
USING FORMAL METHODS TO VALIDATE THE USAGE, PROTOCOLS, AND

FEASIBILITY IN LARGE SCALE COMPUTING SYSTEMS

A Dissertation

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Saif Ur Rehman Malik

In Partial Fulfillment

for the Degree of

DOCTOR OF PHILOSOPHY

Major Department:

Electrical and Computer Engineering

April 2014

Fargo, North Dakota

North Dakota State University

Graduate School

Title

Using Formal Methods to Validate the Usage, Protocols, and Feasibility in

Large Scale Computing Systems

 By

Saif Ur Rehman Malik

 The Supervisory Committee certifies that this disquisition complies with North Dakota State

University’s regulations and meets the accepted standards for the degree of

 DOCTOR OF PHILOSOPHY

 SUPERVISORY COMMITTEE:

 Samee U. Khan

 Chair

Sudarshan K. Srinivasan

Jacob S. Glower

 Ying Huang

 Approved:

 06/10/2014 Scott C. Smith

 Date Department Chair

iii

ABSTRACT

A paradigm shift has occurred in the Information and Communication Technology sector.

The main obstacle to relegate complex and sensitive tasks is not the inadequate speed and

unsatisfactory computing power of the existing machines. However, the inability to design and

implement the systems, with a desirable degree of confidence in the correctness and reliability,

under different circumstances, has crept in to be the primary concerns in achieving high

performance. The hardware and software systems are growing inevitably in scale and

functionality, such as cloud computing systems and Data Center (DC). In the said perspective,

the complexity of the systems is also increasing. The likelihood of elusive errors is directly

proportional to the complexity of the systems that also increase the cost of errors while the

systems are operational. In large scale systems the density of computational devices is in order of

tens of thousands of servers. Moreover, the effects of errors and miscalculations are substantial.

Furthermore, if the specified quality of service is not delivered by the cloud service providers,

then the reputation may fall down and users will not use the services, resulting in huge financial

lose. Therefore, the reliability, robustness, and availability of systems are very essential. In the

said perspective, to increase the reliability and correctness of the systems, we propose the use of

Formal Methods (FM). The FM use sound mathematical foundations to prove program

correctness. The aim of our research is to deploy various FM tools and techniques to formally

analyze the behavior and correctness of the strategies, such as routing algorithms and

virtualization models that are implemented in large scale computing systems. The goal of our

research is to thoroughly study the strategies, highlight the grey areas that can be further exploit

to increase the reliability and performance, and propose a feasible solution. The large scale

computing systems, specifically DC exhibits different architectural characteristics, such as

iv

predefined complex architectural and topological pattern composed in different layers. The

aforementioned characteristics of the underlying network along with the large scale of the

servers situate several challenges for the adoption of FMs strategies.

v

ACKNOWLEDGEMENTS

First of all I would like to thank Almighty Allah for giving me the strength, courage,

health, and abilities to pursue my PhD and finish the disquisition.

My deepest and sincere gratitude goes to Dr. Samee U. Khan, my senior advisor for

everything I have learned from him, and his continuous help and support during all the stages of

this disquisition. I would also like to thank him for all the motivation that I needed when I was

down. I truly believe that without his guidance, vision, and encouragement the completion of this

disquisition was not possible. I thank him for believing me, when I did not had the believe on

myself.

I would also like to mention Dr. Sudarshan K. Srinivasan, my co-advisor for all the help,

guidance, and suggestions. Special thanks to all the committee members, Dr. Jacob S. Glower

and Ying Huang for their support, guidance and helpful recommendations. Their guidance has

served me well and I owe them my heartfelt appreciation.

Thanks to the Electrical and Computer Engineering staff members Jeffrey Erickson,

Laura D. Dallman, and Priscilla Schlenker for all the unconditional help and favor.

I wish to thank my family, Aijaz Hussain (Father), Anjum Syed (Mother), Fazal Ur

Rehman and Mehmood Ur Rehman (Brothers), and my sweet and sour Fatima Aijaz (Sister).

Their support and love was the driving force behind me. I owe them a lot and wish I could show

them how much I love and appreciate them. My wife, Hirra Saif, whose encouragement and

patience allowed me to finish this journey. She already has my heart so I will just acknowledge

her by saying a sincere and heartfelt “thanks”. My two little angels Mohid and Ayaan, their

smiles and laughter used to loosen me up from all the stress and worries.

vi

Finally I would like to thank my friends, here in US and in Pakistan for all the moments

of fun, laughter, and joy.

vii

DEDICATION

I would like to dedicate this thesis to my family, especially to my mother and my wife for

all the inexplicable love, support, and motivation.

viii

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS .. v

DEDICATION .. vii

LIST OF TABLES ... xiii

LIST OF FIGURES ... xiv

1. INTRODUCTION .. 1

1.1. Large Scale Computing Systems ... 1

1.2. Formal Methods ... 2

1.3. Motivation .. 3

1.4. Research Goals and Objectives .. 5

1.5. References .. 6

2. RELATED WORK ... 7

2.1. Virtual Machine (VM) Based Cloud Management Platforms and High Level

Petri-Nets (HLPN) .. 7

2.2. Energy Efficient Data Center (DC) .. 8

2.3. Formal Verifications of Routing Protocols .. 10

2.4. Thermal-Aware Resource Allocation .. 10

2.5. Data Security over the Cloud ... 13

2.6. References .. 15

ix

3. MODELING AND ANALYSIS OF STATE-OF-THE-ART VM-BASED CLOUD

MANAGEMENT PLATFORMS ... 21

3.1. Introduction .. 21

3.2. Preliminaries ... 24

3.2.1. High-Level Petri Nets (HLPN) ... 24

3.2.2. SMT-Lib and Z3 Solver .. 26

3.3. Modeling and Analysis of VM-Based Cloud Management Platforms 27

3.3.1. Components of Open Source Cloud ... 27

3.3.2. Eucalyptus ... 28

3.3.3. Open Nebula ... 34

3.3.4. Nimbus .. 42

3.3.5. OpenStack ... 49

3.4. Verification of Models Using SMT-Lib and Z3 Solver ... 49

3.4.1. Results ... 55

3.5. References .. 57

4. CONVERGENCE TIME ANALYSIS OF OPEN SHORTEST PATH FIRST ROUTING

PROTOCOL IN INTERNET SCALE NETWORKS .. 62

4.1. Introduction .. 62

4.2. Problem Formulation ... 63

4.3. Results and Discussions ... 66

4.4. References .. 68

x

5. MODELING AND ANALYSIS OF THE THERMAL DYNAMICS OF CYBER

PHYSICAL DATA CENTERS.. 70

5.1. Introduction .. 70

5.2. Modeling Thermal Dynamics of Cyber Physical DC .. 74

5.3. Thermal Aware Control Strategy (TACS) ... 81

5.4. Verification Using HLPN, SMT-Lib, and Z3 Solver .. 84

5.4.1. Modeling HLCC and LLCC Using HLPN ... 86

5.5. Results and Discussion .. 94

5.6. References .. 101

6. A METHODOLOGY FOR OSPF ROUTING PROTOCOL VERIFICATION 107

6.1. Introduction .. 107

6.1.1. SMT-Lib and Z3 Solver .. 108

6.2. OSPF Routing Protocol.. 109

6.3. Problem Formulation ... 111

6.4. Verification of OSPF Using Proposed Method ... 114

6.4.1. Content Verification.. 114

6.4.2. Route Verification ... 115

6.5. Result and Discussion .. 116

6.6. References .. 118

7. DASCE: DATA SECURITY FOR CLOUD ENVIRONMENT WITH SEMI-TRUSTED

THIRD PARTY .. 122

xi

7.1. Introduction .. 122

7.2. File Assured Deletion (FADE) .. 125

7.2.1. File Upload.. 127

7.2.2. File Download ... 129

7.2.3. Policy Revocation ... 129

7.2.4. Policy Renewal ... 129

7.3. Analysis of FADE .. 130

7.3.1. File Upload.. 130

7.3.2. Policy Renewal ... 131

7.3.3. Attack Verification through Scyther ... 132

7.3.4. HLPN .. 133

7.3.5. SMT-Lib and Z3 Solver .. 133

7.3.6. Verification through HLPN Model ... 134

7.3.7. Formal Verification ... 134

7.4. DaSCE.. 140

7.4.1. DaSCE Keys ... 140

7.4.2. File Upload.. 141

7.4.3. File Download ... 143

7.4.4. Policy Revocation ... 144

7.4.5. Policy Renewal ... 146

xii

7.4.6. Analysis of DaSCE through the HLPN .. 146

7.5. Implementation and Performance Evaluation .. 153

7.5.1. File Upload/Download with a Single Key Manager ... 154

7.5.2. File Upload/Download with Multiple Key Managers .. 155

7.5.3. Discussion ... 157

7.6. References .. 159

8. CONCLUSIONS .. 163

xiii

LIST OF TABLES

Table Page

3.1. Places and Mappings of Eucalyptus…………………………………………... 32

3.2. Data Types Used in the Model of Eucalyptus…………………………………. 32

3.3. Data Types Used in the Model of Open Nebula………………………………. 38

3.4. Places Used in the Model of Open Nebula……………………………………. 39

3.5. Data Types Used in the Model of Nimbus……………………………………. 46

3.6. Places Used in the Model of Nimbus…………………………………………. 47

3.7. Operators (Op) Used in CTL* and Description (Desc)………………………... 51

5.1. Data Types Used in the HLCC and LLCC Model……………………………... 87

5.2. Places Used in the Model of HLCC and LLCC………………………………. 88

5.3. Verification Outcomes of Scheduling Approaches……………………………. 100

6.1. The OSPF Routers…………………………………………………………….. 110

6.2. The OSPF Link States and Associated Routers……………………………….. 111

6.3. Comparison of Update Time and Ordered List of Router for Example………. 116

7.1. Notations and Their Meanings…………………………………………………. 126

7.2. Data Types Used in FADE HLPN Model……………………………………... 135

7.3. Mapping of Data Types and Places…………………………………………… 138

7.4. Data Types for HLPN of DaSCE……………………………………………… 148

7.5. Mapping of Data Types and Places for HLPN of DaSCE…………………….. 149

xiv

LIST OF FIGURES

Figure Page

3.1. An Example High-Level Petri Net……………………………………………. 26

3.2. Eucalyptus Architecture………………………………………………………. 29

3.3. Model of Starting a VM Instance in Eucalyptus……………………………… 30

3.4. The Architecture of Open Nebula……………………………………………. 35

3.5. Open Nebula Model for Instantiating a VM………………………………….. 37

3.6. Nimbus Workspace Components……………………………………………... 43

3.7. A Model for Nimbus. ………………………………………………………… 45

3.8. An Example of: (a) Kripke Structure and (b) Computational Tree…………… 50

3.9. An Example CTL Operators…………………………………………………... 52

3.10. An Example Computational Tree of Eucalyptus ……………………………... 53

3.11. Verification Results of Eucalyptus…………………………………………… 53

3.12. Verification Results of Open Nebula………………………………………… 54

3.13. Verification Results of Nimbus………………………………………………. 54

3.14. Execution Time Comparison of Eucalyptus, Open Nebula, and Nimbus……. 55

3.15. Memory Utilization of the Systems…………………………………………... 55

4.1. Sample Topology for One Thousand Routers………………………………… 63

4.2. The Effect of DRs on τ. ………………………………………………………. 66

4.3. The Effect of Node and Link Failure on τ. …………………………………... 67

4.4. The Effect of Random Topological Changes on τ. ………………………….. 68

5.1. An Example High-Level Petri Net……………………………………………. 72

xv

5.2. Three-Tier DC Architecture…………………………………………………… 74

5.3. The Ambient Temperature Effect in DC……………………………………… 78

5.4. Heat Exchange among Server Nodes………………………………………. 79

5.5. HLCC and LLCC in DC……………………………………………………… 81

5.6. Steps Involved in Low (server) Level………………………………………… 81

5.7. Steps Involved in High (access and aggregate) Level. ………………………. 82

5.8. An Example of: (a) Kripke Structure and (b) Computational Tree…………... 85

5.9. The HLCC and LLCC HLPN Model in DC Environment…………………… 89

5.10. The Kripke Structure of HLCC and LLCC for the Verification……………… 92

5.11. Computational Tree for the Kripke Structure in Fig. 5.10.……………………. 93

5.12. Comparison of Average Thermal Signatures of the Pods Using: (a) FCFS, (b)

GA-based, (c) TASA, and (d) TACS. ………………………………………...

96

5.13. Comparison of Average Thermal Signature Difference between the Highest and

Lowest Servers Using: (a) FCFS, (b) GA-based, (c) TASA, and (d)

TACS…………………………………………………………………………...

98

5.14. Average Thermal Signature Difference between the Highest and Lowest

Servers.….………………………………………………………………………..

99

5.15. Verification Time Comparison of the Approaches…………………………….. 100

6.1. OSPF Areas and Routers………………………………………………………. 108

6.2. Example Topology and Associated Delays……………………………………. 116

6.3. Execution Time for Verification Process. …………………………………….. 117

7.1. Shamir’s (k, n) Threshold Scheme in DaSCE…………………………………. 124

7.2. FADE (a) File Upload, (b) File Download, (c) Policy Revocation, and (d)

Policy Renewal (single key manager) [7.29] ………………………………….

127

7.3. Fade File Upload with Multiple Key Managers [7.29].………………………. 128

xvi

7.4. File Download Using ABE with Multiple Key Managers [7.29]……………… 129

7.5. (a) Man-in-the-middle Attack that Causes Encryption with the Wrong Keys (b)

Exploitation of Policy Renewal Process. ………………………………….

131

7.6. Man-in-the-middle with Multiple Key Managers……………………………… 132

7.7. Scyther Verification of FADE………………………………………………… 132

7.8. FADE HLPN Model with Intruder. …………………………………………... 136

7.9. Key Management in DaSCE………………………………………………….. 141

7.10. DaSCE File Upload with Single Key Manager. ………………………………. 142

7.11. DaSCE File Upload with Multiple Key Managers…………………………….. 143

7.12. DaSCE File Download with Multiple Key Managers…………………………. 143

7.13. DaSCE Policy Renewal. ………………………………………………………. 146

7.14. HLPN for DaSCE……………………………………………………………… 147

7.15. Performance of File Uploads and Downloads Operations for DaSCE………… 155

7.16. File Uploads with Multiple Key Managers. …………………………………… 156

7.17. File Download with Multiple Key Managers………………………………...... 157

7.18. Total Upload/Download Time vs. Key Establishment Time…………………... 158

1

1. INTRODUCTION

1.1. Large Scale Computing Systems

As we delve deeper into the ‘Digital Age’, we witness an explosive growth in the

volume, velocity, and variety of the data available on the Internet. For example, in 2012 about

2.5 quintillion bytes of data was created on a daily basis that originated from myriad of sources

and applications including mobile devices, sensors, individual archives, social networks, Internet

of Things, enterprises, cameras, and software logs. Such ‘Data Explosions’ has led to one of the

most challenging research issues of the current Information and Communication Technology

(ICT) era: how to optimally manage (e.g., store, replicated, filter, and the like) such large amount

of data and identify new ways to analyze large amounts of data for unlocking information? It is

clear that such large data streams cannot be managed by setting up on-premises enterprise

database systems, as it leads to a large up-front cost in buying and administering the hardware

and software systems. In the said perspective, the emergence of technological advances, such as

multicore processors and networked computing environments, has helped software practitioners

to achieve the vision of creating a software paradigm for millions of users to use as a service [1].

The Large Scale Computing Systems (LSCS), such as cloud computing is one such paradigm

with which a shared pool of resources (networks, servers, storage, applications, and services) can

be accessed conveniently and on-demand. Moreover, the services can be rapidly provisioned or

released with minimal management effort or service provider interaction [2].

The LSCS, such as cloud computing, has been a mainstream of research in last few years.

In a report [3], the cloud computing is listed as a top research trend from the year 2006 to 2010.

In LSCS, substantial data analysis applications are executed that requires massive amount of

2

memory, processor cycles, and communication bandwidth. To perform substantial computations

and meet the ever increasing demands of users, the LSCS are equipped with an order of tens of

thousands of servers. Amazon, Google, IBM, Facebook, and Microsoft have started to establish

Data Centers (DC) that host cloud computing applications in geographically distributed locations

[4]. To maintain and deliver the specified Quality of Service (QoS) attributes, such as

throughput, the LSCS must operate in a smooth and efficient way all the time. The income of the

DC is defined by the Service Level Agreement (SLA), which outlines the amount paid by the

users based on the QoS they receive. The computational and operating margins of DCs depend

highly on the provision of the QoS. Higher QoS attribute levels lead to higher rates that in turn

lead to higher computations.

1.2. Formal Methods

Formal Methods (FM) used in developing computer systems are rigorous mathematically

based tools and techniques that describes system properties, and are used for the specification,

development, and verification of software and hardware systems. The FM techniques have

matured considerably as a verification discipline in the past few decades and have become a

mainstream technology in industrial design, verification methodologies, and processes.

Moreover, the increasing criticality and complexity of applications along with the role of

software and hardware in those applications has led to the maturity of FM techniques. The aim of

such techniques is to increase the quality of software by mathematically proving program

correctness as opposed to using test cases. The method or technique is considered to be

“Formal”, if it is backed up by sound mathematical grounds, which is typically provided by the

specification language. The mathematical bases are used as a mean to precisely define notions,

such as consistency, completeness, specification, implementation, and correctness [5]. The

3

mathematical structure involved in FM also helps in proving that if the system is implemented

correctly, then the specification is realizable. The specification provides a complete description

of the behavior of a system to be developed and also includes use cases to describe user

interactions with the software. In software engineering, specification is the intermediate product

of the software development process. Moreover, the correctness of a system or program can be

determined using specification.

The FMs are mainly used to reveal incompleteness, ambiguity, and inconsistency in a

system. However, it is noteworthy that the use of formal methods does not miraculously

guarantee the aforesaid results, but can be used to increase the level of confidence towards the

correctness of the system. FMs can be used in different stages of software development life

cycle. The use of FMs in the early stages of development process can reveal design flaws that

otherwise might be discovered in the costly stages of testing and debugging phases. When used

at the later stages, FMs can help in determining the correctness of the systems implementation.

Moreover, the quality and reliability of software is increased by FM techniques using rigorous

mathematical modeling, analysis, and verification.

1.3. Motivation

The main obstacle to relegate complex and sensitive tasks is not the inadequate speed and

unsatisfactory computing power of the existing machines. However, the inability to design and

implement the systems, with a desirable degree of confidence in the correctness and reliability,

under different circumstances, has crept in to be the primary concerns in achieving high

performance. The hardware and software systems are growing inevitably in scale and

functionality, such as cloud computing systems. In the said perspective, the complexity of the

systems is also increasing. The likelihood of elusive errors is directly proportional to the

4

complexity of the systems that also increase the cost of errors while the systems are operational.

In large scale computing systems the density of computational devices is in order of tens of

thousands of servers. Moreover, the effects of slightest miscalculations and errors are substantial.

The methods and practices that are generally used for design validations are: (a)

simulation and (b) testing. The said techniques are useful for small scale networks. However, as

the complexity of the systems grow the effectiveness of the aforementioned techniques

decreases. Moreover, an alarmingly increasing amount of time is required to uncover the subtle

bugs by using testing and simulations. In testing, the program is executed with a set of inputs to

evaluate the differences between given input and expected output. The goal in testing is to reduce

the frequency of failures. Testing is used to identify the presence of bugs, but it cannot confirm

the absence of bugs from the system. In large scale computing systems, such as cloud, the use of

testing becomes infeasible as the sizes of such systems are very large. The set of inputs in testing

is assumed to cover all possible cases, which involves the range of normal inputs and as well as

exceptional scenarios. However, the aforesaid assumptions are not realistic. If we take even a

simplest of example of testing a program for adding two real numbers, then there could be

infinite number of use cases to test and verify the program correctness. To perform testing and

simulation the working prototype of the system or program must exist. First, building a prototype

program for LSCS is itself an expensive task. Second, even if the bugs are identified after

building a prototype, the cost of fixing bugs at later stages is very high. Therefore, testing and

simulations are expensive strategies for the verification of LSCS. The inabilities of traditional

tools and techniques to effectively substantiate the working of LSCS have raised questions

related to the reliability and robustness. In short, the problem we attempt to solve in this thesis is

5

“How to design and implement the systems, with a desirable degree of confidence in the

correctness and reliability, under different circumstances?”

The pricing model implemented over the large scale computing systems, such as cloud is

pay-per-usage, which means that the end-users will pay only for the services usage. Therefore,

the specified service level agreement based performance must be provided to the end users to

keep up the reputation. If the performance requirements are not met, then the users may not use

the services, and the reputation may fall down resulting in a loss of customer and money. Few

examples to highlight the impact of performance degradation and errors are: (a) Google reported

a 20% revenue loss due to a delay of 500msecs in response time, (b) Amazon reported a sales

decrease of 1% due to an additional response time of 100msecs, and (c) Knight Capital Group

lost 440 million USD in just 45 minutes, when newly installed trading software went haywire.

The aforementioned examples indicate the importance and impact of the performance of the

cloud services. Moreover, the due consideration that needs to be given to, and the benefit of,

performance to the cloud services are also obvious from the said examples. The traditional

methods, such as Testing, are expensive and become infeasible as the sizes of the computing

systems are large. Because FM presupposes program semantics that is not considered in Testing

and Simulations, the FM techniques are considered more powerful. Moreover, through FMs,

users can logically analyze the system to prove properties for any possible inputs. In the said

perspective, the use of FM for verifying the functionality and reliability of the systems could be

beneficial.

1.4. Research Goals and Objectives

The objective of our research is to deploy various FM tools and techniques to formally

analyze the behavior and correctness of the strategies, such as routing algorithms and

6

virtualization models that are implemented in large scale computing systems. The goal of our

research is: (a) to thoroughly study the strategies, (b) highlight the grey areas that can be further

exploit to increase the reliability and performance, (c) and propose a feasible solution. Compared

to conventional random networks, the large scale computing systems, specifically Data Centers

(DC) exhibits different architectural characteristics, such as predefined complex architectural and

topological pattern composed in different layers. The aforementioned characteristics of the

underlying network along with the large scale of the servers situate several challenges towards

the application of FMs [6].

1.5. References

[1] R. Buyya, S. Y. Chee, and S. Venugopal, “Market-Oriented Cloud Computing: Vision, Hype,

and Reality for Delivering IT Services as Computing Utilities,” 10th IEEE (HPCC ’08), pp.5-13,

Sep. 2008.

[2] P. Mell and T. Grance. Definition of cloud computing. Technical Report, NIST, 2009.

[3] A. Hoonlor, B. K. Szymanski, and M. J. Zaki, “Trends in computer science research,”

Communications of the ACM, vol. 56, no. 10, pp. 74-83, 2013.

[4] D. Abadi, “Data management in the cloud: Limitations and opportunities,” IEEE Data

Engineering, Bulletin, vol. 32, no. 1, 2009, pp.3–12.

[5] J. M. Wing, “A specifier's introduction to formal methods,” Computer, vol. 23, no. 9, pp. 8-

22, 1990.

[6] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald, “Formal methods: Practice and

experience,” ACM Computing Surveys (CSUR), vol. 41, no. 4, 2009.

7

2. RELATED WORK

In this chapter we discussed some of the work that is related to the research we have

performed during Ph.D.

2.1. Virtual Machine (VM) Based Cloud Management Platforms and High

Level Petri-Nets (HLPN)

Virtualization has been studied extensively in the domain of cloud computing. The

research is usually focused towards the security or resource provisioning of VM. In [2.1], to

make the VM more secure, the authors have proposed to remove the virtualization layer, while

retaining the key features enabled by the cloud. In [2.2], the authors proposed HyperSafe, which

is a lightweight approach that endows existing hypervisors with a self-protection capability to

provide lifetime flow integrity. In [2.3], authors proposed new security architecture in a

hypervisor-based virtualization technology to secure the cloud environment. Similarly, [2.4], also

discussed security aspects of VMs in the cloud. In [2.5], a generic model is proposed for

resource allocation of VMs in multi-tier distributed environment that describes every VM as a

multi-dimensional vector. In [2.6], a two level resource manager is proposed that allocate

resources to individual containers using local controllers. Several studies are also available, such

as [2.7 - 2.10] that discuss and compare the cloud management platforms. The focus of the said

studies was on the discussion and comparison of architecture and feature set of the systems.

However, little amount of work has been done in the area of modeling and analysis of cloud

management systems, specifically VM-based systems. The HLPN has been widely used for the

modeling of systems from various domains of computer science, such as cloud computing, web

service framework, Grid infrastructures, scheduling and load balancing. In [2.11], the authors

8

have used Colored Petri Nets (CPN) to model Open Provenance Model (OPM) for the purpose of

Model-based Diagnosis in the Cloud (MBD). Virtualization and modeling (including formal

analysis and verification) are very rich research domains, when considered separately. However,

a diminutive amount of research is performed when both (modeling, including formal analysis

and verification of virtualization) are combined.

2.2. Energy Efficient Data Center (DC)

The paradigm shift has occurred in the DCs, where the cost of IT equipment or hardware

is no longer the major portion of the overall cost, instead the cost of power and cooling

infrastructure has crept in to be the primary cost driver. Thermal imbalance can cause a hurdle

towards achieving an efficient operational DC. The presence of the hotspots creates a risk of

redlining servers that can cause them to fail prematurely. The power consumption and thermal

properties of the devices are directly proportional to each other. Therefore, in this section we will

discuss both power and thermal strategies. Several strategies have been proposed to balance the

tradeoff between the power, cooling, and performance. There are multiple ways to control the

power consumption and thermal properties of the servers, such as through active management of

workload hosted on the servers by using admission control strategies, load balancing, and

workload migration. The power consumption of the servers can also be tuned through physical

control, such as Dynamic Voltage and Frequency Scaling (DVFS) and on-off state control

[2.12]-[2.14]. The DVFS has already been implemented in the operating systems, where the CPU

utilization drives DVFS controller to adopt the power consumption with the changing workload.

A control-theoretic approach to DVFS is proposed in [2.15], where the authors have modified the

classical control system algorithm, Proportional Integral Derivative (PID) controller, to perform

the dynamic voltage scaling. In [2.16], the author argues that DVFS is not the only solution for

9

processor power management in DC workloads. They propose the use of Per-Core Power Gat-

ing (PCPG) for multi-core processors that allows the ability to cut the power supply to selected

core, allowing zero power leakage to the gated cores. A technique to control the workload

execution on the processor and the power consumption, given some constrained on the

temperature of the chip, is proposed in [2.17]. In [2.18], the authors proposed a method to adjust

the speed of multi-core processors to maximize the processing with a given set of thermal

constraints. They proposed two methods: (a) primal-dual interior-point and (b) dual

decomposition, to achieve the desired level of performance under specified thermal constraints.

A model-based system, Zephyr, is proposed in [2.19] that combine conventional server power

optimization and fan power optimization to optimize overall energy efficiency. The set of blade

servers share the cooling capacity of the set of fans, which are controlled by the Multi-Input

Multi-Output (MIMO) controller to optimize the aggregate fan power. All of the aforementioned

approaches are thermally oblivious, which means that job scheduling and processing decisions

are not aware of the heating effect in DC that may cause thermal imbalance and hotspots.

Different authors have proposed different thermal aware strategies. Moore et al. [2.20] proposed

a temperature aware workload placement approach in DC. The aforesaid approach is based on

thermodynamics formulation, power, and thermal profiles of the servers. However, precise

measurement of the profiles for such a large number and types of jobs is complicated. Moreover,

the thermal and power models are not accurate for DC, as discussed in [2.21]. In another

approach [2.22], modeling a thermal topology of DC is discussed that can lead to more efficient

workload placement. However, preserving the safe temperature and migration of the resources

are not discussed. A DC environmental control system is proposed in [2.23] that use a distributed

sensors network to manipulate CRAC units. The control strategy proposed is concentrated to

10

enforce the thermal constraints of cyber infrastructure, while minimizing the heat dissipated by

the CRAC unit. The discussion in [2.23] in concentrated only on the CRAC and did not

considered the servers. There are other studies, such as [2.24-2.27] that proposed thermal

management strategies at a DC level. In [2.28], the authors have modeled DC as a CPS and

proposed a control strategy to optimizes the tradeoff between the quality of computational and

energy cost. However, the heat recirculation and its effect on the other neighboring nodes are not

discussed.

2.3. Formal Verifications of Routing Protocols

 A formal verification of ad-hoc routing protocols using SPIN model checker is

performed in [2.29]. The authors of [2.29] used Wireless Adaptive Routing Protocol (WARP) to

formally verify the real time aspects of the protocol. In [2.30], the authors studied different

implementations of Ad-hoc On-demand Distance Vector (AODV) routing protocol. Moreover, to

checks C and C++ implementations directly, the authors used their own model checker. A

topology approximation algorithm is proposed in [2.31], to tackle the problem of mobility by

modeling AODV using colored petri nets. In the paper [2.32], the authors performed

specification and verification of LambdaRAM, which is a wide area distributed cache for high

performance computing. The authors in [2.32] used TLV for model checking, which uses SMV

as an input language. Xiong et al. [2.31] have modeled AODV using colored Petri nets (CPN).

Some other work towards the verification of routing protocols can be found in [2.33]-[2.35].

2.4. Thermal-Aware Resource Allocation

The cost of IT equipment or hardware is no longer the major portion of the overall cost

involves in DCs. Alternatively, the cost of power and cooling infrastructure has crept in to be the

11

primary cost driver. Uneven thermal signatures and hotspots within a DC can lead to hardware

failures and energy wastage by the Air Conditioning (AC) units. Moreover, the presence of the

hotspots creates a risk of redlining servers that can cause premature failure. The power

consumption and thermal properties of the devices are directly proportional. Therefore, in this

section we will discuss both the power and thermal strategies.

The topic of energy efficient data centers is addressed by huge number of research

communities. The energy efficiency can be achieved in a data center from many dimensions,

such as from physical infrastructure perspective and from computational perspective. The

aforesaid dimensions are further explored by many researchers to propose new energy efficient

strategies. The energy efficiency techniques can be applied to a DC without much overhead and

can be broadly categorize as: (a) Dynamic Voltage/Frequency Scaling (DVFS), (b) hot and cold

aisle, (c) Dynamic Power Management (DPM), (d) resource allocation, and (e) virtualization

[2.36].

As stated above, the power consumption of the servers can be tuned through hardware

interfaces, such as DVFS and on-off state control [2.12-2.14]. An integer linear programming

modeling approach is proposed in [2.37] that aim to meet the real-time deadlines, while

minimizing the hotspots and spatial temperature differences through task scheduling [2.38]. The

preceding technique is designed to react when the thermal threshold is approached, instead of

avoiding it at a first place. A proactive solution is presented in [2.39] that distribute the workload

between cores in a thermally sensitive manner to avoid the temperature to reach the redline

value. To predict the temperature, the authors in [2.39] proposed a band-limited predictor that is

based on a band limited property of the temperature frequency spectrum. However, in case of

mispredictions, the overheads associated with the aforesaid solution are significantly high, as

12

advocated in [2.40]. A scheduling policy is proposed in [2.41] that allocate memory bound tasks

to slower frequency processors based on the intensity of memory and current temperature of the

processor. Similarly, there are other approaches, such as in [2.42] and [2.43] that attempts to

insert additional cycles into the task scheduling process to reduce the thermal signatures of the

systems. However, the aforesaid strategies are considered inefficient under many scenarios,

where the slack is unavailable between the deadlines. Moreover, the performance is also

degraded when the aforesaid approaches are employed, as discussed in [2.40].

To perform the dynamic voltage scaling a control-theoretic approach to the DVFS is

proposed in [2.15], where the authors modified the classical control system algorithm, the

Proportional Integral Derivative (PID) controller. In [2.16], the author argues that DVFS is not

the only solution for processor power management in data center workloads. The authors in

[2.16] propose the use of Per-Core Power Gating (PCPG) for multi-core processors that allows

the ability to cut the power supply to the selected core, allowing zero power leakage to the gated

cores. All of the aforesaid techniques provide a promising control over power management.

However, the said techniques can lead to significant negative impact on power management as

switching on and off involves overheads [2.44]. Moreover, the approaches are thermally

oblivious, where the job scheduling and processing decisions does not account the heating effect

in data centers that may cause thermal imbalance and hotspots.

A thermal aware scheduling approach, named as XInt, is proposed in [2.45] that

minimizes the inlet temperatures, and leads to minimal heat recirculation and cooling cost for

data center operation. A similar scheduling strategy is also proposed in [2.22] to minimize the

heat recirculation. However, the aforesaid strategies did not consider the effect of scheduling on

the server cooling cost [2.46]. Another approach is proposed in [2.22] that create a thermal

13

topology of the DC to achieve efficient workload placement. However, no discussion is available

related to keep the server thermal signatures under the redline values. There are other studies,

such as [2.23-2.27] that proposed thermal management strategies using different approaches at a

DC level. However, all of the aforesaid studies have not discussed the thermal effect of job

allocation on a server and the raise in the temperature on other related servers as a result of

ambient effect. In this paper, we analyze a real workload of a DC, using statistical techniques, to

observe the thermal impact of job allocation on the selected server and ambient effect on other

servers. Moreover, we used the results and findings from the workload analysis, to propose a

scheduling scheme that attempts to maintain thermal uniformity within a DC.

2.5. Data Security over the Cloud

Juels et al. [2.47] presented a technique to secure the cloud data that provides a number

of services, such as integrity, freshness, and availability. The authors employed a gateway

application in the enterprise to manage the integrity and freshness checks for the data. The Iris

file system is designed to migrate organizations internal file system to the cloud. Moreover, a

Merkle tree is used by gateway, which ensures freshness and integrity of data by inserting file

blocks, MAC codes, and file version numbers at different levels of the tree. The gateway

application also manages the cryptographic keys for confidentiality requirements. Moreover,

Ref. [2.47] proposed an auditing framework that audits the cloud environment for ensuring the

freshness of the data, data retrievability, and resilience against disk failures. However, the

technique heavily depends on the user’s employed scheme for data confidentiality. Moreover,

data cannot be protected against service provider wholesale.

In [2.48], the authors presented a cryptographic file system that provides confidentiality

and integrity services to the outsourced data. The authors used hash based MAC tree for

14

providing the aforesaid services. Block-wise encryption is used for the construction of a MAC

tree. The file system at the client side interacts with the file system of the server and outsources

the encrypted blocks. Encrypted file blocks and cryptographic metadata are stored separately.

Nevertheless, the presence of cryptographic metadata on the storage side can be a potential

threat.

The authors in [2.49] proposed a virtual private crypto-graphic storage service to provide

confidentiality and integrity to user data within the cloud. The client application in the proposed

method has three modules: (a) data processor, (b) data verifier, and (c) token generator. The

client application generates a master key to be used for subsequent operations. The data

processor encrypts the file to be uploaded with keys generated from the master key and uploads

to the cloud. The data download involves the use of token generator that generates a token for the

user to download data. Token also contains identity of files to be downloaded. The data verifier

checks for the integrity of the data once the data is downloaded from the cloud. Attribute Based

Encryption (ABE) is used for encryption. However, the key in [2.49] resides at client side and

may be subject to a single point of failure.

A cloud storage system based on secure erasure code is presented in [2.50]. The system

uses threshold key servers for storing a user’s key generated by a system manager. User encrypts

the data divided into blocks and stores every block on randomly selected multiple servers. The

system also provides the functionality of data forwarding by allowing any of the users to forward

the data to any other users without downloading. The authors used proxy re-encryption method

for forwarding the encrypted data. A similar scheme is presented by the same authors in [2.51]

with the difference that the later does not provide data forwarding. However, aforesaid schemes

require heavy implementation level changes on the cloud side.

15

2.6. References

[2.1] E. Keller, J. Szefer, J. Rexford, and R. B. Lee, “NoHype: virtualized cloud infrastructure

without the virtualization,” 37th ACM ISCA, pp. 350–361, June 2010.

[2.2] P. Campegiani, F. L. Presti, “A general model for virtual machines resources allocation in

multi-tier distributed systems,” International Conference on Autonomic and Autonomous

Systems, pp. 162-167, 2009.

[2.3] F. Zhang, J. Chen, H. Chen, and B. Zang, “CloudVisor: Retrofitting protection of virtual

machines in multi-tenant cloud with nested virtualization,” ACM SOSP, Cascais, Oct. 2011.

[2.4] Z. Wang and X. Jiang, “HyperSafe: A lightweight approach to provide lifetime

hypervisor control-flow integrity,” Symposium on Security and Privacy, pp. 380-395, 2010.

[2.5] F. Sabahi, “Secure Virtualization for Cloud Environment Using Hypervisor-based

Technology”, Journal of Machine Learning and Computing, vol. 2, no. 1, pp. 39-45.

[2.6] J. Xu, M. Zhao, J. Fortes, R. Carpenter, M. Yousif, “Autonomic resource management in

virtualized data centers using fuzzy logic-based approaches,” Journal of Cluster Computing, vol.

11, pp. 213–227, 2008.

[2.7] D. Cerbelaud, S. Garg, and J. Huylebroeck, “Opening the clouds: qualitative overview of

the state-of-the-art open source vm-based cloud management platforms,” 10th ACM/IFIP

International Conference on Middleware, pp. 1–8, 2009.

[2.8] P. T. Endo, G. E. Gonçalves, J. Kelner, and D. Sadok, “A Survey on Open-source Cloud

Computing Solutions,” 8th Workshop on Cloud and Grid Applications, pp. 3-16, 2010.

[2.9] B. Sotomayor, R. S. Montero, I. M. Llorente, I. Foster, “Virtual Infrastructure

Management in Private and Hybrid Clouds,” Internet Computing, vol. 13, no. 5, Oct. 2009.

16

[2.10] N. Khan, A. Noraziah, E. I. Ismail, and M. M. Deris, “Cloud Computing: Analysis of

Various Platforms,” Journal of Entrepreneurship and Innovation, vol. 3, no. 2, pp. 51-59, 2012.

[2.11] Y. Li, and O. Boucelma, “A CPN Provenance Model of Workflow: Towards Diagnosis in

the Cloud,” Conference on Advances in Databases and Information Systems, pp. 55–64, 2011.

[2.12] Y. Cho and N. Chang, “Energy-aware clock-frequency assignment in microprocessors

and memory devices for dynamic voltage scaling,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 26, no. 6, 2007, pp. 1030–1040.

[2.13] H. Aydin and D. Zhu, “Reliability-aware energy management for periodic real-time

tasks,” IEEE Transactions on Computers, vol. 58, no. 10, 2009, pp. 1382–1397.

[2.14] P. Choudhary and D. Marculescu, “Power management of voltage/frequency island-

based systems using hardware-based methods,” IEEE Transactions on VLSI Systems, vol. 17,

no. 3, 2009.

[2.15] A. Varma, B. Ganesh, M. Sen, S. Choudhury, L. Srinivasan, and B. Jacob, “A control-

theoretic approach to dynamic voltage scheduling,” International CCASE, pp. 255–266.

[2.16] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and C. Kozyrakis, “Power

management of datacenter workloads using per-core power gating,” Computer Architecture

Letters, 2009, vol. 8, no. 2, pp. 48–51.

[2.17] Z. Jian-Hui and Y. Chun-Xin, “Design and simulation of the cpu fan and heat sinks,”

IEEE Transactions on Components and Packaging Technologies, vol. 31, no. 4, pp. 890–903.

[2.18] A. Mutapcic, S. Boyd, S. Murali, D. Atienza, G. Micheli, and R. Gupta, “Processor

speed control with thermal constraints,” IEEE Transactions on Circuits and Systems, vol. 56, no.

9, pp. 1994–2008.

17

[2.19] N. Tolia, Z. Wang, P. Ranganathan, C. Bash, M. Marwah, and X. Zhu, “Unified power

and cooling management in server enclosures,” in InterPACK, pp. 721–730, 2009.

[2.20] J. Moore, J. Chase, P. Ranganathan, and R. Sharma, “Making scheduling "cool":

temperature-aware workload placement in data centers,” In USENIX, pp. 61-75, 2005.

[2.21] Q. Tang, S. Gupta, and G. Varsamopoulos, “Energy-efficient thermal-aware task

scheduling for homogeneous high-performance computing data centers: A cyber-physical

approach,” IEEE Transactions on Parallel and Distributed Systems, vol. 19, no. 11, 2008, pp.

1458–1472.

[2.22] J. Moore, J. Chase, and P. Ranganathan, “Weatherman: Automated, online and

predictive thermal mapping and management for data centers,” IEEE ICAC, pp. 155-164, 2006.

[2.23] C. Bash, C. Patel, and R. Sharma, “Dynamic thermal management of air cooled data

centers,” Thermal and Thermomechanical Phenomena in Electronics Systems, pp. 445–452,

2006.

[2.24] L. Rao, X. Liu, L. Xie, and W. Liu, “Minimizing electricity cost: Optimization of

distributed internet data centers in a multi-electricitymarket environment,” International

Conference on Computer Communications (INFOCOM), pp. 1–9, 2010.

[2.25] Q. Tang, S. Gupta, and G. Varsamopoulos, “Energy-efficient thermal-aware task

scheduling for homogeneous high-performance computing data centers: A cyber-physical

approach,” IEEE Transactions on Parallel and Distributed Systems, vol. 19, no. 11, 2008, pp.

1458–1472.

[2.26] M. Anderson, M. Buehner, P. Young, D. Hittle, C. Anderson, J. Tu, and D. Hodgson,

“MIMO robust control for HVAC systems,” IEEE Transactions on Control Systems Technology,

vol. 16, no. 3, 2008, pp. 475– 483.

18

[2.27] M. Toulouse, G. Doljac, V. Carey, and C. Bash, “Exploration of a potential-flow-based

compact model of air-flow transport in data centers,” American Society Of Mechanical

Engineers ASME Conference, pp. 41–50, 2009.

[2.28] L. Parolini, N. Toliaz, B. Sinopoli, and B. H. Krogh, “A Cyber-Physical Systems

approach to energy management in data centers,” Conference on Cyber-Physical Systems, 2010.

[2.29] R. de Renesse and A. Aghvami, “Formal verification of ad-hoc routing protocols using

SPIN model checker”, 12th IEEE Mediterranean Electro technical Conference, 2004, pp. 1177–

1182.

[2.30] D. Engler and M. Musuvathi, “Static analysis versus software model checking for bug

finding”, Verification, Model Checking, and Abstract Interpretation, 5th International

Conference, Lecture Notes in Computer Science, 2004, pp. 191–210.

[2.31] C. Xiong, T. Murata, and J. Tsai, “Modelling and simulation of routing protocol for

mobile ad hoc networks using coloured Petri nets”, Workshop on Formal Methods Applied to

Defence Systems in Formal Methods in Software Engineering and Defence Systems, 2002.

[2.32] V. Vishwanath, L. Zuck, J. Leigh, “Specification and verification of LambdaRAM – a

wide-area distributed cache for high performance computing” 6th IEEE/ACM Conference on

Formal Methods and Models for Codesign (MEMOCODE) 2008, USA, June 2008.

[2.33] S. Chiyangwa, M. Kwiatkowska, “A timing analysis of AODV”, Formal Methods for

Open Object-Based Distributed Systems: 7th IFIP WG 6.1 International Conference

(FMOODS), (2005).

[2.34] D. Obradovic, Formal Analysis of Routing Protocols. PhD Thesis, University of

Pennsylvania (2002).

19

[2.35] S. Das, D. L. Dill, “Counter-example based predicate discovery in predicate abstraction”,

Formal Methods in Computer-Aided Design, Springer-Verlag, (2002).

[2.36] E. Masanet, R. Brown, A. Shehabi, J. Koomey, and B. Nordman, “Estimating the energy

use and efficiency potential of U.S. data centers,” Proc IEEE, vol. 99, no. 8, 2011, pp.1440–

1453.

[2.37] E. Kursun and C. Y. Cher, “Temperature variation characterization and thermal

management of multicore architectures,” IEEE Micro, vol. 29, pp.116–126, ISSN 0272-1732.

[2.38] J. X. Yang, “Dynamic thermal management through task scheduling,” IEEE Symposium

on Performance, Analysis of Systems and Software, pp. 191–201, 2008.

[2.39] R. Ayoub and K. Indukuri, “Temperature aware dynamic workload scheduling in

multisocket CPU servers,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 9, pp. 1359 –1372,

2011.

[2.40] A. Lewis and N. F. Tzeng, Thermal-Aware Scheduling in Multicore Systems Using

Chaotic Attractor Predictors.

[2.41] A. Merkel and J. Stoess, “Resource-conscious scheduling for energy efficiency on

multicore processors,” International European conference on Computer systems, pp. 153–166.

2010.

[2.42] J. Choi and C. Y. Cher, “Thermal-aware task scheduling at the system software level,”

ACM Symposium on Low Power Electronics and Design, pp. 213–218, 2007.

[2.43] P. Bailis and V. J. Reddi, “Dimentrodon: Processor-level preventive thermal management

via idle cycle injection,” In Proc. of the 48th

Design Automation Conference (DAC 2011), June 2011.

20

[2.44] M. Annavaram, “A case for guarded power gating for multi-core processors,” In HPCA,

pp. 291-300, 2011.

[2.45] Q. Tang, S. K. Gupta, and G. Varsamopoulos, “Thermal-aware task scheduling for data

centers through minimizing heat recirculation,” IEEE International Conference on Cluster

Computing, pp. 129-138.

[2.46] R. Ayoub, S. Sharifi, and T. S. Rosing, “Gentlecool: Cooling aware proactive workload

scheduling in multi-machine systems,” In Proceedings of the Conference on Design, Automation

and Test in Europe pp. 295-298, 2010.

[2.47] A. Juels and A. Opera, “New approaches to security and availability for cloud data,”

Communications of the ACM, Vol. 56, No. 2, 2013, pp. 64-73.

[2.48] A. Yun, C. Shi, and Y. Kim, “On protecting integrity and confidentiality of cryptographic

file system for outscored storage,” Proceedings of 2009 ACM workshop on cloud computing

security CCSA’09, pp. 67-76, 2009.

[2.49] S. Kamara and K. Lauter, “Cryptographic cloud storage,” Financial Cryptography and

Data Security, Springer Berlin Heidelberg, 2010, pp. 136-149.

[2.50] H. Lin and W. Tzeng, “A secure erasure code-based cloud storage system with secure data

forwarding,” IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 6, June 2012,

pp. 995-1003.

[2.51] H. Lin and W. Tzeng, “A secure decentralized erasure code for distributed network

storage,” IEEE Transactions on Parallel and Distributed Systems, vol. 21, no. 11, Nov. 2010, pp.

1586-1594.

21

3. MODELING AND ANALYSIS OF STATE-OF-THE-ART

VM-BASED CLOUD MANAGEMENT PLATFORMS

This paper is published in IEEE Transactions on Cloud Computing (TCC), vol. 1, no. 1,

pp. 50-63, 2013. The authors of the paper are Saif U. R. Malik, Samee U. Khan, and Sudarshan

K. Srinivasan.

3.1. Introduction

The vibrant underlying technology in cloud infrastructure is virtualization that contributes

towards the prevalent application and adaptation of cloud computing infrastructure [3.3].

Virtualization can be defined as the process of abstracting the original physical structure of

innumerable technologies, such as hardware platform, operating system, a storage device, or

other network resources [3.4]. Moreover, machines, applications, desktops, networks, and

services are also separated from the underlying physical constraints. The cloud takes

virtualization to a step further by using VMs that creates the customer independent system

regardless of the underlying hardware in a timely manner. Every physical machine in a cloud can

host several VMs, which from a user’s perspective is equivalent to a fully functional physical

machine. Moreover, VMs can be start and stop anytime without any changes to the underlying

hardware. Furthermore, migration of VMs between the physical machines is also possible

without much disruption. Therefore, the cloud service providers deploy services on VMs that

allow resource provision with more flexibility [3.5, 3.51].

The cloud normally involves a large number of VM and physical machines that makes

virtual infrastructure management a cumbersome task. Several solutions are available to cope

with the aforementioned problem, such as VMware VirtualCenter, Platform Orchestration, and

22

Enomalism that provides an automatic monitoring and deployment of VMs in resource pools

[3.6]. Numerous cloud providers, such as Amazon EC2 [3.7], Google App Engine [3.8], and

Science Clouds [3.9] uses the aforementioned solutions to manage the virtual infrastructure.

Most of the existing cloud computing management platforms are either proprietary or contains

software that are not programmable for experimentation purposes. In the said perspective,

several open source VM-based cloud management platforms have been launched, such as

Eucalyptus [3.10], oVirt [3.11], and Enomaly Elastic Compute Platform (ECP) [3.12], so that

researchers from every field can participate towards further development of management

platforms in the cloud. Recently, OpenStack [3.25] has attained a significant status in the field of

cloud computing. A number of companies that includes some big names, such as IBM, Dell,

AMD, and Intel, have joined the OpenStack project.

Several open source IaaS providers have emerged as a result of recent development in

open source virtualization [3.13]. Two hypervisors: (a) Xen [3.14] and (b) KVM [3.15] are the

most widely used open source hypervisors in the recent IaaS providers [3.34]. In this paper, we

have studied and analyzed three open source state-of-the-art VM-based cloud management

platforms: (a) Eucalyptus, (b) Open Nebula, and (c) Nimbus. The said systems have different

design interests (as advocated in [3.16]) and that is why we have selected these systems for the

study. The differences in the designs make each system suitable for an explicit environment. An

important aspect that influences the choice of selecting a particular system for a private cloud is

the level of customization. Amongst all of the aforementioned three cloud platforms, Open

Nebula provides the highest level of customizability that allow users to switch almost every

component from the underlying Virtual Machine Monitor (VMM) to the front-end. Both, the end

user and the administrator, relishes the available customization. The customization provided by

23

Open Nebula is suitable in an experimental environment, where one wants to explore every

component and crack new results from the computational perspective. Besides Open Nebula,

Nimbus also provides a high level of customization. However, the major portion of

customization in Nimbus is available to the administrator. Nimbus is more suitable for an

environment, where one is less interested in technical details of the systems, but requires a broad

level of customization, such as cooperative scientific communities. Eucalyptus mimics the

implementation of Amazon EC2 and is an open source implementation of Amazon Web Service

(AWS) API. The customization level is Eucalyptus is very low that makes it appropriate for a

private company, where one needs a cloud for own use and wants to avoid mistakes from the

users. The suitability of any of the cloud management platforms depends on the requirements of

the user or organizations.

Numerous studies are available, such as [3.17], [3.18], [3.19] that discuss and compare

the aforementioned cloud management platforms but the previous work largely focused on the

architecture and feature set of the systems. Another mutual aspect observed amongst the previous

studies is the high level of abstraction, while discussing the architectures of the systems. In this

study, we made an effort to diminish the level of abstraction through detailed modeling and

formal analysis of the platforms being discussed. We have used High-Level Petri Nets (HLPN)

and Z language for the modeling and analysis of the systems. HLPN is used to: (a) simulate the

systems and (b) provide mathematical representation, to analyze the behavior and structural

properties of the system. The model of the systems will help analyze: (a) the interconnection of

the components and processes, (b) the fine-grain details of the flow of information amongst the

processes, and (c) how the information is processed. Moreover, we performed the verification of

the models in two-fold. First, we performed the automated verification of the models by

24

following Bounded Model Checking technique using Satisfiability Modulo Theories Library

(SMT-Lib) and Z3 solver. To verify using SMT, the petri net models are first translated into

SMT along with the specified properties. Then, Z3 solver is used to check either the model

satisfies the properties or not. Second, to verify the feasibility of the models as the number of

VMs scales, we model about hundred instances of VMs for each platform (Eucalyptus, Open

Nebula, and Nimbus) and verify the correctness. The results generated reveals that the models

are working correctly. To the best of our knowledge no work has been done to model, analyze,

and verify the open source cloud management platforms. This research work will provide the

basis for the researchers to understand the design and implementation of the state-of-the-art VM-

based cloud platforms. As the inception of the cloud is based on distributed computing (grid and

cluster) and virtualization, the research is more inclined towards the computing and storage

aspect of the cloud and another crucial aspect of cloud, the connectivity (networking), is usually

forgotten [3.13]. This paper will focus on the intercommunication and behavior of the

components of the systems rather than the computing and performance measurements.

3.2. Preliminaries

This section will discuss some of the tools and technologies used in this work that will

help the reader to understand the topic easily.

3.2.1. High-Level Petri Nets (HLPN)

Petri nets are graphical and mathematical modeling tool that is applicable to many

systems characterized as being concurrent, asynchronous, distributed, parallel, non-deterministic,

or stochastic [3.20]. In this paper we have used a variant of classical Petri Net model, namely,

High-Level Petri Nets (HLPN). (Readers are encouraged to see [3.20], [3.21] for an elaborate

introduction to Petri Nets.)

25

Definition 1: HLPN [3.20], a HLPN is a 7-tuple () where:

1. P is a set of finite places.

2. T is a set of finite transitions such that .

3. F is a flow relation such that () ().

4. is a mapping function that maps P to data types such that .

5. R define rules that maps T to predicate logic formulas such that .

6. L is a label that maps F to labels such that .

7. is the initial marking where .

The first three variables () provides information about the structure of the net and

the next three variables () provides the static semantics, which means the information does

not change throughout the system.

The use of HLPN is preferred over Low-level Petri Nets (LLPN) because in LLPN: (a)

no distinction is available between the tokens, no types or just one type, (b) for transition

enablement there is no selection of specific tokens even using flow capacity, and (c) a place may

be viewed as a structural variable, such as array that is not possible to depict.

Let and be the nodes of the HLPN iff . A node is an input node of

another node iff there is a directed arc from to such that () . Node is an output

node of iff () . For any node , the pre-condition is { () } and

post-condition is { () }.

In HLPN, places can have tokens of different types and can also be a cross product of two

or more types, such as in Fig. 3.1 the places are mapped to the types: () , ()

 , () (), () .

26

The pre-conditions must hold for any transition to be enabled. Moreover, the variables

from the incoming flows are used to enable a certain transition. For example, preconditions for t1

will use x and y from P1 and P2, respectively. Similarly, post-condition uses variables from

outgoing flows for transition firing, and can be written as: () () (

) ().

3.2.2. SMT-Lib and Z3 Solver

Satisfiability Modulo Theories (SMT) is an area of automated deduction for checking the

satisfiability of formulas over some theories of interest and has the roots from Boolean

Satisfiability Solvers (SAT) [3.23]. The difference between SMT and SAT is that SMT solvers

checks the satisfiability of first-order formulas containing operations from several theories, such

as Bit-vector and arithmetic, whereas SAT solvers checks the satisfiability of propositional

formulas [3.26]. SMT-Lib provides a common input platform and benchmarking framework that

helps in the evaluation of the systems [3.27]. SMT has been used in many fields including

deductive software verification. Moreover, recent applications of computer science including

planning, model checking, and automated test generation finding, also considers SMT as an

important verification tool [3.27]. (Readers are encourage to read [3.28] for the use of SMT-Lib

P4

x

P3

P2

P1

y

x

y

z

z x y

t1

t2

t3

t4

Transition

Place

Flow

P

f

Fig. 3.1. An Example High-Level Petri Net.

27

in the verification of OSPF routing protocol [3.50].) Multiple solvers are available that supports

SMT-LIB, such as Beaver, Boolector, CVC4, MathSAT5, Z3, and OpenSMT. The solver can be

distinguished amongst the features they provide, such as, underlying logic (example first order or

temporal), background theories, input formulas, and interface [3.26].

We used Z3 solver in our study, which is a high performance theorem prover developed

at Microsoft Research. Z3 is an automated satisfiability checker. Moreover, Z3 also checks

whether the set of formulas are satisfiable in the built-in theories of SMT-Lib. Readers are

encouraged to see [3.30], for the detailed information about the working and commands of Z3

solver.

3.3. Modeling and Analysis of VM-Based Cloud Management Platforms

VM-based cloud management platforms offer several advantages that include: (a) better

isolation, (b) scalability, (c) availability, and (d) flexibility. Looking at the benefits provided by

the VM-based systems to the cloud a renewed interest of research has emerged in different

classes of virtualization, such as desktop, server, application, storage, and network from several

industry giants, such as VMware, Red Hat, and Microsoft [3.32]. In this section we will discuss,

model, and analyze three VM-based cloud management platforms: (a) Eucalyptus, (b) Open

Nebula, and (c) Nimbus.

3.3.1. Components of Open Source Cloud

Before going into the details and modeling of the systems, in this section, we will provide

a quick overview of the components of the generic open source cloud computing systems. The

components are classified as: (a) Hardware and Operating Systems (resides on the physical

machine and must be setup properly for any software system to work), (b) Network (includes

DNS, DHCP, and subnet organization of the physical machines), (c) Hypervisor (includes Xen

28

and KVM, which provides framework for VMs to run), (d) VM Disk Images (every cloud has a

repository of disk images that can be copied and used as a basis for new virtual disks), (e)

Interface (front-end tools to request VMs and specify parameters), and (f) Cloud Framework

(includes Eucalyptus or any other framework). The aforementioned components generally make

the entire software stack for the cloud computing systems [3.34]. We used the said components

in our model to depict the working of the systems.

3.3.2. Eucalyptus

Eucalyptus is an open source VM-based cloud computing management framework that

enables users to run and control the instance of virtual machines deployed at several physical

resources [3.35]. Eucalyptus was first initiated at the University of California at Santa Barbara

and is now supported by the Eucalyptus Systems, Inc [3.36]. The emphasis of the system was to

develop an architecture that will allow scientists to experiment cloud related software and

architecture. One of the advantages of Eucalyptus is that it uses Amazon Web Service APIs and

provides the same interface as of Amazon’s EC2 and Simple Storage Service (S3) in a private

cluster. Therefore, provides a well-known tool to host and manage VMs.

Installation of Eucalyptus consists of several components: (a) Cloud Controller (CLC),

(b) Cluster Controller (CC), (c) Storage Controller (Walrus), and (d) Node Controller (NC). The

architecture of Eucalyptus (Fig. 3.2) is kept simple, flexible, and hierarchical where every

component is implemented as a stand-alone web service. The components implemented as a web

services has following benefits [3.35]: (a) exposure to a well-defined WSDL document that

contains operations being performed and the input/output data structures and (b) web features

can be extended, such as security policies to secure the communication between components.

29

CLC is the entry point to the cloud that provides configuration interface for managing

cluster and instances, Walrus configuration, and user registration. Main responsibilities of CLC

includes: (a) translation of user initiated commands to CC, (b) making high-level scheduling

decisions, and (c) management of underlying virtualized resources. CC chose the compute node

to provision the VM on receiving the command from the CLC. Moreover, gathering information,

scheduling VM execution on certain NC, and virtual instance overlay network management for

smooth transmission of requests are the responsibilities of CC. Walrus provides a storage service

to store virtual machine images and user data. Execution, termination, and inspection of VM

instances are performed by the NC. A query is performed by NC to discover the nodes physical

resources, such as no. of cores, size of memory, and state of VM instances.

3.3.2.1. Modeling and Analysis

The model of spawning a VM instance in Eucalyptus configuration is illustrated in Fig.

3.3. As stated in Definition 1, the HLPN is a 7-tuple (). To begin

modeling the system, we first need to specify and the associated types. As depicted in Fig. 3.3,

there are 10

Cluster A

CC

Private Network

NC
NC

NC
NC

Cluster B

CC

Private Network

NC
NC

NC
NC

CLC and Walrus

Public Network

Fig. 3.2. Eucalyptus Architecture.

3
0

X V_ReqLnR

R

R Euca2_conf

Cred

Cred

Cred

Cred

Auth_F

Auth_S

St_Req

RqV

S_Req

Req_F
Req_S

S_Req

Ad_Conf

Co_Pa

Co_Pa Co_Pa

Co_Pa

DI

Get_I

R_Get_I

push

Hpvsr

ReqP_S

RVNIC

RVNIC

Con_Cret

Phy_HW

PNIC

PNIC

DHCP ECC

R_MAC

R_MACIP_MAC

IP_MAC’

VM-Run

ST

ST

Com

CM

Com

Run_VS

Fig. 3.3. Model of Starting a VM Instance in Eucalyptus.

31

places in the model. The names and mapping of are shown in Table 3.1. The types used in the

model are illustrated in Table 3.2. The next step is to define the set of rules, pre-conditions, and

post-conditions to map to . Before going to the next step let us have a quick overview of the

process of initiating a VM instance. To make a request for an instance of VM the user first needs

to configure the front-end. The default front-end is euca2ools, which is similar to the front-end of

Amazon EC2. To configure euca2ools the user must download some files along with the keys

and instruction. Once, certain environment variables are set the euca2ools is ready to work. The

user then uses euca2ools to request the VM. Moreover, the user has to select a configuration for

required memory, CPU, and the hard drive space from one of the five preset configurations set

by the administrator, for the requested VM. When the head node receives the request, a VM

template disk image is extracted from the disk repository and is pushed towards the compute

node. The disk image is padded and packaged to be used for the hypervisor. Eucalyptus Cloud

Controller (ECC) generates a random MAC address and assigns it to VM instance.

The CC setup a static entry of MAC/IP pair and passes it on to NC. The NC maps virtual

NIC of the instance to the physical NIC of the node through network bridging. The instance is

initiated on the hypervisor and then the user can directly interact with the VM instance.

We have discussed the process of instantiating the VM and now we can define formulas

(pre and post-conditions) to map on transitions. The set of transitions

T= { }. New tokens can enter the model

only through transition. The rule for the token creation can be stated as: ()

 . The next two transitions are and , which authenticate the

configuration of euca2ools front-end. The said transitions are mapped to the formulas (3.1) and

(3.2).

32

Place Mapping Description

 (V_Req) (Key×Env_Var×CPU×Mem× Disk) Holds environment

variables and user config.

 (Euca2_conf) (Key×Env_Var) Pre-set config.

 (St_Req) (CPU×Mem×Disk×Key) Intermediate place to hold

the configuration values

 (Ad_Conf) (CPU×Mem×Disk) Hold admin config.

 (DI) (EMI) Holds the disk images

 (Hpvsr) (CPU×Mem×Disk×EMI× NIC×VID

×Key×Env_Var)

Holds user config. and

creates virtual NIC and

VM ID

 (DHCP) (IP × MAC) Holds the mappings of IPs

to MAC

 (ECC) (MAC) Generate and hold random

MAC for VM

 (Phy_HW) (CPU×Mem×Disk×NIC) Holds physical

specefication of the

system

 (VM-Run) (CPU×Mem×Disk×EMI×NIC×VID

×IP×MAC×Key×Env_Var)

Instance of VM is finally

created alongwith the

specified config.

Types Description

Key A string type for euca2ools key authentication

Env_Var A string type for euca2ools environment variables authentication

CPU An integer type for the number of CPU/core allocated to the VM.

Mem A float type for the amount of memory allocated to the VM.

Disk A float type for the amount of disk space allocated to the VM.

IP A string type for the IP address of VM

MAC A string type for the MAC address of the VM

NIC A string type for NIC of the physical machine

VID An Integer type for VM ID

Table 3.1. Places and Mappings of Eucalyptus.

Table 3.2. Data Types Used in the Model of Eucalyptus.

33

 () [] [] [] []

(3.1)

 () [] [] [] []

(3.2)

The formula in (3.1) depicts the success scenario when the euca2ools is able to find both

of the credentials (the key and environment variables) in the systems and both are set properly.

Similarly, in (3.2) if the euca2ools is unable to locate the specific environment variable or if the

key is mismatched, then no further transitions will be fired. After the authentication is

successfully performed the next step is to check either the configurations provided by the user

for the size of memory, disk, and CPU for the requested VM are same as the ones set by the

administrator.

 () [] []

 [] [] [] []

 [] [] []

 [] [] [] []

(3.

3)

 () [] []

 [] [] [] [] []

(3.

4)

The administrator configurations reside in the and the user configurations are

placed in after the transition is fired. In (3.3) and (3.4) both of the configurations

(user and administrator) are compared. If (3.3) is fired, then a disk image from a disk image

repository is extracted and is transferred to along with the configuration parameters. If

(3.4) is fired, then no further transition will be fired because of the configurations mismatch.

34

Mapping is performed in (3.5), where a random from is generated and

assigned to the VM. Moreover, physical from and a virtual from are

also mapped. The relation (mapping) between virtual and physical is one-to-many,

which means that many virtual can be mapped to one physical . However, the relation

between MAC/IP pair and virtual is one-to-one because only a single virtual and a

MAC/IP pair can be assigned to a single instance of VM. After all the mapping is completed, the

instance of the VM is created with the specified configuration parameters placed at .

The user can directly interact with the VM instance after it is created using .

The design of Eucalyptus supports corporate enterprise computing settings where the

administration space is separated from the user space. The users are only allowed to use the

system through web interface or specified front end tools. Eucalyptus is easy to deploy on top of

the existing resources. Moreover, Eucalyptus is suitable for experimentation because of having

modular design and open source in nature.

 () { [] []

([]) [] } [] [] []

 { ([]) } { }

 { ([] [] [] []

 [] [] [] [] []) }

(3.5)

3.3.3. Open Nebula

Open Nebula was a research project that started in a year 2005 as a management tool for

the orchestration and configuration of VMs in datacenter [3.38], [3.39]. Open Nebula is now

available as an open source and can be used as a toolkit to build private, public, and hybrid

clouds. The key technical aspect of Open Nebula is its architecture that provides a great level of

35

customization and centralization. Moreover, the architecture also supports multiple storage back

ends and different hypervisors, such as Xen, VMware, and KVM [3.39]. Shared file system is

adopted in Open Nebula for storing all functional and disk images files. The aforementioned

exposes the underlying features of libvirt to administrators and users that involves operations,

such as VM live migrations. The centralization makes administration of Open Nebula easier.

However, one drawback of the default customization with NFS file system is that large amount

of space is required to hold all the files.

The architecture of Open Nebula (Fig. 3.4) is divided into three layers: (a) Tools, (b)

Core, and (c) Drivers. The first layer contains management tools that can be developed using the

Open Nebula core interfaces, such as Command Line Interface, new Open Nebula cloud API, or

third party tools that can be created easily using the XML-RPC interface [3.38]. The Open

Nebula core performs orchestration and configuration of other components. Moreover, the core

also has a set of components that are used to control and monitor VM, virtual networks, hosts,

Open Nebula Core

Tools

libvirt API Interfaces Other Tools

3rd party tools

Drivers

Virtualization Storgae Network Cloud

Fig. 3.4. The Architecture of Open Nebula.

36

and storage. The drivers are pluggable modules that provide a layer of abstraction over the lower

level operations, such as virtualization hypervisor, cloud services, and file transfer mechanism.

Moreover, the drivers are used by the core layer to perform certain actions, such as cancelling a

VM.

3.3.3.1. Modeling and Analysis

The model for initializing the VM using typical Open Nebula configuration is

demonstrated in Fig. 3.5. The first step towards modeling the system is to identify the required

types, , and mapping. The types and the descriptions are shown in Table 3.3 and the mapping of

 to types is depicted in Table 3.4.

3
7

Req_Acc A_Req

RAC
R

R

ON_Interface

Cred

Cred

Cred

Cred

A_F

A_S

User Accounts

Req_VMS

UA’

Pa_S

UA

Ad_Conf

P’

Lg

Co_Pa

Co_Pa

DI

Get_I

Get_I

P

HpvsrDep_S

S

Req_Conf

Phy_HW

PNIC

deploy

NFSd

Pa

PNIC

Req_Conf

Pa

OneD

deploy

Co_Pa

Pa_F

DHCPVM

S_V

S_V

IPIP

RM

LR

LnR

LR

L

Log
Req_VMF

LR

LR

RA
RA

RA

RA

CNode

SHc

SHc

S

SHc

SHc

Dep_F

Pa

Pa

Fig. 3.5. Open Nebula Model for Instantiating a VM.

38

To use an Open Nebula cloud the user needs to have an account that Open Nebula

provides on demand. After a successful sign up, the user can login with any one of the interface

being used, such as sunstone, OCCI, and EC2. The user can request a VM using a command

onevm, which allow user to manage VMs, such as allocate, deploy, suspend, and shutdown. The

NFS directory at the head node holds all the functional and disk image files. As a result of

onevm, the VM template disk image file is copied from the disk image repository, padded to the

required size and configuration, and is saved to the NFS directory.

At that point, the Open Nebula Daemon (oned), which is responsible for the control of

VM life-cycle and to coordinate the operations of all modules, logs into the compute node. The

compute node provides a virtual NIC, MAC, and mapped it to physical NIC through network

bridging. Finally, the instance is created with the specified configurations at the hypervisor. In

Types Description

Email A string type for email authentication.

Pass A string type for password authentication.

UName A string type for password authentication.

CPU An integer type for the number of CPU/core allocated to the VM.

Mem A float type for the amount of memory allocated to the VM.

Disk A float type for the amount of disk space allocated to the VM.

NMI Type for the machine image.

SSH_Cert A string type for the SSH login

SSH_Pass String type for the SSH encrypted password.

IP A string type for the IP address of VM

MAC A string type for MAC address of the VM

NIC A string type for NIC of the physical machine

VID An integer type for Virtual Machine ID

Table 3.3. Data Types Used in the Model of Open Nebula.

39

the previous paragraph we have provided a short overview for the process of instantiating the

VM in a typical Open Nebula configuration. Now, we can define formulas (pre and post-

conditions) to map on transitions. The set of transitions

 { }.

Places Mappings Descriptions

 () (Email×Pass) Holds user requests

 () (Email×Pass) Holds existing users

 () (Pass×UName×

CPU×Mem×Disk)

Holds user login and config.

 () (Pass×UName) Holds user accounts

 () (Cert×SSH_Pass) Holds login information for oned

 () (NMI) Holds the disk images

 () (CPU×Mem×Disk

×NMI×UName)

Holds username and user config.

 () (Cert×SSH_Pass) Holds oned login detail

 () (CPU×Mem×Disk) Holds admin config.

 () (CPU×Mem×Disk×NMI×

NIC×VID×MAC)

Hold config., creates virtual NIC,

MAC, and VM ID

 () (IP) Creates IP for the VM

 () (CPU×Mem×Disk×NIC) Holds physical specification of the

system

 () (CPU×Mem×Disk×NMI×NI

C×VID×UName×IP)

VM instance is created alongwith

the specified config.

Table 3.4. Places Used in the Model of Open Nebula.

40

New tokens can only be produced by transition and . As seen in Fig. 3.5, no arc

is incident on any of the two aforementioned transitions, which is why no pre-condition exists

and the rules for the transitions can be written as: () and ()

 The first step perform by the user is to request an account for an Open

Nebula cloud. The transitions and authenticate if the requested user already holds an

account or not. The transitions are mapped to the following formulas:

 () [] []

 {([] [])}

(3.

6)

 () [] []

(3.

7)

The accounts are created based on the email ID. If the email ID is already associated to

an account, then the request is denied. Otherwise, the account is created and the new information

is stored in the . The success and failure scenario is depicted in (3.6) and (3.7),

respectively. The next step is to login to the Open Nebula cloud and request for the VM.

 () [] [] [] []

 [] [] [] [] [] []

 [] [] []

 { ([] [] [] [] []) }

(3.8)

 () [] [] [] []

(3.9)

The user account information is stored in . When the user logs in and

request for a VM, the login credentials are match and then the command is forwarded, as shown

in (3.8) and (3.9). If (3.8) is fired, then the disk image is copied from the disk image repository,

41

padded to correct size and configuration, and is stored in . Moreover, oned will login to the

compute node only when (3.8) is fired. If (3.9) is fired, then the request for the VM is denied and

no further transitions will be fired.

To spawn a VM user provides a configuration file with parameters to be fed into the

hypervisor command line. The aforementioned allow users to request for any configuration of

memory, disk, and CPU. Therefore, we have performed the authentication of configuration

parameters in (3.10) and (3.11) when the hypervisor is generating virtual NIC and MAC. In

(3.10), if the configurations provided by the user are same as set by the administrator, then the

control is transferred back to . Otherwise, (3.11) is fired and the system is terminated.

 () [] []

 [] [] [] []

(3.10)

 () [] []

 [] [] [] []

(3.11)

The process uses Secure Shell (SSH), which is an encrypted network protocol to

securely send management functions, to login to the compute node using SSH certificate and

password. If (3.12) is fired, then the virtual NIC and MAC from and physical NIC

from are mapped using network bridging. The relation between virtual MAC and NIC

is one-to-one. The relation between the pair of MAC/NIC and physical NIC is many-to-one,

which means one physical NIC can be mapped to many. Once the mapping is completed an IP

from is assigned to the VM and the instance is ready to use. If (3.13) is fired, then the

model exits because the SSH certificate or the password provided is incorrect.

 () [] []

 [] []

(3.12)

42

 [] [] [] [] [] [] [] []

{ [] [] []

([] []) [] }

{ [] [] }

 { ([] [] [] [] [] [] []) }

 { ([] [] [] [] [] [] []) }

 () [] []

 [] []

(3.13)

The level of customization available is Open Nebula is suitable for researchers who wish

to combine cloud systems with other technologies. However, to utilize the underlying benefits of

the customization the user needs to have some technical expertise. Another downside of the

customization is that user can make a mistake while providing configuration for a VM. The

centralized nature of Open Nebula makes administration easier. Moreover, higher level of

customization makes Open Nebula ideal for research community.

3.3.4. Nimbus

Nimbus is an open source solution that allows clients to lease resources by deploying VM

and providing an environment suitable for the user [3.40]. Nimbus is also affiliated with the

Globus Project [3.41] and uses Globus credential for user authentication. Nimbus also provides a

high level of customization just like Open Nebula. However, the only difference is that much of

the customization in Nimbus is restricted to the administrator. Moreover, several components,

such as image repository and credentials for user authentication, are kept constant. Furthermore,

Nimbus also provides an extensible implementation that supports Web Service Resource

Framework (WSRF), Amazon EC2, and other end user services to make a cloud easy to use. A

43

storage cloud implementation called Cumulus, which is compatible with Amazon Web Service

S3 REST API, is included in the Nimbus and is tightly with other central services.

A toolkit is offered to deploy applications on Nimbus that consists of manager service

hosting and image repository [3.42]. The components of Nimbus workspace is shown in Fig. 3.6.

The Workspace Service is a standalone VM manager that can be invoked by remote protocol

frontends. Currently, Nimbus supports two frontends: (a) EC2 and (b) WSRF. The storage

service (Cumulus) is also embedded in a Workspace service and can also be installed separately.

The Workspace Resource Manager deploys and manages workspace nodes. The Workspace Pilot

allows the integration of preconfigured resources to VMs. Moreover, the aforementioned

component also handles signals and has administration tools. The Workspace Control is

responsible for the management and control of VM instances, disk images, VM integration to a

network, and assigning MAC and IP addresses. The Workspace Client provides access to the

entire feature set of WSRF as a command line client. The aim of Cloud Client is to speed up the

process of running a VM using instance launches or one-click clusters. The clients can launch

Workspace Service

Workspace

Resource Manager

Workspace

Pilot

Workspace

Client
Cloud Client

Context

Broker

Context

Client
Workspace

Control

Fig. 3.6. Nimbus Workspace Components.

44

large virtual cluster automatically with the use of the Context Broker. The Context Client

interacts with Context Broker at VM startup and lives on VM.

3.3.4.1. Modeling and Analysis

The model for starting a VM in a typical Nimbus configuration is demonstrated in Fig.

3.7. The first step is to identify the required and associated types. Table 3.5 depicts the types

used in the model and Table 3.6 explains the and mappings.

The Nimbus uses client known as Cloud Client to interact with the services over multiple

protocols. The users first need to download the client and configure it. The use of Cloud Clients

makes life easy for the users. The easiest client to use is Cloud Client that makes the users up and

running in a quick time. The user uses cloud clients to request a VM using explicit credentials.

When the head node receives the request, then the VM template disk image is extracted from the

repository and pushed to the compute node. The compute node performs the necessary padding

and configuration to the image. Virtual MAC and NIC are provided by the compute node using

Network bridging. Moreover, the physical NIC and virtual NIC of the VM are also mapped. In

Nimbus, every compute node has a DHCP server. The MAC/IP pair is placed in the DHCP

server and the VM is ready to be used. The set { }.

4
5

R Log_Req

LnR
LR

LR Cl_Client
Cred

Cred

Cred

Cred

AcF

AcS

HpvsrP

RI

AC
AC

Con

De
De

RN

RI

NimD

Req

Co_Node

Req

SH

SH

ReqSH_S

SH_F

Req

Req

Req

Req

Req

R

GI

GI DI

Ad_Co

R

AC

AC

Phy_HW

DHCP

RN

CF CS

VM

SP

SP
Sc

Fig. 3.7. A Model for Nimbus.

46

Types Description

UCert A string type for cloud client authentication.

UKey A string type for cloud client authentication.

CPU An integer type for the number of CPU/core allocated to the VM.

Mem A float type for the amount of memory allocated to the VM.

Disk A float type for the amount of disk space allocated to the VM.

IP A string type for the IP address of VM

MAC A string type for the MAC address of the VM

NIC A string type for NIC of the virtual/physical machine

VID An Integer type for Virtual Machine ID

SSH_Cert A string type for the login authentication of SSH Certificate.

SSH_Pass A string type for the login authentication of SSH encrypted password.

The seed point of the model from where new tokens are generated is through a transition

 and the rule for the transition can be stated as: () . The

transitions and authenticate the credentials of the cloud client. The said transitions are

mapped to the following rules:

 () [] [] [] []

(3.14)

 () [] []

 [] []

(3.15)

Table 3.5. Data Types Used in the Model of Nimbus.

47

Places Mappings Descriptions

 () (UCert×UKey×CPU×Mem×

Disk)

Holds user credentials and config.

 () (UCert×UKey) Existing user details

 () (UCert×SSH_Cert×SSH_Pass

×CPU× Mem×Disk)

Holds SSH login details and user config

 () (UCert×SSH_Cert×SSH_Pass

×CPU× Mem×Disk)

Holds user and SSH login details and

specified config.

 () (EMI) Holds the disk images

 () (CPU×Mem×Disk) Holds admin configurations

 () (UCert×CPU×Mem×Disk×

EMI×NIC×MAC×VID)

Hold configurations, creates virtual NIC,

MAC, and VM ID

 () (IP×MAC) Hold maps of IPs to MAC

 () (CPU×Mem×Disk ×NIC) Holds physical specefication of the

system

 () (UCert×CPU×Mem×Disk×

EMI×NIC×MAC×VID×IP)

VM instance is created alongwith the

specified config.

The formula in (3.14) represents a success scenario when the cloud client successfully

locates both of the credentials (user certificate and user key) and both are configured. In (3.15), if

the credentials are mismatched, then no further transitions will be fired and the system will

terminate. SSH protocol is used by to login to . The and

 are confirmed using rules as stated in (3.16) and (3.17).

 () [] [] [] []

 { ([] [] [] [] [] []) }

(3.16)

 () [] [] [] [] (3.17)

Table 3.6. Places Used in the Model of Nimbus.

48

At that point the configurations for memory, disk, and CPU provided by the user are

matched with the administrator configurations. If (3.18) is fired, then the VM template disk

image is copied from disk image repository using a distributed storage, such as S3, padded to the

correct size, configured, and is pushed to the . If (3.19) is fired, then the request will be

denied and the system will terminate.

 () [] [] [] [] [] []

 { ([] [] [] []

 [] [] []) }

(3.18)

 () [] []

 [] [] [] []

(3.19)

In the last transition (3.20), an from and virtual and from

are mapped one-to-one. Moreover, the physical from is also mapped to virtual

NIC and the relation between them is many-to-one, which means that many virtual can be

mapped to one physical . The VM is spawned after all the mappings are performed. Nimbus

has the ability to provide different resources leases to different users as a mean of scheduling.

The flexibility and customization available in Nimbus makes it suitable for scientific community

to perform experiment. Moreover, the workspace tools available in Nimbus can operate with Xen

hypervisor and as well as with KVM.

 () { [] [] [] [] (3.20)

49

([] []) [] } [] []

 { ([] []) }

 { ([] [] [] [] [] [] [] []) }

 { ([] [] [] [] []

 [] [] [] []) }

3.3.5. OpenStack

The OpenStack is a cloud computing project, launced in July 2010, to provide IaaS. The

OpenStack is mainly a collection of three open source projects: (a) OpenSTack Compute (Nova),

to provide and manege large network of VMs, (b) OpenStack Object Storage (Swift), to provide

redundant and scalable data storage using cluster of servers, and (c) OpenStack Image Service

(Glance), to provide discovery, registration, and delivery service for disk images [3.60]. Similar

to other systems, such as Eucalyptus and Open Nebula, the OpenStack supports EC2, S3, and

Rest Interfaces. The networking between the OpenSTack and Eucalypstus also has certain

similarities, such as the automatic bridge creation and IP forwarding for public IPs. Moreover,

the authentication process, the development operations (DevOps) deployment tools, and

hypervisors, are same between OpenStack and Eucalyptus. Despite the widespread popularity

and adaptation of OpenStack, it is still in early stages and will need time to mature, as advocated

in [3.29]. The formal analysis, modeling, and verification of the OpenStack are included as a

future work in this paper.

3.4. Verification of Models Using SMT-Lib and Z3 Solver

Verification is the process of demonstrating the correctness of an underlying system. Two

parameters are required to verify a model or a system: (a) specification and (b) properties. In this

study, we use bounded model checking [3.44] technique to perform the verification, using SMT-

50

Lib and Z3 solver. In bounded model checking, the description of any system is verified, whether

any of the acceptable inputs drives the system into a state where the system always terminates

after finite number of steps. The process of bounded model checking involves several tasks: (a)

Specification, the description of the system that states the properties or rules, which must be

satisfied by the system to be deemed correct, (b) Modeling, representation of the system, and (c)

Verification, use a tool to check whether the specifications has been satisfied by the model.

Definition 2: Bounded Model Checking [3.44], given a Kripke Structure ()

and a bound, the bounded model checking problem is to find { } where: is the finite

set of states, is a set of initial states, is the set of transitions, such that , is the set

of labels. The bounded model checking problem is to find an execution path in of length

that satisfies a formula . Kripke structure, which is a state transition graph, is used to represent

the behavior of the system [3.45]. In Kripke structure nodes are the set of reachable states of the

system, edge represents the transitions, and label functions map nodes to the set of properties

hold in the state. Fig. 3.8 shows an example Kripke structure and computational tree.

{p}

{p,q}

{q}

S1

S2

S3

p,q

p

p,qp

q

p

q

p,qp
.
.
.

.

.

.

.

.

.

(a) (b)

Fig. 3.8. An example of: (a) Kripke Structure and (b) Computational Tree.

51

A path in a Kripke structure can be stated as an infinite sequence of states represented as

 such that for () . The model may produce a path set

 . To describe the property of a model some formal language, such as

CTL*, CTL, or LTL is used. As stated in section I, the “*” represents that CTL* is a hybrid LTL

and CTL. Some operators used in CTL* are shown in Table 3.7.

To demonstrate the use and meaning of operators an example is provided in Fig. 3.9. The

black circle in Fig. 3.10 represents a state . Moreover, in Fig. 3.9(a) means, that a future

state is reachable from every path. Furthermore, in Fig. 3.9(b) means, that state is

globally reachable from every path. (Readers are encouraged to see [3.46] for more details about

the CTL*.) For a model to be correct, the states must satisfy the formulas (Definition 2) under a

specific bound. The formulas are represented in terms of properties of the systems.

Definition 3: (SMT Solver) [3.31], given a theory Ґ and a formula , the SMT Solvers

perform a check whether satisfies Ґ or not.

Op Desc Op Desc

 For all paths Logical AND

 For some paths Logical OR

 Next Negation

 For future paths Implication

 Globally Double implication

Table 3.7. Operators (Op) used in CTL* and Description (Desc).

52

To perform the verification of the models using Z3 (an SMT Solver), we unroll the model

 and the formula that provides and , respectively. Moreover, the said parameters are

then passed to Z3 to check if [3.56]. The solver will perform the verification and

provide the results as satisfiable (sat) or un-satisfiable (unsat). If the answer is sat, then the

solver will generate a counter example, which depicts the violation of the property or formula .

Moreover, if the answer is unsat, then formula or the property holds in up to the bound (in

our case is exec. time).

For the models to be correct, the solver should be able to find a terminating state in a

model. The failure transitions in all of the models are considered as a terminator of the models.

Moreover, the other terminating state in the models is the last state when the instance is

successfully created. One property to verify the models is that, whenever a request is made for a

VM and there are no failures, then the instance should be created. To explain the verification of

the models, an example computational tree of a model in Fig. 3.3 is developed and shown in Fig.

3.10. The tree is drawn by following the success transitions only. If we closely analyze, we can

see that (the final terminating) state is reachable from every path in the tree, which

shows that the model terminates after some iterations. Therefore, satisfies the property. In Fig.

3.10, the state

(a) p (b) p

Fig. 3.9. An Example CTL Operators.

53

V_Req

E2_C

Ad_Co
nf

DI

VM-
Run

Hpvsr

Hpvsr

Ad_Co
nf

St_Req

DI

DHCP

Phy_H
W

x

VM-
Run

ECC

DHCPECC

Hpvsr

Hpvsr

Hpvsr

Ad_Co
nf

DI

x

Ad_Co
nf

DI

Hpvsr

Hpvsr

Ad_Co
nf

St_Req

DI

x

Hpvsr

Hpvsr

Ad_Co
nf

DI

x

VM-
Run

x

ECC Hpvsr
VM-
Run

Phy_H
W

x

xxx

DHCP
Phy_H

W
Hpvsr

VM-
Run

x x x

x

DHCP

Phy_H
W

VM-
Run

ECC

DHCPECC

Hpvsr
VM-
Run

x

ECC Hpvsr
VM-
Run

Phy_H
W

x

xxx

DHCP
Phy_H

W
Hpvsr

VM-
Run

x x x

x

x

x

x

x

x

x

Fig. 3.10. An Example Computational Tree of Eucalyptus.

Fig. 3.11. Verification Results of Eucalyptus.

0

50

100

150

200

250

300

350

0

0.5

1

1.5

2

2.5

3

10 20 30 40 50 60 70 80 90 100

Memory Time

No. of VM

Verification of Eucalyptus

Time vs. Memory

M
em

o
ry

 s
iz

e
in

 M
B

(s
)

E
x

ec
.
ti

m
e

in
 m

se
c(

s)

54

at second level shows a scenario when the instance is already been created and user can directly

SSH the instance. The states labeled with “x” represents, that from the point forward the tree

will repeat the predecessor. Similar process has been followed to verify all the models of the

systems in this study. We have specified the properties of the VM-based systems in a similar

passion and verified whether the properties are satisfied by the models. The properties we have

verified for our models are:

1. if a request is made and there are no failures, then the instance of VM must be created,

2. the instance of VM must have the same configurations as requested by the user,

Fig. 3.12. Verification Results of Open Nebula.

Fig. 3.13. Verification Results of Nimbus.

0

50

100

150

200

250

300

350

0

0.5

1

1.5

2

2.5

3

3.5

10 20 30 40 50 60 70 80 90 100

Memory Time

M
em

o
ry

 s
iz

e
in

 M
B

(s
)

E
x

ec
.
ti

m
e

in
 m

se
c(

s)

Verification of Open Nebula
Time vs. Memory

No. of VM

0

50

100

150

200

250

300

350

0

0.5

1

1.5

2

2.5

3

3.5

10 20 30 40 50 60 70 80 90 100

Memory

Time

Verification of Nimbus

Time vs. Memory

E
x

ec
.
ti

m
e

in
 m

se
c(

s)

M
em

o
ry

 s
iz

e
in

 M
B

(s
)

No. of VM

55

3. the instance should be distinct.

3.4.1. Results

To verify, the models of the VM-based systems are translated to SMT. Moreover, the

properties are also translated and specified in SMT. The model along with the properties are

given to the Z3 solver to check either the model satisfies the properties or not. If there are no

errors, then the model specifications can be stated as correct. Note that our goal in this section is

to verify the correctness of the models and not to measure or analyze the performance of the

Fig. 3.14. Execution Time Comparison of Eucalyptus, Open Nebula, and Nimbus.

Fig. 3.15. Memory Utilization of the Systems.

0

50

100

150

200

250

300

350

10 20 30 40 50 60 70 80 90 100

Eucalyptus Open Nebula Nimbus
E

x
ec

.
ti

m
e

in
 m

se
c(

s)

Execution time of Eucalyptu, Open Nebula, and Nimbus

No. of VM

0

0.5

1

1.5

2

2.5

3

3.5

10 20 30 40 50 60 70 80 90 100

Eucalyptus Open Nebula

Nimbus

Memory Utilization of Eucalyptu,

Open Nebula, and Nimbus

M
em

o
ry

 s
iz

e
in

 M
B

(s
)

No. of VM

56

systems. Fig. 3.11 depicts the execution time and memory taken to verify the model of

Eucalyptus. We have instantiated 100 VMs to verify the properties stated above and to observe

the effect of scalability on the working of the models.

The model of Eucalyptus works fine and produces results as expected. The results in Fig.

3.11 shows that an increasing trend is followed in both, the execution time and memory, as the

number of VMs increases. The increase in the values is obvious, as the number of VMs will

increase more time will be required by the processor to verify and more space will be needed to

store the variables.

Fig. 3.12 and 13 depicts the verification results for the model of Open Nebula and

Nimbus, respectively. The execution time and memory increase in both of the models as the

number of VMs increases. The increase in the values has the same reason that is stated in the

results of Eucalyptus. Fig. 3.14 and Fig. 3.15 plot the execution time of all the models

(Eucalyptus, Open Nebula, and Nimbus) and memory consumption, respectively. As seen in Fig.

3.15 the memory consumption of Open Nebula and Nimbus has almost similar values, which is

due to the fact that Eucalyptus keeps the records of environment variable and configurations.

Note that the results indicate the time taken by Z3 solver to verify the models based on the

specified properties.

The results in no manner characterize the performance of the models or the systems.

Moreover, the goal is to demonstrate the correctness of the models and to highlight the feasibility

of the models with respect to scalability and execution time.

57

3.5. References

[3.1] R. Buyya, S. Y. Chee, and S. Venugopal, “Market-Oriented Cloud Computing: Vision,

Hype, and Reality for Delivering IT Services as Computing Utilities,” 10th IEEE (HPCC ’08),

pp.5-13, Sep. 2008.

[3.2] P. Mell and T. Grance. Definition of cloud computing. Technical Report, NIST, 2009.

[3.3] E. Keller, J. Szefer, J. Rexford, and R. B. Lee, “NoHype: virtualized cloud infrastructure

without the virtualization,” 37th ACM ISCA, pp. 350–361, June 2010.

[3.4] M. Eisen, Marcum Technology, Introduction to Virtualization, “The Long Island”,

Chapter of the IEEE Circuits and Systems (CAS) Society, April 28th, 2011.

[3.5] A. Vichos, Agent-based management of Virtual Machines for Cloud infrastructure,

Master’s thesis, School of Informatics, University of Edinburgh, 2011.

[3.6] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Capacity Leasing in Cloud

Systems using the OpenNebula Engine,” Workshop on Cloud Computing and its Applications

2008 (CCA08), Chicago, USA, Oct. 2008.

[3.7] Amazon Elastic Compute Cloud (Amazon EC2), http://aws.amazon.com/ec2/, accessed

10 Jan. 2013.

[3.8] Google App Engine, https://developers.google.com/appengine/, 10 Jan. 2013.

[3.9] Science Clouds, http://scienceclouds.org/, 10 Jan. 2013.

[3.10] D.Nurmi, R.Wolski, C.Grzegorczyk, G.Obertelli, S. Soman, L.Youseff, and

D.Zagorodnov, “The Eucalyptus Open-source Cloud Computing System,” 9th IEEE/ACM

International Symposium on Cluster Computing and the Grid (CCGrid 2009), Shanghai, China,

pp. 124–131, May 2009.

[3.11] oVirt, http://www.ovirt.org/Home, accessed 10 Jan. 2013.

58

[3.12] Enomaly, http://www.enomaly.com/, accessed 10 Jan. 2013.

[3.13] F. Panzieri, O. Babaoglu, S. Ferretti, V. Ghini, and M. Marzolla, “Distributed Computing

in the 21st Century: Some Aspects of Cloud Computing,” in Technology-Enhanced Systems and

Tools for Collaborative Learning Scaffolding, Springer, pp. 393-412, 2011.

[3.14] Wojtczuk, R. (2008). Subverting the Xen hypervisor. Black Hat USA, 2008.

[3.15] Habib, I. (2008). Virtualization with kvm. Linux Journal, 2008, vol. 08, no. 166.

[3.16] D. Cerbelaud, S. Garg, and J. Huylebroeck, “Opening the clouds: qualitative overview of

the state-of-the-art open source vm-based cloud management platforms,” 10th ACM/IFIP

International Conference on Middleware, pp. 1–8, 2009.

[3.17] P. T. Endo, G. E. Gonçalves, J. Kelner, and D. Sadok, “A Survey on Open-source Cloud

Computing Solutions,” 8th Workshop on Cloud and Grid Applications, pp. 3-16, 2010.

[3.18] B. Sotomayor, R. S. Montero, I. M. Llorente, I. Foster, “Virtual Infrastructure

Management in Private and Hybrid Clouds,” IEEE Internet Computing, vol. 13, no. 5, pp. 14-22,

Oct. 2009.

[3.19] N. Khan, A. Noraziah, E. I. Ismail, and M. M. Deris, “Cloud Computing: Analysis of

Various Platforms,” Journal of Entrepreneurship and Innovation, vol. 3, no. 2, pp. 51-59, 2012.

[3.20] T. Murata, “Petri Nets: Properties, Analysis and Applications,” Proc. IEEE, vol. 77, no.

4, pp. 541-580, Apr. 1989.

[3.21] Lectures on Petri Nets I: Basic Models, Lecture Notes in Computer Science, vol. 1491,

W. Reisig and G. Rozenberg, eds., Berlin: Springer-Verlag, 1998.

[3.22] S. K. Garg, S. Versteeg, and R. Buyya, “A Framework for Ranking of Cloud Computing

Services”, FGCS, vol. 29, no. 4, pp. 1012-1023.

59

[3.23] L. Moura and N. Bjrner, “Satisfiability Modulo Theories: An appetizer,” In Marcel

Vinicius Medeiros Oliveira and Jim Woodcock, LNCS, vol. 5902, pp. 23-36, Springer, 2009.

[3.24] B. Javadi, R. Thulasiram and R. Buyya, “Characterizing Spot Price Dynamics in Public

Cloud Environments,” FGCS, vol. 29, no. 4, 2013, pp. 988-999.

[3.25] OpenStack, http://www.openstack.org/downloads/openstack-overview-datasheet.pdf, on

July, 2013.

[3.26] M. Frade and J. S. Pinto, “Verification conditions for source-level imperative programs,”

Technical Report DI-CCTC-08-01, University of Minho, 2008.

[3.27] SMT-Lib http://smtlib.cs.uiowa.edu/, accessed Jan. 2013.

[3.28] S. U. R. Malik, S. K. Srinivasan, S. U. Khan, and L. Wang, “A Methodology for OSPF

Routing Protocol Verification,” ScalCom, Changzhou, China, Dec. 2012.

[3.29] G. von Laszewski, J. Diaz, F. Wang, and G. C. Fox, “Comparison of multiple cloud

frameworks,” IEEE Conference on Cloud Computing, 2012, pp. 734-741.

[3.30] L. de Moura and N. Bjorner, “Z3: An efficient SMT solver,” International Conference

(TACAS ’08), 2008.

[3.31] L. Cordeiro, B. Fischer, and J. Marques-Silva, “SMT-based bounded model checking for

embedded ANSI-C software,” ASE, pp. 137–148, 2009.

[3.32] M. Rosenblum, and T. Garfinkel, “Virtual machine monitors: Current technology and

future trends,” IEEE Computer, vol. 38, no. 5, pp. 39–47, 2005.

[3.33] Y. Li, and O. Boucelma, “A CPN Provenance Model of Workflow: Towards Diagnosis in

the Cloud,” Conference on Advances in Databases and Information Systems, pp. 55–64, 2011.

[3.34] P. Sempolinski and D. Thain, “A comparison and critique of Eucalyptus, OpenNebula

and Nimbus,” Cloud-Com, pp. 417-426, 2010.

60

[3.35] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and D.

Zagorodnov, “The Eucalyptus open-source cloud-computing system,” IEEE International

Symposium on Cluster Computing and the Grid, pp. 124–131, 2009.

[3.36] Eucalyptus Systems home page, http://www.eucalyptus.com, accessed at 15 jan, 2013.

[3.37] J. Xu, M. Zhao, J. Fortes, R. Carpenter, M. Yousif, “Autonomic resource management in

virtualized data centers using fuzzy logic-based approaches,” Journal of Cluster Computing, vol.

11, pp. 213–227, 2008.

[3.38] D. Milojicic, I. M. Llorente,; R. S. Montero, “OpenNebula: A Cloud Management Tool,”

IEEE Internet Computing, vol. 15, no. 2, pp. 11-14, Mar.-Apr. 2011.

[3.39] Open Nebula, http://www.opennebula.org, 15 Jan, 2013.

[3.40] Nimbus, http://www.nimbusproject.org/docs/2.10, accessed at 16 Jan, 2013.

[3.41] I. Foster, and C. Kesselman, “The Globus Project: A Status Report,” IEEE

Heterogeneous Computing Workshop, pp. 4-18, 1998.

[3.42] A Survey of Open-Source Cloud Infrastructure using FutureGrid Testbed, T. Wu, S. N.

Baasha, S. S. Karwa, http://salsahpc.indiana.edu/b649proj/proj7.html, accessed at 18 Jan, 2013.

[3.43] P. Campegiani, F. L. Presti, “A general model for virtual machines resources allocation in

multi-tier distributed systems,” International Conference on Autonomic and Autonomous

Systems, pp. 162-167, 2009.

[3.44] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu, “Bounded model checking”,

Advances in Computers, vol. 58, Academic press, 2003.

[3.45] Y. M. Quemener and T. Jeron, “Model Checking of CL on infinite kripke structures

defined by simple grammers,” Technical Report RR-2563, INRIA, France, 1995.

61

[3.46] M. Maidl, “The common fragment of CTL and LTL,” IEEE Symposium on Foundations

of Computer Science, 2000.

[3.47] F. Zhang, J. Chen, H. Chen, and B. Zang, “CloudVisor: Retrofitting protection of virtual

machines in multi-tenant cloud with nested virtualization,” ACM SOSP, Cascais, Portugal, Oct.

2011.

[3.48] Z. Wang and X. Jiang, “HyperSafe: A lightweight approach to provide lifetime

hypervisor control-flow integrity,” IEEE Symposium on Security and Privacy (SP), pp. 380-395,

2010.

[3.49] F. Sabahi, “Secure Virtualization for Cloud Environment Using Hypervisor-based

Technology”, International Journal of Machine Learning and Computing, vol. 2, no. 1, pp. 39-

45, Feb. 2012.

[3.50] S. U. R. Malik, S. K. Srinivasan, and S. U. Khan, "Convergence Time Analysis of Open

Shortest Path First Routing Protocol in Internet Scale Networks," IET Electronics Letters, vol.

48, no. 19, pp. 1188-1190, 2012.

[3.51] J. Kolodiej, S. U. Khan, E. Gelenbe, and E.-G. Talbi, "Scalable Optimization in Grid,

Cloud, and Intelligent Network Computing," CCPE, vol. 25, no. 12, pp. 1719-1721, 2013.

62

4. CONVERGENCE TIME ANALYSIS OF OPEN SHORTEST

PATH FIRST ROUTING PROTOCOL IN INTERNET

SCALE NETWORKS

This paper is published in IET Electronics Letters, vol. 48, no. 19, pp. 1188-1190, 2012.

The authors of the paper are Saif U. R. Malik, Sudarshan K. Srinivasan, and Samee U. Khan.

4.1. Introduction

Open Shortest Path First (OSPF) is an adaptive routing protocol to distribute routing

information within a single Autonomous System (AS) [4.1]. OSPF divides the network into

areas. Each area consists of one or more segments. A segment constitutes the set of routers

connected via a common communication channel (example Ethernet). When a failure occurs,

topologies are regenerated and paths are recalculated by all of the routers within that area [4.2].

The time a router takes to discover the area topology is known as the convergence time [4.1]. To

improve the convergence time of a segment in an area, a router is selected as a Designated

Router (DR) on each segment.

Fast convergence time is required to meet network based application demands and

Quality of Service (QoS) requirements of modern dynamic large-scale routing domains, such as

data centers. Therefore, a lot of effort and studies have been made to improve the performance of

OSPF [4.3]. However, the convergence time analysis of OSPF that incorporates DRs has never

been studied. We address the aforementioned, by developing a novel method to compute the

intra-area convergence time of OSPF-based networks that incorporates DRs, which is the

primary contribution of this letter. Moreover, to analyze and benchmark the protocol on Internet

63

scale networks is another contribution of this work. We also show how to use our method to

study the effect of: (a) DRs, (b) cascading failures, and (c) topological changes on the

convergence time of the routers within an area.

For our experiments, we simulated the detailed implementation of the OSPF protocol

based on the specifications reported in [4.2]. To get realistic measurements we generate

topologies from BRITE [4.4], using Otter [4.4] (as shown in fig.1.) that represents the exact same

characteristics as those of the Internet. The results and analysis provided in the letter will be

extremely useful for network administrators seeking to deploy OSPF. Moreover, the results are

also useful in the behavioral analysis of OSPF and can provide the basis to reevaluate the design

of the protocol to achieve performance optimization.

4.2. Problem Formulation

Consider a network composed of routers. Let be the i
th

 router, where . A

link between two routers and (if it exists) has a communication cost that represents the

Fig. 4.1. Sample Topology for One Thousand Routers.

64

minimum time for transferring message from to , which can be represented by the following

expression [4.5]:

,
),(

),(
ij

ji

ji

sRRD
RRdel

where () is the physical distance between and , is the propagation delay of the

medium (optical fiber in our case), is the size of the message in kilobytes, and is the

available bandwidth between and . If the routers are not directly connected, then the

communication cost is the sum of the cost of all links in the shortest path from to . Without

the loss of generality, we assume that () (), which is a common

assumption in literature [4.5]. Let be the number of segments within an area and be the k
th

segment in that area, where . Let be the set of DRs within an area and is the

convergence time of . If a failure occurs (could be a link or a router), the routers connected to

the failed link or failed router will initiate the updates.
 be a router that initiates an update

in response to a failure. Let be the set of all other routers in the area defined as

({ }

) {{

 } }.

 will detect a failure, if no response is received from a neighboring router for a period

longer than the Dead Interval (DI).
 will then update its link state and forward the updated link

state to the DR of segment k (represented as). The link state is the description of the interface

of the router (IP address of the interface, mask, type of network, routers connected to) and the

relationship to other routers. The DR will then flood the information to every other router in the

segment after receiving the update. Let
 represent a router that belongs to . The time

for
 to receive the update ((

)) can be calculated as follows:

(4.1)

65

(4.2)

(4.5)

 (
) {

() (

)

where,

 () (
) (

)

We assume that other updates, such as change in bandwidth (∆) are local and incur

zero update time. Therefore in (4.2), the value of (
) for

 , is DI. The DI of routers is

usually four times the “Hello” interval, which is the time between consecutive transmissions of

“Hello” packets that are used to indicate the liveliness of nodes. The “Hello” interval is 10

seconds for broadcast and P2P networks, and 30 seconds for all other media [4.2]. The value

of (
) for

 is the sum of the time required for to receive updates and the time

 takes to deliver updates to
 . The value of () is calculated in (4.3), which is the sum

of (
) (the node sending the update to) and the communication cost between them, which

is given as (
). Moreover, (4.2) and (4.3) are used to calculate based on the

following equation:

 (() (

))

The last router (maximum time taken to receive an update from the corresponding) in

 that receives the update, determines . Now, using (4.2), (4.3), and (4.4) the convergence

time of an area τ can be calculated as follows:

 ((
)) ((

) (
))

The maximum amongst all of the segments plus the time when the update is initiated

and reaches to the respective DR determines the value of .

(4.3)

(4.4)

66

4.3. Results and Discussions

The value of determines the time an area requires to reach a stable (steady) state from

an unstable state, which is caused by an update. Therefore, to avoid message losses the network

must converge quickly. To this end, we evaluate the effect of: (a) the number of DRs, (b)

cascading failures, and (c) topology on the value of .

We assume optical fiber as the communication medium having propagation delay

 . Ethernet channels have a Maximum Transmit Unit (MTU) of 1500 bytes

[4.1]. Also, fragmentation is usually avoided in OSPF [4.1]. Therefore, we assume the message

size s to be 1KB (lower than the 1500B cap, but not too low and is typically used in literature for

experimentation, such as in [4.6]). The bandwidth value is kept constant at 100Mbps, as

advocated in [4.7] for the evaluation purposes. The values of () are assigned from within

the range of [1-100] km.

Fig. 4.2 depicts the effect of the number of DRs on the value of . To analyze the effect

on large and average scale networks, we used N= {1000, 300}. A DR can decrease the segment

Fig. 4.2. The Effect of DRs on τ.

0

10

20

30

40

1 10 20 30 40 50 60 70 80 90 100

Mean (τ) for N=1000

Mean (τ) for N=300

DR

Effect of DR on τ

M
ea

n
 (

τ)
 m

s

67

convergence time from () to ()[4.1]. However, including more DRs in an area has no

effect or in some cases may even increase the value of . As reported in Fig. 4.2, the mean value

of increases gradually as the number of DRs increases in the topology. To see why, consider a

router R under DR1. If DR2 is added to the area and R now falls under DR2, then DR1 can no

longer directly communicate with R, but instead is obligatory to communicate via DR2. From this

example we can see that including a DR can increase the length of communication paths in the

area, thereby possibly increasing its convergence time. Therefore, the placement of DR is crucial

towards the value of .

Fig. 4.3 depicts the effect of cascading failures of routers (also called nodes) and links

on . The number of DRs in an area is set to one (to avoid the influence of multiple DRs on).

When a node fails, nearby nodes absorb the load of the failed node. The failed nodes can in turn

cause their neighbors to fail (due to overloading) resulting in cascading failures, also known as

terminal failure in (communication and power) networks. The degree and placement of a failed

node determines its effect on the value of . If a failed node or link is in the shortest path of

Fig. 4.3. The Effect of Node and Link Failure on τ.

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0 5 15 25 35 50

Link Failure Node Failure

M
ea

n
 (

τ)
 m

s

No. of Failures

N=300

DR=1

Effect of Failures on τ

68

other nodes, then may increases. This is because updates to such routers may require a longer

path. However, if a failed node or link is: (a) a leaf node, a node with low degree, or link on the

edge of the topology, or (b) not included in the shortest path, then can decrease as the failed

node need not be updated. Moreover, as can be seen from Fig. 4.3, node failures can affect

more adversely than link failures. Link failures directly affect only the two routers they are

connected to, but node failures affect all its neighbors which is typically more than two.

Fig. 4.4 illustrates the variation of due to the changes in the topology, which depicts

that the value of increases as the number of routers within an area increases. However, an

interesting observation is that the value of may decrease in certain cases when a router that is

included in a topology changes the value of () by adding a new shortest path. To avoid

the influence of multiple DRs in an area on , the number of DRs is set to one in Fig. 4.4.

4.4. References

[4.1] J. T. Moy, “OSPF; Anatomy of an Internet Routing Protocol,” Addison-Wesley, 1998.

Fig. 4.4. The Effect of Random Topological Changes on τ.

0.3

0.5

0.7

0.9

100 200 300 400 500 600 700 800 900 1000

Effect of Topology on τ

Mean (τ)

N

DR=1

M
ea

n
 (

τ)
 m

s

69

[4.2] J. Moy, “OSPF Version 2, The Internet Society OSPFv2,”

http://www.ietf.org/rfc/rfc2328.txt, accessed on 08 May, 2012.

[4.3] M, Goyal, M. Soperi, E. Baccelli, G. Choudhury, A. Shaikh, H. Hosseini, “Improving

Convergence Speed and Scalability in OSPF: A Survey,” IEEE Communication Surveys and

Tutorials, 2012, vol. 14, no.2, pp. 443-463.

[4.4] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: An Approach to Universal

Topology Generation,” MASCOTS, Ohio, 2001.

[4.5] S. U. Khan and I. Ahmad, “A Pure Nash Equilibrium based Game Theoretical Method for

Data Replication across Multiple Servers,” IEEE Transactions on Knowledge and Data

Engineering, vol. 21, no. 4, pp. 537-553, 2009.

[4.6] B. Wang, J. Zhang, Y. Guo, and W. Chen, “Fast-Converging Distance Vector Routing

Mechanism for IP Networks,” Journal of Networks, 2010, vol. 05, no. 9, pp. 1069-1075.

[4.7] R. S. Prasad, M. Murray, C. Dovrolis, and K. Claffy, “Bandwidth Estimation: Metrics,

Measurement Techniques, and Tools,” IEEE Network, 2003, vol. 17, no. 06, pp. 27-35.

http://www.sameekhan.org/pub/K_I_2009_TKDE.pdf
http://www.sameekhan.org/pub/K_I_2009_TKDE.pdf

70

5. MODELING AND ANALYSIS OF THE THERMAL

DYNAMICS OF CYBER PHYSICAL DATA CENTERS

This paper is submitted to IEEE Transactions on Cloud Computing (TCC) on Sept. 2013.

The authors of the paper are Saif U. R. Malik, Kashif Bilal, Samee U. Khan, Bharadwaj

Veeravalli, Keqin Li, and Albert Y. Zomaya,

5.1. Introduction

Cloud computing is an emerging paradigm, where a shared pool of resources (networks,

servers, storage, applications, and services) can be accessed conveniently, on-demand, and can

be rapidly provisioned or released with minimal management effort or service provider

interaction [5.1, 5.2]. The Data Center (DC) contributes towards the prevalent application and

adoption of cloud by providing architectural and operational foundation. Therefore, the DC

serves as a backbone of cloud systems. To maintain a specified Quality of Service (QoS)

attributes, such as throughput, the DCs must operate efficiently all the time.

The DC hosts a large number of servers to perform substantial computation and storage.

Moreover, to improve the services for high performance computing application, the DC has been

increasingly deployed. Blade servers are thin modular servers, usually deployed in DCs that are

designed to minimize the use of physical space and energy. Because of the high energy

requirements of the computing and cooling devices, the DCs energy consumption can cost

millions of dollars. The DC run-time cost is dominated by the cost spent on the energy

consumption of computing and cooling technologies [5.3]. According to a report published by

Environmental Protection Agency (EPA) [5.4], the peak power consumption of DC in 2006 was

7GW and it was expected to raise 12GW till 2011, leading to a cost of 7.4 billion USD per year.

71

The income of the DC is defined by the Service Level Agreement (SLA), which defines the

amount paid by the users based on the QoS they receive. The computational and operating

margins of DCs depend highly on the provision of the QoS. Higher QoS attribute levels lead to

higher rates that in turn lead to higher computations. To deliver the specified level of

performance, the number of computational devices put in use at all levels of DC has significantly

increased. As a result, the rate at which the heat is emitted by the devices has also increased. The

cost to stabilize the temperature in the DC has drastically increased and become almost equal to

the cost of operating computational systems. The increasing cost of energy consumption calls for

new strategies to improve the energy efficiency in DCs. Several strategies have been proposed,

such as [5.5, 5.6, 5.7, and 5.8] for efficient energy consumption in the DC. In this paper, we

model DC as a Cyber Physical System (CPS) to capture the dynamics and evolution of the

thermal properties presented by the DC.

The software aspects, such as scheduling and computations, performed by the devices are

modeled as the “Cyber” portion and the supporting infrastructure, such as power supplies and

servers, are modeled as the “Physical” portion of the CPS. Several studies are available that

model DC as a CPS to achieve energy efficiency, such as [5.9 and 5.10]. The models proposed in

the literature are abstract in the sense that they lack detailed analysis of the DC and hence it

becomes difficult to exactly understand the dynamics of heat distribution, both from software

and infrastructure perspective. Thus, in this paper, we provide a detailed modeling and

formulation of the cyber and physical infrastructure, including the heat dissipation of individual

components, the heat distribution, and recirculation among the physical portion of the CPS.

72

The physical infrastructure of the DC follows a hierarchical model, where the computing

resources reside at the lowest layer. The network infrastructure can be considered as a multilayer

graph, where the servers and switches are vertices and interconnection amongst them are the

edges. The servers, access switches, and aggregate switches are assembled in modules (referred

as pod) and are arranged in three layers, namely: (a) access, (b) aggregate, and (c) server layer.

We perform a thorough analysis and modeling of the thermal subtleties involved at each layer. In

doing so, we model heat dissipation of servers, switches (access layer, aggregate layer, and core

layer), and the aggregate impact of each component on the overall infrastructure.

By exploiting the thermal dynamics of discrete element, we propose a Thermal Aware

Control Strategy (TACS) that uses High Level Centralized Controller (HLCC) and Low Level

Centralized Controller (LLCC) to manage and control the thermal dynamics of CPS at different

levels, such as: (a) low (server) level, (b) high (access, aggregate, and core switch) level, (c)

intra-pod level, and (d) inter-pod level. The complete details of all levels and controllers will be

discussed in later sections. We perform the simulation of our proposed strategy on a real data

center workloads, obtained from Center of Computational Research, State University New York

at Buffalo. The traces have more than 22,000 jobs and the records are of one month time.

Moreover, we perform a comparative analysis of our proposed strategy with one classical

P4

x

P3

P2

P1

y

x

y

z

z x y

t1

t2

t3

t4

Transition

Place

Flow

P

f

Fig. 5.1. An Example High-Level Petri Net.

73

scheduling approach and two thermal aware approaches, namely: (a) First Come First Server

(FCFS), (b) Genetic Algorithm based thermal aware scheduling [5.23], and (c) Thermal Aware

Scheduling Algorithm (TASA) [5.18].

In this study, we also made an effort to diminish the level of abstraction through detailed

modeling and formal analysis of the CPS. We use High-Level Petri Nets (HLPN) and Z language

for the modeling and analysis of the systems. The HLPN are used to: (a) simulate and (b)

provide mathematical representation, and (c) analyze the behavior and structural properties of the

system. Moreover, we performed the verification of the models using Satisfiability Modulo

Theories Library (SMT-Lib) and Z3 solver. We performed the automated verification of the

model by following Bounded Model Checking technique using SMT-lib and Z3 solver. To verify

using SMT, the Petri net model is first translated into SMT along with the specified properties.

Then, Z3 solver is used to check whether the model satisfies the properties or not. The

contributions of the paper are as follows:

 modeling DC as a CPS to analyze the thermal dynamics at different levels;

 formulating the thermal properties of major component involved in CPS, the effect of

cyber activities on the physical properties of the DC, and vice versa;

 proposing a Thermal Aware Control Strategy (TACS) that uses HLCC and LLCC to

manage, control, and coordinate between the cyber and physical portion to maintain

unified thermal threshold range;

 conducting simulation and comparison of proposed strategy on a real data center

workload and;

 modeling and analyzing the CPS in HLPN, and the verification of the model using

SMT-Lib and Z3 Solver.

74

5.2. Modeling Thermal Dynamics of Cyber Physical DC

We model DC as a CPS, where the logical classification is made between the

computational section and supporting infrastructure. The computational section, such as

scheduling, that participates in the distribution, processing, and flow of tasks constitutes the

Cyber portion. The supporting infrastructure, such as servers, switches, PDUs, and power

generators, constitutes the Physical portion. The cyber portion performs computations or any

other task to deliver the specified QoS attributes. In return, the physical portion emits thermal

energy into the DC environment that raises the temperature. In this paper, we present a

methodology that analyzes the collective thermal dynamics of cyber and physical portions to

maintain a specified range of thermal threshold in the CPS. It is noteworthy, that we are only

interested in the thermal dynamics of the DC and not the performance. The DC is logically

classified as the combination of the cyber and physical portion:

 () ()

The CPS is comprised of computing resources, such as servers and the network

infrastructure, such as switches, interconnecting all of the computing resources (Fig. 5.2). The

CPS follows a hierarchical model, where the computing resources reside at the lowest layer as

Pod

Access
Layer

Aggregate
Layer

Core
Layer

Core Switch (γ)

Servers (S)

Aggregate Switch (δ)

Access
Switch (α)

Fig. 5.2. Three-Tier DC Architecture.

75

depicted in Fig. 5.2. The network infrastructure can be considered as a multilayer graph [5.31].

The servers, access switches, and aggregate switches are assembled in modules (referred to as

pod) and are arranged in three layers, namely: (a) access, (b) aggregate, and (c) server layer. The

core layer is used to connect all of the independent pods together. Note that, the cyber portion

resides within the physical portion. Therefore, we model DC in a unified way that can

accommodate both, the cyber and physical section. We divided the CPS model into two logical

sections: (a) Pods (zones) and (b) Core Layer Switches, as below:

 () () (5.1)

where () is the set of core layer switches and r is the total number of core switches () in the

network. () is the set of pods and k is the total number of pods in the network. Each access

layer switch () is connected to n number of servers (S) in a pod. Moreover, every is

connected to every aggregate switch () in the pod. The number of nodes (including and)

in () can be calculated as:

 () ()

 (5.2)

where ()
 represents a set of servers connected to in (). The

 represents access

layer switches in (), where m is the total number of in (). The
 represents

aggregate layer switches and w is the number of in (). The components in CPS work

individually or cooperatively to accomplish the assigned tasks. According to the law of energy

conservation, energy can neither be created nor destroyed but it can be converted from one form

to another. The mechanical energy is consumed by the physical portion as they perform cyber

tasks and almost all the power drawn by the computing devices are dissipated as heat. We model

76

the heat dissipation of every component within the pod, such as and . The heat dissipated

by the is represented as and can be calculated as follows:

 ()

 (5.3)

where,

 ()

 (5.4)

The

 represents the heat dissipated as a result of the static power to keep the server

awake, and

 represents the heat dissipation when the processing is being performed. The

 is fixed that does not change and is independent. However,

 is dynamic and is dependent

on the workload. The

 represents the heat dissipated by the memory that includes energy

consumed during the memory refresh operations. The

 is further decomposed into

 that

represents the heat dissipation because of the read and write operations, and

 is the heat

dissipation as a result of the processing performed. We model switches as normal and high-end

switches. The switches used in the core layer are usually high-end switches and dissipate more

heat as compared to normal switches. We assume and are normal switches and are high-

end switches. The heat dissipated by the normal switches, such as and is represented as

 and can be calculated as:

 ()

, (5.5)

where,

 , (5.6)

and

 . (5.7)

77

The represents the heat dissipation of the switch as a result of static power

consumption, represents the heat dissipation of the communication fabric used in the switch,

 represents the heat dissipation of the buffer that includes and , representing the heat

dissipation of ingress and egress processing unit, respectively. The represents the heat

dissipation during the processing that includes and , representing the static heat

dissipation of switch processor, and when read and write operations are performed, respectively.

The represents the heat dissipation due to the processing performed by the switch. The

and are constant. However, the and are dynamic and depend on the workload of the

switch.

The has different characteristics from and . The facilitates the connection of the

network with the end node devices and for this reason it supports features, such as port security

and VLANs. The manages or segments the traffic from the leaf nodes into VLANs and provide

it to the core layer. For the said reason, provides inter-VLANs routing functions to

communicate. The are the high speed backbone of the network, so they have a very high

forwarding rate. Moreover, they have the capability to support link aggregation to ensure

adequate bandwidth and traffic routing coming from . Furthermore, have additional hardware

redundancy features, such as redundant power supplies, to swap while the switch continues to

operate. Because of the high workload carried out by , they dissipate more heat than and .

We, represent the heat dissipation of high-end switches (core layer) as , which can be

calculated using (5.5), (5.6), and (5.7). However, because of the workload and hardware

redundancy the value of must always be greater than . In the previous discussion, we have

modeled the heat dissipation of the individual nodes, as in (5.3) and (5.5), involved in the CPS.

The heat dissipated by all the servers in (), represented as
 , can be calculated as:

78

 ∑∑(

)

(5.8)

where the
 represents the heat dissipation of connected to in (). Moreover, the

heat dissipation of all the and in (), represented as
 and

 , respectively, can be

calculated as:

 ∑(

)

(5.9)

 ∑(

)

(5.10)

where
 and

 represents the heat dissipated by access and aggregate switches in ().

Similarly, the overall heat dissipated by the CPS, represented as , can be calculated as:

 ∑(

) ∑(

)

(5.11)

It is noteworthy, that the heat calculations performed at this point, do not consider the

ambient effect involved in the CPS environment. The next paragraphs will discuss the dynamics

CRAC

Rack Rack Rack Rack

Rack Rack Rack Rack

Fig. 5.3. The Ambient Temperature Effect in DC.

79

of ambient temperature and its effect on the heat dissipation of an individual component. The

ambient temperature is the surrounding temperature. Figure 3 illustrates the effect of ambient

temperature in the CPS environment. The red and blue dotted lines in Fig. 5.3 depict the

movement of hot and cold air, respectively. The hot air is exchanged amongst the racks, while

the cooling is provided from the cooling devices, such as CRAC. Suppose there are number of

nodes that participate in the heat dissipation of CPS. Two temperatures are associated with each

node, the (a) input temperature (
) and (b) output temperature (

). The
 represents the

input ambient temperature of node that includes the heat received from other thermal nodes. As

depicted in Fig. 5.4, the
 of s1 involves the recirculation (red dotted lines) of hot air from other

nodes and cooling temperature (sup) from CRAC. The heat dissipated by any node i will

change the
 . The

 and
 represent the temperature of the surroundings and not the node.

However, the heat dissipated by the node (
) can affect the values of

 and
 . The input

temperature of a node (
) can be calculated as:

 (

) (5.12)

where

s1 s2

s3 s4

τsup

τin
i

τout
i

Fig. 5.4. Heat Exchange among Server Nodes.

80

 ∑(

)

(5.13)

The is an air coefficient that represents the product of air density (which changes from

1.205kg/m
3
 at 20

°
C to 1.067kg/m

3
 at 60

°
C), heat of air, and flow rate of air. The

 can be

calculated as:

 (5.14)

where

 (

) (5.15)

The represents the heat dissipation of a node i in proportion to the power consumed

during the processing. The can be replaced by any of the heat dissipation value of three

nodes. For instance, if the calculating node is , then can be replaced with . Suppose we

have the current power distribution of all the servers in (), represented as a vector ⃗⃗ . The

temperature profile of all the servers, represented as a vector ⃗⃗ , can be calculated based on the

given power distribution. The current temperature of in () is denoted as

, which can

be calculated as,

 () where () represents the anticipated change in the

temperature cause by executing a task on . According to the abstract heat model of DC, as

discussed in previous works [5.27], the heat distribution and its effect on the surrounding

machines can be represented as cross interference coefficient matrix. We follow the same model

and compute the heat distribution of the servers using a matrix, represented as { },

which denotes the thermal effect of on and can be populated as:

,

where is the thermal conductivity constant of the air and ĥ is the hop count of from .

81

5.3. Thermal Aware Control Strategy (TACS)

We propose a thermal aware scheduling approach that uses High Level Centralized

Controller (HLCC) and Low Level Centralized Controller (LLCC) to manage and control the

thermal dynamics of CPS at different levels, such as: (a) low (server) level, (b) high (access and

aggregate switch) level, (c) intra-pod level, and (d) inter-pod level. The goal is to eliminate

Pod(2)

...

LLCC

Pod(1)

...

LLCC

...

Pod(k)

...

LLCC

Core

HLCCResource

Manager

Fig. 5.5. HLCC and LLCC in DC.

1: for i 1 to k do

2:

 // also use in inter-pod migration

3: end for

4: Select (
)

5: Get

6: Select , such that

7: Allocate to ,
 ()

 //

8: If

 , then

9: Migrate-task c from to ,
 ()

 // intra-pod migration

10: end if

Fig. 5.6. Steps Involved in Low (server) Level.

82

hotspots and to maintain a uniform range of thermal threshold in every pod. Whenever a new job

(a job can have multiple tasks) is arrives to the CPS, the tasks are allocated to the specified

server based on the thermal signatures. The HLCC and LLCC are proposed that perform the task

allocation, task migration, and traffic redirection, based on the thermal analysis of the node or

layer. As depicted in Fig. 5.5, there is LLCC in every pod that has the thermal information of

all and . Every node in the CPS is equipped with a heat sensor that measures the

temperature and the temperature is updated periodically to the LLCC. In low (server) level (Fig.

5.6), the

 for all the () is measured and observed through sensors periodically.

Whenever the value of

, exceeds the maximum threshold temperature of the server

(

), the LLCC migrates some tasks from to , where and are connected to the same

 .

For the tasks to be migrated successfully to , the constraint

, must be

satisfied. The represents the anticipated increase in the temperature as a result of task

1: for i 1 to k do

2: Compute

 𝑤

3: If

 𝑤 such that

𝜉
, then

4: Redirect from to
 ()

𝜉

5: end if

6: If

 such that

𝜉
, then

7: Migrate-task c from to ,
 ()

 ()

𝜉

 // intra-pod migration

8: end if

9: end for

Fig. 5.7. Steps Involved in High (access and aggregate) Level.

83

migration. If the task migration is not possible amongst the serves under the , then the servers

belonging to are considered for the migration. The and belongs to the

same pod. Moreover, if there is no server available for the migration within the same pod, then

inter-pod task migration is performed by enforcing the same constraint.

In high (access and aggregate) level (Fig. 5.7), the focus is to avoid the hotspot at access

and aggregate layer of the CPS by redirecting the traffic from heavily loaded switches to the

lighter ones. Redundant paths are available in the network infrastructure of DC that allows

redirection of traffic from one switch to another (Fig. 5.2). The decisions for the redirections are

made by LLCC considering the value of for every switch. When the value

for increases

from
𝜉

, then task migration is performed by LLCC in the same way was as performed in low

level. The reason for the aforesaid is a fact that there is only one path between the access and the

servers. However, in case of , redundant paths are available. Therefore, whenever the value of

 𝑤, exceeds the maximum threshold temperature of the switch (

𝜉
), the LLCC

instructs the lower level (server) to redirect the traffic from to where both belongs to the

same pod. The redirection is allowed only if the

𝜉
. If the redirection is not

possible within the same pod, then inter-pod task migration is performed to take some load off

from the switch.

The high level and low level are combined together to form an intra-pod control. The

goal in intra-pod is to stabilize the temperature of the pod by maintaining the thermal signatures

of server, access, and aggregate layer. Local decisions (within the same pod), such as task

migration and redirection, are taken by LLCC to stabilize the temperature. However, the inter-

pod migrations are performed with the consent of HLCC. Whenever, inter-pod actions have to be

performed, the LLCC requests HLCC to provide information about other pods where the tasks

84

can be migrated. Afterwards, the LLCC of the pods can communicate with each other to

accomplish the task.

The inter-pod control is focused on maintaining the unified thermal threshold value in all

the pods. The thermal signatures of nodes in CPS can evolve in order of minutes. Moreover, the

power states of servers can change as frequent as milliseconds. Therefore, the threshold

temperatures are not absolute values; rather it is a range within which the thermal signatures of

the nodes and layers should lie. In inter-pod control, the HLCC periodically monitors the average

thermal values of each pod that it receives from sensors. Whenever the thermal signature of the

 () (

) starts to exceeds the maximum thermal threshold value of the pod

(

), the HLCC instructs the LLCC of ()to migrate some tasks to () .

The migration can be successfully performed only if the

. Moreover, the server

selection and task allocation performed in inter-pod control is same as in low level. The HLCC

only has the coarse-grain information of the
 . The allocations of migrated tasks to servers are

performed by LLCC through the use of fine-grained servers information. All of the

aforementioned controls work together to make sure that the CPS is operating under a specified

temperature range. More detailed information, formal analysis, and behavior of the HLCC and

LLCC will be discuss in the next section, using HLPN and Z language.

5.4. Verification Using HLPN, SMT-Lib, and Z3 Solver

Verification is the process of demonstrating the correctness of an underlying system

[5.39]. Two parameters are required to verify a model or a system: (a) specification and (b)

properties. In this study, we use bounded model checking [5.40] technique to perform the

verification, using SMT-Lib and Z3 solver. In bounded model checking, the description of any

85

system is verified, whether any of the acceptable inputs drives the system into a state where the

system always terminates after finite number of steps. The process of bounded model checking

involves several tasks: (a) Specification, the description of the system that states the properties or

rules, which must be satisfied by the system to be deemed correct, (b) Modeling, representation

of the system, and (c) Verification, use of a tool to check whether the specifications is satisfied

by the model.

Definition 2: (Bounded Model Checking) [5.40]. Formally, given a Kripke

Structure () and a bound, the bounded model checking problem is to

find { } where: is the finite set of states, , is the set of

transitions such that , and is the set of labels.The bounded model checking problem

is to find an execution path in of length that satisfies a formula .

Kripke structure is a state transition graph used to represent the behavior of the system

[5.41]. In Kripke structure nodes are the set of reachable states of the system, edges represent the

transitions, and label functions map nodes to the set of properties hold in the state. Fig. 5.8 shows

an example Kripke structure and computational tree where: S={S1, S2, S3}, S0={S1},

{p}

{p,q}

{q}

S1

S2

S3

(a)

p,q

p

p,qp

q

p

q

p,qp
.
.
.

.

.

.

.

.

.

(b)

Fig. 5.8. An Example of: (a) Kripke Structure and (b) Computational Tree.

86

R={(S1,S2),(S2,S1), (S2,S3),(S3,S3)}, and are atomic propositions, and

 {({ }) ({ }) ({ })}.

A path in a Kripke structure can be stated as an infinite sequence of states represented as

 such that for () . The model may produce a path set

 . To describe the property of a model some formal language, such as

CTL*, CTL, or LTL is used. (Readers are encouraged to see [5.42], [5.43] for more details about

the CTL*.) For a model to be correct, the states must satisfy the formulas (Definition 2) under a

specific bound. The formulas are represented in terms of properties of the systems.

Definition 3: (SMT Solver) [5.44]. Given a theory Ґ and a formula , the SMT Solvers

perform a check whether satisfies Ґ or not.

To perform the verification of the models using Z3 (an SMT Solver), we unroll the model

 and the formula that provides and , respectively. Moreover, the said parameters are

then passed to Z3 to check if [5.26]. The solver will perform the verification and

provide the results as satisfiable (sat) or un-satisfiable (unsat). If the answer is sat, then the

solver will generate a counter example, which depicts the violation of the property or formula .

Moreover, if the answer is unsat, then formula or the property holds in up to the bound (in

our case is exec. time).

5.4.1. Modeling HLCC and LLCC Using HLPN

The HLPN model for HLCC and LLCC is shown in Fig. 5.9. The first step towards

modeling using HLPN is to identify the required types, Places (), and mapping (Definition 1).

The types and the descriptions are shown in Table 5.1 and the mapping of to types is depicted

in Table 5.2. The description and operation of the controllers are discussed in the previous

87

section and now we can define formulas (pre and post-conditions) to map on transitions. The set

T contains the following transitions:

 { 𝑤

 }

Types Description

Task A type for the representation of job.

Res-Mat Amount and type of resources available servers.

Th_S A type for the thermal signature (Th. Sig) of the server.

Th_P A type for the Th. Sig of the Pod.

Th_Ac A type for the Th. Sig of the Access Switch.

Th_Ag A type for the Th. Sig of the Aggregate Switch.

Th_Co A type for the Th. Sig of the Core Switch.

Res A type to represent the resources.

RI A type to represent the Routing Information.

Max_Th_P Max. Thermal Threshold (Th. Td) value of the Pod.

Max_Th_S Max. Th. Td value of the Server.

Max_Th_Ac Max. Th. Td of Access Switch.

Max_Th_Ag Max. Th. Td value of Aggregate Switch.

Max_Th_Co Maximum Thermal Threshold value of the core Switch.

Δt Expected thermal dissipation of new task.

New tokens can only enter the model through the transition . As seen in Fig.

5.9, no arc is incident on the aforementioned transition, which is why no pre-condition exists and

the rules for the transitions can be written as: () . Whenever the

new job arrives, the resource manager checks if the resources required by the job are available or

Table 5.1. Data Types Used in the HLCC and LLCC Model.

88

not. The said authentication is performed by the transitions and ,

mapped to the following formulas.

 () [] [] []

 []

(5.16)

 () [] []

 [] []

 {([] [] [] [])}

(5.17)

Places Mappings

 () (Task × Res)

 () (Task × Res-Mat × Th_P × Th_S)

 () (Th_P)

 () (Th_P)

 () (Th_S × Th_Ac × Th_Ag)

 () (Th_Ac)

 () (Th_Ag)

 () (Th_S)

 () (RI)

 () (RI)

 () (RI)

 () (Th_Co)

 () (Task × Res)

Table 5.2. Places Used in the Model of HLCC and LLCC.

8
9

NJ Jobs
J

J

RM

A

A

New
Jobs

HL-CCReq-Pod-TsPTs

Pod-Sen

RPTs
GS

RPTs PTs

VS
Get-SR

Job-Req-F

Job-Req-S
GS

VS

LL-CC

RSTs

RSTs

STs

STs

Req-STs

LSTs

AcS AgS

ASTs

ASTs

AgTsAgTs CNode

AsgJ

AsgJ

JAsg

JAsg

Req-M

Req-M

Mig-Req

Mig-Req

LSTs

Req-Mg

Job-Alloc

Sen-Read

con con

AcS-S

AgS-S

CN-S

GAg

GCs

GAs

GAg

GAs

GCs

GetSR

GetSR

A

A

Migrate

MgR

CoS

Css

CTs

CoTs

CoTs

con
con

CoS-S

CTs

Css

LcR
LcR

Fig. 5.9. The HLCC and LLCC HLPN Model in DC Environment.

90

If the resources required by the job are available in the resource matrix of resource

manager and the thermal signature of the pod for the selected server is less than the maximum

thermal threshold, then the jobs are accepted and are placed in the queue, as shown in (5.17).

However, if the resources required by the job are not found, then the job will not be accepted.

Moreover, if the cyber portion is running in full capacity, then the job will also be rejected, as in

(5.16). The resource manager instructs HLCC and LLCC to provide the list of all the pods and

servers that are suitable for the resource allocation. In response, the HLCC provides the thermal

information of the pods to resource manager, as shown in (5.18), and LLCC will send the list of

all the servers that satisfy the constraint,

 , as in (5.19).

 () [] []

 [] { }

(5.18)

 () [] [] []

 [] { [] [] [] []}

 {([] [] [] [])}

(5.19)

The HLCC acquires the
 through heat sensors that are placed at each pod (Fig. 5.5).

Moreover, the LLCC acquires the and from the heat sensors placed at every node

within the pod. The HLCC and LLCC periodically read the values from the sensors, shown in

(5.20) and (5.21), respectively. When the resource manager request for the thermal

information of the pods and servers, the HLCC and LLCC sends the updated values read

from the sensors. The transitions and performs the aforementioned

readings for HLCC and LLCC, respectively. The rules for the transitions are:

 ()

 {()}

(5.20)

91

 ()

 [] [] []

 {([] [] [])}

(5.21)

 ()

 [()]

 [()] []

 (() ()) [()]

 [()] [] ([()] [()])

 [()] [()] []

 ([()] [()])

 (())

 (()) {(()[] ()[])}

 (())

 (()) {(() [] () [])}

(5.22)

If (5.17) is fired, then the job is assigned to the selected server and the resources are allocated to

the task, as in (5.22). As stated in the previous section, to maintain a specified thermal

temperature at different levels of CPS, the HLCC and LLCC performs task migration and traffic

redirections based on the thermal signatures of the nodes. The transition performs the

migrations and redirection within the same pod, termed as LcMg and LcRd, respectively.

Whenever the thermal signatures of and are raised more than the specified

maximum thermal threshold, the (5.22) is fired. The (5.22) makes local redirection and migration

by exploiting the functionalities of LLCC. The inter-pod migration is achieved by the mutual

communication of HLCC and LLCC. When migration or redirection is not possible locally, then

LLCC requests HLCC to provide the information about the pods where the tasks can be

92

migrated, as depicted in (5.23). Moreover, inter-pod migration is also performed when the

thermal signature of exceeds the specified maximum thermal threshold, as illustrated in (5.24).

 () []

 ([()]) ()

 ([()]) ()

 ([()]) () ()

 (() () () () ())

 (())

 (()) {(()[] ()[])}

 (())

 (()) {(() [] ()[])}

(5.23)

 ()=

 () (() ()) ()

(5.24)

To explain the process of verification, a Kripke structure and an example computational

tree of the HLCC and LLCC are formulated and depicted in Fig. 5.10 and Fig. 5.11, respectively.

The properties are specified in CTL*. One property to verify the models is that, there will be no

hotspots (overheating) in CPS. If we closely analyze Fig. 5.10 and Fig. 5.11, we can see that

New Job RM
γ

ProcessingPod

α δ S

Over

Heat

LLCC

Control

Strategy

Action

Complete

HLCC

Fig. 5.10. The Kripke Structure of HLCC and LLCC for the Verification.

93

whenever the (OverHeat) state is reached, the control strategies perform certain actions, such

as task migration and redirection (as discussed in above sections) to stabilize the temperature at a

desired level, which is (Processing) state. For the models to be correct, the solver should be

able to find a terminating state in a model. The failure transitions are considered as a terminator

of the models. Moreover, the other terminating state in the models is the last state when the jobs

are successfully completed. The state (Complete) in Fig. 5.11 is reachable from every path of

the tree, stating that the model will terminate after certain number of iterations. The states

labeled with “ ” represents, that from the point forward the tree will repeat the predecessor. We

have specified the properties of the control strategies in a similar passion and verified whether

the properties are satisfied by the models.

NJ

RM

RMHLCC

Pod

PoD

Pr

HLCC

RM Pr Pod HLCC Cm Pr OH

x x x

CS

Act

Pr

Cm Pr OH

Cm Pr OH

x x

xx

PoD RM Pr

x x

Cm Pr OH

CS

Act

Pr

Cm Pr OH

Cm Pr OH

xx

Fig. 5.11. Computational Tree for the Kripke Structure in Fig. 5.10.

94

5.5. Results and Discussion

To demonstrate the capacity of our work, we simulate the proposed strategies on a real

data center workload obtained from the Center of Computational Research (CCR), State

University of New York at Buffalo. All jobs submitted to the CCR are logged for a period of a

month. The jobs and the logs from the CCR dataset are used as an input for our simulation of the

proposed thermal aware strategy. The dataset had 22,700 jobs (127,000 tasks) recorded in one

month of a time. Moreover, we also evaluate the proposed TACS by comparing with a classical

First Come First Serve (FCFS), Genetic Algorithm (GA) based thermal aware scheduling [5.23],

and Thermal Aware Task Allocation [5.18] approaches.

We perform the comparison among the mentioned strategies based on the CCR dataset.

Before going deeper into the details of the comparison, we first briefly discuss the existing

approaches. The FCFS (sometimes referred as first-in, first-out) is possibly the most

straightforward scheduling approach. The jobs are submitted to the scheduler, which dispatches

the jobs based on the order of the jobs received.

The FCFS policy is intuitively fair, allowing the jobs that are submitted first to execute

first. However, the policy is not preemptive and long running jobs can cause delay to other

following jobs. The approach in [5.23] follows the steps of GA. The first step is to construct a set

of feasible solutions, which is the task allocation to the servers. Then, the selected solution is

mutated (randomly interchange the task allocations within the solution) and mated (randomly

select pairs of solution and exchange the subset of two task assignment to get two new

solutions). The fitness function, which checks the highest inlet temperature of the selected

assignment, is applied to all of the solutions that are formed as a result of mating and mutation,

95

including the original solution. Finally, the solution having the lowest inlet temperature value

from the set of highest inlet temperature values, obtained as a result of fitness function, is

selected as a final solution. The last approach is TASA proposed in [5.18], which is based on the

theory of coolest inlet that perform the assignment of hottest jobs to the coolest servers. The

TASA algorithm sorts the servers in the increasing order of the temperatures, such that the

coolest server is first in the order. The jobs are sorted in a similar way but in the reverse order,

such that the hottest job is first in the order. The hottest job is assigned to the coolest server and

the thermal map of all the servers is updated. The same process is repeated until the last job is

allocated to the server.

Fig. 5.12 depicts the average thermal signatures of the servers over the period of time,

when the scheduling approaches are used. The epoch time stamp and average thermal signature

of the servers at that particular time are plotted on x-axis and y-axis in Fig. 5.12. There were 33

pods in the DC and each pod has 32 servers. The thermal readings were taken after every 10

minutes. It can be observed from the Fig. 5.12 that the spread or the difference between the

temperatures of the servers in the trend line of Fig. 5.12(a), (b), (c) is very wide at many time

stamps. The aforesaid, identify the situation when the average temperature of some servers is

lower than the rest of the servers in the DC. Particularly, at time stamps 1.2357E+9, 1.2362E+9,

and 1.2372E+9 in Fig. 5.12 (a), (b), (c), the thermal signatures of some servers are very low as

compared to the rest, which shows the probable presence of the hotspots in DC. The possible

reason for the occurrence of the hotspots in Fig. 5.12(a) is the static assignment of tasks without

considering the thermal status of the server that possibly creates a scenario when hot jobs are

assigned to hot servers and cold jobs are assigned to cold ones.

96

(a)

(b)

(c)

(d)

Fig. 5.12. Comparison of Average Thermal Signatures of the Pods Using: (a) FCFS, (b) GA-based,

(c) TASA, and (d) TACS.

1.235 1.2355 1.236 1.2365 1.237 1.2375

x 10
9

70

80

90

100

110

120

130

140

Time

Te
m

pe
ra

tu
re

1.235 1.2355 1.236 1.2365 1.237 1.2375

x 10
9

70

80

90

100

110

120

130

140

Time

Te
m

pe
ra

tu
re

1.235 1.2355 1.236 1.2365 1.237 1.2375

x 10
9

70

80

90

100

110

120

130

140

Time

Te
m

pe
ra

tu
re

1.235 1.2355 1.236 1.2365 1.237 1.2375

x 10
9

70

80

90

100

110

120

130

140

Time

T
em

pe
ra

tu
re

97

In Fig. 5.12(b), the reason for the imbalance thermal signatures is the random nature of

the GA based approach. The selection of the feasible solution, the mutation, and the mating

process, all are based on randomization. If the same set of pods and servers are selected in the

solutions most of the time, then the fitness function performed on the selected solution will not

provide any important information that will avoid the occurrence of the hotspots. Similarly, there

is also a possibility that the number of tasks allocated to few pods and servers are relatively low

as compared to the rest of the pods and servers in the DC. The aforementioned possibilities will

allow some servers to have high thermal signatures while others have low thermal signatures,

which will ultimately cause the hotspot in the DC. In Fig. 5.12(c), which is better than (a) and

(b), still has low thermal signatures of some servers as compared to the rest, which results in the

occurrence of hotspots. The reason for the aforesaid is that the hottest tasks are allocated to the

coolest servers regardless of the overall thermal temperature of the pod and the recirculation

effect that can cause the hotspots.

In TACS, as shown in Fig. 5.12(d), the differences of the temperatures amongst the

servers are low and there are no hotspots. As stated in Sections 5 and 6, the selection of the pods

and servers to allocate the task is based on the thermal signatures. Moreover, the HLCC and

LLCC periodically monitor the thermal signatures of the pods and servers, and perform task

migration or redirection to maintain unified range of temperatures in the pods. Therefore, the

trend of thermal signatures followed in Fig. 5.12(d) is more congested and unified as compared

to the trend followed in rest of the approaches. We plot the average difference between the

hottest and coolest servers over the period of time (as shown in Fig. 5.13 and 14). The larger and

more frequent the differences are, the higher the thermal imbalance will be. We can see that the

differences in TACS (d in Fig. 5.13) are very low and less frequent as compared to the other

98

(a)

(b)

(c)

(d)

Fig. 5.13. Comparison of Average Thermal Signature Difference between the Highest

and Lowest Servers Using: (a) FCFS, (b) GA-based, (c) TASA, and (d) TACS.

99

approaches that indicate the thermal balance achieved by using TACS. However, the other

approaches have high differences and are occurring frequently, which indicates the thermal

imbalance and occurrence of the hotspots.

As stated in previous sections, we also perform the verification of the strategies using

SMT-Lib and Z3 solver. To verify, the HLPN models are first translated into SMT. Moreover,

the properties are also specified in SMT. Then, the models along with the properties are provided

to the Z3 solver, which checks if the properties are satisfied by the models or not. It is

noteworthy, that the goal of the verification is to demonstrate the correctness of the models,

based on the desirable properties, such as the presence of the hotspots. The results in Fig. 5.15

depict the time taken by the Z3 solver to check the satisfiability of the models, based on the

stated property. The property we verify is that, there must be no hotspots in the DC after the task

allocation is complete. To accommodate the random behavior of GA based scheduling, we

perform the verification of the strategies iteratively for different number of jobs, varying from 10

to 100 jobs, as shown in Fig. 5.15. The verification results matches with the simulation results

and no hotspots were identified by the Z3 solver when the proposed TACS was used. However,

Fig. 5.14. Average Thermal Signature Difference between the Highest and Lowest Servers.

1.235 1.2355 1.236 1.2365 1.237 1.2375

x 10
9

0

5

10

15

20

25

30

35

40

45

Time Stamp

T
e

m
p

e
ra

tu
re

 D
if
fe

re
n

c
e

FCFS

GA-based

TASA

TACS

100

hotspots were identified by the solver for the other scheduling approaches at different no. of jobs,

as shown in Table 5.3.

of Jobs FCFS GA-based TASA TACS

10 Unsat Unsat Unsat Unsat

20 Unsat Unsat Unsat Unsat

30 Unsat Unsat Unsat Unsat

40 Unsat Unsat Unsat Unsat

50 Unsat Sat Unsat Unsat

60 Sat Sat Unsat Unsat

70 Sat Sat Unsat Unsat

80 Sat Unsat Sat Unsat

90 Sat Unsat Sat Unsat

100 Unsat Sat Unsat Unsat

Fig. 5.15. Verification Time Comparison of the Approaches.

Table 5.3. Verification Outcomes of Scheduling Approaches.

No. of Jobs

Ex
ec

. T
im

e
(m

se
c)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

10 20 30 40 50 60 70 80 90 100

TACS
GA-based
FCFS
TASA

101

We used bounded model checking technique for the verification and in our case, the

execution time serve as a bound over the verification models. As stated in Section 6, the solver

returns “sat” if the stated assertion is not true, which means that the property is violated. If the

property is met by the model, then the solver will return “unsat”, which shows that solver is

unable to find the values for which the property is not true. The simulation and verification

results reveal that our strategy is consistent and provides better results as compared to the other

scheduling approaches. The occurrence of the hotspots may cause servers to throttle down,

increasing the possibility of failure. We reduce the possibility of hotspots in our strategy through

strategic decisions performed by HLCC and LLCC based on the thermal signatures of the

components.

5.6. References

[5.1] R. Buyya, S.Y. Chee, and S. Venugopal, “Market-Oriented Cloud Computing: Vision,

Hype, and Reality for Delivering IT Services as Computing Utilities,” IEEE HPCC, pp. 5-13,

2008.

[5.2] S. U. R. Malik, S. U. Khan, and S. K. Srinivasan, "Modeling and Analysis of State-of-

the-art VM-based Cloud Management Platforms," IEEE Transactions on Cloud Computing, pp.

50-63, 2013.

[5.5.3] J. Hamilton, “Cost of power in large-scale data centers,”

http://perspectives.mvdirona.com, Nov. 2008.

[5.5.4] U.S. Environmental Protection Agency (EPA). Report to congress on server and data

center energy efficiency, public law 109-431, Aug. 2007.

[5.5.5] L. Wang, S. U. Khan, and J. Dayal, "Thermal Aware Workload Placement with Task-

Temperature Profiles in a Data Center," Journal of Supercomputing, vol. 61, no. 3, pp. 780-803.

102

[5.5.6] J. Shuja, S. A. Madani, K. Bilal, K. Hayat, S. U. Khan, and S. Sarwar, "Energy-Efficient

Data Centers," Computing, vol. 94, no. 12, 2012, pp. 973-994.

[5.5.7] J. Moore, J. Chase, P. Ranganathan, and R. Sharma, “Making scheduling "cool":

temperature-aware workload placement in data centers,” In USENIX, pp. 61-75, 2005.

[5.5.8] L. Ramos and R. Bianchini, “C-oracle: predictive thermal management for data centers,”

Symposium on High Performance Computer Architecture, pp. 111–122, 2008.

[5.5.9] L. Parolini, B. Sinopoli, B. Krogh, and W. Zhikui, "A Cyber–Physical Systems Approach

to Data Center Modeling and Control for Energy Efficiency," Proceedings of the IEEE, vol. 100,

no. 1, , 2012, pp. 254,268.

[5.5.10] L. Parolini, N. Toliaz, B. Sinopoli, and B. H. Krogh, “A Cyber-Physical Systems

approach to energy management in data centers,” Conference on Cyber-Physical Systems, 2010.

[5.5.11] Y. Cho and N. Chang, “Energy-aware clock-frequency assignment in

microprocessors and memory devices for dynamic voltage scaling,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 6, 2007, pp. 1030–1040.

[5.5.12] H. Aydin and D. Zhu, “Reliability-aware energy management for periodic real-

time tasks,” IEEE Transactions on Computers, vol. 58, no. 10, 2009, pp. 1382–1397.

[5.5.13] P. Choudhary and D. Marculescu, “Power management of voltage/frequency

island-based systems using hardware-based methods,” IEEE Transactions on VLSI Systems, vol.

17, no. 3, 2009.

[5.5.14] A. Varma, B. Ganesh, M. Sen, S. Choudhury, L. Srinivasan, and B. Jacob, “A

control-theoretic approach to dynamic voltage scheduling,” International CCASE, pp. 255–266,

Oct. 2003.

103

[5.15] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and C. Kozyrakis, “Power

management of datacenter workloads using per-core power gating,” Computer Architecture

Letters, 2009, vol. 8, no. 2, pp. 48–51.

[5.16] Z. Jian-Hui and Y. Chun-Xin, “Design and simulation of the cpu fan and heat sinks,”

IEEE Transactions on Components and Packaging Technologies, vol. 31, no. 4, 2008, pp. 890–

903.

[5.17] A. Mutapcic, S. Boyd, S. Murali, D. Atienza, G. Micheli, and R. Gupta, “Processor

speed control with thermal constraints,” IEEE Transactions on Circuits and Systems, vol. 56, no.

9, pp. 1994–2008.

[5.18] L. Wang, V. Laszewski, G. Dayal, J. He, X. Younge, and T. R. Furlani, “Towards

thermal aware workload scheduling in a data center,” International Symposium on Pervasive

Systems, Algorithms, and Networks, pp. 116-122, 2009.

[5.19] J. Moore, J. Chase, and P. Ranganathan, “Weatherman: Automated, online and

predictive thermal mapping and management for data centers,” IEEE ICAC, pp. 155-164, 2006.

[5.20] N. Tolia, Z. Wang, P. Ranganathan, C. Bash, M. Marwah, and X. Zhu, “Unified power

and cooling management in server enclosures,” in InterPACK, pp. 721–730, 2009.

[5.21] C. Bash, C. Patel, and R. Sharma, “Dynamic thermal management of air cooled data

centers,” Thermal and Thermomechanical Phenomena in Electronics Systems, pp. 445–452,

2006.

[5.22] L. Rao, X. Liu, L. Xie, and W. Liu, “Minimizing electricity cost: Optimization of

distributed internet data centers in a multi-electricitymarket environment,” International

Conference on Computer Communications (INFOCOM), pp. 1–9, 2010.

104

[5.23] Q. Tang, S. Gupta, and G. Varsamopoulos, “Energy-efficient thermal-aware task

scheduling for homogeneous high-performance computing data centers: A cyber-physical

approach,” IEEE Transactions on Parallel and Distributed Systems, vol. 19, no. 11, 2008, pp.

1458–1472.

[5.24] M. Anderson, M. Buehner, P. Young, D. Hittle, C. Anderson, J. Tu, and D. Hodgson,

“MIMO robust control for HVAC systems,” IEEE Transactions on Control Systems Technology,

vol. 16, no. 3, 2008, pp. 475– 483.

[5.25] M. Toulouse, G. Doljac, V. Carey, and C. Bash, “Exploration of a potential-flow-based

compact model of air-flow transport in data centers,” American Society Of Mechanical

Engineers ASME Conference, pp. 41–50, 2009.

[5.26] M. K. Ganai and A. Gupta, “Accelerating high-level bounded model checking,” in

ICCAD, 2006, pp. 794–801.

[5.27] Q. Tang, T. Mukherjee, S.K.S. Gupta, and P. Cayton, “Sensor-

Based Fast Thermal Evaluation Model for Energy Efficient High-Performance Datacenters,”

ICISIP, Dec. 2006.

[5.28] T. Murata, “Petri Nets: Properties, Analysis and Applications,” Proc. IEEE, vol. 77, no.

4, 1989, pp. 541-580.

[5.29] Lectures on Petri Nets I: Basic Models, Lecture Notes in Computer Science, vol. 1491,

W. Reisig and G. Rozenberg, eds., Berlin: Springer-Verlag, 1998.

[5.30] J. Desel and J. Esparza, “Free Choice Petri Nets,” Cambridge Tracts in Theoretical

Computer Science, vol. 40, Cambridge, UK: Cambridge Univ. Press, 1995.

105

[5.31] K. Bilal, M. Manzano, S. U. Khan, E. Calle, K. Li, and A. Y. Zomaya, "On the

Characterization of the Structural Robustness of Data Center Networks," IEEE Transactions on

Cloud Computing, vol. 1, no. 1, pp. 64-77, 2013.

[5.32] N. En and N. Srensson, “An extensible SAT-solver,” Lecture Notes in Computer

Science, vol. 2919, 2003, pp. 502-518.

[5.33] C P. Gomes, H. Kautz, A. Sabharwal, and B. Selman, “Satisfiability solvers,” In

Handbook of Knowledge Representation, 2007.

[5.34] M. Frade and J. S. Pinto, “Verification conditions for source-level imperative programs,”

Technical Report DI-CCTC-08-01, University of Minho, 2008.

[5.35] SMT-Lib http://smtlib.cs.uiowa.edu/, accessed Jan. 2013.

[5.36] S. U. R. Malik, S. K. Srinivasan, S. U. Khan, and L. Wang, “A Methodology for OSPF

Routing Protocol Verification,” Conference on Scalable Computing and Communications, Dec.

2012.

[5.37] C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB Standard: Version 2.0,” 8th

International Workshop on Satisfiability Modulo Theories, 2010.

[5.38] L. de Moura and N. Bjorner, “Z3: An efficient SMT solver,” Conference on Tools and

Algorithms for the Construction and Analysis of Systems, 2008.

[5.39] S. Nakajima, “Model-checking Verification for Reliable Web Service,” OOWS, 2002.

[5.40] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu, “Bounded model checking”,

Advances in Computers, vol. 58, Academic press, 2003.

[5.41] Y. Quemener and T. Jeron, “Model Checking of CL on infinite kripke structures defined

by simple grammers,” Technical Report RR-2563, INRIA, France, 1995.

106

[5.42] M. Maidl, “The common fragment of CTL and LTL,” Symposium on Foundations of

Computer Science, pp. 643–652, 2000.

[5.43] K. Bilal, S. U. R. Malik, O. Khalid, A. Hameed, E. Alvarez, V. Wijaysekara, R. Irfan, S.

Shrestha, D. Dwivedy, M. Ali, U. S. Khan, A. Abbas, N. Jalil, and S. U. Khan, "A Taxonomy

and Survey on Green Data Center Networks," FGCS. (Forthcoming.)

[5.44] L. Cordeiro, B. Fischer, and J. Marques-Silva, “SMT-based bounded model checking for

embedded ANSI-C software,” ASE, pp. 137–148, 2009.

107

6. A METHODOLOGY FOR OSPF ROUTING PROTOCOL

VERIFICATION

This paper is presented in International Conference on Scalable Computing and

Communications (ScalCom), Changzhou, China, December 2012. The authors of the paper are

Saif U. R. Malik, Sudarshan K. Srinivasan, Samee U. Khan, and Lizhe Wang.

6.1. Introduction

Data intensive systems, such as data centers, have a real need for tens to hundreds of Gbps

of bandwidth and deterministic Quality of Service (QoS), which is satisfied by thousands of

servers interconnected together. Data Centers (DC) gained a great popularity for the provision of

computing resources [6.3]. Amazon, Google, IBM, Facebook, and Microsoft have started to

establish data centers that host cloud computing applications in geographically distributed

locations [6.2]. DCs contains a pool of computing resources to host applications and store data,

connected together using communication medium, such as fiber optics. The performance and

stability of the network depends on the performance of the routing mechanisms implemented

within the architecture [6.4]. Routing protocol plays an important role towards the performance

realization of large scale networks. Therefore, it is compulsory to verify the working of the

routing protocol to ensure reliable communication amongst the systems in the network.

Open Shortest Path First (OSPF) is an adaptive routing protocol that is used for Internet

Protocol (IP) networks to distribute routing information within a single Autonomous System

(AS) [6.5]. OSPF divides the network into areas, as shown in Fig. 6.1 [6.1]. Each area consists of

one or more segments. A segment constitutes the set of routers connected via a common

communication channel, such as Ethernet. With the rapidly increasing and changing demands of

108

QoS, modern routing domain, such as DCs need to maintain a very high level of service

availability. Therefore, OSPF should attain fast convergence in response of topology changes, to

meet the demands of modern systems. Moreover, to avoid loss of messages, the information

flowing within the data center must be routed correctly by the OSPF. A slight misinformation

can cause huge packets loss depending on the size of the network. In the aforementioned aspect,

we have verified OSPF protocol using SMT-Lib and Z3 Solver.

6.1.1. SMT-Lib and Z3 Solver

Satisfiability Modulo Theories (SMT) is an area of automated deduction for checking the

satisfiability of formulas with respect to some logical theory of interest [6.18]. SMT has been

used in many fields including deductive software verification. Moreover, recent applications of

computer science including planning, model checking, and automated test generation finding,

also considers SMT as an important verification tool [6.19]. The solver can be distinguished

amongst the features they provide, such as, underlying logic (example first order or temporal),

background theories, input formulas, and interface. The details about the features can be found in

[6.30]. Multiple solvers are available that supports SMT-LIB, such as Beaver, Boolector, CVC4,

MathSAT5, Z3, and OpenSMT [6.19].

Fig. 6.1. OSPF Areas and Routers.

109

We used Z3 solver in our study, which is a high performance theorem prover developed at

Microsoft Research. Z3 is an automated satisfiability checker. Moreover, Z3 also checks whether

the set of formulas are satisfiable in the built-in theories of SMT-LIB. Readers are encouraged to

see [6.20], for the detailed information about the working and commands of Z3 solver. In this

paper, we propose a novel method to verify the OSPF routing protocol that incorporate

Designated Routers (DRs). The proposed method uses delay information of the router as a

property to verify the protocol. We used the delay information to identify the occurrence of

events as an update is received by the corresponding DRs. The proposed method can scale up the

verification process by reducing the size of state space and limiting it to a single parameter. We

used Satisfiability Modulo Theory (SMT-LIB) library and Z3 solver as a tool for the verification

purpose. Moreover, BRITE [6.9] topology generator is used to generate the topologies that

represents characteristics similar to those of Internet. There are four steps involved in our

verification process: (a) we have simulated the detailed implementation of OSPF protocol based

on the specifications available in [6.12] on a small scale network, (b) we modeled the system and

specified the properties, (c) the model and properties in SMT-LIB are given to Z3-Solver for

model checking, and (d) execution and generation of results.

6.2. OSPF Routing Protocol

The OSPF is a link-state routing protocol [6.6]. The link state is the description of the

interface of the router (IP address of the interface, mask, type of network, routers connected to)

and the relationship to other routers. OSPF constructs a topological map of the entire network by

gathering the link state information from available routers [6.1]. Unlike other routing protocols,

such as Routing Information Protocol (RIP) that uses Bellman-ford vector based algorithms,

110

OSPF introduces new concepts, such as areas, Variable Length Subnet Mask (VLSM), and route

summarization [6.14].

To decrease the intra-area convergence time, a router amongst the routers is selected as a

DR in OSPF. All other routers on a segment communicate only to the DR, which cuts the

information flow cost from () to () (instead of sending update to every router on a

segment the update is sent to a DR and then that DR will flood the update to all of the other

routers) [6.6]. Table 6.1 illustrates the types of routers used in OSPF. The type of router is

identified based on the router interface and link states. Do not confuse DR with OSPF router

types. A router can have some interfaces that are designated, which makes a router DR.

Moreover, different types of routers generate different Link State Advertisements (LSA), which

is a way to communicate the routing topology to other router in and outside an area. Table 6.2

depicts some of the basic LSAs supported by the routers. Note, that there are other LSA types 6-

11, whose information can be found in [6.15].

Router Type Description

Internal Router that has all the interfaces in single area

Backbone Router that has at least one interface in backbone area

Area Border Router having at least one interface in backbone area and

another in non-backbone area

Autonomous System Boundary Router performing route injection from other source

(RIP, EIGRP) into OSPF domain.

Table 6.1. The OSPF Routers.

111

6.3. Problem Formulation

The problem formulation is taken from our previous work in [6.31]. However, the

formulation is modeled accordingly to accommodate the verification aspect of the OSPF

protocol. Consider a network composed of routers. Let be the i
th

 router, where . A

link between two routers and (if it exists) has a communication cost (del) that represents

the minimum time for transferring message from to , which can be represented by the

following expression [6.29, 6.31]:

,
),(

),(
ij

ji

ji

sRRD
RRdel

LSA Type Description Associated Router Scope

1 Describes directly attached link to a

router within an area.

All routers Intra area

2 Describes the number of routers

attached in a segment. Gives

information about the subnet mask of a

segment

DR Intra area

3 Describes destinations outside an area

to flood information from one area to

another.

ABR Inter area

4 Describes a route and information to an

ASBR outside the area.

ABR Inter area

5 Defines routes to destinations external

to OSPF domain.

ASBR Inter area

Table 6.2. The OSPF Link States and Associated Routers.

(6.1)

112

where () is the physical distance between and , is the propagation delay of the

medium (optical fiber in our case), is the size of the message in kilobytes, and is the

available bandwidth between and . If the routers are not directly connected, then the

communication cost is the sum of the cost of all links in the shortest path from to . Without

the loss of generality, we assume that () (), which is a common assumption

in literature [6.29]. Let be the number of segments within an area and be the k
th

 segment in

that area, where . Let be the set of DRs within an area and is the convergence

time (time a router takes to discover the area topology) of . If a failure occurs (could be a link

or a router), the routers connected to the failed link or failed router will initiate the updates.

 be a router that initiates an update in response to a failure. Let be the set of all other

routers in the area defined as ({ }

) {{

 } }.

Suppose
 gets an update, such as node failure.

 will update its link state and forward

the updated link state to the DR of segment k (represented as). The link state is the

description of the interface of the router (IP address of the interface, mask, type of network,

routers connected to) and the relationship to other routers. The DR will then flood the

information to every other router in the segment after receiving the update. The verification of

the routing protocol can be done in two aspects: (a) content verification (if the link state is being

calculated correctly) and (b) routing verification (if the information is propagated correctly in a

same order). For (a), the Link State Database (LSDB) should be same for all the routers after

convergence is achieved, such that (
) (

) (
) . For (b), let

 contains the list of router that belongs to segment k in ascending order of (
)

 . All the routers in a segment must receive the updates in a same order as listed in .

113

(6.2)

Let
 represent a router that belongs to . The time for

 to receive the update

((
)) can be calculated as follows [6.31]:

 (
) {

() (

)

where,

 () (
) (

)

Other updates, such as change in bandwidth (∆) are assumed to be local and incur zero

update time. Therefore in (6.2), the value of (
) for

 , is DI. The DI of routers is

usually four times the “Hello” interval, which is the time between consecutive transmissions of

“Hello” packets that are used to indicate the liveliness of nodes. The “Hello” interval is 10

seconds for broadcast and P2P networks, and 30 seconds for all other media [6.2]. The value

of (
) for

 is the sum of the time required for to receive updates and the time

 takes to deliver updates to
 . The value of () is calculated in (6.3), which is the sum

of (
) (the node sending the update to) and the communication cost between them, which

is given as (
). Moreover, (6.2) and (6.3) are used to calculate based on the following

expression [6.31]:

 (() (

))

The last router (maximum time taken to receive an update from the corresponding) in

 that receives the update, determines . Now, using (2), (3), and (4) the convergence time of

an area τ can be calculated as follows:

 ((
)) ((

) (
))

(6.3)

(6.4)

(6.5)

114

The maximum amongst all of the segments plus the time when the update is initiated and

reaches to the respective DR determines the value of .

6.4. Verification of OSPF Using Proposed Method

Verification is the process to demonstrate the correctness of the underlying system [6.16].

We verify the correctness of OSPF through (a) content verification and (b) route verification as

discussed in problem formulation. Note that our goal is to verify the correctness and not to

measure the performance of the protocol. Two parameters are required for the verification of the

system, namely specification and properties. We achieved verification through model checking

[6.17], using SMT-Lib and Z3 Solver. The detailed description for the possible behavior of the

protocol (specification) along with the desirable behavior (properties) of the protocol are

modeled in SMT and provided to Z3. Given the aforementioned parameters Z3 can perform a

verification of the model. Z3 generates a counter example in case of an error that represents the

state or values for which the model is incorrect. If there are no errors, then the model

specifications can be fine-tuned until converged to the real system. The proposed method can

scale up the verification process by reducing the size of the state space and narrowing it down to

a single parameter. In the following section we will discuss content verification and route

verification in detail.

6.4.1. Content Verification

The OSPF is a link state protocol and all routers in an area must have the same LSDB in

order for the protocol to work correctly [6.1]. We assume that the DR is already being elected

and initial LSDB synchronization is already being achieved. In content verification, we analyze

the state of LSDB for all routers in an area as an update is generated and propagated by the

corresponding DR. For content verification, we have simulated the detailed implementation of

115

OSPF on multi-access segments having multiple DRs in one area. The system model and the

property to verify are generated in SMT and are provided to Z3. The property to verify for

content verification is that LSDB should be same for all the routers after convergence is

achieved, such that (
) (

) (
) . Whenever an update

occurs, the router initiating an update generates a LSA. The LSA must be propagated to all the

routers in an area to have the same view of the topology and to reach the stable state. The

aforementioned is necessary to avoid message loss and for the protocol to work properly.

6.4.2. Route Verification

The LSA generated by the routers in case of updates must be propagated to

corresponding DR, and then from DR to all other routers in a segment. We propose the use of

delay information of routers for route verification. The delay of routers is calculated using (1) as

discussed in problem formulation. The delay information is further utilized to order the events as

an update occurs. Maintaining the order of the routers reduces the size of state space while

verifying the protocol. If no such information is available, then all scenarios have to be

considered during the verification process. Suppose we have a topology as shown in Fig. 6.2

below, with arbitrary delays. The topology has two segments. Segment 1 (S
1
) has six routers (R0,

R1, R2, R4, R5, R7) and R2 is the DR (d
1
) of S

1
. Segment 2 (S

2
) has three routers (R3, R4, R6) and

R3 is the DR (d
2
) of S

2
. Suppose d

1
 receives an update and () . Then using (2) we can

calculate the (
)) . R4 is the connecting router between the two segments. Therefore,

the update will be propagated from S
1
 to S

2
 through R4. The () (using (3)).If we want

to verify the routing, then we can compare the difference of update time of routers and DR

(((
) ())) with to verify the routing.

116

We can analyze from Table 6.3 that the values of (((
) ())) and

 are identical, which indicate that the routing is done correctly and all the routers are

receiving the updates in a correct order and time. If the values are not identical, then the protocol

may have a problem.

6.5. Result and Discussion

Performance realization of large scale networks depends highly on the routing protocols.

Therefore, it is compulsory to verify the working of the routing protocol to ensure reliable

communication amongst the systems in the network. To this end, we have simulated the detailed

0.3 1 2

3 4 5

0

6 7

0.05

0.37 0.34

0.02 0.140.25 0.5

0.6 0.001
0.01

DR1

DR2

Fig. 6.2. Example Topology and Associated Delays.

 ((
) ()) ((

) ())

0.001 (R5) 0.001-0=0.001 0.25 (R6) 0.53-0.28=0.25

0.01 (R4) 0.01-0=0.01 0.27 (R4) 0.55-0.28=0.27

0.05 (R1) 0.05-0=0.5

0.15 (R7) 0.15-0=0.15

0.35 (R0) 0.35-0=0.35

Table 6.3. Comparison of Update Time and Ordered List of Router for Example.

Topology.

117

implementation of OSPF, based on the specifications reported in [6.12] for (a) content

verification and (b) route verification. In OSPF, the routers are usually the Level3 (L3) routers.

Therefore, we used optical fiber as a communication medium having propagation delay

 . Ethernet channels have the Maximum Transmit Unit (MTU) of 1500 bytes

and in OSPF the fragmentation is usually avoided [6.1]. Therefore, the message size s is kept as

1KB, which is neither low nor high and which is typically used in the literature for

experimentation (modeling, simulation, and testing). (Readers are encouraged to see the work

reported in [6.7] and [6.8] to get and insight into the typical modeling and simulation parameters

pertaining to the OSPF modules). Moreover, the bandwidth value of is kept at 100Mbps, as

advocated in [6.9, 6.10, 6.11] for the evaluation purposes. The values of () are assigned

from within the range of [1-100] km.

Fig. 6.3 depicts the execution time for the content and route verification. For content

verification the link state for all the routers in an area must be same. To verify the

aforementioned property, we have modeled the simulated system in SMT and generated link

Fig. 6.3. Execution Time for Verification Process.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

10 15 20 25 30

Exec. Time

DR=02

No. of Routers

E
x
ec

.
T

im
e

(s
e
c)

118

states for all the routers. When the convergence is achieved, then the link states of all the routers

are compared with each other to verify the similarities. For route verification, as discussed in

above section, the values of (((
) ())) and must be identical in

order for the protocol to work properly. The system model is verified to check if the

aforementioned property is satisfied using SMT and Z3 solver. For our implementation using

SMT-LIB, we used QF_AUFLIA logic [6.19], which is used for closed quantifier-free linear

formulas over the theory of integer arrays extended with free sort and function symbols.

6.6. References

[6.1] J. T. Moy, ‘OSPF; Anatomy of an Internet Routing Protocol’, Addison-Wesley, 1998.

[6.2] D. Abadi, “Data management in the cloud: Limitations and opportunities”, IEEE Data

Engineering, Bulletin, Vol. 32, No. 1, 2009, pp.3-12.

[6.3] D. Kliazovich, P. Bouvry, and S. U. Khan, "DENS: Data Center Energy-Efficient Network-

Aware Scheduling," ACM/IEEE International Conference on Green Computing and

Communications (GreenCom), Dec. 2010, pp. 69-75.

[6.4] A. Shaikh, C. Isett, A. Greenberg, M. Roughan, and J. Gottlieb, “A case study of OSPF

behavior in a large enterprise network”, ACM SIGCOMM Internet Measurement Workshop,

France, 2002.

[6.5] A. Caslow, Cisco Certification: Bridges, Routers & Switches for CCIEs. Upper Saddle

River, NJ: Prentice Hall PTR, 1998, pp. 373-410.

[6.6] Cisco, ‘OSPF Design Guide’,

http://www.cisco.com/en/US/tech/tk365/technologies_white_paper09186a0080094e9e.shtml,

accessed 04 May, 2012.

119

[6.7] I. Krinpayorm, and S. Pattaramalai, “Link Recovery Comparison Between OSPF &

EIGRP”, ICICN, 2012, pp. 192-197.

[6.8] B. Wang, J. Zhang, Y. Guo, and W. Chen, “Fast-Converging Distance Vector Routing

Mechanism for IP Networks”, Journal of Networks, 2010, Vol. 05, No. 9, pp. 1069-1075.

[6.9] HP, “Building Virtualization-Optimized Data Center Networks”, Technical Report. 4AA3-

3346ENW, HP, 2011.

[6.10] R. S. Prasad, M. Murray, C. Dovrolis, K. Claffy, “Bandwidth Estimation: Metrics,

Measurement Techniques, and Tools”, IEEE Network, 2003, Vol. 17, No. 06, pp. 27-35.

[6.11] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch , and

M. Ryan, “c-Through: Part-time Optics in Data Centers”, SIGCOMM, 2010.

[6.12] Moy, J. (April 1998). RFC 2328 "OSPF Version 2," The Internect Society OSPFv2.

[6.13] G. Retvari, F. Nemeth, R. Chaparadza, and R. Szabo, “OSPF for Implementing Self-

adaptive Routing in Autonomic Networks: A Case Study”, Mid-American Association for

Computers in Education (MACE), 2009, pp. 72-85.

[6.14] D. Katz, K. Kompella, D. Yeung, “Traffic Engineering (TE) Extensions to OSPF Version

2”, http://tools.ietf.org/rfc/rfc3630.txt, accessed on 02 May, 2012.

[6.15] RFC 2370, the OSPF Opaque LSA Option, IETF Network Working Group 1998.

[6.16] Verification, http://en.wikipedia.org/wiki/Verification

[6.17] P. Wolper. An Introduction to Model Checking, 1995.

http://www.montefiore.ulg.ac.be/~pw/papers/papers.html,

[6.18] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability Modulo Theories.

Handbook of Satisfiability, Vol. 185, chapter 26, pp. 825-885. IOS Press, February 2009.

[6.19] SMT-LIB, http://www.smtlib.org/

120

[6.20] Z3,http://research.microsoft.com/en-us/um/redmond/projects/z3/

[6.21] R. de Renesse and A. Aghvami, “Formal verification of ad-hoc routing protocols using

SPIN model checker”, 12th IEEE Mediterranean Electro technical Conference, 2004, pp. 1177–

1182.

[6.22] D. Engler and M. Musuvathi, “Static analysis versus software model checking for bug

finding”, Verification, Model Checking, and Abstract Interpretation, 5th International

Conference, Lecture Notes in Computer Science, 2004, pp. 191–210.

[6.23] C. Xiong, T. Murata, and J. Tsai, “Modelling and simulation of routing protocol for

mobile ad hoc networks using coloured Petri nets”, Workshop on Formal Methods Applied to

Defence Systems in Formal Methods in Software Engineering and Defence Systems, 2002.

[6.24] V. Vishwanath, L. Zuck, J. Leigh, “Specification and verification of LambdaRAM – a

wide-area distributed cache for high performance computing” 6th IEEE/ACM Conference on

Formal Methods and Models for Codesign (MEMOCODE) 2008, USA, June 2008.

[6.25]. S. Chiyangwa, M. Kwiatkowska, “A timing analysis of AODV”, Formal Methods for

Open Object-Based Distributed Systems: 7th IFIP WG 6.1 International Conference

(FMOODS), (2005).

[6.26] D. Obradovic, Formal Analysis of Routing Protocols. PhD Thesis, University of

Pennsylvania (2002).

[6.27] S. Das, D. L. Dill, “Counter-example based predicate discovery in predicate abstraction”,

Formal Methods in Computer-Aided Design, Springer-Verlag, (2002).

[6.28] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: An Approach to Universal

Topology Generation”, MASCOTS, Cincinnati, Ohio, 2001.

121

[6.29] Khan, S. U., and Ahmad, I., “A Pure Nash Equilibrium based Game Theoretical Method

for Data Replication across Multiple Servers”, IEEE TKDE, 2009, Vol. 21, No. 4, pp. 537-553.

[6.30] C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB Standard: Version 2.0”, Proceedings

of the 8th International Workshop on Satisfiability Modulo Theories, 2010.

[6.31] S. U. R. Malik, S. K. Srinivasan, and S. U. Khan, "Convergence Time Analysis of Open

Shortest Path First Routing Protocol in Internet Scale Networks," IET Electronics Letters, vol.

48, no. 19, pp. 1188-1190, 2012.

122

7. DASCE: DATA SECURITY FOR CLOUD ENVIRONMENT

WITH SEMI-TRUSTED THIRD PARTY

This paper is submitted to IEEE Transactions on Cloud Computing (TCC) and is in the

second round of review. The authors of the paper are Mazhar Ali, Saif U. R. Malik, and Samee

U. Khan.

7.1. Introduction

Cloud computing has emerged as a promising computing paradigm and has shown

tremendous potential in managing the hardware and software resources located at third-party

service providers. On-demand access to the computing resources in a pay-as-you-go manner

relieves the customers from building and maintaining complex infrastructures [7.1, 7.13]. Cloud

computing presents every computing component as a utility, such as software, platform, and

infrastructure. The economy of infrastructure, maintenance, and flexibility makes cloud

computing attractive for organizations and individual customers [7.32]. Despite benefits, cloud

computing faces certain challenges and issues that hinder widespread adoption of cloud. For

instance, security, performance, and quality are a few to mention [7.10, 7.27].

The development and operation of data storage sites is ongoing process in organizations.

Off-site data storage is a cloud application that liberates the customer from focusing on data

storage systems [7.10]. Representing system characteristics and capabilities as utility, causes the

user to focus on aspects directly related to data (security, transmission, processing) [7.6, 7.33].

However, moving data to the cloud, administered and operated by certain vendor requires high

level of trust and security. Multiple users, separated through logical barriers of virtual machines,

share resources including storage space. Multi-tenancy and virtualization generate risks and

123

underpins the confidence of users to adopt the cloud model [7.2, 7.3]. Armbrust et al. [7.1]

ranked data confidentiality and auditing at number three in the list of top ten obstacles impeding

widespread cloud adoption. Data can be used by the cloud service providers without

authorization [7.2, 7.23, 7.4] and can be accessed by other machines in cloud [7.23, 7.3].

Data being the principal asset for organizations needs to be secured. Especially, when

data must enter a public cloud. To avoid unauthorized access to the cloud data, access control

mechanism must be enforced [7.16, 7.17]. Moreover, data leakage and data privacy strategies

must be employed so that only authorized users can access and utilize data. Refraining cloud

service providers from utilizing the customer data requires high preventive measures [7.3].

Encryption techniques provide a solution to ensure privacy and confidentiality of stored data.

However, key management becomes a prime issue in the case of encryption [7.28, 7.31].

Cryptographic keys need to be stored and protected. Compromise or failure of a key storage

facility may lead to the loss of data. Therefore, cryptographic keys must be stored in a robust

manner and a single point of failure should not affect the availability of data [7.31].

The security concerns of outsourcing data to public clouds, serves as our motivation to

work for the development of data security technique. We aim for a technique capable of

addressing the aforementioned critical issues. We propose a data security scheme that uses key

manager servers for the management of cryptographic keys. Shamir’s (k, n) threshold scheme

[7.26] is used for the management of keys that uses k shares out of n to rebuild the key. Access to

key and data is ensured through a policy file that states policies under which access is granted to

the keys. The client generates random symmetric keys for encryption and integrity functions.

Symmetric keys are protected by the public key generated by the key manager(s) (Fig. 7.1). All

of the symmetric keys are deleted from the client afterwards. Encrypted data and keys are

124

 2, 6
 1, 5

 3

 4

2. Client:

 Breaks up symmetric key S into n shares (S1, S2, …, Sn).

 Encrypts ith share with public key of ith KM

 Deletes S
6. Reconstructs S from k shares according to Shamir’s strategy.

3. Upload all shares of S to cloud.

4. Client downloads all shares of key from

cloud.

Cloud

Key Manager 1

Key Manager 2

Key Manager n

Fig. 7.1. Shamir’s (k, n) Threshold Scheme in DaSCE.

1. Client receives public keys from all Key Managers (KM).

5. Client:

 selects k number of KMs randomly.

 sends ith share of S to ith KM.

 receives back decrypted ith share.

uploaded to the cloud. For downloading the data, client presents a policy file to cloud and

downloads the encrypted data and keys. Keys are decrypted by key manager(s). Thereafter, the

client decrypts the data.

We review the scheme presented in [7.29], called File Assured Deletion (FADE). The

FADE is a light-weight and scalable technique that assures deletion of files from cloud when

user asks for deletion. However, during our analysis, FADE fell short on issues of security of

keys and authentication of participating parties. Based on our analysis and issues identified with

FADE, we propose enhancements to the scheme and name it as Data Security for Cloud

Environment with Semi-Trusted Third Party (DaSCE) that enhances the security of keys and

authentication process. Moreover, to mitigate the man-in-the-middle-attack, we included

supplementary steps for the session key establishment process. The aforesaid steps augment the

security level and prohibit the malicious user to carry out the attack at slight performance

overheads. However, the results from our verification analysis revealed that DaSCE is more

125

secure than FADE when man-in-the-middle attack was introduced. Our major contributions

include:

• Development of a security scheme (DaSCE) for outsourced data to cloud that uses a

combination of symmetric and asymmetric encryption. The DaSCE ensures data

confidentiality at a cloud infrastructure, as long as it is in use by the client. It also

assures that data gets deleted and becomes unrecoverable after the user deletes it from

the cloud.

• Enforcing access control to both data and key through validity of policies and mutual

authentication between client and key managers, and client and cloud. Digital

signatures and variation of Diffie-Hellman is used for mutual authentication of parties.

Successful authentication and session key establishment results in access to asymmetric

keys that are used in subsequent cryptographic operations.

• Ensuring the integrity of data by use of symmetric key and message authentication

code and securing symmetric keys with asymmetric keys generated by third party key

managers.

• Formal modeling and verification of FADE and DaSCE by using High Level Petri Nets

(HLPN), SMT-Lib, Z3 solver, and Scyther.

• We implemented a prototype of DaSCE and evaluated the performance of DaSCE

based on time consumption parameters (file upload time, file download time,

cryptographic operations time).

7.2. File Assured Deletion (FADE)

The FADE protocol provides privacy, integrity, access control, and assured deletion to

outscored data. The FADE uses both symmetric and asymmetric keys. Symmetric keys are

126

protected by using Shamir’s (k, n) scheme to ample the trust level in the key. The FADE works

with a group of key managers (KM). Following keys are used by FADE protocol. The variable K

is termed as data key and is used to encrypt file F of the client and S as secret key that is used to

encrypt K. The public/private key pair generated by KMs is represented by (ei, di) and is used to

encrypt S. The K and S are symmetric keys. The operations supported by FADE are: (a) File

upload, (b) File download, (c) Policy Revocation, and (d) Policy Renewal. The aforementioned

operations are explained below. The notations used in the paper are presented in Table 7.1.

Notation Meanings

KM Key manager

F File

K A symmetric key

S A symmetric key.

ei Public key parameter.

ni Public key parameter.

di Private key parameter.

ej Modified/New public key parameter.

nj Modified/New public key parameter.

dj Modified/New private key parameter.

{F}K File encrypted with key K.

{K}S K encrypted with key S.

S
e
 S encrypted with public key e.

MAC Message Authentication code

HMAC Hash-based MAC

Pi Original policy file of client

Pj Modified policy file

HLPN High Level Petri Net

IK Integrity key for MAC calculation

Table 7.1. Notations and Their Meanings.

127

7.2.1. File Upload

When data must be uploaded to the cloud, the client requests the KM to generate a

public/private key pair. The said is done by sending a policy file, Pi, to the KM. The KM

generates the key pair, associates that with the Pi, and sends the public part of the key (ei, ni) to

the client. After receiving public key for Pi, the client performs the following cryptographic

operations. The client encrypts F with K to generate {F}K (F encrypted with K). The K is then

encrypted with Si to get {K}Si. Subsequently, Si is encrypted with the public key generated by the

KM with Pi. The Si is encrypted using asymmetric encryption (Si
ei
 mod n). The Pi, {F}K, {K}Si, and

(Si
e
 mod n) are uploaded to the cloud afterwards. The hashed MAC (HMAC) of data file is also

uploaded with the encrypted file. The client deletes all of the symmetric keys through secure

overwriting. The process of file upload is shown in the Figure 2(a).

When FADE works with full quorum of KMs, Si is divided into n shares and each share is

encrypted with a public key generated by one of the KMs. The key is divided based on Shamir’s

Cloud Client Key manager

Pi

ei , ni

Pi, {K
}Si, Si

ei ,{F}K

(a)

Cloud Client Key manager

Pi,Si
eiR ei

SiR

Pi, {K}Si, Si
ei,{F}K

(b)
Client Key manager

Pi

[r]ABE

Hash(r)

ACK

Revoke control key
of Pi

Cloud

(c)

Cloud Client Key manager

SiR,ej , nj

Pj, Si
ej

Pi,Si
ei

Pi,Si
eiR ei,Pj

(d)

Fig. 7.2. FADE (a) File Upload, (b) File Download, (c) Policy Revocation, and (d) Policy

Renewal (single key manager) [7.29].

128

(k, n) threshold scheme. To get back the Si, k shares are needed. The FADE protocol does not

authenticate the client for the upload process. The process with multiple KMs is shown in Fig.

7.3. When data must be uploaded to the cloud, the client requests the KM to generate a

public/private key pair. The said is done by sending a policy file, Pi, to the KM. The KM

generates the key pair, associates that with the Pi, and sends the public part of the key (ei, ni) to

the client. After receiving public key for Pi, the client performs the following cryptographic

operations. The client encrypts F with K to generate {F}K (F encrypted with K). The K is then

encrypted with Si to get {K}Si. Subsequently, Si is encrypted with the public key generated by the

KM with Pi. The Si is encrypted using asymmetric encryption (Si
ei
 mod n). The Pi, {F}K, {K}Si, and

(Si
e
 mod n) are uploaded to the cloud afterwards. The hashed MAC (HMAC) of data file is also

uploaded with the encrypted file. The client deletes all of the symmetric keys through secure

overwriting. The process of file upload is shown in the Figure 2(a).

When FADE works with full quorum of KMs, Si is divided into n shares and each share is

encrypted with a public key generated by one of the KMs. The key is divided based on Shamir’s

(k, n) threshold scheme. To get back the Si, k shares are needed. The FADE protocol does not

authenticate the client for the upload process. The process with multiple KMs is shown in Fig.

7.3.

Cloud Client Key manager 1

Pi

ei1 , ni1

P i, {
K}S i, S

i1
ei1 ,…..,S iN

eiN ,{F}K

Key manager N

Pi

eiN , niN

Fig. 7.3. Fade File Upload with Multiple Key Managers [7.29].

129

7.2.2. File Download

The client requests the cloud for file and encrypted keys to download. The client checks

for the integrity of the file through the HMAC. Afterwards, the client generates a secret number

R and calculates R
ei
 and then generates Si

e
R

ei
 = (SiR)

ei
. The (SiR)

ei
is then sent to KM for

decryption. The KM decrypts (SiR)
ei

with corresponding di and sends back SiR. At this point,

ABE comes into the play. The KM sends SiR with ABE, where the attributes used for ABE are

based on Pi. The client extracts Si from the received message and decrypts K that is used to

decrypt F. The process is highlighted in Fig. 7.2(b). Similarly, the file download with multiple

KMs takes place according to the flow of messages shown in Fig. 7.4.

7.2.3. Policy Revocation

If Pi needs to be revoked, the client requests the KM by sending the Pi. The KM generates

a random number r and sends r to the client after encryption with ABE. The authentic client

decrypts r, calculates the hash value, and sends back to the KM. After verification the KM

revokes Pi and acknowledges the client as depicted in Fig. 7.2 (c).

7.2.4. Policy Renewal

If Pi needs to be renewed as Pj, the client downloads all of the keys and sends Pi and

encrypted Si to the KM along with Pj. The KM decrypts Si. Moreover, the KM sends new public

Cloud Client Key manager1

Pi,Si1
ei1

R ei1

[Si1R]ABE

Pi, {K}Si, Si1
ei1

,…..,SiN
eiN

,{F}K

Pi,SiN
eiN

R eiN

[SiNR]ABE

Key manager N

Fig. 7.4. File Download Using ABE with Multiple Key Managers [7.29].

130

key parameters (ej, nj) to the client as outlined in Fig. 7.2 (d). We will now formally analyze

FADE in the following section.

7.3. Analysis of FADE

The FADE is a light weight protocol that does not require heavy modifications in cloud

architecture. The analysis of FADE identified the following issues.

7.3.1. File Upload

In file upload process of FADE we assume that there is a man-in-the-middle (intruder)

between client and KM. The intruder can intercept Pi and send Pj (modified Pi) to KM. In the

second step, the KM sends (ei, ni). The intruder intercepts (ei, ni) and sends the client modified

parameters (ej, nj). The client encrypts the keys with (ej, nj) and uploads to the cloud. The client

cannot verify that the received (ej, nj) is from KM or any other entity. The aforesaid issue is

highlighted in Fig. 7.5 (a).

In the original file upload process of FADE, independence of Step 1 and Step 2 allows

the intruder to carry out the attack. The policies received by the KM are neither from the client

nor does the client receive keys from the KM. However, both assume a valid data exchange with

each other. As a result, the client encrypts the Si with the (ej, nj). The encryption of data with the

intruder’s generated keys may result in any of the following scenarios:

7.3.1.1. Intruder Fetches the Data during Download Process

During the download process, the intruder can intercept the data. As Si is encrypted with

(ej, nj) that is generated by the intruder; therefore, after reviving Si
ej
 intruder can recover Si by

decryption with a corresponding dj as: Si = (Si
ej
)dj mod n. Once Si is decrypted, the intruder can

easily decrypt K and gather F.

131

7.3.1.2. Intruder Stays Aside during Download Operation

The client downloads the data from the cloud and sends Si to the KM for decryption. As Si

was encrypted by the public key that was originally generated by the intruder, the KM will not be

able to decrypt the correct Si. Therefore, access to the data will be denied. The denial of access

will result in the loss of data. The KM generates the keys based on ABE having policies defined

in Pi. During the attack, the KM generates the keys with Pj (modified Pi). Therefore, even the

attributes will not correspond to the original policies. Same attack flow can be modeled for

multiple KMs as shown in Fig. 7.6. As highlighted in Fig. 7.6, all Si’s are encrypted with keys

generated by the intruder and the corresponding di’s are held by the intruder. Therefore, the

intruder can generate Si. However, intruder must intercept k portions of Si.

7.3.2. Policy Renewal

Fig. 7.5 (b) shows how the intruder can exploit the policy renewal process of FADE for

denying access of data to a legitimate user. It is noteworthy to mention that the exploitation is

only possible if initially the attack depicted in Fig. 7.5 (a) is already carried out. The client after

downloading Si from the cloud sends Si along with Pi to the KM. The intruder intercepts the data,

decrypts Si with the corresponding private key, generates a new pair of public/private key, and

Cloud Client Key manager

Pi

ej , nj

Pi,{F}K,{K
}Si,Si

ej

Pj

ei , ni

Intruder

(a)

Cloud Client Key manager

Pi, Si
ei

SiR,ej , nj

Pj, Si
ej

Pi, Si
eiRi

ei
,Pj

(b)

Fig. 7.5. (a) Man-in-the-middle Attack that Causes Encryption with the Wrong Keys (b)

Exploitation of Policy Renewal Process.

132

sends it to the client. The client performs cryptographic operations (as it did earlier) and uploads

the data and keys to the cloud.

7.3.3. Attack Verification through Scyther

In this section, we verify the attack defined in the previous section using Scyther, which

is a graphical tool for analysis, verification, and falsification of security protocols [7.5]. We

Cloud Client Key manager 1

Pj

ei1 , ni1

P i, {
K}Si, S

i1
ej1 ,..,

S iN
ejN ,{F

}K

Key manager N
Pi (for KM

1)

eiN , niN

Intruder

P
i (for KM N)

Pj

ej1 , nj1

ejN , njN

Fig. 7.6. Man-in-the-middle with Multiple Key Managers.

Fig. 7.7. Scyther Verification of FADE.

133

modeled FADE in Scyther and verified whether Si and F remain secret under the setup or

otherwise. The verification is performed by a “claim” (see Fig. 7.7) that Si remains secret during

the process. The Scyther verified the validity of the claim and reported the attack that was

discussed in Section 4.1.

In Scyther, Charlie plays a role of a client, Bob as the KM, Alice as the cloud, and Eve as

the intruder. The Run# 1 of the Scyther is not an intercepted run while Run#2 is a run where

intruder plays the part. Eve intercepts the Pi and sends Charlie the generated public key pk(Eve).

Later on Eve can use corresponding private key sk(Eve) to decrypt the secret key of Charlie

(sk(Charlie)). In this model, sk(Charlie) is the same key as Si, in the explained model. Our claim

that Si will remain secret is falsified by Scyther by producing the counter attack.

7.3.4. HLPN

Petri Nets provide graphical and mathematical representation of the system and can be

applied to variety of systems for instance stochastic, deterministic, and asynchronous

computations [7.24]. A HLPN is a 7-tuple (), where P is set of places; T

refers to the set of transitions such that ; Flow relations are defined by F such that

() (); maps places P to the data types. Rules for transitions are defined by Rn; L

is a label on F and M0 represents the initial marking [7.24]. In the above definition, the structure

of the Petri Net is given by P, T, and F; whereas, () provide the static semantics of the

Petri Net model.

7.3.5. SMT-Lib and Z3 Solver

SMT has roots in Boolean Satisfiability Solvers (SAT) [7.11, 7.12, and 7.22]. SMT-Lib

provides a common input platform and benchmarking framework that helps in the evaluation of

the systems. We use Z3 solver with SMT-Lib that is a theorem prover developed at Microsoft

134

Research. Z3 is an automated satisfiability checker. In addition, Z3 determines whether the set of

formulae are satisfiable in the built-in theorems of SMT-Lib [7.21].

7.3.6. Verification through HLPN Model

In this section, we formally analyze the man-in-the-middle attack on FADE protocol. We

use High Level Petri Nets (HLPN) and Z language [7.8, 7.11, 7.12, 7.22, 7.24, and 7.25] to

perform formal analysis. HLPN define mathematical properties for the system and simulate the

system to analyze the behavior. We verify HLPN model of FADE using Satisfiability Modulo

Theories Library (SMT-Lib) and Z3 solver. To verify the model, the Petri Net model is first

translated into SMT along with the specified properties. Subsequently, Z3 solver is used to

determine whether or not the properties hold.

7.3.7. Formal Verification

The verification process checks for the correctness of the system. In model checking: (a)

description of the system is provided stating properties or rules of the system, (b) system is

represented by a model, and (c) some verification tool is used to check whether the model holds

the specified properties or not. In this paper we use the bounded model checking to verify the

man-in-the-middle attack on FADE.

The HLPN model for FADE is given in Fig. 7.8. The model is given with the intruder

between the client and KM. The data types used in the model and their mappings are shown in

Table 7.2 and Table 7.3, respectively. All the rectangular black boxes in HLPN are transitions

and belong to the set T. The circles are places and belong to the set P.

135

Types Description

Policy A string type for describing file access policy.

File A string type holding data to be protected.

K A string type representing symmetric key.

S A string type representing symmetric key.

e Public Key parameter.

n Public Key parameter.

d Private Key parameter.

{F}K File encrypted with key K.

{K}S K encrypted with key S.

S
e
 S encrypted with public key e.

Table 7.2. Data Types Used in FADE HLPN Model.

1
3
6

a1 X1 c1

Send_Pi

X7

X17

X16

Pi

X3

Rcv_Pi

I1X4

Pi

X5

Gen_fake

I2

X6 Send_Pj

c2X8

Pj

X9

Rcv_Pj

X10 b1

X11

Gen_Keys

b2X13

Send_Key

c3 X14X15Rcv_Key

X18

Send_fake_Key
c4 X19X20

X12
Rcv_fake_Key

X21

a2

X2

X22

X23

a3

X25

Encr_data

Snd_data_to_cloud

Key ManagerClient Intruder

X24

X26

Fig. 7.8. FADE HLPN Model with Intruder.

137

The process starts with the client sending Pi to the KM. The file is intercepted by the

intruder. The file sending and receiving is performed on transitions Send_Pi and Rcv_Pi. Rule

(7.1) and Rule (7.2) are mapped to the aforesaid transitions.

 () []

 { },

(7.1)

 ()

 { }.

(7.2)

The intruder generates Pj and sends it to the KM. The transition Gen_fake is fired upon

interception of original Pi. Following are the three transition and the corresponding rules.

 () []

 [] []

 [] [] [] [] []

 { [] [] [] []},

(7.3)

 () []

 []

 { },

(7.4)

 ()

 { }.

(7.5)

The keys generated and sent by KM are intercepted by the intruder. The Following rules

(7.6) and (7.7) capture the above three transitions.

138

Types Description

 (a1) (Policy × File × K × S)

 (c1) (Policy)

 (I1) (Policy)

 (I2) (Policy ×Policy × e × n × d × e × n)

 (c2) (Policy)

 (b1) (Policy)

 (b2) (Policy × e × n × d)

 (c3) (e × n)

 (c4) (e × n)

 (a2) (e × n)

 (a3) (Policy ×{F}K × {K}S × Se)

 () [] [] []

 [] [] [] [] [] []

 { [] [] [] []},

(7.6)

 () [] []

 [] [] [] []

 { [] []},

(7.7)

 () [] [] []

 []

 []

 []

 []

 [] [] []

 { [] [] [] [] [] [] []}.

(7.8)

The intruder generates and sends (ej, nj) to the client as depicted in (7.9) and (7.10).

 () [] []

 [] [] [] []
 { [] []},

(9)

Table 7.3. Mapping of Data Types and Places.

139

() []

 [] [] [] []

 { [] []},

(7.10)

The client performs the cryptographic operations with (ej, nj) and sends all the encrypted data to

the cloud. This is represented by the following rules.

 ()

 []

[] [] [] ([]) []

 [] ([]

 [] [] ([] [])

 { [] [] [] []},

(7.11)

 () [] []

 [] [] [] [] [] []

 { [] [] [] []}.

(7.12)

In the above, Encr_data is the most crucial transition. Security of data and the keys are

highly dependent on this transition. If the encryption is performed by using (ej, nj), then the data

security is compromised. In this context, the property that we verified using SMT-Lib and Z3 is

that: if the intruder is present, then the encryption operation is performed using the wrong keys.

The property of the model is described using a formal language called Computational Tree Logic

(CTL*). The CTL* uses numerous temporal operators to represent various operations [7.7, 7.20].

For instance, A represents “for all paths”, G denotes “globally”, and F characterizes “future

state”. The property specified in CTL* using temporal operators is given as: ().

After translating the above model into SMT-Lib, we performed bounded checking using Z3

solver. The mentioned property was satisfied by the solver in 310 msec.

140

7.4. DaSCE

From Section 4, it is evident that the security of Si in FADE depends on the key exchange

between the client and the KM. If the key exchange is compromised, then Si is compromised, that

in turn, leaks all the keys and the data. We observed that the reason for the said attack is the

independence of communication steps between the client and the KM that allows the attacker to

launch the attack and subvert the whole process. In this section, we propose improvements in the

communication process between (a) client and the KM, and (b) client and the cloud. Our

proposed changes link the communication steps so as to avoid attacker to overtake the process.

We use the station-to-station (STS) protocol [7.9] and digital signature for authentication and

session key establishment before any other exchange takes place. The keys generated by the KMs

and policy files are exchanged using session keys. Some modifications are required in the

subsequent operations of the protocol as the session keys are introduced to the FADE. The

following subsections discuss the proposed mechanisms.

7.4.1. DaSCE Keys

The DaSCE makes use of both symmetric and asymmetric keys. The confidentiality and

integrity services for data are provided through symmetric keys that are secured by using

asymmetric keys. Asymmetric key pairs are generated by third party KMs. Out of the key pair,

only public key is transmitted to the client. For secure transmission of keys, a session key is

established between client and KM through STS protocol. To avoid man-in-the-middle attack,

both client and KM are authenticated by use of digital signatures. As a new session key is used

for every communication session between client and KM, the session key is exchanged through

141

key exchange process and is not randomly generated. This also avoids weakness of randomly

generated keys. The symmetric keys are generated once for data encryption by client and

encrypted by another symmetric key named Si. The Si is finally protected by the public key

received from KM. The encrypted keys are stored at cloud and client deletes the local copies of

the keys. For decryption purpose, client establishes a session with KM and sends Si to KM after

masking with random number R. The KM decrypts Si and sends back to client. The client

unmasks Si to get the symmetric keys. Fig. 7.9 depicts the key management process.

7.4.2. File Upload

For the establishment of session key, we assume that the parameters required are fixed

and publically available to all of the users. We call these parameters as α and p where, α is a

large number known as the primitive root and p is a large prime number. The process comprises

of following steps.

 The client generates a random number x and calculates α
x
 mod p and sends to the KM.

 The KM generates a random number y and calculates α
y
 mod p. The KM also calculates

(α
x
)

y
 as a session key, EK, between client and KM.

 4, 6 1, 2, 3

 5

5. Client sends encrypted

keys to the cloud.

4. Client performs encryption operations

over data and symmetric keys

6. Deletes local copies of keys.

Cloud

Key Manager

Fig. 7.9. Key Management in
DaSCE.

1. Client initiates session establishment

and requests for asymmetric keys.

2. Client and KM authenticate each

other and establish session.

3. KM generates asymmetric keys and

sends public part to client

Client

142

 The KM generates digital signature over {α
y
, α

x
} (SKM{α

y
, α

x
}) and encrypts it with the

generated session key to generate EK(SKM{α
y
, α

x
}).

 The KM sends (α
y
 , EK(SKM{α

y
, α

x
})) to the client.

 The client verifies the signature using the public key of the KM and calculates the session

key as (α
y
)
x
.

 The client calculates EK(SCli{ α
x
 , α

y
 }) and encrypts Pi with EK and sends both of the

calculated values to the KM. The sent message contains EK(SCli{ α
x
 , α

y
 }), EK(Pi).

 The KM verifies the signature of the client. Upon successful verification, the KM

decrypts Pi and generates (ei, ni) with Pi. The KM stores the decrypted Pi.

 The KM encrypts (ei, ni) with the EK to generate (EK(ei, ni)), which is sent to the client.

 The client encrypts the file F with key K, calculates MAC with IK; and encrypts K and IK

with Si. Afterwards Si is encrypted with ei. Subsequently, the client sends all the

encrypted data to cloud.

 The client erases all of the keys except public key parameters received from the KM.

The file upload process is shown in Fig. 7.10. The calculations for session key include mod p

operation which is not shown in the figure for clarity.

Cloud Client Key manager

αx

Ek(ei,ni)

Pi, {K
}si,{IK

}Si, Si
ei ,{F}K

α
y ,Ek(SKM{α

y ,α
x })

EK(SCli{α
x,αy}),EK(Pi)

Fig. 7.10. DaSCE File Upload with Single Key Manager.

143

Similarly, the file upload process with multiple KMs is shown in Fig. 7.11. With multiple

KMs, Si is divided into n shares and each share is encrypted with the key from one of the

managers according to (k, n)-threshold scheme. The interdependencies between file upload steps

circumvent the man-in-the-middle attack. If higher level of security is required, then session key

can also be established between the client and the cloud to keep the Pi exchange secure.

7.4.3. File Download

The file download process of DaSCE is depicted in Fig. 7.12. The process starts with the

Cloud Client Key manager 1
αx

Ek1(ei1,ni1)

Pi, {K
}si,{IK

}Si, Si1
ei1 ,…,SiN

eiN ,{F}K

α
y1 ,Ek1(SKM1{α

y1 ,α
x })

EK1(SCli{α
x,αy1}),EK1(Pi)

αx

α yN,EkN(SKMN{αyN,αx})

Key manager N

EKN(SCli{α
x,αyN}),EKN(Pi)

EkN(eiN,niN)

Fig. 7.11. DaSCE File Upload with Multiple Key Managers.

Cloud Client Key manager 1

αx

Ek1(Si1R)

Pi, {K}si,{IK}Si, Si1
ei1,…,SiN

eiN,{F}K

α
y1 ,Ek1(SKM1{α

y1 ,α
x })

EK1(SCli{α
x,αy1}),Si1

ei1Rei1, Ek1(Pi)

αx

α yN,EkN(SKMN{αyN,αx})

Key manager N

EKN(SCli{α
x,αyN}),Si1

eiNReiN, EkN(Pi)

EkN(SiNR)

Fig. 7.12. DaSCE File Download with Multiple Key Managers.

144

client downloading the data from the cloud. To decrypt F, we need K that is encrypted with Si.

The Si is encrypted with (ei, ni) received from KM. The client establishes the session key with the

KMs and during the process both the client and the KMs authenticate each other through digital

signatures. The process of key establishment and authentication is the same as discussed in

Section 5.2. In the third step, after verifying the authenticity of the KMs, the client generates a

random number R and encrypts it with the public key of the corresponding KM. The client then

calculates Si
ei
R

ei
 and sends it along with its own signature and encrypted Pi. We combine these

steps to minimize the communication overhead. The KM after verifying the digital signature of

the client decrypts Pi and checks whether the policy still holds or otherwise. If the policy is valid,

then the KM decrypts Si
ei
R

ei
 with the corresponding di to generate SiR. The purpose of R is to

mask the actual value of Si. The KM encrypts SiR with the session key, which is sent to the client.

It is noteworthy to mention that in FADE, SiR is returned by applying ABE. However, in

the DaSCE, we do not use ABE, instead session key is used to send SiR to the legitimate user.

Therefore, the access control is being managed by the aforementioned technique. The client after

receiving SiR extracts Si from SiR. It is important to remember that with multiple KMs, a share of

Si will be received from at least k KMs. Consequently k number of Sis will be used to generate Si.

The client decrypts K and IK using Si. It verifies the integrity of F using IK and decrypts F upon

successful verification.

7.4.4. Policy Revocation

The same process of key establishment, as discussed in Section 5.2, is used for the policy

revocation in DaSCE. The client encrypts Pi with the session key and sends to KM. The KM after

performing decryption on Pi revokes the keys generated with Pi. The deleted keys include the

private key di and associated prime numbers pi and qi. It also sends acknowledgement to the

client.

145

When di associated with Pi is deleted, the corresponding Si cannot be decrypted. This

results in logical deletion of F as K cannot be decrypted without Si. Therefore, we say that F is

assuredly deleted. It is noteworthy that assured deletion does not correspond to the physical

deletion of data. It is difficult to get the assurance of file deletion from the system outside the

administrative control of data owner. For assured deletion we used the concept introduced in

[7.34] and [7.35], where the inaccessibility of data is assured by deleting certain important

information from the system. The DaSCE ensures the inaccessibility of the keys to make the data

unrecoverable. Therefore, the main security property of file assured deletion is that even if a KM

does not remove the key from its storage, the data files remain encrypted and unrecoverable. The

concept of file assured deletion is also termed as self-destructing data in the literature. For details

about file assured deletion, readers are encouraged to see [7.34] and [7.35].

To boost the level of trust in the proposed scheme, the key generation and management is

not dependent on a single KM. Shamir’s secret sharing scheme is applied to counter any

malicious KM. Any malicious KM cannot get hold of Si independently. At least k number of KMs

needs to be compromised in order to get access of enough di’s that can be used to decrypt Si. It is

also noteworthy that for decryption process Si is sent to KM. However, Si is not sent in plain as

discussed in Section 5.3. The Si is masked by multiplication with R. Therefore, even if malicious

KM keeps the resultant decrypted information, the extraction of Si will remain a challenge.

Therefore, aforementioned case of malicious KM seems hard to be translated into successful

attack. If we build a case of a malicious user that somehow has got hold of some other user’s

encrypted Si, the malicious user has to go through the authentication process of at least k number

of KMs to decrypt the Si. We will see in Section 5.6 that KMs do not give access to the

unauthorized users.

146

7.4.5. Policy Renewal

The policy renewal does not involve any operation on F. The client downloads Si and Pi;

establishes session key with the KM; and sends Pi, Si
ei
R

ei
, and Pj to KM by session key

encryption. The KM decrypts Si
ei
R

ei
 to obtain SiR and generates new public/private key pair for

Pj. Therefore, the KM sends SiR and new public parameters (ej, nj) to the client. The client

extracts Si and re-encrypts it with (ej, nj). Finally, the client sends Pj and encrypted Si to the

cloud. Fig. 7.13 shows the process with single KM. The Pi in Fig. 7.12 is older policy file while

Pj is the newer policy file.

7.4.6. Analysis of DaSCE through the HLPN

We use HLPN to verify that man-in-the-middle cannot forge the encryption keys

exchanged between the client and the KM. If the intruder intercepts the messages, then the

system would be able to identify the attack. The HLPN model for DaSCE is shown in Fig.

7.14.We assume an intruder between the client and the KM to check the behavior of the protocol

in the attack scenario. The lines in Fig. 7.14 connecting (c1, c2) and (c3, c4) would be the

information flow of Xa and Xb, respectively, if there is no intruder between the client and KM.

Due to the space limitation and for simplicity we have not given the HLPN of the whole process.

Cloud Client Key manager

αx

Ek(SiR, ej,nj)

Pj, Si
ej

α
y ,Ek(SKM{α

y ,α
x })

EK(SCli{α
x,αy}),EK(Pi, Pj, Si

ei)

Pi, Si
ei

Fig. 7.13. DaSCE Policy Renewal.

1
4
7

x c1

Send_M1 Rcv_M1

I1

I4

Send_M1'

c2

Rcv_M1'

b1 b2

Encryt_M2

c3

Rcv_M2

c4

a2

X2

a4

 M1

Key ManagerClient Intruder

a1

z

M1'

I2

y

b3

Send_M2

I3

I_Cmpt_KIC

M2'_Sign

I5

Send_M2'Rcv_M2'

a3

Success

a6

I6

X47

X48

X29

I7

Encryt_M2

'
b4

X23

M2_Sign

Cmpt_KIKM

Cm
pt K

IC _D
ecr

I_
Cm

pt
 K

IK
M

X46

a5

Fig. 7.14. HLPN for DaSCE.

148

 The Fig. 7.14 only depicts the process of KM authentication. Nevertheless, the next step

regarding authentication of client before exchanging keys will be the replication of the steps.

Therefore, next step will have similar verification results. The associated data types and the

mappings of places to data types are shown in Table 7.4 and Table 7.5, respectively. We assume

an intruder between the client and the KM to check the behavior of the protocol in the attack

scenario. The lines in Fig. 7.14 connecting (c1, c2) and (c3, c4) would be the information flow of

Xa and Xb, respectively, if there is no intruder between the client and KM. Due to the space

limitation and for simplicity we have not given the HLPN of the whole process.

Types Description

X Big integer type random number for client

Α Big integer type number

Z Big integer type random number for intruder

Y Big integer type random number for key manager

M1 Big integer type number representing α power x

M1’ Big integer type number representing α power z

M2 Big integer type number representing α power y

di Private key of entity i from {Cli, Clo, KM}

ei Public key of entity i from {Cli, Clo, KM}

KIKM Session key between Intruder and Key Manager

KIC Session key between Intruder and Client

γs {M2, M1’}dKM [M2 and M1’ signed with dKM].

γa { γs } KIKM [γs encrypted with KIKM]

M2’ M1’,(γa)KIC [M1’ and γa encrypted with KIC]

γi { M1’, M1}di [M1’and M1 signed with di].

γb { γi } KIC [γi encrypted with KIC]

EM Error Message (Message not coming from valid KM)

Table 7.4. Data Types for HLPN of DaSCE

149

Types Description Types Description

 (x) (x) (b4) (M2×γa)

 (a1) (M1) (c3) (M2×γa)

 (c1) (M1) (I4) (M2×γa)

 (I1) (M1) (I5) (KIKM)

 (I2) (M1’× KIC) (I6) (M1’×di×γi× KIKM × KIC)

 (I3) (M1’) (I7) (M1’× γb)

 (c2) (M1’) (c4) (M1’× γb)

 (b1) (M1’) (a2) (M1’× γb)

 (b2) (M2× KIKM) (a3) (KIC× γb)

 (b3) (M2×dKM×γs× KIKM) (a4) (KIC× γb×eKM)

The process starts with the client requiring an upload of data to the cloud. The client generates a

random number x, calculates its parameters (as explained in Section 5.2), and sends to KM.

However, the intruder intercepts the messages. The aforementioned process is carried out at

transitions M1, Send_M1, and Rcv_M1. The rules for these transitions are:

 () 𝑤()

 { },

(7.13)

 ()

 { },

(7.14)

 ()

 { }.

(7.15)

 Table 7.5. Mapping of Data Types and Places for HLPN of DaSCE.

150

The transition I_Cmpt_KIC is fired when the intruder successfully intercepts the message

that is originated for the KM. The intruder generates its own random number z and calculates a

key between the client and itself. The intruder also generates fake message for the KM at

transition M1’and sends it to the KM through transition Send_ M1’. Rules (7.16) – (7.19) are

mapped to following transitions.

 () [] 𝑤()

 [] 𝑤()

 { [] []},

(7.16)

 ()
 { }, (7.17)

 ()

 { },

(7.18)

 ()

 { }.

(7.19)

The KM assuming that the message comes from the client, calculates the session key by

the parameters sent by the intruder. The KM also signs the received and generated parameters by

the private key and sends to the client that is actually received by intruder. Following transitions

and rules correspond to the explained steps.

 () [] 𝑤()

 [] 𝑤()

 { [] []}

(7.20)

 () [] []

 [] ([]) [] []

 { [] [] []},

(7.21)

151

 () [] []

 [] ([] [])
 { [] [] []},

(7.22)

 ()

 { },

(7.23)

 ()

 { }.

(7.24)

After receiving the message from the KM, the intruder generates the session key between

the KM and itself. At this stage, the intruder sets up the keys with both the client and the KM.

The intruder prepares a response for the client and sends the prepared response. The response

includes the signed parameters. The intruder uses its private key for the signing purpose. The

client accepts the response thinking it to be from KM. The following rules highlight the process.

 () 𝑤([])

 { },

(7.25)

 ()

 [] [] [] ([]) [] [] []

 { [] [] [] []},

(7.26)

 () [] []

 [] ([] [])

 { [] []},

(7.27)

 ()

 { },

(7.28)

 () (7.29)

152

 { }.

The client after receiving the response completes the process of generating the session

key. However, the key generated is between the client and the intruder, instead of being between

the client and the KM. Following this, the client decrypts the received parameters and verifies the

digital signature over them. The verification is performed using a public key of the KM as the

client is supposedly interacting with the KM. The verification mechanism gives the false result

and the client terminates the process. However, if there is no intruder and the communication

takes place between the client and KM, then valid signatures will result in information flow

towards the place a6 and communication will proceed. Following are the transitions and rules for

aforesaid process at the client end.

 ()

 [] 𝑤([]) [] ([] [])

 { [] []},

(7.30)

 () ([])

 { }.

(7.31)

The following properties are verified using the SMT-Lib and Z3 solver.

 During communication, if state I1 (see Fig. 7.14, intruder side) is achieved (that means

the intruder intercepts communication), then the control will terminate at state a5

which represents a failure to authenticate the KM and the process terminates. The

property in CTL* is represented as ()

 If there is no intruder and communication progresses on normal course (through lines

Xa and Xb in Fig. 7.13), then the control will flow until it reaches a6, which represents

153

success for authentication and secure exchange of the required key. CTL* property is

 (())

Both of the properties are verified in SMT-Lib using Z3 solver that approximately took

321 msec.

7.5. Implementation and Performance Evaluation

We used C# for implementing a working prototype of DaSCE. The .Net cryptographic

packages were used for the involved cryptographic operations. Large prime numbers were

handled by using the BigInt class. Policies were uploaded as a separate file to the cloud and the

KM. The system consists of two servers (the cloud and the KM) and a client (work station).

Multiple policies were combined using OR and/or AND operations. The policy and data files

were not merged into a single file, to keep the policy renewal operation light weight. According

to the processes described in Section 5, we also implemented the client side software functions,

such as file upload, download, revocation, and renewal.

In our prototype, the client interacts with the KM (s) and the cloud for setting up the keys,

and uploading/downloading data. The KM sets up the keys, revokes, and/or renews policies and

manages the keys accordingly. We evaluated the DaSCE on the basis of: (a) Key(s)

establishment time, (b) Key Transmission time, (c) File transmission time, and (d)

Cryptographic operations time. It is noteworthy to mention that the time required for key

establishment is the time for setting up a session key between the involved parties. The

cryptographic operations time is the time taken by AES and MAC operations. Above given

parameters collectively make up total file upload/download time. Moreover, the aforesaid

parameters are evaluated using single KM and multiple KMs.

154

7.5.1. File Upload/Download with a Single Key Manager

We used files of nine different sizes (0.3 KB, 1 KB, 10 KB, 30 KB, 50 KB, 100 KB, 500

KB, 1 MB, and 10 MB) to measure the time consumption in file upload and download process.

The results are provided in Fig. 7.15. In general, the file transmission time increased with the

increase in file size. However, in some cases the change in file transmission time was small that

may be caused due to network conditions at various times. Nevertheless, file transmission time

was dependent on the network. In file upload case, cryptographic operations time varied between

0.037 sec and 0.201 sec. The cryptographic operations time increased with the increase in the file

size. In the case of 10 MB file, the cryptographic operations time makes 2.35% of total file

upload time and 2.45% of file transmission time. The time for session key establishment almost

remained constant (having slight changes). The largest time taken during the key establishment

was noted to be 0.0898 sec that constituted 2.67% of the total upload time. The percentage for

key establishment time was 2.39% for 10 MB file. Similarly, in case of file download operations

the cryptographic operations time varied from 0.039 sec to 0.211 sec. The cryptographic

operations time was dependent on the size of the file; therefore, it increased with the larger file

size. However, it made lower percentage of total upload time and file transmission time. The key

establishment time does not depend on the file size; therefore, it remains almost constant. Slight

changes were possibly due to network transmission conditions. The DaSCE and FADE takes

same amount of time for cryptographic operations. However, unlike FADE, we perform

additional steps for key establishment in DaSCE that makes an additional overheads. Therefore,

key establishment process increases the time consumption of DaSCE as compared to the

protocols that run without establishing the session keys. It is noteworthy that the increase in time

consumption upturns the security level for policy files, symmetric, and asymmetric keys used in

155

the DaSCE. In the following section we will see the impact of key establishment time with

increase in number of KMs.

7.5.2. File Upload/Download with Multiple Key Managers

We evaluated the performance of DaSCE by using multiple KMs. The file sizes we used

were 0.3 KB, 1 KB, 10 KB, 50 KB, 100 KB, 500 KB, and 1MB. The number of KMs used was

one, three, five, seven, fifteen, 25, and 50. Fig. 7.16 revealed the key establishment time and the

cryptographic operation time for the aforementioned files sizes and the KMs. The key

establishment time increased with the increase in the number of KMs. This is because the client

had to complete all the message passing steps necessary to establish the key with all the KMs.

(a)

(b)

Fig. 7.15 Performance of File Uploads and Downloads Operations for DaSCE.

1 10 100 1,000 10,000
0.01

0.1

1

10

File Size (KB)

Ti
m

e
(s

ec
)

KeyEstablishment

CryptoOp

FileTransmission

KeyTransmission

1 10 100 1,000 10,000
0.01

0.1

1

10

100

File Size (KB)

Ti
m

e
(S

ec
)

KeyEstablishment

Key Transmission

CryptoOp

File Transmission

156

The key establishment time varies between 0.069 (single KM) seconds and 0.24 seconds (50

KMs). It must be noted that there was slight increase in the key establishment up to ten KMs.

However, with higher number of KMs the increase followed a higher trend. As discussed earlier,

the increase in time consumption due to key establishment augments the security level.

Therefore, we say that user has to select the number of KMs judicially. A balance between

tolerate able time consumption and security level in needed while deciding the number of KMs.

In the coming discussion we will also see that the key establishment time constitutes low

percentage of total time.

(a) Cryptographic operations

(b) Key establishment

Fig. 7.16 File Uploads with Multiple Key Managers.

5 10 15 20 25 30 35 40 45 50
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Number of key managers

C
ry

pt
o

op
er

at
io

ns
 ti

m
e

(s
ec

)

0.3 KB

1 KB

10 KB

50 KB

100 KB

500 KB

1000 KB

5 10 15 20 25 30 35 40 45 50
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

Number of key managers

Ke
y

es
ta

bl
ish

m
en

t t
im

e
(s

ec
)

 0.3 KB

1 KB

10 KB

50 KB

100 KB

500 KB

1000 KB

157

The cryptographic operation time remained constant for the file of same size as final symmetric

encryption is done on client with generated keys (symmetric key, K). Fig. 7.17 depicts the key

establishment time and cryptographic operation time taken by file download with multiple KMs.

It must be noted that the key establishment constituted a low percentage of the total

consumed time, see Fig. 7.17. Fig. 7.18 contains time comparisons of total upload/download

time with key establishment and other constituent times for single key managers with different

file sizes. It can be noted that as the amount of data increases, the percentage of key

establishment time decreases to less significant number as compared to the total upload and

download time, for the file (see Fig. 7.18). Therefore, an increase in number of key managers

will increase the security as well as the time consumption due to key establishment.

7.5.3. Discussion

We present DaSCE that augments the security level by introducing additional steps for

the key establishment process. Because of the mutual exclusion of communication events

between the client and the KM, FADE fell short on issues of securing the keys and

(a) Cryptographic operations

(b) Key establishment

(c)

Fig. 7.17 File Download with Multiple Key Managers.

5 10 15 20 25 30 35 40 45 50
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Number of key managers

C
ry

p
to

 o
p
e
ra

ti
o
n
s
 t
im

e
 (

s
e
c
)

0.3 KB

1 KB

10 KB

50 KB

100 KB

500 KB

1000 KB

5 10 15 20 25 30 35 40 45 50
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Number of key managers

K
e
y
 e

s
ta

b
li
s
h
m

e
n
t
ti
m

e
 (

s
e
c
)

0.3 KB

1 KB

10 KB

50 KB

100 KB

500 KB

1000 KB

158

0.00

0.05

0.10

0.15

0.20

0.25

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

FT TUT

KE KT

CO

 0.3 1 10 30 50 100 500 1000 10000

Ti
m

e
(s

ec
)

Tim
e (sec)

File Size (KB)

0.00

0.05

0.10

0.15

0.20

0.25

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9

FT TDT

KE KT

CO

0.3 1 10 30 50 100 500 1000 10000

Ti
m

e
(s

ec
)

Tim
e (sec)

File Size (KB)

authentication of participating parties. The DaSCE resolves the aforesaid issues by introducing

digital signature for the authentication and session key establishment process before any other

exchange takes place. Moreover, the concept of “assured file deletion” is used to make the file

inaccessible or unrecoverable by deleting important information (di). Comparing the

performance of FADE and DaSCE, FADE has less performance overheads as compared to

DaSCE. However, unlike FADE, the DaSCE provides high security standards and does not

compromise the keys under man-in-the-middle attack. It is noteworthy that DaSCE does not

introduce substantial performance and monetary overhead that can lead to higher management

cost. However, as compared to FADE, the performance overhead of DaSCE are slightly higher

because of the supplementary steps taken to increase the level of security for the keys that

upturns the security level for policy files, symmetric, and asymmetric keys used in the DaSCE.

(a) Upload time (b) Download time

Fig. 7.18 Total Upload/Download Time vs Key Establishment Time. KE = Key Establishment

Time, Kt= Key Transmission Time, CO = Cryptographic Operations Time, FT= File

Transmission Time, TUT= Total Upload Time, TDT= Total Download Time.

159

7.6. References

[7.1] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Ktaz, A. Konwinski, G. Lee, D.

Patterson, A. Rabkin, I. Stoics, and M. Zaharia, “A View of Cloud Computing,”

Communications of the ACM, Vol. 53, No. 4, 2010, pp. 50-58.

[7.2] M. S. Blumenthal, “Is Security Lost in the Clouds?” Communications and Strategies, No.

81, 2011, pp. 69-86.

[7.3] C.Cachinand M.Schunter, "A cloud you can trust," IEEE Spectrum, Vol. 48, No. 12,

2011,pp. 28-51.

[7.4] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka, and J. Molina,

"Controlling data in the cloud: outsourcing computation without outsourcing control," In

Proceedings of the ACM workshop on Cloud computing security,pp. 85-90, 2009.

[7.5] C. Cremers, "The Scyther Tool: Verification, falsification, and analysis of security

protocols." In Computer Aided Verification, Springer Berlin Heidelberg, 2008, pp. 414-418.

[7.6] Cloud Security Alliance

https://downloads.cloudsecurityalliance.org/initiatives/cdg/CSA_CCAQIS_Survey.pdf (accessed

March 24, 2013).

[7.7] D.R. Dams, “Flat fragments of CTL and CTL*: spreading the expressive and distinguishing

powers,” Logic Journal of IGPL, Vol. 17, No. 1, 1999, pp. 55-78.

[7.8] J. Desel and J.Esparza, “Free Choice Petri Nets,” Cambridge Tracts in Theoretical

Computer Science, Vol. 40, Cambridge, UK: Cambridge Univ. Press, 1995.

[7.9] W. Diffie, P. C. V. Oorschot, and M. J. Wiener, “Authentication and authenticated key

exchanges,” Designs, Codes and Cryptography, Vol. 2, No. 2, 1992, pp. 107-125.

160

[7.10] T. Dillon, C. Wu, and E. Chang, “Cloud Computing: Issues and Challenges,” In

proceedings of 24th International Conference on Advanced Information Networking and

Applications, pp. 27-33, 2010.

[7.11] N. En and N. Srensson, “An extensible SAT-solver,” Lecture Notes in Computer Science,

vol. 2919, Springer, 2003, pp. 502-518.

[7.12] C P. Gomes, H. Kautz, A. Sabharwal, and B. Selman, “Satisfia-bility solvers,” In

Handbook of Knowledge Representation, Elsevier, 2007.

[7.13] A. N. Khan, M. L. Mat Kiah, S. U. Khan, and S. A. Madani, “Towards secure mobile

cloud computing: a survey,” Future Generation Computer Systems, Vol. 29, No. 5, 2013, pp.

1278-1299.

[7.14] A. Juels and A. Opera, “New approaches to security and availability for cloud data,”

Communications of the ACM, Vol. 56, No. 2, 2013, pp. 64-73.

[7.15] S. Kamara and K. Lauter, “Cryptographic cloud storage,” Financial Cryptography and

Data Security, Springer Berlin Heidelberg, 2010, pp. 136-149.

[7.16] M. Kaufman,”Data security in the world of cloud computing,” IEEE Security and

Privacy, Vol. 7, No. 4, 2009, pp. 61-64.

[7.17] K. M. Khan, and Q. Malluhi, "Establishing trust in cloud computing," IT

professional, Vol. 12, No. 5, 2010,pp. 20-27.

[7.18] H. Lin and W. Tzeng, “A secure decentralized erasure code for distributed network

storage,” IEEE Transactions on Parallel and Distributed Systems, vol. 21, no. 11, Nov. 2010, pp.

1586-1594.

161

[7.19] H. Lin and W. Tzeng, “A secure erasure code-based cloud storage system with secure data

forwarding,” IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 6, June 2012,

pp. 995-1003.

[7.20] M. Maidl, “The common fragment of CTL and LTL,” IEEE symposium on foundations of

computer science, pp. 643-652, 2000.

[7.21] S. U. R. Malik, S. K. Srinivasan, S. U. Khan, and L. Wang, “A Methodology for OSPF

Routing Protocol Verification,” 12th International Conference on Scalable Computing and

Communications (ScalCom), Changzhou, China, Dec. 2012.

[7.22] L. Moura and N. Bjrner, “Satisfiability Modulo Theories: An appetizer,” Lecture Notes in

Computer Science, Vol. 5902, Springer, 2009, pp. 23-36.

[7.23] M. Mowbray, and S. Pearson, "A client-based privacy manager for cloud computing," In

Proceedings of the Fourth International (ICST) Conference on COMmunication System

softWAre and middleware, ACM, p. 5, 2009.

[7.24] T. Murata, “Petri Nets: Properties, Analysis and Applications,” Proc. IEEE, Vol. 77, No.

4, pp. 541-580, Apr. 1989.

[7.25] W. Reisig and G. Rozenberg, “Lectures on Petri Nets I: Basic Models,” Lecture Notes in

Com-puter Science, Berlin: Springer-Verlag, Vol. 1491, 1998.

[7.26] A. Shamir, “How to Share a Secret,” Comm. ACM, Vol. 22, No. 11, Nov. 1979, pp. 612-

613.

[7.27] D. Sun, G. Chang, L. Sun, and X. Wang, “Surveying and Analyzing Security, Privacy and

Trust Issues in Cloud Computing Environments,” Procedia Engineering, Vol. 15, 2011, pp.

2852 – 2856.

162

[7.28] H. Takabi, J. B. D. Joshi, and G. J. Ahn, "Security and privacy challenges in cloud

computing environments," IEEE Security and Privacy, Vol. 8, No. 6, 2010,pp. 24-31.

[7.29] Y. Tang, P. P. Lee, J. C. S. Lui, and R. Perlman, “Secure Overlay Cloud Storage with

Access Control and Assured Deletion,” IEEE Transactions on Dependable and Secure

Computing, Vol. 9, No. 6, Nov. 2012, pp. 903-916.

[7.30] A. Yun, C. Shi, and Y. Kim, “On protecting integrity and confidentiality of cryptographic

file system for outscored storage,” Proceedings of 2009 ACM workshop on cloud computing

security CCSA’09, pp. 67-76, 2009.

[7.31] W. Jansen and T. Grance, "Guidelines on security and privacy in public cloud

computing," NIST special publication, 800-144, 2011.

[7.32] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing and

emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th

utility,” Future Generation computer systems, Vol. 25, No. 6, 2009, pp. 599-616.

[7.33] A. R. Khan, M. Othman, S. A. Madani, and S. U. Khan, “A survey of mobile cloud

computing application models,” IEEE Communications Surveys and Tutorials, 2013, 1-21.

[7.34] R. Perlman, “File system design with assured delete,” In Third IEEE International

Security in Storage Workshop, pp. 6, 2005.

[7.35] R. Geambasu, T. Kohno, A. A. Levy, and H. M. Levy, “Vanish: Increasing Data Privacy

with Self-Destructing Data,” In USENIX Security Symposium, pp. 299-316. 2009.

163

8. CONCLUSIONS

Large scale computing systems are growing exponentially, such as cloud and DC, to

accommodate the escalating demands of user and applications. Similarly, as the size and

complexity of the DC increases the concerns related to reliability, energy consumption, security,

availability, and performance are also growing. Google reported a 20% revenue loss due to a

delay of 500msecs in response time and Amazon reported a sales decrease of 1% due to an

additional response time of 100msecs. The said examples indicate the importance and impact of

the slightest inaccuracy in large-scale computing systems. In the said perspective, the use of FMs

for verifying the functionality and reliability of the systems is compulsory. In our research, we

focused on the application of FMs tools and techniques to investigate about the reliability and

correctness of different applications running in large scale computing systems.

In Chapter 3, we have studied and analyzed three state-of-the-art VM-based open source

cloud management platforms: (a) Eucalyptus, (b) Open Nebula, and (c) Nimbus. To model the

systems with the advantage of providing a firm mathematical representation and to analyze the

structural and behavioral properties, we used High-Level Petri Nets (HLPN). Moreover, the

models are verified using SMT-Lib and Z3 solver. We used Model Checking approach to verify

our models. Several properties are specified (using the specification and details available in

documentation) and if the models satisfy those properties, then the model is declared correct. The

verification results revealed that the models are correct and feasible as the numbers of Virtual

Machines (VM) grow. This paper provides an in-depth formal analysis, modeling, and

verification of the systems that will be helpful for the research community to further explore and

understand the systems. Moreover, the paper also provides a strong foundation for new

researchers to apprehend the meticulous knowledge of the systems. In future, we will analyze,

164

model, and verify some other cloud management platforms, such as OpenStack, oVirt, and ECP.

Moreover, we will also perform a detailed feasibility analysis of the aforesaid platforms under

different SLA constraints.

OSPF is one of the most widely used IGP over the Internet today. The primary goal of

OSPF is to provide fast convergence and load balancing to the network. In Chapter 4, we provide

the intra area convergence time analysis of OSPF based on the: (a) DR, (b) cascading failures,

and (c) topology, on a broadcast and NBMA segments. We simulated the detailed

implementation of OSPF protocol built on the specifications available in RFC 2328. The BRITE

topology generator was used for the interconnections among the routers to get more realistic

results. The results from our simulation revealed that the convergence time of an area depends

significantly on: (a) the number of DRs, (b) the placement of DRs, (c) interconnection amongst

the routers, and (d) the number of routers, in a topology. Moreover, the results also exposed the

fact that having more DR in an area can improve the convergence time of the specified segment.

However, the overall convergence time of the area will decrease.

In Chapter 5, we modeled DC as a CPS to capture the thermal evolution and dynamics

presented by DC components. We modeled DC as a Cyber Physical System (CPS) to capture the

dynamics and evolution of the thermal properties exhibited by the DC. All software aspects, such

as scheduling, load balancing, and all the computations performed by the devices were

considered as the “Cyber” component. The supported infrastructure, such as servers, switches,

and power supplies were modeled as the “Physical” component of the CPS. We modeled the heat

dissipation of the major components of DC, such as servers and switches, and utilized the

information to propose a thermal aware scheduling approach. Our proposed strategy was testified

and demonstrated by executing on a real DC workload having more than 22,000 jobs, obtained

165

from the CCR, State University of New York, at Buffalo. Moreover, we also performed a

comparison of our proposed strategy with three existing strategies, FCFS, TASA, and GA-based.

Furthermore, we performed formal analysis, modeling, and verification using HLPN, SMT-Lib,

and Z3 solver. We investigated the impact of all of the scheduling approaches on the overall

thermal signature and thermal uniformity among the pods within a DC. Our analysis revealed

that the scheduling heuristics exhibit non-uniformity in thermal signatures among the pods. Such

uneven thermal signatures lead to hotspots within the data center. The finding and results from

the analysis were used to mitigate the ambient effect caused by the job allocation. The simulation

results revealed that our proposed strategy maintains better thermal balance within the pods of

DCs as compared to the other approaches. The formal verification performed using SMT-Lib and

Z3 solver, matches the simulation results, where hotspots were identified in all of the studied

approaches.

Formal analysis of routing protocols is compulsory for a secure and efficient performance

of modern large scale networks. In the said perspective, in Chapter 6, we proposed a novel

method to verify the properties of OSPF protocol using delay information of the routers. We

have verified the protocol in two parts: (a) content verification and (b) route verification. For (a),

we verify the property that the LSDB for all the routers in an area must be identical. For (b), we

uses delay information to order the events and then verify if the events are occurring in the same

order. The aforementioned properties are verified using SMT-LIB and Z3 solver. We simulated

the detailed implementation of OSPF and BRITE topology generator was used for the generation

of realistic topological interconnections. The proposed method can scale up the verification by

reducing the state space and narrowing it down to a single parameter.

166

In Chapter 7, we proposed the DaSCE protocol, a cloud storage security system that

provide key management, access control, and file assured deletion. Assured deletion was based

on policies associated with the data file uploaded to the cloud. On the revocation of policies,

access keys were deleted by the KMs that result in halting of the access to the data. Therefore,

the files were logically deleted from the cloud. The key management was accomplished using (k,

n) threshold secret sharing mechanism. We modeled and analyzed FADE. The analysis

highlighted some issues in key management of FADE. The DaSCE improved the key

management and authentication processes. The working of the DaSCE protocol was formally

analyzed using HLPN, SMT-Lib, and Z3 solver. The performance of the DaSCE was evaluated

based on the time consumption during file upload and download. The results revealed that the

DaSCE protocol can be practically used for clouds for security of outsourced data.

