACGACATGGTTCTACAAAGTGATGATGATGCTGCCG TACGGTAGCAGAGACTTGGTCTCCCCTTCACCAGATCTGCAT 

122 SCRI_RS_133339 3H 99.56 ACACTGACGACATGGTTCTACATGACAGAGAGAACGAACTCC TACGGTAGCAGAGACTTGGTCTTTTGGCCCATGGATCAAGTG 

123 SCRI_RS_211929 3H 99.66 ACACTGACGACATGGTTCTACAAAGTACTACGCCGACGACTG TACGGTAGCAGAGACTTGGTCTTGGTTTTCTGGGTCTTCACG 

124 12_30423 3H 99.66 ACACTGACGACATGGTTCTACAGAAGTCAATACCGATTGTAG TACGGTAGCAGAGACTTGGTCTTGTTGGCAAGAGTTGCCTCC 

125 SCRI_RS_235791 3H 99.66 ACACTGACGACATGGTTCTACATGGCGACCATCAAAGCAAAG TACGGTAGCAGAGACTTGGTCTGCACATGAGGATGTGTGTTG 

126 12_31329 3H 103.83 ACACTGACGACATGGTTCTACAAATGAAGTGTTCGGCGACAG TACGGTAGCAGAGACTTGGTCTTCAGAGTTCATGTTCTGGG 

127 11_10584 3H 105.98 ACACTGACGACATGGTTCTACATGCTCGGACAGAGACGTGA TACGGTAGCAGAGACTTGGTCTTGCTGGGCTTTCTCGACGAT 

128 11_20944 3H 109.12 ACACTGACGACATGGTTCTACAGGAGAACATTCCACATTAG TACGGTAGCAGAGACTTGGTCTATACAACGAGGCATCTGAGC 

129 11_21405 3H 111.70 ACACTGACGACATGGTTCTACAAATTGATCCCCATGACTCCC TACGGTAGCAGAGACTTGGTCTTGCAGTCATCAAATTCAGCG 

130 12_30081 3H 115.86 ACACTGACGACATGGTTCTACATGAATGGCCATTGCCATGAG TACGGTAGCAGAGACTTGGTCTCACACTTGCAAGTACCACAC 

131 11_10842 3H 118.71 ACACTGACGACATGGTTCTACAGTCTCCTTTATCCTTGTAAG TACGGTAGCAGAGACTTGGTCTCAGGACCAGCTAGATTGTTG 

132 12_30973 3H 121.02 ACACTGACGACATGGTTCTACACTGAAAACAGATGGTGTAA TACGGTAGCAGAGACTTGGTCTCCACATATCATTGTTACCTTG 

133 11_10381 3H 125.23 ACACTGACGACATGGTTCTACAAAGCACTCTCTGCATCCTTC TACGGTAGCAGAGACTTGGTCTCAGAAAGCCATCTCTTCGTC 

134 SCRI_RS_10016 3H 128.53 ACACTGACGACATGGTTCTACACATTAAGGAGATGCTGCCAC TACGGTAGCAGAGACTTGGTCTGAACTCTACACAGCATTCAAC 

135 12_21386 3H 133.66 ACACTGACGACATGGTTCTACAACATAGTACAGTAGCAAGGG TACGGTAGCAGAGACTTGGTCTTTCGCTGAAGAACCCACTTG 

136 SCRI_RS_183550 3H 133.78 ACACTGACGACATGGTTCTACACTGATTGTTTCTGGACTGGG TACGGTAGCAGAGACTTGGTCTCACCTAATGGTATTTCAGGAC 

137 11_21272 3H 137.48 ACACTGACGACATGGTTCTACATTCCAAACACACAAGCCAGC TACGGTAGCAGAGACTTGGTCTACCCTGTCATGCTTCACATC 
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Table C2. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Pinnacle and PI67381 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

SN Marker Chr cM Forward Primers Reverse Primers 

138 12_31500 3H 141.20 ACACTGACGACATGGTTCTACATTCTCTATTGCCACCCTGAC TACGGTAGCAGAGACTTGGTCTTGCTTCATTTTTGCACCCCC 

139 SCRI_RS_157113 3H 145.29 ACACTGACGACATGGTTCTACATCCACAAACGCCGCACAAAC TACGGTAGCAGAGACTTGGTCTTCGCGATGAACGGGATCAG 

140 11_11436 3H 145.65 ACACTGACGACATGGTTCTACATGCATCGGACGGTATACTTC TACGGTAGCAGAGACTTGGTCTGGATTGCTTGTTCCTAATGG 

141 SCRI_RS_229623 3H 150.19 ACACTGACGACATGGTTCTACAAGAGAAGAAGAGGAGCAACC TACGGTAGCAGAGACTTGGTCTATGAGACCGGGTCGAGAATG 

142 11_11411 3H 151.23 ACACTGACGACATGGTTCTACACACTCCCATATGGTGGATCA TACGGTAGCAGAGACTTGGTCTGCTTGGGGTGAACGTCATTG 

143 SCRI_RS_156315 3H 153.39 ACACTGACGACATGGTTCTACACATCATAGATACAGCCTGCC TACGGTAGCAGAGACTTGGTCTTATCAGCAGTGGATGAAGCC 

144 SCRI_RS_178836 3H 160.09 ACACTGACGACATGGTTCTACAAATCCTCTGCTTGAGTCGTC TACGGTAGCAGAGACTTGGTCTTCACTAAGCAGGAACAAGGC 

145 11_20145 4H 1.17 ACACTGACGACATGGTTCTACAAGAGAAGAAGAATCGAGCAG TACGGTAGCAGAGACTTGGTCTTCTCCTCGAACGGAGTAACC 

146 11_10409 4H 4.11 ACACTGACGACATGGTTCTACAAGCACTTTGGAAACAGTGGG TACGGTAGCAGAGACTTGGTCTGAATTTCCCATGAAGAGGTG 

147 12_31458 4H 14.13 ACACTGACGACATGGTTCTACAGCAGTTTCAAAAGCAATCTC TACGGTAGCAGAGACTTGGTCTCAGCTTTCTGCTGTTATGTTC 

148 12_30540 4H 16.13 ACACTGACGACATGGTTCTACATGTATGGAGTGTCCATGGAG TACGGTAGCAGAGACTTGGTCTCACACCGTTTTATCAAATC 

149 12_30150 4H 18.47 ACACTGACGACATGGTTCTACAGGTAAACCACCACTTCTTGC TACGGTAGCAGAGACTTGGTCTCATCCCATCTATCCTGAAAC 

150 11_10223 4H 22.43 ACACTGACGACATGGTTCTACACGTCGGTAGACGAGAGAAG TACGGTAGCAGAGACTTGGTCTTTTCGCTCGGTGTCCAAAAC 

151 SCRI_RS_98443 4H 27.64 ACACTGACGACATGGTTCTACACATTCAAGCCCATCAATGCG TACGGTAGCAGAGACTTGGTCTATTCCAGGAGCTCACTCAAG 

152 11_21374 4H 32.68 ACACTGACGACATGGTTCTACAGGAGCAAACGTGTTAGTTGG TACGGTAGCAGAGACTTGGTCTATACCCAAGATTGTCGGCAC 

153 11_20012 4H 46.19 ACACTGACGACATGGTTCTACAGAGAGCATCGCCGAGAAGAT TACGGTAGCAGAGACTTGGTCTGAAACGAAGGGCATACAGAG 

154 SCRI_RS_167844 4H 51.77 ACACTGACGACATGGTTCTACAATGATCAGGCTGGTGAGTTG TACGGTAGCAGAGACTTGGTCTAAGTCTTTGATCTGGGCCTC 

155 11_20472 4H 54.95 ACACTGACGACATGGTTCTACAACGAAATGGACGCGTCAAAG TACGGTAGCAGAGACTTGGTCTCCTTCCTGTTTGGCTCAAAG 

156 SCRI_RS_168496 4H 54.95 ACACTGACGACATGGTTCTACACCACGACTCCATTAGGGATG TACGGTAGCAGAGACTTGGTCTTATGCGTACAAGTCACCACC 

157 SCRI_RS_228477 4H 54.95 ACACTGACGACATGGTTCTACAGGGAGGAAGAGATGTGTTTG TACGGTAGCAGAGACTTGGTCTACTGCTACGTAATGAACTCC 

158 12_30839 4H 54.95 ACACTGACGACATGGTTCTACAGTCAGTGAAGCCTTTGAGTC TACGGTAGCAGAGACTTGGTCTGAAAGTCACATAAGCATGCC 

159 11_20412 4H 54.95 ACACTGACGACATGGTTCTACATCTGCTTCGAGACCCTGAAC TACGGTAGCAGAGACTTGGTCTTGCCTAACCCGGCGAAGTG 

160 11_10509 4H 55.64 ACACTGACGACATGGTTCTACATGGCCCTCTTATATATCCCC TACGGTAGCAGAGACTTGGTCTGCAAACTGCTTGGCAAAACC 

161 SCRI_RS_189180 4H 57.32 ACACTGACGACATGGTTCTACAGTCGAATTTCTTGTGTGGGC TACGGTAGCAGAGACTTGGTCTTGCTAGCTATCCAGCTCAAG 

162 11_20924 4H 58.82 ACACTGACGACATGGTTCTACATCAGTGGAGTGTGATACCAG TACGGTAGCAGAGACTTGGTCTTCAGTGGACCTTTCAGAAGC 

163 11_10606 4H 60.28 ACACTGACGACATGGTTCTACAGGGCACAACTTACTTGCTTA TACGGTAGCAGAGACTTGGTCTATGTTCATTGCTCCCATCTC 

164 11_11513 4H 64.45 ACACTGACGACATGGTTCTACAGTTCAACCACCATCATCCAC TACGGTAGCAGAGACTTGGTCTGGACAGAGCACCCAAGTTTG 
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Table C2. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Pinnacle and PI67381 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

SN Marker Chr cM Forward Primers Reverse Primers 

165 11_10467 4H 67.22 ACACTGACGACATGGTTCTACAATACACCAGCTACAGCAAGG TACGGTAGCAGAGACTTGGTCTGGGTCTGTTGTTCAGTCTAC 

166 11_11004 4H 70.33 ACACTGACGACATGGTTCTACATGTCGAGCTAGACATGTCTG TACGGTAGCAGAGACTTGGTCTGCAAATGAAAGAGACGCTCC 

167 12_31148 4H 72.70 ACACTGACGACATGGTTCTACAGGAAAAGAGTCCCACAATCG TACGGTAGCAGAGACTTGGTCTTGAGGTTTCCTATCCATGCG 

168 11_20718 4H 76.11 ACACTGACGACATGGTTCTACATTGGCGGTGCCGGCTTTCT TACGGTAGCAGAGACTTGGTCTAAGCAATACAACGACGTCGC 

169 11_20178 4H 80.52 ACACTGACGACATGGTTCTACAGCATGAACGTACAACATCCC TACGGTAGCAGAGACTTGGTCTTGACGAATGTGTCACCACTG 

170 11_10751 4H 82.99 ACACTGACGACATGGTTCTACATCAGATGCTGCGATATCAGG TACGGTAGCAGAGACTTGGTCTATGACCAGGATCAGGATTTC 

171 11_10588 4H 83.34 ACACTGACGACATGGTTCTACAGACCTTGGTGTCTTCACAAC TACGGTAGCAGAGACTTGGTCTGCTAGCCAAGTTGTTTCCAG 

172 SCRI_RS_129218 4H 89.24 ACACTGACGACATGGTTCTACAGATTGTAATGAGGTCCGGTG TACGGTAGCAGAGACTTGGTCTTACCAGCAGTACACTCCCTC 

173 12_30718 4H 94.74 ACACTGACGACATGGTTCTACAAAGGGCACAATGTCAACCTG TACGGTAGCAGAGACTTGGTCTTAAGGCCGCATTGATCACCG 

174 SCRI_RS_189881 4H 94.74 ACACTGACGACATGGTTCTACAGACGTCTCCTCAGAGGTTTC TACGGTAGCAGAGACTTGGTCTAGGGAGCTGCTCGCCATTG 

175 11_20762 4H 96.60 ACACTGACGACATGGTTCTACAGTTATGGAAAGTAGAGGGAC TACGGTAGCAGAGACTTGGTCTGGCAAAGTTGACGAAATCTG 

176 SCRI_RS_131671 4H 99.68 ACACTGACGACATGGTTCTACACAGTGAAACTCATGATCCCC TACGGTAGCAGAGACTTGGTCTGCTGCCAACATAAACTCTTC 

177 11_10510 4H 100.38 ACACTGACGACATGGTTCTACAAGCCGGAAAATTTCCTCCTC TACGGTAGCAGAGACTTGGTCTCTTGAAGTAGACGGATAGGC 

178 11_21111 4H 102.18 ACACTGACGACATGGTTCTACAACATGAGCATGGAGGAGAAC TACGGTAGCAGAGACTTGGTCTTTGGCGAGCAAGGGTCAAGA 

179 SCRI_RS_192689 4H 103.58 ACACTGACGACATGGTTCTACAATTTCGTGTGCTCCAGAACC TACGGTAGCAGAGACTTGGTCTTACCACGAGCACGACGAAG 

180 12_11194 4H 107.77 ACACTGACGACATGGTTCTACACAAGCTTCGAGTGAGCTAAG TACGGTAGCAGAGACTTGGTCTCGTCTGAAGAGCTCTCGATG 

181 SCRI_RS_196076 4H 111.65 ACACTGACGACATGGTTCTACATCTTGTTAACTTTGGAGCCG TACGGTAGCAGAGACTTGGTCTAGGCCAGGTAAGGTTTAGTC 

182 11_20701 4H 114.98 ACACTGACGACATGGTTCTACATTGTTGGCCTGCCTTTTCTC TACGGTAGCAGAGACTTGGTCTGTACAGGTGCTGAGAACACG 

183 11_10697 4H 117.33 ACACTGACGACATGGTTCTACACTCTAACCACTTCTACGTGC TACGGTAGCAGAGACTTGGTCTCCCGTTCGATGTCGATTTAC 

184 11_10269 4H 120.53 ACACTGACGACATGGTTCTACATGATCTCCTTGGTCGGCTC TACGGTAGCAGAGACTTGGTCTACGCGCCCTACATCTGCAT 

185 11_20272 4H 125.11 ACACTGACGACATGGTTCTACATCCATGCCCGGAGAAATAAG TACGGTAGCAGAGACTTGGTCTCGAAGAAGACGACGACTAAT 

186 12_31422 4H 127.26 ACACTGACGACATGGTTCTACACAGTGAGTACATTAGCTCTAC TACGGTAGCAGAGACTTGGTCTAAAAGGAAACAAACTGCTC 

187 12_30824 4H 129.68 ACACTGACGACATGGTTCTACAGACCGTCGGTGTAGAAAATG TACGGTAGCAGAGACTTGGTCTTCAACATCCCAATCCCACAG 

188 12_30975 5H 3.66 ACACTGACGACATGGTTCTACACATACAATGAGTAATGACGTG TACGGTAGCAGAGACTTGGTCTGGTACAATACAATACCAAAAG 

189 11_20206 5H 6.55 ACACTGACGACATGGTTCTACACCGTCTTGGTTGGTTTCGAC TACGGTAGCAGAGACTTGGTCTAGGTCCATATCACCTCTTCC 

190 12_31094 5H 10.10 ACACTGACGACATGGTTCTACACCTCAAATCCTACGAGCTTC TACGGTAGCAGAGACTTGGTCTCCAGGTTTTTGCGAAAACCG 

191 SCRI_RS_149877 5H 18.14 ACACTGACGACATGGTTCTACATGAGCTCCATCGTTCTCCAG TACGGTAGCAGAGACTTGGTCTTGGTCGTCGTTCATCACAGG 
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Table C2. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Pinnacle and PI67381 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

SN Marker Chr cM Forward Primers Reverse Primers 

192 11_21065 5H 21.24 ACACTGACGACATGGTTCTACACCATGGTGGTGATCAGCAG TACGGTAGCAGAGACTTGGTCTTCTGGTTCGTCGGCCTCGGT 

193 11_21426 5H 21.24 ACACTGACGACATGGTTCTACATTCACGCTGATTGTTGAGCC TACGGTAGCAGAGACTTGGTCTTGGTCCTTGTCTTTCTTGGG 

194 11_11048 5H 27.80 ACACTGACGACATGGTTCTACAGCGTGCTGTTGGTAAAAAGG TACGGTAGCAGAGACTTGGTCTCTTGAGCTCATATCCTCTGC 

195 11_21324 5H 27.88 ACACTGACGACATGGTTCTACACTCTCTACCACAAGGATCTG TACGGTAGCAGAGACTTGGTCTATCTTGTGTCTTGGCGCAAC 

196 11_10580 5H 33.22 ACACTGACGACATGGTTCTACACAGAGCACATGCTACTAAAC TACGGTAGCAGAGACTTGGTCTGCCGATGGTCAGATTTGCTC 

197 11_10621 5H 35.35 ACACTGACGACATGGTTCTACACCTTTCCAACCTTAAGAAGC TACGGTAGCAGAGACTTGGTCTTGTCAGGAACTTGATCAGGG 

198 11_20845 5H 37.62 ACACTGACGACATGGTTCTACACGATCGGCTTTATGATAGGC TACGGTAGCAGAGACTTGGTCTTCTGCTCCGAAGCAGGAAAG 

199 11_20729 5H 41.33 ACACTGACGACATGGTTCTACACAAGCATTGGATTGTTGCCG TACGGTAGCAGAGACTTGGTCTCACCAGAAGCTTTTGGTGC 

200 12_30538 5H 44.99 ACACTGACGACATGGTTCTACATTCGATCAAACCCCTCATGC TACGGTAGCAGAGACTTGGTCTTGGAGGGTGATTGATCTTTG 

201 12_30745 5H 46.21 ACACTGACGACATGGTTCTACATGTTAAGCAAGCCGGTGAAC TACGGTAGCAGAGACTTGGTCTTGAAGGCCTAGTACCTTCTG 

202 11_10641 5H 50.88 ACACTGACGACATGGTTCTACAACTCCTACTTCAACAAGGTC TACGGTAGCAGAGACTTGGTCTGAAGAGGCCCAACAATCTTG 

203 12_20350 5H 53.77 ACACTGACGACATGGTTCTACAACTAGCTTTCTTGCCGACAC TACGGTAGCAGAGACTTGGTCTTACATGTCCAGATGTCCTAC 

204 11_21001 5H 55.83 ACACTGACGACATGGTTCTACACAGAGCAAAGTTTGACGTGG TACGGTAGCAGAGACTTGGTCTTCCGGAATTCCTGCTGATTG 

205 SCRI_RS_160332 5H 67.23 ACACTGACGACATGGTTCTACATAATAAGACGGCGGCACAAC TACGGTAGCAGAGACTTGGTCTGGACAGTGCAAACTAAGCAG 

206 12_10674 5H 68.83 ACACTGACGACATGGTTCTACATAATAAGGCTTCCGACGGAG TACGGTAGCAGAGACTTGGTCTGCCACCTGCTTGAATGGATG 

207 11_20497 5H 73.15 ACACTGACGACATGGTTCTACATCGGATACAACCATGAGAGC TACGGTAGCAGAGACTTGGTCTCGGTCTGGTTGATCTTCTTG 

208 11_10518 5H 76.34 ACACTGACGACATGGTTCTACAAAGACAGCCTCGACATCATC TACGGTAGCAGAGACTTGGTCTAGTAGTTTCCTCAACACGTC 

209 SCRI_RS_158235 5H 82.31 ACACTGACGACATGGTTCTACACATGCCAATACTTTCCTGCC TACGGTAGCAGAGACTTGGTCTAAATTGGCGTGACACTTGGC 

210 11_21421 5H 83.08 ACACTGACGACATGGTTCTACATGCTGCTGCTGTTTATGGTG TACGGTAGCAGAGACTTGGTCTGATTGACTAGATACTGTGGC 

211 11_11350 5H 84.96 ACACTGACGACATGGTTCTACAGAATCTCTTCGTCGTCGATG TACGGTAGCAGAGACTTGGTCTCGCGAGGGTAGAACATCATT 

212 11_20549 5H 87.71 ACACTGACGACATGGTTCTACAAGTTGGAGATGCAGATGCAG TACGGTAGCAGAGACTTGGTCTCATGAGGAGATGAGAAGAAC 

213 11_21061 5H 88.80 ACACTGACGACATGGTTCTACATTCTTGGTTGTTGCCGAGAG TACGGTAGCAGAGACTTGGTCTTATATGCCTCCCGCTCAAAC 

214 12_10752 5H 90.68 ACACTGACGACATGGTTCTACAGGTCAAGTGCTCACAACAAC TACGGTAGCAGAGACTTGGTCTTCTCGCTCTTTCTTCCTTCC 

215 11_11273 5H 93.16 ACACTGACGACATGGTTCTACAATTTAGCCCGGCCACTAAGG TACGGTAGCAGAGACTTGGTCTGTAAATTGCTTCGGTTGCTG 

216 12_30456 5H 95.65 ACACTGACGACATGGTTCTACACTTCTGCAGGAGTGACATTG TACGGTAGCAGAGACTTGGTCTTCATTGCAGTGTCTGCTCTC 

217 11_11200 5H 99.58 ACACTGACGACATGGTTCTACAACCTTTGTTTTGCTTGCAGG TACGGTAGCAGAGACTTGGTCTGAAGCGCTCATCAACCATAC 

218 SCRI_RS_149088 5H 103.35 ACACTGACGACATGGTTCTACAATCGATTCTTTCGGCTCTGG TACGGTAGCAGAGACTTGGTCTTCTTGAATGGGTTGTCGTGC 
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Table C2. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Pinnacle and PI67381 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

SN Marker Chr cM Forward Primers Reverse Primers 

219 SCRI_RS_234720 5H 106.15 ACACTGACGACATGGTTCTACATCTTCCATCAGATTACAAGG TACGGTAGCAGAGACTTGGTCTTGTCTGATTTAAGAGCAGCG 

220 SCRI_RS_2831 5H 109.35 ACACTGACGACATGGTTCTACAAGCTCGCGGAGTTCTTGCAC TACGGTAGCAGAGACTTGGTCTACGATTCGACTGTCTTCAGC 

221 11_11507 5H 111.56 ACACTGACGACATGGTTCTACAGGGCACAATTTGTTACATAG TACGGTAGCAGAGACTTGGTCTTAGCCTTCCTTCATTGTGCC 

222 11_21422 5H 112.78 ACACTGACGACATGGTTCTACACTGAAAATGACCTCCAAGGG TACGGTAGCAGAGACTTGGTCTAGCAGGGCTATGATTCCTCT 

223 11_20653 5H 115.53 ACACTGACGACATGGTTCTACAATACCACTTGTGATCCGAGG TACGGTAGCAGAGACTTGGTCTGACCAGGAATTGACTGGAAG 

224 12_30067 5H 117.63 ACACTGACGACATGGTTCTACAATTGATGTCGAGAACCGGAG TACGGTAGCAGAGACTTGGTCTCGAGAAGAACAAAGCACCTG 

225 11_21247 5H 119.72 ACACTGACGACATGGTTCTACATCCGTTCCCGTTTGTTACAC TACGGTAGCAGAGACTTGGTCTGGCTCCATTTTTATGTAACTG 

226 SCRI_RS_141778 5H 126.19 ACACTGACGACATGGTTCTACAGACGCCATTGCTGTTGAAAG TACGGTAGCAGAGACTTGGTCTCATTCTCAGTCCCCTAAACC 

227 11_10845 5H 128.80 ACACTGACGACATGGTTCTACACAACAGCGATCCAAGCTTCC TACGGTAGCAGAGACTTGGTCTCATGGACTAGCCTTGACTTC 

228 11_20375 5H 132.00 ACACTGACGACATGGTTCTACAAAAGGGCCTCAGACTTCAAG TACGGTAGCAGAGACTTGGTCTGTACGACAAGGAGAAACTGC 

229 SCRI_RS_213086 5H 132.37 ACACTGACGACATGGTTCTACACTTGCTAAAGCTTGGGCAAC TACGGTAGCAGAGACTTGGTCTACGAGCCACCAGTATGTTAC 

230 11_10557 5H 135.42 ACACTGACGACATGGTTCTACATTGCCACATGCAAGTGACTG TACGGTAGCAGAGACTTGGTCTGCTTTGTCGACATAAAGGAG 

231 12_31165 5H 138.44 ACACTGACGACATGGTTCTACAGCCCAACGTCATCGTACGAA TACGGTAGCAGAGACTTGGTCTTCCAGAAGAAGGCCAAGGAC 

232 12_31221 5H 142.71 ACACTGACGACATGGTTCTACACTTTGCGAAGCACGTTTCTC TACGGTAGCAGAGACTTGGTCTAACTTTGCCATGGAAGGAAG 

233 11_11497 5H 147.70 ACACTGACGACATGGTTCTACATGAGCTACTCTGACTCACTC TACGGTAGCAGAGACTTGGTCTAGAAGCAGCCGGAGGAAGA 

234 SCRI_RS_189174 5H 150.10 ACACTGACGACATGGTTCTACAATGAAGGAGATCGTCAGAGC TACGGTAGCAGAGACTTGGTCTCGATACTTCACCTCCATCTC 

235 11_10336 5H 153.47 ACACTGACGACATGGTTCTACAAGCTCACTTATATATCACC TACGGTAGCAGAGACTTGGTCTACTGTTGAGGAAGGAACAGC 

236 11_21018 5H 153.47 ACACTGACGACATGGTTCTACAGCGAATGTTCTAGACCTTAC TACGGTAGCAGAGACTTGGTCTCTCTGGGACAATGGAAGTAG 

237 12_30162 5H 156.70 ACACTGACGACATGGTTCTACAATGTGAAGACGGAGCTGTAG TACGGTAGCAGAGACTTGGTCTAAACAACACCCAAGGTCCAC 

238 11_20829 5H 158.18 ACACTGACGACATGGTTCTACATTCTCCTCCTTGATGTCACC TACGGTAGCAGAGACTTGGTCTTGTTCCTTGTGATGAGCACG 

239 12_30566 5H 160.32 ACACTGACGACATGGTTCTACAGGACTGATGACTCAAAACCG TACGGTAGCAGAGACTTGGTCTCGATTTGGCTTCGAAACCTG 

240 11_10869 5H 163.16 ACACTGACGACATGGTTCTACAGCTGCTACACACATGAATTG TACGGTAGCAGAGACTTGGTCTCTAAGATGAAGCTCTGGCTC 

241 11_10870 5H 168.24 ACACTGACGACATGGTTCTACACGGTGTAACTGGATGAAGAC TACGGTAGCAGAGACTTGGTCTCAGGTGCAGCTACTGCATTG 

242 11_21138 5H 169.97 ACACTGACGACATGGTTCTACATCCAGCTCAGCAATGTTGTC TACGGTAGCAGAGACTTGGTCTCAGGAGGTCAGTTTAAGTGC 

243 12_30504 5H 172.25 ACACTGACGACATGGTTCTACAGCACCATCACTATCATGCAG TACGGTAGCAGAGACTTGGTCTAATCTGTTGCTCCATGGCTG 

244 11_10310 5H 177.50 ACACTGACGACATGGTTCTACATAGGAGAGGGAGCAAAACAG TACGGTAGCAGAGACTTGGTCTGAGAATCTTTACTTGACCCG 

245 12_10322 5H 181.11 ACACTGACGACATGGTTCTACAGCGCCACCATGTTACGACC TACGGTAGCAGAGACTTGGTCTAGTGAGTGGCAGACACAGAG 
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Table C2. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Pinnacle and PI67381 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

SN Marker Chr cM Forward Primers Reverse Primers 

246 12_31123 5H 184.75 ACACTGACGACATGGTTCTACACACCGTGCCTTTCTTAGAAG TACGGTAGCAGAGACTTGGTCTTCCATCGACATCCTTAAGGG 

247 11_20232 6H 0.00 ACACTGACGACATGGTTCTACATGTGACGAATTTCTCGAGCC TACGGTAGCAGAGACTTGGTCTCAAGGATGATGATTGAGGGC 

248 11_20212 6H 2.86 ACACTGACGACATGGTTCTACACTTGTCGTCAATGGCGTAAG TACGGTAGCAGAGACTTGGTCTTCATCGACCGAGGCCGAGAA 

249 12_30651 6H 5.44 ACACTGACGACATGGTTCTACAAGCTCCATGCTACCTATGAG TACGGTAGCAGAGACTTGGTCTTGGCCAATTCCTTCATCTCC 

250 11_20294 6H 6.49 ACACTGACGACATGGTTCTACAGGATACTATCTAGGTGGGTC TACGGTAGCAGAGACTTGGTCTTTGCACTTGACCTTTGGAGC 

251 11_21204 6H 7.56 ACACTGACGACATGGTTCTACACTCTATCTTCTATTCTCATC TACGGTAGCAGAGACTTGGTCTACAGATAATCCGCCTCTACC 

252 11_21032 6H 11.35 ACACTGACGACATGGTTCTACAAATCTCTGCATAAGAGCAGG TACGGTAGCAGAGACTTGGTCTCATCAAGGAAGCTGGAGGTG 

253 11_20415 6H 15.16 ACACTGACGACATGGTTCTACAGCTGTCATCTTTCTCGAGTC TACGGTAGCAGAGACTTGGTCTGTAAGAAACTTCTCCACCAG 

254 12_10554 6H 19.07 ACACTGACGACATGGTTCTACATCTTCTTCAAGAAGCACCCG TACGGTAGCAGAGACTTGGTCTAATGCTGGAATGTAGTGCCC 

255 12_30843 6H 23.07 ACACTGACGACATGGTTCTACATCATTGGCTGTGTGTTGTGC TACGGTAGCAGAGACTTGGTCTGTGGTCAAAGTCCTCACCTG 

256 11_10868 6H 27.19 ACACTGACGACATGGTTCTACAGATGTTACGTCCAGGACAAC TACGGTAGCAGAGACTTGGTCTAGTTCCTGGTTGATGTGGTG 

257 11_20745 6H 31.59 ACACTGACGACATGGTTCTACACATTCAGATTCATTCCTTGC TACGGTAGCAGAGACTTGGTCTCGTCGGTCTGTGTAGTTAGC 

258 12_30697 6H 33.39 ACACTGACGACATGGTTCTACATAGGACGGTGCATCCATTTG TACGGTAGCAGAGACTTGGTCTGAAGATAGGGACTGAAGCTG 

259 12_31485 6H 35.29 ACACTGACGACATGGTTCTACATCCTGATAAAGGCAGGAGTC TACGGTAGCAGAGACTTGGTCTAGTTGTGCGGCTGTTTGTCC 

260 11_10939 6H 40.52 ACACTGACGACATGGTTCTACACCAGGAGTACTGTACAGTTC TACGGTAGCAGAGACTTGGTCTCTTGTGTTGCCGTCATAAGG 

261 12_30521 6H 44.61 ACACTGACGACATGGTTCTACAGTTCCCATCACAAAACCAGC TACGGTAGCAGAGACTTGGTCTTTCGCATACCTGCAATGCTG 

262 12_30361 6H 47.81 ACACTGACGACATGGTTCTACAAGTTCTGAAGACTCCACGAC TACGGTAGCAGAGACTTGGTCTTAATCAAGGTCCCCGTCTCC 

263 11_10061 6H 50.41 ACACTGACGACATGGTTCTACAACGTCCTTCTGCTCATAACC TACGGTAGCAGAGACTTGGTCTATCTGCTGTTCGACTGGGAC 

264 11_10462 6H 53.84 ACACTGACGACATGGTTCTACATGTCCCAACACCATTCAGAG TACGGTAGCAGAGACTTGGTCTAGTGGCACAGAAGCAAAGAG 

265 11_10962 6H 58.34 ACACTGACGACATGGTTCTACATCTTGCCATCAGGCCTCAAC TACGGTAGCAGAGACTTGGTCTTCAGCCATGTTCTTGCTACC 

266 SCRI_RS_213566 6H 59.01 ACACTGACGACATGGTTCTACACGGTCATTATCATGGTTAGG TACGGTAGCAGAGACTTGGTCTGGATCCCCAACAAATCAAAC 

267 12_11253 6H 62.91 ACACTGACGACATGGTTCTACATAAGCTTTGCTTGCTGTGCC TACGGTAGCAGAGACTTGGTCTAGTCCACCGTTTAGTGTCTC 

268 SCRI_RS_209993 6H 64.78 ACACTGACGACATGGTTCTACAGGGTTGATTCGACAAGCAAG TACGGTAGCAGAGACTTGGTCTCATGTCAGCAACATCAGCAC 

269 SCRI_RS_204148 6H 68.09 ACACTGACGACATGGTTCTACATTCGGCTTCTGGTATGTATC TACGGTAGCAGAGACTTGGTCTGGTCATGTACAGGATCAGAG 

270 11_10455 6H 72.29 ACACTGACGACATGGTTCTACAGCTGTAAGCAATGTCTTCCG TACGGTAGCAGAGACTTGGTCTGACGACAAAATGGTACAAGG 

271 11_10124 6H 73.83 ACACTGACGACATGGTTCTACAAGGACTAAACCCTCTGTCTG TACGGTAGCAGAGACTTGGTCTCAATAAGCTAAAGCAAGAC 

272 11_20892 6H 74.18 ACACTGACGACATGGTTCTACATGAAAACCATTGCCCCGAAG TACGGTAGCAGAGACTTGGTCTTATGAACATCTCGGGTCCTG 
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Table C2. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Pinnacle and PI67381 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

SN Marker Chr cM Forward Primers Reverse Primers 

273 12_31111 6H 76.62 ACACTGACGACATGGTTCTACAGGCGAAACCACAGATGGTTG TACGGTAGCAGAGACTTGGTCTAACAGCAACTGGAGGATTGG 

274 11_10220 6H 80.31 ACACTGACGACATGGTTCTACAGTGTTTGTGTACATGGTGCG TACGGTAGCAGAGACTTGGTCTTTTCCCTGCACATGCTTCTC 

275 11_11246 6H 81.48 ACACTGACGACATGGTTCTACAGGTGCAATCCATTGTTGTTG TACGGTAGCAGAGACTTGGTCTAGTTCAGCATCCCCAGTGAC 

276 12_30698 6H 88.85 ACACTGACGACATGGTTCTACAAAGTACACACGGCAAGGAAG TACGGTAGCAGAGACTTGGTCTACTGCTAGCTAACCGGAAAC 

277 11_21025 6H 92.12 ACACTGACGACATGGTTCTACAGATGACGTCAAGCACATCAG TACGGTAGCAGAGACTTGGTCTGAGGCAGAAAGTTCAGAGAG 

278 12_30151 6H 97.15 ACACTGACGACATGGTTCTACAACGGCGGCTACTACACGCT TACGGTAGCAGAGACTTGGTCTTTGCACTCCACGAACGGCTC 

279 12_31353 6H 100.53 ACACTGACGACATGGTTCTACAGTTTTGCCACATTGAAAGGAG TACGGTAGCAGAGACTTGGTCTAGCAACGGTAAAATACGGGC 

280 12_31115 6H 102.03 ACACTGACGACATGGTTCTACAAACCACACCAACTGACTTGC TACGGTAGCAGAGACTTGGTCTGCATGAACAAAACCGACGAG 

281 11_20379 6H 105.23 ACACTGACGACATGGTTCTACAATAAGCCACTGCTCCCCTTC TACGGTAGCAGAGACTTGGTCTCGAGTAGGAGTATGTCACTG 

282 11_20036 6H 110.59 ACACTGACGACATGGTTCTACATCCTATCGTTTGGCTTTCGG TACGGTAGCAGAGACTTGGTCTTAGGAGAGTCAGCGCAGAAG 

283 SCRI_RS_3070 6H 110.59 ACACTGACGACATGGTTCTACATCTAGACAAATCAGTGGCGG TACGGTAGCAGAGACTTGGTCTCGTGCAAGTTGGCGATCAAT 

284 11_20355 6H 113.05 ACACTGACGACATGGTTCTACAATCCATGATACAGCCTAGTG TACGGTAGCAGAGACTTGGTCTCCCCAGTTTCAATTGATTCC 

285 SCRI_RS_206207 6H 115.49 ACACTGACGACATGGTTCTACATCAGTGAGGTGGAGAAGAAC TACGGTAGCAGAGACTTGGTCTCGGACAGAGGGAATGTCTTG 

286 11_10645 6H 122.99 ACACTGACGACATGGTTCTACATTGCTCTGCCCAATCTCATC TACGGTAGCAGAGACTTGGTCTGCACAAGGTGCAATGTGATG 

287 SCRI_RS_206827 6H 126.21 ACACTGACGACATGGTTCTACATTGAGAGGGCTGATCTGGTG TACGGTAGCAGAGACTTGGTCTAAGCAGCAGAGCTTCTCTGG 

288 11_10390 6H 130.44 ACACTGACGACATGGTTCTACAAGGACCAGGATGCATTCTTC TACGGTAGCAGAGACTTGGTCTATCCCTCAGGAGGATCAAAC 

289 SCRI_RS_10811 6H 136.62 ACACTGACGACATGGTTCTACAGCCAGTACTGGATACAAGAG TACGGTAGCAGAGACTTGGTCTCTGCTCATAGCCTTCTTACC 

290 12_30956 6H 139.39 ACACTGACGACATGGTTCTACATCATTTGGATGACCTGGTGG TACGGTAGCAGAGACTTGGTCTGTTGATGACGCCGGTGTATG 

291 11_21419 7H 0.00 ACACTGACGACATGGTTCTACACATGGTCTTGCAGACATTCC TACGGTAGCAGAGACTTGGTCTCTTGATCGTCAAGAGAAGTG 

292 11_10682 7H 1.08 ACACTGACGACATGGTTCTACACGCCTAGTTTAGTGGCTGGT TACGGTAGCAGAGACTTGGTCTCTGGAAATCTAAGATGAACC 

293 11_10894 7H 1.78 ACACTGACGACATGGTTCTACAGGCCACATCATCAGCAATAC TACGGTAGCAGAGACTTGGTCTTTCAGCAGCATCAGGGACG 

294 11_21307 7H 1.78 ACACTGACGACATGGTTCTACATTGGGAAGCTCCATTTGGTC TACGGTAGCAGAGACTTGGTCTTCCATAGGCCTTAGAGCGTC 

295 SCRI_RS_237689 7H 1.80 ACACTGACGACATGGTTCTACATTGGATCCCTGGGTGATGGC TACGGTAGCAGAGACTTGGTCTTGTAGGGCTTCCGCACCCTC 

296 11_20710 7H 2.47 ACACTGACGACATGGTTCTACATGCCATTGCTGCAAGGATAG TACGGTAGCAGAGACTTGGTCTACAATTCATCCCCACCTCTC 

297 11_20242 7H 4.52 ACACTGACGACATGGTTCTACACCTGGTCATCCTTGATGCTG TACGGTAGCAGAGACTTGGTCTTTTTCGCCGAGTGGAACAAG 

298 12_11035 7H 6.29 ACACTGACGACATGGTTCTACACCAGGTGTATCTGAATAAGAC TACGGTAGCAGAGACTTGGTCTTGCAGCTGAAAATCCAATAG 

299 11_10841 7H 12.97 ACACTGACGACATGGTTCTACAGCTTTGAAGCATGATCGGAC TACGGTAGCAGAGACTTGGTCTATTCGGTTGACCACAAGCTC 
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Table C2. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Pinnacle and PI67381 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

SN Marker Chr cM Forward Primers Reverse Primers 

300 11_21437 7H 15.44 ACACTGACGACATGGTTCTACACCAGACAATGTTCAAGGTCC TACGGTAGCAGAGACTTGGTCTTATCTCATTCTCGCACCCTC 

301 11_10025 7H 16.78 ACACTGACGACATGGTTCTACACTACTTCAGAACCAGTGCTC TACGGTAGCAGAGACTTGGTCTAAGGGTGGATACACCATCTC 

302 11_20722 7H 19.22 ACACTGACGACATGGTTCTACAGGAGGCAACATCTCTGATAG TACGGTAGCAGAGACTTGGTCTAAATGCCTGATGTCGCGATG 

303 11_20495 7H 22.12 ACACTGACGACATGGTTCTACACGCATTGACGCTTCCTTTTG TACGGTAGCAGAGACTTGGTCTAGTCTAAGGACAACGGACAC 

304 12_30530 7H 26.35 ACACTGACGACATGGTTCTACATACGAGGTGCACGGCCTCAT TACGGTAGCAGAGACTTGGTCTGGTCGTGGTAGATGTGGTC 

305 SCRI_RS_127224 7H 26.72 ACACTGACGACATGGTTCTACAAGGAGATTGCGGATAGAGTG TACGGTAGCAGAGACTTGGTCTATAAGTCCACACGGTGTGAG 

306 12_30780 7H 29.62 ACACTGACGACATGGTTCTACATTGGTGAAGGCCGCAGCAAC TACGGTAGCAGAGACTTGGTCTGGTGGGGTTCTACCAGAAG 

307 11_20993 7H 34.74 ACACTGACGACATGGTTCTACATACAGCGAATGGATCGATGA TACGGTAGCAGAGACTTGGTCTTTTGGAAGCGGGACATGCTC 

308 12_30895 7H 38.31 ACACTGACGACATGGTTCTACACACCTGCAGGCAGTATAAAG TACGGTAGCAGAGACTTGGTCTCAGCTTATGTACGTACTCTC 

309 11_10838 7H 40.46 ACACTGACGACATGGTTCTACACGTTGAGAATTGCGAAGGAC TACGGTAGCAGAGACTTGGTCTCAGTCATCAGCATAAGTTCC 

310 SCRI_RS_179937 7H 43.38 ACACTGACGACATGGTTCTACATCAGCTAAGGACAAGATAAC TACGGTAGCAGAGACTTGGTCTCAGAAACCAACTGGTGTCTC 

311 12_31305 7H 44.58 ACACTGACGACATGGTTCTACATGGAAGCTGGTGAACAACTG TACGGTAGCAGAGACTTGGTCTAGACCTCGATGGAAGAGCTG 

312 11_10576 7H 46.89 ACACTGACGACATGGTTCTACACGACAATTCCGGAGAAGATG TACGGTAGCAGAGACTTGGTCTTCTCCCCCATTTTTGCTTTC 

313 SCRI_RS_8200 7H 49.46 ACACTGACGACATGGTTCTACATCCATACACTCCTCCCTAC TACGGTAGCAGAGACTTGGTCTACGTACGGCGGCGTGTATGG 

314 SCRI_RS_169904 7H 55.53 ACACTGACGACATGGTTCTACAATTGTGTCCATATCCCTCGC TACGGTAGCAGAGACTTGGTCTTAAAACCTAACGCCTGGCCC 

315 SCRI_RS_219349 7H 61.13 ACACTGACGACATGGTTCTACATGGGCTGGGCCGGGTTCCAC TACGGTAGCAGAGACTTGGTCTAGTCGTCGCCGTAAATGAAC 

316 SCRI_RS_213842 7H 65.05 ACACTGACGACATGGTTCTACAGGAGAATGCAGAGCTGAAAG TACGGTAGCAGAGACTTGGTCTACGATGGAGACATGCTTCGG 

317 11_10050 7H 66.61 ACACTGACGACATGGTTCTACAATTCGTGAGGCAGATGGGTG TACGGTAGCAGAGACTTGGTCTACTCGTTATGATCGTGAAGC 

318 12_30149 7H 67.99 ACACTGACGACATGGTTCTACATTACAAGCACGATCAGGGAG TACGGTAGCAGAGACTTGGTCTGGTAAAGTAAAAGGTGGAGG 

319 11_11348 7H 71.76 ACACTGACGACATGGTTCTACATAGCTAGCTAGAGCTACCTG TACGGTAGCAGAGACTTGGTCTAGCTTAGGACAATCAGCTGG 

320 12_30997 7H 74.84 ACACTGACGACATGGTTCTACACTCGCCGGAGAGAGAAGAA TACGGTAGCAGAGACTTGGTCTTTGCCCAGCCCTTTCCCTC 

321 12_30344 7H 76.06 ACACTGACGACATGGTTCTACAACCAAGGAAGGAACAGTGCG TACGGTAGCAGAGACTTGGTCTATCTTCCTCATCTCCTCTCC 

322 12_10982 7H 80.47 ACACTGACGACATGGTTCTACAAGATGAGGGTGGAGATGAAC TACGGTAGCAGAGACTTGGTCTGTCGCTTCGATGACTCCTTC 

323 12_30565 7H 81.07 ACACTGACGACATGGTTCTACATTCTACAACCAATTGATGCC TACGGTAGCAGAGACTTGGTCTCTGAGAGATGAGGCATAATAC 

324 12_30998 7H 82.16 ACACTGACGACATGGTTCTACACCACGACTACATGCTGAAAC TACGGTAGCAGAGACTTGGTCTGCAGTGGCTTTGATCATGAG 

325 SCRI_RS_104566 7H 86.89 ACACTGACGACATGGTTCTACAGGGAGGTTCGGATGACAGG TACGGTAGCAGAGACTTGGTCTACATCTCCATCCCCTTCAAC 

326 11_21448 7H 92.00 ACACTGACGACATGGTTCTACATAACAGACGACGACGCTTAC TACGGTAGCAGAGACTTGGTCTTGTACTGCTGTTTCCTCCTG 
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Table C2. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Pinnacle and PI67381 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

SN Marker Chr cM Forward Primers Reverse Primers 

327 11_21201 7H 95.02 ACACTGACGACATGGTTCTACAAATGTGGAGAGCATTGTGCC TACGGTAGCAGAGACTTGGTCTATCCTTCCCACCTTTCTTGC 

328 12_30806 7H 95.70 ACACTGACGACATGGTTCTACACTGTCGCCGACGCACGCTC TACGGTAGCAGAGACTTGGTCTTCCCCAAATCCATCGTCCAG 

329 11_10301 7H 98.14 ACACTGACGACATGGTTCTACACGTGCAATAGGGTGAAGAAG TACGGTAGCAGAGACTTGGTCTAGAAGGAAGAGGAGAAGGAG 

330 11_20808 7H 99.90 ACACTGACGACATGGTTCTACAATTCCTGCCACGACCATAAG TACGGTAGCAGAGACTTGGTCTCCCTCGATCCATATCGATAG 

331 11_20103 7H 101.99 ACACTGACGACATGGTTCTACATGGCTTGCCGATGATCCTG TACGGTAGCAGAGACTTGGTCTAGCTGAGCCTGAGCACCAAC 

332 12_31440 7H 102.19 ACACTGACGACATGGTTCTACAAGCCACGGGTCTTCGACAT TACGGTAGCAGAGACTTGGTCTATGACGACGCTCCTTCATCC 

333 SCRI_RS_141732 7H 107.80 ACACTGACGACATGGTTCTACATGGAATAATTTCTCCGGTGC TACGGTAGCAGAGACTTGGTCTGTGGGTTGTATGAAACGTTG 

334 SCRI_RS_112204 7H 109.00 ACACTGACGACATGGTTCTACAAAGCAATGGCTCAATTGCCG TACGGTAGCAGAGACTTGGTCTACACCATCCATGATCCATCC 

335 11_10853 7H 110.40 ACACTGACGACATGGTTCTACAGCTAACCTAAGGGAGCATTG TACGGTAGCAGAGACTTGGTCTGCTGTGTACCTTAAAATTGC 

336 SCRI_RS_172243 7H 113.60 ACACTGACGACATGGTTCTACACTGTCTACTAAGGTACATTC TACGGTAGCAGAGACTTGGTCTTCCATTTCTTCCTGCTGCTG 

337 11_20247 7H 117.10 ACACTGACGACATGGTTCTACAGATATCACTCCATTTCAAGG TACGGTAGCAGAGACTTGGTCTTGCGTGGATCCTATTTTTGG 

338 12_30368 7H 119.33 ACACTGACGACATGGTTCTACAAACCAAGAGAATCACAACCC TACGGTAGCAGAGACTTGGTCTTCGACGGAGAGGGTTTAATG 

339 11_20354 7H 127.41 ACACTGACGACATGGTTCTACAGCTGTGCAACATCTGAGAAG TACGGTAGCAGAGACTTGGTCTTCATTGAGGATGCTAGGCAC 

340 SCRI_RS_202130 7H 133.84 ACACTGACGACATGGTTCTACACTCTCCATTTCCATTTTGGG TACGGTAGCAGAGACTTGGTCTGTGTTCCATGATGGTGTTCG 

341 SCRI_RS_196031 7H 135.99 ACACTGACGACATGGTTCTACAATTCCTTCGGTTCCGTTGTG TACGGTAGCAGAGACTTGGTCTGGGCTGTTGTACTAGTTAG 

342 SCRI_RS_225155 7H 137.76 ACACTGACGACATGGTTCTACAGTTTTCGCAGCATGATGCGG TACGGTAGCAGAGACTTGGTCTGACAATTAGGGTGGACCTTC 

343 11_10797 7H 141.37 ACACTGACGACATGGTTCTACATGAACACCGGCCTAATTACC TACGGTAGCAGAGACTTGGTCTTGCGCTTTCAGGAACAACAG 

344 11_20847 7H 145.68 ACACTGACGACATGGTTCTACAGCGAAGAAGAACTTGTCCTC TACGGTAGCAGAGACTTGGTCTAAGGTGCAATCCTAGTAGGG 

345 11_10687 7H 146.03 ACACTGACGACATGGTTCTACATCCCAACTCCTTGCATATCC TACGGTAGCAGAGACTTGGTCTGATGGGTGCTGATGCAGTTC 

346 SCRI_RS_171456 7H 148.45 ACACTGACGACATGGTTCTACACGGATGACATCAGCATTTCC TACGGTAGCAGAGACTTGGTCTCCAATTGGCAATTGCACAGC 

347 12_20640 7H 152.51 ACACTGACGACATGGTTCTACATAGCAATAAGGGCCGTGTAG TACGGTAGCAGAGACTTGGTCTCTAAGTGGCACACCTTTATG 

348 11_11275 7H 156.69 ACACTGACGACATGGTTCTACACGGCGACGATGGAGGTCAT TACGGTAGCAGAGACTTGGTCTGCAGCTCAAAGAACGGATTC 

349 11_11012 7H 157.08 ACACTGACGACATGGTTCTACATGGAGGAGGAAGAGGAGGT TACGGTAGCAGAGACTTGGTCTTTGTCGTACTGCTCGTGCTC 

350 11_20185 7H 166.55 ACACTGACGACATGGTTCTACAGGAAAGAGTGACCATCTAGG TACGGTAGCAGAGACTTGGTCTGTGCTCCTTGCGGTGTTAG 

351 12_10378 7H 167.58 ACACTGACGACATGGTTCTACATGGTGAACTCGGCCAGCGTT TACGGTAGCAGAGACTTGGTCTGTAGCGGGAGCTGCCAGAC 
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Table C3. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Pinnacle and PI84314 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information. 

SN Marker chr cM Forward Primers Reverse Primers 

1 12_30969 1H 1.36 ACACTGACGACATGGTTCTACAAAGTTGCCTTAATGACTGGG ACACTGACGACATGGTTCTACAAAGTTGCCTTAATGACTGGG 

2 SCRI_RS_66630 1H 5.68 ACACTGACGACATGGTTCTACACATGATATCTGCTTGAGTGG ACACTGACGACATGGTTCTACACATGATATCTGCTTGAGTGG 

3 11_21174 1H 9.34 ACACTGACGACATGGTTCTACAAGAAAGGACGTCGAAACGAG ACACTGACGACATGGTTCTACAAGAAAGGACGTCGAAACGAG 

4 11_21226 1H 10.35 ACACTGACGACATGGTTCTACAATCCTCATCAGGTATTCGGC ACACTGACGACATGGTTCTACAATCCTCATCAGGTATTCGGC 

5 12_30919 1H 12.50 ACACTGACGACATGGTTCTACAAAGATCAGTGCGCAATAACG ACACTGACGACATGGTTCTACAAAGATCAGTGCGCAATAACG 

6 SCRI_RS_130592 1H 17.20 ACACTGACGACATGGTTCTACATGACGTCCACGTACTACTAC ACACTGACGACATGGTTCTACATGACGTCCACGTACTACTAC 

7 12_30948 1H 20.31 ACACTGACGACATGGTTCTACAATGGCGAGCTCGACTTGTTC ACACTGACGACATGGTTCTACAATGGCGAGCTCGACTTGTTC 

8 11_10030 1H 21.99 ACACTGACGACATGGTTCTACAGATGAACCGAAGTATGCACC ACACTGACGACATGGTTCTACAGATGAACCGAAGTATGCACC 

9 SCRI_RS_124926 1H 26.32 ACACTGACGACATGGTTCTACAGTCGTATGATCCACGTGATG ACACTGACGACATGGTTCTACAGTCGTATGATCCACGTGATG 

10 11_10757 1H 28.78 ACACTGACGACATGGTTCTACACTTGTCGTATGAGGCTCTTG ACACTGACGACATGGTTCTACACTTGTCGTATGAGGCTCTTG 

11 12_31276 1H 32.09 ACACTGACGACATGGTTCTACATGGCACTGGTGCAATTGTTC ACACTGACGACATGGTTCTACATGGCACTGGTGCAATTGTTC 

12 12_31177 1H 37.10 ACACTGACGACATGGTTCTACATAATGAGGATGCAGCCAGAG ACACTGACGACATGGTTCTACATAATGAGGATGCAGCCAGAG 

13 11_21095 1H 47.92 ACACTGACGACATGGTTCTACAAGACGTCCACCAAGAAGAAC ACACTGACGACATGGTTCTACAAGACGTCCACCAAGAAGAAC 

14 12_30683 1H 49.10 ACACTGACGACATGGTTCTACAAGAGCCCACTGTACACTATC ACACTGACGACATGGTTCTACAAGAGCCCACTGTACACTATC 

15 12_30110 1H 50.30 ACACTGACGACATGGTTCTACAGTTCTCCTCTACCTCTAGTG ACACTGACGACATGGTTCTACAGTTCTCCTCTACCTCTAGTG 

16 12_30710 1H 51.86 ACACTGACGACATGGTTCTACACGAACTTATCGATGAGGCTG ACACTGACGACATGGTTCTACACGAACTTATCGATGAGGCTG 

17 11_20997 1H 54.14 ACACTGACGACATGGTTCTACACTTATCGTTGGTGGGATTGC ACACTGACGACATGGTTCTACACTTATCGTTGGTGGGATTGC 

18 11_10176 1H 59.01 ACACTGACGACATGGTTCTACATTGGCCTGCCATTCTCTTTC ACACTGACGACATGGTTCTACATTGGCCTGCCATTCTCTTTC 

19 12_31464 1H 64.93 ACACTGACGACATGGTTCTACATGGCCCCACATATGCATCAG ACACTGACGACATGGTTCTACATGGCCCCACATATGCATCAG 

20 11_20290 1H 69.73 ACACTGACGACATGGTTCTACAAGGGCAAGTACAACTACAAC ACACTGACGACATGGTTCTACAAGGGCAAGTACAACTACAAC 

21 11_20229 1H 71.70 ACACTGACGACATGGTTCTACAATGAGGCCAAGATTGAGGTG ACACTGACGACATGGTTCTACAATGAGGCCAAGATTGAGGTG 

22 11_10279 1H 72.86 ACACTGACGACATGGTTCTACATGTACTCTTTTGCGACGCTG ACACTGACGACATGGTTCTACATGTACTCTTTTGCGACGCTG 

23 11_20990 1H 74.12 ACACTGACGACATGGTTCTACAAGTAACACTGGACACACACC ACACTGACGACATGGTTCTACAAGTAACACTGGACACACACC 

24 SCRI_RS_181353 1H 78.25 ACACTGACGACATGGTTCTACAGCTGAAATTCAAAGAGCAGAG ACACTGACGACATGGTTCTACAGCTGAAATTCAAAGAGCAGAG 

25 SCRI_RS_9158 1H 82.45 ACACTGACGACATGGTTCTACACACCCTCGCTTTCTGCATC ACACTGACGACATGGTTCTACACACCCTCGCTTTCTGCATC 

26 11_10471 1H 83.15 ACACTGACGACATGGTTCTACAGACAGGAGGTTCAACATAGC ACACTGACGACATGGTTCTACAGACAGGAGGTTCAACATAGC 

27 SCRI_RS_135092 1H 85.05 ACACTGACGACATGGTTCTACAGAGTGCATTACTTGCATCGG ACACTGACGACATGGTTCTACAGAGTGCATTACTTGCATCGG 
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Table C3. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Pinnacle and PI84314 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

SN Marker chr cM Forward Primers Reverse Primers 

28 11_21373 1H 90.98 ACACTGACGACATGGTTCTACACCTTCTCCAAGTCATCCATC ACACTGACGACATGGTTCTACACCTTCTCCAAGTCATCCATC 

29 11_20149 1H 94.48 ACACTGACGACATGGTTCTACATAATGTGAGAAATTTTGATAT ACACTGACGACATGGTTCTACATAATGTGAGAAATTTTGATAT 

30 SCRI_RS_188909 1H 98.45 ACACTGACGACATGGTTCTACACAGCACGTAACATCTGCATC ACACTGACGACATGGTTCTACACAGCACGTAACATCTGCATC 

31 12_20187 1H 101.05 ACACTGACGACATGGTTCTACAAAGGACCTCGACAAGGAGGA ACACTGACGACATGGTTCTACAAAGGACCTCGACAAGGAGGA 

32 12_31152 1H 101.05 ACACTGACGACATGGTTCTACACTCCAGTAACAATCGACGTG ACACTGACGACATGGTTCTACACTCCAGTAACAATCGACGTG 

33 11_20909 1H 104.10 ACACTGACGACATGGTTCTACATCGGCGGCGGCGATGTCCT ACACTGACGACATGGTTCTACATCGGCGGCGGCGATGTCCT 

34 11_20267 1H 105.52 ACACTGACGACATGGTTCTACAAAGCAAAGCAGGAAGCTGAG ACACTGACGACATGGTTCTACAAAGCAAAGCAGGAAGCTGAG 

35 12_30532 1H 109.53 ACACTGACGACATGGTTCTACACTGCACGTCATCATGATGTC ACACTGACGACATGGTTCTACACTGCACGTCATCATGATGTC 

36 SCRI_RS_238125 1H 114.30 ACACTGACGACATGGTTCTACACAAATTCTTCCTGCCGCGTC ACACTGACGACATGGTTCTACACAAATTCTTCCTGCCGCGTC 

37 SCRI_RS_224392 1H 122.40 ACACTGACGACATGGTTCTACAACTGTTGGCCTAGCTGCTG ACACTGACGACATGGTTCTACAACTGTTGGCCTAGCTGCTG 

38 11_20908 1H 126.60 ACACTGACGACATGGTTCTACAGATTGACGAGGCGGTGATAC ACACTGACGACATGGTTCTACAGATTGACGAGGCGGTGATAC 

39 SCRI_RS_189967 1H 129.42 ACACTGACGACATGGTTCTACAGCACCTTCTTCAGCATCTTC ACACTGACGACATGGTTCTACAGCACCTTCTTCAGCATCTTC 

40 12_10808 1H 131.46 ACACTGACGACATGGTTCTACATTATACCCTTCAAGCAGCGG ACACTGACGACATGGTTCTACATTATACCCTTCAAGCAGCGG 

41 12_10693 1H 132.54 ACACTGACGACATGGTTCTACAAAGTCCCATGGGAGAATCAG ACACTGACGACATGGTTCTACAAAGTCCCATGGGAGAATCAG 

42 SCRI_RS_196025 1H 136.75 ACACTGACGACATGGTTCTACATAGCTACCTTGTTAGGCTCC ACACTGACGACATGGTTCTACATAGCTACCTTGTTAGGCTCC 

43 11_11105 1H 142.16 ACACTGACGACATGGTTCTACAGAGATCTGGGAAGCTTAGAC ACACTGACGACATGGTTCTACAGAGATCTGGGAAGCTTAGAC 

44 12_31446 2H 1.08 ACACTGACGACATGGTTCTACAGGGAGTGTTTGTCCTTCTAC ACACTGACGACATGGTTCTACAGGGAGTGTTTGTCCTTCTAC 

45 11_10326 2H 7.29 ACACTGACGACATGGTTCTACACTCCATGGGATACCCATGTC ACACTGACGACATGGTTCTACACTCCATGGGATACCCATGTC 

46 SCRI_RS_168604 2H 11.49 ACACTGACGACATGGTTCTACATGGACCTCGTCCGCTTCTAC ACACTGACGACATGGTTCTACATGGACCTCGTCCGCTTCTAC 

47 11_21377 2H 13.19 ACACTGACGACATGGTTCTACAAGCAGCAGCTACTTGCAAAC ACACTGACGACATGGTTCTACAAGCAGCAGCTACTTGCAAAC 

48 SCRI_RS_141771 2H 15.17 ACACTGACGACATGGTTCTACATCGTCTACTTCGCCGACGAG ACACTGACGACATGGTTCTACATCGTCTACTTCGCCGACGAG 

49 12_30631 2H 19.42 ACACTGACGACATGGTTCTACAATTTATGGACGAGGCAACTG ACACTGACGACATGGTTCTACAATTTATGGACGAGGCAACTG 

50 SCRI_RS_152744 2H 23.76 ACACTGACGACATGGTTCTACACATCAAGAAAGAAGCCGGAG ACACTGACGACATGGTTCTACACATCAAGAAAGAAGCCGGAG 

51 11_10943 2H 25.53 ACACTGACGACATGGTTCTACACCAACACTAACGGTAACAGC ACACTGACGACATGGTTCTACACCAACACTAACGGTAACAGC 

52 SCRI_RS_153798 2H 31.74 ACACTGACGACATGGTTCTACACACGATCGAGTTCATCATCC ACACTGACGACATGGTTCTACACACGATCGAGTTCATCATCC 

53 12_30871 2H 38.60 ACACTGACGACATGGTTCTACATGTTGTCAATCCTTCGGGTC ACACTGACGACATGGTTCTACATGTTGTCAATCCTTCGGGTC 

54 SCRI_RS_182371 2H 44.54 ACACTGACGACATGGTTCTACAACTTGCTTGGGACTAAAGGC ACACTGACGACATGGTTCTACAACTTGCTTGGGACTAAAGGC 
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Table C3. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Pinnacle and PI84314 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

SN Marker chr cM Forward Primers Reverse Primers 

55 11_21304 2H 47.35 ACACTGACGACATGGTTCTACATCAAGGACATGCGCTTCAG ACACTGACGACATGGTTCTACATCAAGGACATGCGCTTCAG 

56 11_10919 2H 53.26 ACACTGACGACATGGTTCTACATAAAGGGCAAGGAAAAGCGG ACACTGACGACATGGTTCTACATAAAGGGCAAGGAAAAGCGG 

57 11_10325 2H 66.11 ACACTGACGACATGGTTCTACAAATGGAGTCGAATGGACGAG ACACTGACGACATGGTTCTACAAATGGAGTCGAATGGACGAG 

58 SCRI_RS_154617 2H 66.11 ACACTGACGACATGGTTCTACAAGTTCGTGACGCACGAGATG ACACTGACGACATGGTTCTACAAGTTCGTGACGCACGAGATG 

59 11_20532 2H 69.55 ACACTGACGACATGGTTCTACAGCAGATCCCAACAAAAGACG ACACTGACGACATGGTTCTACAGCAGATCCCAACAAAAGACG 

60 11_21144 2H 72.44 ACACTGACGACATGGTTCTACAAGCAATCGCTGGGCTTTTTG ACACTGACGACATGGTTCTACAAGCAATCGCTGGGCTTTTTG 

61 11_10265 2H 75.18 ACACTGACGACATGGTTCTACACCACGGTACAGCGAAAATTC ACACTGACGACATGGTTCTACACCACGGTACAGCGAAAATTC 

62 SCRI_RS_150 2H 78.02 ACACTGACGACATGGTTCTACAAGATCGCAGATGGTCTGTTG ACACTGACGACATGGTTCTACAAGATCGCAGATGGTCTGTTG 

63 11_10196 2H 81.26 ACACTGACGACATGGTTCTACACAACTGCATTCCCTGGTTAC ACACTGACGACATGGTTCTACACAACTGCATTCCCTGGTTAC 

64 11_21242 2H 86.84 ACACTGACGACATGGTTCTACATCGGGAAAAAGGTCCAATAG ACACTGACGACATGGTTCTACATCGGGAAAAAGGTCCAATAG 

65 11_10287 2H 90.99 ACACTGACGACATGGTTCTACAGGTTCATCGTCACTAGGAAG ACACTGACGACATGGTTCTACAGGTTCATCGTCACTAGGAAG 

66 SCRI_RS_219074 2H 95.24 ACACTGACGACATGGTTCTACATGCCTTTCTGTTTGCCTCTG ACACTGACGACATGGTTCTACATGCCTTTCTGTTTGCCTCTG 

67 11_10214 2H 99.04 ACACTGACGACATGGTTCTACACATGGCAGCTAAGCCCTAAG ACACTGACGACATGGTTCTACACATGGCAGCTAAGCCCTAAG 

68 12_30216 2H 101.98 ACACTGACGACATGGTTCTACACGAGACACTAGAGACACTTC ACACTGACGACATGGTTCTACACGAGACACTAGAGACACTTC 

69 11_10398 2H 106.90 ACACTGACGACATGGTTCTACATAGACGGCTTTATTTGGCAG ACACTGACGACATGGTTCTACATAGACGGCTTTATTTGGCAG 

70 12_30480 2H 108.14 ACACTGACGACATGGTTCTACAATGCGGCTCGGATGTGTATC ACACTGACGACATGGTTCTACAATGCGGCTCGGATGTGTATC 

71 12_30555 2H 112.22 ACACTGACGACATGGTTCTACATTCCGACCATCACTTGAGAG ACACTGACGACATGGTTCTACATTCCGACCATCACTTGAGAG 

72 11_20099 2H 121.76 ACACTGACGACATGGTTCTACACGTTTTCGACGCAGAGTTGT ACACTGACGACATGGTTCTACACGTTTTCGACGCAGAGTTGT 

73 11_10128 2H 124.50 ACACTGACGACATGGTTCTACATTCTGGACGGTGAGCTTGAC ACACTGACGACATGGTTCTACATTCTGGACGGTGAGCTTGAC 

74 12_31095 2H 131.66 ACACTGACGACATGGTTCTACAAGTGGGCGTTCTTCTTGATG ACACTGACGACATGGTTCTACAAGTGGGCGTTCTTCTTGATG 

75 11_21220 2H 136.66 ACACTGACGACATGGTTCTACAGCCGCCTAAACTTCTGAATC ACACTGACGACATGGTTCTACAGCCGCCTAAACTTCTGAATC 

76 11_20141 2H 141.70 ACACTGACGACATGGTTCTACAAGCAGCAGTGATGAAGTTGG ACACTGACGACATGGTTCTACAAGCAGCAGTGATGAAGTTGG 

77 11_21088 2H 144.20 ACACTGACGACATGGTTCTACATATGGAGCATATGGATGCAG ACACTGACGACATGGTTCTACATATGGAGCATATGGATGCAG 

78 12_10579 2H 149.60 ACACTGACGACATGGTTCTACATCATCTCGTTGCATATGCCC ACACTGACGACATGGTTCTACATCATCTCGTTGCATATGCCC 

79 11_20715 2H 152.83 ACACTGACGACATGGTTCTACACAGCCAGTGGACTTAATGTG ACACTGACGACATGGTTCTACACAGCCAGTGGACTTAATGTG 

80 11_11023 2H 160.19 ACACTGACGACATGGTTCTACAGACATGGCAAGAGTACATTC ACACTGACGACATGGTTCTACAGACATGGCAAGAGTACATTC 

81 SCRI_RS_230497 2H 164.26 ACACTGACGACATGGTTCTACATGCTTTTGCCCCACTCACTC ACACTGACGACATGGTTCTACATGCTTTTGCCCCACTCACTC 
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Table C3. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Pinnacle and PI84314 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

SN Marker chr cM Forward Primers Reverse Primers 

82 12_30823 2H 168.93 ACACTGACGACATGGTTCTACAACCATCACAACCAAGGTGAG ACACTGACGACATGGTTCTACAACCATCACAACCAAGGTGAG 

83 SCRI_RS_109266 2H 172.15 ACACTGACGACATGGTTCTACAATTTCCTCTTCTTCCTCGCC ACACTGACGACATGGTTCTACAATTTCCTCTTCTTCCTCGCC  

84 12_31180 2H 175.48 ACACTGACGACATGGTTCTACAACGGATGAGATTCAGGAAGC ACACTGACGACATGGTTCTACAACGGATGAGATTCAGGAAGC 

85 11_10085 2H 177.38 ACACTGACGACATGGTTCTACACACATAGTCTCGGCTATTCC ACACTGACGACATGGTTCTACACACATAGTCTCGGCTATTCC 

86 12_31428 3H 0.00 ACACTGACGACATGGTTCTACAGGCGGTGAGGAGGTAGGTG ACACTGACGACATGGTTCTACAGGCGGTGAGGAGGTAGGTG 

87 SCRI_RS_1804 3H 3.89 ACACTGACGACATGGTTCTACAGCCTCTTCTTCAAGTAGACG ACACTGACGACATGGTTCTACAGCCTCTTCTTCAAGTAGACG 

88 11_20252 3H 6.46 ACACTGACGACATGGTTCTACATTCCTGAATGTCTCCTATGC ACACTGACGACATGGTTCTACATTCCTGAATGTCTCCTATGC 

89 11_20529 3H 8.33 ACACTGACGACATGGTTCTACATCTGGAACATGCCCTTCTTG ACACTGACGACATGGTTCTACATCTGGAACATGCCCTTCTTG 

90 12_30818 3H 12.23 ACACTGACGACATGGTTCTACACTACTTCTTGGCCGCGGAC ACACTGACGACATGGTTCTACACTACTTCTTGGCCGCGGAC 

91 SCRI_RS_97417 3H 18.72 ACACTGACGACATGGTTCTACAGTTGCTGAATGAAAGCGATG ACACTGACGACATGGTTCTACAGTTGCTGAATGAAAGCGATG 

92 11_20742 3H 24.63 ACACTGACGACATGGTTCTACAATCAGCACCGTGTACTTGGG ACACTGACGACATGGTTCTACAATCAGCACCGTGTACTTGGG 

93 SCRI_RS_161041 3H 26.28 ACACTGACGACATGGTTCTACACACAAAGTGTGGACATGGAG ACACTGACGACATGGTTCTACACACAAAGTGTGGACATGGAG 

94 SCRI_RS_144410 3H 33.28 ACACTGACGACATGGTTCTACATGAAGCTGGTGAGAGCCGC ACACTGACGACATGGTTCTACATGAAGCTGGTGAGAGCCGC 

95 12_30431 3H 40.48 ACACTGACGACATGGTTCTACACTTCCCTTGGAGGTCTTTTG ACACTGACGACATGGTTCTACACTTCCCTTGGAGGTCTTTTG 

96 11_20356 3H 55.57 ACACTGACGACATGGTTCTACATAGAAACAGGAGCCAGTTGC ACACTGACGACATGGTTCTACATAGAAACAGGAGCCAGTTGC 

97 12_30467 3H 56.79 ACACTGACGACATGGTTCTACAATTCTTCGATGATGGCGGAC ACACTGACGACATGGTTCTACAATTCTTCGATGATGGCGGAC 

98 11_20583 3H 58.31 ACACTGACGACATGGTTCTACATTCAATCGCTGACCCGCAC ACACTGACGACATGGTTCTACATTCAATCGCTGACCCGCAC 

99 11_10373 3H 61.94 ACACTGACGACATGGTTCTACACCGAATCACCGAGAAATAGG ACACTGACGACATGGTTCTACACCGAATCACCGAGAAATAGG 

100 11_21305 3H 65.16 ACACTGACGACATGGTTCTACAGGTATTCCAAGGATCCTCAG ACACTGACGACATGGTTCTACAGGTATTCCAAGGATCCTCAG 

101 12_30399 3H 67.53 ACACTGACGACATGGTTCTACAACTCTTGTCGTGTGGTACTC ACACTGACGACATGGTTCTACAACTCTTGTCGTGTGGTACTC 

102 11_20115 3H 71.74 ACACTGACGACATGGTTCTACAGTGAACCTTGTATATTCTG ACACTGACGACATGGTTCTACAGTGAACCTTGTATATTCTG 

103 SCRI_RS_153148 3H 75.71 ACACTGACGACATGGTTCTACAGATCCTAAAGGAGGACTAGC ACACTGACGACATGGTTCTACAGATCCTAAAGGAGGACTAGC 

104 11_10444 3H 78.93 ACACTGACGACATGGTTCTACATTCTCGTAGTTCCTGAGCTG ACACTGACGACATGGTTCTACATTCTCGTAGTTCCTGAGCTG 

105 12_10134 3H 81.31 ACACTGACGACATGGTTCTACAGCTTCCTGTACATTGCTGTC ACACTGACGACATGGTTCTACAGCTTCCTGTACATTGCTGTC 

106 12_30250 3H 88.17 ACACTGACGACATGGTTCTACAACAGATCCAAGGTGAAGAGC ACACTGACGACATGGTTCTACAACAGATCCAAGGTGAAGAGC 

107 SCRI_RS_120503 3H 92.98 ACACTGACGACATGGTTCTACATCAACCGCAAGTTCGCCTTC ACACTGACGACATGGTTCTACATCAACCGCAAGTTCGCCTTC 

108 12_10344 3H 94.03 ACACTGACGACATGGTTCTACACAGAAGGTCAGAGAGATTGC ACACTGACGACATGGTTCTACACAGAAGGTCAGAGAGATTGC 
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Table C3. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Pinnacle and PI84314 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

SN Marker chr cM Forward Primers Reverse Primers 

109 11_21495 3H 94.03 ACACTGACGACATGGTTCTACAGCACAAGGGCTGAACATAAC ACACTGACGACATGGTTCTACAGCACAAGGGCTGAACATAAC 

110 12_30342 3H 94.03 ACACTGACGACATGGTTCTACATGAGAGTCGAGACTTGAGAG ACACTGACGACATGGTTCTACATGAGAGTCGAGACTTGAGAG 

111 11_21493 3H 95.25 ACACTGACGACATGGTTCTACACGGGCCTTGATTGATTTTGC ACACTGACGACATGGTTCTACACGGGCCTTGATTGATTTTGC 

112 SCRI_RS_221787 3H 99.26 ACACTGACGACATGGTTCTACAGAGTGGAGTGGTTGCTGCTT ACACTGACGACATGGTTCTACAGAGTGGAGTGGTTGCTGCTT 

113 SCRI_RS_164704 3H 99.26 ACACTGACGACATGGTTCTACATTTCGTAGAGGCCATCGTAG ACACTGACGACATGGTTCTACATTTCGTAGAGGCCATCGTAG 

114 SCRI_RS_225641 3H 99.46 ACACTGACGACATGGTTCTACAAAGTGATGATGATGCTGCCG ACACTGACGACATGGTTCTACAAAGTGATGATGATGCTGCCG 

115 SCRI_RS_133339 3H 99.56 ACACTGACGACATGGTTCTACATGACAGAGAGAACGAACTCC ACACTGACGACATGGTTCTACATGACAGAGAGAACGAACTCC 

116 SCRI_RS_211929 3H 99.66 ACACTGACGACATGGTTCTACAAAGTACTACGCCGACGACTG ACACTGACGACATGGTTCTACAAAGTACTACGCCGACGACTG 

117 12_30423 3H 99.66 ACACTGACGACATGGTTCTACAGAAGTCAATACCGATTGTAG ACACTGACGACATGGTTCTACAGAAGTCAATACCGATTGTAG 

118 SCRI_RS_235791 3H 99.66 ACACTGACGACATGGTTCTACATGGCGACCATCAAAGCAAAG ACACTGACGACATGGTTCTACATGGCGACCATCAAAGCAAAG 

119 12_31329 3H 103.83 ACACTGACGACATGGTTCTACAAATGAAGTGTTCGGCGACAG ACACTGACGACATGGTTCTACAAATGAAGTGTTCGGCGACAG 

120 11_10584 3H 105.98 ACACTGACGACATGGTTCTACATGCTCGGACAGAGACGTGA ACACTGACGACATGGTTCTACATGCTCGGACAGAGACGTGA 

121 11_20944 3H 109.12 ACACTGACGACATGGTTCTACAGGAGAACATTCCACATTAG ACACTGACGACATGGTTCTACAGGAGAACATTCCACATTAG 

122 12_30081 3H 115.86 ACACTGACGACATGGTTCTACATGAATGGCCATTGCCATGAG ACACTGACGACATGGTTCTACATGAATGGCCATTGCCATGAG 

123 11_10842 3H 118.71 ACACTGACGACATGGTTCTACAGTCTCCTTTATCCTTGTAAG ACACTGACGACATGGTTCTACAGTCTCCTTTATCCTTGTAAG 

124 12_30973 3H 121.02 ACACTGACGACATGGTTCTACACTGAAAACAGATGGTGTAA ACACTGACGACATGGTTCTACACTGAAAACAGATGGTGTAA 

125 11_10381 3H 125.23 ACACTGACGACATGGTTCTACAAAGCACTCTCTGCATCCTTC ACACTGACGACATGGTTCTACAAAGCACTCTCTGCATCCTTC 

126 11_20085 3H 126.41 ACACTGACGACATGGTTCTACAATGGAGGACGAATAGGGAGG ACACTGACGACATGGTTCTACAATGGAGGACGAATAGGGAGG 

127 SCRI_RS_10016 3H 128.53 ACACTGACGACATGGTTCTACACATTAAGGAGATGCTGCCAC ACACTGACGACATGGTTCTACACATTAAGGAGATGCTGCCAC 

128 SCRI_RS_183550 3H 133.78 ACACTGACGACATGGTTCTACACTGATTGTTTCTGGACTGGG ACACTGACGACATGGTTCTACACTGATTGTTTCTGGACTGGG 

129 11_21272 3H 137.48 ACACTGACGACATGGTTCTACATTCCAAACACACAAGCCAGC ACACTGACGACATGGTTCTACATTCCAAACACACAAGCCAGC 

130 12_31500 3H 141.20 ACACTGACGACATGGTTCTACATTCTCTATTGCCACCCTGAC ACACTGACGACATGGTTCTACATTCTCTATTGCCACCCTGAC 

131 SCRI_RS_157113 3H 145.29 ACACTGACGACATGGTTCTACATCCACAAACGCCGCACAAAC ACACTGACGACATGGTTCTACATCCACAAACGCCGCACAAAC 

132 11_11436 3H 145.65 ACACTGACGACATGGTTCTACATGCATCGGACGGTATACTTC ACACTGACGACATGGTTCTACATGCATCGGACGGTATACTTC 

133 SCRI_RS_229623 3H 150.19 ACACTGACGACATGGTTCTACAAGAGAAGAAGAGGAGCAACC ACACTGACGACATGGTTCTACAAGAGAAGAAGAGGAGCAACC 

134 11_11411 3H 151.23 ACACTGACGACATGGTTCTACACACTCCCATATGGTGGATCA ACACTGACGACATGGTTCTACACACTCCCATATGGTGGATCA 

135 SCRI_RS_156315 3H 153.39 ACACTGACGACATGGTTCTACACATCATAGATACAGCCTGCC ACACTGACGACATGGTTCTACACATCATAGATACAGCCTGCC 
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Table C3. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Pinnacle and PI84314 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

SN Marker chr cM Forward Primers Reverse Primers 

136 SCRI_RS_178836 3H 160.09 ACACTGACGACATGGTTCTACAAATCCTCTGCTTGAGTCGTC ACACTGACGACATGGTTCTACAAATCCTCTGCTTGAGTCGTC 

137 12_30135 3H 164.42 ACACTGACGACATGGTTCTACACAGGGTCCCAGAATTTATAG ACACTGACGACATGGTTCTACACAGGGTCCCAGAATTTATAG 

138 11_20145 4H 1.17 ACACTGACGACATGGTTCTACAAGAGAAGAAGAATCGAGCAG ACACTGACGACATGGTTCTACAAGAGAAGAAGAATCGAGCAG 

139 11_10409 4H 4.11 ACACTGACGACATGGTTCTACAAGCACTTTGGAAACAGTGGG ACACTGACGACATGGTTCTACAAGCACTTTGGAAACAGTGGG 

140 12_31486 4H 8.28 ACACTGACGACATGGTTCTACAATTGTCATGGAGTCTGGTGC ACACTGACGACATGGTTCTACAATTGTCATGGAGTCTGGTGC 

141 12_31458 4H 14.13 ACACTGACGACATGGTTCTACAGCAGTTTCAAAAGCAATCTC ACACTGACGACATGGTTCTACAGCAGTTTCAAAAGCAATCTC 

142 12_30540 4H 16.13 ACACTGACGACATGGTTCTACATGTATGGAGTGTCCATGGAG ACACTGACGACATGGTTCTACATGTATGGAGTGTCCATGGAG 

143 12_30150 4H 18.47 ACACTGACGACATGGTTCTACAGGTAAACCACCACTTCTTGC ACACTGACGACATGGTTCTACAGGTAAACCACCACTTCTTGC 

144 11_10223 4H 22.43 ACACTGACGACATGGTTCTACACGTCGGTAGACGAGAGAAG ACACTGACGACATGGTTCTACACGTCGGTAGACGAGAGAAG 

145 SCRI_RS_98443 4H 27.64 ACACTGACGACATGGTTCTACACATTCAAGCCCATCAATGCG ACACTGACGACATGGTTCTACACATTCAAGCCCATCAATGCG 

146 11_20777 4H 31.64 ACACTGACGACATGGTTCTACAGATGAGGATGTCCTCCATTG ACACTGACGACATGGTTCTACAGATGAGGATGTCCTCCATTG 

147 11_21374 4H 32.68 ACACTGACGACATGGTTCTACAGGAGCAAACGTGTTAGTTGG ACACTGACGACATGGTTCTACAGGAGCAAACGTGTTAGTTGG 

148 SCRI_RS_145412 4H 42.89 ACACTGACGACATGGTTCTACACCATCAAGGCCAAGATCATC ACACTGACGACATGGTTCTACACCATCAAGGCCAAGATCATC 

149 11_20012 4H 46.19 ACACTGACGACATGGTTCTACAGAGAGCATCGCCGAGAAGAT ACACTGACGACATGGTTCTACAGAGAGCATCGCCGAGAAGAT 

150 11_11180 4H 50.70 ACACTGACGACATGGTTCTACATGTTAGGAGGTGAGTTGTCG ACACTGACGACATGGTTCTACATGTTAGGAGGTGAGTTGTCG 

151 SCRI_RS_167844 4H 51.77 ACACTGACGACATGGTTCTACAATGATCAGGCTGGTGAGTTG ACACTGACGACATGGTTCTACAATGATCAGGCTGGTGAGTTG 

152 SCRI_RS_157310 4H 53.67 ACACTGACGACATGGTTCTACAATGTCCTCCCCGTCCTTCAC ACACTGACGACATGGTTCTACAATGTCCTCCCCGTCCTTCAC 

153 11_10093 4H 53.87 ACACTGACGACATGGTTCTACAAGTTTCATGAGGACTGCATC ACACTGACGACATGGTTCTACAAGTTTCATGAGGACTGCATC 

154 SCRI_RS_155554 4H 54.66 ACACTGACGACATGGTTCTACACGCAAATCGGTTTCAAGCAC ACACTGACGACATGGTTCTACACGCAAATCGGTTTCAAGCAC 

155 11_20472 4H 54.95 ACACTGACGACATGGTTCTACAACGAAATGGACGCGTCAAAG ACACTGACGACATGGTTCTACAACGAAATGGACGCGTCAAAG 

156 SCRI_RS_168496 4H 54.95 ACACTGACGACATGGTTCTACACCACGACTCCATTAGGGATG ACACTGACGACATGGTTCTACACCACGACTCCATTAGGGATG 

157 SCRI_RS_228477 4H 54.95 ACACTGACGACATGGTTCTACAGGGAGGAAGAGATGTGTTTG ACACTGACGACATGGTTCTACAGGGAGGAAGAGATGTGTTTG 

158 12_30839 4H 54.95 ACACTGACGACATGGTTCTACAGTCAGTGAAGCCTTTGAGTC ACACTGACGACATGGTTCTACAGTCAGTGAAGCCTTTGAGTC 

159 11_20412 4H 54.95 ACACTGACGACATGGTTCTACATCTGCTTCGAGACCCTGAAC ACACTGACGACATGGTTCTACATCTGCTTCGAGACCCTGAAC 

160 11_10509 4H 55.64 ACACTGACGACATGGTTCTACATGGCCCTCTTATATATCCCC ACACTGACGACATGGTTCTACATGGCCCTCTTATATATCCCC 

161 SCRI_RS_189180 4H 57.32 ACACTGACGACATGGTTCTACAGTCGAATTTCTTGTGTGGGC ACACTGACGACATGGTTCTACAGTCGAATTTCTTGTGTGGGC 

162 11_10606 4H 60.28 ACACTGACGACATGGTTCTACAGGGCACAACTTACTTGCTTA ACACTGACGACATGGTTCTACAGGGCACAACTTACTTGCTTA 
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Table C3. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Pinnacle and PI84314 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

SN Marker chr cM Forward Primers Reverse Primers 

163 11_11513 4H 64.45 ACACTGACGACATGGTTCTACAGTTCAACCACCATCATCCAC ACACTGACGACATGGTTCTACAGTTCAACCACCATCATCCAC 

164 11_10467 4H 67.22 ACACTGACGACATGGTTCTACAATACACCAGCTACAGCAAGG ACACTGACGACATGGTTCTACAATACACCAGCTACAGCAAGG 

165 11_10309 4H 67.91 ACACTGACGACATGGTTCTACAACACACACAACACACAAGGG ACACTGACGACATGGTTCTACAACACACACAACACACAAGGG 

166 12_31148 4H 72.70 ACACTGACGACATGGTTCTACAGGAAAAGAGTCCCACAATCG ACACTGACGACATGGTTCTACAGGAAAAGAGTCCCACAATCG 

167 11_20718 4H 76.11 ACACTGACGACATGGTTCTACATTGGCGGTGCCGGCTTTCT ACACTGACGACATGGTTCTACATTGGCGGTGCCGGCTTTCT 

168 12_10022 4H 80.62 ACACTGACGACATGGTTCTACAACCATCTCTTTCAGGAGGAC ACACTGACGACATGGTTCTACAACCATCTCTTTCAGGAGGAC 

169 11_10751 4H 82.99 ACACTGACGACATGGTTCTACATCAGATGCTGCGATATCAGG ACACTGACGACATGGTTCTACATCAGATGCTGCGATATCAGG 

170 SCRI_RS_129218 4H 89.24 ACACTGACGACATGGTTCTACAGATTGTAATGAGGTCCGGTG ACACTGACGACATGGTTCTACAGATTGTAATGAGGTCCGGTG 

171 SCRI_RS_189881 4H 94.74 ACACTGACGACATGGTTCTACAGACGTCTCCTCAGAGGTTTC ACACTGACGACATGGTTCTACAGACGTCTCCTCAGAGGTTTC 

172 11_20762 4H 96.60 ACACTGACGACATGGTTCTACAGTTATGGAAAGTAGAGGGAC ACACTGACGACATGGTTCTACAGTTATGGAAAGTAGAGGGAC 

173 11_21111 4H 102.18 ACACTGACGACATGGTTCTACAACATGAGCATGGAGGAGAAC ACACTGACGACATGGTTCTACAACATGAGCATGGAGGAGAAC 

174 12_11194 4H 107.77 ACACTGACGACATGGTTCTACACAAGCTTCGAGTGAGCTAAG ACACTGACGACATGGTTCTACACAAGCTTCGAGTGAGCTAAG 

175 SCRI_RS_196076 4H 111.65 ACACTGACGACATGGTTCTACATCTTGTTAACTTTGGAGCCG ACACTGACGACATGGTTCTACATCTTGTTAACTTTGGAGCCG 

176 11_20701 4H 114.98 ACACTGACGACATGGTTCTACATTGTTGGCCTGCCTTTTCTC ACACTGACGACATGGTTCTACATTGTTGGCCTGCCTTTTCTC 

177 11_10697 4H 117.33 ACACTGACGACATGGTTCTACACTCTAACCACTTCTACGTGC ACACTGACGACATGGTTCTACACTCTAACCACTTCTACGTGC 

178 11_10269 4H 120.53 ACACTGACGACATGGTTCTACATGATCTCCTTGGTCGGCTC ACACTGACGACATGGTTCTACATGATCTCCTTGGTCGGCTC 

179 11_20272 4H 125.11 ACACTGACGACATGGTTCTACATCCATGCCCGGAGAAATAAG ACACTGACGACATGGTTCTACATCCATGCCCGGAGAAATAAG 

180 12_31422 4H 127.26 ACACTGACGACATGGTTCTACACAGTGAGTACATTAGCTCTAC ACACTGACGACATGGTTCTACACAGTGAGTACATTAGCTCTAC 

181 12_30975 5H 3.66 ACACTGACGACATGGTTCTACACATACAATGAGTAATGACGTG ACACTGACGACATGGTTCTACACATACAATGAGTAATGACGTG 

182 11_20206 5H 6.55 ACACTGACGACATGGTTCTACACCGTCTTGGTTGGTTTCGAC ACACTGACGACATGGTTCTACACCGTCTTGGTTGGTTTCGAC 

183 12_30714 5H 13.47 ACACTGACGACATGGTTCTACATCCAGCTTAGGTCCTTGAAC ACACTGACGACATGGTTCTACATCCAGCTTAGGTCCTTGAAC 

184 SCRI_RS_149877 5H 18.14 ACACTGACGACATGGTTCTACATGAGCTCCATCGTTCTCCAG ACACTGACGACATGGTTCTACATGAGCTCCATCGTTCTCCAG 

185 11_21426 5H 21.24 ACACTGACGACATGGTTCTACATTCACGCTGATTGTTGAGCC ACACTGACGACATGGTTCTACATTCACGCTGATTGTTGAGCC 

186 11_11048 5H 27.80 ACACTGACGACATGGTTCTACAGCGTGCTGTTGGTAAAAAGG ACACTGACGACATGGTTCTACAGCGTGCTGTTGGTAAAAAGG 

187 11_21324 5H 27.88 ACACTGACGACATGGTTCTACACTCTCTACCACAAGGATCTG ACACTGACGACATGGTTCTACACTCTCTACCACAAGGATCTG 

188 11_10580 5H 33.22 ACACTGACGACATGGTTCTACACAGAGCACATGCTACTAAAC ACACTGACGACATGGTTCTACACAGAGCACATGCTACTAAAC 

189 11_10621 5H 35.35 ACACTGACGACATGGTTCTACACCTTTCCAACCTTAAGAAGC ACACTGACGACATGGTTCTACACCTTTCCAACCTTAAGAAGC 
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Table C3. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Pinnacle and PI84314 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

SN Marker chr cM Forward Primers Reverse Primers 

190 11_20845 5H 37.62 ACACTGACGACATGGTTCTACACGATCGGCTTTATGATAGGC ACACTGACGACATGGTTCTACACGATCGGCTTTATGATAGGC 

191 11_20729 5H 41.33 ACACTGACGACATGGTTCTACACAAGCATTGGATTGTTGCCG ACACTGACGACATGGTTCTACACAAGCATTGGATTGTTGCCG 

192 12_30538 5H 44.99 ACACTGACGACATGGTTCTACATTCGATCAAACCCCTCATGC ACACTGACGACATGGTTCTACATTCGATCAAACCCCTCATGC 

193 12_30745 5H 46.21 ACACTGACGACATGGTTCTACATGTTAAGCAAGCCGGTGAAC ACACTGACGACATGGTTCTACATGTTAAGCAAGCCGGTGAAC 

194 11_10641 5H 50.88 ACACTGACGACATGGTTCTACAACTCCTACTTCAACAAGGTC ACACTGACGACATGGTTCTACAACTCCTACTTCAACAAGGTC 

195 12_20350 5H 53.77 ACACTGACGACATGGTTCTACAACTAGCTTTCTTGCCGACAC ACACTGACGACATGGTTCTACAACTAGCTTTCTTGCCGACAC 

196 11_21001 5H 55.83 ACACTGACGACATGGTTCTACACAGAGCAAAGTTTGACGTGG ACACTGACGACATGGTTCTACACAGAGCAAAGTTTGACGTGG 

197 11_20236 5H 59.03 ACACTGACGACATGGTTCTACATGCCGATGAGGCGATTATTC ACACTGACGACATGGTTCTACATGCCGATGAGGCGATTATTC 

198 11_21445 5H 64.65 ACACTGACGACATGGTTCTACAACGACGGTTTCTTAGGTGAG ACACTGACGACATGGTTCTACAACGACGGTTTCTTAGGTGAG 

199 SCRI_RS_160332 5H 67.23 ACACTGACGACATGGTTCTACATAATAAGACGGCGGCACAAC ACACTGACGACATGGTTCTACATAATAAGACGGCGGCACAAC 

200 12_10674 5H 68.83 ACACTGACGACATGGTTCTACATAATAAGGCTTCCGACGGAG ACACTGACGACATGGTTCTACATAATAAGGCTTCCGACGGAG 

201 11_20497 5H 73.15 ACACTGACGACATGGTTCTACATCGGATACAACCATGAGAGC ACACTGACGACATGGTTCTACATCGGATACAACCATGAGAGC 

202 11_10518 5H 76.34 ACACTGACGACATGGTTCTACAAAGACAGCCTCGACATCATC ACACTGACGACATGGTTCTACAAAGACAGCCTCGACATCATC 

203 SCRI_RS_158235 5H 82.31 ACACTGACGACATGGTTCTACACATGCCAATACTTTCCTGCC ACACTGACGACATGGTTCTACACATGCCAATACTTTCCTGCC 

204 11_21061 5H 88.80 ACACTGACGACATGGTTCTACATTCTTGGTTGTTGCCGAGAG ACACTGACGACATGGTTCTACATTCTTGGTTGTTGCCGAGAG 

205 11_11273 5H 93.16 ACACTGACGACATGGTTCTACAATTTAGCCCGGCCACTAAGG ACACTGACGACATGGTTCTACAATTTAGCCCGGCCACTAAGG 

206 11_11200 5H 99.58 ACACTGACGACATGGTTCTACAACCTTTGTTTTGCTTGCAGG ACACTGACGACATGGTTCTACAACCTTTGTTTTGCTTGCAGG 

207 SCRI_RS_149088 5H 103.35 ACACTGACGACATGGTTCTACAATCGATTCTTTCGGCTCTGG ACACTGACGACATGGTTCTACAATCGATTCTTTCGGCTCTGG 

208 SCRI_RS_234720 5H 106.15 ACACTGACGACATGGTTCTACATCTTCCATCAGATTACAAGG ACACTGACGACATGGTTCTACATCTTCCATCAGATTACAAGG 

209 SCRI_RS_2831 5H 109.35 ACACTGACGACATGGTTCTACAAGCTCGCGGAGTTCTTGCAC ACACTGACGACATGGTTCTACAAGCTCGCGGAGTTCTTGCAC 

210 11_11507 5H 111.56 ACACTGACGACATGGTTCTACAGGGCACAATTTGTTACATAG ACACTGACGACATGGTTCTACAGGGCACAATTTGTTACATAG 

211 11_21422 5H 112.78 ACACTGACGACATGGTTCTACACTGAAAATGACCTCCAAGGG ACACTGACGACATGGTTCTACACTGAAAATGACCTCCAAGGG 

212 11_20653 5H 115.53 ACACTGACGACATGGTTCTACAATACCACTTGTGATCCGAGG ACACTGACGACATGGTTCTACAATACCACTTGTGATCCGAGG 

213 12_30067 5H 117.63 ACACTGACGACATGGTTCTACAATTGATGTCGAGAACCGGAG ACACTGACGACATGGTTCTACAATTGATGTCGAGAACCGGAG 

214 11_21247 5H 119.72 ACACTGACGACATGGTTCTACATCCGTTCCCGTTTGTTACAC ACACTGACGACATGGTTCTACATCCGTTCCCGTTTGTTACAC 

215 SCRI_RS_141778 5H 126.19 ACACTGACGACATGGTTCTACAGACGCCATTGCTGTTGAAAG ACACTGACGACATGGTTCTACAGACGCCATTGCTGTTGAAAG 

216 11_10845 5H 128.80 ACACTGACGACATGGTTCTACACAACAGCGATCCAAGCTTCC ACACTGACGACATGGTTCTACACAACAGCGATCCAAGCTTCC 
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Table C3. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Pinnacle and PI84314 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

217 SCRI_RS_213086 5H 132.37 ACACTGACGACATGGTTCTACACTTGCTAAAGCTTGGGCAAC ACACTGACGACATGGTTCTACACTTGCTAAAGCTTGGGCAAC 

218 11_20100 5H 135.42 ACACTGACGACATGGTTCTACATGGTGAAGAGGGCCGAGAAG ACACTGACGACATGGTTCTACATGGTGAAGAGGGCCGAGAAG 

219 11_10557 5H 135.42 ACACTGACGACATGGTTCTACATTGCCACATGCAAGTGACTG ACACTGACGACATGGTTCTACATTGCCACATGCAAGTGACTG 

220 12_31050 5H 137.22 ACACTGACGACATGGTTCTACATTGTCGTGCTGCCCTTGGAA ACACTGACGACATGGTTCTACATTGTCGTGCTGCCCTTGGAA 

221 12_31165 5H 138.44 ACACTGACGACATGGTTCTACAGCCCAACGTCATCGTACGAA ACACTGACGACATGGTTCTACAGCCCAACGTCATCGTACGAA 

222 12_31221 5H 142.71 ACACTGACGACATGGTTCTACACTTTGCGAAGCACGTTTCTC ACACTGACGACATGGTTCTACACTTTGCGAAGCACGTTTCTC 

223 11_11497 5H 147.70 ACACTGACGACATGGTTCTACATGAGCTACTCTGACTCACTC ACACTGACGACATGGTTCTACATGAGCTACTCTGACTCACTC 

SN Marker chr cM Forward Primers Reverse Primers 

224 SCRI_RS_189174 5H 150.10 ACACTGACGACATGGTTCTACAATGAAGGAGATCGTCAGAGC ACACTGACGACATGGTTCTACAATGAAGGAGATCGTCAGAGC 

225 11_10336 5H 153.47 ACACTGACGACATGGTTCTACAAGCTCACTTATATATCACC ACACTGACGACATGGTTCTACAAGCTCACTTATATATCACC 

226 12_30162 5H 156.70 ACACTGACGACATGGTTCTACAATGTGAAGACGGAGCTGTAG ACACTGACGACATGGTTCTACAATGTGAAGACGGAGCTGTAG 

227 12_30566 5H 160.32 ACACTGACGACATGGTTCTACAGGACTGATGACTCAAAACCG ACACTGACGACATGGTTCTACAGGACTGATGACTCAAAACCG 

228 11_10869 5H 163.16 ACACTGACGACATGGTTCTACAGCTGCTACACACATGAATTG ACACTGACGACATGGTTCTACAGCTGCTACACACATGAATTG 

229 11_10870 5H 168.24 ACACTGACGACATGGTTCTACACGGTGTAACTGGATGAAGAC ACACTGACGACATGGTTCTACACGGTGTAACTGGATGAAGAC 

230 12_30494 5H 171.16 ACACTGACGACATGGTTCTACATCATCCAGTTCAGCGCCTTC ACACTGACGACATGGTTCTACATCATCCAGTTCAGCGCCTTC 

231 12_30504 5H 172.25 ACACTGACGACATGGTTCTACAGCACCATCACTATCATGCAG ACACTGACGACATGGTTCTACAGCACCATCACTATCATGCAG 

232 SCRI_RS_178615 5H 177.03 ACACTGACGACATGGTTCTACATAGCTGACGCCGCAAGAAAC ACACTGACGACATGGTTCTACATAGCTGACGCCGCAAGAAAC 

233 11_11364 5H 179.67 ACACTGACGACATGGTTCTACAGTTCTCCAGGAAACAACCAG ACACTGACGACATGGTTCTACAGTTCTCCAGGAAACAACCAG 

234 12_10322 5H 181.11 ACACTGACGACATGGTTCTACAGCGCCACCATGTTACGACC ACACTGACGACATGGTTCTACAGCGCCACCATGTTACGACC 

235 12_31123 5H 184.75 ACACTGACGACATGGTTCTACACACCGTGCCTTTCTTAGAAG ACACTGACGACATGGTTCTACACACCGTGCCTTTCTTAGAAG 

236 11_20232 6H 0.00 ACACTGACGACATGGTTCTACATGTGACGAATTTCTCGAGCC ACACTGACGACATGGTTCTACATGTGACGAATTTCTCGAGCC 

237 11_20294 6H 6.49 ACACTGACGACATGGTTCTACAGGATACTATCTAGGTGGGTC ACACTGACGACATGGTTCTACAGGATACTATCTAGGTGGGTC 

238 11_21032 6H 11.35 ACACTGACGACATGGTTCTACAAATCTCTGCATAAGAGCAGG ACACTGACGACATGGTTCTACAAATCTCTGCATAAGAGCAGG 

239 11_20415 6H 15.16 ACACTGACGACATGGTTCTACAGCTGTCATCTTTCTCGAGTC ACACTGACGACATGGTTCTACAGCTGTCATCTTTCTCGAGTC 

240 12_10554 6H 19.07 ACACTGACGACATGGTTCTACATCTTCTTCAAGAAGCACCCG ACACTGACGACATGGTTCTACATCTTCTTCAAGAAGCACCCG 

241 12_30843 6H 23.07 ACACTGACGACATGGTTCTACATCATTGGCTGTGTGTTGTGC ACACTGACGACATGGTTCTACATCATTGGCTGTGTGTTGTGC 

242 11_10868 6H 27.19 ACACTGACGACATGGTTCTACAGATGTTACGTCCAGGACAAC ACACTGACGACATGGTTCTACAGATGTTACGTCCAGGACAAC 

243 12_30697 6H 33.39 ACACTGACGACATGGTTCTACATAGGACGGTGCATCCATTTG ACACTGACGACATGGTTCTACATAGGACGGTGCATCCATTTG 

244 12_31485 6H 35.29 ACACTGACGACATGGTTCTACATCCTGATAAAGGCAGGAGTC ACACTGACGACATGGTTCTACATCCTGATAAAGGCAGGAGTC 
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Table C3. Polymorphic single nucleotide polymorphism (SNP) markers evenly spread throughout the genome between barley lines 

Pinnacle and PI84314 along with the forward and reverse primers sequences. The marker position (cM) and chromosome were based 

on 9k Illuminum ISelect chip information (continued). 

 

SN Marker chr cM Forward Primers Reverse Primers 

245 11_10799 6H 38.12 ACACTGACGACATGGTTCTACACCATTTCCCCTAGGAATCAG ACACTGACGACATGGTTCTACACCATTTCCCCTAGGAATCAG 

246 11_10939 6H 40.52 ACACTGACGACATGGTTCTACACCAGGAGTACTGTACAGTTC ACACTGACGACATGGTTCTACACCAGGAGTACTGTACAGTTC 

247 11_10427 6H 41.35 ACACTGACGACATGGTTCTACAGAACAGGTACCACAAATGGG ACACTGACGACATGGTTCTACAGAACAGGTACCACAAATGGG 

248 SCRI_RS_154121 6H 44.91 ACACTGACGACATGGTTCTACACACTGGGGTTCTTTGCAATC ACACTGACGACATGGTTCTACACACTGGGGTTCTTTGCAATC 

249 12_30361 6H 47.81 ACACTGACGACATGGTTCTACAAGTTCTGAAGACTCCACGAC ACACTGACGACATGGTTCTACAAGTTCTGAAGACTCCACGAC 

250 11_10061 6H 50.41 ACACTGACGACATGGTTCTACAACGTCCTTCTGCTCATAACC ACACTGACGACATGGTTCTACAACGTCCTTCTGCTCATAACC 

251 11_20675 6H 55.90 ACACTGACGACATGGTTCTACATTGGGCGTACGAGGAGTATG ACACTGACGACATGGTTCTACATTGGGCGTACGAGGAGTATG  


