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ABSTRACT 

Dietary phytochemicals are thought to reduce the incidence of chronic degenerative 

diseases. The concentration of these phytochemicals has been extensively studied, but less is 

known about their stability during food processing. The objective of this study was to determine 

the stability of lignans and other phytochemicals during the vinification and brewing processes. 

The amount of secoisolariciresinol diglucoside (SDG), gallic acid, caffeic acid, coumaric acid, 

chlorogenic acid, and ferulic acid increased up to 45 % during the vinification process; however, 

the amount of folic acid remained unchanged. SDG content was determined in barley for the first 

time. The SDG content also varied among barley varieties and showed a year-to-year variation. 

In addition, no SDG was detected during the mashing, lautering, boiling, and fermentation steps 

of the brewing process. Overall, processing techniques used in this study caused various effects 

on the stability of phytochemicals.   
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1. INTRODUCTION 

The consumption of foods that are rich in phytochemicals may reduce the incidence of 

birth defects, chronic degenerative diseases, including cancer, cardiovascular, and 

neurodegenerative diseases (Blancquaert et al 2010; Liu 2013). Foods that contain these 

phytochemicals include whole-grain cereals (e.g. wheat and barley), oilseeds (e.g. sesame and 

flaxseed), legumes, fruits, and vegetables (Milder et al 2005). For instance, the health benefits 

associated with flaxseed consumption have been recognized for centuries (Klimaszewski 2000).  

Flaxseed, an ancient dicotyledonous crop, contains functional ingredients that promote 

health (Liu 2013). One such ingredient is lignan, a di-phenolic compound with a 2, 3-

dibenzylbutane skeleton structure (Madhusudhan et al 2000; Setchell et al 1980). Flaxseed is by 

far the richest known source of the lignan secoisolariciresinol (SECO), which can also exist in 

the form of secoisolariciresinol diglucoside (SDG) after glycosylation (i.e. the attachment of two 

glucose molecules on SECO) (Ford et al 2001). In the intestinal tract, these plant lignans are 

converted to mammalian lignans, making them biologically active, and the increased intake of 

these lignans has been correlated with reduced hormone-associated cancers (Wang 2002).  

Apart from lignans, flaxseed contains other bioactive compounds, including vitamins 

(e.g. folates) and phenolic acids (e.g. ferulic acid, gallic acid, m-coumaric acid, caffeic acid, and 

chlorogenic acid) (Liu 2013). Similarly, these compounds are believed to reduce the incidence of 

chronic diseases. The incorporation of folate in the diet, for example, lowers the risk of neural 

tube birth defects (NTDs), cardiovascular diseases, and megaloblastic anemia (Blancquaert et al 

2010). Due to its potential as a functional food, flaxseed has been incorporated into baked goods, 

including breads and pastas for its lignan, as well as for other essential nutrients (Durazzo et al 

2013; Muir and Westcott 2000).  
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To ensure the inclusion of such phytochemicals in our diet, the affect of food processing 

on bioavailability of bioactive compounds is essential. For instance, the milling of spices and 

nuts enhances the loss of volatile compounds due to the temperature increase during milling 

(Fellows 2000). The amount of vitamin C decreased, by 78 %, after slicing (size-reduction) 

cucumbers (Erdman and Erdman 1982). In addition, the blanching process can inactivate 

enzymes and reduce the amount of ascorbic acid (Fellows 2000). Pasteurization, a relatively mild 

process, is responsible for the reduction of serum proteins and vitamins (Fellows 2000).  During 

sterilization, 10-20 % loss of amino acids in canned meat has been observed. Extrusion process 

also reduces (up to 50 %) the amount of ascorbic acid and β-carotene in cereals (Harper 1979). 

Microbes, used during fermentation processes, also are known to change the composition of 

proteins, fats, and carbohydrates (Dworschak 1982).   

Many studies have been conducted on the concentration of bioactive compounds; 

however, little is known about their stability during food processing. Researchers also have 

analyzed the lignan stability during the production of bakery and dairy products (Liukkonen et al 

2003; Hyvarinen et al 2006a, b). However, studies remain scarce on other processing techniques, 

including malting, milling, vinification, and brewing. In this study, the stability of SDG and 

other phytochemicals will be determined during fermentation and aging processes. In addition, 

the effect of variety, malting, and brewing on SDG content were investigated.  
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2. LITERATURE REVIEW 

2.1. Introduction to flaxseed 

Flax (Linum usitatissimum L.) is an ancient plant grown for its seed to produce oil and 

meal, as well as for its stem to produce fiber (Berglund and Zollinger 2007). Flax oil is very 

susceptible to oxidation, making it desirable for industrial purposes, including paints, varnishes, 

and printing inks (Daun et al 2003; Ehrensing 2008). For thousands of years, flaxseed has been 

consumed by humans, but ever since the industrial revolution, flax oil has been predominantly 

used for industrial purposes (Daun et al 2003). However, flax oil is considered healthy and is 

often sold in health food stores. The ground flax meal, on the other hand, is used for animal feed 

and also added to bakery products to enhance nutrition. Furthermore, the flax fiber is used to 

make fine linen cloth and paper (Oplinger et al 1989). 

Canada is the largest producer and exporter of flaxseed, accounting for 40 % of the 

world’s production. In the United States, the four major states that produce flaxseed include 

North Dakota (95.1 %), South Dakota (2.1 %), Montana (2.0 %) and Minnesota (0.8 %) (NASS 

2013). Although flaxseed, currently, is used for the production of flaxseed oil, paint, and textile 

fiber, its use for animal feed and human consumption is growing (Laurence and Mike 2014)  

2.2. History on flaxseed 

The consumption of flaxseed dates back to 5000 BC. Historians have documented the use 

of flaxseed as medicinal ingredients. For example, Egyptians used to carry flaxseeds in their bag 

for medicinal purposes (Klimaszewski 2000). In addition, Egyptians used the stem of the plant to 

make linen cloth for wrapping mummies (Klimaszewski 2000; Anonymous 2007). In the 8th 

Century, King Charlemagne of France mandated the consumption of flaxseed after recognizing 

the health benefits associated with it (Anonymous 2007). Hippocrates, the father of modern 
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medicine, also recognized the use of flaxseed as a laxative and poultice (Anonymous 2007). The 

US National Cancer Institute has recognized flaxseed as a potential food ingredient for providing 

basic nutrition and protection from cancer and coronary heart disease (Carter 1993). Health 

benefits associated with flaxseed consumption have been well acknowledged for centuries, and 

many ongoing studies are being conducted to further identify its health benefits (Muir and 

Westcott 2003).  

2.3. Flaxseed composition 

2.3.1. Major chemical constituents  

The health benefits of flaxseed relate to the seed composition. Flaxseed is primarily 

composed of lipids (40 %), dietary fiber (30 %), protein (20 %), and ash (4 %), which are located 

separately in different parts of the seed (Daun et al 2003). The composition can also vary 

depending on the variety of the flaxseed and growing environment (Daun et al 2003). 

2.3.1.1. Lipid 

Flaxseed structure is composed of cotyledon (55 %), seed coat and hull (36 %), and 

embryo (4 %). The cotyledon is the major storage tissue for oil (Daun et al 2003). The lipid 

constituent or oil mainly exists in triacylglyceride (98 %), phospholipids (0.9 %), and free fatty 

acid (0.1 %) forms (Daun et al 2003). In oilseeds, the oil that is extracted via non-polar lipid 

solvent (e.g. hexane) is a neutral lipid (e.g. triacylglyceride) (Daun et al 2003). On the other 

hand, the lipids that are not extracted through non-polar solvents are polar lipids; to extract these 

lipids, polar solvents or mixtures of solvents (e.g. chloroform and methanol) must be used. The 

seed is also recognized for its high content of α-linolenic acid (ALA), which makes up more than 

50 % of the total fatty acid composition of the lipid (Oomah 2003). In addition, the following 

fatty acids are found in moderate amounts: palmitic (~ 5 %), stearic (~ 3 %), oleic (~ 18 %), and 
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linoleic (~ 14 %). According to Eckey (1954), the high degree of unsaturation in oils is positively 

related to ALA content, and negatively associated with the saturated fatty acids (palmitic and 

stearic) and unsaturated fatty acids (i.e. oleic and linoleic).  

2.3.1.2. Carbohydrate 

In flaxseed, digestible carbohydrates (e.g. simple sugars and starch) are present in small 

amounts (Daun et al 2003). The majority (28 % of dry flaxseed weight) of these consists of non-

digestible carbohydrates (i.e. dietary fiber), which are not broken down by human digestive 

enzymes (Daun et al 2003). Flaxseed is also rich in soluble (e.g. gums and pectin) and insoluble 

(e.g. cellulose and lignin) dietary fibers (Rubilar et al 2010). The application of various 

extraction methods and chemical analysis affects the ratio of these two dietary fibers (soluble: 

insoluble), which can vary from 20:80 (%) to 40:60 (%) (Daun et al 2003). The hull or more 

specifically the outer most layer contains the soluble fiber, also referred to as mucilage (Mazza 

and Biliaderis 1989). Approximately 8 % of flaxseed weight is mucilage, and its content depends 

on cultivar and extraction methods (Oomah et al 1995; Cui et al 1996). From the food industry 

perspective, mucilage can be used as a food gum due to its thickening and emulsifying 

properties. From the health perspective, mucilage is associated with lowering cholesterol content 

in the blood stream (Daun et al 2003).    

2.3.1.3. Protein 

Flaxseed contains approximately 23 % crude protein (i.e. nitrogen both from protein and 

non-protein sources) or 20 % true protein (i.e. nitrogen only from protein sources) (Daun et al 

2003). Flaxseed also contains two major proteins, namely globulin (80 %) and albumin (20 %), 

but the quality of the total protein depends on the adequate presence of three essential limiting 

amino acids; the first being lysine, then methionine and cysteine (Bhatty 1995; Sammour 1999).  
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In flaxseed, like other oilseeds, inverse association between oil and protein content has been 

reported (Daun et al 2003).  

2.3.2. Minor chemical constituents  

2.3.2.1. Phenols in flaxseed 

Apart from the major constituents, flaxseeds contain phenolic compounds (phenols) that 

are involved in the plant’s reproduction, growth, and defense mechanism against diseases (Dai 

and Mumper 2010). Common phenols found in flaxseed consist of a hydroxyl group (one or 

more) attached directly to an aromatic ring (one or more). Phenols protect plants against 

parasites and pathogens, and are also responsible for the pigmentation of fruits and vegetables 

(e.g. apples and beets). Identified phenols in flaxseed include phenolic acids (e.g. p-coumaric, 

ferulic and caffeic acid) and flavonoids (Oomah et al 1995).  

2.3.2.1.1. Phenolic Acids  

Flaxseed contains approximately 8-10 g/kg total phenolic acids. The seed also contains 

both esterified (5 g/ kg) and etherified phenolic acids (3-5 g/kg). Phenolic acids are derivatives of 

benzoic and cinnamic acid (Oomah et al 1995). In plants, they are products of secondary 

metabolism and categorized into phenolic acids, flavonoids, stilbenes, coumarins, and tannins 

(Liu 2004). In our diet, phenolic acids account for up to one-third of the phenolics and the 

remaining, two-third, comes from flavonoids (Liu 2004).  Phenolic acids are grouped into two 

groups, namely, hydroxybenzoic acid (e.g. p-hydroxybenzoic and gallic) and hydroxycinnamic 

acid (e.g. p-coumaric, caffeic, chlorogenic, and ferulic acids) derivatives. In foods, the 

hydroxybenzoic acids are not found in their free form; instead, they are found in complexes with 

other plant components, such as lignin, hydrolyzable tannins, fiber, sugar, and proteins (Liu 

2004). Similarly, the hydroxycinnamic acids are found in the bound form or linked with 
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cellulose, lignin, and proteins via ester bonds (Liu 2004). During food processing, some bound 

phenolic acids become free. For instance, bound ferulic acid becomes free after thermal 

processing, pasteurization, fermentation, and freezing (Dewanto et al 2002).   

2.3.2.1.2. Flavonoids 

Another common phenol in flaxseed includes flavonoid, a polyphenol made up of C6-C3-

C6 skeleton with two aromatic rings attached via three-carbon bridge (Oomah et al 1996). Some 

examples of flavonoids include anthocyanins, flavanols, flavones, flavanones, and flavonols. 

Flaxseed contains approximately 0.3-0.71 g/kg total flavonoids and this amount can vary 

depending on environmental conditions (e.g. cultivar) (Oomah et al 1996). Furthermore, 

flavonoids in flaxseed exist in the form of glucosides, including herbacetin 3, 8-O-

diglucopyranoside, herbacetin 3, 7-O-dimethyl ether, and kaempferol 3, and 7-O-

diglucopyranoside (Qiu et al 1999). In addition, some of these glucosides (e.g. herbacetin 

diglucoside-HDG) can be found linked to lignan macromolecule through 3-hydroxy-3-

methylglutaric acid (HMGA) (Struijus et al 2007).    

2.3.2.2. Lignans in flaxseed 

Other than the common phenols, flaxseed contains a di-phenolic compound with a 2, 3-

dibenzylbutane skeleton structure called lignans (Madhusudhan et al 2000; Setchell et al 1980). 

Lignans (Figure 1) are composed of two coniferyl alcohol residues that are found in the plant cell 

wall (Jenab et al 1999; Muir and Westcott, 2003). Different types of lignans exist, but 

secoisolariciresinol (SECO) is one type of lignan that is present in large quantities. Other types 

of lignans found in small quantity, include matairesinol, lariciresinol, 7-hydroxymatairesinol, 

shonanin (3, 4-divanillyltetrahydrofuran) and pinoresinol diglucoside (Heinonen et al 2001; 

Liggins et al 2000). The major lignan, SECO, can also exist as secoisolariciresinol diglucoside 
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(SDG) after the attachment of two glucose molecules on SECO via glycosylation (Ford et al 

2001).  

                            

         Matairesinol           (Secoisolariciresinol diglucoside) SDG       (Secoisolariciresinol) SECO 

Figure 1. Example of three commonly known plant lignan structures (Adapted from Muir and 

Westcott 2003). 

 

In flaxseed, SDG is concentrated in the seed coat and accounts for 0.74 1.9 % of the 

seed weight (Muir 2006; Oomah and Sitter 2009). In flaxseed, SDG is not found in its free form; 

instead it exists as a macromolecule. This macromolecule or lignan complex contains oligomers 

of SDG residues connected with 3-hydroxy-3-methylglutaric acid (HMGA). Five SDG residues 

(with an average molecular mass of 4000) have been identified in the lignan complex (Kamal-

Eldin et al 2001). In addition to SDG, coumaric acid glucoside (CouAG) and ferulic acid 

glucoside (FeAG), along with HMGA, have been identified (Ford et al 2001; Johnsson et al 

2002). To obtain free SDG, solvent treatment with basic ethanol or methanol is used. 

Furthermore, free SDG can further be metabolized, via acid hydrolysis, into secoisolariciresinol 

(SECO), where the two glucose molecules are removed (Toure and Xueming 2010). 

2.3.2.3. Sources of lignans  

Plants that contain lignan include whole-grain cereals, such as wheat, oats and barley; 

oilseeds, such as sesame seed, sunflower seed, and flaxseed; legumes, such as beans, lentils, and 

soybeans; fruits, such as strawberry, kiwi, and apricot; and vegetables, such as broccoli, carrots, 
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and garlic. Of these plants, oilseeds, particularly flaxseeds (Table 1), are by far the richest known 

source of plant lignan (Milder et al 2005; Toure and Xueming 2010).  

Table 1. Lignan (SECO) content (µg/100g dw) of selected plant foods. 

Plant foods SECO (µg/100g) Source 

Flaxseed 369900 Mazur et al (1996) 

Barley 58 Mazur and Adlercreutz (1998) 

Broccoli 414 Mazur and Adlercreutz (1998) 

Wheat 

Guava 

8.1-868 

700 

Adlercreutz and Mazur (1998);  Smeds et al (2007) 

Mazur (1998) 

 

2.3.2.4. Lignans in mammals  

Bakke and Klosterman (1956) were the first to isolate and identify SDG from flaxseed; 

however, no biological activity of the lignan (SDG) was reported. Approximately 20 years later, 

researchers conducting a hormone study detected two unknown compounds in urine that had 

great similarity to the structure of plant lignans. The unknowns were later identified as 

enterolactone (ENL) and enterodiol (ED), collectively known as the mammalian lignans (Wang 

2002). Setchell (1995) proposed that the origin of these mammalian lignans were due to bacteria 

in the intestinal tract converting the plant lignans into mammalian lignans (Figure 2). First, the 

gastrointestinal (GI) bacteria act upon SDG to release the carbohydrate free lignan, SECO (Toure 

and Xueming 2010). With the help of colonic bacteria, SECO further undergoes dehydroxylation 

and demethylation, resulting in the mammalian lignan‒ enterodiol (ED). The ED is oxidized via 

GI microbial flora, forming enterolactone (ENL). In the past, the two plant lignans (matairesinol 

and SDG) were thought to be the only plant precursors for the formation of the two mammalian 
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lignans, ED and EL. However, other lignans, including lariciresinol, 7-hydroxymatairesinol, and 

pinoresinol diglucoside have been identified as precursors for the two mammalian lignans 

(Heinonen et al 2001).  

                     

        Enterolactone (ENL)                                    Enterodiol (ED) 

Figure 2. Example of two commonly known mammalian lignan structures (Adapted from Muir 

and Westcott 2003).  

 

2.3.2.5. Biological activity of lignans 

The mammalian lignan, ENL, has been detected in the urine of humans, rats, baboons, 

and vervet monkeys, where higher amounts being detected during luteal phase and early 

pregnancy (Wang 2002). This varying amount at different stages has led researchers to associate 

lignan with some biological role within the body. For instance, the stereo-chemical similarity 

between lignans (phenyl ring) and estrogens has led scientists to suspect lignan as having some 

estrogen-related activity (Wang 2002). Such plant-derived estrogens (i.e. phytoestrogens) as 

lignan compete with estradiol (i.e. natural estrogen hormone) and bind to estrogen receptors 

(Wang 2002; Figure 3). However, this binding is not as strong as the link between estradiol and 

the estrogen receptors, which can give lignan either an estrogenic or anti-estrogenic role. 

According to Dehennin et al (1982), the estrogenic role of ENL was disproved after treating 

mouse uterine with synthetic ENL, which ended up showing no significant change on the weight 
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of the uterine. On the other hand, the natural estrogen hormone (i.e. estradiol) brought some 

change to the weight of the uterine. Waters and Knowler (1982) concluded that an anti-

estrogenic activity was related to depressed RNA synthesis. Nesbitt and Thompson (1999) 

conducted a study where they supplemented pre-menopausal women with breakfast meals 

containing 5, 15, and 25 g ground flaxseed. They analyzed the urine of their patients and 

observed a linear increase in mammalian lignans as the dose of flaxseed increased. Although 

studies on humans have been completed, caution should be taken when consuming lignans or 

flaxseeds during hormone-dependent periods, including pregnancy and lactation (Thompson 

1998). 

                                   

                

 

 

Figure 3. Lignans competing with estradiol to bind with estrogen receptors (Adapted from 

Mathern 2005). 

 

2.3.2.6. Lignan incorporation in foods  

In the past two decades, the inclusion of flaxseed in the diet has increased world-wide 

(Carraro et al 2012). Traditionally, ground and whole flaxseed has been added into baked goods, 

including breads and pastas for lignan fortification, as well as for other essential nutrients 

(Durazzo et al 2013; Muir and Westcott 2000). Although lignan-rich foods, such as flaxseed can 

lower breast and colon cancer risk, the introduction of flaxseed into food products has limitations 

(Carraro et al 2012). For instance, overtime, flaxseed can affect the flavor of the food. Flaxseed 

is well known for its high lipid and ALA contents, which increases flaxseed’s susceptibility to 
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lipid oxidation (Oomah 2003). Another issue with the use of flaxseed is that it contains harmful 

substances such as cyanogenic glycosides and cadmium. When cyanogenic glycosides comes in 

contact with water, they release hydrogen cyanide, a toxic substance that can cause headaches, 

tachycardia (increased heart beat), and disturbance to the central nervous system (Tarpila et al 

2005). Cadmium, on the other hand, causes vomiting, diarrhea, kidney disease, fragile bones, and 

it can be a possible cancer-causing agent (CDC 2009). To overcome possible limitations of 

flaxseed, SDG from flaxseeds are being extracted and directly added into bakery products, 

including breads and muffins, and dairy products, such as milk, cheese, yogurt, and whey drinks 

(Hyvarinen et al 2006a, b).  

2.3.2.7. Lignan extraction  

A number of extraction methods have been developed. These methods have targeted the 

removal of the lignan macromolecule or specific lignans. Solvent combination (e.g. ethanol: 

dioxane) to remove hydroxymethyl glutaric acid (HMGA) from the SDG macromolecule of a 

defatted flaxseed flour is one example (Klosterman and Smith 1954). Further treatment with 

alkaline hydrolysis degrades the remaining macromolecule of the flaxseed flour, releasing SDG 

(Klosterman et al 1955; Bakke and Klosterman 1956). In addition, the aglycone, i.e. SECO, can 

be obtained either by enzyme or acid hydrolysis of SDG. For instance, Thompson et al (1991) 

were able to hydrolyze the glycosidic bond through in vitro fermentation of gut bacteria. Mazur 

et al (1996), on the other hand, utilized both enzyme and acid hydrolysis in a step-wise manner. 

First and foremost, sample extracts are prepared using organic solvents. Then, the food extract is 

treated with enzyme to remove glucose molecules (i.e. hydrolysis of the glycosidic bond from 

SDG). This hydrolysis cannot be achieved with enzyme only; thus, the food extract is further 

treated with hot acid to remove any remaining glycosidic bonds (Mazur et al 1996). Employing 



 

13 

 

similar methods, Liggins et al (2000) retrieved not only SDG, but also other type of lignan called 

shonanin. The most common approach involves extraction of lignan macromolecule, first, using 

methanol/water (70:30 v/v), followed by alkaline treatment (i.e. hydrolyzes HMGA) to release 

the SDG free from the lignan macromolecule and acid to neutralize the previously added base 

(Muir and Westcott 2000; Milder et al 2004).  

Muir and Westcott (2000) quantified the SDG content of baked goods that contained 

flaxseed or flax meal using high performance liquid chromatography (HPLC). They detected no 

SDG in white and specialty breads (Muir and Westcott 2000). Only the flax-containing breads 

contained SDG. These alkaline solvents released SDG from ester-linked lignan macromolecule. 

In addition, Muir and Westcott (2000) reported the effect of particle size on the recovery of 

SDG: finely ground flax bread facilitates the extraction of more SDG than the unground bread.  

2.3.2.8. Lignan analysis 

Once extracted, lignans are subjected to multiple separation and detection techniques, 

including reversed-phase high performance liquid chromatography (RP-HPLC), gas 

chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry 

(LC-MS). For foods with high lignan concentration such as flaxseed, HPLC with ultraviolet 

detection can be used (Milder et al 2004). HPLC-UV is less specific and sensitive than the other 

techniques, making it hard to analyze foods with low lignan content. HPLC with coulometric 

electrode array detection, on the other hand, is sensitive, but not specific enough. The GC-MS 

technique, on the other hand, requires extracted compounds to undergo derivitization before 

analysis, a technique that is time-consuming and complicated (Milder et al 2004; Wang 2002). 

The high specificity, sensitivity, and the absence of derivitization has made LC-MS more 

desirable than any of the previously mentioned techniques (Milder et al 2004).  
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2.3.2.8.1. HPLC analysis 

 The use of HPLC for analyzing SDG in flaxseed is a traditional approach developed by 

Westcott and Muir (1996). They were the first to develop an HPLC technique that could rapidly 

detect and quantify SDG in flaxseed and flaxseed meal. The following HPLC parameters were 

used by Westcott and Muir (1996): Symmetry C18 column (5 µm, 250 mm × 4.6 mm), mobile 

phase consisting of 1 % aqueous acetic acid (solvent A) and 100 % methanol (solvent B), 

following gradient conditions that include: A/B (v/v): 0 min (95:5), 44 min (40:60), 48 min 

(40:60), and 55min (95:5), and detection at 280 nm. Similarly, other phenolics, including p-

coumaric acid and ferulic acid can be quantified using similar parameters (Eliasson et al 2003).    

2.3.2.8.2. LC-MS analysis 

Detecting lignans in flaxseeds has also been carried out using LC-MS. For instance, the 

following parameters were used by Popova et al (2009): A Zorbax Agilent Eclipse XDB-C18 

Extend with a guard column (150 mm × 4.6 mm, 5 µm) with a temperature of 40 0C was used to 

separate lignans. In addition, the mobile phase consisted of solvent A (0.05 mmol L-1 ammonium 

acetate in water) and solvent B (0.05 mmol L-1 ammonium acetate in acetonitrile). The Gradient 

was set up for 22 minutes and was applied as follows: 5 min, 10 % B, and 5 – 50 min, 95 % B.  

The flow rate was 0.4 ml/min and the injection volume was 4-40 µL (Popova et al 2009). Popova 

et al (2009) also used HPLC/MS/MS analysis for lignan quantification. An Agilent 1100 HPLC 

coupled with API 3000 triple-quadrupole and an MS system with a turbo-ion spray was used. 

The following parameters were optimized: temperature of ionization (4000C), and nebulizer gas 

(air) flow rate (14 L/min). The same solvent system and gradient was used as described above.  
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2.3.2.8.3. Other analysis techniques 

  Multiple detection techniques have also been employed to analyze the mammalian 

lignans in urine and plasma. The GC technique is less desirable as it requires derivitization 

before analysis, making it tedious and complicated (Wang 2002). An alternative to this technique 

was to couple the GC with ion mobility spectrometry (IMS). The IMS helps in the separation of 

ions based upon their charge, mass, and collisional cross-sectional area. The ions are identified 

based on the migration time or the time it takes the ions to reach a collector electrode (Wang 

2002). Often, this GC-IMS technique requires chromatographic separation beforehand due to its 

low-resolution power of detecting complex biological samples (e.g. urine and plasma). 

Furthermore, an HPLC coupled with coulometric electrode array detection is more sensitive than 

UV or diode array detection, but less sensitive than the GC-IMS. Unlike food lignan analysis, the 

GC-IMS is a more preferred analytical technique for detecting mammalian lignans (Wang 2002).  

2.3.2.9. Stability of lignan during food processing 

The stability of SDG during the manufacturing process of baked goods has been studied. 

For instance, Hyvarinen et al (2006a) investigated the stability of SDG (derived from flaxseed) 

during baking of graham buns, rye breads and muffins. SDG remained stable during the baking 

process at 225 oC for 15 minutes. No significant change in SDG content was observed even after 

increasing both the baking temperature to 250 oC and the amount of time to 25 minutes. In the 

same study, SDG was found to be stable when stored at room temperature for 1 week and at 

freezing temperature for up to 2 months. Similar findings on SDG stability have been reported by 

Muir and Westcott (2000). Liukkonen et al (2003) also found that SDG was very stable during 

the fermentation and baking processes of sourdough rye bread production.  
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SDG stability in dairy products, such as milk, yogurt, cheese, and whey-based drinks also 

been evaluated. The SDG was stable throughout the dairy processing of high-temperature 

pasteurization, fermentation, and milk renneting (Hyvarinen et al 2006b). There was no 

significant change in the SDG content during the heating and fermentation of the milk. In 

addition, SDG stability was not affected by the addition of starter cultures (i.e. lactic acid 

bacteria and bifidobacteria) during the process of yogurt fermentation (Hyvarinen et al 2006b; 

Hall et al 2004). Similarly, the use of starter culture (i.e. lactic acid bacteria) and enzymes did 

not affect the stability of SDG in cheese manufacturing (Hyvarinen et al 2006b). However, 25 % 

of the added SDG was lost in the whey-based drinks when stored for 21 days at 4oC. This loss 

was attributed to the low pH (3.0-4.1) of the whey drinks (Hyvarinen et al 2006b).  

Thus far, most of the studies on lignan stability have been carried out on baked goods and 

dairy products, and little is known about SDG stability during other food processing techniques. 

Although Hyvarinen et al (2006b) analyzed the lignan stability in yogurt and cheese processing, 

no further studies have been conducted on other processed products, including sauerkraut, 

pickles, beer, and wine. However, Milder et al (2005) did evaluate the SECO content of these 

products (Table 2). Based on this work, the main conclusion was that these foods were not good 

sources of lignan. However, only SECO content was reported.  

Table 2. Lignan (SECO) content (µg/100g) of selected fermented foods and beverages. 

Fermented foods SECO (µg/100g or µg/100ml) Reference 

Wheat Bread 15 Milder et al 2005 

Beer (lager) 0-1.0 Milder et al 2005 

Wine 5.2-61.3 Milder et al 2005 

Grape Juice 10.8 Milder et al 2005 
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2.3.3. Other phytochemicals in flaxseed and their health implications 

 Although flaxseed is known for its lignan content, other phytochemicals, such as vitamins 

(e.g. folic acid) and phenolic acids (e.g. ferulic acid, gallic acid, m-coumaric acid, caffeic acid, 

and chlorogenic acid) exist in abundance (Liu 2013). In some cases, they are comparable to 

levels found in fruits. Fruits, in general, have the highest phenolic content, of which wild 

blueberries, blackberries, pomegranates, cranberries, and red grapes being the highest. These 

bioactive compounds are believed to be beneficial to health, for instance, reducing the risk of 

chronic diseases, such as cardiovascular disease and cancer. In the United States and other 

industrialized countries, cancer and cardiovascular diseases are two leading causes of death (Liu 

2013).  

2.3.3.1. Folates 

Folate, a water soluble vitamin, is naturally found in foods or synthesized (e.g. folic 

acid). Both the natural folate and the synthetic form exist in the polyglutamate (long chain of 

glutamate molecules) and monoglutamate (one glutamate molecule) form, respectively (Koontz 

et al 2005). The structure of folate consists of pteroic acid and a side chain of conjugated 

glutamic acid molecules (Rampersaud et al 2003).  

Folate deficiency, a well-recognized worldwide health problem, is linked with increased 

risk of cardiovascular diseases, megaloblastic anemia, and multiple birth defects, most notably 

neural tube defects (NTDs) (Blancquaert et al 2010). Globally, folate deficiency is responsible 

for approximately 300,000 to 400,000 children born with NTDs (spina bifida and anencephaly) 

every year (Williams et al 2002). In the US, an estimated 2500 pregnancies are affected with 

NTDs and in Europe, 4500 infants are born with this defect each year.   
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2.3.3.2. Phenolics 

Phenolics, as mentioned earlier, are phytochemicals made up of one or more aromatic 

rings with one or two hydroxyl groups attached. The plant phenols have biological effects, such 

as antioxidant property (due to hydroxyl group on the structure), which is thought to have 

protective effect against cardiovascular disease. They lower oxidative stress that is caused by the 

saturation of highly reactive species in the body, including superoxide anion, hydrogen peroxide, 

and hydroxyl radicals (Dai and Mumper 2010). Oxidative stress is responsible for chronic 

degenerative diseases, such as heart disease, cancer, and aging. Phenolic compounds also inhibit 

the oxidation of important cell components, such as DNA, enzymes, lipids, and proteins (Dai and 

Mumper 2010). In an in vitro study, plant phenols prevented the oxidation of low-density 

lipoproteins (LDL), which is important because oxidized LDL are involved in the development 

of cardiovascular disease (Hollman 2001). Plant phenols have been recognized for their anti-

carcinogenic effect. They are thought to have an inhibitory role in all stages of cancer: initiation, 

promotion, progression, and metastasis (Thompson 1998). The antioxidant behavior of phenols is 

hypothesized to be related to their ability to scavenge free radicals and possibly the prevention of 

cancer (Hollman 2001).  Although health benefits of phenols have attracted the attention of 

medical researchers, the phenolic compound must be present in food after processing to be 

effective. 

2.4. Overview of food processing  

 According to archaeological and ethnographic evidence, the hunter-gatherer societies 

utilized the first food processing methods (Fellows 2000). They used open fire heat and boiling 

water to prepare their meals, as well as increase palatability. Due to their nomadic life style, they 

did not need to preserve their food; however, after the invention of agriculture, societies started 
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to store and preserve their food. By 3000-1500 BC, the Egyptians started using the sun to 

dry/preserve fish and poultry, fermentation to produce alcohol, and cereal grinding to make 

leavened bread (Fellows 2000). As societies progressed, they started specializing in different 

food processing techniques, such as milling, baking, brewing, and cheese-making. Pastoral 

societies in the Middle East, also, started adopting similar techniques to prevent famine, improve 

their diet, and increase eating quality (Fellows 2000).  

 In those early days, the food processing techniques were simple craft skills that passed 

from one generation to another, and little to no effort was done to understand the science behind 

the processes (Fellows 2000). However, in the late 1700s, people with novel ideas started to be 

recognized, which lead to further discoveries. For instance, Napoleon Bonaparte awarded 

Nicholas Appert 12, 000 francs for discovering canning as a means to preserve foods for military 

and naval forces. Also, multiple food processing technologies we use today are products of 

World War I and World War II (Fellows 2000). Most food processing techniques, nowadays, are 

still used to increase shelf life, as well as enhance sensory characteristics of foods. In addition to 

the eating quality, current food industries aim to provide nutritional foods. Food products are 

being enriched with vitamins, minerals, and prebiotic cultures, resulting in functional foods. 

However, not all functional foods have been fully evaluated for retention of health promoting 

compounds.  

2.4.1. Food processing effect on foods 

2.4.1.1. Size reduction 

There are desirable outcomes to food processing. For instance, size reduction (via 

milling) results in desirable textural and rheological properties, but can also result in unwanted 

aroma and flavor in some foods (Fellows 2000). By milling, one can improve mixing and heat 
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transfer, but such processing can disrupt cells and increase surface area, which in turn facilitates 

oxidative deterioration, and microbiological and enzymatic activities (Fellows 2000). For 

instance, oxidation of carotenes in flour can affect the color as well as the nutritional value. In 

some spices and nuts, increased temperature during milling can result in loss of volatile 

compounds (Fellows 2000). Erdman and Erdman (1982) reported a 78 % loss of Vitamin C in a 

sliced cucumber, which demonstrates an outcome of size reduction.  

2.4.1.2. Mixing     

 Mixers, for blending foods or ingredients do not have any effect on nutritional value or 

shelf life. Mixing produces desirable sensory and functional properties. For example, the 

stretching and folding action during mixing results in gluten formation. Once formed, the strong 

structure of gluten gives breads the desired texture (Fellows 2000).   

2.4.1.3. Heat processing 

Heating is a very common food processing technique that improves eating quality (e.g. 

flavor). This technique is also used to preserve foods by inactivating enzymes and destroying 

microbes, insects, and parasites (Fellows 2000). Heating allows some foods to be shelf stable 

without refrigeration. Anti-nutrients such as trypsin inhibitors are destroyed by heating. It has 

been documented that heating increases availability of nutrients (e.g. niacin) and protein 

digestibility. On the other hand, heating can result in undesirable effects (e.g. flavor, color, 

texture, nutrient loss) by destroying food components.  

Blanching is a heating method (pre-treatment) used to inactivate enzymes and remove air 

from foods (e.g. fruits and vegetables). This heat treatment has minimal effect on food quality as 

it utilizes a lower temperature (less than 1000C) with a short time exposure. However, blanching 
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can result in the loss of some nutrients, including minerals and water-soluble vitamins (e.g. 

ascorbic acid) (Fellows 2000).  

2.4.1.4. Pasteurization    

 This technique involves mild heat treatment (less than 1000C) of foods. Pasteurization 

can inactivate enzymes and destroy both pathogenic and spoilage microbes; thus, extending the 

shelf life of foods, including bottled fruit and milk. This process is considered to have minimal 

effect on sensory characteristics and nutritional value.  In pasteurized fruit juices, loss of vitamin 

C and carotene has been observed (Fellows 2000). In milk, loss of serum proteins and vitamin 

has been reported.  

2.4.1.5. Sterilization  

 Sterilization is a heating process that involves the exposure of foods to high temperature 

for a longer time than blanching. This heating process is used to kill microorganisms and 

inactivate enzymes, extending the shelf life of foods. Unlike blanching, sterilization has 

detrimental effect on sensory characteristics and nutritional value of foods. For instance, 

canning, which utilizes the sterilization process, can promote hydrolysis of carbohydrates, 

proteins, and lipids. In canned meats, 10-20 % loss of amino acids has been observed (Fellows 

2000). The loss of lysine increases with increasing heat treatment, maximum loss being 25 %. 

Further losses of two amino acids, methionine and tryptophan, have been shown to decrease the 

biological activity of protein up to 9 % (Fellows 2000). Vitamin loss also has been encountered 

during canning, particularly losses of thiamin (50 to 75 %) and pantothenic acid (20 to 35 %) 

have been reported. High loss of water-soluble vitamins such as ascorbic acid has also been 

recorded (Fellows 2000). On the other hand, sterilizing soy-meat increases nutritional value by 

inactivating trypsin inhibitors (Fellows 2000).  
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2.4.1.6. Fermentation  

Fermentation is one of the oldest food processing techniques that has been practiced 

worldwide for millennia (Fellows 2000). Today, this technique is used to produce breads, 

alcoholic beverages, cheese, and other products. Unlike some food processing techniques, the 

mild condition of fermentation do not have detrimental effect on sensory characteristics and 

nutritional value (Fellows 2000). Mild changes such as protein and carbohydrate modification, 

during fermentation, brings about texture (i.e. softens) change to the final fermented product. By-

products of fermentation (e.g. organic acids, ethanol) are also responsible for some flavor and 

aroma changes. On the other hand, microbial growth during the fermentation process can affect 

nutritive value (Fellows 2000). Microbes are able to alter the composition of proteins, fats, and 

carbohydrates. Microbes can also bring about a loss of nutrients because they are also capable of 

utilizing fatty acids, amino acids, sugars, and vitamins from foods (Fellows 2000). However, 

according to Dworschak (1982), there are nutritive microbes that are able to secrete vitamins. 

Microbes can also increase digestibility of proteins and polysaccharides by hydrolyzing 

polymeric compounds (Dworschak 1982).  

2.4.1.6.1. Commonly fermented beverages 

 Two of the oldest fermented beverages include wine and beer. Wine is produced by 

fermenting grapes and other fruits.  Beer, on the other hand, is commonly produced from barley 

malt, but it also can be produced from different types of starchy plants, including maize (e.g. 

South America), millet and sorghum (e.g. Africa), and rice (e.g. Far East) (FAO 2009).  

Basic industrial brewing process comprises of mashing, boiling, and fermentation (FAO 

2011). In the mashing step, hot water is used to extract soluble materials from grains (e.g. rice 

and barley) and sweet liquid called wort is produced in large wood/stainless steel vessels. The 
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wort is boiled and hops can be added for palatability and antiseptic purposes (FAO 2011). Before 

fermentation, wort must be cooled. Then, yeast is added into the wort and fermentation is carried 

out in large vats or food-grade plastic bins. The fermentation process can take up to two weeks 

depending on the storage temperature (FAO 2011).  

Aside from beer production, use of barley for human consumption and the feed industry 

is increasing (Andersson et al 1999). The end quality of a product can be affected by protein 

content, lysine content, β-glucan, endosperm, and amylose contents of barley. Barley is 

comprised of starch (600 g/kg), total dietary fiber (200 g/kg), and protein (110 g/kg). The dietary 

fiber consists of β-glucan (30-70 g/kg) and arabinoxylans (40-70 g/kg), which are considered as 

important constituents (Andersson et al 1999). Other minor constituents in barley include fat (30 

g/kg), ash (20 g/kg), and low molecular weight sugars (40 g/kg) (Aman et al 1985). 

The carbohydrates and proteins in barley have been exhaustively studied (Niemi et al 

2012). For example, the extraction of proteins and carbohydrates from brewer’s spent grain 

(BSG-a major by-product of brewing) has been studied for the past 10 years (Niemi et al 2012). 

Complete removal of proteins and 50 % carbohydrate extraction from BSG has been achieved 

via protease activity and enzyme treatment, respectively (Niemi et al 2012). However, there has 

been a tremendous amount of work on barley phenolics, but very few on lignans. Smeds et al 

(2007) found that wheat had the highest lignan (SECO) amount (868 µg/100 g), followed by 

corn (125 µg/100 g), oat (90 µg/100 g), and barley (42 µg/100 g). Niemi et al (2012) determined 

a total of lignan content (1300 µg/100 g) in BSG, which was comparable to un-malted barley 

(Smeds et al 2007). Majority of these lignans were syringaresinol and secoisolariciresinol 

(SECO).          
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Wine production, on the other hand, involves fermentation of fruit juice with the addition 

of sugar and yeast (FAO 2011). First, fruit juice, yeast, and sugar are added into a fermentation 

bin for approximately ten days. During this stage, the bin is kept closed to avoid microbial 

contamination. After ten days, wine is filtered through a sterilized cloth and transferred into a 

narrow-necked fermentation vessel. The vessel is fitted with an air lock and fermentation is 

carried out at18 0C for approximately three weeks to three months (FAO 2011).  

 The source of phenolics in wine comes from the grapes or other fruits (e.g. blueberries) 

used for wine making (Recamales 2006).  The presence of these phenolics in wine have good 

health benefits (i.e. free-radical scavenging and metal chelation), and contribute to the sensory 

characteristics, including color, flavor, and astringency (Lee and Jaworsky 1987). Due to the 

benefits associated with phenolics, studies have been conducted to access the stability of phenols 

during food processing. For instance, storing and aging wine affects polyphenol compounds, 

including anthocyanins, flavan-3-ol, and proanthocyanidins (Recamales 2006). These phenols 

have the tendency to react with other compounds, such as glyoxylic acid, pyruvic acid, and 

acetaldehyde, which results in pigment formation and ultimately wine color. Plus, 

proanthocyanidins have been reported to disappear during the color formation (Bakker and 

Timberlake 1997; Dallas et al 1996; Revilla et al 1999). Although similar studies have not been 

carried out on lignans during vinification, various lignan types have been quantified in white and 

red wines (e.g. secoisolariciresinol (7.6-61.3 µg/100 ml), matairesinol (2.7-7.8 µg/100 ml), 

lariciresinol (4.6-16.1 µg/100 ml), and pinoresinol (1.7-11.9 µg/100 ml) (Milder et al 2005).  

As discussed earlier, the effect of food processing on SDG has been extensively studied 

in solid foods, including baked and dairy products, but little has been done on fermented 

beverages. The changes that occur as a result from food processing can be beneficial or 
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degradative. Understanding how processing affects food component is essential if functional 

foods are to be created. This thesis work addresses how processing affects lignan stability using 

processing methods associated with fermentation, as well as the SDG profile in foods with low-

lignan content.           
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3. HYPOTHESIS  

The fermentation process and the additives used during vinification, will not affect the 

amount of SDG. It is also expected for the other phytochemicals to remain constant during the 

mild process of fermentation. During aging/storage, both the amount of SDG and other 

phytochemicals is expected to remain unchanged. In addition, a significant difference in SDG 

content is expected among the barley varieties. An increase in SDG after the malting process is 

also expected. Finally, the amount of SDG is expected to decrease during the high heat 

treatments of the brewing process.    
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4. JUSTIFICATION AND OBJECTIVES 

The incorporation of phytochemical-rich foods in our diet improves health (Blancquaert 

et al 2010; Liu 2013). However, to ensure their availability before consumption, one must 

understand the stability of these phytochemicals during processing treatments. Processing is 

known to change sensory and nutritional quality of foods (Fellows 2000). In addition, processing 

is known to affect the bioavailability of bioactive compounds (Fellows 2000). The effect of size-

reduction, blanching, pasteurization, and sterilization on vitamins, proteins, fats, carbohydrates, 

and phytochemicals retention has been investigated in the past (Harper 1979; Dworschak 1982; 

Erdman and Erdman 1982; Fellows 2000). However, more research is needed on other 

processing methods, including malting, milling, vinification, and brewing. In this study, the 

stability of lignans (SDG) and other phytochemicals was assessed in a fermented juice process. 

The effect of malting and brewing on lignan (SDG) stability also was investigated. No data is 

available on the amount of SDG in barley; thus, the third objective was to determine the SDG 

content of different barley varieties.  
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5. MATERIALS AND METHODS  

5.1. Materials 

Golden flaxseed was obtained from Heartland Flax: Valley City, North Dakota. This 

flaxseed was used to prepare flaxseed extracts. Twenty Ethiopian and NDSU barley varieties 

(grown in Fargo, ND from 2012 and 2013) were provided by the NDSU Barley Varietal 

Development program. In addition, two malting grade barley samples were obtained from NDSU 

barley malt quality and pilot brewery laboratory: Conlon (2 row barley) and Robust (6 row 

barley). These samples were evaluated for lignans.   

 Welch’s frozen grape juice (Welch’s Food Inc. Concord, MA) and pure cane granulated 

sugar was obtained for a local grocery store. Lalvin K1-V1116 Saccharomyces cerevisiae 

(I.N.R.A –Montpellier. Lalvin, CA) and 1056 American Ale TM yeast strain (Wyeast laboratories, 

Inc.  Odell, OR) were used for the grape juice processing and brewing process, respectively. 

 Methyl alcohol (~99.9 %) and acetic acid (glacial, 99.85 %) were obtained from Sigma-

Aldrich (St. Louis, MO). Secoisolariciresinol diglucoside (SDG) (~ 99.8 %) was obtained from 

ChromaDex (Irvine, CA). Folic acid (~97 %), ferulic acid (~99 %), gallic acid (~97 %), 

chlorogenic acid (~95 %), m-coumaric acid (~98 %) and caffeic acid (~98 %) were obtained 

from Sigma-Aldrich (St. Louis, MO). 

 5.2. Methods 

5.2.1. Extraction of phytochemicals 

Both flaxseed (i.e. golden flaxseed) and barley (i.e. different barley varieties, robust, and 

conlon barley varieties) were milled separately on a Z-mill (Retsch Inc.) using a 0.25 mm screen. 

Ground flaxseed was defatted with hexane using a Soxhlet extractor for 16 hours. Due to the low 

oil content in barley, no hexane extraction was carried out on the barley samples. Flaxseed (0.5 
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g) or barley (0.5 g) were placed into a screw-type test tubes (16 mm X 100 mm), followed by the 

addition of 10 ml of 70 % aqueous methanol. Test tubes were securely capped and vortexed for 

30 seconds. Samples were incubated in a water bath for three hours at 600C. The test tubes were 

removed from the water bath every 15 minutes, and vortexed for 30 seconds during the one hour 

incubation. After the one hour incubation, test tubes were removed from the water bath and 

cooled using tap water. The test tubes were centrifuged (4100 rpm and 150C) for 20 minutes 

using a benchtop centrifuge. After centrifugation, 2 ml of supernatant was transferred into a 

clean screw cap test tube. The residue, after the centrifugation step, was discarded. 

 Into the test tube containing the 2 ml supernatant, 0.5 ml of 0.5 N sodium hydroxide was 

added and vortexed for 15 seconds. A color change from pale to bright yellow was observed. The 

sample was hydrolyzed for 3 hours at room temperature (22 0C). Afterwards, 0.5 ml of 0.5 N 

acetic acid was added to neutralize the sample. The neutralized extract (3 ml) was vortexed for 

15 seconds and a color change from bright to pale yellow was observed. The neutralized extracts 

from the barley samples (i.e. barley extracts) were filtered through a 0.45 m micro-filter (nylon 

acrodisc membrane) and transferred into HPLC vials. The neutralized extracts from the flaxseed 

samples (i.e. Flaxseed Extract) were saved and the extraction process was carried out repeatedly 

(30 times) until 90 ml of flaxseed extract was recovered for the grape juice fermentation study. 

Since there was a total of three replications of the grape juice fermentation study, the extraction 

process was carried out three times to produce a total of 270 ml. From the 90 ml FE obtained for 

each replication, only 85 ml was added into the grape juice solution. The other 5ml was retained 

as a control.  
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5.2.2. Analysis of phytochemicals 

5.2.2.1. HPLC analysis 

Lignans (SDG) and the other phytochemicals were analyzed using a Waters 2795 high 

performance liquid chromatograph (HPLC) attached to a Waters 996 Photodiode Array Detector 

(Mifford, MA). The HPLC was equipped with a LiChrosphere 100 RP- C18 column (5 µm, 250 

mm × 4.5 mm). Column thermostat was set to 40 °C and injection volume was set to 10 µL. The 

mobile phase consisted of 1 % acetic acid (solvent A) and 100 % methanol (solvent B). Gradient 

conditions were as follows: A/B (v/v): 0 min (95:5), to 40:60 in 44 min, held 4 min, and back to 

95:5 by 55 min. Lignans and the other phytochemicals were detected at 280 nm and peaks 

integrated with Waters Millennium Workstation Software (version 4.0). The SDG and the 

phytochemical peaks were confirmed and quantified by comparison with the appropriate 

standards. Linear HPLC calibration curves for standard SDG and the other phytochemicals were 

obtained for the concentrations of 0, 50, 500, 1000, and 2000 µg/ml (R value > 0.995).  SDG was 

expressed in ug (SDG amount) per g (starting sample grain) for the barley samples. For the 

vinification and brewing process, the amount of phytochemicals (including SDG) were expressed 

in mg (phenolic compound amount) per ml (sample solution). 

5.2.2.2. HPLC/TOF-MS analysis 

 Lignan analysis in barley was performed using an Agilent 6540 UHD Accurate –Mass 

Quadrupole Time-of-Flight mass spectrometer with AJS ESI source (Agilent Technologies, 

Santa Clara, CA, USA). The Agilent was connected to a UHPLC instrument (Agilent 1290 

infinity) via an Electro Spray Ionization (ESI) source with Jetstream technology. MassHunter 

Quantification Analysis software was used to analyze chromatograms. Mass Spectra (ESI-MS) 

was acquired in the positive mode using the protonation molecule [M-H]+. Nitrogen (N2) was 
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used as the nebulizing and sheathing gas. ESI parameters included capillary voltage (4.0 KJ), 

flow rate (12 L/min), temperature (400 0C), nebulizer pressure (30 psi), fragmentor voltage (125 

V), and mass analyzer scan range of (80 to 1100 (m/z). The UHPC conditions for the analysis 

consisted of the following: an Agilent Eclipse plus C18 RRHD column (2.1 mm × 50 mm, 1.8 

µm) was used at 40 0C. Purine (1.0 ml) and HP-092 (0.8 ml) were used as reference standards for 

accurate mass reference. The mobile phase consisted of solvent A (0.1 % formic acid in high-

purity water) and solvent B (0.1 % acetic acid in acetonitrile). The Gradient was set up for 13 

minutes and was applied as follows: 0-2 min, 0-5 % B, 2-10 min, 5-95 % B, 10-12.50 min, 95 % 

B, 12.50-13 min, 95-10 % B.  The flow rate was 0.4 ml/min and the injection volume was 10 µL. 

The SDG peak was analyzed using a Mass Hunter Workstation software (version B.05.00). For 

barley, standard solutions concentration range of 0, 0.01, 0.05, 0.5, and 1 mg/L were used to 

quantify SDG (R value > 0.995). Since there was no significant matrix effect on SDG content, 

the same calibration curve was used for raw and malted barley samples. In addition, the limit of 

detection (LoD) and limit of quantitation (LoQ) for SDG in the barley samples was 0.005 mg/L 

and 0.01 mg/L, respectively.  

5.2.3. Grape juice processing (vinification) 

The major steps carried out in the vinification process included primary fermentation, 

secondary fermentation, and aging. The procedure used for this study was adapted from Horn 

(1977). First, Welch’s grape concentrate (340 ml) was transferred into a primary fermenting 

bucket and diluted to 3,785 ml (1 gallon). Into the grape solution, approximately 85 ml of the 

flaxseed extract (FE) was added.  The initial specific gravity of the fortified grape solution with 

the FE was adjusted to 1.090 using granulated sugar (approximately 836 g). Then 0.3 g of 

potassium bisulfite was added into the fortified grape solution. Five samples (~ 1.5 ml) were 
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transferred into HPLC vials and saved for phytochemical analysis. The fortified grape solution 

was allowed to stand overnight in an incubator set at 220C. The following day, five samples (~ 

1.5 ml) were transferred into HPLC vials and saved (@ 40C) for phytochemical analysis. Into the 

remaining fortified grape solution, 0.5 g of ammonium phosphate and 2.5 g of ammonium sulfate 

was added and stirred to dissolve all additives. After adding all the additives, the primary 

fermentation was carried out by sprinkling 0.5 g of yeast on top of the fortified grape solution. 

The bucket was loosely covered with a piece of cloth and put into an incubator (230C) for three 

days. On the third day, five samples (~ 1.5 ml) were transferred into HPLC vials and saved for 

phytochemical analysis. Lower specific gravity was obtained (~ 1.050), which indicated 

readiness for the secondary fermentation. After the end of primary fermentation, 200 ml of the 

fortified grape solution was siphoned from the fermenting bucket into five secondary fermenters 

(i.e. 250 ml Erlenmeyer flask). The fermenter was fitted with an airlock and was left in the 

incubator (23 0C) until the fermentation ceased. This secondary fermentation took approximately 

four weeks and every week, five samples (~ 1.5 ml) were transferred into HPLC vials and saved 

for phytochemical analysis. Once the fermentation was completed, no CO2 bubble or belching 

through the fermentation lock was observed. Finally, the wine was aged in a dark place for 3 

months at 22 0C. Every month, five samples (~ 1.5 ml) were transferred into HPLC vials and 

saved for phytochemical analysis (Figure 4). In addition, the pH of the grape solution was 

obtained at each step of the vinification process.  
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Figure 4. Flow chart of the phytochemical extraction, analysis, and vinification process. 
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5.2.4. Malting process 

Malt was prepared from two different barley samples: Different barley varieties (grown 

in Fargo, ND from 2012 and 2013) and two malting grade barley: Conlon (2 row barley) and 

Robust (6 row barley). From the twenty barley varieties, ten were varieties used for food 

consumption, and the remaining ten were varieties used for brewing. For this study, the 20 barley 

varieties were only malted and not used for brewing. In contrast, the two malting grade barley 

varieties (i.e. Robust and Conlon) were used to prepare beer. Before malting, the steeping time 

was determined for all barley samples to attain 44 % moisture. 

5.2.4.1. Steeping step 

Twenty barley varieties (50 g) were placed in a 100 × 25 mm plastic centrifuge tubes. 

The centrifuge tubes had eight 3-mm holes to allow water flow. The test tubes were, then, placed 

into steeping baskets and the steeping process was carried out at 16 0C and six minute aeration 

with compressed air (Karababa et al 1993). The steep water was drained every 24 hour to allow 

air-rest of samples for 2 hours. Time of steeping for the twenty barley samples are shown below 

(Table 3). In addition, 300 g of robust and conlon barley samples were placed into different steep 

tank baskets. Similar steeping conditions as described above were followed (Table 4). Once 

steeped, barley samples were taken out of the steep tanks and spread over a paper towel for 

moisture removal.  
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Table 3. The twenty barley varieties and their steeping hours. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Location  Year Variety  Barley 

Type 

Steeping 

Time  

Fargo 2012 Habesha Demoya-6R-W Food 44 

Fargo 2012 RAWSON Brewing 50 

Fargo 2012 Dimtu Food 48 

Fargo 2012 HB-120 Brewing 55 

Fargo 2012 DESTA Food 49 

Fargo 2012 DIRBE Food 48 

Fargo 2012 ARUSO Food 54 

Fargo 2012 BEKA Brewing 58 

Fargo 2012 Agegnehu (218950-08) Food 45 

Fargo 2012 Estayish (218963-4) Food 43 

Fargo 2012 Bekoji-1 Brewing 48 

Fargo 2012 2ND27421 Brewing 50 

Fargo 2012 Abechu Demoye-6R-W Food 39 

Fargo 2012 2ND29835 Brewing 59 

Fargo 2012 Netch gebs-6R-W-1 Food 44 

Fargo 2012 ND26891 Brewing 52 

Fargo 2012 Miscal-21 Brewing 54 

Fargo 2012 HB-1307 Food 44 

Fargo 2012 STELLAR-ND Brewing 51 

Fargo 2012 PINNACLE Brewing 54 

Fargo 2013 Agegnehu (218950-08) Food 37 

Fargo 2013 ND26891 Brewing 60 

Fargo 2013 2ND29835 Brewing 48 

Fargo 2013 2ND27421 Brewing 53 

Fargo 2013 Abechu Demoye-6R-W Food 34 

Fargo 2013 RAWSON Brewing 35 

Fargo 2013 DESTA Food 46 

Fargo 2013 STELLAR-ND Brewing 41 

Fargo 2013 Netch gebs-6R-W-1 Food 35 

Fargo 2013 Estayish (218963-4) Food 37 

Fargo 2013 BEKA Brewing 45 

Fargo 2013 PINNACLE Brewing 44 

Fargo 2013 HB-120 Brewing 38 

Fargo 2013 ARUSO Food 46 

Fargo 2013 Bekoji-1 Brewing 37 

Fargo 2013 Habesha Demoya-6R-W Food 45 

Fargo 2013 HB-1307 Food 44 

Fargo 2013 Dimtu Food 40 

Fargo 2013 Miscal-21 Brewing 41 

Fargo 2013 DIRBE Food 44 
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Table 4. Two barley varieties (i.e. Robust and Conlon) used for studying the effect of brewing on 

the SDG content. 

Barley Varieties Barley Type Steeping Time (Hour) 

Conlon Brewing 55.09 

Robust Brewing 55.38 

 

5.2.4.2. Germination step 

5.2.4.2.1. Germinative Energy  

Kernels (100) of each barley sample were transferred into two glass petri dishes (90 mm) 

containing filter papers (Whatman no.1) for germinative energy determination. Once the kernels 

were uniformly distributed within the petri dishes, 4 ml of distilled water was added and covered 

with a lid. All closed petri dishes were packed in a polyethylene bag and placed in a dark cabinet 

(20 0C). Sprouted kernels were removed from each petri dish after 24, 48, and 72 hours. Using 

the formula below, germinative energy (GE) for each barley was calculated.  

GE (%) =     (Sum of sprouted kernels in the two petri dishes after 72 hours) 

             2 

This step was only used to test the malting quality of the grain. For all barley samples, the GE 

(%) was above 95 %.  

 Then, all the barley samples from the steeping step were transferred into 400 ml beaker 

and placed into a germination cabinet. The germination was carried out for four days at 160C 

with a relative humidity of 95 % (Karababa et al 1993).  

5.2.4.3. Kilning step 

 All germinated barley samples were placed in kiln baskets and dried over a temperature 

range of 49 to 85 0C for 24 hours (Karababa et al 1993). Once dried, the rootlets from the barley 
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samples were removed and malted barley was obtained. The malted samples (5 g) were saved for 

lignan analysis.  

5.2.5. Brewing process 

 Cream Ale (an American-styled brew) was used for this study. The brewing process was 

carried out on the NDSU 4.0 L laboratory brewery (Figueroa et al 1987). The brewing process 

included a cleaning, mashing, Lautering, boiling, and fermentation step. Samples were taken 

from each step of the brewing process. 

5.2.5.1. Cleaning, grinding, and ingredients  

Before brewing, the pilot brewery lines, vessels, and kettle were cleaned with hot water. 

In addition, the pilot brewery was cleaned with a Star San sanitizer (1 oz. /5 gallons of tap 

water). The main ingredients for the brewing process included two types of malted barley, 

namely conlon (two-row malt barley) and robust (six-row malt barley). Two adjuncts also were 

used, including pre-gelatinized flaked corn and rahr two-row. All ingredients, except for the 

flaked corn were ground using Buhler-Miag laboratory malt mill and saved for lignan analysis (~ 

5 g). In addition, the brewing process was carried out twice using different amounts of 

ingredients. The first brewing process was comprised of four ingredients: conlon (2.3665 kg), 

robust (0.9589 kg), flaked corn (0.9845 kg), and rahr two-row (0.4615 kg). The second brewing 

process comprised conlon (0.9412 kg), robust (1.4378 kg), flaked corn (0.9841 kg), and rahr 

two-row (0.9226 kg). These ingredients were subjected to mashing.   

5.2.5.2. Mashing 

All four ingredients from the first and second brewing process were added to 12 L of 

warm (68 0C) water while stirring. After the addition of the malt, the temperature was lowered to 

63 0C and the mashing was carried out for 45 minutes. Then, iodine drops were applied on 
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mashed samples every 10 minutes to check the conversion of starch into sugars. Once the 

conversion was achieved (i.e. color change from yellow to amber), the sample was held in the 

mash tank for an additional ten minutes at 75 0C. The total mash time was 94 minutes. Then, 

mashed samples (~ 5 g) were saved for lignan analysis. The remaining mash was moved to a 

lauter tun.  

5.2.5.3. Lautering  

After mashing, 8 L of 750C sparge water was transferred from a hot liquor tank into the 

lauter tun containing the mash sample. After 15 minutes, the mash solution was recirculated to 

separate the liquid portion from the solid. Once the liquid (wort) cleared, it was transferred into a 

brew kettle. Approximately 27 L of wort was transferred into the brew kettle. Wort sample (2 

ml) was saved for lignan analysis.  

5.2.5.4. Wort boiling 

The remaining wort (~ 27 L) was heated to boiling for 10 minutes and hops were added. 

The boiling was carried out for additional 60 minutes and boiled wort was transferred into a 

whirlpool. Hops (~31 g) were added for aroma and the whirlpool was allowed to cool for 10 

minutes. Boiled wort (2 ml) was saved for lignan analysis and the remaining wort was moved to 

the fermentation process. 

5.2.5.5. Fermentation 

Approximately, 20 L of wort was transferred into a carboy and carbonated with oxygen. 

Then, yeast (Wyeast 1056 American Ale) was added and fermentation was carried out at 20 0C 

for four weeks. Final beer samples (2ml) were saved for lignan analysis. 
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5.2.6. Statistical Analysis 

 Data were subjected to analysis of variance (ANOVA) to determine significant 

differences among treatments (food processing times) using SAS Software (version 9.3, SAS 

Institute Inc., Cary, NC). Differences were considered to be significant at p values ≤ 0.05. All 

data were reported as means ± SD (standard deviation) on an as is basis.         

5.2.6.1. Randomized Complete Block Design (RCBD) 

 A split-plot in time principle (repeated measure analysis) was applied to the wine and 

beer preparation study, where successive analysis was made on the same experimental unit over 

a period of time during the vinification and brewing process. The main plot being the 

experimental unit (i.e. fermentation bucket containing the beverages) and the subplot being the 

repeated measurements at different times (i.e. samples subjected to lignan and other 

phytochemical analysis). However, RCBD design was implemented since the repeated measure 

analysis requires at least two factors as opposed to one factor (i.e. one type of grape juice), which 

was used in our study. Thus, for the RCBD analysis, the vinification process was replicated three 

times and the brewing process was replicated two times. In addition, the different condition at 

different time of the food processing step was considered as the treatment.  

           The RCBD design was also used for comparing the lignan (SDG) content of the twenty 

barley varieties from the two years (2012 and 2013). Treatments included variety, barley type 

(food or brewing), and malted barley. The two years were considered as two replications. In 

addition, log transformation (LSDG) was carried out to minimize the wide variation of SDG 

content in the barley samples.    
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6. RESULTS AND DISCUSSION 

6.1. Stability of phytochemicals during vinification process 

6.1.1. Effect of vinification on lignans (SDG)  

 The stability of SDG was determined after subjecting grape solution, containing FE, 

through fermentation and aging (Table 5). Three replicates were carried out to determine the 

SDG level, but only two replicates were used. The SDG levels in the third replicate had similar 

increasing trend throughout the aging like the other two replicates, but the SDG content was very 

high (results not shown) and was considered as an outlier. One explanation for this high SDG 

level could be the amount of FE added at the initial step of the vinification process. Another 

explanation could be due to the SDG extraction procedure, or more specifically during the 

alkaline hydrolysis step. Depending on the hydrolysis time and degree of hydrolysis, the amounts 

of SDG extracted can vary.     

 Significant differences were observed in the levels of SDG at different times of the 

vinification process (Table 5). The FE-fortified grape solution during the first 10 days had a 

constant SDG level. However, the amount of SDG increased by 16 % during the three 

fermentation weeks (Table 5).  The SDG content increased further during the last three months 

of aging. Overall, the SDG level increased by 30 % during the vinification process (Table 5).  
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Table 5. Secoisolariciresinol diglucoside (SDG) level (µg/ml) during the vinification process.  

Dates of sampling SDG level (µg/ml)-fermentation 

Day 1 (grape juice solution + FE) 67.24 ± 0.001 a 

Day 2 (overnight incubation) 67.46 ± 0.002 a 

 Day 3 (1st day of fermentation) 65.22 ± 0.003 a 

Day 10 (1st week of fermentation) 66.50 ± 0.002 a 

Day 17 (2nd week of fermentation) 76.50 ± 0.002 b 

Day 24 (3rd week of fermentation) 75.88 ± 0.002 b 

Day 31 (4th week of fermentation) 78.25 ± 0.002 b 

 Day 61 (1st month of aging) 83.98 ± 0.001 c 

Day 91 (2nd month of aging) 87.73 ± 0.001 c 

Day 121 (3rd month of aging) 87.41 ± 0.002 c 

Means in a column with the same letter are not significantly different at p < 0.05; n= 2              

Values are expressed as mean ± SD 

 

6.1.2. Effect of vinification on other phytochemicals  

The stability of other phytochemicals also was determined after subjecting grape solution, 

containing FE, through fermentation and aging. Statistically, the processing condition had 

significant effect on some of the phytochemicals (Table A.1). Gallic acid level remained 

unchanged until after day 2, and then increased 26 % between days 3 and 10 (Figure 5a). The 

gallic acid level, then, decreased by 25 % during days 17 and 61. By the end of the vinification 

process (Day 121), the gallic acid level had increased by 45 % (Figure 5a). Similarly, the caffeic 

acid level remained unchanged until the first week of fermentation (Day 10) (Figure 5b).  
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Figure 5. Gallic acid (a), caffeic acid (b), coumaric acid (c), ferulic acid (d), chlorogenic acid (e), 

and folic acid (f) level (µg/ml) during the vinification process. Means with the same letter are not 

significantly different at p < 0.05; n= 3.     

     

a b 

c d 

e f 
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Although a clear trend was not obtained, about 24 % increase in caffeic acid was 

observed after the second week of fermentation (Day 17) (Figure 5b).  

  The amount of coumaric acid remained unchanged until the first week of fermentation 

(Day 10) of the vinification process (Figure 5c). However, coumaric level increased by 15 % 

during days 17 and 31. Coumaric level continued to increase until the end of the aging process 

(Day 121) (Figure 5c).  

 Ferulic acid remained unchanged until the third week of fermentation (Day 24), but 

increased by 26 % afterwards (Figure 5d). Similarly, chlorogenic acid remained stable until day 

2 and increased by 17 % afterwards (Figure 5e). The chlorogenic acid level was stable during 

days 3 and 31, but increased by 23 % afterwards until the end of the aging process (Day 121) 

(Figure 5e). In addition, the amount of folic acid remained stable throughout the vinification 

process (Figure 5f).   

 The pH at different steps of the vinification process remained relatively stable (Table 6). 

A slight increase in acidic pH, during the vinification process, was observed. This suggests that 

FE did not affect the fermentation.   

Table 6. pH values at each step of the vinification process. 

Vinification steps pH 

Grape juice solution 3.3 

End of primary fermentation 3.1 

End of secondary fermentation 3.1 

End of Aging 3.1 
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6.2. Discussion on phytochemicals during food processing 

6.2.1. Structural changes of polyphenols  

Food processing and storage are thought to alter the chemical structure of soy 

isoflavones, polyphenols that have similar chemical structure to lignans (Shimoni 2004). For 

example, soy isoflavones mainly exist as glycosides (i.e. phenols with sugar molecules attached), 

similar to lignans and studies have shown some change to these glycosides during food 

processing (Shimoni 2004). For instance, Wang and Murphy (1994) determined high level of 

glycosylated soy isoflavones in non-fermented foods and high level of aglycones (i.e. phenols 

without sugar molecule) in fermented foods. In our study, however, the amount of SDG did not 

decrease; it either increased or remained stable throughout the fermentation and aging process. 

The other phytochemicals had similar stability and incremental increases during the vinification 

process. An explanation for the increase could be due to the release of SDG and the other 

phytochemicals from the FE. In other words, if the FE complex was not completely hydrolyzed 

during the alkaline hydrolysis, the remaining phytochemicals might have been released during 

the vinification process, due to hydrolysis of the FE complex during the fermentation and aging 

steps.  

6.2.2. Oxidative browning effect on phytochemicals 

In wine, phenols, more specifically phenols with two hydroxyls attached (i.e. o-

diphenols), are more susceptible to oxidative browning. Both enzymatic as well as non-

enzymatic reactions are responsible for the browning reactions (Cheynier et al 2000). The 

enzymatic browning occurs only in the grape must and the non-enzymatic reaction occurs both in 

the grape must and in the wine (Cheynier et al 2000).  



 

45 

 

 During grape processing, the intact cells of grape tissues get disrupted and phenols get 

exposed to atmospheric oxygen and oxidoreductase enzymes, including peroxidase (POD) and 

polyphenol oxidase (PPO). Once exposed, the phenols get oxidized and cause browning (Li et al 

2008). The iron-containing enzyme (POD) has minimal effect on phenols, but if present with 

PPO, it can degrade phenols (Li et al 2008). On the other hand, the copper-containing enzyme, 

PPO, is known to oxidize phenols, more specifically, mono-phenols and o-diphenols. For 

instance in grape must, PPO oxidizes caftaric acid and p-coumaric acid into a powerful oxidant 

called caffeoyltartaric acid o-quinones (CTAQ), which are known to oxidize other compounds in 

wine that bring about sensory changes (Robards et al 1999).  First, mono-phenols get 

hydroxylated into o-diphenols and diphenols, in the presence of PPO and oxygen. Further 

oxidations of diphenols produce o-quinones that react with amino acids and hydroquinones, 

resulting in brown pigments (Robards et al 1999). However, such enzymatic oxidation during red 

wine processing is limited. Similarly, no degradation of phenols was observed in our study. In 

addition, the relatively acidic pH (Table 6) during the vinification process had minimal effect on 

phenols.  

 On the other hand, non-enzymatic browning occurs in the absence of PPO after the 

fermentation of wines (Li et al 2008). Phenols can oxidize in the presence of air, high 

temperatures, high pH, sunlight, and metal ions (Fe and Cu). O-diphenols (e.g. caffeic and gallic 

acid) are, for instance, very susceptible to non-enzymatic oxidation (Li et al 2008). However, in 

our study, no phenol degradation has been observed, suggesting the absence of oxidation.    

6.2.3. Folates 

  Similar increases in food components, during food processing, have also been observed 

in various studies (Katina et al 2007; Liukkonen et al 2003). For example, folates and phenolic 
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compounds increased during baking with rye. The yeast used during this sourdough fermentation 

process was identified as the cause for the increase (Kariluoto et al 2004). The addition of yeast 

(i.e. Saccharomyces cerevisiae) during the sourdough fermentation increased the folate level by 

54%. In contrast, the amount of folates remained unchanged during similar sourdough 

fermentation without yeast. Osseyi et al (2001) reported a 73 % increase in folate levels during 

the production of wheat bread. The presence of yeast during the baking process was a major 

factor for the increase in folate content. Seyoum and Selhub (1998) reported that baker’s yeast 

was found to contain folates (>2000 µg/100g), which can explain the increased folate amount 

during the baking process. Additional researchers have confirmed the increase in the folate level 

in wheat breads, and that approximately 53–65 % of the folates come from the yeasts used 

during the bread baking (Butterfield and Calloway 1972; Keagy et al 1975). In our study, 

however, the amount of folates remained unchanged throughout the vinification process.  

6.2.4. Enzymes role during food processing 

The increase of SDG and other phenolics might be due to the release of phenols from 

bound phenolics during fermentation. For instance, according to Abdel –Aal and Rabalski 

(2013), the amount of free ferulic acids increased by 17 % and bound phenolics decreased by    

36 % during the production of wholegrain breads. Similar increase in phenols has been reported 

by Gelinas and McKinnon (2006) during the production of wholegrain breads. In the current 

study, all phenolic acids and SDG increased during fermentation. This increase in phenolic acids 

could be due to the release of bound phenols during the fermentation and aging process of wine. 

Similar findings have also been reported by Budic-Leto and Lovric (2002) during the 

fermentation and aging of white wines. They observed increased levels of phenolic acids, such as 

vanillic, caffeic, p-coumaric, and ferulic acids. The increase likely resulted from the hydrolysis 
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of ester bound phenols like hydroxycinnamic acids (HCA) (e.g. caftaric, coutaric, fertaric) during 

fermentation (Budic-Leto and Lovric 2002).   

SDG is not found in its free form, but in complex with other SDG residues, coumaric acid 

glucoside (CouAG), and ferulic acid glucoside (FeAG). The release of SDG and phenolics from 

these complexes cannot fully explain the increase in SDG level (30 %) and other phytochemicals 

(up to 45 %) during the vinification process. Another explanation for this apparent increase in 

SDG could be due to the feruloyl esterases found in the wine yeast. Brewer’s yeast is known to 

contain these esterases that can cleave ester bonds between plant cell wall polysaccharides and 

phenolic acids (Benoit et al 2006). During the vinification process, any remaining bound-SDG 

via ester linkage could have been cleaved by these enzymes, releasing free SDG as well as 

phenolic acids. 

Various researchers have documented the stability of SDG during the baking process and 

storage (Hyvarinen et al 2006a; Muir and Westcott 2000; Liukkonen et al 2003). However, 

according to a lignan stability study conducted on rye, the total amount of lignans increased by 

two-fold and three-fold after germination and fermentation, respectively (Katina et al 2007). 

These two food processing techniques comprise the hydration of grains at a certain condition to 

activate both endogenous and added enzymes, which in turn can bring about changes, including 

structure, bioactivity, flavor, stability, and digestibility. Liukkonen et al (2003) reported the 

increase (2─3.5 folds) of folates and methanol-soluble phenolic acids (e.g. lignans) during a 

germination period of 6 days at 15─25 0C. Katina et al (2007) stated that the increase during 

germination and fermentation was due to the synthesis and action of hydrolytic enzymes, which 

in turn can activate reactions and aid in the synthesis of new compounds. In addition, the outer 

layer of rye kernel contains endogenous enzymes and indigenous microbes that can alter grain 
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composition when activated (Katina et al 2007; Loponen et al 2004). Thus, in our study, the 

increase in most of the phenols, including SDG, gallic acid, caffeic acid, coumaric acid, 

chlorogenic acid, and ferulic acid may have been due to yeast enzyme activity during the 

vinification process.   

The effect of enzymes on chemical compounds has been documented mostly in a solid 

matrix, such as the rye kernel. Nogueira et al (2008) investigated the effect of alcoholic 

fermentation (cider processing) on phenolic compounds. For instance, the amount of total 

phenols remained unchanged in three cider apple varieties and decreased in two varieties of the 

cider. An increase in caffeic acid and catechin content, regardless of the cider varieties also was 

observed (Nogueira et al 2008). Apart from the enzyme effect, no clear explanation or 

mechanism was proposed for the synthesis of these phenolic compounds. However, few 

researchers have proposed possible explanation for the degradation of phenolic compounds 

(Siebert et al 1996; Renard et al 2001; Guyot et al., 2003). For instance, the maceration step in 

cider processing enhances the activity of polyphenol oxidase (PPO), which results in oxidation of 

polyphenols (Nogueira et al 2008). In addition, the change in procyanidin during the production 

of French ciders has been observed (Alonso-Salces et al 2004). Some of these reactive properties 

included the binding of procyanidin with proteins and cell wall polysaccharides (Alonso-Salces 

et al 2004). As a result, a major reduction in procyanidin has been reported during cider 

processing (Alonso-Salces et al 2004). This scenario was not likely a reason for the increased 

phenolic content obtained in our study, but provides a possible reason for increasing phenolic 

compounds during food processing.    
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6.3. Stability of phytochemicals during malting and brewing process 

6.3.1. SDG analysis in different barley (raw) varieties 

 The SDG analysis for the 20 barley varieties (grown in Fargo, ND from 2012 and 2013) 

are presented on page 49 (Table 7). SDG content was determined in the barley varieties 

(Appendix Figure B.2). Unlike the vinification process, the amount of SDG in these barley 

varieties was very small, thus measured in µg/g. 

 The highest SDG content in the harvest year 2012 occurred in the food variety Dirbe 

(25.79 µg/g) and the lowest occurred in another food variety Desta (0.01 µg/g) (Table 7). In the 

harvest year 2013, Estayish (food variety) had the highest SDG level (13.04 µg/g) and HB-120 

(brewing variety) had the lowest SDG level (0.10 µg/g) (Table 7). In contrast, six barley varieties 

had non-detectible SDG content in the year 2012. In 2013, five barley varieties had non-

detectible concentration of SDG (Table 7; Appendix Figure B.3).   

 In addition, the year-to-year variation in SDG content was different among varieties. For 

example, the SDG content in Rawson was 0.13 µg/g in 2012 and 2.37 µg/g in 2013. In contrast, 

the SDG content in Aruso was higher (0.52 µg/g) in 2012 compared to 0.20 µg/g in 2013. This 

year-to-year variation could be explained by the different growing conditions (e.g. climate and 

soil type) in 2012 and 2013.  
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Table 7. Secoisolariciresinol diglucoside (SDG) content (µg/g) in twenty barley varieties grown 

in Fargo, ND.  

 

 

Variety (raw)  Barley Type 

SDG content (µg/g) 

          2012                     2013 

 Habesha Demoya-6RW  Food 0.15 nd 

 Rawson  Food 0.13 2.37 

 Dimtu  Food 0.17 nd 

 HB-120  Brewing 3.74 0.10 

 Desta  Food 0.01 nd 

 Dirbe  Food 25.79 nd 

 Aruso  Food 0.52 0.20 

 Beka  Brewing nd nd 

 Agegnehu (218950-08)  Food 0.11 0.45 

 Estayish (218963-4)  Food 0.08 13.04 

 Bekoji-1  Brewing nd 0.51 

 2ND27421  Brewing nd 0.46 

 Abechu Demoye-6RW  Food nd 0.19 

 2ND29835  Brewing 0.12 3.94 

 Netch gebs-6R-W-1  Food 0.27 0.11 

 ND26891  Brewing 0.72 0.38 

 Miscal-21  Brewing 3.06 0.22 

 HB-1307  Food 0.10 4.38 

 Stellar-ND  Brewing nd 0.27 

 Pinnacle  Brewing nd 0.38 

Note: (nd) none detected indicates that SDG concentration was lower than detection limit (0.005 

mg/L).  

 

 Only 10 barley varieties had detectible SDG content in both 2012 and 2013 (Table 8). 

From these varieties, Estayish (218963-4) and Netch gebs-6R-W-1, both food varieties, 

contained the highest (6.56 ± 9.17 µg/g) and lowest (0.19 ± 0.11 µg/g) SDG concentrations, 

respectively (Table 8). The two years (2012 and 2013) were considered as replications and 
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accounted for substantial variations in SDG concentrations. Due to this variation, no significant 

differences between the 12 barley varieties were found (Appendix Table A.2). To minimize this 

variation, the SDG value was transformed into logarithm and was subjected to statistical 

analysis, but no significant differences were observed (data not shown).  

6.3.2. Analysis of food and brewing barley varieties for SDG content 

 The amount of SDG was compared in the food and brewing barley varieties. The average 

SDG content in the food barley (1.93 ± 2.73 µg/g) was higher than the brewing barley (1.48 ± 

0.60 µg/g) (Table 8). However, the large standard deviation resulted in a CV of 41% for the 

brewing varieties and 141 % for the food varieties. 

 Table 8. Mean values of SDG content (µg/g) of raw barley varieties from year 2012 and 2013.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Values are expressed as mean ± SD, n=2 
 

6.3.3. Effect of malting on SDG content 

 The raw barley varieties discussed above were malted and the SDG level was determined 

(Table 9). The highest SDG content in the harvest year 2012 occurred in the malted food variety- 

Variety (raw) Barley Type SDG content ( µg/g ) 

Agegnehu Food 0.28 ± 0.24 

Aruso Food 0.36 ± 0.23 

Estayish (218963-4) Food 6.56 ± 9.17 

Netch gebs-6R-W-1 Food 0.19 ± 0.11 

HB-1307 Food 2.24 ± 3.03 

 Food barley Average 1.93 ± 2.73 

Rawson Brewing 1.25 ± 10.13 

ND26891 Brewing 0.55 ± 0.24 

Miscal-21 Brewing 1.64 ± 2.01 

HB-120 Brewing 1.92 ± 2.58 

2ND29835 Brewing 2.03 ± 2.71 

 Brewing barley Average 1.48 ± 0.60  
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Habesha Demoya-6RW (6.50 µg/g) and the lowest occurred in the malted brewing variety- 

Bekoji-1 (0.04 µg/g) (Table 9). In the harvest year 2013, HB-120 (brewing variety) had the 

highest SDG level (16.02 µg/g) and pinnacle (brewing variety) had the lowest SDG level (0.02 

µg/g) (Table 9). In contrast, 11 barley varieties had non-detectible SDG content in the year 2012. 

In 2013, five barley varieties had non-detectible concentration of SDG.     

Table 9. The SDG content (µg/g) in twenty barley varieties after malting. 

 

Variety (raw)  Barley Type 

SDG content (µg/g) 

           2012                    2013 

 Habesha Demoya-6RW  Food 6.50 nd 

 Rawson  Food 0.07 nd 

 Dimtu  Food nd nd 

 HB-120  Brewing 0.60 16.02 

 Desta  Food nd 0.28 

 Dirbe  Food 1.34 0.32 

 Aruso  Food nd 0.42 

 Beka  Brewing 4.04 0.24 

 Agegnehu (218950-08)  Food 0.26 0.41 

 Estayish (218963-4)  Food nd nd 

 Bekoji-1  Brewing 0.04 nd 

 2ND27421  Brewing nd 0.66 

 Abechu Demoye-6RW  Food nd 0.29 

 2ND29835  Brewing 0.10 0.40 

 Netch gebs-6R-W-1  Food nd 5.76 

 ND26891  Brewing nd 0.46 

 Miscal-21  Brewing nd 1.66 

 HB-1307  Food 0.35 0.55 

 Stellar-ND  Brewing nd 2.98 

 Pinnacle  Brewing nd 0.02 

Note: (nd) none detected indicates that SDG concentration was lower than detection limit (0.005 

mg/L). 
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 Only 6 malted barley varieties had detectible SDG content in 2012 and 2013 (Table 10). 

Statistically, there was no significant difference among the malted samples (Appendix Table 

A.3). But, the SDG content varied widely in the malted barley samples. From these varieties, 

HB-120 (brewing barley) and 2ND29835 (brewing barley) contained the highest (8.31 ± 10.90 

µg/g) and the lowest (0.25 ± 0.21 µg/g) SDG level, respectively (Table 10).   

6.3.4. Analysis of malted food and brewing barley varieties for lignan (SDG) content 

 The amount of SDG was compared in the food and brewing malted-barley varieties. The 

average SDG content in the food barley (0.54 ± 0.26 µg/g) was lower than the brewing barley 

(3.57 ± 4.22 µg/g) (Table 10). However, the large standard deviation resulted in a CV of 118% 

for the brewing varieties and 48 % for the food varieties.  

Table 10. Mean SDG content (µg/g) of barley varieties after malting. 

    

 

 

 

 

 

 

 

   
 

 

 

 

                              

Values are expressed as mean ± SD, n=2 

 

6.3.5. Difference between raw and malted barley  

The SDG content in the raw and malted barleys were compared (Table 11).  Statistically, 

no significant difference was observed between the raw and malted barley samples (Appendix 

Table A.4). However, differences in the SDG content were observed. The average SDG content 

Variety (malt) Barley Variety SDG level ( µg/g) 

HB-1307 Food 0.45 ± 0.14 

Dirbe Food 0.83 ± 0.72 

Agegnehu (218950-08) Food 0.33 ± 0.10 

 Food barley average 0.54 ± 0.26 

HB-120 Brewing 8.31 ± 10.90 

Beka  Brewing 2.14 ± 2.69 

2ND29835 Brewing  0.25 ± 0.21  

 Brewing barley average 3.57 ± 4.22 
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of the raw barley varieties (2.08 ± 0.23 µg/g) was lower than the malted barley varieties (4.38 ± 

5.56 µg/g). The CV for the raw and malted barley varieties are 11 % and 127 %, respectively. 

The large % CV supports the non-significance between raw and malted barley samples. 

Table 11. Secoisolariciresinol diglucoside (SDG) content (µg/g) in raw and malted barley 

varieties from 2012 and 2013. 

 

 

 

 

 

 

 
 

 

 

 

Values are expressed as mean ± SD, n=2 

Note: (R) denotes raw barley and (M) denotes malted barley  
 

6.3.6. Effect of brewing on SDG  

 The SDG content was determined for all the ingredients used in the brewing process 

(Table 12). SDG was detected both in Robust and Conlon barley varieties. SDG was not detected 

in the flaked corn and in Rahr two-row barley. The corn used for the brewing process was not 

malted, so no data was obtained for the malt ingredient (Table 12). Rahr two-row barley was 

already a malted ingredient, thus no data was obtained for the raw ingredient.   

Table 12. SDG levels (µg/g) of brewing ingredients.   

 

 

 

 

 

 

 

 
  Note: (nd) none detected, (na) not available. 

Barley variety SDG content (µg/g) 

HB-120 (R) 1.92 ± 2.58 

HB-1307 (R) 2.24 ± 3.03 

Average 2.08 ± 0.23 

HB-120 (M) 8.31 ± 10.90 

HB-1307 (M) 0.45 ± 0.14 

Average 4.38 ± 5.56 

Brewing ingredients 

SDG level (µg/g) 

(RAW) 

SDG level (µg/g) 

(MALT) 

Robust 0.09 0.07 

Conlon 0.11 0.09 

Flaked corn nd na 

Rahr two-row na nd 
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 Using these ingredients, two brewing processes were carried out to study the effect of 

brewing (i.e. mashing, lautering, wort boiling, and fermentation) on SDG levels (Table 13). 

During the mashing step, no SDG was detected in the solid portion (spent grain). Similarly, 

during the lautering step, no SDG was detected in the liquid portion (wort). No SDG was 

detected during the wort boiling and fermentation step of the brewing process (Table 13).  

Table 13.  SDG levels (µg/g) during the brewing process. 

 

 

                 

 

Note: (nd) none detected 
 

6.4. Discussion on composition and stability of SDG during food processing 

6.4.1. Composition of SDG in barley varieties  

In this barley study, the aim was to investigate the effect of variety, malting, and brewing 

on lignan (SDG) content. The SDG values showed high variability between replicates. However, 

the values obtained from this study can be used as an indicative rather than a definitive result. No 

barley SDG data has been reported in the past. Very few studies have been conducted on barley 

lignans and if conducted, only lignan SECO (the aglycone) has been determined in barley and 

some other foods (Milder et al 2005; Mazur et al 1996; Adlercreutz and Mazur 1997; Mazur 

1998; Muir and Westcott 2000).  

One explanation for the high % CV between the samples could be attributed to the barley 

samples used for the study. The same barley varieties from two years (2012 and 2013) were 

considered as two replicates, which may not have been sufficient. Another explanation for the 

variability could be a difference in the growing condition /environment of the barley varieties in 

those two years. Environmental factors affect on the phenolic content in plants is well 

Brewing process Mashing Lautering Wort boiling Fermentation 

1st rep     nd      nd nd nd 

2nd rep     nd      nd nd nd 
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documented (Ali and Abbas 2003). In addition, the statistical analysis did not show significant 

differences among barley varieties, but the amount of SDG varied greatly in the ten barley 

varieties analyzed (Table 8). Studies have also shown the influence of variety on phenolic 

compounds (Maillard et al 1996; Holtekjolen et al 2006).  

In this study, the SDG content in barley was very small. Compared to oil seeds, cereals 

have very low lignan (SECO) content, which supports the low values obtained from this study. 

According to Smeds et al (2007), the SECO content for the following cereals is as follows: rye 

(462 µg/100 g), wheat (868 µg/100 g), corn (125 µg/100 g), and barley (42 µg/100 g). Unlike 

flaxseed, barley is saturated with carbohydrates (78─83 %) that can affect the extraction of 

phenols from the food matrix. One explanation for the low lignan content, in our study, could be 

due to the extraction procedure. In addition, known amount of SDG was spiked into raw and 

malted barley samples; the SDG amount remained unchanged, indicating no matrix effect. No 

methods were available for extracting SDG from cereals; thus, the same extraction procedure 

used for flaxseed was used to extract SDG from the barley samples (method section in this 

paper). On the other hand, many methods were available for extracting the aglycone form of the 

lignan (SECO) and other phenolics (Smeds et al 2007; Milder et al 2004; Milder et al 2005). For 

extracting the aglycone (SECO), acid (hot hydrochloric acid) or enzyme (β-glucosidase) 

hydrolysis must be carried out after organic solvent extraction and alkaline hydrolysis, 

respectively (Milder et al 2004; Liggins et al 2000). However, the main target in this study was 

to analyze the SDG content, and it was possible to determine the SDG content in barley using the 

extraction method of Westcott and Muir (1996). To my knowledge, no data is available on SDG 

content in barley, thus this study can be used as a stepping stone for future studies.  
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6.4.2. Stability of SDG during malting and brewing 

Other than variety, processing affects the content of polyphenols in barley (Goupy et al 

1999). For instance, malted barleys had lower polyphenol content than their corresponding raw 

barleys (Goupy et al 1999). However, in this study, the amount of SDG in the raw barley was 

lower than the malted barley (Table 14). Similarly, Katina et al (2007) reported an increase in 

lignan content by two-fold during the germination of wholemeal rye. In their study, the 

processing condition was similar to an industrial malting of barley. In contrast, the fermentation 

of the germinated wholemeal rye did not affect the lignan content, but increased the content of 

phenols nearly 11 fold (Katina et al 2007). This increase was attributed to the starter culture 

(Saccharomyces cerevisiae) used during the fermentation process (Katina et al 2007). Although 

the exact mechanism is not clearly known, enzymes from microbes and outer layers of the cereal 

enhance hydrolytic enzyme activities, which are thought to alter grain composition (Katina et al 

2007; Loponen et al 2004). Some of these enzymes include amylases, xylanases, and proteases. 

In addition, fermentation aids in the breakdown of cell walls, resulting in the liberation or 

synthesis of functional compounds (Katina et al 2007).  

During the brewing process, no SDG content was observed. The mashing step, a 

relatively mild process, which involves the soaking of malt barley in hot water (68-75 0C) cannot 

explain the disappearance of SDG. During the SDG analysis, representative sample may not 

have been taken from the mash tun, which could explain the SDG absence during that step. SDG 

was not detected in the solid and liquid portion of the mashed sample. In addition, it is hard to 

obtain representative sample from big experimental units (i.e. mashing tun, lauter tun, brewing 

kettle, and carboy). For the remaining steps of the brewing process, similar absence of SDG was 

obtained. To obtain definitive results, the brewing process must be done in a smaller scale.  
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7. CONCLUSION 

The hypothesis of this research was that the phytochemicals remain constant during the 

vinification process. Therefore, we reject the hypothesis because a 30 % increase in SDG during 

the vinification process was observed. Similarly, the concentration of the other phenolic 

compounds (i.e. gallic acid, chlorogenic acid, coumaric acid, caffeic acid, and ferulic acid) 

increased. However, folic acid remained unchanged during the vinification process. In addition, 

SDG content was, for the first time, determined in barley. Statistically, no significant differences 

were obtained among barley varieties; however, variations in SDG content among barley 

varieties were observed, specifically the year-to-year variation. As hypothesized, the SDG 

content was affected by the mashing, lautering, boiling, and fermentation treatments of the 

brewing process. Overall, the processing conditions used in our study brought changes to the 

composition of phytochemicals.   
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8. FUTURE WORK 

Although the results obtained in this study have demonstrated the stability of lignans and 

other phytochemicals during vinification, an in-depth study is required with the microbes used 

during the fermentation process. From this study it is not possible to predict exactly what caused 

the phytochemical content to increase. This increase could be attributed to the Saccharomyces 

cerevisiae used during the process, but to verify that, other microbes used during food and 

beverage fermentation should be tested. It is also important to test the synergistic effect of two or 

more microbes on phytochemicals.  

 Furthermore, extraction methods for foods with low lignan content must be improved. In 

this study, an extraction method used for flaxseed-SDG was used to obtain SDG from barley.  

However, cereal grains have a different food matrix than oilseeds; thus, the amount of SDG 

might be underestimated. Therefore, it is recommended to develop a specific extraction method 

for SDG in barley.  

Finally, the experimental design used for the barley varieties should be improved. The 

use of years (2012 and 2013) as replications introduced large variability to the SDG values in the 

barley cultivars. To minimize such variability, it is recommended to compare SDG levels in 

barley cultivars grown in the same year and environment. Using more replicates can also 

strengthen the experimental design and produce definitive results.     
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APPENDIX A. STATISTICAL ANALYSIS OF PHYTOCHEMICALS DURING THE 

VINIFICATION, MALTING AND BREWING PROCESS 

 

Table A.1. ANOVA of the phytochemicals content during the vinification process. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A.2. ANOVA of SDG in 12 raw barley varieties.  

 

 

 

 

 

 

Table A.3. ANOVA of SDG in 6 malted barley varieties.  

 

 

 

 

 

 

Table A.4. ANOVA of SDG content in raw vs. malted barley.  

 

 

 

 

 

Dependent variable Food processing dates  

F-value 

DF P-value 

SDG 17.01 9 0.0001 

Gallic acid 15.70 9 0.0001 

Caffeic acid 5.11 9 0.0016 

Ferulic acid 17.01 9 0.0001 

Coumaric acid 97.35 9 0.0001 

Chlorogenic acid 28.10 9 0.0001 

Folic acid 0.52 9        0.8423 (N.S) 

Dependent variable Raw barley varieties 

  F-value 

DF P-value 

SDG 0.73 11 0.6981 

Dependent variable Malted barley varieties 

  F-value 

DF P-value 

SDG 0.32 5 0.8807 

Dependent variable Raw vs. malted  barley varieties 

  F-value 

DF P-value 

SDG 0.89 7 0.5577 
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APPENDIX B. HPLC AND LC-MS CHROMATOGRAPHS OF PHYTOCHEMICALS  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Figure B.1. HPLC chromatograph of phytochemicals during the vinification process. 

 

 

 

 

 

 

 

 

 

 

 

 

      Figure B.2. LC-MS chromatograph of barley extract with non-detectible SDG. 

 

 

 

 

 

 

 

 

 

 

 

        Figure B.3. LC-MS chromatograph of barley extract with detectible SDG. 


