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ABSTRACT 

Organisms in temperate zones time reproduction to occur when conditions are optimal for raising 

offspring. However, individuals of many taxa vary in precise timing of breeding. The mechanisms 

underlying the existing variation are not well understood, particularly in females. I hypothesized that 

individual variation in daily (i.e., circadian) rhythms, which are highly conserved across taxa, are related to 

variation in reproductive timing. By measuring activity onset in two species of songbirds, we found that 

females beginning their day earlier also breed earlier. I further asked if sex-steroid hormones were related 

to onset of daily activity in free-living individuals. My results show that maximal levels of estradiol are 

correlated with onset of activity in free-living females. This suggests that circadian rhythms may influence 

much of the variation seen in timing of breeding and individual physiology influences circadian behavior. 

In addition to mechanisms underlying reproductive timing, I also investigated potential selective pressures 

that could act on timing decisions. Early breeding females often produce more and larger offspring, 

however, most of the population breeds later than this optimum, suggesting there are costs associated 

with early reproduction. To determine if early breeding females are better able to handle an additional 

energetic challenge, I injected incubating females with a mild antigen and monitored nest survival in early 

and late breeders. The immune challenge caused a significant increase in nest failure compared to 

controls and success did not differ between early and late breeders. Next, using a long-term dataset I 

asked whether females who breed early experience accelerated rates of aging via telomere loss. I found 

that early breeding females experience higher telomere attrition compared to females breeding later. 

Annual change in telomere length was not related to reproductive output, but females experiencing cooler 

temperatures during egg laying and incubation (i.e., laying earlier in the season) had higher telomere 

attrition. With telomere loss and length being important determinants of lifespan and longevity, higher 

telomere attrition in early breeders may be linked with reduced overwinter survival. A better 

understanding of mechanisms and costs will help determine how populations will adjust to, or suffer from, 

a changing climate. 
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CHAPTER 1: GENERAL INTRODUCTION 

Background 

Seasonal bouts of reproduction have been observed in vertebrate species in temperate-zones 

and are thought to have been shaped through selection (Baker 1938). The physiological and behavioral 

changes that organisms must undergo to prepare for seasonal breeding have been found to be 

predominantly regulated by photoperiod (Tauber and Tauber 1976; Thomas and Vince-Prue 1996; 

Dawson et al. 2001; Hau 2001; Dawson 2003). Supplementary cues, such as temperature or food 

availability, allow for year to year variation to adjust timing of reproduction to optimal breeding conditions 

(Schoech 1996; Rubenstein and Wikelski 2003; Nilsson and Källander 2006; Post and Forchhammer 

2008; Shine and Brown 2008). Studies of temperate breeding vertebrates have found that early-breeding 

individuals generally have higher reproductive success compared to individuals that breed later in the 

season (Perrins 1970; Bourdon and Brinks 1982; Olsson and Shine 1997; Dawson and Clark 2000; 

Lepage et al. 2000; Doody et al. 2004), but individual variation around the optima is observed. The 

mechanisms underlying individual variation in timing of breeding and the costs associated with early 

reproduction remain unclear. 

Extensive research in seasonal breeders has determined that initial activation of the reproductive 

system is regulated by photoperiod (Dawson 2003). Predictable changes in photoperiod across the year 

cues organisms to physiologically prepare for reproduction during appropriate environmental conditions in 

temperate breeding zones (Dawson et al. 2001; Dawson 2008). The combination of appropriate 

photoperiod, combined with other supplementary cues, activates gonadal growth through the 

hypothalamic-pituitary-gonadal (HPG) axis, a neuroendocrine pathway that integrates internal and 

external signals at the level of the hypothalamus (Figure 1)(Adkins-Regan 2008). The hypothalamus 

releases gonadotropin releasing hormone (GnRH) to elicit secretion of luteinizing hormone (LH) and 

follicle-stimulating hormone (FSH) from the pituitary. LH then causes release of the sex-steroid hormones 

testosterone (T) and estradiol (E2) from the gonads (Adkins-Regan 2008; Wingfield 2012). T and E2 must 

then bind with the receptors of target tissues to prepare for and maintain reproduction (Ball and Ketterson 

2008).  
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While the role of the HPG axis is well understood, individual variation in timing of reproduction still 

occurs (Perrins 1970). While there is significant variation in hormone output levels at the level of both the 

pituitary and the gonad, it is unclear how variation in these levels pre-breeding relate to individual 

reproductive timing decisions (Chastel et al. 2003; Williams 2012a; Caro et al. 2013; Greives et al. 2016). 

In addition, timing of reproductive activation is more thoroughly studied in males and less is known about 

how females differ in their reproductive response to environmental cues (Ball and Ketterson 2008). An 

abundance of research has been conducted in males; however, physiology of females is less well 

understood, even though they ultimately dictate when offspring are born (Caro et al. 2009; Zucker and 

Beery 2010; Beery and Zucker 2011; Caro 2012). Thus, this work focuses solely upon females, though 

future work in males could help separate important differences between the sexes in the wild.  

My dissertation addresses two aims with respect to individual variation in timing of breeding. The 

first is to identify potential interactions between endogenous rhythms and reproductive timing behavior 

and physiology in free-living organisms. The second aim of my dissertation is to identify reproductive 

costs of individual variation in timing of breeding. To address the two aims of my dissertation, we tested 

the following hypotheses in free-living female songbirds:  

1.1: Variation in daily rhythms is an underlying mechanism driving individual variation in seasonal 

onset of timing of breeding 

1.2: Variation in maximum E2 levels are related with female activity onset during the breeding season 

Figure 1. Photoperiod and other supplementary cues stimulate production of 1) GnRH from the 
hypothalamus. GnRH acts on the pituitary, resulting in production of 2) LH and FSH. These 
gonadotropins cause the gonads to produce 3) T and E2, which 4) bind to receptors on target tissues. 
Photo from Needham (2017).  
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2.1: Energetic costs of upregulation of the humoral immune response will reduce offspring survival 

and have a disproportionately higher impact on reproductive success earlier in the breeding 

season 

2.2: Individuals that breed earlier have higher rates of telomere loss 

 
Aim 1: Identify Potential Interactions Between Endogenous Rhythms and Reproductive Timing 

Behavior and Physiology in Free-Living Organisms 

The Role of Endogenous Circadian Rhythms in Reproduction  

Seasonal activation of the reproductive system displays a strong interaction with endogenous 

daily (i.e., circadian) rhythms (Helm and Visser 2010). Many organisms display internally driven 

physiological and behavioral rhythms that are shorter or longer than 24 hours in length when external 

cues (e.g. photoperiod, temperature changes) are absent (Aschoff 1988). Laboratory studies in multiple 

species using 1 hr light-pulses and varying the length of the dark phase (i.e., nighttime) have found that 

exposure to light during a specific time of the circadian phase activates the long day reproductive 

response (Hamner 1963; Follett and Sharp 1969; Milette and Turek 1986; Paul et al. 2008a). This 

seasonal photoperiodic response across taxa occurs during what is referred to as the photo-inducible 

phase of the circadian system, which was first proposed in 1936 by Erwin Bϋnning (Paul et al. 2008a). 

The photo-inducible phase is the timing of the rhythm predicted to occur during darkness under short 

photoperiods, but coincide with light under a long photoperiod (Chapter 2, Figure 2) (Hazlerigg and 

Wagner 2006). Laboratory studies have also shown that photoperiodic control of endogenous daily 

rhythms is linked with seasonal reproductive responses. For example, shortening the length of circadian 

rhythms via mutation of the tau gene in reproductive Syrian hamsters (Mesocricetus auratus) causes 

testicular regression to occur more quickly (under 10 h of darkness compared to 12 h of darkness) than in 

controls (Stirland et al. 1996). In Arabidopsis, knocking out genes associated with circadian regulation 

delays flowering (Wang and Tobin 1998). 

Significant individual variation in length of endogenous circadian rhythms (Helm and Visser 2010) 

may vary the timing of the photo-inducible phase on an individual basis. In Japanese quail (Cortunix 

japonica), the photo-inducible phase occurs between 10 and 16 hours after dawn (Nicholls et al. 1983). 

We would predict that the photo-inducible phase of an individual with a shorter endogenous circadian 
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rhythm may occur earlier in the day compared to an individual with a longer rhythm. However, social 

interactions and other environmental cues entrain the circadian system to the earth’s 24 hr cycle (Crowley 

and Bovet 1980) which does not allow us to measure the length of an individual’s circadian rhythm in the 

wild. As natural selection acts upon phenotypes, one way we can measure phenotypic output of circadian 

rhythms is by measuring chronotype, or the timing of an individual relative to a cue (e.g. onset of activity 

relative to sunrise) (Lehmann et al. 2012). Prior studies have found that individuals with a shorter 

circadian period also become active earlier than individuals with longer rhythms (Aschoff and Wever 

1966; Duffy et al. 2001)). Circadian rhythms are also heritable, allowing selection upon these rhythms to 

occur (McClung 2006; Helm and Visser 2010). We would expect natural selection to act upon chronotype, 

the timing phenotype, in free-living organisms. Yet this pathway remains largely unexplored in the wild, 

where selective pressures are acting upon phenotypes. Thus, variation in circadian rhythms may underlie 

the individual variation in seasonal timing of breeding. Chapter 2 of my dissertation tests the hypothesis 

that variation in daily rhythms is an underlying mechanism influencing individual variation in seasonal 

onset of timing of breeding by measuring daily onset of activity in females and correlating it with first egg 

of the season. 

 
Hormonal Influences on Behavior and Reproduction 

Behavioral output of daily rhythms are plastic and influenced by many environmental and 

physiological factors. For example, prolonged increases in levels of hormones like melatonin have the 

capacity to delay awakening time and timing of reproduction in songbirds (Greives et al. 2012; Greives et 

al. 2015). Alternatively, women with higher levels of the sex-steroid, estradiol (E2), wake up earlier than 

females with lower levels of E2 (Bracci et al. 2014). In female hamsters, E2 implants lead to shortened 

free-running circadian period and earlier chronotypes when compared to females with empty implants 

(Morin et al. 1977; Takahashi and Menaker 1980). There appears to be a lack of information on the 

relationships between E2 and circadian rhythms in non-mammalian vertebrates; however, higher levels of 

plasma testosterone (T), another sex-steroid hormone, has been found to be correlated with higher levels 

of plasma E2 in female birds (Rosvall et al. 2013). Experimentally induced and naturally increasing levels 

(i.e., seasonal increases) of T have been found to lengthen the active period of male birds and shorten 

circadian period length during the breeding season (Gwinner 1974; Gwinner 1975). This suggests a 
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similar mechanistic relationship between sex-steroids and daily rhythms in birds that has been observed 

in mammalian vertebrates.  

Studies measuring baseline hormone levels do not often find a relationship between the hormone 

and the behavioral or morphological variable of interest (Damassa et al. 1977; Chastel et al. 2003; 

Williams et al. 2004; Mcglothlin et al. 2008; Huyghe et al. 2009; Eikenaar et al. 2011; Caro et al. 2013; 

Burtka et al. 2016).  Many samples in these studies were collected during the day or after individuals had 

been in captivity for several hours. Recently it was found that nighttime levels of T in both male and 

female songbirds are, on average, twice as high as daytime levels (Laucht et al. 2011). While capturing 

wild individuals at night may not always be feasible in the wild, recent evidence suggests that 

gonadotropin-releasing hormone (GnRH) induced T levels are reflective of nighttime T levels (Needham 

et al. 2017). If, like T, nighttime levels of E2 are more informative of maximum levels experienced during 

the breeding season, we may observe stronger relationships between levels of GnRH-induced sex-

steroid hormones and reproductive timing behaviors compared to baseline levels. Chapter 3 of my 

dissertation tests the hypothesis that variation in maximum E2 levels are related with female activity onset 

during the breeding season by exposing females to a GnRH challenge and correlating maximal levels of 

E2 and T with daily onset of activity. 

 
Aim 2: Identify Reproductive Costs of Individual Variation in Timing of Breeding 

Additive Energetic costs and Timing of Reproduction 

In addition to understanding the mechanisms that determine timing of breeding in individuals, it is 

important to understand why most of the population does not breed early, when higher reproductive 

success is observed (Perrins 1970; Bourdon and Brinks 1982; Festa-Bianchet 1988; Landa 1992; Olsson 

and Shine 1997; Dawson and Clark 2000; Lepage et al. 2000; Doody et al. 2004). Early breeders appear 

able to produce more and larger offspring than late breeders (Perrins 1970; Festa-Bianchet 1988; Ribble 

1992; Rieger 1996; Holand et al. 2006; Williams 2012b) increasing overwinter survival and recruitment 

rates compared to smaller young of the year (Krementz et al. 1989; Linden et al. 1992; Sedinger et al. 

1995; Naef-Daenzer et al. 2001; Monrós et al. 2002; Low et al. 2015). The observed delay in reproduction 

from what seems to be optimal reproductive timing (Verhulst and Nilsson 2008) suggests there are likely 

costs to early breeding that delay reproduction in most of the population. 
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Offspring rearing is energetically demanding (Williams 1966; Trivers 1972); therefore, additional 

energetic challenges during this life-history stage may allocate energy away from offspring care, 

decreasing reproductive success. Cool temperatures and reduced food availability early in the season 

may reduce energy available for other energetically expensive processes, like immune system activation, 

compared to later in the season (Ardia 2005). Activation of the immune system is energetically expensive 

(Demas et al. 1997; Martin et al. 2003) and incompatible costs associated with reproduction and immune 

function have been found to result in a trade-off (Deerenberg et al. 1997; Hanssen et al. 2004; Hanssen 

et al. 2005; French et al. 2007; Martin et al. 2008). Immune system activation generally requires an 

individual to conserve energy, but offspring care (e.g. feeding, predator defense) requires energy use that 

could be allocated toward immune function and adult self-maintenance (Adelman and Martin 2009). A 

number of studies have looked at the effects of immune system activation during the breeding season on 

adult survival (Hanssen et al. 2004), changes in offspring feeding rate (Råberg et al. 2000; Ardia 2005), 

and offspring growth rates (Lozano and Ydenberg 2002), yet seasonal variation in ultimate effects on 

offspring survival are not as well studied. Therefore, we would hypothesize this trade-off may be amplified 

for early breeding individuals, resulting in reduced ability to handle an energetically demanding immune 

challenge. As a result, early breeding individuals would have significantly reduced offspring survival 

compared to later in the season. Chapter 4 of my dissertation tests the hypothesis that energetic costs of 

upregulation of the humoral immune response will reduce offspring survival and have a disproportionately 

higher impact on reproductive success earlier in the breeding season. To test this hypothesis, I exposed 

incubating females to an immune challenge (or control injection) and compared nest success of early and 

late breeding females. 

 
Biological Aging as a Cost of Reproduction  

While the trade-off between reproduction and survival is well studied (Smith 1958; Blomquist 

2009), little is known about how seasonal variation in reproductive timing may play a role in rates of 

aging. Exposure to more stressful conditions early in the breeding season may alter homeostasis, leading 

to increased levels of oxidative stress and thus an increased rate of aging (Finkel and Holbrook 2000; 

Costantini 2008). Recently, telomere dynamics have become a potential biomarker to study aging 

(Hornsby 2006; Mather et al. 2011). Telomeres, the repetitive DNA sequences on linear eukaryotic 
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chromosomes, protect the chromosome ends from losing coding sequences during the replication 

process, however, they limit the number of replications a cell can undergo without losing coding DNA 

(Monaghan 2010). Higher rates of telomere loss also correlate with reduced survival (Haussmann and 

Marchetto 2010), thus if early breeding individuals have higher rates of telomere loss, it would suggest 

increased aging rate is a cost of early reproduction. Chapter 5 of my dissertation tests the hypothesis that 

individuals that breed earlier have higher rates of telomere loss using a longitudinal dataset to measure 

change in telomere length in the year following a breeding attempt and correlating it with timing of 

breeding. 
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CHAPTER 2: EARLY TO RISE, EARLY TO BREED: A ROLE FOR ENDOGENOUS RHYTHMS IN 

SEASONAL REPRODUCTION1 

Abstract 

Vertebrates use environmental cues to time reproduction to optimal breeding conditions. 

Numerous laboratory studies have revealed that light experienced during a critical window of the 

circadian (daily) rhythm can influence reproductive physiology. However, whether these relationships 

observed in captivity hold true under natural conditions and how they relate to observed variation in timing 

of reproductive output remains largely unexplored. Here we test the hypothesis that individual variation in 

daily timing recorded in nature (i.e., chronotype) is linked with variation in timing of breeding. To address 

this hypothesis and its generality across species, we recorded incubation behavior data to identify 

individual patterns in daily onset of activity for two temperate-breeding songbird species, the dark-eyed 

junco (Junco hyemalis aikeni) and the great tit (Parus major). We found that females who first departed 

from their nest earlier in the morning (earlier chronotype) also initiated nests earlier in the year. Date of 

data collection and ambient temperature had no effect, but stage of incubation influenced daily onset of 

activity in great tits. Our findings suggest a role for daily rhythms as one mechanism underlying the 

observed variation in seasonal timing of breeding. 

Keywords: chronotype, seasonal timing, daily rhythms  

Background 

Seasonal bouts of reproduction have been observed in many vertebrate species and have long 

thought to have been shaped by selection (Baker 1938; Hau 2001; Bronson 2009). The physiological and 

behavioral changes that animals must undergo to prepare for seasonal breeding are predominantly timed 

by photoperiod (Dawson et al. 2001; Dawson 2003). Photic control of endogenous daily (i.e. circadian) 

rhythms has been linked to seasonal photoperiodic responses through a variety of laboratory-based 

________________________ 
                                                   
1The material in this chapter was co-authored by Jessica Graham, Natalie Cook, Katie Needham, 
Michaela Hau, and Timothy Greives. Jessica Graham has primary responsibility for experimental design, 
sample collection, running experiments, data collection, data analysis, and developing the first draft of this 
chapter. Natalie Cook, Katie Needham, and Michaela Hau assisted with sample collection and revisions 
of this chapter. Timothy Greives was the primary provider of funding for materials and assisted in sample 
collection, forming conclusions, and revisions of this chapter. This publication can be found under, 
“Graham, J.L., Cook, N.J., Needham, K.B., Hau, M., and Greives, T.J. 2017. Early to Rise, Early to Breed: 
A Role for Daily Rhythms in Seasonal Reproduction. Behavioral Ecology, 28(5): 1266-1271.” 
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studies. Specifically, animals possess a photo-inducible phase of the circadian rhythm, whereby light 

experienced during this phase induces reproductive responses appropriate for long days, whereas the 

absence of light during this critical phase of the circadian rhythm leads to short-day reproductive 

responses (Hamner 1963; Follett and Sharp 1969; Milette and Turek 1986; Hazlerigg and Wagner 2006; 

Paul et al. 2008a). In vertebrates breeding during long days, exposure to light during this photo-inducible 

phase of the circadian rhythm will be encoded as a reproductively stimulatory day length (Hazlerigg and 

Wagner 2006). In Japanese quail (Cortunix japonica), this photo-inducible phase ranges between 10 and 

16 hours after the lights come on, the laboratory equivalent of dawn (Nicholls et al. 1983), suggesting that 

timing of the photo-inducible phase is variable between individuals of the same species. 

Variation among individuals in behavioral and physiological outputs of circadian rhythms is 

commonly observed in animals held under constant laboratory conditions (Aschoff and Wever 1966; 

Horne and Östberg 1977; Duffy et al. 2001) and recent work in wild caught individuals has suggested 

there is a heritable component to these rhythms (Helm and Visser 2010). Whether individual variation in 

endogenous daily rhythms may influence variation in the time of day an individual is sensitive to photo-

induction, and thus responses to light exposure at the end of an early spring day, remains unknown. For 

example, an individual with a shorter free-running circadian rhythm may have a slightly advanced photo-

inducible phase compared to an individual with a longer free-running rhythm, leading to earlier 

reproductive responses under the same photoperiod (Figure 2). Thus, individual variation in circadian 

rhythms may underlie individual variation in seasonal timing of breeding as suggested by Helm and 

Visser (Helm and Visser 2010) by shifting the timing of the photo-inducible phase. This hypothesis has 

not yet been tested in the wild, where natural selection pressures are acting and these traits are being 

expressed. 

Measuring the period length of an individual’s circadian rhythm in the wild, however, presents 

many challenges. The daily light-dark cycle, social interactions and other environmental cues entrain the 

circadian system to a period of 24hrs (Crowley and Bovet 1980; Johnson et al. 2003; Dunlap et al. 2004), 

thus making it impossible to measure the endogenous free-running circadian period of an individual in the 

wild. Alternatively, we can measure the phenotypic output of circadian rhythms by measuring the 

chronotype, or the timing exhibited by an individual relative to a salient environmental cue (e.g. sunrise) 
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and other population members (Lehmann et al. 2012; Dominoni, Helm, et al. 2013). Evidence in humans 

and birds has uncovered clear links between endogenous rhythms and chronotype; individuals with a 

shorter free-running circadian period exhibit an earlier chronotype and become active earlier in the day 

(Aschoff and Wever 1966; Duffy et al. 2001; Dominoni, Helm, et al. 2013); c.f. Majoy and Heideman 2000; 

Helm and Visser 2010). As selection acts upon phenotypes expressed in nature, we would expect it to act 

upon chronotype in free-living organisms. 

 

 

Here we test the hypothesis that variation in daily rhythms, expressed as chronotype, is an 

underlying mechanism driving individual variation in seasonal timing of breeding. Specifically, we 

predicted that female songbirds who show an earlier seasonal activation of reproductive function and thus 

initiate egg laying earlier, would also be active earlier in the morning (i.e., a chronotype related to a 

shorter circadian period) compared to females with later chronotypes that departed from their nest later in 

the morning. We assessed the chronotype of females repeatedly during incubation to quantify the 

repeatability of this trait and collected data from females of two free-living species of songbird on two 

Figure 2. Two individuals entrained to a 24-hour day; however, differing chronotypes (i.e., earlier onset 
of activity with respect to sunrise in the bottom individual) change the phase of the endogenous rhythm 
at which light is experienced. Hence, timing of the photo inducible phase varies the reproductive 
response within an individual. 
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continents, dark-eyed juncos (Junco hyemalis) and great tits (Parus major) to determine the generality of 

this pattern across species. 

 
Methods 

Ethics 

All animal use was conducted with approval from the NDSU Institutional Animal Care and Use 

Committee (Protocol #A13063) and the animal ethics committee of the state of Baden-Württemberg, 

Germany. 

 
Study System 

We studied a population of dark-eyed juncos (Junco hyemalis aikeni) near Lead, SD, USA 

(44o14’38”N, 103o51’55”W), from May 28 to July 5, 2015 and May 15 to June 26, 2016. This subspecies 

of dark-eyed junco is a small, ground nesting passerine that resides primarily in pine forests in the central 

US and typically begins laying eggs around mid to late May with an incubation period of approximately 12 

days (Nolan et al. 2002).   

In addition, data collected from a free-living population of great tits (Parus major) near Radolfzell, 

Germany (47o44’24”N, 8o58’48”E) from April 20 to 28, 2010 were utilized. Great tits are small, secondary 

cavity nesting songbirds that readily breed in nest boxes (Drent 1987; Cramp and Perrins 1993). Egg-

laying at this study site begins in early April and incubation lasts approximately 12 days (Cramp and 

Perrins 1993). 

 
Daily Timing 

Thermochron iButtons (Model DS1921G-F5# with iButton Connectivity Kit Model SK-IB-R) were 

placed in the nest of incubating great tits and dark-eyed juncos. The iButtons were programmed to record 

nest temperature to the nearest 0.5oC every 2-3 minutes. At least 2-8 mornings worth of data were 

collected for every individual. iButtons were also placed near the nest of dark-eyed juncos to collect 

ambient temperature every 30 min in 2015, while Onset HOBO data loggers (Model UA-002-08) were 

used to collect ambient temperature and light intensity every 5 min in 2016. Ambient temperature and 

light intensity was not collected for great tits. 
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Determining Onset of Activity 

Observer (JLG) was kept blind to nest initiation date while determining activity onset times for all 

individuals. Daily onset of activity was calculated by subtracting onset of activity time from sunrise times 

derived for each study site from the United States Naval Observatory data base 

(www.usno.navy.mil/USNO) and determined by graphing incubation bouts from 03:00 to 08:00 and 

finding the first major dip in temperature indicating nest departure (Figure S1). This method has 

previously been shown to correlate strongly with video recorded nest departure times (Joyce et al. 2001). 

The dip was generally greater than 2oC below the average nest temperature from 03:00 to 08:00, 

however, this was not true in all cases. Eight dark-eyed juncos (10 mornings total) and 2 great tits (4 

mornings total) had 1 or 3 mornings of data where nest temperature did not drop more than 2oC. 

Removing those mornings did not change the results, so all measures were included in analysis.  

 
Statistical Analyses 

All statistical analyses were performed using the free software R 3.2.2 (R Core Team 2015) with 

the package “lme4” (Bates et al. 2015) for mixed-effect modeling. To calculate repeatability of activity 

onset, a linear mixed-effects model was run with day of incubation included as a fixed effect and nest ID 

as a random effect. The resulting variance of the intercept was then divided by the sum of the variance of 

the intercept and variance of error (Dingemanse and Dochtermann 2013). To calculate 95% confidence 

intervals, “confint” was used. Lower and upper values were squared to get standard deviations for the 

variance of intercept and variance of error. Standard deviation for variance of the intercept was divided by 

the sum of standard deviations for variance of the intercept and variance of error for upper and lower 

values. This provided confidence intervals of repeatability.  

Separate linear mixed-effects models were used to determine if activity onset was related to first 

egg of the season for individual dark-eyed juncos and great tits (hereafter referred to as egg 1 date), the 

day of incubation squared (Cooper and Voss 2013), and date of data collection (included as fixed effects). 

Year (for dark-eyed juncos) and nest ID were included as random effects. Ambient temperature data were 

not collected for great tits and ambient temperature did not influence onset of activity for the dark-eyed 

junco; thus temperature was not included in the final models. In year 2 for the dark-eyed juncos, we 

http://www.usno.navy.mil/USNO
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additionally collected light intensity at the nest. A third linear mixed-effects model was used to determine if 

light intensity at sunrise was related to onset of activity in this reduced data set. Significance level was set 

at α = 0.05.  

Results 

Dark-eyed junco activity onset ranged from 04:25 to 07:13 MDT. When calculated with respect to 

sunrise, times varied from 41 min pre-sunrise to 117 min post-sunrise. Repeatability of activity onset was 

0.73 (CI: 0.67, 0.76) when controlling for day of incubation (n = 36). Onset of activity in female great tits 

ranged from 06:15 to 07:04 CEST. When calculated with respect to sunrise activity onset varied from 8 

min pre-sunrise to 43 min post-sunrise. Repeatability of onset of activity was 0.27 (CI: 0.02, 0.42) when 

controlling for day of incubation (n = 13). 

We found that the date a female laid her first egg of the season was positively related to daily 

onset of activity in both dark-eyed juncos (F = 5.300, df = 1, 19.45, p = 0.03, Figure 3A) and great tits (F = 

8.621, df = 1, 9.64, p = 0.01, Figure 3B): individuals that laid their first egg earlier in the year had earlier 

daily activity onset. We also found the closer a female’s eggs were to hatching, the onset of activity 

became later in great tits (F = 6.996, df = 1, 11.47, p = 0.02), but not in dark-eyed juncos (F = 2.295, df = 

1, 85.80, p = 0.13). There was no relationship of activity onset with calendar date of data collection in 

either species (dark-eyed juncos: F = 0.454, df = 1, 33.35, p = 0.50; great tits: F = 0.003, df = 1, 16.54, p 

= 0.95).  

When we restricted our data to only include dark-eyed juncos with data for light intensity at 

sunrise (n = 24), light intensity was significantly related to onset of activity (F = 7.838, df = 1, 84.80, p 

<0.01). We still see a trend for individuals that laid eggs earlier in the year to also have earlier onset of 

activity (F = 3.349, df = 1, 21.97, p = 0.08). Calendar date of data collection and day of incubation showed 

no relationship with onset of activity (date of data collection: F = 0.003, df = 1, 23.65, p = 0.96; day of 

incubation: F = 1.483, df = 1, 75.15, p = 0.23). 
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Discussion 

Our data support the hypothesis that individual variation in daily rhythm phenotype influences 

individual variation in seasonal onset of breeding. Females of both dark-eyed juncos and great tits that 

became active earlier in the morning (i.e., earlier chronotype) had earlier nest initiation dates than 

females that became active later in the morning. As previous findings have demonstrated that earlier 

chronotypes are manifestations of shorter circadian period lengths (Aschoff and Wever 1966; Duffy et al. 

2001; Dominoni, Helm, et al. 2013), our findings of a relationship between early onset of activity and 

clutch initiation provide evidence that variation in endogenous circadian rhythms may act as a mechanism 

influencing individual variation in seasonal timing of breeding in wild populations. 

We observed consistent individual differences in daily onset of activity during the breeding 

season. While our study necessarily collected timing data after the decision to lay eggs had been made, 

we believe that our findings are indicative of an individual’s chronotype prior to nest initiation. Other 

studies, including in our study species, have also observed within year consistency in individual female 

awakening and nest departure times both during and outside the breeding season (Steinmeyer et al. 

2010; Schlicht et al. 2014; Stuber et al. 2015). In addition, onset of activity for six dark-eyed junco females 

Figure 3. Individual averages of raw data for onset of activity graphed against first egg of the season 
shows as nest initiation dates shifts later in the season, females become active later in the day. Both 
dark-eyed juncos (A) and great tits (B) show this pattern 
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in our study was collected during a known second nesting attempt. Nest initiation date for the first nesting 

attempt of these individuals was known and was included in the model with activity onset recorded during 

the second attempt.  Females that laid eggs early during the first nesting attempt still fit the observed 

pattern of becoming active earlier, even on a second nesting attempt, compared to late breeding females. 

This provides some support that females with early chronotypes consistently exhibit early chronotypes 

compared to those with late chronotypes, regardless of time of season. Interestingly, timing of 

reproductive characteristics like egg laying date in females and onset of dawn song in males, are 

repeatable (Noordwijk et al. 1980; Sydeman and Eddy 1995; Nussey et al. 2005; Murphy et al. 2008; 

Naguib et al. 2010). Males that sing earlier also pair with early breeding females (Murphy et al. 2008), 

suggesting males who awaken earlier (i.e. have shorter endogenous rhythms) are pairing with females 

that breed earlier and also have shorter endogenous rhythms. These combined observations suggest that 

an individual’s onset of daily activity is consistent with respect to other individuals in the population, and 

likely reflects individual variation in endogenous rhythms, though future work is needed to confirm this 

result. 

A recent study found no relationship between chronotype and timing of breeding in captive-

housed great tits (Helm and Visser 2010). One reason for this deviation may have been due to using 

artificial lighting in aviaries while organisms are better able to respond more precisely to natural external 

cues (Fleissner and Fleissner 2002; Helm and Visser 2010). Captive great tits do show altered timing of 

sleep behaviors, including earlier awakening and nest departure times and shortened sleep duration, 

even when kept under naturalistic conditions compared to their free-living counterparts (Stuber et al. 

2015). A study in European blackbirds (Turdus merula) did find that chronotype measured during the 

breeding season under free-living conditions was related to the length of an individual’s free-running 

rhythm measured in captivity later on in the same breeding season (Dominoni, Helm, et al. 2013). While 

the study by Helm and Visser (2010) contained important findings, our study utilized measurements of 

rhythmic daily and seasonal behaviors in a natural environment. This may indicate the importance of 

measuring these traits and their relationship with seasonal timing decisions in the wild. 

It has been generally observed that early breeding individuals in temperate zone habitats are few 

in number compared to the rest of the population, but have higher reproductive success compared to 
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individuals that breed later (Perrins 1970; Bourdon and Brinks 1982; Olsson and Shine 1997; Dawson 

and Clark 2000). This observed pattern is consistent with patterns observed in the length of endogenous 

rhythms; that shorter rhythms are rare compared to longer rhythms while an intermediate rhythm length is 

most common (Helm and Visser 2010). Flexibility in timing of breeding is important for adapting to year to 

year variation in the environment, but variation in the length of endogenous rhythms may be one 

mechanism regulating individual reproductive timing relative to other individuals within a given year. The 

relationship between individual variation in behavioral rhythms and clutch initiation suggests the 

possibility that individual variation in the timing of the photo-inducible phase in the early spring may 

directly influence seasonal reproductive onset. 

Light intensity at the nest at sunrise appears to play an important role in onset of activity as well. 

Though we only collected a single year of data for dark-eyed juncos, our findings agree with other studies 

showing that higher light intensity leads to an advanced onset of daily activity (Aschoff 1979; Newberry et 

al. 1988; Dominoni et al. 2014; Stuber et al. 2015). Urban dwelling birds are exposed to higher light 

intensities at night and will also advance their timing of reproduction compared to forest dwelling birds 

(Dominoni, Quetting, et al. 2013). With nighttime and sunrise light intensity affecting onset of activity 

(Dominoni et al. 2014), roosting behavior prior to the breeding season could be an important factor in 

determining onset of reproduction by influencing intensity of light experienced by an individual during this 

crucial time.   

Additional non-photic cues that interact with endogenous daily rhythms may also play a role in 

onset of activity and observed timing of reproduction. For example, a high fat diet is capable of 

lengthening activity rhythms in mice (Kohsaka et al. 2007). The ability to obtain a high-quality diet under 

pre-breeding conditions could then advance the onset of reproduction. A common phenomenon observed 

in songbirds is the tendency for older females to initiate reproduction earlier in the season than younger 

females (Perrins 1970; Mills 1973; Nol and Smith 1987). The age of the individuals in the current 

investigation was unknown, but it may be likely that age-related changes in endogenous rhythms 

influence age-related changes in clutch initiation in birds. Age related shifts in the endogenous rhythms 

and chronotypes of humans have been extensively studied, showing a significant increase in early rising 

behavior in advanced age (Tankova et al. 1994; Hur and Bouchard 1997; Roenneberg et al. 2004; 
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Roenneberg et al. 2007). Studies in Drosophila and birds have obtained similar results, with older 

individuals spending less time sleeping and awakening earlier in the day, though many of these studies 

are cross-sectional (Shaw et al. 2000; Steinmeyer et al. 2010; Stuber et al. 2015). To our knowledge, 

connections between age-related shifts in chronotype and reproductive timing have not been tested. The 

findings from our study suggest that changes in chronotype with age may at least in part underlie the 

observed pattern of older individuals initiating seasonal reproduction earlier than first year individuals in 

temperate breeding species (Mills 1973; Nol and Smith 1987). However, future work is needed to address 

the potential relationship between advances in chronotype and timing of breeding from year to year.  

Conclusion 

We found female songbirds that became active earlier, exhibiting an early chronotype, initiated 

clutches earlier in the season compared to females with a late chronotype that became active later. This 

supports our hypothesis that variation in daily rhythms are a likely underlying mechanism driving 

individual variation in seasonal onset of timing of breeding, though further experiments directly measuring 

length of free-running endogenous rhythms would strengthen these findings. Endogenous daily rhythms 

may also underlie other commonly observed patterns related with variation in timing of breeding (e.g. 

age), as well as other seasonal phenomena like migration. The fact that similar results were obtained in 

two unrelated species from two continents attests to the generality of our findings.  Further research 

should aim at addressing the detailed mechanistic underpinnings of the observed relationships, test the 

hypothesis that similar patterns are also found in males, and examine possible seasonal and ecological 

variations in the connections between daily and seasonal rhythms.  

Funding 

This work was supported by a National Science Foundation International Research Fellowship 

(grant number IRFP-0852986 to TJG) and the Division of Integrative Organismal Systems (grant number 

IOS-1257527 to TJG); North Dakota EPSCoR to TJG; and Max Planck Institute for Ornithology to MH and 

TJG. 

Acknowledgments 

The authors would like to thank G. Beltrami, S. Kingma, J. Lodde Greives, E. Bertucci, A. 

Pearson, and A. Rutherford for field assistance. The authors also thank C. Bauer, N. Dochtermann, B. 



26 
 

Heidinger, A. Kucera, R. Royauté, J. Schmidt, A. Sirman, and E. Stewart for feedback on data analysis 

and during the writing process.  

References 

Aschoff J. 1979. Circadian Rhythms: Influences of Internal and External Factors on the Period Measured  

in Constant Conditions1. Zeitschrift für Tierpsychologie 49:225–249. 

Aschoff J, Wever R. 1966. Circadian period and phase-angle difference in chaffinches (Fringilla coelebs  

L.). Comparative Biochemistry and Physiology 18:397–404. 

Baker JR. 1938. The evolution of breeding seasons. In ‘Evolution: Essays on Aspects of Evolutionary  

Biology’.(Ed. GR de Beer.) pp. 161–177. Clarendon Press: Oxford. 

Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. Journal  

of Statistical Software 67:1–48. 

Bourdon RM, Brinks JS. 1982. Calving date versus calving interval as a reproductive measure in beef  

cattle. J. Anim. Sci. 57:1412–1417. 

Bronson FH. 2009. Climate change and seasonal reproduction in mammals. Philosophical Transactions  

of the Royal Society of London B: Biological Sciences 364:3331–3340. 

Cooper CB, Voss MA. 2013. Avian Incubation Patterns Reflect Temporal Changes in Developing  

Clutches. PLoS ONE 8:1–6. 

Cramp S, Perrins CM. 1993. Handbook of the birds of Europe, the Middle East, and North Africa. The  

birds of the Western Palearctic. Vol. 7: flycatchers to shrikes. Oxford: Oxford University Press. 

Crowley M, Bovet J. 1980. Social Synchronization of Circadian Rhythms in Deer Mice (Peromyscus  

maniculatus). Behavioral Ecology and Sociobiology 7:99–105. 

Dawson A. 2003. Photoperiodic control of the annual cycle in birds and comparison with mammals. Ardea  

90:355–367. 

Dawson A, King VM, Bentley GE, Ball GF. 2001. Photoperiodic control of seasonality in birds. J Biol  

Rhythms 16:365–380. 

Dawson RD, Clark RG. 2000. Effects of hatching date and egg size on growth, recruitment, and adult size  

of lesser scaup. Condor 102:930–935. 

 



27 
 

Dingemanse NJ, Dochtermann NA. 2013. Quantifying individual variation in behaviour: mixed-effect  

modelling approaches. J Anim Ecol 82:39–54. 

Dominoni D, Quetting M, Partecke J. 2013. Artificial light at night advances avian reproductive physiology. 

Proceedings of the Royal Society of London B: Biological Sciences 280:20123017. 

Dominoni DM, Carmona-Wagner EO, Hofmann M, Kranstauber B, Partecke J. 2014. Individual-based  

measurements of light intensity provide new insights into the effects of artificial light at night on  

daily rhythms of urban-dwelling songbirds. Journal of Animal Ecology 83:681–692. 

Dominoni DM, Helm B, Lehmann M, Dowse HB, Partecke J. 2013. Clocks for the city: circadian  

differences between forest and city songbirds. Proc. R. Soc. B 280:20130593. 

Drent PJ. 1987. The importance of nestboxes for territory settlement, survival and density of the great tit.  

Ardea 75. [accessed 2015 Nov 10]. http://depot.knaw.nl/14273/1/Drent_Ardea_87.pdf 

Duffy JF, Rimmer DW, Czeisler CA. 2001. Association of intrinsic circadian period with morningness– 

eveningness, usual wake time, and circadian phase. Behavioral Neuroscience 115:895–899. 

Dunlap JC, Loros JJ, DeCoursey PJ. 2004. Chronobiology: biological timekeeping. Sinauer Associates.  

[accessed 2017 Feb 8]. http://psycnet.apa.org/psycinfo/2003-06316-000 

Fleissner G, Fleissner G. 2002. Perception of Natural Zeitgeber Signals. In: Kumar V, editor. Biological  

Rhythms. Springer Berlin Heidelberg. p. 83–93. [accessed 2017 Apr 4].  

http://link.springer.com/chapter/10.1007/978-3-662-06085-8_8 

Follett BK, Sharp PJ. 1969. Circadian Rhythmicity in Photoperiodically Induced Gonadotrophin Release  

and Gonadal Growth in the Quail. Nature 223:968–971. 

Graham, J.L., Cook, N.J., Needham, K.B., Hau, M., Greives, T.J. 2017. Data from: Early to Rise, Early to  

Breed: A Role for Daily Rhythms in Seasonal Reproduction. Behavioral Ecology.  

http://dx.doi.org/10.5061/dryad.h297n. 

Hamner WM. 1963. Diurnal Rhythm and Photoperiodism in Testicular Recrudescence of the House  

Finch. Science 142:1294–1295. 

Hau M. 2001. Timing of Breeding in Variable Environments: Tropical Birds as Model Systems. Hormones  

and Behavior 40:281–290. 

 



28 
 

Hazlerigg DG, Wagner GC. 2006. Seasonal photoperiodism in vertebrates: from coincidence to 

amplitude. Trends in Endocrinology & Metabolism 17:83–91. 

Helm B, Visser ME. 2010. Heritable circadian period length in a wild bird population. Proceedings of the  

Royal Society of London B: Biological Sciences 277:3335–3342. 

Horne JA, Östberg O. 1977. Individual differences in human circadian rhythms. Biological Psychology  

5:179–190. 

Hur Y-M, Bouchard TJ. 1997. Genetic and environmental influence on morningness-eveningness. In:  

BEHAVIOR GENETICS. Vol. 27. PLENUM PUBL CORP 233 SPRING ST, NEW YORK, NY  

10013 USA. p. 594–594. [accessed 2016 Aug 10].  

Johnson CH, Elliott JA, Foster R. 2003. Entrainment of Circadian Programs. Chronobiology International  

20:741–774. 

Joyce EM, Sillett TS, Holmes RT. 2001. An inexpensive method for quantifying incubation patterns of  

open-cup nesting birds, with data for black-throated blue warblers. Journal of Field Ornithology  

72:369–379. 

Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y, Turek FW, Bass J. 2007. High- 

Fat Diet Disrupts Behavioral and Molecular Circadian Rhythms in Mice. Cell Metabolism 6:414– 

421. 

Lehmann M, Spoelstra K, Marcel E. Visser, Helm B. 2012. Effects of Temperature on Circadian Clock and  

Chronotype: An Experimental Study on a Passerine Bird. Chronobiology International 29:1062– 

1071. 

Majoy SB, Heideman PD. 2000. Tau Differences between Short-Day Responsive and Short-Day  

Nonresponsive White-Footed Mice (Peromyscus leucopus) Do Not Affect Reproductive  

Photoresponsiveness. J Biol Rhythms 15:500–512. 

Milette JJ, Turek FW. 1986. Circadian and photoperiodic effects of brief light pulses in male Djungarian  

hamsters. Biology of Reproduction 35:327–335. 

Mills JA. 1973. The Influence of Age and Pair-Bond on the Breeding Biology of the Red-Billed Gull Larus  

novaehollandiae scopulinus. Journal of Animal Ecology 42:147–162. 

 



29 
 

Murphy MT, Sexton K, Dolan AC, Redmond LJ. 2008. Dawn song of the eastern kingbird: an honest  

signal of male quality? Animal Behaviour 75:1075–1084. 

Naguib M, Kazek A, Schaper SV, Van Oers K, Visser ME. 2010. Singing Activity Reveals Personality  

Traits in Great Tits. Ethology 116:763–769. 

Newberry RC, Hunt JR, Gardiner EE. 1988. Influence of Light Intensity on Behavior and Performance of  

Broiler Chickens. Poult Sci 67:1020–1025. 

Nicholls TJ, Follett BK, Robinson JE. 1983. A photoperiodic response in gonadectomized Japanese quail  

exposed to a single long day. J Endocrinol 97:121–126. 

Nol E, Smith JNM. 1987. Effects of Age and Breeding Experience on Seasonal Reproductive Success in  

the Song Sparrow. Journal of Animal Ecology 56:301–313. 

Nolan V, Ketterson ED, Cristol DA, Rogers CM, Clotfelter ED, Titus RC, Schoech SJ, Snajdr E. 2002.  

Dark-eyed junco (Junco hyemalis). Poole A, Gill F, editors. BNAO. [accessed 2014 Jul 23].  

http://bna.birds.cornell.edu/bna/species/716/articles/introduction 

Noordwijk A van, Van Balen J van, Scharloo W. 1980. Heritability of ecologically important traits in the  

Great Tit. Ardea 68:193–203. 

Nussey DH, Postma E, Gienapp P, Visser ME. 2005. Selection on Heritable Phenotypic Plasticity in a  

Wild Bird Population. Science 310:304–306. 

Olsson M, Shine R. 1997. The seasonal timing of oviposition in sand lizards (Lacerta agilis): why early  

clutches are better. J. Evol. Biol. 10:369–381. 

Paul MJ, Zucker I, Schwartz WJ. 2008. Tracking the seasons: the internal calendars of vertebrates. Phil.  

Trans. R. Soc. B 363:341–361. 

Perrins CM. 1970. The timing of birds‘ breeding seasons. Ibis 112:242–255. 

R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical  

Computing, Vienna, Austria. URL https://www.R-project.org. 

Roenneberg T, Kuehnle T, Juda M, Kantermann T, Allebrandt K, Gordijn M, Merrow M. 2007.  

Epidemiology of the human circadian clock. Sleep Medicine Reviews 11:429–438. 

Roenneberg T, Kuehnle T, Pramstaller PP, Ricken J, Havel M, Guth A, Merrow M. 2004. A marker for the  

end of adolescence. Current Biology 14:R1038–R1039. 



30 
 

Schlicht L, Valcu M, Loës P, Girg A, Kempenaers B. 2014. No relationship between female emergence  

time from the roosting place and extrapair paternity. Behavioral Ecology 25:650–659. 

Shaw PJ, Cirelli C, Greenspan RJ, Tononi G. 2000. Correlates of Sleep and Waking in Drosophila  

melanogaster. Science 287:1834–1837. 

Steinmeyer C, Schielzeth H, Mueller JC, Kempenaers B. 2010. Variation in sleep behaviour in free-living  

blue tits, Cyanistes caeruleus: effects of sex, age and environment. Animal Behaviour 80:853– 

864. 

Stuber EF, Dingemanse NJ, Kempenaers B, Mueller JC. 2015. Sources of intraspecific variation in sleep  

behaviour of wild great tits. Animal Behaviour 106:201–221. 

Sydeman WJ, Eddy JO. 1995. Repeatability in Laying Date and Its Relationship to Individual Quality for  

Common Murres. The Condor 97:1048–1052. 

Tankova I, Adan A, Buela-Casal G. 1994. Circadian typology and individual differences. A review.  

Personality and Individual Differences 16:671–684. 

 

  



31 
 

CHAPTER 3: FREE-LIVING FEMALE DARK-EYED JUNCOS (JUNCO HYEMALIS) WITH HIGHER 

MAXIMAL ESTRADIOL LEVELS SHOW EARLIER ONSET OF ACTIVITY 

Abstract 

Many studies have tried to relate baseline levels of sex steroid hormones (i.e., estradiol, 

testosterone) to reproductive timing, behavior, and morphological traits, yet few studies have found 

significant relationships. Interestingly, experimental increases in these hormones significantly alters daily 

rhythms and we recently found a correlation between onset of activity and timing of breeding in two 

species of songbirds. This suggests the circadian system may play a role in seasonal timing of wild 

animals and maximal hormone levels may regulate this relationship. Natural, maximal levels of sex-

steroid hormones have been found to occur at night. Additionally, they correlate highly with plasma levels 

after an injection of gonadotropin releasing hormone during daytime. Thus, we hypothesized maximal 

levels of estradiol correlate with onset of daily activity in free-living species. We measured onset of activity 

in incubating female dark-eyed juncos (Junco hyemalis), then injected them with gonadotropin releasing 

hormone to measure maximal levels of estradiol. Our findings suggest an interaction between estradiol 

and the circadian system to regulate daily onset of activity in free-living females. We suggest future 

studies examine the relationship between maximal sex-steroid hormones and other reproductive 

behaviors potentially associated with age. 

KEYWORDS: Estradiol, Circadian behavior, Activity onset, Reproductive timing 

Background 

Biological rhythms are highly conserved across taxa (Dunlap et al. 2004) and daily timing 

behaviors in the laboratory have been shown to be correlated with internally driven circadian (i.e., daily) 

rhythms (Aschoff and Wever 1966; Duffy et al. 2001). In free-living populations, the timing of peak 

function is likely important to survival strategies (Pittendrigh 1954). For example, predators may be more 

abundant at certain times of day and low alertness or vigilance could decrease survival (DeCoursey et al. 

2000). Similarly, timing daily and seasonal expression of reproductive behavior and morphology likely 

have a strong influence on mating success (Hau et al. 2017).   

Photoperiodic control of the reproductive system is found in many taxa (Tauber and Tauber 1976; 

Thomas and Vince-Prue 1996; Dawson et al. 2001; Hau 2001; Dawson 2003). Specifically, light 
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experienced during specific timing of the circadian rhythm, termed the ‘photo-inducible phase’, induces 

the appropriate reproductive response to long or short day lengths (Hamner 1963; Follett and Sharp 

1969; Milette and Turek 1986; Hazlerigg and Wagner 2006; Paul et al. 2008b). Understanding 

mechanisms of how physiology regulates daily timing behaviors may be important for understanding 

differences in fitness related traits.  

The influence of sex-steroid hormones on circadian rhythms in captivity are well studied. In 

captive female hamsters, estradiol (E2) implants lead to earlier awakening times when compared to 

females with empty implants (Morin et al. 1977; Takahashi and Menaker 1980). In males, experimentally 

induced and naturally increasing (i.e., seasonal) levels of testosterone (T), have been found to lengthen 

the active period of captive birds during the breeding season (Gwinner 1974; Gwinner 1975). Even 

seasonal peaks in E2 levels correlate with earlier female emergence times relative to sunrise in birds 

(Williams et al. 2004; Schlicht et al. 2014). Awakening time and levels of estradiol (E2) are correlated in 

women; females with higher levels of E2 have an earlier awakening time than females with lower levels of 

E2 (Bracci et al. 2014). Yet there appears to be a lack of information on the relationships between E2 and 

circadian rhythms in non-human, free-living female vertebrates. However, we lack information on how 

maximal levels of hormones like T and E2 relate to activity driven by endogenous daily rhythms in the wild.  

Circulating levels of baseline sex-steroid hormones are typically measured from samples 

collected during the day or after individuals had been in captivity for several hours. Previous research 

attempting to relate baseline levels of plasma T and E2 to reproductive timing (Chastel et al. 2003; 

Williams et al. 2004), behavior (Damassa et al. 1977; Wells 1984; Eikenaar et al. 2011; Burtka et al. 

2016) and phenotypic traits (Mcglothlin et al. 2008; Huyghe et al. 2009) often do not observe consistent 

relationships.  Evidence suggests that an injection of gonadotropin-releasing hormone (GnRH) induces a 

short term increase in plasma T to maximal levels (Jawor et al. 2006; Jawor et al. 2007) that are more 

correlated with reproductive traits in males than baseline levels (McGlothlin et al. 2007). Recently it was 

found that in a captive songbird, the house sparrow (Passer domesticus) nighttime levels of T in both 

males and females are significantly higher than daytime levels (Laucht et al. 2011). While capturing wild 

individuals at night may not always be feasible, recent evidence suggests that GnRH induced T levels are 

reflective of nighttime T levels (Needham et al. 2017). In a different songbird, the dark-eyed junco (Junco 
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hyemalis), higher levels of pooled plasma T have been found to be correlated with higher levels of plasma 

E2 (Rosvall et al. 2013). GnRH challenges provide an alternative method to measure maximal, nighttime-

like levels of T and E2 in free-living organisms and may reveal stronger relationships with circadian timing 

behaviors compared to daytime, baseline levels. 

 We tested the hypothesis that variation in maximum E2 levels are related with female activity 

onset during the breeding season by assessing the first daily off-bout during incubation in female dark-

eyed junco’s (Junco hyemalis) and measuring GnRH-induced levels of E2 just prior to laying and during 

incubation. Specifically, we predicted that females departing from the nest earlier in the morning would 

have higher GnRH-induced E2 levels compared to females that depart from the nest later in the morning. 

We additionally measured GnRH-induced plasma T to test for a correlation between T and E2, which has 

previously been shown using pooled plasma samples (Rosvall et al. 2013). A correlation between these 

values would allow future researchers to measure T as a proxy for E2, which requires less than one third 

the amount of plasma to assay using commercially available enzyme immuno-assays. Lack of collinearity 

between these values would allow us to address whether T or E2 is more closely related to onset of 

activity in free-living females. 

Methods 

Ethics 

All methods used in the study were approved by the North Dakota State University Institutional 

Animal Care and Use Committee (IACUC Protocol #A13063). 

 
Study Species and Location 

 We monitored and studied a breeding population of dark-eyed juncos (Junco hyemalis aikeni) 

near Lead, SD, USA (44o14’38”N, 103o51’55”W). Dark-eyed juncos are a small songbird that nests on 

the ground, making nests easy to find and monitor (Nolan et al. 2002). Females in this population have a 

relatively short breeding season (May – July) and some early breeders produce two successful clutches 

in a season (J. Graham, pers. obs.). On average, females lay four eggs per nest with an incubation period 

of approximately 12 days (Nolan et al. 2002).  
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Pre-breeding Trapping and Blood Collection  

 Females were passively trapped prior to the breeding season using baited potter traps from April 

17, 2016 – May 9, 2017, a time when the reproductive system should be primed for breeding and 

responsive to GnRH. Immediately upon capture, females were weighed and given a single mass-

dependent intramuscular injection of 62.5 µg/kg chicken GnRH-I (American Peptide product #54-8-23, 

Sunnyvale, CA, USA) dissolved in PBS into the pectoralis muscle (Needham et al. In prep; Jawor et al. 

2007). Females were held in cloth bags until 30 min post-injection when a blood sample was collected. 

Due to the large amount of plasma required by our assay to measure E2 and regulation limits on volume 

of blood that can be collected, only post-GnRH samples were collected. A pilot study conducted in this 

species shows that females increase E2 in response to a GnRH challenge after 30 minutes compared to 

control injected females (Needham et al. In prep). Blood samples were stored on ice until centrifugation to 

collect plasma. Plasma samples were stored at -20 until assayed for plasma estradiol. Testosterone was 

not assayed in these samples because plasma was also used to measure very low-density lipoprotein 

(Needham et al. In prep). All samples were collected prior to the first egg of the season being laid. 

 
Determining Onset of Activity 

 Exhaustive nest searching was conducted from May through June 2016. To determine onset of 

activity for individual females, Thermocron iButtons (Model DS1921G-F# with iButton Connectivity Kit 

Model SK-IB-R) were placed in the nest of incubating females to record nest temperature to the nearest 

0.5oC every 3 minutes for 4 consecutive mornings (Graham, Cook, et al. 2017). All times are calculated 

with respect to sunrise. We have previously shown onset of activity to be a highly repeatable behavior 

within this population (Graham, Cook, et al. 2017). A subset of females in this study were part of the 

previous study (n = 24 of 30). 

 After the 4th morning of iButton data collection, females were captured from the nest using either 

a butterfly net or strategically placed mist nets (Graham, Mady, et al. 2017). GnRH injections followed the 

same protocol as used with pre-breeding females. A total of 30 females had complete activity data and a 

blood sample collected during incubation for measurement of T and E2. Of the 30 females, 13 females 

also had pre-breeding GnRH-induced E2 samples. This allowed us to test whether variation in maximum 

E2 levels are related with female activity onset at a physiologically relevant time when females are 
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preparing for reproduction (pre-breeding) and a temporally similar time to the behavior measured 

(incubation). Blood samples were stored on ice until centrifugation to collect plasma. Plasma samples 

from incubation were assayed for plasma estradiol and testosterone.  

  
Hormone Assays 

Plasma E2 levels were measured following the manufacturer’s guidelines using a commercially 

available enzyme immunoassay kit (Enzo Life Sciences, Cat # ADI-900-174)(Needham et al. In prep; Gall 

et al. 2013; Wilcoxen et al. 2015). Briefly, hormones were extracted (3x) from 100μL of plasma using 

diethyl ether, dried in nitrogen gas at 25oC, and reconstituted in assay buffer overnight (1:4.3 dilution). 

When 100 μL of plasma was not available, the concentration was adjusted (n = 1). Reconstituted samples 

were plated in duplicate (100 µL per well) and concentrations were calculated using a four-parameter 

logistic curve-fitting program (Microplate Manager; Bio-Rad Laboratories, Inc). A 7-point standard curve 

with known concentrations ranging from 1000 pg/mL – 15.6 pg/mL was run on the plate to determine 

unknown concentrations. The sensitivity of the assay is 14.0 pg/mL and this value was conservatively 

assigned to any individuals measuring below the detection limit (n = 4 of 13 pre-breeding, n = 22 of 30 

incubating). Pre-breeding females were run as part of a larger set of samples (n = 13 of 94) across three 

plates. Inter-plate variation was 5.4 % and intra-plate variation ranged from 3.0 % – 8.8 % (plates 1: 4.2 

%, 2: 3.0%, 3: 8.8 %) (Needham et al. In prep). All incubating female samples fit on a single plate and 

intra-plate variation was calculated at 3.71 %.  

 Plasma T was also measured following the manufacturer’s guidelines of a commercially available 

enzyme immunoassay kit on a single plate (Enzo Life Sciences, ADI-900-065). Hormones were extracted 

(2x) from 30 μL of plasma using diethyl ether, dried under nitrogen gas at 25oC, and reconstituted with 

assay buffer overnight (1:10 dilution). Concentration was adjusted for samples that did not have 30 µL of 

plasma available after running the E2 assay (n = 7 of 30). Reconstituted samples were plated in duplicate 

(100 μl per well) and concentrations determined using a five-parameter logistic curve-fitting program 

(Microplate Manager, Bio-Rad Laboratories, Inc.). A 6-point standard curve with known concentrations 

ranging from 2000 pg/mL – 1.95 pg/mL was run on the plate to determine unknown concentrations. 

Samples that were below detection limit (n = 3) were set at sensitivity of the assay (5.67 pg/µL). Intra-

plate variation was calculated at 4.12 %. 
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Statistical Analyses 

All statistical analyses were conducted in R version 3.2.2 (R Core Team 2015) using package 

lme4 (Bates et al. 2015). Hormones were natural log transformed for all models to achieve a normal 

distribution. To confirm there was no collinearity between E2 and T, we ran a linear model to determine if 

E2 and T were correlated in incubating females with detectable levels of both T and E2. Lack of a 

relationship allowed us to include E2 and T values as independent variables in a single model. 

We used a linear mixed-effects model with onset of activity recorded over four days as the 

dependent variable and pre-breeding sex-steroid levels during incubation as the independent variable. A 

second linear mixed-effects model was run comparing onset of activity with T and E2 values in all 30 

incubating females and additionally included the day of the year final behavioral samples were measured 

as timing of behavior may change across the reproductive season (Graham, Cook, et al. 2017). In both 

models, female ID was included as a random effect to control for repeated measures in nest departure 

time. Effect sizes (r) for the mixed-effects model was calculated using the formula provided by Nakagawa 

and Cuthill (2007).   

Results 

Pre-breeding levels of post-GnRH E2 ranged from undetectable (set to 14.0 pg/mL) to 112.11 

pg/mL in the 13 females that also had later recorded incubation behavior. During incubation, circulating 

levels of post-GnRH E2 ranged from undetectable (set to 14.0 pg/mL) to 118.69 pg/mL, while circulating 

levels of T post-GnRH injection ranged from undetectable (set to 5.67 pg/mL) to 1503.11 pg/mL. There 

was not a significant correlation between GnRH-induced T and E2 in incubating females (F1, 6 = 0.35, p = 

0.57).  

Higher levels of GnRH-induced E2 pre-breeding (F1, 11 = 5.27, p = 0.04, r = –0.27, Figure 4) and 

during incubation (F1, 26 = 6.26, p = 0.02, r = –0.18, Figure 5) were both correlated with earlier nest 

departure times recorded from incubating females. GnRH-induced T showed no relationship with onset of 

daily activity (F1, 26 = 0.65, p = 0.43, r = 0.06, Figure 6). We additionally observed a trend for females 

sampled later in the season rising earlier relative to sunrise compared with females sampled earlier in the 

season (F1, 26 = 3.66, p = 0.06, r = –0.14).  
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Figure 4. The 13 of females with pre-breeding levels of GnRH-induced estradiol showed a significant 
correlation between early onset of activity and higher maximal estradiol levels (r = -0.27, p = 0.04). 

Figure 5. GnRH-induced levels of estradiol are correlated with onset of activity in incubating female 
dark-eyed juncos (r = -0.18, p = 0.02). 
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Discussion 

Our study provides the first correlative evidence that individual levels of GnRH-induced estradiol 

(E2) are related to daily (i.e. circadian) behavior patterns in free-living female songbirds. In incubating 

females, maximal levels of T were not correlated with onset of activity. There was a trend for incubating 

females recorded later in the season to awaken earlier relative to sunrise compared with females 

recorded earlier in the season. We additionally did not find a relationship between GnRH-induced plasma 

testosterone (T) and estradiol (E2).   

We found that GnRH-induced E2 levels pre-breeding and during incubation are correlated with 

onset of activity (i.e., first nest departure), with earlier circadian behavior correlated with higher levels of 

E2.  We chose to collect our data both from pre-breeding and incubating females. Pre-breeding females 

were thus sampled at a time when females are preparing for reproduction and likely to have an active 

HPG axis, though it was temporally distinct from behavioral sampling. Incubating female dark-eyed juncos 

were sampled because we have previously shown high repeatability of onset of activity in this population 

during incubation (Graham, Cook, et al. 2017) and we additionally wanted to measure hormone levels at 

the same time as the behavioral observations. Our findings are in agreement with previous studies that 

Figure 6. While most females had detectable levels of GnRH-induced testosterone, there was no 
relationship with onset of activity (r = 0.06, p = 0.43). 
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observed that experimentally increasing circulating sex-steroid hormones leads to earlier awakening 

times (Gwinner 1974; Gwinner 1975; Morin et al. 1977; Takahashi and Menaker 1980; Albers 1981) and 

the correlation between early awakening and higher levels of E2 in women (Bracci et al. 2014).  

While a clear relationship was observed between post-GnRH E2 and onset of daily activity during 

incubation, we observed many undetectable hormone levels while females were incubating. Regulatory 

mechanisms during this time period may dampen the responsiveness of the pituitary and/or ovary to 

GnRH and explain why so many E2 samples collected during incubation were below the detection limit of 

an assay capable of detecting GnRH induced levels of E2 in this species pre-breeding (Needham et al. In 

prep). E2 levels in mammals fluctuate drastically from the beginning of the estrous cycle through 

parturition and can drop to non-breeding levels during this time period (Elias et al. 1984). In birds, E2 

peaks during rapid yolk development, declining throughout the laying cycle (Williams et al. 2004). In 

support of this hypothesis that regulatory mechanisms alter responsiveness to GnRH during incubation, 

we observed higher proportion of detectable E2 samples pre-breeding (69.2 %) compared to post egg-

laying (26.7 %). Additionally, increasing levels of E2 prior to egg-laying and a decline to lower levels post 

egg-laying correlates with changes in female emergence times, which is earliest relative to sunrise just 

prior to the egg laying phase (Schlicht et al. 2014). Our finding that GnRH-induced E2 levels measured 

pre-breeding are still correlated with onset of activity during incubation suggests that between individual 

relationships between estradiol and circadian behavior persists across different reproductive phases; 

those individuals with the highest maximal levels of E2 are likely always awakening earliest. Studies 

measuring GnRH-induced E2 levels and activity onset just prior to egg laying may produce an even 

stronger relationship than the one we found, particularly as 10-fold variation in plasma E2 has already 

been shown in starlings with yolky follicles (Williams et al. 2004).  

The trend of a negative relationship between day of year and onset of activity in this population 

was unexpected. We have previously shown in this population that early rising females breed earlier in 

the season (Graham, Cook, et al. 2017). However, the relationship observed in this study may likely be 

caused by including data collected during the second nesting attempts of early breeding females. We did 

not know the nest initiation date for all females in this data set; however, at least 5 of the last 7 females to 

be recorded during the season had known early first nest initiation dates, but due to inability to record 
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during their first attempt (e.g., nests depredated prior to sampling) these females were sampled on their 

second nesting attempt of the season. Early rising females sampled late in the season are likely 

continuing to rise early with respect to sunrise on their second nesting attempt and may be driving this 

pattern. 

The lack of a correlation between T and E2 was also unexpected. Rosvall et al. (2013) reported a 

positive correlation between pooled E2 and T samples after a GnRH-challenge in photo-stimulated, 

captive female dark-eyed juncos. Lack of a correlation in our study may be due to greater variation in 

physiology and responsiveness of females sampled in captivity versus in the wild (Calisi and Bentley 

2009). For example, there may be higher individual variation in aromatase levels (serving as a limiting 

enzyme in the conversion of T to E2 (Simpson et al. 1994)) in the wild compared to captivity. Individual 

females in the wild may differ in how they respond physiologically to supplementary environmental cues 

(Chastel et al. 2003; Williams 2012a; Caro et al. 2013; Greives et al. 2016) that are lacking when housed 

indoors (Rosvall et al. 2013).  In vitro output of T from ovarian follicles collected from free-living camels 

(Camelus dromedarius) does not change with follicle size or across the breeding season, but in vitro E2 

output increases with follicle size and from non-breeding to peak breeding season, suggesting individual 

and seasonal variation in aromatase activity (Sghiri and Driancourt 1999). Importantly, aromatase levels 

have been found to vary between free-living individuals during the breeding season (Silverin et al. 2004). 

In birds with the opportunity to re-nest later in the season, aromatase levels may be important for 

maintaining the ability to re-nest quickly after a nest fails while maintaining optimal hormone levels if the 

nest is successful. Maximal T levels have been found to be related to female parental care behaviors, like 

increased provisioning rate and decreased brooding time (O’Neal et al. 2008; Cain and Ketterson 2013), 

but very little is known about how maximal E2 levels affect incubation and parental behavior (Hunt and 

Wingfield 2004). While females in our study were incubating when T was measured, variation in 

aromatase could have been due to how long a female had been incubating the current clutch or even 

time of season. Future work in larger individuals would allow us to collect both a baseline and maximal 

sample to measure responsiveness of the HPG axis during the incubation phase.  

Recent evidence points to a relationship between daily rhythms and reproductive timing in the 

wild where those who awaken earliest also breed earliest (Graham, Cook, et al. 2017). Some hormones, 
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like melatonin, when provided as continuous release implants, have been shown to significantly delay 

onset of activity in males and timing of breeding in females (Greives et al. 2012; Greives et al. 2015), 

further suggesting a relationship between daily rhythms and seasonal timing. There is a pattern seen in 

many vertebrates for the earliest seasonal breeders to obtain highest reproductive success compared to 

later breeding individuals (Perrins 1970; Bourdon and Brinks 1982; Olsson and Shine 1997; Dawson and 

Clark 2000; Lepage et al. 2000; Doody et al. 2004; Low et al. 2015). However, few individuals breed 

during this optimal time and the mechanisms enabling certain individuals to breed early is under 

continued exploration (Verhulst and Nilsson 2008; Wilson and Nussey 2010; Low et al. 2015). Our finding 

that higher levels of GnRH-induced E2 correlates with earlier activity onset suggests variation in hormonal 

regulation of daily rhythms may additionally fine-tune yearly reproductive timing decisions at the individual 

level, but requires further research in free-living individuals. 

While the age of the females in our study was unknown and not part of the current study, females 

with detectable E2 levels may have been older and have had prior reproductive experience. Evidence in 

the literature shows that reproductively experienced females elevate reproductive hormones, like GnRH 

content in GnRH neurons and circulating vitellogenin levels, and have rapid follicular growth compared to 

photo-naïve individuals (Sockman et al. 2004; Salvante et al. 2013a). This is particularly important with 

respect to our previous finding of a relationship between onset of activity and timing of breeding (Graham, 

Cook, et al. 2017). Cross-sectional studies have found a tendency for older individuals to awaken and 

depart from the nest box earlier than younger individuals (Steinmeyer et al. 2010; Stuber et al. 2015). If 

older or more experienced females are upregulating their reproductive hormones earlier than first time 

breeders, sex-steroid levels may be acting as a mechanism to regulate onset of activity as well as timing 

of breeding, though we lack a sufficient sample size to test this hypothesis.   

 
Conclusion 

Our study provides evidence for a relationship between maximum-induced levels of the sex-

steroid hormone estradiol and circadian behavior in the wild. This is an important first step in 

understanding how hormones regulate daily timing behaviors, yet future work is needed to determine if 

these findings hold in other species and are related to timing during other life history traits. We suggest 

future studies with access to radio-telemetry or RFID readers address similar relationships between E2 
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and daily behavioral patterns during the pre-breeding and egg laying stages of reproduction in free-living 

females. Our findings lay the foundation for understanding how estradiol influences reproductive behavior 

and reproductive timing in seasonally breeding species. However, our current understanding of how 

maximal production of E2 from the hypothalamic-pituitary-gonadal (HPG) axis relates to individual 

variation in behavior is limited and future experimental work is needed to better understand the regulatory 

effects of estradiol on timing of behavior in free-living organisms. 
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CHAPTER 4: EXPERIMENTAL IMMUNE ACTIVATION USING A MILD ANTIGEN DECREASES 

REPRODUCTIVE SUCCESS IN FREE-LIVING FEMALE DARK-EYED JUNCOS2 

Abstract 

Seasonal animals time breeding so offspring rearing coincides with favorable conditions. 

Offspring rearing is energetically demanding; therefore, additional energetic challenges during this life-

history stage may allocate energy away from offspring care, decreasing reproductive success. Activation 

of the immune system may be one such energetic challenge, and may have a disproportionately higher 

impact on reproductive success earlier in the breeding season when resources are less abundant and 

thermoregulatory demands are greater. We monitored nestling growth and survival in incubating female 

Dark-eyed Juncos (Junco hyemalis Linnaeus, 1758) injected with a mild antigen to stimulate antibody 

production and induce an energetic challenge. We found nests of treated females were more likely than 

controls to fail prior to six days post-hatch, coinciding with timing of peak antibody production. No effect of 

season was detected. Offspring mass did not differ between treatments prior to failure, suggesting failure 

was potentially due to differences in behaviour other than nestling feeding. Our findings indicate a trade-

off between immunity and nest survival that is not affected by time of season. Based on the results of our 

study, we suggest future research be directed toward how immune activation influences behaviours, 

including nest guarding and predator aggression, and mediates this trade-off. 

Keywords: Dark-eyed Junco, Junco hyemalis, reproductive trade-offs, seasonal effects, keyhole limpet 

hemocyanin, eco-immune 

Introduction 

Life history theory predicts a trade-off between current reproductive effort and survival and future 

reproduction (Harshman and Zera 2007). Indeed, experimentally increased reproductive effort has been 

shown to support this hypothesis (Smith 1958; Gustafsson and Pärt 1990; Hanssen et al. 2005). 

________________________ 
                                                   
2The material in this chapter was co-authored by Jessica Graham, Rachael Mady, and Timothy Greives. 
Jessica Graham has primary responsibility for experimental design, sample collection, running 
experiments, data collection, data analysis, and developing the first draft of this chapter. Rachael Mady 
assisted with sample collection and revisions of this chapter. Timothy Greives was the primary provider of 
funding for materials and assisted in sample collection, forming conclusions, and revisions of this chapter. 
This publication can be found under, “Graham, J.L., Mady, R.P., and Greives, T.J. 2017. Experimental 
immune activation using a mild antigen decreases reproductive success in free-living female Dark-eyed 
Juncos. Canadian Journal of Zoology, 95(4): 263-269.”  
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Reproduction is temporally separated from other energetically demanding life-history events, like molting 

and migration in birds, which increases the probability of adult and offspring survival (Hemborg and 

Lundberg 1998; Stutchbury et al. 2011). However, while there is separation of costly life-history events 

from each other, trade-offs with other energetically expensive processes still may occur within the 

breeding season. 

Activation of the immune system is energetically expensive (Demas et al. 1997; Martin et al. 

2003) and competing costs associated with reproduction and immune function has been found to result in 

a trade-off (Deerenberg et al. 1997; Hanssen et al. 2004; Hanssen et al. 2005; French et al. 2007; Martin 

et al. 2008). Immune system activation generally requires an individual to conserve energy for self-

maintenance (Adelman and Martin 2009), but offspring care requires energy for incubation, nestling 

feeding and defense from predators. A number of studies have measured the effects of immune system 

activation during the breeding season on adult survival (Moret and Schmid-Hempel 2000; Hanssen et al. 

2004), changes in offspring feeding rate (Råberg et al. 2000; Ardia 2005), and offspring quality and 

growth rates (Lozano and Ydenberg 2002; Stahlschmidt et al. 2013), yet ultimate effects on nest survival, 

particularly under activation of the humoral immune response, are not as well studied (Ilmonen et al. 

2000; Råberg et al. 2000; Bonneaud et al. 2003)  

In seasonally breeding species early breeders often have greater reproductive success (Perrins 

1970; Bourdon and Brinks 1982; Olsson and Shine 1997; Dawson and Clark 2000; Lepage et al. 2000; 

Doody et al. 2004). However, cool temperatures increasing thermoregulatory demands combined with 

reduced food availability early in the season may reduce energy available for other energetically 

expensive processes, like immune system activation(Kelley 1980; Maniero and Carey 1997; Cichoń et al. 

2002; Ardia 2005). In generalist species, like the Dark-eyed Junco (Junco hyemalis Linnaeus, 1758), 

parents feed their offspring primarily arthropods (Nolan et al. 2002) which have a peak in abundance 

during the breeding season (Pérez et al. 2016). Adult Dark-eyed Juncos consume both insects and 

vegetable matter during the summer (Nolan et al. 2002). High numbers of insects and the increase in 

vegetable matter consumption later in the season (Nolan et al. 2002; Ardia 2005) may allow females to 

compensate for increased energetic demands. Therefore, we hypothesize this trade-off may be amplified 

for early breeding individuals, resulting in reduced ability to handle an energetically demanding immune 
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challenge. As a result, early breeding individuals would have significantly reduced offspring survival 

compared to later in the season.  

Here, we experimentally induced activation of the humoral immune response and recorded 

effects on offspring growth and nest survival in a ground nesting songbird, the Dark-eyed Junco (Junco 

hyemalis). Specifically, we injected incubating females in a free-living population with keyhole limpet 

hemocyanin (KLH), a relatively mild antigen that activates the humoral immune response (Lee 2006; 

O’Neal et al. 2011) and has not been found to elicit sickness behaviours, though evidence of this across 

taxa is limited (Demas et al. 1997). By injecting females during the incubation stage, we ensured that 

antibody production would occur during the energetically expensive offspring rearing phase, as this dose 

produces a measureable immune response by 11 days post-injection in the Dark-eyed Junco and other 

avian species (Hasselquist et al. 1999; O’Neal et al. 2011). We hypothesize that energetic costs of 

upregulation of the humoral immune response will reduce offspring survival. Specifically, we predict that 

females exposed to a mild antigen would have smaller nestlings and successfully rear fewer offspring 

than females that were not exposed to an immune challenge. We further predicted that this trade-off 

would be more exaggerated early in the breeding season, with greater reduction in nest survival, 

compared to nests initiated later in the season when temperatures are milder and resources more 

abundant (Ardia 2005).  

 
Materials and Methods 

All procedures used in this study were approved by the NDSU Institutional Animal Care and Use 

Committee (Protocol # A13063). Capture of birds was conducted under permit # 47553 from Virginia 

Department of Game and Fish. 

 

Study Organism 

The Dark-eyed Junco (Junco hyemalis carolinensis) is a medium sized sparrow that nests on the 

ground, making natural nests easy to find and monitor (Nolan et al. 2002). The population at and around 

Mountain Lake Biological Station (MLBS) in Giles County, Virginia, USA has been studied since 1983 and 

nest failure (i.e. no young fledge) on average is 60.3 ± 4.2% (mean ± SEM), though significant year to 

year variation occurs, with annual failure rates prior to fledging ranging from 20% – 85% (Nolan et al. 
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2002; Clotfelter et al. 2007). This population is also multi-brooded, with females capable of having up to 4 

successful nests in one breeding season (Nolan et al. 2002). The nesting period of the junco includes 1 

day for each egg laid (modal clutch size = 4) followed by 12 days of incubation typically beginning the 

same day the last egg is laid. Hatch day (nestling age 0) occurs on day 12 of incubation followed by 11–

12 days in the nest. Fledging occurs at nestling age 11-12 (Nolan et al. 2002).  

 
Field Methods 

We searched for nests at and around the Mountain Lake Biological Station over the course of two 

years (April 21 to June 30, 2014 and April 24 to July 15, 2015). Nests found during the building or egg 

laying stage (n = 34) were checked regularly for the onset of incubation. Incubating females were 

captured and injected on day 6, the midpoint, of the incubation period. For nests found with unknown 

incubation initiation dates (n = 14), females were captured and injected the morning following finding the 

nests; the date of injection relative to incubation initiation was calculated after eggs hatched based on the 

known incubation period of this species (Nolan et al. 2002). Injection date in these females ranged from 

day 2 – 12 of incubation. Combined (known age nests and unknown age nests), the average day of 

incubation that injections were performed was day 6.18 ± 0.23 (mean ± SEM) of incubation. Average day 

of incubation for injections was 6.62 ± 0.23 for saline injected females (range: 3 – 12 days) and 5.78 ± 

0.24 for immune challenged females (range 2 – 10 days).  

To investigate seasonal effects, nests were assigned as early (first nesting attempt of the season) 

or late (second or later attempt of the season). Intensive nest searching was conducted by members of 

the field crew to strengthen ability to correctly assign early vs. late nesting attempts for all females in the 

population. In some cases a female’s actual first nest attempt may have been missed if it was not found 

prior to depredation or abandonment. Thus, nests of all females found after the first known re-nest 

observed in the population (first egg date of earliest re-nest: May 20, 2014; May 11, 2015) were 

considered to be late nests, and nests that were initiated prior to the first known re-nest in the population 

were considered early nests.  

On the date of injection, females were captured off the nest (0538–1011h) using a 6 m mist net or 

directly off the nest with a butterfly net. Upon capture, females were weighed to the nearest 0.1 g (Pesola 

spring scale, 30 g, Pesola AG), tarsus length to the nearest 0.1 mm (SPI dial plastic caliper, 150mm, 
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AVINET, Inc), wing length to the nearest 0.5 mm (Economy wing ruler, 15cm, AVINET, Inc.), and clutch 

size was recorded. Each female was given a single intramuscular injection of 100 μl of 1 mg ml-1 Keyhole 

Limpet Hemocyanin (KLH, Enzo Life Sciences, Lot # 01091429, n = 26) in 1 mL of Freund’s incomplete 

adjuvant (Thermo-Scientific 77145, Lot # OJ190038) or a saline control (physiological saline: 0.9%, n = 

22)(O’Neal et al. 2011). Freund’s incomplete adjuvant can magnify antibody production in response to an 

antigen (Dixon et al. 1966; French et al. 1970); thus saline was chosen as a control so comparisons could 

be made between immune challenged and non-immune challenged birds. Previous work in songbirds, 

including juncos, indicates a significant increase in KLH-specific antibodies in response to KLH in 

Freund’s incomplete adjuvant approximately 6 days post-injection that peaks approximately 12 days post-

injection (Hasselquist et al. 1999; O’Neal et al. 2011). Thus, this manipulation enabled us to address our 

hypothesis by increasing energy investment into immunity over the span of several days, rather than a 

single point in time (i.e. acute phase response). KLH was prepared for immunization following the rapid 

vortex method (Flies and Chen 2003). Females were assigned a treatment the day before injections. If 

only 1 female was to be injected, treatment was alternated to try and equalize sample size over the 

course of the season. On several occasions there were multiple injections (up to four) scheduled for a 

single morning. Females were randomly assigned to a treatment (equal in number if number of females 

was even), but nest failure sometimes occurred prior to the injection. We adjusted on a case by case 

basis to try and keep sample sizes as equal as possible without injecting all females with the same 

treatment in a single day. However, when this occurred multiple mornings in a row, and the nests 

assigned a saline injection failed both mornings, we ultimately ended up with a slightly uneven sample 

size. Due to the small number of females available for re-capture during the nestling phase (see results), 

we were unable to quantify antibody production or changes in adult mass; however, this dose has 

previously been shown to induce a robust response in Dark-eyed Juncos (O’Neal et al. 2011). 

Following injection, nests were monitored daily. Days nestlings were not weighed; nests were 

checked from a distance with binoculars to reduce nest visitation rates that may adversely influence nest 

failure. A nest was considered to have failed if all eggs or nestlings were missing. Hatch day was 

recorded and nestlings were weighed and measured on hatch day, 3 days post-hatch, 6 days post-hatch, 

and 11 days post-hatch, following the standardized protocol for this population. Nestlings that survived to 
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11 days post-hatch and subsequently not found in the nests were considered to have fledged 

successfully.  

Temperature data was supplied by Mountain Lake Biological Station’s long term data set. 

Temperature at the station is recorded every 30 min throughout the year, providing 48 data points per 

calendar day. For the purpose of our study, we restricted the temperatures included in the model to the 

breeding season (April 1 – June 30).  

 
Statistical Analyses 

To ensure groups did not differ prior to treatment, pre-treatment comparisons of female mass, 

wing length, tarsus length, clutch size, and clutch initiation date were analyzed using univariate ANOVA 

with treatment, nest attempt (early vs. late), and treatment by nest attempt interaction included as 

covariates. In nests that were successful through hatching, nestling mass was compared using a linear 

mixed-effects model performed using the free software R 3.2.2 (R Core Team 2015) with the package 

“lme4” (Bates et al. 2015) on day 3 and 6 post-hatch. Treatment, nest initiation day, and nest attempt 

were included as fixed effects and female ID was included as a random effect to control for multiple 

nestlings within each nest. Nest survival to hatching (i.e. 6 days post injection, when antibody levels begin 

to rise), 12 days post-injection (i.e. 6 days post-hatch, during peak antibody production) (Hasselquist et al. 

1999; O’Neal et al. 2011) and fledging success (nest failed vs nest fledged successfully) was analyzed 

using binomial logistic regressions. Treatment, year, and nest attempt (early vs late) were included as 

covariates in the model. These days were chosen in advance of data analysis and no other days were 

statistically analyzed to reduce the potential for type II error. Additionally, we analyzed temperature over 

the course of the breeding season using a linear mixed-effects model in R 3.2.2. Day of the year was 

included as a fixed effect and time of day was included as a random effect. Results were considered 

significant at α ≤ 0.05. Unless otherwise stated, statistical analyses were performed using IBM SPSS 

Statistics for Windows, Version 21.0 (IBM Corp., Armonk, NY, USA). 

 
Results 

Prior to treatment, no significant differences were observed in wing length, tarsus length, or clutch 

size (all p > 0.05, Table 1). Female mass did not differ between treatment groups (F1,44 = 2.27 p = 0.14) 



56 
 

and no treatment by nest attempt interaction on mass was observed (F1,44 = 0.33, p = 0.57). However, 

females on their first nest attempt were, on average, 0.91 g heavier than females on later nesting 

attempts (F1,44 = 7.82, p = 0.01, Table 1). Temperature increased significantly over the course of the 

breeding season in 2014 (F4367 = 3106.2, p < 0.001, Figure 7A) and 2015 (F4367 = 3714.9, p < 0.001, 

Figure 7B).  

 
  Mass (g) Wing (mm) Tarsus (mm) Clutch Size Clutch 

Initiation Day 

Early 
Saline 23.2 ± 0.3 77.9 ± 0.8 22.0 ± 0.2 3.8 ± 0.2 124.9 ± 4.1 

KLH 22.5 ± 0.3 77.7 ± 0.7 21.6 ± 0.2 3.9 ± 0.2 127.2 ± 3.9 

Late 
Saline 22.1 ± 0.3 78.4 ± 0.8 21.8 ± 0.2 3.7 ± 0.2 154.6 ± 4.1 

KLH 21.8 ± 0.3 77.7 ± 0.7 21.6 ± 0.2 3.8 ± 0.2 151.4 ± 3.6 

 

Thirteen of 22 saline injected females (59%) and 14 of 26 immune challenged females (54%) had 

nests survive to hatching (~6 days post-injection). No effect of treatment was observed on the proportion 

of nests that survived to hatching (χ2

1 
= 0.06, p = 0.80). Further, no effect of year (χ2

1 
= 0.48, p = 0.49), or 

season (early vs late nest) (χ2

1 
= 3.39, p = 0.07) was observed on likelihood of nest survival to hatching. 

The proportion of nests that survived to 6 days post-hatch significantly differed between treatments (χ2

1 
= 

4.21, p = 0.04, Figure 8), with nests of immune challenged females more likely to have failed; 8 of 22 

saline injected females (36%) and 3 of 26 immune challenged females (12%) still had active nests 6 days 

post-hatch (~12 days post-injection). Additionally, we observed a higher proportion of surviving nests for 

saline injected females compared to immune challenged females on days 5, 7, and 8 compared to day 6 

post-hatch, though no statistical analyses were performed on these days (Table 2). However, neither year 

(χ2

1 
= 0.59, p = 0.53) nor season (early vs late nest) (χ2

1 
= 1.45, p = 0.23) significantly affected nest 

success to 6 days post-hatch. 

Table 1. Morphometric and clutch size measurements for female Dark-eyed Juncos (Junco hyemalis 

Linnaeus, 1758) prior to injection grouped by treatment and season. 

Note: Treatment average ± 1 SEM shown in table. Combined, early season females were significantly 

heavier than late season females, but there was no difference in mass between treatments. 
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The effect of treatment seen 6 days post-hatch was no longer observed at fledging (treatment: χ2

1 

= 2.32, p = 0.13, Figure 9; year: χ2

1 
= 1.27, p = 0.26; nest attempt: χ2

1 
= 0.67, p = 0.41); 5 of 22 saline 

injected females (23%) and 2 of 26 immune challenged females (8%) had at least 1 nestling still alive at 

fledgling (~17 days post-injection). 

Nestling mass 3 days post-hatch (~9 days post-injection) did not significantly differ between 

treatments (F14 = 0.35, p =0.56, Table 3) or early and late nest attempts (F14 = 0.01, p = 0.92). There was 

also no effect of nest initiation date (F14 = 0.004, p = 0.95). Nestling mass 6 days post-hatch (~12 days 

post-injection) also did not differ, but only 3 nests for immune challenged females were still active at this 

time point (F7 < 0.001, p = 0.99, Table 3) or early and late nest attempts (F7 = 0.05, p = 0.83). There was 

also no effect of nest initiation date (F7 = 0.62, p = 0.45). 

Discussion 

Our findings support our hypothesis that activation of the humoral immune response with a mild 

antigen decreases offspring survival, demonstrating a trade-off between reproduction and immune 

function. We observed a significant reduction in nest survival to 6 days post-hatch for females treated with 

KLH in Freund’s incomplete adjuvant compared with saline treated females. Interestingly, the greatest 

extent of nest failure in immune challenged individuals occurred between hatch and 6 days post-hatch, a 

Figure 7. Temperature data from MLBS show an increase in temperature from April 1 to June 30 in 

2014 (A) and 2015 (B). 
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time period coinciding with increasing and peak antibody production (i.e. ~12 days following the 

challenge) (Hasselquist et al. 1999; O’Neal et al. 2011). Contrary to our predictions no effect of season 

(early versus late nest attempt) was observed. 

 

 

 

 

Figure 8. Proportion of nestling survival to 6 days post-hatch (i.e., coinciding with peak antibody 

production) was significantly lower for immune challenged females (n = 26) compared to saline 

injected females (n = 22).  

Figure 9. Saline injected females (n = 22) did not have significantly higher fledging success 

compared to immune challenged females (n = 26). 
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Nestling Age (Days post hatch) Saline Treated 
Immune 

Challenged Difference 

0 0.59 0.54 0.05 

1 0.55 0.42 0.13 

2 0.55 0.42 0.13 

3 0.50 0.31 0.19 

4 0.50 0.31 0.19 

5 0.50 0.23 0.27 

6 0.36 0.12 0.24 

7 0.36 0.08 0.28 

8 0.36 0.08 0.28 

9 0.27 0.08 0.19 

10 0.23 0.08 0.15 

11 0.23 0.08 0.15 

 

 
 

Mass 3 days post-hatch (g) Mass 6 days post-hatch (g) 

Saline 6.72 ± 0.21 13.45 ± 0.67 

KLH 6.99 ± 0.28 13.17 ± 0.31 

 

The significant reduction in nest survival seen at 6 days post-hatch corresponds with the peak in 

antibody production and the related energetic costs associated with activation of the humoral immune 

response (Demas et al. 1997; Hasselquist et al. 1999; O’Neal et al. 2011). Prior to hatching (< 6 days 

Table 2. Differences in proportion of surviving nests was highest from when nestlings were 5 days 

old to 8 days old, though the significant difference between immune challenged and control females 

was statistically analyzed when nestlings were 6 days old. 

Note: Bolded days indicate when saline injected females had a higher proportion of surviving nests 

compared to immune challenged females that was equal to or greater than the significant difference 

shown on day 6. 

Table 3. Average individual offspring mass 3 days (KLH: n = 36 nestlings, Saline: n = 35 nestlings) 

and 6 days (KLH: n = 13 nestlings, Saline: n = 27 nestlings) post-hatch did not significantly differ 

between treatment and control female Dark-eyed Juncos. 

Note: Mass reported as the average of all nestlings (mean ± 1 SEM). 



60 
 

post-injection) antibody titers would be undetectable, so we would predict no increased energetic 

demands due to immune system activation during the egg laying and incubation stage. As expected, 

there was no difference in survival to hatching observed between treatment and control females with 54% 

and 59% of nests surviving to hatch, respectively. For females whose nest successfully hatched, 62% of 

control nests were active for an additional 6 days post-hatch (8 of 13) compared to only 21% of the nests 

for immune challenged females that were still active to six days post-hatch (3 of 14), a time frame 

corresponding to increasing and peak antibody production (Hasselquist et al. 1999; O’Neal et al. 2011). 

Additionally, the highest difference in nest survival between saline injected and immune challenged 

females was from 5 to 8 days post-hatch, also corresponding with previously reported antibody 

production. Thus, our findings support that the difference seen at 6 days post-hatch was due to an effect 

of treatment. 

The reduction in body mass observed from early season to late season females is likely a result 

of later nesting females having already invested energy into early nest attempts (Kennamer and Hepp 

1987; Barzen and Serie 1990). We may not have observed a seasonal effect of nest survival because 

early breeding females were heavier than late breeding females, suggesting greater stored energy in the 

early season was equivalent to external resource availability later (Nagy et al. 2007). This would allow 

early breeders to utilize internal stores to support immune system activation earlier in the season (Ots et 

al. 2001; Eraud et al. 2005) while during later nests external energy resources are abundant (Ardia 2005). 

However, regardless of internal or external energy resources, our findings suggest that in this species 

activation of the immune system and investment in self-maintenance comes at the costs of investment in 

reproduction and reproductive success. This strategy may also be adaptive in other multi-brooded or 

ground nesting species. 

While we found clear differences in the number of active nests between immune challenged and 

saline treated females up to 6 days post-hatch, no difference in nest success was observed at fledging. 

This may be a result of a reduced sample size in both treatment groups due to high nest predation. Out of 

all females in the study, only 3 nests of immune challenged and 8 nests of saline treated females 

remained at 6 days post-hatch, thus we may lack the statistical power to detect a difference between 

treatment groups. Average yearly nest failure in this population of Dark-eyed Juncos is 60.3 ± 4.2%, but 
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ranges from 20% to 85% with up to 95% of nest failures being caused by predation (Nolan et al. 2002; 

Clotfelter et al. 2007). Failure rates in 2014 and 2015 were well above average, even in control females 

who had a 77% failure rate.  

One additional reason for a lack of observed treatment effect could be due to increased activity at 

the nest, attracting more predators as nestlings age. It has been shown that increases in parental activity 

at the nest after hatching cause a corresponding increase in daily predation rate in open nesting species 

(Martin et al. 2000) and feeding rate increases significantly with nestling age (Freed 1981; Ketterson et al. 

1992). Nest success in ground nesting birds also declines as small mammal population density increases 

(Ketterson et al. 1996; Schmidt 2003; Clotfelter et al. 2007). Therefore, the longer nests remained active 

the higher the likelihood of both control and treatment nest being discovered by predators, particularly in a 

high predation year. 

While this investigation found a significant effect of treatment on nest failure prior to the mid-point 

of the nestling rearing phase, the cause of nest failure in immune challenged females was not part of the 

current investigation; future work will be needed to address this. One possibility is that immune 

challenged females are reducing their feeding efficiency in response to an increase in energy 

expenditure. For example, if they are reducing feeding behavior to allocate more time to 

thermoregulation, nestlings may suffer as a consequence (Todd et al. 2016). If females allocate more 

energy to self-maintenance in response to an immune challenge, we would predict correlated reductions 

in mass and growth of offspring of treated females compared to controls (Ilmonen et al. 2000). In our 

study, nestling mass at days 3 and 6 post-hatch did not differ between treatments; however, both male 

and female Dark-eyed Juncos care for and feed nestlings (Nolan et al. 2002), thus an increase in male 

parental care may be capable of compensating for a decline in female parental care early in the nestling 

rearing stage. This effect has been seen in other species with bi-parental care where experimental 

reductions in female feeding efficiency induced reciprocal increases in male provisioning rates and 

nestling care (e.g. removal of fecal sacs, and time spent at nest)(Wright and Cuthill 1989; Markman et al. 

1995; Bonneaud et al. 2003; Paredes et al. 2005); c.f. (Ilmonen et al. 2000; Råberg et al. 2000; Sanz et 

al. 2000). Indeed, in one year of nestling care observations following female injection, we observed a 

trend toward males paired with immune challenged females increasing nest visitation rate, even though 
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females did not appear to be reducing nest visitation; however, due to high failure prior to recording, 

observed sample size was too small for analysis (J. Graham and R. Mady unpublished data). More work 

should be conducted to understand the effects of an immune challenge on female feeding and potential 

male compensation in non-cavity nesting species. 

Another possibility for the observed reduction in nest success in immune challenged females is 

reduced female aggression toward predators as a cost of activating the immune response. Female 

aggression is important for nest success in this species (Cain and Ketterson 2012) and, compared to 

males, females are more aggressive toward nest predators (Ketterson et al. 1996; Nolan et al. 2002). If 

an immune challenge alters aggressive behaviour in ground nesting females, then this may significantly 

increase nest predation risk. We would predict that if Dark-eyed Junco males are expending more energy 

to feed nestlings in response to decreased female parental effort (Wright and Cuthill 1989; Markman et al. 

1995; Bonneaud et al. 2003; Paredes et al. 2005), nest defense may decline, increasing likelihood of 

failure due to predation. However, to our knowledge, no work has investigated whether female aggression 

or response to predators is altered during activation of the humoral immune system. Future work is 

needed to clarify whether impacts of the humoral immune response on nest success is the direct result of 

an energetic trade-off leading to decreased feeding efficiency, or through indirect effects on non-energetic 

related behaviours in males and/or females.  

Activation of the immune response influences reproductive success and the findings of our study 

reinforce the importance of understanding the fitness consequences of immune system activation during 

energetically challenging life history stages. The few studies examining effects of adult humoral immune 

challenges on nest survival after reproduction has been initiated have found mixed results. This variation 

was likely due to differences in whether the humoral immune or acute phase response (e.g. fast-acting 

response to pathogens including sickness behavior, cytokine activation and hyper or hypothermia) was 

targeted and level of environmental pollution at the nest site (Ilmonen et al. 2000; Råberg et al. 2000; 

Bonneaud et al. 2003), suggesting further investigation in free-living populations is needed. 

In conclusion, for females that had already initiated reproduction, exposure to even a mild 

immune challenge, known to induce a humoral immune response, negatively impacted nest survival. Our 

data indicate that the cause of nest failure is not likely a result of offspring starvation. Thus it will be 
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important for future work to uncover the mechanisms, including changes in behaviour, driving the 

observed trade-off between activation of the immune system and care of offspring.  
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CHAPTER 5: EARLY BREEDING FEMALES EXHIBIT ACCELERATED TELOMERE SHORTENING 

 
Abstract 

Reproductive success is often highest in early seasonal breeders, yet relatively few individuals 

are observed breeding during this apparently optimal time. This suggests females likely incur costs by 

breeding early. We hypothesized that accelerated senescence may be one cost of breeding early. 

Telomeres, the repetitive DNA sequences on the ends of chromosomes, may be good proxies of 

biological aging as they shorten with age and in response to oxidative stress. Using historical data from a 

long-term study population of dark-eyed juncos (Junco hyemalis), we found earlier breeding females 

exhibited greater telomere loss compared with later breeding females, regardless of chronological age. 

High telomere attrition rates were correlated with cooler temperatures during the egg laying and 

incubation period, suggesting that challenging environmental conditions may be the primary cause of 

accelerated telomere attrition rates in early breeders. 

Keywords: Aging, Reproductive Timing, Telomeres 

Introduction 

In seasonally breeding species, individuals that breed earlier tend to enjoy greater reproductive 

success than those that breed later (Perrins 1970; Bourdon and Brinks 1982; Festa-Bianchet 1988; 

Landa 1992; Olsson and Shine 1997; Dawson and Clark 2000; Lepage et al. 2000; Doody et al. 2004). 

Early breeders may have higher reproductive success for several reasons, including the ability to fit more 

clutches or litters within a season, replace failed reproductive attempts before the season ends, and/or 

appropriately time offspring growth with peaks in food abundance (Ribble 1992; Rieger 1996; Williams 

2012b). In addition to these factors, early breeders also tend to produce larger offspring (Perrins 1970; 

Festa-Bianchet et al. 1997; Holand et al. 2006), which typically have higher overwinter survival and 

recruitment rates compared to smaller individuals (Krementz et al. 1989; Linden et al. 1992; Sedinger et 

al. 1995; Naef-Daenzer et al. 2001; Monrós et al. 2002; Low et al. 2015). However, despite these 

observed benefits of breeding early, most individuals breed later than the earliest breeders (Verhulst and 

Nilsson 2008). This suggests that while there may be significant reproductive benefits to breeding early, 

there are likely costs that delay seasonal reproduction in most of the population.  
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Costs associated with early breeding may be due to several factors, including reduced food 

availability (Perrins 1970; Bradbury and Vehrencamp 1977; Nilsson 1994), a reduction in future fecundity 

and survival (Visser and Lessells 2001; Hanssen et al. 2005), and additional energy expenditure as a 

result of exposure to colder spring temperatures (Speakman 2008; Visser et al. 2015). One potential cost 

of early reproduction that remains largely unexplored is accelerated senescence. Recent studies suggest 

that telomere dynamics may serve as useful biomarkers of senescence (Hau et al. 2015) as telomere 

length and loss rate have been shown to be predictive of longevity across a diverse array of taxa 

(Haussmann et al. 2003; Haussmann et al. 2005; Bize et al. 2009; Heidinger et al. 2012). Telomeres are 

repetitive, non-coding DNA sequences that form protective caps at the ends of linear eukaryotic 

chromosomes. While telomeres enhance genome integrity, they shorten during normal cell division and 

limit the lifespan of the cell (Blackburn 2005).  There is also evidence that stress exposure can shorten 

telomeres (Epel et al. 2004; Kotrschal et al. 2007; Haussmann and Marchetto 2010; Hau et al. 2015; 

Herborn et al. 2016). For example, harsh environmental conditions can lead to significant telomere loss 

while moderate conditions may reduce or even reverse telomere attrition (Angelier et al. 2013; Mizutani et 

al. 2013). 

Early breeding may increase telomere erosion through many routes. During the early stages of 

reproduction, females may have to expend additional energy to cope with cooler temperatures and 

reduced food availability (Ardia 2005; Pretzlaff et al. 2010; Graham, Mady, et al. 2017). Cooler 

temperatures can even lead to reduced food availability (Anthony et al. 1981; Schekkerman et al. 2003). 

In birds, females have been shown to lose body mass and significantly increase energy expenditure 

during colder weather (Conway and Martin 2000; Tulp and Schekkerman 2006; Tulp et al. 2009; Nord et 

al. 2010). Additionally, as early breeders have the potential to produce more offspring within a season 

(Perrins 1970; Ribble 1992), accelerated telomere attrition could occur due to increased reproductive 

output over the breeding season (Bauch et al. 2013). 

Observed variation in reproductive timing has been partially attributed to older or more 

experienced individuals tending to breed earliest (Perrins 1970; Mills 1973; Nol and Smith 1987; Perdeck 

and Cavé 1992; Sockman et al. 2004; Salvante et al. 2013b). Older individuals may be better able to pay 

costs associated with early reproduction because they are more experienced and better able to 
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accumulate the necessary resources to initiate reproduction (Verhulst and Nilsson 2008; Froy et al. 2013; 

Salvante et al. 2013b). Alternatively, older individuals may be more willing to pay higher costs of 

reproduction because they are likely to have fewer future reproductive opportunities (Bauer et al. In 

review; Pianka and Parker 1975; Bonneaud et al. 2004; Fischer et al. 2008). However, these studies are 

often cross-sectional, rather than following individuals across years. This makes it difficult to discern 

whether the relationship between age and timing of breeding is due to within-individual advancement of 

timing or higher quality individuals breeding earlier and living longer (Forslund and Pärt 1995; Wilson and 

Nussey 2010). Long-term studies with multiple observations from the same individuals across multiple 

years are necessary to better understand why older individuals tend to breed earlier (McCleery et al. 

2008; Froy et al. 2013). 

The goal of this study was to use longitudinal data to test hypotheses addressing chronological 

age related with molecular senescence in relation to variation in initiation of seasonal reproduction. Our 

study organism was the dark-eyed junco (Junco hyemalis), a medium sized, ground-nesting sparrow 

(Nolan et al. 2002). Data from this population (near Mountain Lake Biological Station in Pembroke, VA, 

USA) spans 34 years, making it possible to measure telomere lengths from the same individuals over 

multiple years (Nolan et al. 2002). First, we confirmed that breeding earlier increases reproductive 

success within a season by comparing timing of first clutch initiation with the total number of eggs laid and 

offspring fledged over the breeding season. Second, we asked whether chronological age was related to 

nest initiation date, as would be expected if birds breed progressively earlier as they age or if early 

breeding individuals have a longer lifespan. Third we tested whether telomere attrition is a cost of early 

breeding by examining changes in telomere length from one breeding season to the next in females with 

known first clutch initiation dates. Specifically, we predicted that females with earlier nest initiation dates 

would display greater annual telomere loss than females with later nest initiation dates. Finally, we used 

temperature data to determine whether average daily temperatures experienced during the egg laying 

and incubation stage of reproduction were correlated with telomere loss. We predicted that females 

experiencing cooler conditions would experience more telomere loss, particularly if they laid more eggs.  
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Materials and Methods 

Study Species  

 This study took place at and around the University of Virginia Mountain Lake Biological Station 

(MLBS), Salt Pond Mountain, Giles County, Virginia, USA (3722'32''N, 8032'20''W, elevation 1,160 

meters). Dark-eyed juncos are the most common ground-nesting bird in the study area and their 

population has been monitored since 1983 (Nolan et al. 2002). Early season trapping and nest searching 

begins in mid – late April each year. Trapping occurs in the same locations on the field site every year 

using mist nets and walk-in potter traps. Upon capture, individuals are banded with a numbered aluminum 

federal ID band. A unique color band combination is also used so individuals can be identified through 

binoculars.  

 
Determining Lay Date 

 In most years, a team of researchers searched the field site for nests from late April through mid-

July. If a nest was found after the female had started incubating, the day the female laid her first egg was 

determined by backdating from day of hatching (Nolan et al. 2002). Dark-eyed juncos are capable of 

having up to four successful nests within a season (Nolan et al. 2002). To be certain we were measuring 

the first egg of the season for each female, a conservative cut-off date for each year was defined as the 

day before the first known re-nest of the year (Graham, Mady, et al. 2017). To be able to compare first 

egg dates across multiple years, an individual’s first egg date is represented by the number of days 

before (-) or after (+) the population average for that year that she laid her first egg. The population 

average for first egg was calculated as the mean first egg date for all nests prior to the established cut-off 

date. We used 143 known age females (with first nests in two or more consecutive years) to address 

whether individual females breed progressively earlier as they age chronologically. Nests were included 

from 1983–2016. We additionally included the total number of eggs laid and number of successful 

fledglings in a single season as a measure of seasonal reproductive investment and success, 

respectively.  

 To be included in the telomere portion of the study, a banded female was required to have (1) 

blood samples collected in two or more consecutive years, and (2) a nest with a first egg of the season 

occurring before the annual cut-off in Year 1. Long term monitoring of the population allows for a large 
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proportion of the population to be of known age. Known age females were banded either as nestlings or 

juveniles. Additionally, one-year-old individuals have identifiable plumage characteristics and iris color 

which allows them to be reliably identified (Nolan et al. 2002). While most females were known age (n = 

83), we expanded our sample size to include females of unknown age (n = 23, for a total sample size of n 

= 106) when we were comparing nesting records from one year to the next within an individual. 

 
Telomere Measurements 

 Starting in 1990, blood samples were collected from the alar wing vein using heparinized 

microhematocrit capillary tubes. Longmire’s lysis buffer solution (1 mL) was added to the erythrocytes for 

long term storage at 2oC. Blood samples are included only for females from 1990 and later, as no blood 

samples were collected prior to that year. Avian erythrocytes are an ideal tissue for longitudinal telomere 

measurements as they are a nucleated, highly mitotic tissue that can be sampled with no harm to the bird 

(Nussey et al. 2014).  

 Genomic DNA was extracted from red blood cells using Macherey-Nagel Nucleospin Blood Kits 

(Macherey-Nagel, Bethlehem, PA, USA) (Bauer et al. In review; Heidinger et al. 2012; Bauer et al. 2016 

Aug 3). We added 100 µL of erythrocytes in Longmire’s solution to 100 µL of phosphate buffer solution 

and then followed the manufacturer’s instructions. DNA concentration and purity (260/280 ratios above 

1.7 and 260/230 ratios above 1.8) were verified using a Nanodrop 8000 spectrophotometer (Thermo 

Scientific, Waltham, MA, USA). 

Quantitative PCR (qPCR) was used to measure relative telomere length in extracted samples 

with respect to a single copy control gene (Glyceraldehyde-3-phosphate dehydrogenase, GAPDH) 

(Criscuolo et al. 2009) following methods adapted for the Dark-eyed Junco (Bauer et al. In review; Bauer 

et al. 2016 Aug 3). GAPDH primer sequences were: forward GAPDH (5’-

AACCAGCCAAGTACGATGACAT-3′) and reverse GAPDH (5′-CCATCAGCAGCAGCCTTCA-3′). 

Telomere primers were: forward tel1b (5’- CGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTTTGGGTT-

3’) and reverse tel2b (5’-GGCTTGCCTTACCCTTACCCTTACCCTTACCCTTACCCT-3’). Reaction 

volumes were 25 µL and contained 6 uL DNA (20 ng per well), 12.5 µL perfecta SYBR green supermix 

Low ROX (stratagene), and 200 nM/200 nM forward GAPDH/reverse GAPDH or 200 nM/200 nM forward 

tel1b/reverse tel2b. A standard curve (40, 20, 10, 5, and 2.5 ng) from a single reference sample was run 
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in triplicate on every plate to control for inter-plate variation. Females were randomized across plates to 

more reliably detect any potential differences between years, but all samples for a single female were run 

on the same plate in duplicate. GAPDH and telomere reactions were run separately. Reaction conditions 

for telomere plates were as follows: 10 min at 95oC; 27 cycles of 15 s at 95oC, 30 s at 58oC, and 30 s at 

72oC; and 1 min at 95oC, 30 s at 58oC, and 30 s 95oC. GAPDH plates were run under the following 

conditions: 10 min at 95oC; 40 cycles of 30 s at 95oC and 30 s at 60oC; and 1 min at 95oC, 30 s at 58oC, 

and 30 s 95oC.  

For each sample, the number of PCR cycles (Ct) to reach a threshold was measured. A standard 

curve was included on every plate to control for differences within and between plates. The 20 ng dilution 

reference sample was used to calculate intra- and inter-assay variation. Intra-assay coefficient of variation 

for Ct of telomere plates was 0.72 % and inter-assay coefficient of variation was 3.22 %. For GAPDH 

plates intra and inter-assay coefficient of variation for Ct was 0.23 % and 1.55 %, respectively. Average 

standard curve efficiency for telomere plates was 89.4 % (range: 85.5 – 93.5 %) and 93.8 % (range: 91.2 

– 98.0 %) for GAPDH plates. The ratio of telomere repeats (TTAGGG) to the number of copies of 

GAPDH, or T/S ratio, was used to calculate relative telomere length. The formula 2-ΔΔCt was used to 

calculate T/S ratio where ΔΔCt = (Ct 
telomere – Ct 

GAPDH) reference – (Ct 
telomere – Ct 

GAPDH) focal (Cawthon 

2002).  

 
Temperature Data 

 MLBS has its own weather station with historical data (from 1994–2015) freely available online 

(http://mlbs.virginia.edu/meteorological-data). Temperature (oC) is measured every 30 min year round. 

We analyzed average daily temperature during the egg laying and incubation stage (~15 days long) 

because this is a metabolically demanding time for females (Tulp et al. 2009). Egg production is 

energetically expensive (Williams 2012b) and incubation in this species is performed only by females with 

no partner feeding by the males (Nolan et al. 2002).  

 
Statistical Analysis 

 All statistical analyses were conducted in R version 3.2.2 (R Core Team 2015). To control for 

females having repeated measures, linear mixed effects models were run using package lme4 (Bates et 
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al. 2015). All models included female ID and year as random effects. For models involving change in 

telomere length, the plate a female’s blood samples were run on was included as a random effect. 

Significance was set at α = 0.05. 

 
Analysis 1: Does Reproductive Investment and Success Decline Across the Season? 

 To confirm that our population shows a seasonal decline in reproductive output and success, we 

ran two models using 147 females of known age. Our first model compared an individual’s reproductive 

output (measured as total number of eggs laid within a season) to her date of first nest initiation. The 

second model compared an individual’s reproductive success (measured as number of fledglings 

surviving to 11 d post-hatch) to her first nest initiation day. Female age was included as a covariate in 

both models. 

 
Analysis 2: Do Individual Females Breed Earlier as they Age? 

 To determine the relationship between age and nest initiation date, we ran a model to compare 

chronological age and nest initiation date (measured as number of days before (-) or after (+) the 

population average for that year). To determine if the decline in nest initiation date with age was due to 

birds breeding progressively earlier as they age (i.e., within-individual variation) or because early 

breeding individuals tend to live longer and thus predominantly make up older age classes (among-

individual variation), we ran a second model replacing age with two calculations of variation (Van de Pol 

and Wright 2009; Herborn et al. 2016). The among-individual value was calculated as the average age of 

a female across all sampling points. By calculating average age of an individual, this form of variation 

tests whether the pattern is driven by high quality individuals breeding earlier and living longer. 

Calculating within-individual variation as (age – average age) controls for among-individual variation by 

scaling individuals around 0 and focuses on whether birds breed earlier as they get older. We accounted 

for individual random slopes by including the within-individual component of age correlated with female ID 

as a random effect (Dingemanse and Dochtermann 2013). To be included in this analysis, females with 

nests in subsequent years were needed and not blood samples; thus, more females are included in this 

analysis compared to the telomere analyses. 
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Analysis 3: Do Early Breeding Females Exhibit Accelerated Telomere Loss?     

 We ran a model comparing when a female laid her first egg of the season to subsequent annual 

telomere loss. It is important to include starting telomere length when measuring telomere loss as longer 

telomeres have been found to show greater shortening rates compared to shorter telomeres (Nordfjäll et 

al. 2009). In order to include starting telomere length as a covariate, we calculated an individual’s change 

in telomere loss by correcting for the regression to the mean (Berry et al. 1984; Verhulst et al. 2013). 

Chronological age was originally included in the model, but was not significant (F1,120 = 0.002, p = 0.97), 

thus it was removed from subsequent analyses. Chronological age additionally reduced sample size (n = 

83 known age females and n = 23 unknown age females) without changing the significance of the other 

variables; thus, we removed it from the final model. The final model included 106 individual females.  

 
Analysis 4: Is Accelerated Telomere Loss Related to Environmental Conditions and/or Reproductive 

Output?  

 To test the hypothesis that change in telomere length may vary with total reproductive output (i.e., 

number of eggs laid in a season), we ran a model to compare number of eggs laid with change in 

telomere length. Alternatively, adverse environmental conditions experienced during the early breeding 

season may contribute to telomere loss, thus to test the hypothesis that thermoregulatory demand 

influence change in telomere length we additionally included average daily temperature during egg laying 

and incubation in the model. Temperature data were available from 1995–2016, which allowed us to 

analyze 89 separate females with at least one year of weather data and a blood sample from the 

following year. We also included the number of days between collection of samples in year 1 and 

samples in year 2 as a fixed effect in this and the previous model because not all samples were collected 

exactly 365 days apart.  

Results 

Reproductive Investment and Success Decline Across the Season 

 As predicted, earlier laying females laid more eggs within a season (F1, 329 = 10.81, p = 0.001, 

table 4) and successfully fledged more offspring (F1, 321 = 12.65, p < 0.001, table 4). Chronological age did 

not influence number of eggs laid or number of offspring fledged (both p > 0.95, table 4). This result 
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confirmed our population is suitable for addressing questions measuring potential costs of early 

reproduction. 

 
Individuals Breed Earlier as they Age 

We analyzed nesting records from 147 known age females who nested in the population for at 

least 2 consecutive years (max: 5 consecutive years). Our analysis found that females progressively laid 

their first clutch earlier each year they bred in the population (F1, 302 = 5.40, p = 0.02, table 4). Within-

individual variation was significant (F1, 196 = 11.66, p < 0.001, table 4), but among-individual variation had 

no effect (F1, 124 < 0.001, p = 0.98, table 4). This suggests the negative relationship between egg lay date 

and chronological age is driven by individuals breeding progressively earlier as they age. 

 

 
Dependent Variable Independent Variable B SE B 

Random 
Effects 

Analysis 
1 

Model 1: Eggs 

First Egg Date -0.09* 0.03 
Female ID 
Year 

Chronological Age 0.00 0.17 

Model 2: Fledglings 

First Egg Date -0.07* 0.02 
Female ID 
Year 

Chronological Age -0.01 0.12 

Analysis 
2 

Model 1: First Egg Date Chronological Age -0.75* 0.32 
Female ID 
Year 

Model 2: First Egg Date 

Among Individual 0.01 0.44 
Female ID 
Year 

Within Individual -1.60* 0.47 

Analysis 
3 

Model 1: Change in 
Telomere Length 

First Egg Date 0.01* 0.00 Female ID 
Year 
Plate Days Between Samples 0.00 0.00 

Analysis 
4 

Model 1: Change in 
Telomere Length 

Number of Eggs Laid -0.01 0.01 

Female ID 
Year 
Plate 

Average Temperature (OF) 0.03* 0.01 

Days Between Samples 0.00 0.00 

 

Table 4.Slope and standard error of slope for each model run. Bolded and “*” slope values are 

significant. Repeated measure from each model is listed under dependent variable and all random 

effects included in each model are listed. 
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Early Breeding Females Experience Greater Telomere Attrition  

With 267 blood samples from 106 females, we found that females breeding earlier in the season 

incurred greater telomere loss between subsequent breeding seasons (F1,146 = 8.43, p = 0.004, Fig. 10, 

table 4). The average number of days between collection of two samples was 371 (range: 263 – 472) and 

did not have a significant effect on change in telomere length (F1,99 = 1.41, p = 0.24, table 4). 

 
Greater Telomere Attrition is Related to Cooler Temperatures, but not Reproductive Investment 

Average daily temperature during the egg laying and incubation stage (range: 6.08 – 18.19oC) 

could be calculated for 89 females. Females that experienced lower daily temperatures during this period 

had greater annual telomere loss compared with females that nested during warmer periods (F1,79 = 5.89, 

p = 0.02, Fig. 11, table 4). As in the previous model, the number of days between samples did not 

influence change in telomere length (F1,65 = 2.13, p = 0.15, table 4). Interestingly, although earlier laying 

females laid more eggs within a season and successfully fledged more offspring, change in telomere 

length was not related to the number of eggs laid by the female that year (F1,117 = 1.82, p = 0.18).  

 

 

Figure 10. Earlier breeding females experienced higher rates of telomere loss from one breeding 

season to the next with respect to the rest of the population. Change in telomere length was corrected 

for the regression to the mean and was scaled to zero so loss is negative and gain is positive. The 

data in this figure is not corrected for the other variables included in the analysis. 
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Discussion 

The results of this study support our hypothesis that reproductive success declines across the 

season and the observation that early breeding females are older is due to individuals breeding earlier as 

they age rather than early breeding individuals making up the majority of older age classes because 

they’re of higher quality and, thus, live longer. We additionally found that early breeding females 

experience accelerated telomere loss compared to later breeding females, therefore suggesting females 

experience a molecular cost by breeding early in the season. We found additional support that this cost is 

related to cooler temperatures experienced during the first nesting attempt of the season, which is a time 

when reproductive investment is primarily controlled by the female. However, telomere dynamics (i.e., 

annual loss) do not appear to be influenced by reproductive investment or chronological age. 

We found that individual females in this population breed earlier as they age. This is important in 

helping distinguish age related changes in reproductive timing from higher quality individuals breeding 

earlier and living longer than low quality individuals (McCleery et al. 2008). Birds may breed earlier as 

they age because they increase their reproductive experience, which can lead to higher levels of 

reproductive hormones and earlier activation of the reproductive system (Wooller et al. 1990; Sockman et 

al. 2004; Angelier et al. 2007; Salvante et al. 2013b). This could additionally be related to the ability of 

Figure 11. Colder temperatures during the egg laying and incubation stages positively relate with 

attrition rates. The data in this figure is not corrected for the other variables included in the analysis. 
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older females to accumulate necessary resources more quickly through efficient foraging or pairing with 

familiar males (Weimerskirch 1992; Fowler 1995). 

Accelerated telomere loss in early breeding individuals suggests that a female’s reproductive 

timing decision includes trade-offs between telomere loss and reproductive success. In addition to 

increased telomere attrition in early breeding individuals, we also observed telomere lengthening in later 

breeding females. Telomere lengthening can occur via upregulated production of the enzyme telomerase, 

and has been documented in other studies (Ilmonen et al. 2008; Bize et al. 2009; Ujvari and Madsen 

2009; Turbill et al. 2012; Angelier et al. 2013; Mizutani et al. 2013). Telomere lengthening in later 

breeding females may be due to the ability to upregulate telomerase activity, perhaps via access to better 

resources, though future work on this topic is needed (Lin et al. 2012). Furthermore, while we found that 

females breed progressively earlier as they age, this trend didn’t hold true for all individuals. Delaying 

reproduction in one year could reduce the overall cost of breeding early the following year, but further 

work is needed to understand this relationship.  

We saw higher telomere loss in females experiencing cooler temperatures, which are more likely 

to occur early in the breeding season. Cold temperatures may increase oxidative stress via an increase in 

reactive oxygen species and a decrease in antioxidants. Females may be increasing reactive oxygen 

species (ROS) via shivering and increased food intake because of an increase in metabolic heat 

production (Selman et al. 2002; Stier et al. 2014). Increasing anti-oxidants neutralizes ROS and helps 

preserve telomere length (Liu et al. 2003; Tarry-Adkins et al. 2008), even when reproductive workload is 

experimentally increased (Beaulieu et al. 2011). However, under acute cold stress, non-hibernating 

mammals do not upregulate ROS detoxifying enzymes, which are important determinants of aging rate 

(Buzadžić et al. 1997; Teramoto et al. 1998). Because we were using historical samples, we were unable 

to measure anti-oxidant capacity, but anti-oxidant rich arthropods become more available later in the 

breeding season, when the first clutches begin hatching (Arnold et al. 2010) and may be unavailable to 

early breeding females during egg laying and incubation.  

Interestingly, accelerated aging was not related to reproductive investment. This is counter to the 

finding that females with 10d old nestlings had higher telomere attrition compared to females with failed 

nests (Bauch et al. 2013). The difference between species may be due to Bauch et al. (2013) studying a 
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single brooded sea bird. Nest failure in a single-brooded species would result in reduced reproductive 

investment, as the next reproductive attempt will be the following year. Contrary to this, the dark-eyed 

junco is multi-brooded and capable of having up to 4 successful nests within a single season (Nolan et al. 

2002); thus nearly all females will re-nest after a failed first attempt and continue to breed through the end 

of the season. Our finding instead suggests that the conditions experienced during reproduction are more 

important than the total number of offspring produced by female passerines within a season.  

Telomere loss and length are of increasing importance to understanding lifespan and longevity 

under varying conditions. Telomere loss can have significant effects on individuals, including shortened 

lifespan (Haussmann et al. 2005; Haussmann and Marchetto 2010). Furthermore, DNA repair 

mechanisms are not as effective in telomeric regions compared to other parts of the chromosome; thus, 

increased oxidative stress may result in senescence (Barja and Herrero 2000; von Zglinicki 2002). While 

we were unable to assess oxidative stress in our samples, the relationship between lower temperatures 

and increased telomere loss suggests greater oxidative stress in earlier laying females exposed to cooler 

temperatures. Thus, early breeders likely had shorter telomeres, which may cause them to die earlier 

(Fairbairn 1977; Brown and Brown 1999; Sheldon et al. 2003; Angelier et al. 2013; Mizutani et al. 2013). 

Our unique, longitudinal data set in a short-lived songbird demonstrates that regardless of 

chronological age, breeding early in the season comes with a significant molecular cost via telomere loss 

that may be a result of breeding when temperatures are cooler. Telomere dynamics may be a better 

predictor of reproductive timing and performance than chronological age (Bauer et al. In review; Bauch et 

al. 2013). There may additionally be molecular benefits to delayed reproduction, though this avenue 

requires further exploration.   

Acknowledgments 

The authors thank N. Gerlach for assistance navigating the database; R. Hanauer for providing 

housing in Indiana; S. Slowinski and A. Fudickar for taking time to show JLG around the Ketterson Lab 

space and samples; J. Kittilson for guidance during the many hours spent conducting qPCR; J. Hamilton 

and E. Nagy for assistance finding weather data; A. Sirman, A. Kucera, K. Needham, M. Angelucci, A. 

Ghimire, P. Klug, B. Kaiser, C. Egan, W. Reed, and N. Snyder for feedback during data analysis and the 



82 
 

writing process. N. Dochtermann and R. Royaute for incredibly helpful statistical advice. We additionally 

thank all past Junco crew members, without whom this study would not have been possible. 

 
Funding 

Funding for this project was provided by Sigma Xi: The Scientific Research Society through 

Grants-In-Aid of Research (awarded to JLG), NDSU Department of Biological Sciences Linz Family 

Ornithology Scholarship (awarded to JLG), American Ornithologists Union Hesse Research Award 

(awarded to CMB), Wilson Ornithological Society Louis Agassiz Fuertes Grant (awarded to CMB), North 

Dakota EPSCoR Doctoral Dissertation Assistantship (awarded to JLG), and the National Science 

Foundation (awarded to TJG; IOS-1257527 and EDK; most recently IOS-1257474). 

 
References 

Angelier F, Vleck CM, Holberton RL, Marra PP. 2013. Telomere length, non-breeding habitat and return  

rate in male American redstarts. Funct. Ecol. 27:342–350. doi:10.1111/1365-2435.12041. 

Angelier F, Weimerskirch H, Dano S, Chastel O. 2007. Age, experience and reproductive performance in  

a long-lived bird: a hormonal perspective. Behav. Ecol. Sociobiol. 61:611–621.  

doi:10.1007/s00265-006-0290-1. 

Anthony ELP, Stack MH, Kunz TH. 1981. Night roosting and the nocturnal time budget of the little brown  

bat, Myotis lucifugus: Effects of reproductive status, prey density, and environmental conditions.  

Oecologia 51:151–156. doi:10.1007/BF00540593. 

Ardia DR. 2005. Tree swallows trade off immune function and reproductive effort differently across their  

range. Ecology 86:2040–2046. doi:10.1890/04-1619. 

Arnold KE, Ramsay SL, Henderson L, Larcombe SD. 2010. Seasonal variation in diet quality:  

antioxidants, invertebrates and blue tits Cyanistes caeruleus. Biol. J. Linn. Soc. 99:708–717.  

doi:10.1111/j.1095-8312.2010.01377.x. 

Barja G, Herrero A. 2000. Oxidative damage to mitochondrial DNA is inversely related to maximum life  

span in the heart and brain of mammals. FASEB J. 14:312–318. 

Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. J. Stat.  

Softw. 67:1–48. doi:10.18637/jss.v067.i01. 



83 
 

Bauch C, Becker PH, Verhulst S. 2013. Telomere length reflects phenotypic quality and costs of  

reproduction in a long-lived seabird. In: Proc. R. Soc. B. Vol. 280. The Royal Society. p.  

20122540. [accessed 2017 Sep 1].  

http://rspb.royalsocietypublishing.org/content/280/1752/20122540.short. 

Bauer CM, Graham JL, Abolins-Abols M, Heidinger BJ, Ketterson ED, Greives TJ. In press. Does  

chronological or biological age drive seasonal reproductive timing? An investigation of clutch  

initiation and telomeres in known age birds. Am. Nat. 

Bauer CM, Heidinger BJ, Ketterson ED, Greives TJ. 2016 Aug 3. A migratory lifestyle is associated with  

shorter telomeres in a songbird (Junco hyemalis). The Auk:649–653. doi:10.1642/AUK-16-56.1. 

Beaulieu M, Reichert S, Le Maho Y, Ancel A, Criscuolo F. 2011. Oxidative status and telomere length in a  

long-lived bird facing a costly reproductive event. Funct. Ecol. 25:577–585. doi:10.1111/j.1365- 

2435.2010.01825.x. 

Berry DA, Eaton ML, Ekholm BP, Fox TL. 1984. Assessing Differential Drug Effect. Biometrics 40:1109– 

1115. doi:10.2307/2531162. 

Bize P, Criscuolo F, Metcalfe NB, Nasir L, Monaghan P. 2009. Telomere dynamics rather than age  

predict life expectancy in the wild. Proc. R. Soc. Lond. B Biol. Sci. 276:1679–1683.  

doi:10.1098/rspb.2008.1817. 

Blackburn EH. 2005. Telomeres and telomerase: their mechanisms of action and the effects of altering  

their functions. FEBS Lett. 579:859–862. doi:10.1016/j.febslet.2004.11.036. 

Bonneaud C, Mazuc J, Chastel O, Westerdahl H, Sorci G. 2004. Terminal Investment Induced by Immune  

Challenge and Fitness Traits Associated with Major Histocompatibility Complex in the House  

Sparrow. Evolution 58:2823–2830. doi:10.1111/j.0014-3820.2004.tb01633.x. 

Bourdon RM, Brinks JS. 1982. Calving date versus calving interval as a reproductive measure in beef  

cattle. J. Anim. Sci. 57:1412–1417. doi:10.2134/jas1983.5761412x. 

Bradbury JW, Vehrencamp SL. 1977. Social organization and foraging in emballonurid bats. Behav. Ecol.  

Sociobiol. 2:19–29. doi:10.1007/BF00299285. 

Brown CR, Brown MB. 1999. Fitness Components Associated with Laying Date in the Cliff Swallow. The  

Condor 101:230–245. doi:10.2307/1369986. 



84 
 

Buzadžić B, Blagojević D, Korać B, Saičić ZS, Spasić MB, Petrović VM. 1997. Seasonal Variation in the  

Antioxidant Defense System of the Brain of the Ground Squirrel (Citellus citellus) and Response  

to Low Temperature Compared with Rat. Comp. Biochem. Physiol. C Pharmacol. Toxicol.  

Endocrinol. 117:141–149. doi:10.1016/S0742-8413(97)00061-3. 

Cawthon RM. 2002. Telomere measurement by quantitative PCR. Nucleic Acids Res. 30:e47–e47.  

doi:10.1093/nar/30.10.e47. 

Cerchiara JA, Risques RA, Prunkard D, Smith JR, Kane OJ, Boersma PD. 2017. Magellanic penguin  

telomeres do not shorten with age with increased reproductive effort, investment, and basal  

corticosterone. Ecol. Evol. 7:5682–5691. doi:10.1002/ece3.3128. 

Conway CJ, Martin TE. 2000. Evolution of passerine incubation behavior: influence of food, temperature,  

and nest predation. Evolution 54:670–685. doi:10.1554/0014- 

3820(2000)054[0670:EOPIBI]2.0.CO;2. 

Criscuolo F, Bize P, Nasir L, Metcalfe NB, Foote CG, Griffiths K, Gault EA, Monaghan P. 2009. Real-Time  

Quantitative PCR Assay for Measurement of Avian Telomeres. J. Avian Biol. 40:342–347.  

doi:10.2307/30243887. 

Dawson RD, Clark RG. 2000. Effects of hatching date and egg size on growth, recruitment, and adult size  

of lesser scaup. The Condor 102:930–935. doi:10.1650/0010- 

5422(2000)102[0930:EOHDAE]2.0.CO;2. 

Dingemanse NJ, Dochtermann NA. 2013. Quantifying individual variation in behaviour: mixed-effect  

modelling approaches. J. Anim. Ecol. 82:39–54. doi:10.1111/1365-2656.12013. 

Doody JS, Georges A, Young JE. 2004. Determinants of reproductive success and offspring sex in a  

turtle with environmental sex determination. Biol. J. Linn. Soc. 81:1–16. doi:10.1111/j.1095- 

8312.2004.00250.x. 

Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, Cawthon RM. 2004. Accelerated  

telomere shortening in response to life stress. Proc. Natl. Acad. Sci. U. S. A. 101:17312–17315.  

doi:10.1073/pnas.0407162101. 

Fairbairn DJ. 1977. Why breed early? A study of reproductive tactics in Peromyscus. Can. J. Zool.  

55:862–871. doi:10.1139/z77-112. 



85 
 

Festa-Bianchet M. 1988. Birthdate and survival in bighorn lambs (Ovis canadensis). J. Zool. 214:653– 

661. doi:10.1111/j.1469-7998.1988.tb03764.x. 

Festa-Bianchet M, Jorgenson JT, Bérubé CH, Portier C, Wishart WD. 1997. Body mass and survival of  

bighorn sheep. Can. J. Zool. 75:1372–1379. doi:10.1139/z97-763. 

Fischer K, Perlick J, Galetz T. 2008. Residual reproductive value and male mating success: older males  

do better. Proc. R. Soc. Lond. B Biol. Sci. 275:1517–1524. doi:10.1098/rspb.2007.1455. 

Forslund P, Pärt T. 1995. Age and reproduction in birds — hypotheses and tests. Trends Ecol. Evol.  

10:374–378. doi:10.1016/S0169-5347(00)89141-7. 

Fowler GS. 1995. Stages of Age-Related Reproductive Success in Birds: Simultaneous Effects of Age,  

Pair-Bond Duration and Reproductive Experience. Integr. Comp. Biol. 35:318–328.  

doi:10.1093/icb/35.4.318. 

Froy H, Phillips RA, Wood AG, Nussey DH, Lewis S. 2013. Age-related variation in reproductive traits in  

the wandering albatross: evidence for terminal improvement following senescence. Ecol. Lett.  

16:642–649. doi:10.1111/ele.12092. 

Graham JL, Mady RP, Greives TJ. 2017. Experimental immune activation using a mild antigen decreases  

reproductive success in free-living female Dark-eyed Juncos (Junco hyemalis). Can. J. Zool.  

95:263–269. 

Hall ME, Nasir L, Daunt F, Gault EA, Croxall JP, Wanless S, Monaghan P. 2004. Telomere loss in relation  

to age and early environment in long-lived birds. Proc. R. Soc. Lond. B Biol. Sci. 271:1571–1576.  

doi:10.1098/rspb.2004.2768. 

Hanssen SA, Hasselquist D, Folstad I, Erikstad KE. 2005. Cost of reproduction in a long-lived bird:  

incubation effort reduces immune function and future reproduction. Proc. R. Soc. B Biol. Sci.  

272:1039–1046. doi:10.1098/rspb.2005.3057. 

Hau M, Haussmann MF, Greives TJ, Matlack C, Costantini D, Quetting M, Adelman JS, Miranda AC,  

Partecke J. 2015. Repeated stressors in adulthood increase the rate of biological ageing. Front.  

Zool. 12:4. doi:10.1186/s12983-015-0095-z. 

Haussmann MF, Marchetto NM. 2010. Telomeres: linking stress and survival, ecology and evolution. Curr  

Zool 56:714–727. 



86 
 

Haussmann MF, Winkler DW, O’Reilly KM, Huntington CE, Nisbet ICT, Vleck CM. 2003. Telomeres  

shorten more slowly in long-lived birds and mammals than in short–lived ones. Proc. R. Soc.  

Lond. B Biol. Sci. 270:1387–1392. doi:10.1098/rspb.2003.2385. 

Haussmann MF, Winkler DW, Vleck CM. 2005. Longer telomeres associated with higher survival in birds.  

Biol. Lett. 1:212–214. doi:10.1098/rsbl.2005.0301. 

Heidinger BJ, Blount JD, Boner W, Griffiths K, Metcalfe NB, Monaghan P. 2012. Telomere length in early  

life predicts lifespan. Proc. Natl. Acad. Sci. 109:1743–1748. doi:10.1073/pnas.1113306109. 

Herborn KA, Daunt F, Heidinger BJ, Granroth-Wilding HMV, Burthe SJ, Newell MA, Monaghan P. 2016.  

Age, oxidative stress exposure and fitness in a long-lived seabird. Funct. Ecol. 30:913–921.  

doi:10.1111/1365-2435.12578. 

Holand Ø, Mysterud A, Røed KH, Coulson T, Gjøstein H, Weladji RB, Nieminen M. 2006. Adaptive  

adjustment of offspring sex ratio and maternal reproductive effort in an iteroparous mammal.  

Proc. R. Soc. Lond. B Biol. Sci. 273:293–299. doi:10.1098/rspb.2005.3330. 

Ilmonen P, Kotrschal A, Penn DJ. 2008. Telomere Attrition Due to Infection. PLOS ONE 3:e2143.  

doi:10.1371/journal.pone.0002143. 

Kotrschal A, Ilmonen P, Penn DJ. 2007. Stress impacts telomere dynamics. Biol. Lett. 3:128–130.  

doi:10.1098/rsbl.2006.0594. 

Krementz DG, Nichols JD, Hines JE. 1989. Postfleding Survival of European Starlings. Ecology 70:646– 

655. doi:10.2307/1940216. 

Landa K. 1992. Seasonal Declines in Offspring Fitness and Selection for Early Reproduction in Nymph- 

Overwintering Grasshoppers. Evolution 46:121–135. doi:10.1111/j.1558-5646.1992.tb01989.x. 

Lepage D, Gauthier G, Menu S. 2000. Reproductive consequences of egg-laying decisions in snow  

geese. J. Anim. Ecol. 69:414–427. doi:10.1046/j.1365-2656.2000.00404.x. 

Lin J, Epel E, Blackburn E. 2012. Telomeres and lifestyle factors: Roles in cellular aging. Mutat. Res. Mol.  

Mech. Mutagen. 730:85–89. doi:10.1016/j.mrfmmm.2011.08.003. 

Linden M, Gustafsson L, Part T. 1992. Selection on Fledging Mass in the Collared Flycatcher and the  

Great Tit. Ecology 73:336–343. doi:10.2307/1938745. 

 



87 
 

Liu L, Trimarchi JR, Navarro P, Blasco MA, Keefe DL. 2003. Oxidative Stress Contributes to Arsenic- 

induced Telomere Attrition, Chromosome Instability, and Apoptosis. J. Biol. Chem. 278:31998– 

32004. doi:10.1074/jbc.M303553200. 

Low M, Arlt D, Pärt T, Öberg M. 2015. Delayed timing of breeding as a cost of reproduction. J. Avian Biol.  

46:325–331. doi:10.1111/jav.00623. 

McCleery RH, Perrins CM, Sheldon BC, Charmantier A. 2008. Age-specific reproduction in a long-lived  

species: the combined effects of senescence and individual quality. Proc. R. Soc. Lond. B Biol.  

Sci. 275:963–970. doi:10.1098/rspb.2007.1418. 

Mills JA. 1973. The Influence of Age and Pair-Bond on the Breeding Biology of the Red-Billed Gull Larus  

novaehollandiae scopulinus. J. Anim. Ecol. 42:147–162. doi:10.2307/3409. 

Mizutani Y, Tomita N, Niizuma Y, Yoda K. 2013. Environmental perturbations influence telomere  

dynamics in long-lived birds in their natural habitat. Biol. Lett. 9:20130511.  

doi:10.1098/rsbl.2013.0511. 

Monaghan P, Haussmann MF. 2006. Do telomere dynamics link lifestyle and lifespan? Trends Ecol. Evol.  

21:47–53. doi:10.1016/j.tree.2005.11.007. 

Monrós JS, Belda EJ, Barba E. 2002. Post-fledging survival of individual great tits: the effect of hatching  

date and fledging mass. Oikos 99:481–488. doi:10.1034/j.1600-0706.2002.11909.x. 

Naef-Daenzer B, Widmer F, Nuber M. 2001. Differential post-fledging survival of great and coal tits in  

relation to their condition and fledging date. J. Anim. Ecol. 70:730–738. doi:10.1046/j.0021- 

8790.2001.00533.x. 

Nilsson J-Å. 1994. Energetic Bottle-Necks During Breeding and the Reproductive Cost of Being Too  

Early. J. Anim. Ecol. 63:200–208. doi:10.2307/5595. 

Nol E, Smith JNM. 1987. Effects of Age and Breeding Experience on Seasonal Reproductive Success in  

the Song Sparrow. J. Anim. Ecol. 56:301–313. doi:10.2307/4816. 

Nolan V, Ketterson ED, Cristol DA, Rogers CM, Clotfelter ED, Titus RC, Schoech SJ, Snajdr E. 2002.  

Dark-eyed junco (Junco hyemalis). Poole A, Gill F, editors. Birds N. Am. Online.  

doi:10.2173/bna.716. [accessed 2014 Jul 23].  

http://bna.birds.cornell.edu/bna/species/716/articles/introduction. 



88 
 

Nord A, Sandell MI, Nilsson J-Å. 2010. Female zebra finches compromise clutch temperature in  

energetically demanding incubation conditions. Funct. Ecol. 24:1031–1036. doi:10.1111/j.1365- 

2435.2010.01719.x. 

Nordfjäll K, Svenson U, Norrback K-F, Adolfsson R, Lenner P, Roos G. 2009. The Individual Blood Cell  

Telomere Attrition Rate Is Telomere Length Dependent. PLOS Genet. 5:e1000375.  

doi:10.1371/journal.pgen.1000375. 

Nussey DH, Baird D, Barrett E, Boner W, Fairlie J, Gemmell N, Hartmann N, Horn T, Haussmann M,  

Olsson M, et al. 2014. Measuring telomere length and telomere dynamics in evolutionary biology and  

ecology. Methods Ecol. Evol. 5:299–310. 

Olsson M, Pauliny A, Wapstra E, Blomqvist D. 2010. Proximate determinants of telomere length in sand  

lizards (Lacerta agilis). Biol. Lett. 6:651–653. doi:10.1098/rsbl.2010.0126. 

Olsson M, Shine R. 1997. The seasonal timing of oviposition in sand lizards (Lacerta agilis): why early  

clutches are better. J. Evol. Biol. 10:369–381. doi:10.1046/j.1420-9101.1997.10030369.x. 

Perdeck AC, Cavé AJ. 1992. Laying Date in the Coot: Effects of Age and Mate Choice. J. Anim. Ecol.  

61:13–19. doi:10.2307/5504. 

Perrins CM. 1970. The timing of birds‘ breeding seasons. Ibis 112:242–255. doi:10.1111/j.1474- 

919X.1970.tb00096.x. 

Pianka ER, Parker WS. 1975. Age-Specific Reproductive Tactics. Am. Nat. 109:453–464. 

Plot V, Criscuolo F, Zahn S, Georges J-Y. 2012. Telomeres, Age and Reproduction in a Long-Lived  

Reptile. PLOS ONE 7:e40855. doi:10.1371/journal.pone.0040855. 

Pretzlaff I, Kerth G, Dausmann KH. 2010. Communally breeding bats use physiological and behavioural  

adjustments to optimise daily energy expenditure. Naturwissenschaften 97:353–363.  

doi:10.1007/s00114-010-0647-1. 

R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical  

Computing, Vienna, Austria. URL https://www.R-project.org. 

Ribble DO. 1992. Lifetime Reproductive Success and its Correlates in the Monogamous Rodent,  

Peromyscus californicus. J. Anim. Ecol. 61:457–468. doi:10.2307/5336. 

 



89 
 

Rieger JF. 1996. Body Size, Litter Size, Timing of Reproduction, and Juvenile Survival in the Uinta  

Ground Squirrel, Spermophilus armatus. Oecologia 107:463–468. 

Salvante KG, Dawson A, Aldredge RA, Sharp PJ, Sockman KW. 2013. Prior Experience with  

Photostimulation Enhances Photo-Induced Reproductive Response in Female House Finches. J.  

Biol. Rhythms 28:38–50. doi:10.1177/0748730412468087. 

Schekkerman H, Tulp I, Piersma T, Visser GH. 2003. Mechanisms promoting higher growth rate in arctic  

than in temperate shorebirds. Oecologia 134:332–342. doi:10.1007/s00442-002-1124-0. 

Sedinger JS, Flint PL, Lindberg MS. 1995. Environmental Influence on Life-History Traits: Growth,  

Survival, and Fecundity in Black Brant (Branta Bernicla). Ecology 76:2404–2414.  

doi:10.2307/2265816. 

Selman C, Grune T, Stolzing A, Jakstadt M, McLaren JS, Speakman JR. 2002. The consequences of  

acute cold exposure on protein oxidation and proteasome activity in short-tailed field voles,  

microtus agrestis. Free Radic. Biol. Med. 33:259–265. doi:10.1016/S0891-5849(02)00874-2. 

Sheldon BC, Kruuk LEB, Merilä J, Crespi B. 2003. Natural selection and inheritance of breeding time and  

clutch size in the collared flycatcher. Evolution 57:406–420. doi:10.1554/0014- 

3820(2003)057[0406:NSAIOB]2.0.CO;2. 

Sockman KW, Williams TD, Dawson A, Ball GF. 2004. Prior Experience with Photostimulation Enhances  

Photo-Induced Reproductive Development in Female European Starlings: A Possible Basis for  

the Age-Related Increase in Avian Reproductive Performance. Biol. Reprod. 71:979–986.  

doi:10.1095/biolreprod.104.029751. 

Speakman JR. 2008. The physiological costs of reproduction in small mammals. Philos. Trans. R. Soc.  

Lond. B Biol. Sci. 363:375–398. doi:10.1098/rstb.2007.2145. 

Stier A, Massemin S, Criscuolo F. 2014. Chronic mitochondrial uncoupling treatment prevents acute cold- 

induced oxidative stress in birds. J. Comp. Physiol. B 184:1021–1029. doi:10.1007/s00360-014- 

0856-6. 

Tarry-Adkins JL, Martin-Gronert MS, Chen J-H, Cripps RL, Ozanne SE. 2008. Maternal diet influences  

DNA damage, aortic telomere length, oxidative stress, and antioxidant defense capacity in rats.  

FASEB J. 22:2037–2044. doi:10.1096/fj.07-099523. 



90 
 

Teramoto S, Uejima Y, Kitahara S, Ito H, Ouchi Y. 1998. Effect of Whole Body Cold Stress on Glutathione  

Metabolism in Young and Old Mice. J. Clin. Biochem. Nutr. 24:69–77. doi:10.3164/jcbn.24.69. 

Tulp I, Schekkerman H. 2006. Time allocation between feeding and incubation in uniparental arctic- 

breeding shorebirds: energy reserves provide leeway in a tight schedule. J. Avian Biol. 37:207– 

218. doi:10.1111/j.2006.0908-8857.03519.x. 

Tulp I, schekkerman H, Bruinzeel LW, Jukema J, Visser GH, piersma T. 2009. Energetic Demands During  

Incubation and Chick Rearing in a Uniparental and a Biparental Shorebird Breeding in the High  

Arctic. The Auk 126:155–164. doi:10.1525/auk.2009.07181. 

Turbill C, Smith S, Deimel C, Ruf T. 2012. Daily torpor is associated with telomere length change over  

winter in Djungarian hamsters. Biol. Lett. 8:304–307. doi:10.1098/rsbl.2011.0758. 

Ujvari B, Madsen T. 2009. Short Telomeres in Hatchling Snakes: Erythrocyte Telomere Dynamics and  

Longevity in Tropical Pythons. PLOS ONE 4:e7493. doi:10.1371/journal.pone.0007493. 

Van de Pol M, Wright J. 2009. A simple method for distinguishing within-versus between-subject effects  

using mixed models. Anim. Behav. 77:753–758. 

Verhulst S, Aviv A, Benetos A, Berenson GS, Kark JD. 2013. Do leukocyte telomere length dynamics  

depend on baseline telomere length? An analysis that corrects for ‘regression to the mean’. Eur.  

J. Epidemiol. 28:859–866. 

Verhulst S, Nilsson J-Å. 2008. The timing of birds’ breeding seasons: a review of experiments that  

manipulated timing of breeding. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363:399–410.  

doi:10.1098/rstb.2007.2146. 

Visser ME, Gienapp P, Husby A, Morrisey M, Hera I de la, Pulido F, Both C. 2015. Effects of Spring  

Temperatures on the Strength of Selection on Timing of Reproduction in a Long-Distance  

Migratory Bird. PLOS Biol. 13:e1002120. doi:10.1371/journal.pbio.1002120. 

Visser ME, Lessells CM. 2001. The costs of egg production and incubation in great tits (Parus major).  

Proc. R. Soc. Lond. B Biol. Sci. 268:1271–1277. doi:10.1098/rspb.2001.1661. 

Weimerskirch H. 1992. Reproductive Effort in Long-Lived Birds: Age-Specific Patterns of Condition,  

Reproduction and Survival in the Wandering Albatross. Oikos 64:464–473. doi:10.2307/3545162. 

 



91 
 

Williams TD. 2012. Physiological adaptations for breeding in birds. Princeton: Princeton University Press.  

Wilson AJ, Nussey DH. 2010. What is individual quality? An evolutionary perspective. Trends Ecol. Evol.  

25:207–214. doi:10.1016/j.tree.2009.10.002. 

Wooller RD, Bradley JS, Skira IJ, Serventy DL. 1990. Reproductive Success of Short-Tailed Shearwaters  

Puffinus tenuirostris in Relation to Their Age and Breeding Experience. J. Anim. Ecol. 59:161– 

170. doi:10.2307/5165. 

von Zglinicki T. 2002. Oxidative stress shortens telomeres. Trends Biochem. Sci. 27:339–344.  

doi:10.1016/S0968-0004(02)02110-2. 

  



92 
 

CHAPTER 6: CONCLUSION 

Seasonal bouts of reproduction are timed so that offspring are born when conditions are optimal 

for raising young. Photoperiod is the initial cue for priming the reproductive system to breed at the 

appropriate time each season, but the variation in precise reproductive timing is less well understood. 

This lack of understanding of the mechanisms underlying variation in reproductive timing is particularly 

true in females, who ultimately make the decision of when offspring are born. In addition to the variation 

seen in reproductive timing, the few, earliest breeding individuals tend to produce the most and the 

largest offspring. However, our understanding of the costs that prevent most individuals from breeding at 

this time are not well understood. The work described here aimed to 1) identify potential interactions 

between endogenous rhythms and reproductive timing behavior and physiology in free-living organisms 

and 2) identify reproductive costs of individual variation in timing of breeding.  

In Chapter 2, I examined the relationship between circadian behavior (i.e., daily onset of activity) 

and reproductive timing in two free-living species of songbirds. I found support for my hypothesis that 

variation in daily rhythms is an underlying mechanism driving individual variation in seasonal onset of 

timing of breeding. In both the North American dark-eyed junco (Junco hyemalis) and the European great 

tit (Parus major), females who departed from the nest earliest in the morning also laid their first egg 

earliest in the season. To continue to understand how circadian behavior, like daily activity onset, is 

influenced by an individual’s physiology, I performed GnRH-challenges in pre-breeding and incubating 

female dark-eyed juncos. I found that females departing from the nest earlier had higher maximal levels 

of the sex-steroid hormone estradiol, supporting my hypothesis that variation in maximum E2 levels are 

related with female activity onset during the breeding season (Chapter 3). These results suggest that 

individual variation in mechanisms regulating circadian rhythms are likely to play an important role in 

determining which females breed earliest. Circadian behaviors, however, are influenced by many 

variables, including maximal hormone levels. These findings, combined with prior research showing 

earlier activation of reproductive hormones in reproductively experienced individuals and shifts toward 

earlier activity onset with age could additionally explain why older females tend to breed earliest. 

In addition to understanding the mechanisms that lead to precise decision making in reproductive 

timing, I also aimed to address costs associated with early reproduction. To test the hypothesis that 
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energetic costs of upregulation of the humoral immune response will reduce offspring survival and have a 

disproportionately higher impact on reproductive success earlier in the breeding season (Chapter 4), I 

gave an immune challenge or control injection to incubating female dark-eyed juncos. I found that a mild 

immune challenge led to significant nest failure in both early and late breeding females compared to 

controls. While increasing energetic demands did not affect offspring survival of early breeders more so 

than late breeders, I decided to examine how biological aging of the female could be a cost of early 

reproduction. I used a long-term study population of dark-eyed juncos to test the hypothesis that 

individuals that breed earlier have higher rates of telomere loss (Chapter 5). While females breed earlier 

as they age chronologically, the earliest breeders experience greater annual telomere attrition compared 

to late breeders. This could not be attributed to the number of eggs laid within a season, but was 

correlated with cooler average daily temperatures during egg laying and incubation; a period of time when 

females provide most of offspring care and experiencing high energetic demands. These findings suggest 

early breeding females are experiencing costs of early reproduction through telomere loss, which may 

lead to reductions in overwinter survival under harsh conditions.   

There is an abundance of research on the adaptation of organisms to climate change (Parmesan 

2006; Moore and Huntington 2008; Moritz et al. 2008; Visser 2008; Bickford et al. 2010). In particular with 

respect to reproduction, which ultimately determines survival of a species [Amphibians, (Beebee 1995; 

Blaustein et al. 2001); Birds, (Crick et al. 1997); Insects, (Visser and Holleman 2001; Bale et al. 2002); 

Mammals,(Réale et al. 2003; Post and Forchhammer 2008; Bronson 2009; Stirling and Derocher 2012); 

Plants, (Myneni et al. 1997)]. Reproduction occurs in periodic bouts for many tropical, temperate, and  

arctic species and it is important for those species to use environmental cues to time reproduction with 

optimal conditions for offspring rearing (Baker 1938; Hau 2001; Bronson 2009). While organisms should 

time reproduction to occur during this optimal time, few individuals take advantage of highest reproductive 

success by breeding when conditions produce highest fitness (Perrins 1970). Our findings suggest that 

circadian timing of behavior and physiology are important mechanisms underlying observed individual 

variation in reproductive timing. As circadian rhythms are highly conserved across taxa (Dunlap et al. 

2004), these results are broadly applicable and are worthy of further study in many organisms. 
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Furthermore, this research increases our understanding of how selection has shaped individual 

variation in timing of breeding. My findings under Aim 2 suggest that early breeding females suffer from 

molecular costs of early reproduction. The inability of early breeding females to prevent telomere loss 

warrants future research on seasonal changes in antioxidant availability (Arnold et al. 2010) and how 

levels of reactive oxygen species change under cold stress when females are allocating resources toward 

reproduction. A better understanding of the proximate and ultimate mechanisms regulating these 

decisions, and the potential costs and benefits of early or late breeding, are necessary to enable 

understanding of how species’ adapt to their environment. At a time when animals are being exposed to 

rapidly changing environments via climate change and other human-induced factors, this research will aid 

in understanding the ability of animals to adaptively alter timing of breeding. 
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