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ABSTRACT 

A paradigm shift has occurred in the Information and Communication Technology sector. 

The main obstacle to relegate complex and sensitive tasks is not the inadequate speed and 

unsatisfactory computing power of the existing machines. However, the inability to design and 

implement the systems, with a desirable degree of confidence in the correctness and reliability, 

under different circumstances, has crept in to be the primary concerns in achieving high 

performance. The hardware and software systems are growing inevitably in scale and 

functionality, such as cloud computing systems and Data Center (DC). In the said perspective, 

the complexity of the systems is also increasing. The likelihood of elusive errors is directly 

proportional to the complexity of the systems that also increase the cost of errors while the 

systems are operational. In large scale systems the density of computational devices is in order of 

tens of thousands of servers. Moreover, the effects of errors and miscalculations are substantial. 

Furthermore, if the specified quality of service is not delivered by the cloud service providers, 

then the reputation may fall down and users will not use the services, resulting in huge financial 

lose. Therefore, the reliability, robustness, and availability of systems are very essential. In the 

said perspective, to increase the reliability and correctness of the systems, we propose the use of 

Formal Methods (FM). The FM use sound mathematical foundations to prove program 

correctness. The aim of our research is to deploy various FM tools and techniques to formally 

analyze the behavior and correctness of the strategies, such as routing algorithms and 

virtualization models that are implemented in large scale computing systems. The goal of our 

research is to thoroughly study the strategies, highlight the grey areas that can be further exploit 

to increase the reliability and performance, and propose a feasible solution. The large scale 

computing systems, specifically DC exhibits different architectural characteristics, such as 
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predefined complex architectural and topological pattern composed in different layers. The 

aforementioned characteristics of the underlying network along with the large scale of the 

servers situate several challenges for the adoption of FMs strategies. 
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1. INTRODUCTION 

1.1. Large Scale Computing Systems 

As we delve deeper into the ‘Digital Age’, we witness an explosive growth in the 

volume, velocity, and variety of the data available on the Internet. For example, in 2012 about 

2.5 quintillion bytes of data was created on a daily basis that originated from myriad of sources 

and applications including mobile devices, sensors, individual archives, social networks, Internet 

of Things, enterprises, cameras, and software logs.  Such ‘Data Explosions’ has led to one of the 

most challenging research issues of the current Information and Communication Technology 

(ICT) era: how to optimally manage (e.g., store, replicated, filter, and the like) such large amount 

of data and identify new ways to analyze large amounts of data for unlocking information? It is 

clear that such large data streams cannot be managed by setting up on-premises enterprise 

database systems, as it leads to a large up-front cost in buying and administering the hardware 

and software systems. In the said perspective, the emergence of technological advances, such as 

multicore processors and networked computing environments, has helped software practitioners 

to achieve the vision of creating a software paradigm for millions of users to use as a service [1]. 

The Large Scale Computing Systems (LSCS), such as cloud computing is one such paradigm 

with which a shared pool of resources (networks, servers, storage, applications, and services) can 

be accessed conveniently and on-demand. Moreover, the services can be rapidly provisioned or 

released with minimal management effort or service provider interaction [2].  

The LSCS, such as cloud computing, has been a mainstream of research in last few years. 

In a report [3], the cloud computing is listed as a top research trend from the year 2006 to 2010. 

In LSCS, substantial data analysis applications are executed that requires massive amount of 
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memory, processor cycles, and communication bandwidth. To perform substantial computations 

and meet the ever increasing demands of users, the LSCS are equipped with an order of tens of 

thousands of servers. Amazon, Google, IBM, Facebook, and Microsoft have started to establish 

Data Centers (DC) that host cloud computing applications in geographically distributed locations 

[4]. To maintain and deliver the specified Quality of Service (QoS) attributes, such as 

throughput, the LSCS must operate in a smooth and efficient way all the time. The income of the 

DC is defined by the Service Level Agreement (SLA), which outlines the amount paid by the 

users based on the QoS they receive. The computational and operating margins of DCs depend 

highly on the provision of the QoS. Higher QoS attribute levels lead to higher rates that in turn 

lead to higher computations.  

1.2. Formal Methods 

Formal Methods (FM) used in developing computer systems are rigorous mathematically 

based tools and techniques that describes system properties, and are used for the specification, 

development, and verification of software and hardware systems. The FM techniques have 

matured considerably as a verification discipline in the past few decades and have become a 

mainstream technology in industrial design, verification methodologies, and processes. 

Moreover, the increasing criticality and complexity of applications along with the role of 

software and hardware in those applications has led to the maturity of FM techniques. The aim of 

such techniques is to increase the quality of software by mathematically proving program 

correctness as opposed to using test cases. The method or technique is considered to be 

“Formal”, if it is backed up by sound mathematical grounds, which is typically provided by the 

specification language. The mathematical bases are used as a mean to precisely define notions, 

such as consistency, completeness, specification, implementation, and correctness [5]. The 
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mathematical structure involved in FM also helps in proving that if the system is implemented 

correctly, then the specification is realizable. The specification provides a complete description 

of the behavior of a system to be developed and also includes use cases to describe user 

interactions with the software. In software engineering, specification is the intermediate product 

of the software development process. Moreover, the correctness of a system or program can be 

determined using specification. 

The FMs are mainly used to reveal incompleteness, ambiguity, and inconsistency in a 

system. However, it is noteworthy that the use of formal methods does not miraculously 

guarantee the aforesaid results, but can be used to increase the level of confidence towards the 

correctness of the system. FMs can be used in different stages of software development life 

cycle. The use of FMs in the early stages of development process can reveal design flaws that 

otherwise might be discovered in the costly stages of testing and debugging phases. When used 

at the later stages, FMs can help in determining the correctness of the systems implementation. 

Moreover, the quality and reliability of software is increased by FM techniques using rigorous 

mathematical modeling, analysis, and verification. 

1.3. Motivation 

The main obstacle to relegate complex and sensitive tasks is not the inadequate speed and 

unsatisfactory computing power of the existing machines. However, the inability to design and 

implement the systems, with a desirable degree of confidence in the correctness and reliability, 

under different circumstances, has crept in to be the primary concerns in achieving high 

performance. The hardware and software systems are growing inevitably in scale and 

functionality, such as cloud computing systems. In the said perspective, the complexity of the 

systems is also increasing. The likelihood of elusive errors is directly proportional to the 
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complexity of the systems that also increase the cost of errors while the systems are operational. 

In large scale computing systems the density of computational devices is in order of tens of 

thousands of servers. Moreover, the effects of slightest miscalculations and errors are substantial. 

The methods and practices that are generally used for design validations are: (a) 

simulation and (b) testing. The said techniques are useful for small scale networks. However, as 

the complexity of the systems grow the effectiveness of the aforementioned techniques 

decreases. Moreover, an alarmingly increasing amount of time is required to uncover the subtle 

bugs by using testing and simulations. In testing, the program is executed with a set of inputs to 

evaluate the differences between given input and expected output. The goal in testing is to reduce 

the frequency of failures. Testing is used to identify the presence of bugs, but it cannot confirm 

the absence of bugs from the system. In large scale computing systems, such as cloud, the use of 

testing becomes infeasible as the sizes of such systems are very large. The set of inputs in testing 

is assumed to cover all possible cases, which involves the range of normal inputs and as well as 

exceptional scenarios. However, the aforesaid assumptions are not realistic. If we take even a 

simplest of example of testing a program for adding two real numbers, then there could be 

infinite number of use cases to test and verify the program correctness. To perform testing and 

simulation the working prototype of the system or program must exist. First, building a prototype 

program for LSCS is itself an expensive task. Second, even if the bugs are identified after 

building a prototype, the cost of fixing bugs at later stages is very high. Therefore, testing and 

simulations are expensive strategies for the verification of LSCS. The inabilities of traditional 

tools and techniques to effectively substantiate the working of LSCS have raised questions 

related to the reliability and robustness. In short, the problem we attempt to solve in this thesis is 
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“How to design and implement the systems, with a desirable degree of confidence in the 

correctness and reliability, under different circumstances?” 

The pricing model implemented over the large scale computing systems, such as cloud is 

pay-per-usage, which means that the end-users will pay only for the services usage. Therefore, 

the specified service level agreement based performance must be provided to the end users to 

keep up the reputation. If the performance requirements are not met, then the users may not use 

the services, and the reputation may fall down resulting in a loss of customer and money. Few 

examples to highlight the impact of performance degradation and errors are: (a) Google reported 

a 20% revenue loss due to a delay of 500msecs in response time, (b) Amazon reported a sales 

decrease of 1% due to an additional response time of 100msecs, and (c) Knight Capital Group 

lost 440 million USD in just 45 minutes, when newly installed trading software went haywire. 

The aforementioned examples indicate the importance and impact of the performance of the 

cloud services. Moreover, the due consideration that needs to be given to, and the benefit of, 

performance to the cloud services are also obvious from the said examples. The traditional 

methods, such as Testing, are expensive and become infeasible as the sizes of the computing 

systems are large. Because FM presupposes program semantics that is not considered in Testing 

and Simulations, the FM techniques are considered more powerful. Moreover, through FMs, 

users can logically analyze the system to prove properties for any possible inputs. In the said 

perspective, the use of FM for verifying the functionality and reliability of the systems could be 

beneficial. 

1.4. Research Goals and Objectives 

The objective of our research is to deploy various FM tools and techniques to formally 

analyze the behavior and correctness of the strategies, such as routing algorithms and 
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virtualization models that are implemented in large scale computing systems. The goal of our 

research is: (a) to thoroughly study the strategies, (b) highlight the grey areas that can be further 

exploit to increase the reliability and performance, (c) and propose a feasible solution. Compared 

to conventional random networks, the large scale computing systems, specifically Data Centers 

(DC) exhibits different architectural characteristics, such as predefined complex architectural and 

topological pattern composed in different layers. The aforementioned characteristics of the 

underlying network along with the large scale of the servers situate several challenges towards 

the application of FMs [6].   

1.5. References 

[1] R. Buyya, S. Y. Chee, and S. Venugopal, “Market-Oriented Cloud Computing: Vision, Hype, 

and Reality for Delivering IT Services as Computing Utilities,” 10th IEEE (HPCC ’08), pp.5-13, 

Sep. 2008. 

[2] P. Mell and T. Grance. Definition of cloud computing. Technical Report, NIST, 2009. 

[3] A. Hoonlor, B. K. Szymanski, and M. J. Zaki, “Trends in computer science research,” 

Communications of the ACM, vol. 56, no. 10, pp. 74-83, 2013. 

[4] D. Abadi, “Data management in the cloud: Limitations and opportunities,” IEEE Data 

Engineering, Bulletin, vol. 32, no. 1, 2009, pp.3–12. 

[5] J. M. Wing, “A specifier's introduction to formal methods,” Computer, vol. 23, no. 9, pp. 8-

22, 1990. 

[6] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald, “Formal methods: Practice and 

experience,” ACM Computing Surveys (CSUR), vol. 41, no. 4, 2009. 
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2. RELATED WORK 

In this chapter we discussed some of the work that is related to the research we have 

performed during Ph.D. 

2.1. Virtual Machine (VM) Based Cloud Management Platforms and High 

Level Petri-Nets (HLPN) 

Virtualization has been studied extensively in the domain of cloud computing. The 

research is usually focused towards the security or resource provisioning of VM. In [2.1], to 

make the VM more secure, the authors have proposed to remove the virtualization layer, while 

retaining the key features enabled by the cloud. In [2.2], the authors proposed HyperSafe, which 

is a lightweight approach that endows existing hypervisors with a self-protection capability to 

provide lifetime flow integrity. In [2.3], authors proposed new security architecture in a 

hypervisor-based virtualization technology to secure the cloud environment. Similarly, [2.4], also 

discussed security aspects of VMs in the cloud.  In [2.5], a generic model is proposed for 

resource allocation of VMs in multi-tier distributed environment that describes every VM as a 

multi-dimensional vector. In [2.6], a two level resource manager is proposed that allocate 

resources to individual containers using local controllers. Several studies are also available, such 

as [2.7 - 2.10] that discuss and compare the cloud management platforms. The focus of the said 

studies was on the discussion and comparison of architecture and feature set of the systems. 

However, little amount of work has been done in the area of modeling and analysis of cloud 

management systems, specifically VM-based systems. The HLPN has been widely used for the 

modeling of systems from various domains of computer science, such as cloud computing, web 

service framework, Grid infrastructures, scheduling and load balancing. In [2.11], the authors 
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have used Colored Petri Nets (CPN) to model Open Provenance Model (OPM) for the purpose of 

Model-based Diagnosis in the Cloud (MBD). Virtualization and modeling (including formal 

analysis and verification) are very rich research domains, when considered separately. However, 

a diminutive amount of research is performed when both (modeling, including formal analysis 

and verification of virtualization) are combined.  

2.2. Energy Efficient Data Center (DC) 

The paradigm shift has occurred in the DCs, where the cost of IT equipment or hardware 

is no longer the major portion of the overall cost, instead the cost of power and cooling 

infrastructure has crept in to be the primary cost driver. Thermal imbalance can cause a hurdle 

towards achieving an efficient operational DC. The presence of the hotspots creates a risk of 

redlining servers that can cause them to fail prematurely.  The power consumption and thermal 

properties of the devices are directly proportional to each other. Therefore, in this section we will 

discuss both power and thermal strategies. Several strategies have been proposed to balance the 

tradeoff between the power, cooling, and performance. There are multiple ways to control the 

power consumption and thermal properties of the servers, such as through active management of 

workload hosted on the servers by using admission control strategies, load balancing, and 

workload migration. The power consumption of the servers can also be tuned through physical 

control, such as Dynamic Voltage and Frequency Scaling (DVFS) and on-off state control 

[2.12]-[2.14]. The DVFS has already been implemented in the operating systems, where the CPU 

utilization drives DVFS controller to adopt the power consumption with the changing workload. 

A control-theoretic approach to DVFS is proposed in [2.15], where the authors have modified the 

classical control system algorithm, Proportional Integral Derivative (PID) controller, to perform 

the dynamic voltage scaling. In [2.16], the author argues that DVFS is not the only solution for 
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processor power management in DC workloads. They propose the use of Per-Core Power Gat-

ing (PCPG) for multi-core processors that allows the ability to cut the power supply to selected 

core, allowing zero power leakage to the gated cores. A technique to control the workload 

execution on the processor and the power consumption, given some constrained on the 

temperature of the chip, is proposed in [2.17]. In [2.18], the authors proposed a method to adjust 

the speed of multi-core processors to maximize the processing with a given set of thermal 

constraints. They proposed two methods: (a) primal-dual interior-point and (b) dual 

decomposition, to achieve the desired level of performance under specified thermal constraints. 

A model-based system, Zephyr, is proposed in [2.19] that combine conventional server power 

optimization and fan power optimization to optimize overall energy efficiency. The set of blade 

servers share the cooling capacity of the set of fans, which are controlled by the Multi-Input 

Multi-Output (MIMO) controller to optimize the aggregate fan power. All of the aforementioned 

approaches are thermally oblivious, which means that job scheduling and processing decisions 

are not aware of the heating effect in DC that may cause thermal imbalance and hotspots. 

Different authors have proposed different thermal aware strategies. Moore et al. [2.20] proposed 

a temperature aware workload placement approach in DC. The aforesaid approach is based on 

thermodynamics formulation, power, and thermal profiles of the servers. However, precise 

measurement of the profiles for such a large number and types of jobs is complicated. Moreover, 

the thermal and power models are not accurate for DC, as discussed in [2.21]. In another 

approach [2.22], modeling a thermal topology of DC is discussed that can lead to more efficient 

workload placement. However, preserving the safe temperature and migration of the resources 

are not discussed. A DC environmental control system is proposed in [2.23] that use a distributed 

sensors network to manipulate CRAC units. The control strategy proposed is concentrated to 
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enforce the thermal constraints of cyber infrastructure, while minimizing the heat dissipated by 

the CRAC unit. The discussion in [2.23] in concentrated only on the CRAC and did not 

considered the servers. There are other studies, such as [2.24-2.27] that proposed thermal 

management strategies at a DC level. In [2.28], the authors have modeled DC as a CPS and 

proposed a control strategy to optimizes the tradeoff between the quality of computational and 

energy cost. However, the heat recirculation and its effect on the other neighboring nodes are not 

discussed. 

2.3. Formal Verifications of Routing Protocols 

  A formal verification of ad-hoc routing protocols using SPIN model checker is 

performed in [2.29]. The authors of [2.29] used Wireless Adaptive Routing Protocol (WARP) to 

formally verify the real time aspects of the protocol. In [2.30], the authors studied different 

implementations of Ad-hoc On-demand Distance Vector (AODV) routing protocol. Moreover, to 

checks C and C++ implementations directly, the authors used their own model checker. A 

topology approximation algorithm is proposed in [2.31], to tackle the problem of mobility by 

modeling AODV using colored petri nets. In the paper [2.32], the authors performed 

specification and verification of LambdaRAM, which is a wide area distributed cache for high 

performance computing. The authors in [2.32] used TLV for model checking, which uses SMV 

as an input language. Xiong et al. [2.31] have modeled AODV using colored Petri nets (CPN). 

Some other work towards the verification of routing protocols can be found in [2.33]-[2.35]. 

2.4. Thermal-Aware Resource Allocation 

The cost of IT equipment or hardware is no longer the major portion of the overall cost 

involves in DCs. Alternatively, the cost of power and cooling infrastructure has crept in to be the 
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primary cost driver. Uneven thermal signatures and hotspots within a DC can lead to hardware 

failures and energy wastage by the Air Conditioning (AC) units. Moreover, the presence of the 

hotspots creates a risk of redlining servers that can cause premature failure. The power 

consumption and thermal properties of the devices are directly proportional. Therefore, in this 

section we will discuss both the power and thermal strategies. 

The topic of energy efficient data centers is addressed by huge number of research 

communities. The energy efficiency can be achieved in a data center from many dimensions, 

such as from physical infrastructure perspective and from computational perspective. The 

aforesaid dimensions are further explored by many researchers to propose new energy efficient 

strategies. The energy efficiency techniques can be applied to a DC without much overhead and 

can be broadly categorize as: (a) Dynamic Voltage/Frequency Scaling (DVFS), (b) hot and cold 

aisle, (c) Dynamic Power Management (DPM), (d) resource allocation, and (e) virtualization 

[2.36].  

As stated above, the power consumption of the servers can be tuned through hardware 

interfaces, such as DVFS and on-off state control [2.12-2.14]. An integer linear programming 

modeling approach is proposed in [2.37] that aim to meet the real-time deadlines, while 

minimizing the hotspots and spatial temperature differences through task scheduling [2.38]. The 

preceding technique is designed to react when the thermal threshold is approached, instead of 

avoiding it at a first place. A proactive solution is presented in [2.39] that distribute the workload 

between cores in a thermally sensitive manner to avoid the temperature to reach the redline 

value. To predict the temperature, the authors in [2.39] proposed a band-limited predictor that is 

based on a band limited property of the temperature frequency spectrum. However, in case of 

mispredictions, the overheads associated with the aforesaid solution are significantly high, as 
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advocated in [2.40]. A scheduling policy is proposed in [2.41] that allocate memory bound tasks 

to slower frequency processors based on the intensity of memory and current temperature of the 

processor. Similarly, there are other approaches, such as in [2.42] and [2.43] that attempts to 

insert additional cycles into the task scheduling process to reduce the thermal signatures of the 

systems. However, the aforesaid strategies are considered inefficient under many scenarios, 

where the slack is unavailable between the deadlines. Moreover, the performance is also 

degraded when the aforesaid approaches are employed, as discussed in [2.40]. 

To perform the dynamic voltage scaling a control-theoretic approach to the DVFS is 

proposed in [2.15], where the authors modified the classical control system algorithm, the 

Proportional Integral Derivative (PID) controller. In [2.16], the author argues that DVFS is not 

the only solution for processor power management in data center workloads. The authors in 

[2.16] propose the use of Per-Core Power Gating (PCPG) for multi-core processors that allows 

the ability to cut the power supply to the selected core, allowing zero power leakage to the gated 

cores. All of the aforesaid techniques provide a promising control over power management. 

However, the said techniques can lead to significant negative impact on power management as 

switching on and off involves overheads [2.44]. Moreover, the approaches are thermally 

oblivious, where the job scheduling and processing decisions does not account the heating effect 

in data centers that may cause thermal imbalance and hotspots. 

A thermal aware scheduling approach, named as XInt, is proposed in [2.45] that 

minimizes the inlet temperatures, and leads to minimal heat recirculation and cooling cost for 

data center operation. A similar scheduling strategy is also proposed in [2.22] to minimize the 

heat recirculation. However, the aforesaid strategies did not consider the effect of scheduling on 

the server cooling cost [2.46]. Another approach is proposed in [2.22] that create a thermal 
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topology of the DC to achieve efficient workload placement. However, no discussion is available 

related to keep the server thermal signatures under the redline values. There are other studies, 

such as [2.23-2.27] that proposed thermal management strategies using different approaches at a 

DC level. However, all of the aforesaid studies have not discussed the thermal effect of job 

allocation on a server and the raise in the temperature on other related servers as a result of 

ambient effect. In this paper, we analyze a real workload of a DC, using statistical techniques, to 

observe the thermal impact of job allocation on the selected server and ambient effect on other 

servers. Moreover, we used the results and findings from the workload analysis, to propose a 

scheduling scheme that attempts to maintain thermal uniformity within a DC. 

2.5. Data Security over the Cloud 

Juels et al. [2.47] presented a technique to secure the cloud data that provides a number 

of services, such as integrity, freshness, and availability. The authors employed a gateway 

application in the enterprise to manage the integrity and freshness checks for the data. The Iris 

file system is designed to migrate organizations internal file system to the cloud. Moreover, a 

Merkle tree is used by gateway, which ensures freshness and integrity of data by inserting file 

blocks, MAC codes, and file version numbers at different levels of the tree. The gateway 

application also manages the cryptographic keys for confidentiality requirements. Moreover, 

Ref. [2.47] proposed an auditing framework that audits the cloud environment for ensuring the 

freshness of the data, data retrievability, and resilience against disk failures. However, the 

technique heavily depends on the user’s employed scheme for data confidentiality. Moreover, 

data cannot be protected against service provider wholesale.  

In [2.48], the authors presented a cryptographic file system that provides confidentiality 

and integrity services to the outsourced data. The authors used hash based MAC tree for 
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providing the aforesaid services. Block-wise encryption is used for the construction of a MAC 

tree. The file system at the client side interacts with the file system of the server and outsources 

the encrypted blocks. Encrypted file blocks and cryptographic metadata are stored separately. 

Nevertheless, the presence of cryptographic metadata on the storage side can be a potential 

threat.  

The authors in [2.49] proposed a virtual private crypto-graphic storage service to provide 

confidentiality and integrity to user data within the cloud. The client application in the proposed 

method has three modules: (a) data processor, (b) data verifier, and (c) token generator. The 

client application generates a master key to be used for subsequent operations. The data 

processor encrypts the file to be uploaded with keys generated from the master key and uploads 

to the cloud. The data download involves the use of token generator that generates a token for the 

user to download data. Token also contains identity of files to be downloaded. The data verifier 

checks for the integrity of the data once the data is downloaded from the cloud. Attribute Based 

Encryption (ABE) is used for encryption. However, the key in [2.49] resides at client side and 

may be subject to a single point of failure.  

A cloud storage system based on secure erasure code is presented in [2.50]. The system 

uses threshold key servers for storing a user’s key generated by a system manager. User encrypts 

the data divided into blocks and stores every block on randomly selected multiple servers. The 

system also provides the functionality of data forwarding by allowing any of the users to forward 

the data to any other users without downloading. The authors used proxy re-encryption method 

for forwarding the encrypted data. A similar scheme is presented by the same authors in [2.51] 

with the difference that the later does not provide data forwarding. However, aforesaid schemes 

require heavy implementation level changes on the cloud side. 



15 

 

 

2.6. References 

[2.1] E. Keller, J. Szefer, J. Rexford, and R. B. Lee, “NoHype: virtualized cloud infrastructure 

without the virtualization,” 37th ACM ISCA, pp. 350–361, June 2010. 

[2.2] P. Campegiani, F. L. Presti, “A general model for virtual machines resources allocation in 

multi-tier distributed systems,” International Conference on Autonomic and Autonomous 

Systems, pp. 162-167, 2009. 

[2.3] F. Zhang, J. Chen, H. Chen, and B. Zang, “CloudVisor: Retrofitting protection of virtual 

machines in multi-tenant cloud with nested virtualization,” ACM SOSP, Cascais, Oct. 2011. 

[2.4] Z. Wang and X. Jiang, “HyperSafe: A lightweight approach to provide lifetime 

hypervisor control-flow integrity,” Symposium on Security and Privacy, pp. 380-395, 2010. 

[2.5] F. Sabahi, “Secure Virtualization for Cloud Environment Using Hypervisor-based 

Technology”,  Journal of Machine Learning and Computing, vol. 2, no. 1, pp. 39-45. 

[2.6] J. Xu, M. Zhao, J. Fortes, R. Carpenter, M. Yousif, “Autonomic resource management in 

virtualized data centers using fuzzy logic-based approaches,” Journal of Cluster Computing, vol. 

11, pp. 213–227, 2008. 

[2.7] D. Cerbelaud, S. Garg, and J. Huylebroeck, “Opening the clouds: qualitative overview of 

the state-of-the-art open source vm-based cloud management platforms,” 10th ACM/IFIP 

International Conference on Middleware, pp. 1–8, 2009. 

[2.8] P. T. Endo, G. E. Gonçalves, J. Kelner, and D. Sadok, “A Survey on Open-source Cloud 

Computing Solutions,” 8th Workshop on Cloud and Grid Applications, pp. 3-16, 2010. 

[2.9] B. Sotomayor, R. S. Montero, I. M. Llorente, I. Foster, “Virtual Infrastructure 

Management in Private and Hybrid Clouds,” Internet Computing, vol. 13, no. 5, Oct. 2009.  



16 

 

[2.10] N. Khan, A. Noraziah, E. I. Ismail, and M. M. Deris, “Cloud Computing: Analysis of 

Various Platforms,” Journal of Entrepreneurship and Innovation, vol. 3, no. 2, pp. 51-59, 2012. 

[2.11] Y. Li, and O. Boucelma, “A CPN Provenance Model of Workflow: Towards Diagnosis in 

the Cloud,” Conference on Advances in Databases and Information Systems, pp. 55–64, 2011. 

[2.12]  Y. Cho and N. Chang, “Energy-aware clock-frequency assignment in microprocessors 

and memory devices for dynamic voltage scaling,” IEEE Transactions on Computer-Aided 

Design of Integrated Circuits and Systems, vol. 26, no. 6, 2007, pp. 1030–1040. 

[2.13]  H. Aydin and D. Zhu, “Reliability-aware energy management for periodic real-time 

tasks,” IEEE Transactions on Computers, vol. 58, no. 10, 2009, pp. 1382–1397. 

[2.14]  P. Choudhary and D. Marculescu, “Power management of voltage/frequency island-

based systems using hardware-based methods,” IEEE Transactions on VLSI Systems, vol. 17, 

no. 3, 2009. 

[2.15]  A. Varma, B. Ganesh, M. Sen, S. Choudhury, L. Srinivasan, and B. Jacob, “A control-

theoretic approach to dynamic voltage scheduling,” International CCASE, pp. 255–266. 

[2.16]  J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and C. Kozyrakis, “Power 

management of datacenter workloads using per-core power gating,” Computer Architecture 

Letters, 2009, vol. 8, no. 2, pp. 48–51. 

[2.17]  Z. Jian-Hui and Y. Chun-Xin, “Design and simulation of the cpu fan and heat sinks,” 

IEEE Transactions on Components and Packaging Technologies, vol. 31, no. 4, pp. 890–903. 

[2.18]  A. Mutapcic, S. Boyd, S. Murali, D. Atienza, G. Micheli, and R. Gupta, “Processor 

speed control with thermal constraints,” IEEE Transactions on Circuits and Systems,  vol. 56, no. 

9, pp. 1994–2008. 



17 

 

[2.19]  N. Tolia, Z. Wang, P. Ranganathan, C. Bash, M. Marwah, and X. Zhu, “Unified power 

and cooling management in server enclosures,” in InterPACK, pp. 721–730, 2009. 

[2.20] J. Moore, J. Chase, P. Ranganathan, and R. Sharma, “Making scheduling "cool": 

temperature-aware workload placement in data centers,” In USENIX, pp. 61-75, 2005. 

[2.21]  Q. Tang, S. Gupta, and G. Varsamopoulos, “Energy-efficient thermal-aware task 

scheduling for homogeneous high-performance computing data centers: A cyber-physical 

approach,” IEEE Transactions on Parallel and Distributed Systems, vol. 19, no. 11, 2008, pp. 

1458–1472. 

[2.22]  J. Moore, J. Chase, and P. Ranganathan, “Weatherman: Automated, online and 

predictive thermal mapping and management for data centers,” IEEE ICAC, pp. 155-164, 2006. 

[2.23]  C. Bash, C. Patel, and R. Sharma, “Dynamic thermal management of air cooled data 

centers,” Thermal and Thermomechanical Phenomena in Electronics Systems, pp. 445–452, 

2006. 

[2.24]  L. Rao, X. Liu, L. Xie, and W. Liu, “Minimizing electricity cost: Optimization of 

distributed internet data centers in a multi-electricitymarket environment,” International 

Conference on Computer Communications (INFOCOM), pp. 1–9, 2010. 

[2.25]  Q. Tang, S. Gupta, and G. Varsamopoulos, “Energy-efficient thermal-aware task 

scheduling for homogeneous high-performance computing data centers: A cyber-physical 

approach,” IEEE Transactions on Parallel and Distributed Systems, vol. 19, no. 11, 2008, pp. 

1458–1472. 

[2.26]  M. Anderson, M. Buehner, P. Young, D. Hittle, C. Anderson, J. Tu, and D. Hodgson, 

“MIMO robust control for HVAC systems,” IEEE Transactions on Control Systems Technology, 

vol. 16, no. 3, 2008, pp. 475– 483. 



18 

 

[2.27]  M. Toulouse, G. Doljac, V. Carey, and C. Bash, “Exploration of a potential-flow-based 

compact model of air-flow transport in data centers,” American Society Of Mechanical 

Engineers ASME Conference, pp. 41–50, 2009. 

[2.28]  L. Parolini, N. Toliaz, B. Sinopoli, and B. H. Krogh, “A Cyber-Physical Systems 

approach to energy management in data centers,” Conference on Cyber-Physical Systems, 2010. 

[2.29] R. de Renesse and A. Aghvami, “Formal verification of ad-hoc routing protocols using 

SPIN model checker”, 12th IEEE Mediterranean Electro technical Conference, 2004, pp. 1177–

1182. 

[2.30]  D. Engler and M. Musuvathi, “Static analysis versus software model checking for bug 

finding”, Verification, Model Checking, and Abstract Interpretation, 5th International 

Conference, Lecture Notes in Computer Science, 2004, pp. 191–210. 

[2.31]  C. Xiong, T. Murata, and J. Tsai, “Modelling and simulation of routing protocol for 

mobile ad hoc networks using coloured Petri nets”, Workshop on Formal Methods Applied to 

Defence Systems in Formal Methods in Software Engineering and Defence Systems, 2002. 

[2.32]  V. Vishwanath, L. Zuck, J. Leigh, “Specification and verification of LambdaRAM – a 

wide-area distributed cache for high performance computing” 6th IEEE/ACM Conference on 

Formal Methods and Models for Codesign (MEMOCODE) 2008, USA, June 2008.  

[2.33]  S. Chiyangwa, M. Kwiatkowska, “A timing analysis of AODV”, Formal Methods for 

Open Object-Based Distributed Systems: 7th IFIP WG 6.1 International Conference 

(FMOODS), (2005). 

[2.34] D. Obradovic, Formal Analysis of Routing Protocols. PhD Thesis, University of 

Pennsylvania (2002). 



19 

 

[2.35]  S. Das, D. L. Dill, “Counter-example based predicate discovery in predicate abstraction”, 

Formal Methods in Computer-Aided Design, Springer-Verlag, (2002). 

[2.36]  E. Masanet, R. Brown, A. Shehabi, J. Koomey, and B. Nordman,  “Estimating the energy 

use and efficiency potential of U.S. data centers,” Proc IEEE, vol. 99, no. 8, 2011, pp.1440–

1453. 

[2.37]  E. Kursun and C. Y. Cher, “Temperature variation characterization and thermal 

management of multicore architectures,” IEEE Micro, vol. 29, pp.116–126, ISSN 0272-1732. 

[2.38] J. X. Yang, “Dynamic thermal management through task scheduling,” IEEE Symposium 

on Performance, Analysis of Systems and Software, pp. 191–201, 2008. 

[2.39]  R. Ayoub and K. Indukuri, “Temperature aware dynamic workload scheduling in 

multisocket CPU servers,” IEEE Transactions on 

Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 9, pp. 1359 –1372, 

2011. 

[2.40]  A. Lewis and N. F. Tzeng, Thermal-Aware Scheduling in Multicore Systems Using 

Chaotic Attractor Predictors. 

[2.41]  A. Merkel and J. Stoess, “Resource-conscious scheduling for energy efficiency on 

multicore processors,” International European conference on Computer systems, pp. 153–166. 

2010. 

[2.42]  J. Choi and C. Y. Cher, “Thermal-aware task scheduling at the system software level,” 

ACM Symposium on Low Power Electronics and Design, pp. 213–218, 2007. 

[2.43]  P. Bailis and V. J. Reddi, “Dimentrodon: Processor-level preventive thermal management 

via idle cycle injection,” In Proc. of the 48th 

Design Automation Conference (DAC 2011), June 2011. 



20 

 

[2.44]  M. Annavaram, “A case for guarded power gating for multi-core processors,” In HPCA, 

pp. 291-300, 2011. 

[2.45]  Q. Tang, S. K. Gupta, and G. Varsamopoulos, “Thermal-aware task scheduling for data 

centers through minimizing heat recirculation,” IEEE International Conference on Cluster 

Computing, pp. 129-138.  

[2.46]  R. Ayoub, S. Sharifi, and T. S. Rosing, “Gentlecool: Cooling aware proactive workload 

scheduling in multi-machine systems,” In Proceedings of the Conference on Design, Automation 

and Test in Europe pp. 295-298, 2010. 

[2.47] A. Juels and A. Opera, “New approaches to security and availability for cloud data,” 

Communications of the ACM, Vol. 56, No. 2, 2013, pp. 64-73. 

[2.48] A. Yun, C. Shi, and Y. Kim, “On protecting integrity and confidentiality of cryptographic 

file system for outscored storage,” Proceedings of 2009 ACM workshop on cloud computing 

security CCSA’09, pp. 67-76, 2009.  

[2.49] S. Kamara and K. Lauter, “Cryptographic cloud storage,” Financial Cryptography and 

Data Security, Springer Berlin Heidelberg, 2010, pp. 136-149.  

[2.50] H. Lin and W. Tzeng, “A secure erasure code-based cloud storage system with secure data 

forwarding,” IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 6, June 2012, 

pp. 995-1003. 

[2.51] H. Lin and W. Tzeng, “A secure decentralized erasure code for distributed network 

storage,” IEEE Transactions on Parallel and Distributed Systems, vol. 21, no. 11, Nov. 2010, pp. 

1586-1594. 

 

  



21 

 

3. MODELING AND ANALYSIS OF STATE-OF-THE-ART 

VM-BASED CLOUD MANAGEMENT PLATFORMS 

This paper is published in IEEE Transactions on Cloud Computing (TCC), vol. 1, no. 1, 

pp. 50-63, 2013. The authors of the paper are Saif U. R. Malik, Samee U. Khan, and Sudarshan 

K. Srinivasan.  

3.1. Introduction 

The vibrant underlying technology in cloud infrastructure is virtualization that contributes 

towards the prevalent application and adaptation of cloud computing infrastructure [3.3]. 

Virtualization can be defined as the process of abstracting the original physical structure of 

innumerable technologies, such as hardware platform, operating system, a storage device, or 

other network resources [3.4]. Moreover, machines, applications, desktops, networks, and 

services are also separated from the underlying physical constraints. The cloud takes 

virtualization to a step further by using VMs that creates the customer independent system 

regardless of the underlying hardware in a timely manner. Every physical machine in a cloud can 

host several VMs, which from a user’s perspective is equivalent to a fully functional physical 

machine. Moreover, VMs can be start and stop anytime without any changes to the underlying 

hardware. Furthermore, migration of VMs between the physical machines is also possible 

without much disruption. Therefore, the cloud service providers deploy services on VMs that 

allow resource provision with more flexibility [3.5, 3.51].    

The cloud normally involves a large number of VM and physical machines that makes 

virtual infrastructure management a cumbersome task. Several solutions are available to cope 

with the aforementioned problem, such as VMware VirtualCenter, Platform Orchestration, and 
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Enomalism that provides an automatic monitoring and deployment of VMs in resource pools 

[3.6]. Numerous cloud providers, such as Amazon EC2 [3.7], Google App Engine [3.8], and 

Science Clouds [3.9] uses the aforementioned solutions to manage the virtual infrastructure. 

Most of the existing cloud computing management platforms are either proprietary or contains 

software that are not programmable for experimentation purposes. In the said perspective, 

several open source VM-based cloud management platforms have been launched, such as 

Eucalyptus [3.10], oVirt [3.11], and Enomaly Elastic Compute Platform (ECP) [3.12], so that 

researchers from every field can participate towards further development of management 

platforms in the cloud. Recently, OpenStack [3.25] has attained a significant status in the field of 

cloud computing. A number of companies that includes some big names, such as IBM, Dell, 

AMD, and Intel, have joined the OpenStack project.  

Several open source IaaS providers have emerged as a result of recent development in 

open source virtualization [3.13]. Two hypervisors: (a) Xen [3.14] and (b) KVM [3.15] are the 

most widely used open source hypervisors in the recent IaaS providers [3.34]. In this paper, we 

have studied and analyzed three open source state-of-the-art VM-based cloud management 

platforms: (a) Eucalyptus, (b) Open Nebula, and (c) Nimbus. The said systems have different 

design interests (as advocated in [3.16]) and that is why we have selected these systems for the 

study. The differences in the designs make each system suitable for an explicit environment. An 

important aspect that influences the choice of selecting a particular system for a private cloud is 

the level of customization. Amongst all of the aforementioned three cloud platforms, Open 

Nebula provides the highest level of customizability that allow users to switch almost every 

component from the underlying Virtual Machine Monitor (VMM) to the front-end. Both, the end 

user and the administrator, relishes the available customization. The customization provided by 
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Open Nebula is suitable in an experimental environment, where one wants to explore every 

component and crack new results from the computational perspective. Besides Open Nebula, 

Nimbus also provides a high level of customization. However, the major portion of 

customization in Nimbus is available to the administrator. Nimbus is more suitable for an 

environment, where one is less interested in technical details of the systems, but requires a broad 

level of customization, such as cooperative scientific communities. Eucalyptus mimics the 

implementation of Amazon EC2 and is an open source implementation of Amazon Web Service 

(AWS) API. The customization level is Eucalyptus is very low that makes it appropriate for a 

private company, where one needs a cloud for own use and wants to avoid mistakes from the 

users. The suitability of any of the cloud management platforms depends on the requirements of 

the user or organizations. 

Numerous studies are available, such as [3.17], [3.18], [3.19] that discuss and compare 

the aforementioned cloud management platforms but the previous work largely focused on the 

architecture and feature set of the systems. Another mutual aspect observed amongst the previous 

studies is the high level of abstraction, while discussing the architectures of the systems. In this 

study, we made an effort to diminish the level of abstraction through detailed modeling and 

formal analysis of the platforms being discussed. We have used High-Level Petri Nets (HLPN) 

and Z language for the modeling and analysis of the systems. HLPN is used to: (a) simulate the 

systems and (b) provide mathematical representation, to analyze the behavior and structural 

properties of the system. The model of the systems will help analyze: (a) the interconnection of 

the components and processes, (b) the fine-grain details of the flow of information amongst the 

processes, and (c) how the information is processed. Moreover, we performed the verification of 

the models in two-fold. First, we performed the automated verification of the models by 
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following Bounded Model Checking technique using Satisfiability Modulo Theories Library 

(SMT-Lib) and Z3 solver. To verify using SMT, the petri net models are first translated into 

SMT along with the specified properties. Then, Z3 solver is used to check either the model 

satisfies the properties or not. Second, to verify the feasibility of the models as the number of 

VMs scales, we model about hundred instances of VMs for each platform (Eucalyptus, Open 

Nebula, and Nimbus) and verify the correctness. The results generated reveals that the models 

are working correctly. To the best of our knowledge no work has been done to model, analyze, 

and verify the open source cloud management platforms. This research work will provide the 

basis for the researchers to understand the design and implementation of the state-of-the-art VM-

based cloud platforms. As the inception of the cloud is based on distributed computing (grid and 

cluster) and virtualization, the research is more inclined towards the computing and storage 

aspect of the cloud and another crucial aspect of cloud, the connectivity (networking), is usually 

forgotten [3.13]. This paper will focus on the intercommunication and behavior of the 

components of the systems rather than the computing and performance measurements. 

3.2. Preliminaries 

This section will discuss some of the tools and technologies used in this work that will 

help the reader to understand the topic easily. 

3.2.1. High-Level Petri Nets (HLPN) 

Petri nets are graphical and mathematical modeling tool that is applicable to many 

systems characterized as being concurrent, asynchronous, distributed, parallel, non-deterministic, 

or stochastic [3.20]. In this paper we have used a variant of classical Petri Net model, namely, 

High-Level Petri Nets (HLPN). (Readers are encouraged to see [3.20], [3.21] for an elaborate 

introduction to Petri Nets.) 
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Definition 1: HLPN [3.20], a HLPN is a 7-tuple    (              ) where: 

 

1. P is a set of finite places. 

2. T is a set of finite transitions such that      . 

3. F is a flow relation such that   (   )  (   ). 

4.   is a mapping function that maps P to data types such that         . 

5. R define rules that maps T to predicate logic formulas such that            . 

6. L is a label that maps F to labels such that          . 

7.    is the initial marking where           . 

The first three variables (     ) provides information about the structure of the net and 

the next three variables (     ) provides the static semantics, which means the information does 

not change throughout the system. 

The use of HLPN is preferred over Low-level Petri Nets (LLPN) because in LLPN: (a) 

no distinction is available between the tokens, no types or just one type, (b) for transition 

enablement there is no selection of specific tokens even using flow capacity, and (c) a place may 

be viewed as a structural variable, such as array that is not possible to depict.  

Let   and   be the nodes of the HLPN   iff           . A node   is an input node of 

another node   iff there is a directed arc from   to   such that (   )    . Node   is an output 

node of   iff (   )    . For any node        , the pre-condition is    {  (   )  } and 

post-condition is    {  (   )  }. 

In HLPN, places can have tokens of different types and can also be a cross product of two 

or more types, such as in Fig. 3.1 the places are mapped to the types:  (  )      ,  (  )  

  ,  (  )   (   ),  (  )      . 
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The pre-conditions must hold for any transition to be enabled. Moreover, the variables 

from the incoming flows are used to enable a certain transition. For example, preconditions for t1 

will use x and y from P1 and P2, respectively. Similarly, post-condition uses variables from 

outgoing flows for transition firing, and can be written as:  (  )  (      )   (  

  )   (      ). 

3.2.2. SMT-Lib and Z3 Solver 

Satisfiability Modulo Theories (SMT) is an area of automated deduction for checking the 

satisfiability of formulas over some theories of interest and has the roots from Boolean 

Satisfiability Solvers (SAT) [3.23]. The difference between SMT and SAT is that SMT solvers 

checks the satisfiability of first-order formulas containing operations from several theories, such 

as Bit-vector and arithmetic, whereas SAT solvers checks the satisfiability of propositional 

formulas [3.26]. SMT-Lib provides a common input platform and benchmarking framework that 

helps in the evaluation of the systems [3.27]. SMT has been used in many fields including 

deductive software verification. Moreover, recent applications of computer science including 

planning, model checking, and automated test generation finding, also considers SMT as an 

important verification tool [3.27]. (Readers are encourage to read [3.28] for the use of SMT-Lib 
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Fig. 3.1. An Example High-Level Petri Net. 
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in the verification of OSPF routing protocol [3.50].) Multiple solvers are available that supports 

SMT-LIB, such as Beaver, Boolector, CVC4, MathSAT5, Z3, and OpenSMT. The solver can be 

distinguished amongst the features they provide, such as, underlying logic (example first order or 

temporal), background theories, input formulas, and interface [3.26].  

We used Z3 solver in our study, which is a high performance theorem prover developed 

at Microsoft Research. Z3 is an automated satisfiability checker. Moreover, Z3 also checks 

whether the set of formulas are satisfiable in the built-in theories of SMT-Lib. Readers are 

encouraged to see [3.30], for the detailed information about the working and commands of Z3 

solver.  

3.3. Modeling and Analysis of VM-Based Cloud Management Platforms 

VM-based cloud management platforms offer several advantages that include: (a) better 

isolation, (b) scalability, (c) availability, and (d) flexibility. Looking at the benefits provided by 

the VM-based systems to the cloud a renewed interest of research has emerged in different 

classes of virtualization, such as desktop, server, application, storage, and network from several 

industry giants, such as VMware, Red Hat, and Microsoft [3.32]. In this section we will discuss, 

model, and analyze three VM-based cloud management platforms: (a) Eucalyptus, (b) Open 

Nebula, and (c) Nimbus.   

3.3.1. Components of Open Source Cloud 

Before going into the details and modeling of the systems, in this section, we will provide 

a quick overview of the components of the generic open source cloud computing systems. The 

components are classified as: (a) Hardware and Operating Systems (resides on the physical 

machine and must be setup properly for any software system to work), (b) Network (includes 

DNS, DHCP, and subnet organization of the physical machines), (c) Hypervisor (includes Xen 
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and KVM, which provides framework for VMs to run), (d) VM Disk Images (every cloud has a 

repository of disk images that can be copied and used as a basis for new virtual disks), (e) 

Interface (front-end tools to request VMs and specify parameters), and (f) Cloud Framework 

(includes Eucalyptus or any other framework). The aforementioned components generally make 

the entire software stack for the cloud computing systems [3.34]. We used the said components 

in our model to depict the working of the systems.  

3.3.2. Eucalyptus 

Eucalyptus is an open source VM-based cloud computing management framework that 

enables users to run and control the instance of virtual machines deployed at several physical 

resources [3.35]. Eucalyptus was first initiated at the University of California at Santa Barbara 

and is now supported by the Eucalyptus Systems, Inc [3.36]. The emphasis of the system was to 

develop an architecture that will allow scientists to experiment cloud related software and 

architecture. One of the advantages of Eucalyptus is that it uses Amazon Web Service APIs and 

provides the same interface as of Amazon’s EC2 and Simple Storage Service (S3) in a private 

cluster. Therefore, provides a well-known tool to host and manage VMs.  

Installation of Eucalyptus consists of several components: (a) Cloud Controller (CLC), 

(b) Cluster Controller (CC), (c) Storage Controller (Walrus), and (d) Node Controller (NC). The 

architecture of Eucalyptus (Fig. 3.2) is kept simple, flexible, and hierarchical where every 

component is implemented as a stand-alone web service. The components implemented as a web 

services has following benefits [3.35]: (a) exposure to a well-defined WSDL document that 

contains operations being performed and the input/output data structures and (b) web features 

can be extended, such as security policies to secure the communication between components.  
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CLC is the entry point to the cloud that provides configuration interface for managing 

cluster and instances, Walrus configuration, and user registration. Main responsibilities of CLC 

includes: (a) translation of user initiated commands to CC, (b) making high-level scheduling 

decisions, and (c) management of underlying virtualized resources. CC chose the compute node 

to provision the VM on receiving the command from the CLC. Moreover, gathering information, 

scheduling VM execution on certain NC, and virtual instance overlay network management for 

smooth transmission of requests are the responsibilities of CC. Walrus provides a storage service 

to store virtual machine images and user data.  Execution, termination, and inspection of VM 

instances are performed by the NC. A query is performed by NC to discover the nodes physical 

resources, such as no. of cores, size of memory, and state of VM instances.  

3.3.2.1. Modeling and Analysis  

The model of spawning a VM instance in Eucalyptus configuration is illustrated in Fig. 

3.3. As stated in Definition 1, the HLPN is a 7-tuple    (              ). To begin 

modeling the system, we first need to specify   and the associated types. As depicted in Fig. 3.3, 

there are 10 
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Fig. 3.2. Eucalyptus Architecture. 
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places in the model. The names and mapping of   are shown in Table 3.1. The types used in the 

model are illustrated in Table 3.2. The next step is to define the set of rules, pre-conditions, and 

post-conditions to map to  . Before going to the next step let us have a quick overview of the 

process of initiating a VM instance. To make a request for an instance of VM the user first needs 

to configure the front-end. The default front-end is euca2ools, which is similar to the front-end of 

Amazon EC2. To configure euca2ools the user must download some files along with the keys 

and instruction. Once, certain environment variables are set the euca2ools is ready to work. The 

user then uses euca2ools to request the VM. Moreover, the user has to select a configuration for 

required memory, CPU, and the hard drive space from one of the five preset configurations set 

by the administrator, for the requested VM.  When the head node receives the request, a VM 

template disk image is extracted from the disk repository and is pushed towards the compute 

node. The disk image is padded and packaged to be used for the hypervisor. Eucalyptus Cloud 

Controller (ECC) generates a random MAC address and assigns it to VM instance. 

The CC setup a static entry of MAC/IP pair and passes it on to NC. The NC maps virtual 

NIC of the instance to the physical NIC of the node through network bridging. The instance is 

initiated on the hypervisor and then the user can directly interact with the VM instance. 

We have discussed the process of instantiating the VM and now we can define formulas 

(pre and post-conditions) to map on transitions. The set of transitions 

T= {                                             }. New tokens can enter the model 

only through      transition. The rule for the token creation can be stated as:  (   )      

        . The next two transitions are        and       , which authenticate the 

configuration of euca2ools front-end. The said transitions are mapped to the formulas (3.1) and 

(3.2). 
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Place Mapping Description 

  (V_Req)   (Key×Env_Var×CPU×Mem× Disk) Holds environment 

variables and user config. 

 (Euca2_conf)    (Key×Env_Var) Pre-set config. 

  (St_Req)  (CPU×Mem×Disk×Key) Intermediate place to hold 

the configuration values 

  (Ad_Conf)   (CPU×Mem×Disk) Hold admin config. 

  (DI)   (EMI) Holds the disk images 

  (Hpvsr)   (CPU×Mem×Disk×EMI× NIC×VID 

×Key×Env_Var) 

Holds user config. and 

creates virtual NIC and 

VM ID  

  (DHCP)   (IP ×  MAC) Holds the mappings of IPs 

to MAC 

  (ECC)   (MAC) Generate and hold random 

MAC for VM 

  (Phy_HW)   (CPU×Mem×Disk×NIC) Holds physical 

specefication of the 

system 

  (VM-Run)   (CPU×Mem×Disk×EMI×NIC×VID 

×IP×MAC×Key×Env_Var) 

Instance of VM is finally 

created alongwith the 

specified config. 

 

 

Types Description 

Key A string type for euca2ools key authentication 

Env_Var A string type for euca2ools environment variables authentication 

CPU An integer type for the number of CPU/core allocated to the VM. 

Mem A float type for the amount of memory allocated to the VM. 

Disk A float type for the amount of disk space allocated to the VM. 

IP A string type for the IP address of VM 

MAC A string type for the MAC address of the VM 

NIC A string type for NIC of the physical machine 

VID An Integer type for VM ID 

 

Table 3.1. Places and Mappings of Eucalyptus. 

Table 3.2. Data Types Used in the Model of Eucalyptus. 
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  (      )                  [ ]     [ ]    [ ]     [ ]    

                                   

(3.1) 

  (      )                  [ ]     [ ]    [ ]      [ ]   

             

(3.2) 

The formula in (3.1) depicts the success scenario when the euca2ools is able to find both 

of the credentials (the key and environment variables) in the systems and both are set properly. 

Similarly, in (3.2) if the euca2ools is unable to locate the specific environment variable or if the 

key is mismatched, then no further transitions will be fired. After the authentication is 

successfully performed the next step is to check either the configurations provided by the user 

for the size of memory, disk, and CPU for the requested VM are same as the ones set by the 

administrator. 

 

  (     )                        [ ]     [ ]    

    [ ]     [ ]       [ ]     [ ]                              

  [ ]            [ ]     [ ]     

     [ ]      [ ]         [ ]      [ ] 

(3.

3) 

 (     )                      [ ]      [ ]    

     [ ]     [ ]  [ ]        [ ]      [ ] 

(3.

4) 

The administrator configurations reside in the         and the user configurations are 

placed in        after the transition        is fired. In (3.3) and (3.4) both of the configurations 

(user and administrator) are compared. If (3.3) is fired, then a disk image from a disk image 

repository is extracted and is transferred to       along with the configuration parameters. If 

(3.4) is fired, then no further transition will be fired because of the configurations mismatch.  
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Mapping is performed in (3.5), where a random     from     is generated and 

assigned to the VM. Moreover, physical     from        and a virtual     from       are 

also mapped. The relation (mapping) between virtual     and physical     is one-to-many, 

which means that many virtual      can be mapped to one physical    . However, the relation 

between MAC/IP pair and virtual     is one-to-one because only a single virtual     and a 

MAC/IP pair can be assigned to a single instance of VM. After all the mapping is completed, the 

instance of the VM is created with the specified configuration parameters placed at       . 

The user can directly interact with the VM instance after it is created using        . 

The design of Eucalyptus supports corporate enterprise computing settings where the 

administration space is separated from the user space.  The users are only allowed to use the 

system through web interface or specified front end tools. Eucalyptus is easy to deploy on top of 

the existing resources. Moreover, Eucalyptus is suitable for experimentation because of having 

modular design and open source in nature. 

 (        )    {      [ ]                            [ ]        

(     [ ])    [ ] }      [ ]             [ ]    [ ]  

                   { (   [ ]     ) }                   {  }   

           { (   [ ]    [ ]    [ ]    [ ]  

  [ ]    [ ]    [ ]    [   ]    [   ]     ) } 

(3.5) 

3.3.3. Open Nebula 

Open Nebula was a research project that started in a year 2005 as a management tool for 

the orchestration and configuration of VMs in datacenter [3.38], [3.39]. Open Nebula is now 

available as an open source and can be used as a toolkit to build private, public, and hybrid 

clouds. The key technical aspect of Open Nebula is its architecture that provides a great level of 
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customization and centralization. Moreover, the architecture also supports multiple storage back 

ends and different hypervisors, such as Xen, VMware, and KVM [3.39]. Shared file system is 

adopted in Open Nebula for storing all functional and disk images files. The aforementioned 

exposes the underlying features of libvirt to administrators and users that involves operations, 

such as VM live migrations. The centralization makes administration of Open Nebula easier. 

However, one drawback of the default customization with NFS file system is that large amount 

of space is required to hold all the files. 

The architecture of Open Nebula (Fig. 3.4) is divided into three layers: (a) Tools, (b) 

Core, and (c) Drivers. The first layer contains management tools that can be developed using the 

Open Nebula core interfaces, such as Command Line Interface, new Open Nebula cloud API, or 

third party tools that can be created easily using the XML-RPC interface [3.38]. The Open 

Nebula core performs orchestration and configuration of other components. Moreover, the core 

also has a set of components that are used to control and monitor VM, virtual networks, hosts, 

Open Nebula Core

Tools

libvirt API Interfaces Other Tools

3rd party tools

Drivers

Virtualization Storgae Network Cloud

 

Fig. 3.4. The Architecture of Open Nebula. 
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and storage. The drivers are pluggable modules that provide a layer of abstraction over the lower 

level operations, such as virtualization hypervisor, cloud services, and file transfer mechanism. 

Moreover, the drivers are used by the core layer to perform certain actions, such as cancelling a 

VM. 

3.3.3.1. Modeling and Analysis 

The model for initializing the VM using typical Open Nebula configuration is 

demonstrated in Fig. 3.5. The first step towards modeling the system is to identify the required 

types,  , and mapping. The types and the descriptions are shown in Table 3.3 and the mapping of 

  to types is depicted in Table 3.4. 
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To use an Open Nebula cloud the user needs to have an account that Open Nebula 

provides on demand.  After a successful sign up, the user can login with any one of the interface 

being used, such as sunstone, OCCI, and EC2. The user can request a VM using a command 

onevm, which allow user to manage VMs, such as allocate, deploy, suspend, and shutdown. The 

NFS directory at the head node holds all the functional and disk image files. As a result of 

onevm, the VM template disk image file is copied from the disk image repository, padded to the 

required size and configuration, and is saved to the NFS directory.  

At that point, the Open Nebula Daemon (oned), which is responsible for the control of 

VM life-cycle and to coordinate the operations of all modules, logs into the compute node. The 

compute node provides a virtual NIC, MAC, and mapped it to physical NIC through network 

bridging. Finally, the instance is created with the specified configurations at the hypervisor. In 

Types Description 

Email A string type for email authentication. 

Pass A string type for password authentication. 

UName A string type for password authentication. 

CPU An integer type for the number of CPU/core allocated to the VM. 

Mem A float type for the amount of memory allocated to the VM. 

Disk A float type for the amount of disk space allocated to the VM. 

NMI Type for the machine image. 

SSH_Cert A string type for the SSH login 

SSH_Pass String type for the SSH encrypted password. 

IP A string type for the IP address of VM 

MAC A string type for MAC address of the VM 

NIC A string type for NIC of the physical machine 

VID An integer type for Virtual Machine ID 

Table 3.3. Data Types Used in the Model of Open Nebula. 
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the previous paragraph we have provided a short overview for the process of instantiating the 

VM in a typical Open Nebula configuration. Now, we can define formulas (pre and post-

conditions) to map on transitions. The set of transitions 

  {                                                     }. 

 

 

Places Mappings Descriptions 

  (     )   (Email×Pass) Holds user requests 

  (            )   (Email×Pass) Holds existing users  

  (   )   (Pass×UName× 

CPU×Mem×Disk) 

Holds user login and config. 

  (             )   (Pass×UName) Holds user accounts 

  (     )   (Cert×SSH_Pass) Holds login information for oned 

  (  )   (NMI) Holds the disk images 

  (    )  (CPU×Mem×Disk 

×NMI×UName) 

Holds username and user config. 

  (    )   (Cert×SSH_Pass) Holds oned login detail 

  (       )   (CPU×Mem×Disk) Holds admin config. 

  (     )   (CPU×Mem×Disk×NMI× 

NIC×VID×MAC) 

Hold config., creates virtual NIC, 

MAC, and VM ID 

  (    )   (IP) Creates IP for the VM 

  (      )   (CPU×Mem×Disk×NIC) Holds physical specification of the 

system 

  (  )  (CPU×Mem×Disk×NMI×NI

C×VID×UName×IP) 

VM instance is created alongwith 

the specified config. 

  

Table 3.4. Places Used in the Model of Open Nebula. 
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New tokens can only be produced by transition     and    . As seen in Fig. 3.5, no arc 

is incident on any of the two aforementioned transitions, which is why no pre-condition exists 

and the rules for the transitions can be written as:  (   )               and  (   )  

                The first step perform by the user is to request an account for an Open 

Nebula cloud. The transitions     and     authenticate if the requested user already holds an 

account or not. The transitions are mapped to the following formulas:  

 (   )                    [ ]     [ ]    

           {( [ ]  [ ])} 

(3.

6) 

 (   )                      [ ]     [ ]   

             

(3.

7) 

The accounts are created based on the email ID. If the email ID is already associated to 

an account, then the request is denied. Otherwise, the account is created and the new information 

is stored in the              . The success and failure scenario is depicted in (3.6) and (3.7), 

respectively. The next step is to login to the Open Nebula cloud and request for the VM.  

 (       )            [ ]    [ ]     [ ]    [ ]    

             [ ]     [ ]     [ ]    [ ]    [ ]    [ ]   

  [ ]    [ ]                   [   ]      

        { (  [ ]   [ ]   [ ]   [ ]   [ ]) } 

(3.8) 

 (       )            [ ]     [ ]      [ ]     [ ]   

         

(3.9) 

The user account information is stored in              . When the user logs in and 

request for a VM, the login credentials are match and then the command is forwarded, as shown 

in (3.8) and (3.9). If (3.8) is fired, then the disk image is copied from the disk image repository, 
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padded to correct size and configuration, and is stored in     . Moreover, oned will login to the 

compute node only when (3.8) is fired. If (3.9) is fired, then the request for the VM is denied and 

no further transitions will be fired. 

To spawn a VM user provides a configuration file with parameters to be fed into the 

hypervisor command line. The aforementioned allow users to request for any configuration of 

memory, disk, and CPU. Therefore, we have performed the authentication of configuration 

parameters in (3.10) and (3.11) when the hypervisor is generating virtual NIC and MAC. In 

(3.10), if the configurations provided by the user are same as set by the administrator, then the 

control is transferred back to      . Otherwise, (3.11) is fired and the system is terminated. 

 (    )                [  ]      [ ]    

   [ ]     [ ]     [ ]     [ ] 

(3.10) 

 (    )                   [ ]     [ ]    

  [   ]      [ ]      [ ]      [ ] 

(3.11) 

The      process uses Secure Shell (SSH), which is an encrypted network protocol to 

securely send management functions, to login to the compute node using SSH certificate and 

password. If (3.12) is fired, then the virtual NIC and MAC from       and physical NIC 

from        are mapped using network bridging. The relation between virtual MAC and NIC 

is one-to-one. The relation between the pair of MAC/NIC and physical NIC is many-to-one, 

which means one physical NIC can be mapped to many. Once the mapping is completed an IP 

from      is assigned to the VM and the instance is ready to use. If (3.13) is fired, then the 

model exits because the SSH certificate or the password provided is incorrect.  

 (     )               [ ]   [ ]   

  [ ]   [ ]                            

(3.12) 
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 [ ]    [ ]   [ ]    [ ]   [ ]     [ ]   [ ]      [ ]      

{  [ ]            [ ]              [ ]        

(  [ ]   [ ])    [ ] }    

{            [ ]          [ ] } 

                   { ( [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]) } 

           { ( [ ]  [ ]  [ ]  [ ]  [ ]  [ ]   [ ]) } 

 (     )                   [ ]    [ ]   

   [ ]     [ ] 

(3.13) 

The level of customization available is Open Nebula is suitable for researchers who wish 

to combine cloud systems with other technologies. However, to utilize the underlying benefits of 

the customization the user needs to have some technical expertise. Another downside of the 

customization is that user can make a mistake while providing configuration for a VM. The 

centralized nature of Open Nebula makes administration easier. Moreover, higher level of 

customization makes Open Nebula ideal for research community. 

3.3.4. Nimbus 

Nimbus is an open source solution that allows clients to lease resources by deploying VM 

and providing an environment suitable for the user [3.40]. Nimbus is also affiliated with the 

Globus Project [3.41] and uses Globus credential for user authentication. Nimbus also provides a 

high level of customization just like Open Nebula. However, the only difference is that much of 

the customization in Nimbus is restricted to the administrator. Moreover, several components, 

such as image repository and credentials for user authentication, are kept constant. Furthermore, 

Nimbus also provides an extensible implementation that supports Web Service Resource 

Framework (WSRF), Amazon EC2, and other end user services to make a cloud easy to use. A 
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storage cloud implementation called Cumulus, which is compatible with Amazon Web Service 

S3 REST API, is included in the Nimbus and is tightly with other central services. 

A toolkit is offered to deploy applications on Nimbus that consists of manager service 

hosting and image repository [3.42]. The components of Nimbus workspace is shown in Fig. 3.6. 

The Workspace Service is a standalone VM manager that can be invoked by remote protocol 

frontends. Currently, Nimbus supports two frontends: (a) EC2 and (b) WSRF. The storage 

service (Cumulus) is also embedded in a Workspace service and can also be installed separately. 

The Workspace Resource Manager deploys and manages workspace nodes. The Workspace Pilot 

allows the integration of preconfigured resources to VMs. Moreover, the aforementioned 

component also handles signals and has administration tools. The Workspace Control is 

responsible for the management and control of VM instances, disk images, VM integration to a 

network, and assigning MAC and IP addresses. The Workspace Client provides access to the 

entire feature set of WSRF as a command line client. The aim of Cloud Client is to speed up the 

process of running a VM using instance launches or one-click clusters. The clients can launch 
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Fig. 3.6. Nimbus Workspace Components. 
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large virtual cluster automatically with the use of the Context Broker. The Context Client 

interacts with Context Broker at VM startup and lives on VM. 

3.3.4.1. Modeling and Analysis 

The model for starting a VM in a typical Nimbus configuration is demonstrated in Fig. 

3.7. The first step is to identify the required   and associated types. Table 3.5 depicts the types 

used in the model and Table 3.6 explains the   and mappings.  

The Nimbus uses client known as Cloud Client to interact with the services over multiple 

protocols. The users first need to download the client and configure it. The use of Cloud Clients 

makes life easy for the users. The easiest client to use is Cloud Client that makes the users up and 

running in a quick time. The user uses cloud clients to request a VM using explicit credentials. 

When the head node receives the request, then the VM template disk image is extracted from the 

repository and pushed to the compute node. The compute node performs the necessary padding 

and configuration to the image. Virtual MAC and NIC are provided by the compute node using 

Network bridging. Moreover, the physical NIC and virtual NIC of the VM are also mapped. In 

Nimbus, every compute node has a DHCP server. The MAC/IP pair is placed in the DHCP 

server and the VM is ready to be used. The set    {                               }.
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Fig. 3.7. A Model for Nimbus.  
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Types Description 

UCert A string type for cloud client authentication. 

UKey A string type for cloud client authentication. 

CPU An integer type for the number of CPU/core allocated to the VM. 

Mem A float type for the amount of memory allocated to the VM. 

Disk A float type for the amount of disk space allocated to the VM. 

IP A string type for the IP address of VM 

MAC A string type for the MAC address of the VM 

NIC A string type for NIC of the virtual/physical machine 

VID An Integer type for Virtual Machine ID 

SSH_Cert A string type for the login authentication of SSH Certificate. 

SSH_Pass A string type for the login authentication of SSH encrypted password. 

 

The seed point of the model from where new tokens are generated is through a transition 

    and the rule for the transition can be stated as:  (   )              . The 

transitions     and     authenticate the credentials of the cloud client. The said transitions are 

mapped to the following rules: 

 (   )                    [ ]     [ ]     [ ]      [ ]   

             

(3.14) 

 (   )                   [ ]     [ ]    

  [ ]      [ ]   

             

(3.15) 

 

 

 

Table 3.5. Data Types Used in the Model of Nimbus. 



 

47 

 

 

Places Mappings Descriptions 

  (       )   (UCert×UKey×CPU×Mem×

Disk) 

Holds user credentials and config. 

  (         )   (UCert×UKey) Existing user details 

  (    )  (UCert×SSH_Cert×SSH_Pass

×CPU× Mem×Disk) 

Holds SSH login details and user config 

  (       )  (UCert×SSH_Cert×SSH_Pass

×CPU× Mem×Disk) 

Holds user and SSH login details and 

specified config. 

  (  )   (EMI) Holds the disk images 

  (       )  (CPU×Mem×Disk) Holds admin configurations 

  (     )   (UCert×CPU×Mem×Disk× 

EMI×NIC×MAC×VID) 

Hold configurations, creates virtual NIC, 

MAC, and VM ID 

  (    )   (IP×MAC) Hold maps of IPs to MAC 

  (      )   (CPU×Mem×Disk ×NIC) Holds physical specefication of the 

system 

  (  )  (UCert×CPU×Mem×Disk× 

EMI×NIC×MAC×VID×IP) 

VM instance is created alongwith the 

specified config. 

 

The formula in (3.14) represents a success scenario when the cloud client successfully 

locates both of the credentials (user certificate and user key) and both are configured. In (3.15), if 

the credentials are mismatched, then no further transitions will be fired and the system will 

terminate. SSH protocol is used by      to login to        . The          and 

         are confirmed using rules as stated in (3.16) and (3.17). 

 (    )                   [ ]     [ ]     [ ]     [ ]   

             { (  [ ]   [ ]   [ ]   [ ]   [ ]   [ ]) } 

(3.16) 

 (    )                  [ ]     [ ]      [ ]      [ ] (3.17) 

Table 3.6. Places Used in the Model of Nimbus. 
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At that point the configurations for memory, disk, and CPU provided by the user are 

matched with the administrator configurations. If (3.18) is fired, then the VM template disk 

image is copied from disk image repository using a distributed storage, such as S3, padded to the 

correct size, configured, and is pushed to the      . If (3.19) is fired, then the request will be 

denied and the system will terminate.  

 (  )               [ ]    [ ]    [ ]     [ ]     [ ]     [ ] 

                   

         { ( [ ]  [ ]  [ ]     [ ]     

  [ ]   [ ]   [ ]) } 

(3.18) 

 (  )               [ ]    [ ]    

 [ ]    [ ]    [ ]    [ ]   

       

(3.19) 

In the last transition (3.20), an     from      and virtual     and     from        

are mapped one-to-one. Moreover, the physical     from        is also mapped to virtual 

NIC and the relation between them is many-to-one, which means that many virtual      can be 

mapped to one physical    . The VM is spawned after all the mappings are performed. Nimbus 

has the ability to provide different resources leases to different users as a mean of scheduling. 

The flexibility and customization available in Nimbus makes it suitable for scientific community 

to perform experiment. Moreover, the workspace tools available in Nimbus can operate with Xen 

hypervisor and as well as with KVM. 

 

 (   )   {     [ ]            [ ]           [ ]            [ ]       (3.20) 
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( [ ]   [ ])   [ ] }     [ ]   [ ] 

           { (  [ ]   [ ] ) } 

          { ( [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]) } 

                  { ( [ ]  [ ]  [ ]  [ ]  [ ]   

 [ ]  [ ]  [ ]  [ ]) } 

3.3.5. OpenStack 

The OpenStack is a cloud computing project, launced in July 2010, to provide IaaS. The 

OpenStack is mainly a collection of three open source projects: (a) OpenSTack Compute (Nova), 

to provide and manege large network of VMs, (b) OpenStack Object Storage (Swift), to provide 

redundant and scalable data storage using cluster of servers, and (c) OpenStack Image Service 

(Glance), to provide discovery, registration, and delivery service for disk images [3.60]. Similar 

to other systems, such as Eucalyptus and Open Nebula, the OpenStack supports EC2, S3, and 

Rest Interfaces. The networking between the OpenSTack and Eucalypstus also has certain 

similarities, such as the automatic bridge creation and IP forwarding for public IPs. Moreover, 

the authentication process, the development operations (DevOps) deployment tools, and 

hypervisors, are same between OpenStack and Eucalyptus. Despite the widespread popularity 

and adaptation of OpenStack, it is still in early stages and will need time to mature, as advocated 

in [3.29]. The formal analysis, modeling, and verification of the OpenStack are included as a 

future work in this paper. 

3.4. Verification of Models Using SMT-Lib and Z3 Solver 

Verification is the process of demonstrating the correctness of an underlying system. Two 

parameters are required to verify a model or a system: (a) specification and (b) properties. In this 

study, we use bounded model checking [3.44] technique to perform the verification, using SMT-



 

50 

 

Lib and Z3 solver. In bounded model checking, the description of any system is verified, whether 

any of the acceptable inputs drives the system into a state where the system always terminates 

after finite number of steps. The process of bounded model checking involves several tasks: (a) 

Specification, the description of the system that states the properties or rules, which must be 

satisfied by the system to be deemed correct, (b) Modeling, representation of the system, and (c) 

Verification, use a tool to check whether the specifications has been satisfied by the model. 

Definition 2: Bounded Model Checking [3.44], given a Kripke Structure   (       ) 

and a   bound, the bounded model checking problem is to find {     } where:   is the finite 

set of states,    is a set of initial states,   is the set of transitions, such that      ,   is the set 

of labels. The bounded model checking problem is to find an execution path in   of length   

that satisfies a formula  . Kripke structure, which is a state transition graph, is used to represent 

the behavior of the system [3.45]. In Kripke structure nodes are the set of reachable states of the 

system, edge represents the transitions, and label functions map nodes to the set of properties 

hold in the state. Fig. 3.8 shows an example Kripke structure and computational tree.  
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Fig. 3.8. An example of: (a) Kripke Structure and (b) Computational Tree. 
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A path in a Kripke structure can be stated as an infinite sequence of states represented as 

             such that for      (       )   . The model   may produce a path set   

                      . To describe the property of a model some formal language, such as 

CTL*, CTL, or LTL is used. As stated in section I, the “*” represents that CTL* is a hybrid LTL 

and CTL. Some operators used in CTL* are shown in Table 3.7. 

To demonstrate the use and meaning of operators an example is provided in Fig. 3.9. The 

black circle in Fig. 3.10 represents a state  . Moreover,     in Fig. 3.9(a) means, that a future 

state   is reachable from every path. Furthermore,     in Fig. 3.9(b) means, that state   is 

globally reachable from every path. (Readers are encouraged to see [3.46] for more details about 

the CTL*.) For a model to be correct, the states must satisfy the formulas (Definition 2) under a 

specific bound. The formulas are represented in terms of properties of the systems.  

Definition 3: (SMT Solver) [3.31], given a theory Ґ and a formula  , the SMT Solvers 

perform a check whether   satisfies Ґ or not. 

 

Op Desc Op Desc 

  For all paths   Logical AND 

  For some paths   Logical OR 

  Next   Negation 

  For future paths   Implication 

  Globally   Double implication 

Table 3.7. Operators (Op) used in CTL* and Description (Desc). 
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To perform the verification of the models using Z3 (an SMT Solver), we unroll the model 

  and the formula   that provides    and   , respectively. Moreover, the said parameters are 

then passed to Z3 to check if         [3.56]. The solver will perform the verification and 

provide the results as satisfiable (sat) or un-satisfiable (unsat). If the answer is sat, then the 

solver will generate a counter example, which depicts the violation of the property or formula  . 

Moreover, if the answer is unsat, then formula or the property   holds in   up to the bound   (in 

our case   is exec. time).  

For the models to be correct, the solver should be able to find a terminating state in a 

model. The failure transitions in all of the models are considered as a terminator of the models. 

Moreover, the other terminating state in the models is the last state when the instance is 

successfully created. One property to verify the models is that, whenever a request is made for a 

VM and there are no failures, then the instance should be created. To explain the verification of 

the models, an example computational tree of a model in Fig. 3.3 is developed and shown in Fig. 

3.10. The tree is drawn by following the success transitions only. If we closely analyze, we can 

see that        (the final terminating) state is reachable from every path in the tree, which 

shows that the model terminates after some iterations. Therefore, satisfies the property. In Fig. 

3.10, the state         

  

(a)   p         (b)   p 

Fig. 3.9. An Example CTL Operators. 
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Fig. 3.10. An Example Computational Tree of Eucalyptus. 

 

Fig. 3.11. Verification Results of Eucalyptus. 
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at second level shows a scenario when the instance is already been created and user can directly 

SSH the instance. The states labeled with “x” represents, that from the point forward the tree 

will repeat the predecessor. Similar process has been followed to verify all the models of the 

systems in this study. We have specified the properties of the VM-based systems in a similar 

passion and verified whether the properties are satisfied by the models. The properties we have 

verified for our models are: 

1. if a request is made and there are no failures, then the instance of VM must be created, 

2. the instance of VM must have the same configurations as requested by the user, 

 

Fig. 3.12. Verification Results of Open Nebula. 

 

Fig. 3.13. Verification Results of Nimbus. 
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3. the instance should be distinct. 

3.4.1. Results  

To verify, the models of the VM-based systems are translated to SMT. Moreover, the 

properties are also translated and specified in SMT. The model along with the properties are 

given to the Z3 solver to check either the model satisfies the properties or not. If there are no 

errors, then the model specifications can be stated as correct. Note that our goal in this section is 

to verify the correctness of the models and not to measure or analyze the performance of the 

 

Fig. 3.14. Execution Time Comparison of Eucalyptus, Open Nebula, and Nimbus. 

 

Fig. 3.15. Memory Utilization of the Systems. 
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systems. Fig. 3.11 depicts the execution time and memory taken to verify the model of 

Eucalyptus. We have instantiated 100 VMs to verify the properties stated above and to observe 

the effect of scalability on the working of the models. 

The model of Eucalyptus works fine and produces results as expected. The results in Fig. 

3.11 shows that an increasing trend is followed in both, the execution time and memory, as the 

number of VMs increases. The increase in the values is obvious, as the number of VMs will 

increase more time will be required by the processor to verify and more space will be needed to 

store the variables.  

Fig. 3.12 and 13 depicts the verification results for the model of Open Nebula and 

Nimbus, respectively. The execution time and memory increase in both of the models as the 

number of VMs increases. The increase in the values has the same reason that is stated in the 

results of Eucalyptus. Fig. 3.14 and Fig. 3.15 plot the execution time of all the models 

(Eucalyptus, Open Nebula, and Nimbus) and memory consumption, respectively. As seen in Fig. 

3.15 the memory consumption of Open Nebula and Nimbus has almost similar values, which is 

due to the fact that Eucalyptus keeps the records of environment variable and configurations. 

Note that the results indicate the time taken by Z3 solver to verify the models based on the 

specified properties.  

The results in no manner characterize the performance of the models or the systems. 

Moreover, the goal is to demonstrate the correctness of the models and to highlight the feasibility 

of the models with respect to scalability and execution time. 
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4. CONVERGENCE TIME ANALYSIS OF OPEN SHORTEST 

PATH FIRST ROUTING PROTOCOL IN INTERNET 

SCALE NETWORKS 

This paper is published in IET Electronics Letters, vol. 48, no. 19, pp. 1188-1190, 2012. 

The authors of the paper are Saif U. R. Malik, Sudarshan K. Srinivasan, and Samee U. Khan.  

4.1. Introduction  

Open Shortest Path First (OSPF) is an adaptive routing protocol to distribute routing 

information within a single Autonomous System (AS) [4.1]. OSPF divides the network into 

areas. Each area consists of one or more segments. A segment constitutes the set of routers 

connected via a common communication channel (example Ethernet). When a failure occurs, 

topologies are regenerated and paths are recalculated by all of the routers within that area [4.2]. 

The time a router takes to discover the area topology is known as the convergence time [4.1]. To 

improve the convergence time of a segment in an area, a router is selected as a Designated 

Router (DR) on each segment.  

Fast convergence time is required to meet network based application demands and 

Quality of Service (QoS) requirements of modern dynamic large-scale routing domains, such as 

data centers. Therefore, a lot of effort and studies have been made to improve the performance of 

OSPF [4.3]. However, the convergence time analysis of OSPF that incorporates DRs has never 

been studied. We address the aforementioned, by developing a novel method to compute the 

intra-area convergence time of OSPF-based networks that incorporates DRs, which is the 

primary contribution of this letter. Moreover, to analyze and benchmark the protocol on Internet 
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scale networks is another contribution of this work. We also show how to use our method to 

study the effect of: (a) DRs, (b) cascading failures, and (c) topological changes on the 

convergence time of the routers within an area.  

For our experiments, we simulated the detailed implementation of the OSPF protocol 

based on the specifications reported in [4.2]. To get realistic measurements we generate 

topologies from BRITE [4.4], using Otter [4.4] (as shown in fig.1.) that represents the exact same 

characteristics as those of the Internet. The results and analysis provided in the letter will be 

extremely useful for network administrators seeking to deploy OSPF. Moreover, the results are 

also useful in the behavioral analysis of OSPF and can provide the basis to reevaluate the design 

of the protocol to achieve performance optimization. 

4.2. Problem Formulation  

Consider a network composed of   routers. Let    be the i
th

 router, where      . A 

link between two routers    and    (if it exists) has a communication cost that represents the 

 

Fig. 4.1. Sample Topology for One Thousand Routers. 
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minimum time for transferring message from    to   , which can be represented by the following 

expression [4.5]:  

,
),(

),(
ij

ji

ji

sRRD
RRdel




 

where  (      ) is the physical distance between    and    ,   is the propagation delay of the 

medium (optical fiber in our case),   is the size of the message in kilobytes, and     is the 

available bandwidth between    and    . If the routers are not directly connected, then the 

communication cost is the sum of the cost of all links in the shortest path from    to   . Without 

the loss of generality, we assume that    (     )     (       ), which is a common 

assumption in literature [4.5]. Let   be the number of segments within an area and    be the k
th

 

segment in that area, where      . Let    be the set of DRs within an area and    is the 

convergence time of    . If a failure occurs (could be a link or a router), the routers connected to 

the failed link or failed router will initiate the updates.       
  be a router that initiates an update 

in response to a failure. Let    be the set of all other routers in the area defined as    

( {  }
 
   ) {{  

 }    }. 

  
   will detect a failure, if no response is received from a neighboring router for a period 

longer than the Dead Interval (DI).   
  will then update its link state and forward the updated link 

state to the  DR of segment k (represented as   ). The link state is the description of the interface 

of the router (IP address of the interface, mask, type of network, routers connected to) and the 

relationship to other routers. The DR will then flood the information to every other router in the 

segment after receiving the update. Let   
  represent a router that belongs to   . The time 

for   
  to receive the update ( (  

 ))  can be calculated as follows: 

(4.1) 
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(4.2) 

(4.5) 
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(  )     (     

 )      
    

 

where, 

 (  )           (  
 )     (  

    )  

We assume that other updates, such as change in bandwidth (∆   ) are local and incur 

zero update time. Therefore in (4.2), the value of   (  
 ) for   

    
 , is DI. The DI of routers is 

usually four times the “Hello” interval, which is the time between consecutive transmissions of 

“Hello” packets that are used to indicate the liveliness of nodes. The “Hello” interval is 10 

seconds for broadcast and P2P networks, and 30 seconds for all other media [4.2]. The value 

of  (  
 ) for   

     is the sum of the time required for    to receive updates and the time 

   takes to deliver updates to   
 . The value of   (  )  is calculated in (4.3), which is the sum 

of   (  
 ) (the node sending the update to    ) and the communication cost between them, which 

is given as    (  
    ). Moreover, (4.2) and (4.3) are used to calculate    based on the 

following equation: 

       ( (  )         ( 
    

 ))  

The last router (maximum time taken to receive an update from the corresponding    ) in 

   that receives the update, determines   . Now, using (4.2), (4.3), and (4.4) the convergence 

time of an area τ can be calculated as follows: 

         (( 
 ))   ((  

 )     (  
    ))  

The maximum    amongst all of the segments plus the time when the update is initiated 

and reaches to the respective DR determines the value of  . 

 

(4.3) 

(4.4) 
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4.3. Results and Discussions 

The value of   determines the time an area requires to reach a stable (steady) state from 

an unstable state, which is caused by an update. Therefore, to avoid message losses the network 

must converge quickly. To this end, we evaluate the effect of: (a) the number of DRs, (b) 

cascading failures, and (c) topology on the value of   .  

We assume optical fiber as the communication medium having propagation delay   

                . Ethernet channels have a Maximum Transmit Unit (MTU) of 1500 bytes 

[4.1]. Also, fragmentation is usually avoided in OSPF [4.1]. Therefore, we assume the message 

size s to be 1KB (lower than the 1500B cap, but not too low and is typically used in literature for 

experimentation, such as in [4.6]). The bandwidth value      is kept constant at 100Mbps, as 

advocated in [4.7] for the evaluation purposes. The values of  (     ) are assigned from within 

the range of [1-100] km.  

Fig. 4.2 depicts the effect of the number of DRs on the value of   . To analyze the effect 

on large and average scale networks, we used N= {1000, 300}. A DR can decrease the segment 

 

Fig. 4.2. The Effect of DRs on τ. 
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convergence time from  (  ) to  ( )[4.1]. However, including more DRs in an area has no 

effect or in some cases may even increase the value of  . As reported in Fig. 4.2, the mean value 

of   increases gradually as the number of DRs increases in the topology. To see why, consider a 

router R under DR1. If DR2 is added to the area and R now falls under DR2, then DR1 can no 

longer directly communicate with R, but instead is obligatory to communicate via DR2. From this 

example we can see that including a DR can increase the length of communication paths in the 

area, thereby possibly increasing its convergence time. Therefore, the placement of DR is crucial 

towards the value of  .  

Fig. 4.3 depicts the effect of cascading failures of routers (also called nodes) and links 

on  . The number of DRs in an area is set to one (to avoid the influence of multiple DRs on   ). 

When a node fails, nearby nodes absorb the load of the failed node. The failed nodes can in turn 

cause their neighbors to fail (due to overloading) resulting in cascading failures, also known as 

terminal failure in (communication and power) networks. The degree and placement of a failed 

node determines its effect on the value of   . If a failed node or link is in the shortest path of 

 

Fig. 4.3. The Effect of Node and Link Failure on τ. 
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other nodes, then   may increases. This is because updates to such routers may require a longer 

path. However, if a failed node or link is: (a) a leaf node, a node with low degree, or link on the 

edge of the topology, or (b) not included in the shortest path, then    can decrease as the failed 

node need not be updated. Moreover, as can be seen from Fig. 4.3, node failures can affect    

more adversely than link failures. Link failures directly affect only the two routers they are 

connected to, but node failures affect all its neighbors which is typically more than two.  

Fig. 4.4 illustrates the variation of   due to the changes in the topology, which depicts 

that the value of   increases as the number of routers within an area increases. However, an 

interesting observation is that the value of   may decrease in certain cases when a router that is 

included in a topology changes the value of    (  ) by adding a new shortest path. To avoid 

the influence of multiple DRs in an area on  , the number of DRs is set to one in Fig. 4.4. 
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5. MODELING AND ANALYSIS OF THE THERMAL 

DYNAMICS OF CYBER PHYSICAL DATA CENTERS 

This paper is submitted to IEEE Transactions on Cloud Computing (TCC) on Sept. 2013. 

The authors of the paper are Saif U. R. Malik, Kashif Bilal, Samee U. Khan, Bharadwaj 

Veeravalli, Keqin Li, and Albert Y. Zomaya,  

5.1. Introduction 

Cloud computing is an emerging paradigm, where a shared pool of resources (networks, 

servers, storage, applications, and services) can be accessed conveniently, on-demand, and can 

be rapidly provisioned or released with minimal management effort or service provider 

interaction [5.1, 5.2]. The Data Center (DC) contributes towards the prevalent application and 

adoption of cloud by providing architectural and operational foundation. Therefore, the DC 

serves as a backbone of cloud systems. To maintain a specified Quality of Service (QoS) 

attributes, such as throughput, the DCs must operate efficiently all the time. 

The DC hosts a large number of servers to perform substantial computation and storage. 

Moreover, to improve the services for high performance computing application, the DC has been 

increasingly deployed. Blade servers are thin modular servers, usually deployed in DCs that are 

designed to minimize the use of physical space and energy. Because of the high energy 

requirements of the computing and cooling devices, the DCs energy consumption can cost 

millions of dollars. The DC run-time cost is dominated by the cost spent on the energy 

consumption of computing and cooling technologies [5.3]. According to a report published by 

Environmental Protection Agency (EPA) [5.4], the peak power consumption of DC in 2006 was 

7GW and it was expected to raise 12GW till 2011, leading to a cost of 7.4 billion USD per year. 
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The income of the DC is defined by the Service Level Agreement (SLA), which defines the 

amount paid by the users based on the QoS they receive. The computational and operating 

margins of DCs depend highly on the provision of the QoS. Higher QoS attribute levels lead to 

higher rates that in turn lead to higher computations. To deliver the specified level of 

performance, the number of computational devices put in use at all levels of DC has significantly 

increased. As a result, the rate at which the heat is emitted by the devices has also increased. The 

cost to stabilize the temperature in the DC has drastically increased and become almost equal to 

the cost of operating computational systems. The increasing cost of energy consumption calls for 

new strategies to improve the energy efficiency in DCs. Several strategies have been proposed, 

such as [5.5, 5.6, 5.7, and 5.8] for efficient energy consumption in the DC. In this paper, we 

model DC as a Cyber Physical System (CPS) to capture the dynamics and evolution of the 

thermal properties presented by the DC.  

The software aspects, such as scheduling and computations, performed by the devices are 

modeled as the “Cyber” portion and the supporting infrastructure, such as power supplies and 

servers, are modeled as the “Physical” portion of the CPS. Several studies are available that 

model DC as a CPS to achieve energy efficiency, such as [5.9 and 5.10]. The models proposed in 

the literature are abstract in the sense that they lack detailed analysis of the DC and hence it 

becomes difficult to exactly understand the dynamics of heat distribution, both from software 

and infrastructure perspective. Thus, in this paper, we provide a detailed modeling and 

formulation of the cyber and physical infrastructure, including the heat dissipation of individual 

components, the heat distribution, and recirculation among the physical portion of the CPS.  
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The physical infrastructure of the DC follows a hierarchical model, where the computing 

resources reside at the lowest layer. The network infrastructure can be considered as a multilayer 

graph, where the servers and switches are vertices and interconnection amongst them are the 

edges. The servers, access switches, and aggregate switches are assembled in modules (referred 

as pod) and are arranged in three layers, namely: (a) access, (b) aggregate, and (c) server layer. 

We perform a thorough analysis and modeling of the thermal subtleties involved at each layer. In 

doing so, we model heat dissipation of servers, switches (access layer, aggregate layer, and core 

layer), and the aggregate impact of each component on the overall infrastructure. 

By exploiting the thermal dynamics of discrete element, we propose a Thermal Aware 

Control Strategy (TACS) that uses High Level Centralized Controller (HLCC) and Low Level 

Centralized Controller (LLCC) to manage and control the thermal dynamics of CPS at different 

levels, such as: (a) low (server) level, (b) high (access, aggregate, and core switch) level, (c) 

intra-pod level, and (d) inter-pod level. The complete details of all levels and controllers will be 

discussed in later sections. We perform the simulation of our proposed strategy on a real data 

center workloads, obtained from Center of Computational Research, State University New York 

at Buffalo. The traces have more than 22,000 jobs and the records are of one month time. 

Moreover, we perform a comparative analysis of our proposed strategy with one classical 
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Fig. 5.1. An Example High-Level Petri Net. 
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scheduling approach and two thermal aware approaches, namely: (a) First Come First Server 

(FCFS), (b) Genetic Algorithm based thermal aware scheduling [5.23], and (c) Thermal Aware 

Scheduling Algorithm (TASA) [5.18].  

In this study, we also made an effort to diminish the level of abstraction through detailed 

modeling and formal analysis of the CPS. We use High-Level Petri Nets (HLPN) and Z language 

for the modeling and analysis of the systems. The HLPN are used to: (a) simulate and (b) 

provide mathematical representation, and (c) analyze the behavior and structural properties of the 

system. Moreover, we performed the verification of the models using Satisfiability Modulo 

Theories Library (SMT-Lib) and Z3 solver. We performed the automated verification of the 

model by following Bounded Model Checking technique using SMT-lib and Z3 solver. To verify 

using SMT, the Petri net model is first translated into SMT along with the specified properties. 

Then, Z3 solver is used to check whether the model satisfies the properties or not. The 

contributions of the paper are as follows: 

 modeling DC as a CPS to analyze the thermal dynamics at different levels; 

 formulating the thermal properties of major component involved in CPS, the effect of 

cyber activities on the physical properties of the DC, and vice versa; 

 proposing a Thermal Aware Control Strategy (TACS) that uses HLCC and LLCC to 

manage, control, and coordinate between the cyber and physical portion to maintain 

unified thermal threshold range; 

 conducting simulation and comparison of proposed strategy on a real data center 

workload and; 

 modeling and analyzing the CPS in HLPN, and the verification of the model using 

SMT-Lib and Z3 Solver. 
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5.2. Modeling Thermal Dynamics of Cyber Physical DC  

We model DC as a CPS, where the logical classification is made between the 

computational section and supporting infrastructure. The computational section, such as 

scheduling, that participates in the distribution, processing, and flow of tasks constitutes the 

Cyber portion. The supporting infrastructure, such as servers, switches, PDUs, and power 

generators, constitutes the Physical portion. The cyber portion performs computations or any 

other task to deliver the specified QoS attributes. In return, the physical portion emits thermal 

energy into the DC environment that raises the temperature. In this paper, we present a 

methodology that analyzes the collective thermal dynamics of cyber and physical portions to 

maintain a specified range of thermal threshold in the CPS. It is noteworthy, that we are only 

interested in the thermal dynamics of the DC and not the performance. The DC is logically 

classified as the combination of the cyber and physical portion:  

     (     )    (        )  

The CPS is comprised of computing resources, such as servers and the network 

infrastructure, such as switches, interconnecting all of the computing resources (Fig. 5.2). The 

CPS follows a hierarchical model, where the computing resources reside at the lowest layer as 

Pod
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Fig. 5.2. Three-Tier DC Architecture. 
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depicted in Fig. 5.2. The network infrastructure can be considered as a multilayer graph [5.31]. 

The servers, access switches, and aggregate switches are assembled in modules (referred to as 

pod) and are arranged in three layers, namely: (a) access, (b) aggregate, and (c) server layer. The 

core layer is used to connect all of the independent pods together. Note that, the cyber portion 

resides within the physical portion. Therefore, we model DC in a unified way that can 

accommodate both, the cyber and physical section. We divided the CPS model into two logical 

sections: (a) Pods (zones) and (b) Core Layer Switches, as below: 

          ( )       ( )  (5.1) 

 

where  ( ) is the set of core layer switches and r is the total number of core switches ( ) in the 

network.    ( ) is the set of pods and k is the total number of pods in the network. Each access 

layer switch ( ) is connected to n number of servers (S) in a pod. Moreover, every   is 

connected to every aggregate switch ( ) in the pod. The number of nodes (including      and  ) 

in    ( ) can be calculated as: 

    ( )   (   )
    

    
  (5.2) 

where  (   )
  represents a set of servers connected to   in     ( ). The   

  represents access 

layer switches in     ( ), where m is the total number of   in     ( ). The   
  represents 

aggregate layer switches and w is the number of   in     ( ). The components in CPS work 

individually or cooperatively to accomplish the assigned tasks. According to the law of energy 

conservation, energy can neither be created nor destroyed but it can be converted from one form 

to another. The mechanical energy is consumed by the physical portion as they perform cyber 

tasks and almost all the power drawn by the computing devices are dissipated as heat. We model 



 

76 

 

the heat dissipation of every component within the pod, such as      and  . The heat dissipated 

by the   is represented as    and can be calculated as follows: 

  
    (        )

   
 (5.3) 

where, 

  
    (       )

   
 (5.4) 

The   
   

 represents the heat dissipated as a result of the static power to keep the server 

awake, and   
   

 represents the heat dissipation when the processing is being performed. The 

  
    is fixed that does not change and is independent. However,   

   
 is dynamic and is dependent 

on the workload. The   
   

 represents the heat dissipated by the memory that includes energy 

consumed during the memory refresh operations. The   
   

 is further decomposed into    
   

 that 

represents the heat dissipation because of the read and write operations, and    
   

 is the heat 

dissipation as a result of the processing performed. We model switches as normal and high-end 

switches. The switches used in the core layer are usually high-end switches and dissipate more 

heat as compared to normal switches. We assume   and   are normal switches and   are high-

end switches. The heat dissipated by the normal switches, such as   and   is represented as 

   and can be calculated as:  

   
  (              )

 
, (5.5) 

where, 

          , (5.6) 

and 

              . (5.7) 
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The    represents the heat dissipation of the switch as a result of static power 

consumption,    represents the heat dissipation of the communication fabric used in the switch, 

  represents the heat dissipation of the buffer that includes     and   , representing the heat 

dissipation of ingress and egress processing unit, respectively. The   represents the heat 

dissipation during the processing that includes     and     , representing the static heat 

dissipation of switch processor, and when read and write operations are performed, respectively. 

The     represents the heat dissipation due to the processing performed by the switch. The     

and    are constant. However, the    and    are dynamic and depend on the workload of the 

switch.  

The   has different characteristics from   and  . The   facilitates the connection of the 

network with the end node devices and for this reason it supports features, such as port security 

and VLANs. The   manages or segments the traffic from the leaf nodes into VLANs and provide 

it to the core layer. For the said reason,   provides inter-VLANs routing functions to 

communicate. The   are the high speed backbone of the network, so they have a very high 

forwarding rate. Moreover, they have the capability to support link aggregation to ensure 

adequate bandwidth and traffic routing coming from  . Furthermore,   have additional hardware 

redundancy features, such as redundant power supplies, to swap while the switch continues to 

operate. Because of the high workload carried out by  , they dissipate more heat than   and  . 

We, represent the heat dissipation of high-end switches (core layer) as   , which can be 

calculated using  (5.5), (5.6), and (5.7). However, because of the workload and hardware 

redundancy the value of    must always be greater than   . In the previous discussion, we have 

modeled the heat dissipation of the individual nodes, as in (5.3) and (5.5), involved in the CPS. 

The heat dissipated by all the servers in     ( ), represented as   
 , can be calculated as: 
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(5.8) 

where the   
    represents the heat dissipation of    connected to   in     ( ). Moreover, the 

heat dissipation of all the   and   in     ( ), represented as   
  and   

 , respectively, can be 

calculated as: 

  
  ∑(  

 )

 

   

 
(5.9) 

  
  ∑(  

 )

 

   

 
(5.10) 

where   
  and   

  represents the heat dissipated by access and aggregate switches in     ( ). 

Similarly, the overall heat dissipated by the CPS, represented as   , can be calculated as:  

   ∑(  
     

    
 )   ∑(  

 
)

 

   

 

   

  
(5.11) 

It is noteworthy, that the heat calculations performed at this point, do not consider the 

ambient effect involved in the CPS environment. The next paragraphs will discuss the dynamics 

CRAC

Rack Rack Rack Rack

Rack Rack Rack Rack

 

Fig. 5.3. The Ambient Temperature Effect in DC. 



 

79 

 

of ambient temperature and its effect on the heat dissipation of an individual component. The 

ambient temperature is the surrounding temperature. Figure 3 illustrates the effect of ambient 

temperature in the CPS environment. The red and blue dotted lines in Fig. 5.3 depict the 

movement of hot and cold air, respectively. The hot air is exchanged amongst the racks, while 

the cooling is provided from the cooling devices, such as CRAC. Suppose there are   number of 

nodes that participate in the heat dissipation of CPS. Two temperatures are associated with each 

node, the (a) input temperature (   
 ) and (b) output temperature (    

 ). The    
  represents the 

input ambient temperature of node that includes the heat received from other thermal nodes. As 

depicted in Fig. 5.4, the    
  of s1 involves the recirculation (red dotted lines) of hot air from other 

nodes and cooling temperature ( sup) from CRAC. The heat dissipated by any node i   will 

change the     
 . The    

  and     
  represent the temperature of the surroundings and not the node. 

However, the heat dissipated by the node (    
 ) can affect the values of    

  and     
 . The input 

temperature of a node (   
 ) can be calculated as: 

   
    (   

 ) (5.12) 

where 

s1 s2

s3 s4

τsup
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Fig. 5.4. Heat Exchange among Server Nodes. 
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  ∑(    

 
)

 

   

       
(5.13) 

The   is an air coefficient that represents the product of air density (which changes from 

1.205kg/m
3
 at 20

° 
C to 1.067kg/m

3
 at 60

° 
C), heat of air, and flow rate of air. The     

  can be 

calculated as:  

    
     

     (5.14) 

where 

     (    
     

    ) (5.15) 

The    represents the heat dissipation of a node i   in proportion to the power consumed 

during the processing. The    can be replaced by any of the heat dissipation value of three 

nodes. For instance, if the calculating node is  , then    can be replaced with  . Suppose we 

have the current power distribution of all the servers in    (  ), represented as a vector   ⃗⃗ . The 

temperature profile of all the servers, represented as a vector   ⃗⃗  , can be calculated based on the 

given power distribution. The current temperature of    in    (  ) is denoted as     
   

, which can 

be calculated as,     
   

    
    (  )  where   (  ) represents the anticipated change in the 

temperature cause by executing a task    on  . According to the abstract heat model of DC, as 

discussed in previous works [5.27], the heat distribution and its effect on the surrounding 

machines can be represented as cross interference coefficient matrix. We follow the same model 

and compute the heat distribution of the servers using a matrix, represented as      {    }, 

which denotes the thermal effect of    on    and can be populated as: 

         
    

 

  
, 

where   is the thermal conductivity constant of the air and ĥ is the hop count of     from   .  
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5.3. Thermal Aware Control Strategy (TACS) 

We propose a thermal aware scheduling approach that uses High Level Centralized 

Controller (HLCC) and Low Level Centralized Controller (LLCC) to manage and control the 

thermal dynamics of CPS at different levels, such as: (a) low (server) level, (b) high (access and 

aggregate switch) level, (c) intra-pod level, and (d) inter-pod level. The goal is to eliminate 

Pod(2)

...

LLCC

Pod(1)

...

LLCC

...

Pod(k)

...

LLCC

Core

HLCCResource 

Manager

 

Fig. 5.5. HLCC and LLCC in DC. 

1: for i  1 to k do  

2:       
    

     
    

       //  also use in inter-pod migration 

3: end for  

4: Select     (  
 ) 

5: Get   
                 

6: Select   , such that   
      

                      

7: Allocate   to   ,       
       ( )      

 
 // 

8: If   
        

 
           , then 

9:     Migrate-task c from   to   ,       
       ( )      

 
    //  intra-pod migration              

10: end if 

Fig. 5.6. Steps Involved in Low (server) Level. 
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hotspots and to maintain a uniform range of thermal threshold in every pod. Whenever a new job 

(a job can have multiple tasks) is arrives to the CPS, the tasks are allocated to the specified 

server based on the thermal signatures. The HLCC and LLCC are proposed that perform the task 

allocation, task migration, and traffic redirection, based on the thermal analysis of the node or 

layer. As depicted in Fig. 5.5, there is LLCC in every pod that has the thermal information of 

all      and  . Every node in the CPS is equipped with a heat sensor that measures the 

temperature and the temperature is updated periodically to the LLCC. In low (server) level (Fig. 

5.6), the   
   

 for all the      (  ) is measured and observed through sensors periodically. 

Whenever the value of   
 
,     exceeds the maximum threshold temperature of the server 

(    
 

), the LLCC migrates some tasks from    to   , where    and   are connected to the same 

 . 

For the tasks to be migrated successfully to   , the constraint   
         

 
, must be 

satisfied. The    represents the anticipated increase in the temperature as a result of task 

1: for i  1 to k do 

2:     Compute     
 

          𝑤               

3:     If      
 

  𝑤 such that     
      

𝜉
, then 

4:        Redirect    from   to            
     (  )      

𝜉
 

5:     end if 

6:     If      
 

    such that     
      

𝜉
, then 

7:        Migrate-task c from   to   ,       
       ( )               

 
     

     (  )  

    
𝜉

          // intra-pod migration 

8:     end if 

9: end for  

Fig. 5.7. Steps Involved in High (access and aggregate) Level. 
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migration. If the task migration is not possible amongst the serves under the   , then the servers 

belonging to             are considered for the migration. The    and    belongs to the 

same pod. Moreover, if there is no server available for the migration within the same pod, then 

inter-pod task migration is performed by enforcing the same constraint. 

In high (access and aggregate) level (Fig. 5.7), the focus is to avoid the hotspot at access 

and aggregate layer of the CPS by redirecting the traffic from heavily loaded switches to the 

lighter ones. Redundant paths are available in the network infrastructure of DC that allows 

redirection of traffic from one switch to another (Fig. 5.2). The decisions for the redirections are 

made by LLCC considering the value of    for every switch. When the value    
 

for    increases 

from     
𝜉

, then task migration is performed by LLCC in the same way was as performed in low 

level. The reason for the aforesaid is a fact that there is only one path between the access and the 

servers. However, in case of  , redundant paths are available. Therefore, whenever the value of 

  
     𝑤, exceeds the maximum threshold temperature of the switch (    

𝜉
), the LLCC 

instructs the lower level (server) to redirect the traffic from    to    where both   belongs to the 

same pod. The redirection is allowed only if the   
 
        

𝜉
. If the redirection is not 

possible within the same pod, then inter-pod task migration is performed to take some load off 

from the switch.  

The high level and low level are combined together to form an intra-pod control. The 

goal in intra-pod is to stabilize the temperature of the pod by maintaining the thermal signatures 

of server, access, and aggregate layer. Local decisions (within the same pod), such as task 

migration and redirection, are taken by LLCC to stabilize the temperature. However, the inter-

pod migrations are performed with the consent of HLCC. Whenever, inter-pod actions have to be 

performed, the LLCC requests HLCC to provide information about other pods where the tasks 
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can be migrated. Afterwards, the LLCC of the pods can communicate with each other to 

accomplish the task. 

The inter-pod control is focused on maintaining the unified thermal threshold value in all 

the pods. The thermal signatures of nodes in CPS can evolve in order of minutes. Moreover, the 

power states of servers can change as frequent as milliseconds. Therefore, the threshold 

temperatures are not absolute values; rather it is a range within which the thermal signatures of 

the nodes and layers should lie. In inter-pod control, the HLCC periodically monitors the average 

thermal values of each pod that it receives from sensors. Whenever the thermal signature of the 

   ( ) (  
    

     
    

 ) starts to exceeds the maximum thermal threshold value of the pod 

(    
 

), the HLCC instructs the LLCC of    ( )to migrate some tasks to    ( )         . 

The migration can be successfully performed only if the   
         

 
. Moreover, the server 

selection and task allocation performed in inter-pod control is same as in low level. The HLCC 

only has the coarse-grain information of the   
 . The allocations of migrated tasks to servers are 

performed by LLCC through the use of fine-grained servers information. All of the 

aforementioned controls work together to make sure that the CPS is operating under a specified 

temperature range. More detailed information, formal analysis, and behavior of the HLCC and 

LLCC will be discuss in the next section, using HLPN and Z language.    

5.4. Verification Using HLPN, SMT-Lib, and Z3 Solver  

Verification is the process of demonstrating the correctness of an underlying system 

[5.39]. Two parameters are required to verify a model or a system: (a) specification and (b) 

properties. In this study, we use bounded model checking [5.40] technique to perform the 

verification, using SMT-Lib and Z3 solver. In bounded model checking, the description of any 
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system is verified, whether any of the acceptable inputs drives the system into a state where the 

system always terminates after finite number of steps. The process of bounded model checking 

involves several tasks: (a) Specification, the description of the system that states the properties or 

rules, which must be satisfied by the system to be deemed correct, (b) Modeling, representation 

of the system, and (c) Verification, use of a tool to check whether the specifications is satisfied 

by the model. 

Definition 2: (Bounded Model Checking) [5.40]. Formally, given a Kripke 

Structure   (       ) and a   bound, the bounded model checking problem is to 

find {     } where:   is the finite set of states,                                ,   is the set of 

transitions such that      , and   is the set of labels.The bounded model checking problem 

is to find an execution path in   of length   that satisfies a formula  .  

Kripke structure is a state transition graph used to represent the behavior of the system 

[5.41]. In Kripke structure nodes are the set of reachable states of the system, edges represent the 

transitions, and label functions map nodes to the set of properties hold in the state. Fig. 5.8 shows 

an example Kripke structure and computational tree where: S={S1, S2, S3}, S0={S1}, 

{p}

{p,q}

{q}

S1

S2

S3

 

(a) 

p,q

p

p,qp

q

p

q

p,qp
.
.
.

.

.

.

.

.

.  

(b) 

Fig. 5.8. An Example of: (a) Kripke Structure and (b) Computational Tree. 



 

86 

 

R={(S1,S2),(S2,S1), (S2,S3),(S3,S3)},   and   are atomic propositions, and 

  {(   {   }) (   { }) (   { })}. 

A path in a Kripke structure can be stated as an infinite sequence of states represented as 

             such that for      (       )   . The model   may produce a path set   

                      . To describe the property of a model some formal language, such as 

CTL*, CTL, or LTL is used. (Readers are encouraged to see [5.42], [5.43] for more details about 

the CTL*.) For a model to be correct, the states must satisfy the formulas (Definition 2) under a 

specific bound. The formulas are represented in terms of properties of the systems. 

Definition 3: (SMT Solver) [5.44]. Given a theory Ґ and a formula  , the SMT Solvers 

perform a check whether   satisfies Ґ or not. 

To perform the verification of the models using Z3 (an SMT Solver), we unroll the model 

  and the formula   that provides    and   , respectively. Moreover, the said parameters are 

then passed to Z3 to check if         [5.26]. The solver will perform the verification and 

provide the results as satisfiable (sat) or un-satisfiable (unsat). If the answer is sat, then the 

solver will generate a counter example, which depicts the violation of the property or formula  . 

Moreover, if the answer is unsat, then formula or the property   holds in   up to the bound   (in 

our case   is exec. time).  

5.4.1. Modeling HLCC and LLCC Using HLPN 

The HLPN model for HLCC and LLCC is shown in Fig. 5.9. The first step towards 

modeling using HLPN is to identify the required types, Places ( ), and mapping (Definition 1). 

The types and the descriptions are shown in Table 5.1 and the mapping of   to types is depicted 

in Table 5.2. The description and operation of the controllers are discussed in the previous 
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section and now we can define formulas (pre and post-conditions) to map on transitions. The set 

T contains the following transitions: 

  {  𝑤                                               

                                            }  

 

 

Types Description 

Task A type for the representation of job. 

Res-Mat Amount and type of resources available servers. 

Th_S A type for the thermal signature (Th. Sig) of the server. 

Th_P A type for the Th. Sig of the Pod. 

Th_Ac A type for the Th. Sig of the Access Switch. 

Th_Ag A type for the Th. Sig of the Aggregate Switch. 

Th_Co A type for the Th. Sig of the Core Switch. 

Res A type to represent the resources. 

RI A type to represent the Routing Information. 

Max_Th_P Max. Thermal Threshold (Th. Td) value of the Pod.  

Max_Th_S Max. Th. Td value of the Server.  

Max_Th_Ac Max. Th. Td of Access Switch.  

Max_Th_Ag Max. Th. Td value of Aggregate Switch.  

Max_Th_Co Maximum Thermal Threshold value of the core Switch.  

Δt   Expected thermal dissipation of new task. 

 

New tokens can only enter the model through the transition          . As seen in Fig. 

5.9, no arc is incident on the aforementioned transition, which is why no pre-condition exists and 

the rules for the transitions can be written as:  (        )              . Whenever the 

new job arrives, the resource manager checks if the resources required by the job are available or 

Table 5.1. Data Types Used in the HLCC and LLCC Model. 
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not. The said authentication is performed by the transitions           and           , 

mapped to the following formulas. 

 (         )         [ ]   [ ]      [ ]       

 [ ]                           

(5.16) 

  (         )                [ ]     [ ]     

      [ ]           [ ]                    

            {( [ ]  [ ]  [ ]  [ ])} 

(5.17) 

 

Places Mappings 

 (   )   (Task × Res) 

  (  )   (Task × Res-Mat × Th_P × Th_S) 

  (     )   (Th_P) 

  (       )    (Th_P) 

  (     )   (Th_S × Th_Ac × Th_Ag) 

  (     )   (Th_Ac) 

  (     )   (Th_Ag) 

  (    )   (Th_S) 

  (   )   (RI) 

  (   )   (RI) 

  (   )   (RI) 

  (     )   (Th_Co) 

  (     )   (Task × Res) 

 

Table 5.2. Places Used in the Model of HLCC and LLCC. 
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Fig. 5.9. The HLCC and LLCC HLPN Model in DC Environment.  
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If the resources required by the job are available in the resource matrix of resource 

manager and the thermal signature of the pod for the selected server is less than the maximum 

thermal threshold, then the jobs are accepted and are placed in the queue, as shown in (5.17). 

However, if the resources required by the job are not found, then the job will not be accepted. 

Moreover, if the cyber portion is running in full capacity, then the job will also be rejected, as in 

(5.16). The resource manager instructs HLCC and LLCC to provide the list of all the pods and 

servers that are suitable for the resource allocation. In response, the HLCC provides the thermal 

information of the pods to resource manager, as shown in (5.18), and LLCC will send the list of 

all the servers that satisfy the constraint,   
         

 
         , as in (5.19). 

  (          )        [ ]                        [ ]         

           [ ]    {  } 

(5.18) 

  (       )       [ ]            [ ]           [ ]           

  [   ]   {    [ ]     [ ]                     [ ]      [ ]} 

               {(   [ ]   [ ]   [ ]   [ ])} 

(5.19) 

The HLCC acquires the   
  through heat sensors that are placed at each pod (Fig. 5.5). 

Moreover, the LLCC acquires the    and      from the heat sensors placed at every node 

within the pod. The HLCC and LLCC periodically read the values from the sensors, shown in 

(5.20) and (5.21), respectively. When the resource manager request for the thermal 

information of the pods and servers, the HLCC and LLCC sends the updated values read 

from the sensors. The transitions        and          performs the aforementioned 

readings for HLCC and LLCC, respectively. The rules for the transitions are: 

  (      )                              

           {( )}  

  

(5.20) 
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  (        )                                                    

   [ ]           [ ]           [ ]        

                 {(    [ ]    [ ]    [ ])} 

(5.21) 

 (   )                                              

                [ ( )]            

     [ ( )]        [ ]                     

     (  ( )   ( ))     [ ( )]              

     [ ( )]       [ ]                        (   [ ( )]    [ ( )])    

   [ ( )]                  [ ( )]        [ ]                        

     (   [ ( )]    [ ( )])    

   (  ( ))
 
     (  ( )) {(   ( )[ ]   ( )[ ])} 

     (  ( ))
 
     (  ( ))   {(   ( ) [ ]   ( ) [ ])} 

(5.22) 

If (5.17) is fired, then the job is assigned to the selected server and the resources are allocated to 

the task, as in (5.22). As stated in the previous section, to maintain a specified thermal 

temperature at different levels of CPS, the HLCC and LLCC performs task migration and traffic 

redirections based on the thermal signatures of the nodes.  The transition     performs the 

migrations and redirection within the same pod, termed as LcMg and LcRd, respectively.  

Whenever the thermal signatures of       and   are raised more than the specified 

maximum thermal threshold, the (5.22) is fired. The (5.22) makes local redirection and migration 

by exploiting the functionalities of LLCC. The inter-pod migration is achieved by the mutual 

communication of HLCC and LLCC. When migration or redirection is not possible locally, then 

LLCC requests HLCC to provide the information about the pods where the tasks can be 
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migrated, as depicted in (5.23). Moreover, inter-pod migration is also performed when the 

thermal signature of   exceeds the specified maximum thermal threshold, as illustrated in (5.24).  

   (      )                                   [ ]          

       (  [ ( )]                 )       ( )     

      (  [ ( )]                  )        ( )    

     (  [ ( )]                  )        ( )       ( )              

                 (  ( )    ( )   ( )    ( )    ( ))    

   (  ( ))
 
     (  ( )) {(   ( )[ ]   ( )[ ])}   

   (  ( ))
 
     (  ( ))   {(   ( ) [ ]   ( )[ ])} 

(5.23) 

 (       )=                                     

   ( )                  ( ( )  (  )     )   (  )               

(5.24) 

To explain the process of verification, a Kripke structure and an example computational 

tree of the HLCC and LLCC are formulated and depicted in Fig. 5.10 and Fig. 5.11, respectively. 

The properties are specified in CTL*. One property to verify the models is that, there will be no 

hotspots (overheating) in CPS. If we closely analyze Fig. 5.10 and Fig. 5.11, we can see that 

New Job RM
γ 

ProcessingPod

α δ S

Over 

Heat

LLCC

Control 

Strategy

Action

Complete

HLCC

 

Fig. 5.10. The Kripke Structure of HLCC and LLCC for the Verification. 



 

93 

 

whenever the    (OverHeat) state is reached, the control strategies perform certain actions, such 

as task migration and redirection (as discussed in above sections) to stabilize the temperature at a 

desired level, which is    (Processing) state. For the models to be correct, the solver should be 

able to find a terminating state in a model. The failure transitions are considered as a terminator 

of the models. Moreover, the other terminating state in the models is the last state when the jobs 

are successfully completed. The state    (Complete) in Fig. 5.11 is reachable from every path of 

the tree, stating that the model will terminate after certain number of iterations. The states 

labeled with “ ” represents, that from the point forward the tree will repeat the predecessor. We 

have specified the properties of the control strategies in a similar passion and verified whether 

the properties are satisfied by the models. 
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RMHLCC
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RM Pr Pod HLCC Cm Pr OH

x x x
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Fig. 5.11. Computational Tree for the Kripke Structure in Fig. 5.10. 
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5.5. Results and Discussion  

To demonstrate the capacity of our work, we simulate the proposed strategies on a real 

data center workload obtained from the Center of Computational Research (CCR), State 

University of New York at Buffalo. All jobs submitted to the CCR are logged for a period of a 

month. The jobs and the logs from the CCR dataset are used as an input for our simulation of the 

proposed thermal aware strategy. The dataset had 22,700 jobs (127,000 tasks) recorded in one 

month of a time. Moreover, we also evaluate the proposed TACS by comparing with a classical 

First Come First Serve (FCFS), Genetic Algorithm (GA) based thermal aware scheduling [5.23], 

and Thermal Aware Task Allocation [5.18] approaches.  

We perform the comparison among the mentioned strategies based on the CCR dataset. 

Before going deeper into the details of the comparison, we first briefly discuss the existing 

approaches. The FCFS (sometimes referred as first-in, first-out) is possibly the most 

straightforward scheduling approach. The jobs are submitted to the scheduler, which dispatches 

the jobs based on the order of the jobs received.  

The FCFS policy is intuitively fair, allowing the jobs that are submitted first to execute 

first. However, the policy is not preemptive and long running jobs can cause delay to other 

following jobs. The approach in [5.23] follows the steps of GA. The first step is to construct a set 

of feasible solutions, which is the task allocation to the servers. Then, the selected solution is 

mutated (randomly interchange the task allocations within the solution) and mated (randomly 

select pairs of solution and exchange the subset of two task assignment to get two new 

solutions). The fitness function, which checks the highest inlet temperature of the selected 

assignment, is applied to all of the solutions that are formed as a result of mating and mutation, 
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including the original solution. Finally, the solution having the lowest inlet temperature value 

from the set of highest inlet temperature values, obtained as a result of fitness function, is 

selected as a final solution. The last approach is TASA proposed in [5.18], which is based on the 

theory of coolest inlet that perform the assignment of hottest jobs to the coolest servers. The 

TASA algorithm sorts the servers in the increasing order of the temperatures, such that the 

coolest server is first in the order. The jobs are sorted in a similar way but in the reverse order, 

such that the hottest job is first in the order. The hottest job is assigned to the coolest server and 

the thermal map of all the servers is updated. The same process is repeated until the last job is 

allocated to the server.  

Fig. 5.12 depicts the average thermal signatures of the servers over the period of time, 

when the scheduling approaches are used. The epoch time stamp and average thermal signature 

of the servers at that particular time are plotted on x-axis and y-axis in Fig. 5.12. There were 33 

pods in the DC and each pod has 32 servers. The thermal readings were taken after every 10 

minutes. It can be observed from the Fig. 5.12 that the spread or the difference between the 

temperatures of the servers in the trend line of Fig. 5.12(a), (b), (c) is very wide at many time 

stamps. The aforesaid, identify the situation when the average temperature of some servers is 

lower than the rest of the servers in the DC. Particularly, at time stamps 1.2357E+9, 1.2362E+9, 

and 1.2372E+9 in Fig. 5.12 (a), (b), (c), the thermal signatures of some servers are very low as 

compared to the rest, which shows the probable presence of the hotspots in DC. The possible 

reason for the occurrence of the hotspots in Fig. 5.12(a) is the static assignment of tasks without 

considering the thermal status of the server that possibly creates a scenario when hot jobs are 

assigned to hot servers and cold jobs are assigned to cold ones. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5.12. Comparison of Average Thermal Signatures of the Pods Using: (a) FCFS, (b) GA-based, 

(c) TASA, and (d) TACS. 
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In Fig. 5.12(b), the reason for the imbalance thermal signatures is the random nature of 

the GA based approach. The selection of the feasible solution, the mutation, and the mating 

process, all are based on randomization. If the same set of pods and servers are selected in the 

solutions most of the time, then the fitness function performed on the selected solution will not 

provide any important information that will avoid the occurrence of the hotspots. Similarly, there 

is also a possibility that the number of tasks allocated to few pods and servers are relatively low 

as compared to the rest of the pods and servers in the DC. The aforementioned possibilities will 

allow some servers to have high thermal signatures while others have low thermal signatures, 

which will ultimately cause the hotspot in the DC. In Fig. 5.12(c), which is better than (a) and 

(b), still has low thermal signatures of some servers as compared to the rest, which results in the 

occurrence of hotspots. The reason for the aforesaid is that the hottest tasks are allocated to the 

coolest servers regardless of the overall thermal temperature of the pod and the recirculation 

effect that can cause the hotspots.  

In TACS, as shown in Fig. 5.12(d), the differences of the temperatures amongst the 

servers are low and there are no hotspots. As stated in Sections 5 and 6, the selection of the pods 

and servers to allocate the task is based on the thermal signatures. Moreover, the HLCC and 

LLCC periodically monitor the thermal signatures of the pods and servers, and perform task 

migration or redirection to maintain unified range of temperatures in the pods. Therefore, the 

trend of thermal signatures followed in Fig. 5.12(d) is more congested and unified as compared 

to the trend followed in rest of the approaches. We plot the average difference between the 

hottest and coolest servers over the period of time (as shown in Fig. 5.13 and 14). The larger and 

more frequent the differences are, the higher the thermal imbalance will be. We can see that the 

differences in TACS (d in Fig. 5.13) are very low and less frequent as compared to the other  
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(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

(b) 
 

 
(c) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(d) 

Fig. 5.13. Comparison of Average Thermal Signature Difference between the Highest 

and Lowest Servers Using: (a) FCFS, (b) GA-based, (c) TASA, and (d) TACS. 
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approaches that indicate the thermal balance achieved by using TACS. However, the other 

approaches have high differences and are occurring frequently, which indicates the thermal 

imbalance and occurrence of the hotspots.  

As stated in previous sections, we also perform the verification of the strategies using 

SMT-Lib and Z3 solver. To verify, the HLPN models are first translated into SMT. Moreover, 

the properties are also specified in SMT. Then, the models along with the properties are provided 

to the Z3 solver, which checks if the properties are satisfied by the models or not. It is 

noteworthy, that the goal of the verification is to demonstrate the correctness of the models, 

based on the desirable properties, such as the presence of the hotspots. The results in Fig. 5.15 

depict the time taken by the Z3 solver to check the satisfiability of the models, based on the 

stated property. The property we verify is that, there must be no hotspots in the DC after the task 

allocation is complete. To accommodate the random behavior of GA based scheduling, we 

perform the verification of the strategies iteratively for different number of jobs, varying from 10 

to 100 jobs, as shown in Fig. 5.15. The verification results matches with the simulation results 

and no hotspots were identified by the Z3 solver when the proposed TACS was used. However, 

 

Fig. 5.14. Average Thermal Signature Difference between the Highest and Lowest Servers. 
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hotspots were identified by the solver for the other scheduling approaches at different no. of jobs, 

as shown in Table 5.3.   

 

 

# of Jobs FCFS GA-based TASA TACS 

10 Unsat Unsat Unsat Unsat 

20 Unsat Unsat Unsat Unsat 

30 Unsat Unsat Unsat Unsat 

40 Unsat Unsat Unsat Unsat 

50 Unsat Sat Unsat Unsat 

60 Sat Sat Unsat Unsat 

70 Sat Sat Unsat Unsat 

80 Sat Unsat Sat Unsat 

90 Sat Unsat Sat Unsat 

100 Unsat Sat Unsat Unsat 

 

 

Fig. 5.15. Verification Time Comparison of the Approaches. 

Table 5.3. Verification Outcomes of Scheduling Approaches. 
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We used bounded model checking technique for the verification and in our case, the 

execution time serve as a bound over the verification models. As stated in Section 6, the solver 

returns “sat” if the stated assertion is not true, which means that the property is violated. If the 

property is met by the model, then the solver will return “unsat”, which shows that solver is 

unable to find the values for which the property is not true. The simulation and verification 

results reveal that our strategy is consistent and provides better results as compared to the other 

scheduling approaches. The occurrence of the hotspots may cause servers to throttle down, 

increasing the possibility of failure. We reduce the possibility of hotspots in our strategy through 

strategic decisions performed by HLCC and LLCC based on the thermal signatures of the 

components. 
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6. A METHODOLOGY FOR OSPF ROUTING PROTOCOL 

VERIFICATION 

This paper is presented in International Conference on Scalable Computing and 

Communications (ScalCom), Changzhou, China, December 2012. The authors of the paper are 

Saif U. R. Malik, Sudarshan K. Srinivasan, Samee U. Khan, and Lizhe Wang.  

6.1. Introduction 

Data intensive systems, such as data centers, have a real need for tens to hundreds of Gbps 

of bandwidth and deterministic Quality of Service (QoS), which is satisfied by thousands of 

servers interconnected together. Data Centers (DC) gained a great popularity for the provision of 

computing resources [6.3]. Amazon, Google, IBM, Facebook, and Microsoft have started to 

establish data centers that host cloud computing applications in geographically distributed 

locations [6.2]. DCs contains a pool of computing resources to host applications and store data, 

connected together using communication medium, such as fiber optics. The performance and 

stability of the network depends on the performance of the routing mechanisms implemented 

within the architecture [6.4]. Routing protocol plays an important role towards the performance 

realization of large scale networks. Therefore, it is compulsory to verify the working of the 

routing protocol to ensure reliable communication amongst the systems in the network.  

Open Shortest Path First (OSPF) is an adaptive routing protocol that is used for Internet 

Protocol (IP) networks to distribute routing information within a single Autonomous System 

(AS) [6.5]. OSPF divides the network into areas, as shown in Fig. 6.1 [6.1]. Each area consists of 

one or more segments. A segment constitutes the set of routers connected via a common 

communication channel, such as Ethernet.  With the rapidly increasing and changing demands of 
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QoS, modern routing domain, such as DCs need to maintain a very high level of service 

availability. Therefore, OSPF should attain fast convergence in response of topology changes, to 

meet the demands of modern systems. Moreover, to avoid loss of messages, the information 

flowing within the data center must be routed correctly by the OSPF. A slight misinformation 

can cause huge packets loss depending on the size of the network. In the aforementioned aspect, 

we have verified OSPF protocol using SMT-Lib and Z3 Solver. 

6.1.1. SMT-Lib and Z3 Solver 

Satisfiability Modulo Theories (SMT) is an area of automated deduction for checking the 

satisfiability of formulas with respect to some logical theory of interest [6.18]. SMT has been 

used in many fields including deductive software verification. Moreover, recent applications of 

computer science including planning, model checking, and automated test generation finding, 

also considers SMT as an important verification tool [6.19]. The solver can be distinguished 

amongst the features they provide, such as, underlying logic (example first order or temporal), 

background theories, input formulas, and interface. The details about the features can be found in 

[6.30]. Multiple solvers are available that supports SMT-LIB, such as Beaver, Boolector, CVC4, 

MathSAT5, Z3, and OpenSMT [6.19]. 

 

Fig. 6.1. OSPF Areas and Routers. 
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We used Z3 solver in our study, which is a high performance theorem prover developed at 

Microsoft Research. Z3 is an automated satisfiability checker. Moreover, Z3 also checks whether 

the set of formulas are satisfiable in the built-in theories of SMT-LIB. Readers are encouraged to 

see [6.20], for the detailed information about the working and commands of Z3 solver. In this 

paper, we propose a novel method to verify the OSPF routing protocol that incorporate 

Designated Routers (DRs). The proposed method uses delay information of the router as a 

property to verify the protocol. We used the delay information to identify the occurrence of 

events as an update is received by the corresponding DRs. The proposed method can scale up the 

verification process by reducing the size of state space and limiting it to a single parameter. We 

used Satisfiability Modulo Theory (SMT-LIB) library and Z3 solver as a tool for the verification 

purpose. Moreover, BRITE [6.9] topology generator is used to generate the topologies that 

represents characteristics similar to those of Internet. There are four steps involved in our 

verification process: (a) we have simulated the detailed implementation of OSPF protocol based 

on the specifications available in [6.12] on a small scale network, (b) we modeled the system and 

specified the properties, (c) the model and properties in SMT-LIB are given to Z3-Solver for 

model checking, and (d) execution and generation of results.  

6.2. OSPF Routing Protocol 

The OSPF is a link-state routing protocol [6.6]. The link state is the description of the 

interface of the router (IP address of the interface, mask, type of network, routers connected to) 

and the relationship to other routers. OSPF constructs a topological map of the entire network by 

gathering the link state information from available routers [6.1]. Unlike other routing protocols, 

such as Routing Information Protocol (RIP) that uses Bellman-ford vector based algorithms, 
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OSPF introduces new concepts, such as areas, Variable Length Subnet Mask (VLSM), and route 

summarization [6.14]. 

To decrease the intra-area convergence time, a router amongst the routers is selected as a 

DR in OSPF. All other routers on a segment communicate only to the DR, which cuts the 

information flow cost from  (  ) to  ( ) (instead of sending update to every router on a 

segment the update is sent to a DR and then that DR will flood the update to all of the other 

routers) [6.6]. Table 6.1 illustrates the types of routers used in OSPF. The type of router is 

identified based on the router interface and link states. Do not confuse DR with OSPF router 

types. A router can have some interfaces that are designated, which makes a router DR. 

Moreover, different types of routers generate different Link State Advertisements (LSA), which 

is a way to communicate the routing topology to other router in and outside an area. Table 6.2 

depicts some of the basic LSAs supported by the routers. Note, that there are other LSA types 6-

11, whose information can be found in [6.15]. 

 

 

Router Type Description 

Internal Router that has all the interfaces in single area 

Backbone Router that has at least one interface in backbone area 

Area Border Router having at least one interface in backbone area and 

another in non-backbone area 

Autonomous System Boundary Router performing route injection from other source 

(RIP, EIGRP) into OSPF domain. 

 

 

Table 6.1. The OSPF Routers. 
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6.3.  Problem Formulation 

The problem formulation is taken from our previous work in [6.31]. However, the 

formulation is modeled accordingly to accommodate the verification aspect of the OSPF 

protocol. Consider a network composed of   routers. Let    be the i
th

 router, where      . A 

link between two routers    and    (if it exists) has a communication cost (del) that represents 

the minimum time for transferring message from    to   , which can be represented by the 

following expression [6.29, 6.31]:  

,
),(

),(
ij

ji

ji

sRRD
RRdel




 

LSA Type Description Associated Router Scope 

1 Describes directly attached link to a 

router within an area. 

All routers Intra area 

2 Describes the number of routers 

attached in a segment. Gives 

information about the subnet mask of a 

segment 

DR Intra area 

3 Describes destinations outside an area 

to flood information from one area to 

another. 

ABR Inter area 

4 Describes a route and information to an 

ASBR outside the area. 

ABR Inter area 

5 Defines routes to destinations external 

to OSPF domain. 

ASBR Inter area 

Table 6.2. The OSPF Link States and Associated Routers. 

(6.1) 
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where  (      ) is the physical distance between    and    ,   is the propagation delay of the 

medium (optical fiber in our case),   is the size of the message in kilobytes, and     is the 

available bandwidth between    and    . If the routers are not directly connected, then the 

communication cost is the sum of the cost of all links in the shortest path from    to   . Without 

the loss of generality, we assume that    (     )     (       ), which is a common assumption 

in literature [6.29]. Let   be the number of segments within an area and    be the k
th

 segment in 

that area, where      . Let    be the set of DRs within an area and    is the convergence 

time (time a router takes to discover the area topology) of    . If a failure occurs (could be a link 

or a router), the routers connected to the failed link or failed router will initiate the updates. 

      
  be a router that initiates an update in response to a failure. Let    be the set of all other 

routers in the area defined as    ( {  }
 
   ) {{  

 }    }. 

Suppose   
  gets an update, such as node failure.   

  will update its link state and forward 

the updated link state to the DR of segment k (represented as   ). The link state is the 

description of the interface of the router (IP address of the interface, mask, type of network, 

routers connected to) and the relationship to other routers. The DR will then flood the 

information to every other router in the segment after receiving the update. The verification of 

the routing protocol can be done in two aspects: (a) content verification (if the link state is being 

calculated correctly) and (b) routing verification (if the information is propagated correctly in a 

same order). For (a), the Link State Database (LSDB) should be same for all the routers after 

convergence is achieved, such that      (  
 )      (    

 )      (  
 )    . For (b), let 

  contains the list of router that belongs to segment k in ascending order of    (     
 )   

      . All the routers in a segment must receive the updates in a same order as listed in   . 
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(6.2) 

Let   
  represent a router    that belongs to   . The time for   

  to receive the update 

( (  
 ))  can be calculated as follows [6.31]: 

 (  
 )  {

                                                                    
    

 

          
(  )     (     

 )      
    

 

where, 

 (  )           (  
 )     (  

    )  

Other updates, such as change in bandwidth (∆   ) are assumed to be local and incur zero 

update time. Therefore in (6.2), the value of   (  
 ) for   

    
 , is DI. The DI of routers is 

usually four times the “Hello” interval, which is the time between consecutive transmissions of 

“Hello” packets that are used to indicate the liveliness of nodes. The “Hello” interval is 10 

seconds for broadcast and P2P networks, and 30 seconds for all other media [6.2]. The value 

of  (  
 ) for   

     is the sum of the time required for    to receive updates and the time 

   takes to deliver updates to   
 . The value of   (  )  is calculated in (6.3), which is the sum 

of   (  
 ) (the node sending the update to    ) and the communication cost between them, which 

is given as    (  
    ). Moreover, (6.2) and (6.3) are used to calculate    based on the following 

expression [6.31]: 

       ( (  )         ( 
    

 ))  

The last router (maximum time taken to receive an update from the corresponding    ) in 

   that receives the update, determines   . Now, using (2), (3), and (4) the convergence time of 

an area τ can be calculated as follows: 

         (( 
 ))   ((  

 )     (  
    ))  

(6.3) 

(6.4) 

(6.5) 
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The maximum    amongst all of the segments plus the time when the update is initiated and 

reaches to the respective DR determines the value of  . 

6.4. Verification of OSPF Using Proposed Method  

Verification is the process to demonstrate the correctness of the underlying system [6.16]. 

We verify the correctness of OSPF through (a) content verification and (b) route verification as 

discussed in problem formulation. Note that our goal is to verify the correctness and not to 

measure the performance of the protocol. Two parameters are required for the verification of the 

system, namely specification and properties. We achieved verification through model checking 

[6.17], using SMT-Lib and Z3 Solver. The detailed description for the possible behavior of the 

protocol (specification) along with the desirable behavior (properties) of the protocol are 

modeled in SMT and provided to Z3. Given the aforementioned parameters Z3 can perform a 

verification of the model.  Z3 generates a counter example in case of an error that represents the 

state or values for which the model is incorrect. If there are no errors, then the model 

specifications can be fine-tuned until converged to the real system.  The proposed method can 

scale up the verification process by reducing the size of the state space and narrowing it down to 

a single parameter. In the following section we will discuss content verification and route 

verification in detail.  

6.4.1. Content Verification 

The OSPF is a link state protocol and all routers in an area must have the same LSDB in 

order for the protocol to work correctly [6.1]. We assume that the DR is already being elected 

and initial LSDB synchronization is already being achieved. In content verification, we analyze 

the state of LSDB for all routers in an area as an update is generated and propagated by the 

corresponding DR. For content verification, we have simulated the detailed implementation of 
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OSPF on multi-access segments having multiple DRs in one area. The system model and the 

property to verify are generated in SMT and are provided to Z3. The property to verify for 

content verification is that LSDB should be same for all the routers after convergence is 

achieved, such that     (  
 )      (    

 )        (  
 )    . Whenever an update 

occurs, the router initiating an update generates a LSA. The LSA must be propagated to all the 

routers in an area to have the same view of the topology and to reach the stable state. The 

aforementioned is necessary to avoid message loss and for the protocol to work properly. 

6.4.2. Route Verification 

The LSA generated by the routers in case of updates must be propagated to 

corresponding DR, and then from DR to all other routers in a segment. We propose the use of 

delay information of routers for route verification.  The delay of routers is calculated using (1) as 

discussed in problem formulation. The delay information is further utilized to order the events as 

an update occurs. Maintaining the order of the routers reduces the size of state space while 

verifying the protocol. If no such information is available, then all scenarios have to be 

considered during the verification process. Suppose we have a topology as shown in Fig. 6.2 

below, with arbitrary delays. The topology has two segments. Segment 1 (S
1
) has six routers (R0, 

R1, R2, R4, R5, R7) and R2 is the DR (d
1
) of S

1
. Segment 2 (S

2
) has three routers (R3, R4, R6) and 

R3 is the DR (d
2
) of S

2
. Suppose d

1
 receives an update and  (  )   . Then using (2) we can 

calculate the  (  
 ))     . R4 is the connecting router between the two segments. Therefore, 

the update will be propagated from S
1
 to S

2
 through R4. The  (  )       (using (3)).If we want 

to verify the routing, then we can compare the difference of update time of routers and DR 

(( (  
 )    (  ))         ) with    to verify the routing. 
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We can analyze from Table 6.3 that the values of (( (  
 )    (  ))         ) and 

    are identical, which indicate that the routing is done correctly and all the routers are 

receiving the updates in a correct order and time. If the values are not identical, then the protocol 

may have a problem. 

 

6.5. Result and Discussion 

Performance realization of large scale networks depends highly on the routing protocols. 

Therefore, it is compulsory to verify the working of the routing protocol to ensure reliable 

communication amongst the systems in the network. To this end, we have simulated the detailed 

0.3 1 2
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Fig. 6.2. Example Topology and Associated Delays. 

     ( (  
 )    (  ))      ( (  

 )    (  )) 

0.001 (R5) 0.001-0=0.001 0.25 (R6) 0.53-0.28=0.25 

0.01 (R4) 0.01-0=0.01 0.27 (R4) 0.55-0.28=0.27 

0.05 (R1) 0.05-0=0.5   

0.15 (R7) 0.15-0=0.15   

0.35 (R0) 0.35-0=0.35   

Table 6.3. Comparison of Update Time and Ordered List of Router for Example. 

Topology. 
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implementation of OSPF, based on the specifications reported in [6.12] for (a) content 

verification and (b) route verification. In OSPF, the routers are usually the Level3 (L3) routers. 

Therefore, we used optical fiber as a communication medium having propagation delay    

                . Ethernet channels have the Maximum Transmit Unit (MTU) of 1500 bytes 

and in OSPF the fragmentation is usually avoided [6.1]. Therefore, the message size s is kept as 

1KB, which is neither low nor high and which is typically used in the literature for 

experimentation (modeling, simulation, and testing). (Readers are encouraged to see the work 

reported in [6.7] and [6.8] to get and insight into the typical modeling and simulation parameters 

pertaining to the OSPF modules). Moreover, the bandwidth value of     is kept at 100Mbps, as 

advocated in [6.9, 6.10, 6.11] for the evaluation purposes. The values of  (     ) are assigned 

from within the range of [1-100] km. 

Fig. 6.3 depicts the execution time for the content and route verification. For content 

verification the link state for all the routers in an area must be same. To verify the 

aforementioned property, we have modeled the simulated system in SMT and generated link 

 

Fig. 6.3. Execution Time for Verification Process. 
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states for all the routers. When the convergence is achieved, then the link states of all the routers 

are compared with each other to verify the similarities.  For route verification, as discussed in 

above section, the values of (( (  
 )    (  ))         ) and     must be identical in 

order for the protocol to work properly. The system model is verified to check if the 

aforementioned property is satisfied using SMT and Z3 solver. For our implementation using 

SMT-LIB, we used QF_AUFLIA logic [6.19], which is used for closed quantifier-free linear 

formulas over the theory of integer arrays extended with free sort and function symbols.  
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7. DASCE: DATA SECURITY FOR CLOUD ENVIRONMENT 

WITH SEMI-TRUSTED THIRD PARTY 

This paper is submitted to IEEE Transactions on Cloud Computing (TCC) and is in the 

second round of review. The authors of the paper are Mazhar Ali, Saif U. R. Malik, and Samee 

U. Khan. 

7.1. Introduction 

Cloud computing has emerged as a promising computing paradigm and has shown 

tremendous potential in managing the hardware and software resources located at third-party 

service providers. On-demand access to the computing resources in a pay-as-you-go manner 

relieves the customers from building and maintaining complex infrastructures [7.1, 7.13]. Cloud 

computing presents every computing component as a utility, such as software, platform, and 

infrastructure. The economy of infrastructure, maintenance, and flexibility makes cloud 

computing attractive for organizations and individual customers [7.32]. Despite benefits, cloud 

computing faces certain challenges and issues that hinder widespread adoption of cloud. For 

instance, security, performance, and quality are a few to mention [7.10, 7.27]. 

The development and operation of data storage sites is ongoing process in organizations. 

Off-site data storage is a cloud application that liberates the customer from focusing on data 

storage systems [7.10]. Representing system characteristics and capabilities as utility, causes the 

user to focus on aspects directly related to data (security, transmission, processing) [7.6, 7.33]. 

However, moving data to the cloud, administered and operated by certain vendor requires high 

level of trust and security. Multiple users, separated through logical barriers of virtual machines, 

share resources including storage space. Multi-tenancy and virtualization generate risks and 
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underpins the confidence of users to adopt the cloud model [7.2, 7.3]. Armbrust et al. [7.1] 

ranked data confidentiality and auditing at number three in the list of top ten obstacles impeding 

widespread cloud adoption. Data can be used by the cloud service providers without 

authorization [7.2, 7.23, 7.4] and can be accessed by other machines in cloud [7.23, 7.3]. 

Data being the principal asset for organizations needs to be secured. Especially, when 

data must enter a public cloud. To avoid unauthorized access to the cloud data, access control 

mechanism must be enforced [7.16, 7.17]. Moreover, data leakage and data privacy strategies 

must be employed so that only authorized users can access and utilize data. Refraining cloud 

service providers from utilizing the customer data requires high preventive measures [7.3]. 

Encryption techniques provide a solution to ensure privacy and confidentiality of stored data. 

However, key management becomes a prime issue in the case of encryption [7.28, 7.31]. 

Cryptographic keys need to be stored and protected. Compromise or failure of a key storage 

facility may lead to the loss of data. Therefore, cryptographic keys must be stored in a robust 

manner and a single point of failure should not affect the availability of data [7.31]. 

The security concerns of outsourcing data to public clouds, serves as our motivation to 

work for the development of data security technique. We aim for a technique capable of 

addressing the aforementioned critical issues. We propose a data security scheme that uses key 

manager servers for the management of cryptographic keys. Shamir’s (k, n) threshold scheme 

[7.26] is used for the management of keys that uses k shares out of n to rebuild the key. Access to 

key and data is ensured through a policy file that states policies under which access is granted to 

the keys. The client generates random symmetric keys for encryption and integrity functions. 

Symmetric keys are protected by the public key generated by the key manager(s) (Fig. 7.1). All 

of the symmetric keys are deleted from the client afterwards. Encrypted data and keys are 
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 2, 6 
 1, 5  

 3 

 4 

2. Client: 

 Breaks up symmetric key S into n shares ( S1, S2, …, Sn). 

 Encrypts ith share with public key of ith KM 

 Deletes S 
6.  Reconstructs S from k shares according to Shamir’s strategy. 

3. Upload all shares of S to cloud. 

4. Client downloads all shares of key from 

cloud. 

Cloud 

Key Manager 1 

Key Manager 2 

Key Manager n 

Fig. 7.1. Shamir’s (k, n) Threshold Scheme in DaSCE. 

1. Client receives public keys from all Key Managers (KM). 

5. Client: 

 selects k number of KMs randomly. 

 sends ith share of S to ith KM. 

 receives back decrypted ith share. 

uploaded to the cloud. For downloading the data, client presents a policy file to cloud and 

downloads the encrypted data and keys. Keys are decrypted by key manager(s). Thereafter, the 

client decrypts the data. 

We review the scheme presented in [7.29], called File Assured Deletion (FADE). The 

FADE is a light-weight and scalable technique that assures deletion of files from cloud when 

user asks for deletion. However, during our analysis, FADE fell short on issues of security of 

keys and authentication of participating parties. Based on our analysis and issues identified with 

FADE, we propose enhancements to the scheme and name it as Data Security for Cloud 

Environment with Semi-Trusted Third Party (DaSCE) that enhances the security of keys and 

authentication process. Moreover, to mitigate the man-in-the-middle-attack, we included 

supplementary steps for the session key establishment process. The aforesaid steps augment the 

security level and prohibit the malicious user to carry out the attack at slight performance 

overheads. However, the results from our verification analysis revealed that DaSCE is more 
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secure than FADE when man-in-the-middle attack was introduced. Our major contributions 

include:   

• Development of a security scheme (DaSCE) for outsourced data to cloud that uses a 

combination of symmetric and asymmetric encryption. The DaSCE ensures data 

confidentiality at a cloud infrastructure, as long as it is in use by the client. It also 

assures that data gets deleted and becomes unrecoverable after the user deletes it from 

the cloud.  

• Enforcing access control to both data and key through validity of policies and mutual 

authentication between client and key managers, and client and cloud. Digital 

signatures and variation of Diffie-Hellman is used for mutual authentication of parties. 

Successful authentication and session key establishment results in access to asymmetric 

keys that are used in subsequent cryptographic operations.   

• Ensuring the integrity of data by use of symmetric key and message authentication 

code and securing symmetric keys with asymmetric keys generated by third party key 

managers. 

• Formal modeling and verification of FADE and DaSCE by using High Level Petri Nets 

(HLPN), SMT-Lib, Z3 solver, and Scyther.  

• We implemented a prototype of DaSCE and evaluated the performance of DaSCE 

based on time consumption parameters (file upload time, file download time, 

cryptographic operations time). 

7.2. File Assured Deletion (FADE) 

The FADE protocol provides privacy, integrity, access control, and assured deletion to 

outscored data. The FADE uses both symmetric and asymmetric keys. Symmetric keys are 
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protected by using Shamir’s (k, n) scheme to ample the trust level in the key. The FADE works 

with a group of key managers (KM). Following keys are used by FADE protocol. The variable K 

is termed as data key and is used to encrypt file F of the client and S as secret key that is used to 

encrypt K. The public/private key pair generated by KMs is represented by (ei, di) and is used to 

encrypt S. The K and S are symmetric keys. The operations supported by FADE are: (a) File 

upload, (b) File download, (c) Policy Revocation, and (d) Policy Renewal. The aforementioned 

operations are explained below. The notations used in the paper are presented in Table 7.1.  

 

Notation Meanings 

KM  Key manager 

F File 

K A symmetric key 

S A symmetric key. 

ei Public key parameter.  

ni Public key parameter.  

di Private key parameter. 

ej Modified/New public key parameter.  

nj Modified/New public key parameter. 

dj Modified/New private key parameter. 

{F}K File encrypted with key K. 

{K}S K encrypted with key S. 

S
e
 S encrypted with public key e. 

MAC Message Authentication code 

HMAC Hash-based MAC 

Pi Original policy file of client 

Pj Modified policy file 

HLPN High Level Petri Net 

IK Integrity key for MAC calculation 

Table 7.1. Notations and Their Meanings. 
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7.2.1. File Upload 

When data must be uploaded to the cloud, the client requests the KM to generate a 

public/private key pair. The said is done by sending a policy file, Pi, to the KM. The KM 

generates the key pair, associates that with the Pi, and sends the public part of the key (ei, ni) to 

the client. After receiving public key for Pi, the client performs the following cryptographic 

operations. The client encrypts F with K to generate {F}K (F encrypted with K). The K is then 

encrypted with Si to get {K}Si. Subsequently, Si is encrypted with the public key generated by the 

KM with Pi. The Si is encrypted using asymmetric encryption (Si
ei
 mod n). The Pi, {F}K, {K}Si, and 

(Si
e
 mod n) are uploaded to the cloud afterwards. The hashed MAC (HMAC) of data file is also 

uploaded with the encrypted file. The client deletes all of the symmetric keys through secure 

overwriting. The process of file upload is shown in the Figure 2(a). 

When FADE works with full quorum of KMs, Si is divided into n shares and each share is 

encrypted with a public key generated by one of the KMs. The key is divided based on Shamir’s 

Cloud Client Key manager

Pi

ei , ni

Pi, {K
}Si, Si

ei ,{F}K

 

(a) 

Cloud Client Key manager

Pi,Si
eiR ei

SiR

Pi, {K}Si, Si
ei,{F}K

 

(b) 
Client Key manager

Pi

[r]ABE

Hash(r)

ACK

Revoke control key 
of Pi

Cloud

 

(c) 

Cloud Client Key manager

SiR,ej , nj

Pj, Si
ej

Pi,Si
ei 

Pi,Si
eiR ei,Pj

 

(d) 

Fig. 7.2. FADE (a) File Upload, (b) File Download, (c) Policy Revocation, and (d) Policy 

Renewal (single key manager) [7.29]. 
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(k, n) threshold scheme. To get back the Si, k shares are needed. The FADE protocol does not 

authenticate the client for the upload process. The process with multiple KMs is shown in Fig. 

7.3. When data must be uploaded to the cloud, the client requests the KM to generate a 

public/private key pair. The said is done by sending a policy file, Pi, to the KM. The KM 

generates the key pair, associates that with the Pi, and sends the public part of the key (ei, ni) to 

the client. After receiving public key for Pi, the client performs the following cryptographic 

operations. The client encrypts F with K to generate {F}K (F encrypted with K). The K is then 

encrypted with Si to get {K}Si. Subsequently, Si is encrypted with the public key generated by the 

KM with Pi. The Si is encrypted using asymmetric encryption (Si
ei
 mod n). The Pi, {F}K, {K}Si, and 

(Si
e
 mod n) are uploaded to the cloud afterwards. The hashed MAC (HMAC) of data file is also 

uploaded with the encrypted file. The client deletes all of the symmetric keys through secure 

overwriting. The process of file upload is shown in the Figure 2(a). 

When FADE works with full quorum of KMs, Si is divided into n shares and each share is 

encrypted with a public key generated by one of the KMs. The key is divided based on Shamir’s 

(k, n) threshold scheme. To get back the Si, k shares are needed. The FADE protocol does not 

authenticate the client for the upload process. The process with multiple KMs is shown in Fig. 

7.3. 

Cloud Client Key manager 1

Pi

ei1 , ni1

P i, {
K}S i, S

i1
ei1 ,…..,S iN

eiN ,{F}K

Key manager N 

Pi

eiN , niN

 

Fig. 7.3. Fade File Upload with Multiple Key Managers [7.29]. 
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7.2.2. File Download 

The client requests the cloud for file and encrypted keys to download. The client checks 

for the integrity of the file through the HMAC.  Afterwards, the client generates a secret number 

R and calculates R
ei
 and then generates Si

e
R

ei
 = (SiR)

ei
. The (SiR)

ei  
is then sent to KM for 

decryption. The KM decrypts (SiR)
ei 

with corresponding di and sends back SiR. At this point, 

ABE comes into the play.  The KM sends SiR with ABE, where the attributes used for ABE are 

based on Pi. The client extracts Si from the received message and decrypts K that is used to 

decrypt F. The process is highlighted in Fig. 7.2(b). Similarly, the file download with multiple 

KMs takes place according to the flow of messages shown in Fig. 7.4. 

7.2.3. Policy Revocation 

If Pi needs to be revoked, the client requests the KM by sending the Pi. The KM generates 

a random number r and sends r to the client after encryption with ABE. The authentic client 

decrypts r, calculates the hash value, and sends back to the KM. After verification the KM 

revokes Pi and acknowledges the client as depicted in Fig. 7.2 (c). 

7.2.4. Policy Renewal 

If Pi needs to be renewed as Pj, the client downloads all of the keys and sends Pi and 

encrypted Si to the KM along with Pj. The KM decrypts Si. Moreover, the KM sends new public 

Cloud Client Key manager1

Pi,Si1
ei1

R ei1

[Si1R]ABE

Pi, {K}Si, Si1
ei1

,…..,SiN
eiN

,{F}K

Pi,SiN
eiN

R eiN

[SiNR]ABE

Key manager N

 

Fig. 7.4. File Download Using ABE with Multiple Key Managers [7.29]. 
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key parameters (ej, nj) to the client as outlined in Fig. 7.2 (d). We will now formally analyze 

FADE in the following section. 

7.3. Analysis of FADE 

The FADE is a light weight protocol that does not require heavy modifications in cloud 

architecture. The analysis of FADE identified the following issues.  

7.3.1. File Upload 

In file upload process of FADE we assume that there is a man-in-the-middle (intruder) 

between client and KM. The intruder can intercept Pi and send Pj (modified Pi) to KM. In the 

second step, the KM sends (ei, ni). The intruder intercepts (ei, ni) and sends the client modified 

parameters (ej, nj). The client encrypts the keys with (ej, nj) and uploads to the cloud. The client 

cannot verify that the received (ej, nj) is from KM or any other entity. The aforesaid issue is 

highlighted in Fig. 7.5 (a). 

In the original file upload process of FADE, independence of Step 1 and Step 2 allows 

the intruder to carry out the attack. The policies received by the KM are neither from the client 

nor does the client receive keys from the KM. However, both assume a valid data exchange with 

each other. As a result, the client encrypts the Si with the (ej, nj). The encryption of data with the 

intruder’s generated keys may result in any of the following scenarios: 

7.3.1.1. Intruder Fetches the Data during Download Process 

During the download process, the intruder can intercept the data. As Si is encrypted with 

(ej, nj) that is generated by the intruder; therefore, after reviving Si
ej
 intruder can recover Si by 

decryption with a corresponding dj as: Si = (Si
ej
)dj mod n. Once Si is decrypted, the intruder can 

easily decrypt K and gather F.  
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7.3.1.2. Intruder Stays Aside during Download Operation 

The client downloads the data from the cloud and sends Si to the KM for decryption. As Si 

was encrypted by the public key that was originally generated by the intruder, the KM will not be 

able to decrypt the correct Si. Therefore, access to the data will be denied. The denial of access 

will result in the loss of data. The KM generates the keys based on ABE having policies defined 

in Pi. During the attack, the KM generates the keys with Pj (modified Pi). Therefore, even the 

attributes will not correspond to the original policies. Same attack flow can be modeled for 

multiple KMs as shown in Fig. 7.6. As highlighted in Fig. 7.6, all Si’s are encrypted with keys 

generated by the intruder and the corresponding di’s are held by the intruder. Therefore, the 

intruder can generate Si. However, intruder must intercept k portions of Si. 

7.3.2. Policy Renewal  

Fig. 7.5 (b) shows how the intruder can exploit the policy renewal process of FADE for 

denying access of data to a legitimate user. It is noteworthy to mention that the exploitation is 

only possible if initially the attack depicted in Fig. 7.5 (a) is already carried out. The client after 

downloading Si from the cloud sends Si along with Pi to the KM. The intruder intercepts the data, 

decrypts Si with the corresponding private key, generates a new pair of public/private key, and 

Cloud Client Key manager

Pi

ej , nj

Pi,{F}K,{K
}Si,Si

ej

Pj

ei , ni

Intruder

 

(a) 

Cloud Client Key manager

Pi, Si
ei

SiR,ej , nj

Pj, Si
ej

Pi, Si
eiRi

ei
,Pj

 

(b) 

Fig. 7.5. (a) Man-in-the-middle Attack that Causes Encryption with the Wrong Keys (b) 

Exploitation of Policy Renewal Process. 
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sends it to the client. The client performs cryptographic operations (as it did earlier) and uploads 

the data and keys to the cloud. 

7.3.3. Attack Verification through Scyther 

In this section, we verify the attack defined in the previous section using Scyther, which 

is a graphical tool for analysis, verification, and falsification of security protocols [7.5]. We 

Cloud Client Key manager 1

Pj

ei1 , ni1

P i, {
K}Si, S

i1
ej1 ,..,

S iN
ejN ,{F

}K

Key manager N 
Pi (for KM

1)

eiN , niN

Intruder

P
i  (for KM N)

Pj

ej1 , nj1

ejN , njN

 

Fig. 7.6. Man-in-the-middle with Multiple Key Managers. 

 

Fig. 7.7. Scyther Verification of FADE. 
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modeled FADE in Scyther and verified whether Si and F remain secret under the setup or 

otherwise. The verification is performed by a “claim” (see Fig. 7.7) that Si remains secret during 

the process. The Scyther verified the validity of the claim and reported the attack that was 

discussed in Section 4.1.   

In Scyther, Charlie plays a role of a client, Bob as the KM, Alice as the cloud, and Eve as 

the intruder. The Run# 1 of the Scyther is not an intercepted run while Run#2 is a run where 

intruder plays the part. Eve intercepts the Pi and sends Charlie the generated public key pk(Eve). 

Later on Eve can use corresponding private key sk(Eve) to decrypt the secret key of Charlie 

(sk(Charlie)). In this model, sk(Charlie) is the same key as Si, in the explained model. Our claim 

that Si will remain secret is falsified by Scyther by producing the counter attack. 

7.3.4. HLPN 

Petri Nets provide graphical and mathematical representation of the system and can be 

applied to variety of systems for instance stochastic, deterministic, and asynchronous 

computations [7.24]. A HLPN is a 7-tuple   (               ), where P is set of places; T 

refers to the set of transitions such that      ; Flow relations are defined by F such that   

(   )  (   );   maps places P to the data types. Rules for transitions are defined by Rn; L 

is a label on F and M0 represents the initial marking [7.24]. In the above definition, the structure 

of the Petri Net is given by P, T, and F; whereas, (      ) provide the static semantics of the 

Petri Net model. 

7.3.5. SMT-Lib and Z3 Solver 

SMT has roots in Boolean Satisfiability Solvers (SAT) [7.11, 7.12, and 7.22]. SMT-Lib 

provides a common input platform and benchmarking framework that helps in the evaluation of 

the systems. We use Z3 solver with SMT-Lib that is a theorem prover developed at Microsoft 
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Research. Z3 is an automated satisfiability checker. In addition, Z3 determines whether the set of 

formulae are satisfiable in the built-in theorems of SMT-Lib [7.21].  

7.3.6. Verification through HLPN Model 

In this section, we formally analyze the man-in-the-middle attack on FADE protocol. We 

use High Level Petri Nets (HLPN) and Z language [7.8, 7.11, 7.12, 7.22, 7.24, and 7.25] to 

perform formal analysis. HLPN define mathematical properties for the system and simulate the 

system to analyze the behavior. We verify HLPN model of FADE using Satisfiability Modulo 

Theories Library (SMT-Lib) and Z3 solver. To verify the model, the Petri Net model is first 

translated into SMT along with the specified properties. Subsequently, Z3 solver is used to 

determine whether or not the properties hold.  

7.3.7. Formal Verification 

The verification process checks for the correctness of the system. In model checking: (a) 

description of the system is provided stating properties or rules of the system, (b) system is 

represented by a model, and (c) some verification tool is used to check whether the model holds 

the specified properties or not. In this paper we use the bounded model checking to verify the 

man-in-the-middle attack on FADE.  

The HLPN model for FADE is given in Fig. 7.8. The model is given with the intruder 

between the client and KM. The data types used in the model and their mappings are shown in 

Table 7.2 and Table 7.3, respectively. All the rectangular black boxes in HLPN are transitions 

and belong to the set T. The circles are places and belong to the set P.  
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Types Description 

Policy A string type for describing file access policy. 

File A string type holding data to be protected. 

K A string type representing symmetric key. 

S A string type representing symmetric key. 

e Public Key parameter.  

n Public Key parameter.  

d Private Key parameter. 

{F}K File encrypted with key K. 

{K}S K encrypted with key S. 

S
e
 S encrypted with public key e. 

Table 7.2. Data Types Used in FADE HLPN Model. 



 

 

 

1
3
6
 

 

a1 X1 c1

Send_Pi

X7

X17

X16

Pi

X3

Rcv_Pi

I1X4

Pi

X5

Gen_fake

I2

X6 Send_Pj

c2X8

Pj

X9

Rcv_Pj

X10 b1

X11

Gen_Keys

b2X13

Send_Key

c3 X14X15Rcv_Key

X18

Send_fake_Key
c4 X19X20

X12
Rcv_fake_Key

X21

a2

X2

X22

X23

a3

X25

Encr_data

Snd_data_to_cloud

Key ManagerClient Intruder

X24

X26

 

Fig. 7.8. FADE HLPN Model with Intruder. 
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The process starts with the client sending Pi to the KM. The file is intercepted by the 

intruder. The file sending and receiving is performed on transitions Send_Pi and Rcv_Pi. Rule 

(7.1) and Rule (7.2) are mapped to the aforesaid transitions. 

 (       )                           [ ]   

  
       {  }, 

(7.1) 

 (     )                             

  
       {  }. 

(7.2) 

The intruder generates Pj and sends it to the KM. The transition Gen_fake is fired upon 

interception of original Pi. Following are the three transition and the corresponding rules. 

 (       )                [ ]        

    [ ]          [ ]       

    [ ]             [ ]    [ ]    [ ]    [ ]   

  
       {     [ ]   [ ]   [ ]   [ ]}, 

(7.3) 

 (      )       [ ]                

       [ ]   

  
       {  }, 

(7.4) 

 (     )                                 

   
        {   }. 

(7.5) 

The keys generated and sent by KM are intercepted by the intruder. The Following rules 

(7.6) and (7.7) capture the above three transitions. 
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Types Description 

 (a1)   (Policy × File × K × S) 

 (c1)   (Policy) 

 (I1)   (Policy) 

 (I2)   (Policy ×Policy × e × n × d × e × n) 

 (c2)   (Policy) 

 (b1)   (Policy) 

 (b2)   (Policy × e × n × d) 

 (c3)   (e × n) 

 (c4)   (e × n) 

 (a2)   (e × n) 

 (a3)   (Policy ×{F}K × {K}S × Se) 

 (        )                   [ ]            [ ]            [ ]         

     [ ]             [ ]          [ ]      [ ]     [ ]     [ ]   

   
        {   [ ]    [ ]    [ ]    [ ]}, 

 

(7.6) 

 (        )        [ ]            [ ]                   

   [ ]      [ ]     [ ]     [ ]   

   
        {   [ ]    [ ]}, 

(7.7) 

 (       )                   [ ]            [ ]            [ ]       
  

 

     [ ]       
  
     [ ]       

  
     [ ]       

  
     [ ]       

   [ ]      [ ]     [ ]   

   
       {   [ ]    [ ]    [ ]    [ ]    [ ]    [ ]    [ ]}. 

(7.8) 

The intruder generates and sends (ej, nj) to the client as depicted in (7.9) and (7.10). 

 (             )        [ ]            [ ]                   

   [ ]      [ ]     [ ]     [ ]     
        {   [ ]    [ ]}, 

 

(9) 

Table 7.3. Mapping of Data Types and Places. 
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(            )                   [ ]        

   [ ]      [ ]     [ ]     [ ]   

   
        {   [ ]    [ ]}, 

(7.10) 

The client performs the cryptographic operations with (ej, nj) and sends all the encrypted data to 

the cloud. This is represented by the following rules. 

 (         )                                              

   [ ]      
  
[ ]      [ ]      [ ]    (   [ ])      [ ]

     [ ]    (   [ ]   

   [ ]     [ ]    (   [ ]    [ ])   

   
        {   [ ]    [ ]    [ ]    [ ]}, 

(7.11) 

 

 (                 )                            [ ]     [ ]   

   [ ]     [ ]     [ ]     [ ]      [ ]     [ ]   

   
        {   [ ]    [ ]    [ ]    [ ]}. 

(7.12) 

In the above, Encr_data is the most crucial transition. Security of data and the keys are 

highly dependent on this transition. If the encryption is performed by using (ej, nj), then the data 

security is compromised. In this context, the property that we verified using SMT-Lib and Z3 is 

that: if the intruder is present, then the encryption operation is performed using the wrong keys. 

The property of the model is described using a formal language called Computational Tree Logic 

(CTL*). The CTL* uses numerous temporal operators to represent various operations [7.7, 7.20]. 

For instance, A represents “for all paths”, G denotes “globally”, and F characterizes “future 

state”. The property specified in CTL* using temporal operators is given as:   (        ). 

After translating the above model into SMT-Lib, we performed bounded checking using Z3 

solver. The mentioned property was satisfied by the solver in 310 msec.  
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7.4. DaSCE 

From Section 4, it is evident that the security of Si in FADE depends on the key exchange 

between the client and the KM. If the key exchange is compromised, then Si is compromised, that 

in turn, leaks all the keys and the data.  We observed that the reason for the said attack is the 

independence of communication steps between the client and the KM that allows the attacker to 

launch the attack and subvert the whole process. In this section, we propose improvements in the 

communication process between (a) client and the KM, and (b) client and the cloud. Our 

proposed changes link the communication steps so as to avoid attacker to overtake the process.  

We use the station-to-station (STS) protocol [7.9] and digital signature for authentication and 

session key establishment before any other exchange takes place. The keys generated by the KMs 

and policy files are exchanged using session keys. Some modifications are required in the 

subsequent operations of the protocol as the session keys are introduced to the FADE. The 

following subsections discuss the proposed mechanisms.  

7.4.1. DaSCE Keys 

The DaSCE makes use of both symmetric and asymmetric keys. The confidentiality and 

integrity services for data are provided through symmetric keys that are secured by using 

asymmetric keys. Asymmetric key pairs are generated by third party KMs. Out of the key pair, 

only public key is transmitted to the client. For secure transmission of keys, a session key is 

established between client and KM through STS protocol. To avoid man-in-the-middle attack, 

both client and KM are authenticated by use of digital signatures. As a new session key is used 

for every communication session between client and KM, the session key is exchanged through 
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key exchange process and is not randomly generated. This also avoids weakness of randomly 

generated keys. The symmetric keys are generated once for data encryption by client and 

encrypted by another symmetric key named Si. The Si is finally protected by the public key 

received from KM. The encrypted keys are stored at cloud and client deletes the local copies of 

the keys. For decryption purpose, client establishes a session with KM and sends Si to KM after 

masking with random number R. The KM decrypts Si and sends back to client. The client 

unmasks Si to get the symmetric keys. Fig. 7.9 depicts the key management process. 

7.4.2. File Upload 

For the establishment of session key, we assume that the parameters required are fixed 

and publically available to all of the users. We call these parameters as α and p where, α is a 

large number known as the primitive root and p is a large prime number. The process comprises 

of following steps. 

 The client generates a random number x and calculates α
x
 mod p and sends to the KM.  

 The KM generates a random number y and calculates α
y
 mod p. The KM also calculates 

(α
x
)

y
 as a session key, EK, between client and KM.  

 4, 6  1, 2, 3  

 5 

5. Client sends encrypted 

keys to the cloud. 

4. Client performs encryption operations 

over data and symmetric keys 

6. Deletes local copies of keys. 

Cloud 

Key Manager 

Fig. 7.9. Key Management in 
DaSCE. 

1. Client initiates session establishment 

and requests for asymmetric keys. 

2. Client and KM authenticate each 

other and establish session. 

3. KM generates asymmetric keys and 

sends public part to client 

Client 
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 The KM generates digital signature over {α
y
, α

x
} (SKM{α

y
, α

x
}) and encrypts it with the 

generated session key to generate EK(SKM{α
y
, α

x
}).  

 The KM sends (α
y
 , EK(SKM{α

y
, α

x
})) to the client. 

 The client verifies the signature using the public key of the KM and calculates the session 

key as (α
y
)
x
.  

 The client calculates EK(SCli{ α
x
 , α

y
 }) and encrypts Pi with EK and sends both of the 

calculated values to the  KM. The sent message contains EK(SCli{ α
x
 , α

y
 }), EK(Pi). 

 The KM verifies the signature of the client. Upon successful verification, the KM 

decrypts Pi and generates (ei, ni) with Pi. The KM stores the decrypted Pi. 

 The KM encrypts (ei, ni) with the EK to generate (EK(ei, ni)), which is sent to the client. 

 The client encrypts the file F with key K, calculates MAC with IK; and encrypts K and IK 

with Si. Afterwards Si is encrypted with ei. Subsequently, the client sends all the 

encrypted data to cloud.  

 The client erases all of the keys except public key parameters received from the KM.  

The file upload process is shown in Fig. 7.10. The calculations for session key include mod p 

operation which is not shown in the figure for clarity.  

Cloud Client Key manager

αx

Ek(ei,ni)

Pi, {K
}si,{IK

}Si, Si
ei ,{F}K

α 
y ,Ek(SKM{α

y ,α
x })

EK(SCli{α
x,αy}),EK(Pi)

 
Fig. 7.10. DaSCE File Upload with Single Key Manager. 
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Similarly, the file upload process with multiple KMs is shown in Fig. 7.11. With multiple 

KMs, Si is divided into n shares and each share is encrypted with the key from one of the 

managers according to (k, n)-threshold scheme. The interdependencies between file upload steps 

circumvent the man-in-the-middle attack. If higher level of security is required, then session key 

can also be established between the client and the cloud to keep the Pi exchange secure.  

7.4.3. File Download 

The file download process of DaSCE is depicted in Fig. 7.12. The process starts with the 

Cloud Client Key manager 1
αx

Ek1(ei1,ni1)

Pi, {K
}si,{IK

}Si, Si1
ei1 ,…,SiN

eiN ,{F}K

α 
y1 ,Ek1(SKM1{α

y1 ,α
x })

EK1(SCli{α
x,αy1}),EK1(Pi)

αx

α yN,EkN(SKMN{αyN,αx})

Key manager N

EKN(SCli{α
x,αyN}),EKN(Pi)

EkN(eiN,niN)

 
 

Fig. 7.11. DaSCE File Upload with Multiple Key Managers. 

Cloud Client Key manager 1

αx

Ek1(Si1R)

Pi, {K}si,{IK}Si, Si1
ei1,…,SiN

eiN,{F}K

α 
y1 ,Ek1(SKM1{α

y1 ,α
x })

EK1(SCli{α
x,αy1}),Si1

ei1Rei1, Ek1(Pi)

αx

α yN,EkN(SKMN{αyN,αx})

Key manager N

EKN(SCli{α
x,αyN}),Si1

eiNReiN, EkN(Pi)

EkN(SiNR)

 

Fig. 7.12. DaSCE File Download with Multiple Key Managers. 
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client downloading the data from the cloud. To decrypt F, we need K that is encrypted with Si. 

The Si is encrypted with (ei, ni) received from KM. The client establishes the session key with the 

KMs and during the process both the client and the KMs authenticate each other through digital 

signatures. The process of key establishment and authentication is the same as discussed in 

Section 5.2. In the third step, after verifying the authenticity of the KMs, the client generates a 

random number R and encrypts it with the public key of the corresponding KM. The client then 

calculates Si
ei
R

ei
 and sends it along with its own signature and encrypted Pi. We combine these 

steps to minimize the communication overhead. The KM after verifying the digital signature of 

the client decrypts Pi and checks whether the policy still holds or otherwise. If the policy is valid, 

then the KM decrypts Si
ei
R

ei
 with the corresponding di to generate SiR. The purpose of R is to 

mask the actual value of Si. The KM encrypts SiR with the session key, which is sent to the client.  

It is noteworthy to mention that in FADE, SiR is returned by applying ABE. However, in 

the DaSCE, we do not use ABE, instead session key is used to send SiR to the legitimate user. 

Therefore, the access control is being managed by the aforementioned technique. The client after 

receiving SiR extracts Si from SiR. It is important to remember that with multiple KMs, a share of 

Si will be received from at least k KMs. Consequently k number of Sis will be used to generate Si. 

The client decrypts K and IK using Si. It verifies the integrity of F using IK and decrypts F upon 

successful verification. 

7.4.4. Policy Revocation 

The same process of key establishment, as discussed in Section 5.2, is used for the policy 

revocation in DaSCE. The client encrypts Pi with the session key and sends to KM. The KM after 

performing decryption on Pi revokes the keys generated with Pi. The deleted keys include the 

private key di and associated prime numbers pi and qi. It also sends acknowledgement to the 

client. 
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When di associated with Pi is deleted, the corresponding Si cannot be decrypted. This 

results in logical deletion of F as K cannot be decrypted without Si. Therefore, we say that F is 

assuredly deleted. It is noteworthy that assured deletion does not correspond to the physical 

deletion of data. It is difficult to get the assurance of file deletion from the system outside the 

administrative control of data owner. For assured deletion we used the concept introduced in 

[7.34] and [7.35], where the inaccessibility of data is assured by deleting certain important 

information from the system. The DaSCE ensures the inaccessibility of the keys to make the data 

unrecoverable. Therefore, the main security property of file assured deletion is that even if a KM 

does not remove the key from its storage, the data files remain encrypted and unrecoverable. The 

concept of file assured deletion is also termed as self-destructing data in the literature. For details 

about file assured deletion, readers are encouraged to see [7.34] and [7.35]. 

To boost the level of trust in the proposed scheme, the key generation and management is 

not dependent on a single KM. Shamir’s secret sharing scheme is applied to counter any 

malicious KM. Any malicious KM cannot get hold of Si independently. At least k number of KMs 

needs to be compromised in order to get access of enough di’s that can be used to decrypt Si. It is 

also noteworthy that for decryption process Si is sent to KM. However, Si is not sent in plain as 

discussed in Section 5.3. The Si is masked by multiplication with R. Therefore, even if malicious 

KM keeps the resultant decrypted information, the extraction of Si will remain a challenge. 

Therefore, aforementioned case of malicious KM seems hard to be translated into successful 

attack. If we build a case of a malicious user that somehow has got hold of some other user’s 

encrypted Si, the malicious user has to go through the authentication process of at least k number 

of KMs to decrypt the Si. We will see in Section 5.6 that KMs do not give access to the 

unauthorized users.  
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7.4.5. Policy Renewal 

The policy renewal does not involve any operation on F. The client downloads Si and Pi; 

establishes session key with the KM; and sends Pi, Si
ei
R

ei
, and Pj to KM by session key 

encryption. The KM decrypts Si
ei
R

ei
 to obtain SiR and generates new public/private key pair for 

Pj. Therefore, the KM sends SiR and new public parameters (ej, nj) to the client. The client 

extracts Si and re-encrypts it with (ej, nj). Finally, the client sends Pj and encrypted Si to the 

cloud. Fig. 7.13 shows the process with single KM. The Pi in Fig. 7.12 is older policy file while 

Pj is the newer policy file. 

7.4.6. Analysis of DaSCE through the HLPN 

We use HLPN to verify that man-in-the-middle cannot forge the encryption keys 

exchanged between the client and the KM.  If the intruder intercepts the messages, then the 

system would be able to identify the attack. The HLPN model for DaSCE is shown in Fig. 

7.14.We assume an intruder between the client and the KM to check the behavior of the protocol 

in the attack scenario. The lines in Fig. 7.14 connecting (c1, c2) and (c3, c4) would be the 

information flow of Xa and Xb, respectively,  if there is no intruder between the client and KM. 

Due to the space limitation and for simplicity we have not given the HLPN of the whole process. 

Cloud Client Key manager

αx

Ek(SiR, ej,nj)

Pj, Si
ej

α 
y ,Ek(SKM{α

y ,α
x })

EK(SCli{α
x,αy}),EK(Pi, Pj, Si

ei)

Pi, Si
ei

 

Fig. 7.13. DaSCE Policy Renewal. 
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Fig. 7.14. HLPN for DaSCE. 
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 The Fig. 7.14 only depicts the process of KM authentication. Nevertheless, the next step 

regarding authentication of client before exchanging keys will be the replication of the steps. 

Therefore, next step will have similar verification results. The associated data types and the 

mappings of places to data types are shown in Table 7.4 and Table 7.5, respectively. We assume 

an intruder between the client and the KM to check the behavior of the protocol in the attack 

scenario. The lines in Fig. 7.14 connecting (c1, c2) and (c3, c4) would be the information flow of 

Xa and Xb, respectively,  if there is no intruder between the client and KM. Due to the space 

limitation and for simplicity we have not given the HLPN of the whole process.  

 

Types Description 

X Big integer type random number for client 

Α Big integer type number 

Z Big integer type random number for intruder 

Y Big integer type random number for key manager 

M1 Big integer type number representing α power x 

M1’ Big integer type number representing α power z 

M2 Big integer type number representing α power y 

di Private key of entity i from {Cli, Clo, KM} 

ei Public key of entity i from {Cli, Clo, KM} 

KIKM Session key between Intruder and Key Manager 

KIC Session key between Intruder and Client 

γs {M2, M1’}dKM [M2 and M1’ signed with dKM].  

γa { γs } KIKM [γs  encrypted with KIKM] 

M2’ M1’,( γa )KIC  [M1’ and γa encrypted with KIC] 

γi { M1’, M1}di [M1’and M1 signed with di].  

γb { γi } KIC [γi  encrypted with KIC] 

EM Error Message (Message not coming from valid KM) 

Table 7.4. Data Types for HLPN of DaSCE 
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Types Description Types Description 

 (x)  (x)  (b4)  (M2×γa) 

 (a1)  (M1)  (c3)  (M2×γa) 

 (c1)  (M1)  (I4)  (M2×γa) 

 (I1)  (M1)  (I5)  (KIKM) 

 (I2)  (M1’× KIC)  (I6)  (M1’×di×γi× KIKM × KIC) 

 (I3)  (M1’)  (I7)  (M1’× γb) 

 (c2)  (M1’)  (c4)  (M1’× γb) 

 (b1)  (M1’)  (a2)  (M1’× γb) 

 (b2)  (M2× KIKM)  (a3)  (KIC× γb) 

 (b3)  (M2×dKM×γs× KIKM)  (a4)  (KIC× γb×eKM) 

 

 

The process starts with the client requiring an upload of data to the cloud. The client generates a 

random number x, calculates its parameters (as explained in Section 5.2), and sends to KM. 

However, the intruder intercepts the messages. The aforementioned process is carried out at 

transitions M1, Send_M1, and Rcv_M1. The rules for these transitions are: 

 (  )                         𝑤(    )   

  
       {  }, 

(7.13) 

 (       )                           

  
       {  }, 

(7.14) 

 (      )                           

  
       {  }. 

(7.15) 

 Table 7.5. Mapping of Data Types and Places for HLPN of DaSCE. 
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The transition I_Cmpt_KIC is fired when the intruder successfully intercepts the message 

that is originated for the KM. The intruder generates its own random number z and calculates a 

key between the client and itself. The intruder also generates fake message for the KM at 

transition M1’and sends it to the KM through transition Send_ M1’. Rules (7.16) – (7.19) are 

mapped to following transitions. 

 (          )                                 [ ]    𝑤(    )   

   [ ]    𝑤(     )   

   
        {   [ ]    [ ]}, 

(7.16) 

 (     )                                    
        {   }, (7.17) 

 (        )                                 

   
        {   }, 

(7.18) 

 (       )                                 

   
        {   }. 

(7.19) 

The KM assuming that the message comes from the client, calculates the session key by 

the parameters sent by the intruder. The KM also signs the received and generated parameters by 

the private key and sends to the client that is actually received by intruder. Following transitions 

and rules correspond to the explained steps. 

 (          )                                   [ ]    𝑤(     )   

   [ ]    𝑤(       )   

   
        {   [ ]    [ ]}  

(7.20) 

 (       )                                   [ ]     [ ] 

    [ ]      (   [ ]    )     [ ]     [ ]   

   
        {   [ ]    [ ]    [ ]}, 

(7.21) 
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 (         )                          [ ]     [ ]   

   [ ]         (   [ ]    [ ])     
        {   [ ]    [ ]    [ ]}, 

(7.22) 

 

 (       )                                

   
        {   }, 

 

(7.23) 

 (      )                                 

   
        {   }. 

(7.24) 

After receiving the message from the KM, the intruder generates the session key between 

the KM and itself. At this stage, the intruder sets up the keys with both the client and the KM. 

The intruder prepares a response for the client and sends the prepared response. The response 

includes the signed parameters. The intruder uses its private key for the signing purpose. The 

client accepts the response thinking it to be from KM. The following rules highlight the process. 

 (           )                                     𝑤(   [ ]   )   

   
        {   }, 

(7.25) 

 (        )                                          

   [ ]     [ ]      [ ]      (   [ ]    )      [ ]         [ ]     [ ]   

   
        {   [ ]    [ ]    [ ]    [ ]}, 

(7.26) 

 (        )                           [ ]     [ ]   

   [ ]         (   [ ]    [ ])   

   
        {   [ ]    [ ]}, 

(7.27) 

 (        )                                 

   
        {   }, 

(7.28) 

 (       )                                 (7.29) 
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        {   }. 

The client after receiving the response completes the process of generating the session 

key. However, the key generated is between the client and the intruder, instead of being between 

the client and the KM. Following this, the client decrypts the received parameters and verifies the 

digital signature over them. The verification is performed using a public key of the KM as the 

client is supposedly interacting with the KM. The verification mechanism gives the false result 

and the client terminates the process. However, if there is no intruder and the communication 

takes place between the client and KM, then valid signatures will result in information flow 

towards the place a6 and communication will proceed. Following are the transitions and rules for 

aforesaid process at the client end. 

 (             )                                 

   [ ]    𝑤(   [ ]    )      [ ]         (   [ ]    [ ])   

   
        {   [ ]    [ ]}, 

(7.30) 

 (           )                                      (   [ ])   

   
        {   }. 

(7.31) 

The following properties are verified using the SMT-Lib and Z3 solver.  

 During communication, if state I1 (see Fig. 7.14, intruder side) is achieved (that means 

the intruder intercepts communication), then the control will terminate at state a5 

which represents a failure to authenticate the KM and the process terminates. The 

property in CTL* is represented as    (        ) 

 If there is no intruder and communication progresses on normal course (through lines 

Xa and Xb in Fig. 7.13), then the control will flow until it reaches a6, which represents 
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success for authentication and secure exchange of the required key. CTL* property is 

   (     (      )) 

Both of the properties are verified in SMT-Lib using Z3 solver that approximately took 

321 msec.  

7.5. Implementation and Performance Evaluation 

We used C# for implementing a working prototype of DaSCE. The .Net cryptographic 

packages were used for the involved cryptographic operations. Large prime numbers were 

handled by using the BigInt class. Policies were uploaded as a separate file to the cloud and the 

KM. The system consists of two servers (the cloud and the KM) and a client (work station). 

Multiple policies were combined using OR and/or AND operations. The policy and data files 

were not merged into a single file, to keep the policy renewal operation light weight. According 

to the processes described in Section 5, we also implemented the client side software functions, 

such as file upload, download, revocation, and renewal.  

In our prototype, the client interacts with the KM (s) and the cloud for setting up the keys, 

and uploading/downloading data. The KM sets up the keys, revokes, and/or renews policies and 

manages the keys accordingly. We evaluated the DaSCE on the basis of: (a) Key(s) 

establishment time, (b) Key Transmission time, (c) File transmission time, and (d) 

Cryptographic operations time. It is noteworthy to mention that the time required for key 

establishment is the time for setting up a session key between the involved parties. The 

cryptographic operations time is the time taken by AES and MAC operations. Above given 

parameters collectively make up total file upload/download time. Moreover, the aforesaid 

parameters are evaluated using single KM and multiple KMs.  
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7.5.1. File Upload/Download with a Single Key Manager 

We used files of nine different sizes (0.3 KB, 1 KB, 10 KB, 30 KB, 50 KB, 100 KB, 500 

KB, 1 MB, and 10 MB) to measure the time consumption in file upload and download process. 

The results are provided in Fig. 7.15. In general, the file transmission time increased with the 

increase in file size. However, in some cases the change in file transmission time was small that 

may be caused due to network conditions at various times. Nevertheless, file transmission time 

was dependent on the network. In file upload case, cryptographic operations time varied between 

0.037 sec and 0.201 sec. The cryptographic operations time increased with the increase in the file 

size. In the case of 10 MB file, the cryptographic operations time makes 2.35% of total file 

upload time and 2.45% of file transmission time. The time for session key establishment almost 

remained constant (having slight changes). The largest time taken during the key establishment 

was noted to be 0.0898 sec that constituted 2.67% of the total upload time. The percentage for 

key establishment time was 2.39% for 10 MB file. Similarly, in case of file download operations 

the cryptographic operations time varied from 0.039 sec to 0.211 sec. The cryptographic 

operations time was dependent on the size of the file; therefore, it increased with the larger file 

size. However, it made lower percentage of total upload time and file transmission time. The key 

establishment time does not depend on the file size; therefore, it remains almost constant. Slight 

changes were possibly due to network transmission conditions. The DaSCE and FADE takes 

same amount of time for cryptographic operations. However, unlike FADE, we perform 

additional steps for key establishment in DaSCE that makes an additional overheads. Therefore, 

key establishment process increases the time consumption of DaSCE as compared to the 

protocols that run without establishing the session keys. It is noteworthy that the increase in time 

consumption upturns the security level for policy files, symmetric, and asymmetric keys used in 
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the DaSCE. In the following section we will see the impact of key establishment time with 

increase in number of KMs. 

7.5.2. File Upload/Download with Multiple Key Managers 

We evaluated the performance of DaSCE by using multiple KMs. The file sizes we used 

were 0.3 KB, 1 KB, 10 KB, 50 KB, 100 KB, 500 KB, and 1MB. The number of KMs used was 

one, three, five, seven, fifteen, 25, and 50. Fig. 7.16 revealed the key establishment time and the 

cryptographic operation time for the aforementioned files sizes and the KMs. The key 

establishment time increased with the increase in the number of KMs. This is because the client 

had to complete all the message passing steps necessary to establish the key with all the KMs. 

 

(a) 

 

(b) 

Fig. 7.15 Performance of File Uploads and Downloads Operations for DaSCE. 
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The key establishment time varies between 0.069 (single KM) seconds and 0.24 seconds (50 

KMs). It must be noted that there was slight increase in the key establishment up to ten KMs. 

However, with higher number of KMs the increase followed a higher trend. As discussed earlier, 

the increase in time consumption due to key establishment augments the security level. 

Therefore, we say that user has to select the number of KMs judicially. A balance between 

tolerate able time consumption and security level in needed while deciding the number of KMs. 

In the coming discussion we will also see that the key establishment time constitutes low 

percentage of total time.  

 

(a) Cryptographic operations 

 

(b) Key establishment 

Fig. 7.16 File Uploads with Multiple Key Managers. 
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The cryptographic operation time remained constant for the file of same size as final symmetric 

encryption is done on client with generated keys (symmetric key, K). Fig. 7.17 depicts the key 

establishment time and cryptographic operation time taken by file download with multiple KMs. 

It must be noted that the key establishment constituted a low percentage of the total 

consumed time, see Fig. 7.17. Fig. 7.18 contains time comparisons of total upload/download 

time with key establishment and other constituent times for single key managers with different 

file sizes. It can be noted that as the amount of data increases, the percentage of key 

establishment time decreases to less significant number as compared to the total upload and 

download time, for the file (see Fig. 7.18). Therefore, an increase in number of key managers 

will increase the security as well as the time consumption due to key establishment.   

7.5.3. Discussion 

We present DaSCE that augments the security level by introducing additional steps for 

the key establishment process. Because of the mutual exclusion of communication events 

between the client and the KM, FADE fell short on issues of securing the keys and 

 
(a) Cryptographic operations 

 
(b) Key establishment 

(c)  

Fig. 7.17 File Download with Multiple Key Managers. 
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authentication of participating parties. The DaSCE resolves the aforesaid issues by introducing 

digital signature for the authentication and session key establishment process before any other 

exchange takes place. Moreover, the concept of “assured file deletion” is used to make the file 

inaccessible or unrecoverable by deleting important information (di). Comparing the 

performance of FADE and DaSCE, FADE has less performance overheads as compared to 

DaSCE. However, unlike FADE, the DaSCE provides high security standards and does not 

compromise the keys under man-in-the-middle attack. It is noteworthy that DaSCE does not 

introduce substantial performance and monetary overhead that can lead to higher management 

cost. However, as compared to FADE, the performance overhead of DaSCE are slightly higher 

because of the supplementary steps taken to increase the level of security for the keys that 

upturns the security level for policy files, symmetric, and asymmetric keys used in the DaSCE. 

  

(a) Upload time (b) Download time 

Fig. 7.18 Total Upload/Download Time vs Key Establishment Time. KE = Key Establishment 

Time, Kt= Key Transmission Time, CO = Cryptographic Operations Time, FT= File 

Transmission Time, TUT= Total Upload Time, TDT= Total Download Time. 
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8. CONCLUSIONS 

Large scale computing systems are growing exponentially, such as cloud and DC, to 

accommodate the escalating demands of user and applications. Similarly, as the size and 

complexity of the DC increases the concerns related to reliability, energy consumption, security, 

availability, and performance are also growing. Google reported a 20% revenue loss due to a 

delay of 500msecs in response time and Amazon reported a sales decrease of 1% due to an 

additional response time of 100msecs. The said examples indicate the importance and impact of 

the slightest inaccuracy in large-scale computing systems. In the said perspective, the use of FMs 

for verifying the functionality and reliability of the systems is compulsory. In our research, we 

focused on the application of FMs tools and techniques to investigate about the reliability and 

correctness of different applications running in large scale computing systems. 

In Chapter 3, we have studied and analyzed three state-of-the-art VM-based open source 

cloud management platforms: (a) Eucalyptus, (b) Open Nebula, and (c) Nimbus. To model the 

systems with the advantage of providing a firm mathematical representation and to analyze the 

structural and behavioral properties, we used High-Level Petri Nets (HLPN). Moreover, the 

models are verified using SMT-Lib and Z3 solver. We used Model Checking approach to verify 

our models. Several properties are specified (using the specification and details available in 

documentation) and if the models satisfy those properties, then the model is declared correct. The 

verification results revealed that the models are correct and feasible as the numbers of Virtual 

Machines (VM) grow. This paper provides an in-depth formal analysis, modeling, and 

verification of the systems that will be helpful for the research community to further explore and 

understand the systems. Moreover, the paper also provides a strong foundation for new 

researchers to apprehend the meticulous knowledge of the systems. In future, we will analyze, 
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model, and verify some other cloud management platforms, such as OpenStack, oVirt, and ECP. 

Moreover, we will also perform a detailed feasibility analysis of the aforesaid platforms under 

different SLA constraints. 

OSPF is one of the most widely used IGP over the Internet today. The primary goal of 

OSPF is to provide fast convergence and load balancing to the network. In Chapter 4, we provide 

the intra area convergence time analysis of OSPF based on the: (a) DR, (b) cascading failures, 

and (c) topology, on a broadcast and NBMA segments. We simulated the detailed 

implementation of OSPF protocol built on the specifications available in RFC 2328. The BRITE 

topology generator was used for the interconnections among the routers to get more realistic 

results. The results from our simulation revealed that the convergence time of an area depends 

significantly on: (a) the number of DRs, (b) the placement of DRs, (c) interconnection amongst 

the routers, and (d) the number of routers, in a topology. Moreover, the results also exposed the 

fact that having more DR in an area can improve the convergence time of the specified segment. 

However, the overall convergence time of the area will decrease. 

In Chapter 5, we modeled DC as a CPS to capture the thermal evolution and dynamics 

presented by DC components. We modeled DC as a Cyber Physical System (CPS) to capture the 

dynamics and evolution of the thermal properties exhibited by the DC. All software aspects, such 

as scheduling, load balancing, and all the computations performed by the devices were 

considered as the “Cyber” component. The supported infrastructure, such as servers, switches, 

and power supplies were modeled as the “Physical” component of the CPS. We modeled the heat 

dissipation of the major components of DC, such as servers and switches, and utilized the 

information to propose a thermal aware scheduling approach. Our proposed strategy was testified 

and demonstrated by executing on a real DC workload having more than 22,000 jobs, obtained 
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from the CCR, State University of New York, at Buffalo. Moreover, we also performed a 

comparison of our proposed strategy with three existing strategies, FCFS, TASA, and GA-based. 

Furthermore, we performed formal analysis, modeling, and verification using HLPN, SMT-Lib, 

and Z3 solver. We investigated the impact of all of the scheduling approaches on the overall 

thermal signature and thermal uniformity among the pods within a DC. Our analysis revealed 

that the scheduling heuristics exhibit non-uniformity in thermal signatures among the pods. Such 

uneven thermal signatures lead to hotspots within the data center. The finding and results from 

the analysis were used to mitigate the ambient effect caused by the job allocation. The simulation 

results revealed that our proposed strategy maintains better thermal balance within the pods of 

DCs as compared to the other approaches. The formal verification performed using SMT-Lib and 

Z3 solver, matches the simulation results, where hotspots were identified in all of the studied 

approaches.  

Formal analysis of routing protocols is compulsory for a secure and efficient performance 

of modern large scale networks. In the said perspective, in Chapter 6, we proposed a novel 

method to verify the properties of OSPF protocol using delay information of the routers. We 

have verified the protocol in two parts: (a) content verification and (b) route verification. For (a), 

we verify the property that the LSDB for all the routers in an area must be identical. For (b), we 

uses delay information to order the events and then verify if the events are occurring in the same 

order. The aforementioned properties are verified using SMT-LIB and Z3 solver. We simulated 

the detailed implementation of OSPF and BRITE topology generator was used for the generation 

of realistic topological interconnections. The proposed method can scale up the verification by 

reducing the state space and narrowing it down to a single parameter. 
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In Chapter 7, we proposed the DaSCE protocol, a cloud storage security system that 

provide key management, access control, and file assured deletion. Assured deletion was based 

on policies associated with the data file uploaded to the cloud. On the revocation of policies, 

access keys were deleted by the KMs that result in halting of the access to the data. Therefore, 

the files were logically deleted from the cloud. The key management was accomplished using (k, 

n) threshold secret sharing mechanism. We modeled and analyzed FADE. The analysis 

highlighted some issues in key management of FADE. The DaSCE improved the key 

management and authentication processes. The working of the DaSCE protocol was formally 

analyzed using HLPN, SMT-Lib, and Z3 solver. The performance of the DaSCE was evaluated 

based on the time consumption during file upload and download. The results revealed that the 

DaSCE protocol can be practically used for clouds for security of outsourced data. 

 

 

 


