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ABSTRACT

The purpose of this research project is to develop a model that is able to accurately

predict frost depth on a particular date, using available information. Frost depth prediction

is useful in many applications in several domains. For example in agriculture, knowing

frost depth early is crucial for farmers to determine when and how deep they should plant.

In this study, data is collected primarily from NDAWN (North Dakota Agricultural Weather

Network) Fargo station for historical soil depth temperature and weather information.

Lasso regression is used to model the frost depth. Since soil temperature is clearly

seasonal, meaning there should be an obvious correlation between temperature and

different days, our model can handle residual correlations that are generated not only

from time domain, but space domain, since temperatures of different levels should also be

correlated. Furthermore, root mean square error (RMSE) is used to evaluate goodness-of-fit

of the model.
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CHAPTER 1. INTRODUCTION

Most soils at high altitudes or elevations are seasonally frozen soil. Land freeze-thaw

is a seasonal transition process where the soil temperature drops below 0◦C then rise above

0◦C.

Predicting the depth to which soils may freeze and thaw can be helpful for guiding

city plan. Freezing and thawing can cause land geological disasters. Soil freezing produces

volume expansion, and melting of the soft soil caused subsidence. It often cause building

foundation damage; subsidence of ground; in slope area lead to landslide and collapse ;road

subgrade deformation, and threat to traffic safety, transport etc.

Another reason for investigating predictive modes for frost depth is for environmental

phenomena, such as runoff and flooding associated with rainfall and snowmelt on frozen

soil. In the Fargo-Moorhead area, due to the presence of ice, snow melt over frost soil can

lead to the reduction in soil infiltration capacity and an increase in spring stream flow to

Red River which probably result in a greater potential risk for flood.

Furthermore, in agriculture world, frost depth predicting is important for its use in

managing agricultural activities and water resources. Knowing frost depth early is crucial

for farmers to determine when and how deep they should plant. More frequent freeze thaw

cycles (FTCs) may affect ecosystem diversity and productivity because freeze-thaw cycles

cause changes in soil physical properties and affect water movement in the landscape.

Soil freezing and thawing influence the infiltration of water and subsequent redistribution,

runoff generation.

Frost depth prediction or similar studies have already attracted researchers from

various domains, either from academy or from industry, for several decades. Many

methods and approaches have been developed with the advances of statistic and computing

technologies. Farrngton and Gildea [1] presented a frost penetration prediction model using

numerical simulation, statistical regression, spatial interpolation, and GIS. Using their
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methods, they concluded that seasonal maximum frost penetration depth can be reliably

estimated by the relationship to the actual annual freezing degree index (AFDI), as long

as a pavement-specific relationship is derived using meteorological data that account for

region-specific weather dynamics. A regression of maximum seasonal frost penetration

depth (derived from dynamic simulations of temperature and moisture flux in a pavement

structure using actual climatic data) on AFDI show a strong positive correlation and

was useful for fitting a linear equation to the median and 90% upper prediction limit of

maximum frost penetration depth [1].

Thordarson [2] developed a model for road surface temperature and sub-base frost

depth prognosis. The model is connected to a frost depth and sb-base temperature sensor

and the Automatic Weather Station which enables accurate real-time operation of the

model. Using input data from a 5 day weather forecast, the model is capable of accurately

predicting the development of freeze or thaw in the road sub-base.[2]

Haithem and et al [3] introduced a simplified model to predict the frost penetration

in Manitoba. The goal of their research is to provide better understanding to the seasonal

variation of the properties of pavement materials. The climatic and seasonal monitoring

data for the Oak Lake test section were used in the model. The experimental result was

gree with the result from Northern Ontario frost penetration model.

Lee [4] provided a frost indicator with methylene blue solution method to measure

the frost depth.

The purpose of my research project is to develop a model that is able to accurately

predict frost depth on a particular date using available information. In this study,

data pertaining to historical soil depth temperature and weather information is collected

primarily from two NDAWN (North Dakota Agricultural Weather Network) Fargo stations.

Lasso regression [5] will be used to model the frost depth. The Lasso regression technique

is selected in this research primarily due to its capability of pruning unimportant covariates.
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Since ground temperature is clearly seasonal, which means there should be an obvious

correlation between temperature and different days, our model should be able to handle

residual correlations that are generated not only from the time domain but also the

spatial domain. Through a preliminary investigation, Gupta’s research [6] ”A note on the

asymptotic distribution of Lasso estimator for correlated data” will be used in this project.

Furthermore, root mean square error (RMSE) will be used to evaluate goodness-of-fit of

the model.

The historical soil depth temperature data used in this research has temperature

records at several different soil depths in each year. This characteristic of the data provides

us two options to build models on predicting frost depth. One option is to build a model to

predict soil temperature1 at each depth, and then uses an interpolation method to calculate

frost depth from the predicted soil temperature values at each depth. The second option

is to calculate soil frost depth values as the response variable first, and then build a model

directly to predict frost depth. For the first option, two methods, namely ”Modeling Soil

Temperature First at Each Depth” and ”Modeling Soil Temperature First on All Depths”,

will be discussed shortly. ”Modeling Soil Temperature First at Each Depth” method builds

a model on each depth, while ”Modeling Soil Temperature First on All Depths” builds a

single model on the whole data set including all depths data. For the second option, method

”Modeling Directly on Frost Depth” will be presented. Each of the three methods have their

own advantages and disadvantages, which will be discussed in great detail shortly.

The thesis is organized as follows: In Chapter 2, the data sets that are used in this

study will be discussed in detail. Several steps of the pre-processing of the data sets will

be discussed in Chapter 3. In Chapter 4, Lasso regression [5] technique and how it applied

to the data sets with correlated residues will be discussed in great detail. Three frost depth

modeling techniques using Lasso regression will be presented in Chapter 5. Extensive

1The response variable is thus temperature.
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experiments and comparison will be conducted in Chapter 6, which will also present the

final combined approach. Finally, conclusions will be made in Chapter 7.

4



CHAPTER 2. DATA DESCRIPTION

In this study, data is collected primarily from NDAWN (North Dakota Agricultural

Weather Network) Fargo station; one data set has historical soil depth temperature and the

other has historical weather information.

The first data set is from the Fargo Station Deep Soil Temperatures [7] website. On

the website, there are soil temperature data for different depths of soil, ranging from 1cm

to 1170 cm. Table 2.1. shows an example of the soil temperature data.

Table 2.1. An example of soil temperature data
Sta Year Mo Day Jday 1cmC 5cmC 10cmC 20cmC ... 250cmC
FARG 1994 1 1 1 -18.9 -2.1 -1.8 -1.4 ... 7.5
FARG 1994 1 2 2 -19.9 -2.2 -1.9 -1.5 ... 7.4
FARG 1994 1 3 3 -17.2 -2.4 -2.0 -1.6 ... 7.3
FARG 1994 1 4 4 -20.9 -2.5 -2.1 -1.7 ... 7.3

In Table 2.1., column Sta indicates the weather station. Due to space limitation,

Table 2.1. only shows temperatures for several soil depths. In the original data file, there is

temperature data for 23 levels of depths in total: 1 cm, 5 cm, 10 cm, 20 cm, 30 cm, 40 cm,

50 cm, 60 cm, 80 cm, 100 cm, 125 cm, 150 cm, 175 cm, 200 cm, and 250 cm. However, not

all soil depths have temperature data for all years, thus further preprocessing is necessary

on these data, which will be discussed in Chapter 3.

The second data set is Fargo daily.csv data, which is from [7]. Table 2.2. shows an

example of the data.

Table 2.2. An example of Fargo daily data
Sta La Lo El Year Month Day Tmax Tmin ... Precip
FARG 46.897 -96.812 902 1994 1 1 -15.86 -21.54 ... M
FARG 46.897 -96.812 902 1994 1 2 -14.92 -26.61 ... M
FARG 46.897 -96.812 902 1994 1 3 -10.92 -24.05 ... M
FARG 46.897 -96.812 902 1994 1 4 -15.41 -28.04 ... M
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In Table 2.2., Sta indicates station. La, Lo, and El are the abbreviation for latitude,

longitude, and elevation, respectively. The second data set has the information of maximum

temperature of the day (Tmax), the minimum temperature of the day (Tmin), the average

temperature of the day (Tavg), the average bare soil temperature (Tbs), the average turf soil

temperature (Tts), the average wind speed (WSavg), the maximum wind speed (WSmax),

the average wind direction (WDavg), the total solar radiation (Solar), the total rainfall

(Rainfall), the average dew point temperature (DP), the average wind chill temperature

(WC), and precipitation information (Precip). Note that several of these columns are not

shown in Table 2.2. due to space limitation.
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CHAPTER 3. DATA PREPROCESSING

a) Preprocess Fargo Daily Data

In the Fargo Daily Data dataset, all cell values in Sta are identical as the values in La,

Lo, and El as shown in Table 2.2.. We remove these columns first in the preprocessing step,

since these columns will not have any predictive power in our regression models which will

be discussed shortly.

Missing values in Rainfall are simply replaced with 0, since most values of this

attribute are 0.

Table 3.1. An example of preprocessed Fargo daily data
Year Month Day Tmax Tmin ... Precip
1994 1 1 -15.86 -21.54 ... M
1994 1 2 -14.92 -26.61 ... M
1994 1 3 -10.92 -24.05 ... M
1994 1 4 -15.41 -28.04 ... M

Table 3.1. shows the preprocessed data for the same data in Table 2.2..

b) Preprocess Soil Temperature Data

As mentioned above, there is a Soil Temperature Data file for each year, as shown in

the example in Table 2.1.. The regression models, which will be discussed shortly, require

every year to have the same sets of date. Thus the data of years 1993 and 2011 were

removed first since they are not complete.

c) Merge data sets

For each soil depth of each date in the Soil Temperature Data dataset, we concatenate

the data of Soil Temperature Data with the data from Fargo Daily Data of the same date.

Take January 1. 1994 in Table 2.1. for example, there are in total 15 depth levels, i.e. 1cmC,

5cmC, ..., 250cmC, so after concatenation, there are 15 rows created, as Table 3.2. shows.

7



Table 3.2. An example of merged dataset
Year Month Day Tmax Tmin ... Precip AirTemp Depth Temperature
1994 1 1 -15.86 -21.54 ... M -18.9 1 -2.1
1994 1 1 -15.86 -21.54 ... M -18.9 5 -1.8
1994 1 1 -15.86 -21.54 ... M -18.9 10 -1.4
1994 1 1 -15.86 -21.54 ... M -18.9 20 -0.5
1994 1 1 -15.86 -21.54 ... M -18.9 30 0.2
1994 1 1 -15.86 -21.54 ... M -18.9 40 0.9
1994 1 1 -15.86 -21.54 ... M -18.9 50 1.4
1994 1 1 -15.86 -21.54 ... M -18.9 60 2
1994 1 1 -15.86 -21.54 ... M -18.9 80 3
1994 1 1 -15.86 -21.54 ... M -18.9 100 3.8
1994 1 1 -15.86 -21.54 ... M -18.9 125 4.8
1994 1 1 -15.86 -21.54 ... M -18.9 150 5.4
1994 1 1 -15.86 -21.54 ... M -18.9 175 6.1
1994 1 1 -15.86 -21.54 ... M -18.9 200 6.6
1994 1 1 -15.86 -21.54 ... M -18.9 250 7.5

In this study, we want to predict the frost depth on each day (if there is any). As

mentioned before, the frost depth is defined as the depth at which the soil temperature is

0◦C and above which the soil temperature is greater than 0◦C1.

1There are some dates in the data that below the forst depth exists another sub-zero-temperature soil level.
However this study only concentrate on the frost depth.
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Figure. 3.1. shows the average soil temperature at each of the 15 depths for each date.

From the figure we can see that there are only a fraction of dates that have a frost depth.

Figure 3.1. Average soil temperature at each of the 15 depths for each date.

Furthermore, the sets of dates for which there is a frost depth also differ from year to

year as Figures. 3.2., 3.3., and 3.4. show. Figures. 3.2., 3.3., and 3.4. show the dates that

have a frost depth from year 1993 to year 2010. The first two columns show the date of

each year. The remaining columns indicate whether there is a frost depth (”1” indicates a

frost depth, ”0” indicates otherwise) for each year. For example in Figure. 3.2., there is a

frost depth in January 9. 2002 since the cell is ”1”, while there is no frost depth in January

9. 2001 since the cell is ”0”.

9



Figure 3.2. Dates that have frost depth.The first two columns show the date of each year. The
remaining columns indicate whether there is a frost depth (”1” indicates have a frost depth, ”0”
indicates otherwise) for each year.
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Figure 3.3. Dates that have frost depth.The first two columns show the date of each year. The
remaining columns indicate whether there is a frost depth (”1” indicates have a frost depth, ”0”
indicates otherwise) for each year.

11



Figure 3.4. Dates that have frost depth.The first two columns show the date of each year. The
remaining columns indicate whether there is a frost depth (”1” indicates have a frost depth, ”0”
indicates otherwise) for each year.

Note that in the merged data set (an example is shown in Figure. 3.2.), there is only

soil temperature data of each depth for each date. However, to build a regression model for

predicting frost depth, frost depth is needed as the response variable. Chapter 5 illustrates a

linear interpolation method to estimate frost depth from the soil temperature values of each

level.

We have two approaches to build a regression model for frost depth prediction. One

approach is to build a model to predict soil temperature at each depth, and then uses linear

interpolation method to calculate frost depth from the predicted soil temperature values at

each depth. The other approach calculates soil frost depth values as the response variable

first, and then build a model directly to predict frost depth. In Chapter 5 we will present

techniques to build regression models for each approach, and analyze their pros and cons.

The original data set from year 1994 to year 2010 was split into a training data set,

which includes data from year 1994 to year 2008, and a testing data set, which includes

12



data from year 2009 to year 2010. For both approaches, we built models on the training

data set, and verified their effectiveness on the testing data set.

The training design matrix data as well as the testing design matrix data were

normalized such that each variable’s values are z-score [8] normalized, and the response

variable of training and testing data sets are subtracted by their corresponding mean of each

date in a year:

X̃i = (Xi − X̄)/Sx

Ỹi = Yi − Ȳσdate(Yi)
(1)

where X̃i and Ỹi are the ith data point’s feature vector and response respectively, X̄ are the

means of the design matrix, Sx is the estimation for standard deviation of the design matrix,

σdate() is a date selection function (to find the date, which includes month and day, within

a year. Jan. 1 for example, σdate(1/1) will select a subset of dates, including January 1.

1994, January 1. 1995, ... , January 1. 2010), and X̄i and Ȳσdate(Yi) are respectively the

average feature vector and average response of a specific date selected by the date selection

function σdate().
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CHAPTER 4. LASSO REGRESSION ON PREDICTING FROST

DEPTH

4.1. Introduction of Lasso Regression

Lasso regression was first introduced in 1994 by Tibshirani [5]. Lasso regression is

first briefly summarized here in order to provide a context for our methods1.

Suppose there is a population of p-dimensional vectors X, where X ⊂ Rp.

Furthermore, there is a population of 1-dimensional real-valued responses Y (Y ⊂ R)

corresponding to each X. A general linear regression model to estimate the coefficients

is as follows:

Yi = X
′

iβ + εi,∀i = 1, ..., n (2)

where Xi (Xi = (1, x1, x2, ..., xp)
′ ) and Yi are the ith vector 2 and response

respectively, β (β = (β0, β1, ..., βp)) are coefficients, n is the number of vectors, and εi

is the random error.

In matrix form:

Ỹ = Xβ + ε̃ (3)

where Ỹ =



Y1

Y2

...

Yn


X =



X1

X2

...

Xn


ε̃ =



ε1

ε2

...

εn


and f(X) = Xβ is denoted as the predicts for Y.

In linear regression, β is usually estimated through minimizing the least squares

objective function:

1The equations are mainly from [5]
2In the thesis, vector and data point are used interchangeblly.

14



Zn(β) =
1

n
(Ỹ − Xβ)T (Ỹ − Xβ) (4)

by first taking differentiation with respect to β:

∂Z

∂β
= −2XT (Y− Xβ) (5)

and then by setting it to zero:

β̂ = (XTX)−1XT Ỹ (6)

The Lasso regression (Least Absolute Shrinkage and Selection Operator) [5] method

applies a constraint on the sum of the first norm of coefficients when the least squares

objective function is minimized:

Zn(β) =
1

n
(Ỹ − Xβ)T (Y− Xβ) + λn

p∑
j=1

|βj| (7)

which is usually called a penalized least square objective function. In Equation (7),

λn is a tunning parameter.

Therefore, we can get the coefficients β with:

β̂ = arg min
β
Zn(β) (8)

The idea behind the Lasso regression is basically to find a model complexity that

optimally balances bias and variance.

The essence of Lasso regression lies in introducing some bias in the estimation for β

so that the variance is reduced and hence the prediction error is decreased1.

1Lasso regression does so through removing unimportant attributes. Thus it often used in model selection.
For more details, please refer to [5].
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In the Lasso regression objective function (Equation (7)), λ controls the amount of

regularization. When λ→0 Lasso estimate is reduced to a linear regression model, and

when λ→+∞ Lasso estimatel is reduced to a mean model (with interception only).

Note that Lasso regression objective function (Equation (7)) is a covex function,

meaning that for each λ there will be only one set of coefficients β that minimizes the

objective function (Equation (7)). There is no closed form solution to minimize the

objective function. However, [5] provides a quadratic programming technique, and there is

a R package (glmnet [9]) which is very convenient for solving the coefficients that minimize

the objective function.

4.2. Lasso Regression for Correlated Errors

When there is a correlation between random errors εi in Equation (3), further study

is needed to improve the results of Lasso regression. Note that to know whether a data

set will have a correlation between random errors after modeling a Lasso regression, linear

regression can be simply performed on the data set first, and then analyze the residues of

the linear regression results.

Figure. 4.1. shows the linear regression residue plot for the training data set (data

from year 1994 to year 2008). Figure. 4.2. shows a plot of auto correlation function (ACF)

of the residues. Auto correlation describes the similarity between observations as a function

of the time lag [10]. A clear pattern of the residues along the X-axis can be seen.
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Figure 4.1. The linear regression residue plot on depth 10.

Figure 4.2. The plot of auto correlation function of linear regression residues on depth 10, which
has a clear pattern of residues alone the X-axis.
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The covariates for soil temperature in the data under consideration have high

multicollinearity, which renders the classical ordinary least square estimates suffering

from inflated standard error. The regular Lasso method can be applied to cure the

multicollinearity. However, the random error in our model has temporal autocorrelation,

thus the LASSO method for correlated data proposed by Gupta [6], ”A not on the

asymptotic distribution of Lasso estimator for correlated data”, is used instead for

estimation of all our soil temperature and frozen depth models.

Brief summary of applying Gupta’s research [6] is as follows:

Assume
∑

= Cov(ε1, ..., εn) is the covariance matrix of the random errors. From

Equation (3), we can get:

(
∑

)−1/2Ỹ = (
∑

)−1/2Xβ + (
∑

)−1/2ε̃ (9)

Let Ỹ ∗ = (
∑

)−1/2Ỹ , X∗ = (
∑

)−1/2X, and ε̃∗ = (
∑

)−1/2ε̃, then we get:

Ỹ ∗ = X∗β + ε̃∗ (10)

Note that Cov(ε̃∗) = In, where In is an identity matrix.

Thus, the new regression coefficients β can be estimated as follows:

β̂ = arg min
β
Z

′

n(β) (11)

where :

Z
′
n(β) = 1

n
(Ỹ ∗ − X∗β)T (Ỹ ∗ − X∗β) + λn

p∑
j=1

|βj|

= 1
n
(Ỹ − Xβ)T

∑−1(Ỹ − Xβ) + λn
p∑
j=1

|βj|
(12)

where
∑

is the covariance matrix of the random errors. We use sample variance-autocovariance

matrix of residues for
∑

.
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∑̂
=



γ̂0, γ̂1, ..., γ̂(t−1)

γ̂1, γ̂2, ..., γ̂(t−2)

...

γ̂(t−1), γ̂(t−2), ..., γ̂(0)


(13)

where:

γ̂(h) = n−1

n−h∑
k=1

(Uk − Ūn)(Uk+h − Ūn) (14)

where 0 ≤ h ≤ n − 1 and U = Y − Xβ̂. β̂ is obtained iteratively by initializing the

value of
∑−1 as

∑−1
0 , which is the covariance matrix of residues of linear regression.

[6] also suggests taking the following value for λn:

λn = O(
1√

n ln(n)
) (15)

Figure. 4.3. summarizes that the entire algorithm is used to estimate βs. The

input data of the Algorithm 1 include design matrix of training data set and response

variable. After normalizing the design matrix and response variable values, Algorithm

1 first calculates covariates β and correlation matrix
∑

using Linear regression. Then

Algorithm 1 updates β and
∑

iteratively using Lasso regression until β converges or

reaches maximum iteration.
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Figure 4.3. Algorithm 1: Lasso regression.
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CHAPTER 5. MODELING SOIL FROST DEPTH

As mentioned in Chapter 3, the first approach to predict frost depth is to model the soil

temperature at each depth first, then use a simple linear interpolation method to calculate

the frost depth. The following section describes this approach.

We have two further options to build models on predicting soil temperature at each

depth. One is that we build different models on each depth separately. The other is to build

a model on combined data set in which the depth is considered as a variable. One merit

that the second option has over the first one is that the model of the second option can work

on a new data set with new depth data, since the depth is regarded as an attribute. Thus,

the first option would be prefered only in the case that the model built using the first option

will have a better accuracy on predicting soil temperature, and hence better accuracy on

frost depth later on1.

Since the experiment setup for both options, including data preprocessing and

programming, does not differs very much, both options will be tested separately.2

5.1. Modeling Soil Temperature First at Each Depth

Lasso Regression models were built using Algorithm 1 which is shown in Figure.

4.3. on predicting soil temperature for each depth. In this case, the response variable Y in

Algoirthm 1 was the soil temperature at one depth. The design matrix X has the variables

that are shown in Table 3.2. except Y ear, Depth, and Temperature. The source code is

in Appendix. A problem using R in calculating the inverse matrix for the big matrix was

found, so the Matlab (via R.matlab pakage) was used to do inverse matrix calculation.
1Actually through our experiments, we realized that the first option requires much less computer memory

since it works on much smaller data size.
2Snow data is considered as one of the most important data in freeze and thaw cycle modeling[11].

In this research, we also tried to use snow data in ”Modeling Soil Temperature First on All Depths” and
”Modeling Soil Temperature First on Each Depth” methods. It turned out that the result did not improved
obviously for the two methods with RMSE = 19.47 and 19.06 with and without snow data in ”Modeling Soil
Temperature First On Each Depth” and RMSE = 21.93 and 22.69 with and without snow data in ”Modeling
Soil Temperature First On All Depths”. We do not know the reason, but statistically, we only want to include
data that are significantly related to temperature changes. Therefore, the snow data were not used as one of
the input variables in the models.
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Figure 5.1. Convergence trend of beta on depth 10.

Figure 5.2. The root mean square errors (RMSE) of training data and testing data on depth 10.
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Figure. 5.1. shows the convergence trend of β on depth 10 in Algorithm 1. The

”maximum diff with last iteration” is defined as max(βi− βi−1)(i ∈ [2 maxIteration]).

Figure. 5.2. shows the trend of root mean square errors (RMSE) of training data and testing

data, respectively, using the βs that are calculated in each iteration in the While loop of

Algorithm 1 on depth 10. It can be seen that the RMSE of testing data generally improves

over each iteration in Algorithm 1. The convergence trends of β and the trends of root

mean square errors on other depths are quite similar to those in Figures. 5.1. and 5.2., thus

not all of them are shown.

Tables 5.1., 5.2., and 5.3. summarizes models (β) for different depths. The values

in parentheses is the standard errors. Notice that several covariates are equal to 0 in each

model, highlighting the capability of Lasso regression to prune the models. The most

significant covariates across all models are the air temperature (AirTemp), the total solar

radiation (Solar), and the average dew point temperature (DP ).
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Table 5.1. Models for depths from 1cm to 30cm
Depth1 Depth5 Depth10 Depth20 Depth30

Intercept 0.0850 0 0.0662 0.0750 0.0618
(0.0009) (0.0003) (0.0004) (0.0001) (0.0001)

ConvertedDay 0 0 0.0200 0 0
(0.0006) (0.0002) (0.0002) (0.0002) (0.0001)

Tmax 0.0823 0.0450 0.0214 0 0
(0.0017) (0.0013) (0.0005) (0.0003) (0.0007)

Tmin 0.0503 0.0351 0 0 0
(0.0007) (0.0006) (0.0008) (0.0001) (3.14E-05)

Tavg 0.0175 0 0 0 0.0167
(0.0037) (0.0051) (0.0020) (0.0012) (0.0010)

Tbs -0.0635 -0.0345 -0.0111 0 0
(0.0008) (0.0003) (0.0004) (0.0007) (0.0002)

Tts -0.0406 -0.0286 0.0297 0 0.0131
(0.0010) (0.0009) (0.0009) (0.0001) (7.70E-05)

WSavg 0 0.0101 0.0229 0.03738 0
(0.0035) (0.0007) (0.0010) (0.0003) (0.0006)

WSmax 0 0.0137 0 0.0300 0.0246
(0.0018) (0.0006) (0.0010) (0.0002) (0.0002)

WDavg 0 0 0 0 0
(1.87E-05) (2.11E-05) (2.44E-05) (5.70E-06) (1.31E-05)

Solar -0.0520 -0.0520 -0.0508 -0.0398 -0.0359
(0.0011) (0.0007) (0.0009) (0.0002) (8.20E-05)

Rainfall -0.0314 -0.01842 -0.0121 0 0
(0.0011) (0.0011) (0.0011) (0.0003) (0.0002)

DP -0.0666 -0.0537 -0.0612 -0.0635 -0.0707
(0.0023) (0.0019) (0.0007) (0.0007) (0.0019)

WC -0.0117 0 0 0 0
(0.0017) (0.0012) (0.0002) (0.0003) (0.0006)

Precip -0.0358 -0.0271 -0.0196 -0.0112 0
(0.0005) (0.0004) (0.0007) (4.37E-05) (9.47E-05)

AirTemp 0.0881 0.0867 0.0885 0.08112 0.0690
(0.0023) (0.0069) (0.0020) (0.0014) (0.0003)
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Table 5.2. Models for depths from 40cm to 125cm
Depth40 Depth50 Depth80 Depth100 Depth125

Intercept 0.0450 0.03335 0 0 0
(0.0002) (0.0001) (0.0001) (3.11E-05) (2.16E-05)

ConvertedDay 0 0 0 0 0
(9.46E-05) (0.0001) (0.0004) (7.22E-05) (6.24E-05)

Tmax 0 0 0 0 0
(0.0002) (0.0007) (3.50E-05) (0.0002) (9.07E-05)

Tmin 0 0 0 0 0
(0.0001) (0.0002) (0.0001) (7.96E-05) (4.23E-05)

Tavg 0 0 -0.0342 0 0
(0.0008) (0.0010) (0.0005) (0.0006) (0.0005)

Tbs 0 0 0 0 0
(0.0002) (0.0006) (4.73E-05) (6.41E-05) (9.12E-05)

Tts 0.01690 0.0147 0.0115 0 0
(0.0002) (0.0002) (4.37E-05) (7.20E-05) (2.70E-05)

WSavg 0 0 0 0.0124 0
(0.0004) (1.76E-05) (6.62E-05) (0.0003) (0.0002)

WSmax 0.01790 0.01579 0.0148 0 0
(0.0002) (0.0006) (0.0007) (0.0002) (0.0001)

WDavg 0 0 0 0 0
(3.47E-06) (1.04E-05) (2.21E-05) (1.04E-05) (4.07E-06)

Solar -0.0244 -0.0209 -0.0152 -0.0129 -0.0133
(0.0002) (0.0001) (0.0001) (8.33E-05) (1.23E-05)

Rainfall 0 0 0 0 0
(0.0009) (0.0004) (0.0004) (0.0003) (0.0001)

DP -0.0594 -0.0490 -0.0698 -0.0147 -0.0139
(0.0004) (0.0009) (0.0002) (0.0001) (0.0001)

WC 0 0 0 0 0
(0.0002) (0.0003) (0.0001) (0.0001) (0.0001)

Precip 0 0 0 0 0
(0.0002) (0.0001) (3.31E-05) (5.38E-05) (4.99E-05)

AirTemp 0.0695 0.0533 0.1053 0.0210 0.0196
(0.0008) (3.93E-05) (0.0005) (0.0005) (0.0003)
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Table 5.3. Models for depths from 175cm to 250cm
Depth175 Depth200 Depth250

Intercept 0 0 0
(4.17E-05) (2.22E-05) (1.03E-06)

ConvertedDay 0 0 0
(7.55E-05) (4.79E-05) (3.17E-05)

Tmax 0 0 0
(6.22E-05) (0.0002) (0.0002)

Tmin 0 0 0
(6.31E-05) (3.51E-05) (4.08E-05)

Tavg 0 0 0
(0.0004) (0.0007) (0.0008)

Tbs 0 0 0
(5.81E-05) (4.43E-05) (0.0003)

Tts 0 0 0
(7.07E-05) (4.83E-05) (4.92E-05)

WSavg 0 0 0
(8.14E-05) (0.0001) (0.0005)

WSmax 0 0 0
(0.0002) (0.0001) (0.0001)

WDavg 0 0 0
(3.43E-06) (1.03E-06) (1.44E-06)

Solar -0.0136 -0.0122 -0.0114
(4.59E-05) (7.52E-05) (0.0002)

Rainfall 0 0 0
(2.31E-05) (2.74E-05) (0.0001)

DP -0.0128 -0.0115 0
(7.41E-05) (9.23E-05) (0.0006)

WC 0 0 0
(9.37E-05) (9.98E-05) (0.0003)

Precip 0 0 0
(6.02E-05) (2.23E-05) (2.43E-05)

AirTemp 0.01857 0.01677 0.0121
(0.0003) (0.0007) (0.0004)
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Figures 5.3. and 5.4. show the residue plot and ACF plot for residue , respectively,

after Lasso regression on depth 10. From these two figures, It can be seen that the

correlation among residues is greatly reduced in comparison with that of the linear

regression shown in Figures 4.1. and 4.2..

Figure 5.3. Plot of residue after Lasso regression on depth 10.

After models were built to predict soil temperature on each depth, the frost depth

could hence be calculated straightforwardly. As mentioned before, the frost depth is defined

as the depth at which the soil temperature is 0◦C, and above which the soil temperature is

greater than 0◦C. Take April 15. 2002 for example, as shown in Figure 5.5.. The frost depth

is slightly larger than 40 cm.

Figure 5.4. ACF plot for residue after Lasso regression on depth 10.
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Figure 5.5. Frost depth on April 15. 2002.

Equation 16 shows a linear interpolation method to calculate frost depth:

Df = max(Di + Yi
Yi−Yi+1

× (Di+1 −Di), 0)

s.t. ∀j ≤ i, Yj > 0, Yi+1 ≤ 0
(16)

where Df is the frost depth, Yi and Yi+1 are the temperatures of the ith and (i + 1)th

depths, respectively. Di andDi+1 are the values of the ith and (i+1)th depths, respectively.

It is possible that there may exist a frost depth, while all the depth temperatures are

greater than 0oC. The linear interpolation method will not work in such cases.

5.2. Modeling Soil Temperature First on All Depths

To build Lasso Regression models for predicting soil temperature on all depths, the

response variable Y in Algorithm 1 is still the soil temperature. The design matrix X has

the variables that are shown in Table 3.2. except Y ear and Temperature. The source code
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for this case is only slightly different from the one in Appendix, so we omit the code in the

thesis.

Figure. 5.6. shows the convergence trend of β in Algorithm 1. Figure. 5.7. shows

the trend of root mean square errors (RMSE) of training data and testing data respectively

using the βs that are calculated in each iteration in the While loop of Algorithm 1. It can

be seen that the RMSE of testing data slightly improves over each iteration in Algorithm 1.

Table 5.4. summarizes the model (β) on all depth.
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Figure 5.6. Convergence trend of beta on all depth.

Figure 5.7. The root mean square errors (RMSE) of training data and testing data on all depth.
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Table 5.4. The model on all depths
Depth Combined

Intercept 0.2079
(0.0010)

ConvertedDay 0
(0.0002)

Tmax 0.0164
(0.0003)

Tmin 0
(2.11E-05)

Tavg 0.0154
(0.0001)

Tbs 0
(0.0006)

Tts 0.0145
(0.0005)

WSavg 0.0518
(0.0018)

WSmax 0.0388
(0.0005)

WDavg 0
(1.88E-05)

Solar -0.0127
(0.0004)

Rainfall 0
(0.0008)

DP 0.0111
(0.0007)

WC 0.0126
(0.0002)

Precip 0
(0.0008)

Depth 0.0107
(0.0002)

AirTemp -0.0108
(0.0004)
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Figure 5.8. Plot of residue after Lasso regression on the whole dataset.

Figure 5.9. ACF plot for residue after Lasso regression the whole dataset.
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Figures 5.8. and 5.9. show the residue plot and ACF plot for residue respectively

after Lasso regression on the whole dataset. From these two figures, we can see that

the correlation among residues is also greatly reduced in comparison with that of linear

regression, as in Figures 4.1. and 4.2..

5.3. Modeling Directly on Frost Depth

To build models directly on frost depth, the frost depth is calculated on the training

data first using linear interpolation method, and the frost depth is considered as the response

variable. However, as it was mentioned before, only a fraction of days within a year had

frost depth, as shown in Figures 3.2., 3.3., and 3.4.. Besides, the dates having frost depth

of each year are also not consistent. Therefore, the subset of dates that most years have a

frost depth was selected. In Figure. 3.3., this subset of dates are underlined.
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Figure 5.10. Convergence trend of beta when modeling frost depth directly.

Figure 5.11. The root mean square errors (RMSE) of training data and testing data when modeling
frost depth directly.
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Figure. 5.10. shows the convergence trend of β when modeling frost depth directly.

Figure. 5.11. shows the trend of root mean square errors (RMSE) of training data and

testing data using the βs that are calculated in each iteration in theWhile loop of Algorithm

1. We can see that the RMSE of testing data generally improves over each iteration in

Algorithm 1.

Table 5.5. summarizes the model on frost depth directly.

Figure. 5.12. shows a screenshot of the application for data preprocessing and models

training. Figure. 5.13. shows a screenshot of the application for model comparison.
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Table 5.5. The model on frost depth directly
Depth Combined

Intercept -0.8184
(0.0517)

ConvertedDay 0
(0.0940)

Tmax 1.3562
(0.0683)

Tmin 0.4949
(0.1984)

Tavg -2.8945
(0.0777)

Tbs -0.7594
(0.5139)

Tts -1.0636
(0.0523)

WSavg -1.0840
(0.0193)

WSmax 0.4459
(0.0054)

WDavg -0.0293
(0.0843)

Solar -0.4337
(0.0893)

Rainfall -1.4478
(0.2411)

DP -0.0243
(0.0893)

WC 0.8386
(0.1079)

Precip 1.1080
(1.2724)

AirTemp 1.1062
(0.2630)
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Figure 5.12. Screenshot of the application for data preprocessing and model training.
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Figure 5.13. Screenshot of the application for model comparison.
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CHAPTER 6. COMPARISON

6.1. Comparison Between Two Options of ”Modeling Soil Temperature First”

Methods

In Sections 5.1 and 5.2, two options were presented to predict frost depths by first

modeling soil temperatures. These two options can work on any dates for which there is

even no frost depths. The first option, ”Modeling Soil Temperature First at Each Depth”,

creates one regression model on each depth. While the second option, ”Modeling Soil

Temperature First on All Depths”, however, creates only one model for all depths.

As we already discussed, there is only a very small fraction of dates that have a frost

depth. Thus, it would make little sense to select all dates within a year to compare the

performance of these two options. For example, we would expect that the frost depths do

not exist1 using models built with these two options on summer days. Including such dates

does not help to differentiate the performance of both models. Therefore, we select the

subset of dates using the following equation:

∪(σdate(Y > 0), σdate(Ỹ1 > 0), σdate(Ỹ2 > 0)) (16)

where Y is the actual frost depths, Ỹ1 is the predicted frost depths of the first option models,

Ỹ2 is the predicted frost depths of the second option model, ∪ is the union function, and

σdate() is a date selection function. For example, σdate(Y > 0) selects the subset of dates

for which the actual predictions are greater than 0.

In this study, root mean square errors (RMSE) [12] is used to compare different

methods. Table 6.1. shows the comparison of root mean square errors (RMSE) between the

two options of ”Modeling Soil Temperature First” methods.

From Table 6.1., we can see that ”Modeling Soil Temperature First on Each Depth”

outperforms ”Modeling Soil Temperature First on All Depth”. Besides, as mentioned
1We set frost depth to 9999 if it does not exist.
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Table 6.1. Comparison of RMSE between two options of ”Modeling Soil Temperature First”
methods

RMSE
Modeling Soil Temperature First on Each Depth 19.06
Modeling Soil Temperature First on All Depths 22.69

before, ”Modeling Soil Temperature First on Each Depth” needs much less computer

memory when building training models since it works on much less data sets. However,

models that are built with the option ”Modeling Soil Temperature First on All Depth” are

more robust in future data.

6.2. Comparison Among All Methods

To compare the performance of all three methods, namely ”Modeling Soil Temperature

First on All Depths”, ”Modeling Soil Temperature First on Each Depth ”, and ”Modeling

Soil Temperature Directly on Frost Depth”, we select the subset of dates that is used by

”Modeling Soil Temperature Directly on Frost Depth” since it is much smaller than the

other two.

Table 6.2. shows the comparison of the root mean square errors between the two

options of ”Modeling Soil Temperature First” methods.As we can see from Table 6.2.,

”Modeling Soil Temperature Directly on Frost Depth” significantly outperforms the other

two methods.

Table 6.2. Comparison of RMSE among all three methods
rmse

Modeling Soil Temperature First on Each Depth 18.82
Modeling Soil Temperature First on All Depths 20.39
Modeling Soil Temperature Directly on Frost Depth 10.64

Figure. 6.1. shows profiles of the actual frost depths and the predicted frost depths

by the ”Modeling Soil Temperature Directly on Frost Depth” method.
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Figure 6.1. Measured and predicted frost depths.
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6.3. Testing on New Data

In order to verify the three methods’ capabilities of predicting frost depths on future

data, ten days in 2012 were selected to test the three methods. In the ten days, there are

six days ( in March 2012 ) which have frost depths, and the other four days which have no

frost depth were randomly selected in April 2012 . Table 6.3. shows the selected subset of

dates.

Table 6.3. A subset of 10 random days in 2012
March 11 March 12 March 13 March 14 March 15
March 16 April 4 April 7 April 15 April 22

The comparison results are shown in Table 6.4.. As we can see from Table 6.4.,

”Modeling Soil Temperature Directly on Frost Depth” still outperforms the other two

methods, and ”Modeling Soil Temperature First on Each Depth” methods is slightly better

than ”Modeling Soil Temperature First on All Depths” method.

Table 6.4. Comparison of RMSE among all three methods
rmse

Modeling Soil Temperature First on Each Depth 21.0
Modeling Soil Temperature First on All Depths 25.46
Modeling Soil Temperature Directly on Frost Depth 20.89
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Table 6.5. shows the measured frost depth as well as the predicted frost depths of the

three methods1.

Table 6.5. Measured and predicted frost depths
date measured frost depth Method 1 Method 2 Method 3
March 11 8.89 0.0 0.0 1.05
March 12 21.67 0.0 0.0 1.18
March 13 26.67 4.024 56.27 13.16
March 14 34.0 1.45 0.0 5.17
March 15 37.14 4.54 0.0 3.33
March 16 45 16.97 1.73 9.10
April 4 0.0 0.0 0.0 0.0
April 7 0.0 0.0 0.0 0.0
April 15 0.0 0.0 0.0 0.0
April 22 0.0 0.0 0.0 0.0
Method 1:Modeling Soil Temperature First on Each Depth
Method 2:Modeling Soil Temperature First on All Depths
Method 3:Modeling Soil Temperature Directly on Frost Depth

Notice that all three methods successfully predicted non-frost depths in the randomly

selected four days.

1If frost depth does not exist, a value of 0 is used to avoid unreasonable RMSE values
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Figure 6.2. Algorithm 2: Combining three methods.
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6.4. Combining Three Methods

As we have discussed above, the three frost-depth-predicting methods each have

their advantages and disadvantages. Thus we further developed an algorithm, as shown

in Algorithm 2 in Figure. 6.2., to combine the three methods, so that the combined method

is more robust. In Algorithm 2, M1 is the model trained from option ”Modeling Soil

Temperature First on each Depth”, M2 is the model trained from option ”Modeling Soil

Temperature First on All Depths”, and M3 is the model trained from ”Modeling Directly

on Frost Depth”. Given a new data point x, Algorithm 2 first determine if there is new depth

temperature values or not. If there are new temperature values, then it applies M2 on the

new data point x to calculate the frost depth F . Otherwise Algorithm 2 further determines

if the new data point’s date is among the subset of dates that are used in M3. If so it applies

M3 on new data point x to get predicted frost depth F . Otherwise it applies M1 on x to

estimate frost depth F .

By combining the three frost-depth-predicting methods, we not only retain the high

prediction acuracy from option ”Modeling Directly on Frost Depth” and ”Modeling Soil

Temperature First on Each Depth”, but also gain the robustness of option ”Modeling Soil

Temperature First on All Depths”.
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CHAPTER 7. CONCLUSION

In this project, frost depth was modeled using weather and soil temperature data.

Lasso regression technique was mainly used in modeling frost depth. Through analysis,

the correlation was identified among residues after applying regular Lasso regression to the

data. Guptas’ research [6] ”A note on the asymptotic distribution of Lasso estimator for

correlated data”, has been used in improving the Lasso regression in this project.

Using Lasso regression with residue correlation, we developed three methods to

model frost depth, namely ”Modeling Soil Temperature First on All Depths”, ”Modeling

Soil Temperature First on Each Depth”, and ”Modeling Directly on Frost Depth”.

Amongthe three methods, ”Modeling Directly on Frost Depth” achieves the highest

accuracy using root mean square error measurement, while ”Modeling Soil Temperature

First on Each Depth” consumes the least computer memory during modeling training phase

and ”Modeling Soil Temperature First on All Depth” is the most robust method considering

future data having different depth temperatures.

Finally, we also presented an algorithm to combine the three methods such that we not

only retain the high accuracy of the ”Modeling Directly on Frost Depth” and the ”Modeling

Soil Temerature First on Each Depth” methods but also gain the robustness of ”Modeling

Soil Temperature First on All Depths” method.
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APPENDIX. SOURCE CODE: PREDICTING SOIL

TEMPERATURE

################################################

##############1. Preprocessing##################

################################################

session <- ”1”

Date Path <- ”F : /ResearchProject/tempData/preprocessed”

####load libraries

OK=require(glmnet)

if(!OK) {

install.packages(repos=”http://cran.r-project.org”, ”glmnet”)

}

library(glmnet)

OK=require(R.matlab)

if(!OK) {

install.packages(repos=”http://cran.r-project.org”, ”R.matlab”)

install.packages(repos=”http://cran.r-project.org”, ”R.oo”)

}

library(R.matlab)

library(R.oo)

setwd(Date Path)

X <- read.csv(”merged3.csv”, strip.white = TRUE)

#######

##1.1##preprocess data so that each year would have a same subset of dates

# This probably not a good approach. Filling missing values with average would be better.

#######

#1993 and 2011 data are not complete. So discard them first

X <- X[X$Year! =1993,]

X <- X[X$Year! =2011,]

years <- unique(X$Year)

converted value <- X$Month *12*31 + X$Day #*12 is to make sure no two different MonthDay pair generate

the same value.

common subset <- converted value[(X$Year==years[1])]

for(yearIndex in 2:length(years))

{

common subset <- intersect(common subset,converted value[X$Year==years[yearIndex]])

}
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index <- rep(FALSE,dim(X)[1])

for(yearIndex in 1:length(years))

{

t <- grep(years[yearIndex],X$Year)

i=1

j=1

while(i <= length(t) j <= length(common subset))

{

if(converted value[t[i]]<common subset[j])

{

i <- i+1

}

else if(converted value[t[i]] == common subset[j])

{

index[t[i]] <- TRUE

i <- i+1

}

else

{

j <- j+1

}

}

}

X <- X[index,]

rm(t)

rm(index)

rm(common subset)

#######

##1.2##Select levels to test

#######

#depths selected = c(1,5,10,20,30,40,50,60,80,100,125,150,175,200,250)

#depth60 and depth80 have 1920 data points, depth150 has 2080 data points

#all other depth have 2400 data points.

depths selected = c(1,5,20,30)

depths selected = depths selected[as.numeric(session)]

index <- rep(FALSE, dim(X)[1])

for(depth in depths selected)

{
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index <- index| (X$Depth==depth)

}

X <- X[index,];

rm(index)

#######

##1.3##Select days to test

#######

days selected = seq(1,31,by=1)

index <- rep(FALSE, dim(X)[1])

for(day in days selected)

{

index <- index | (X$Day==day)

}

X <- X[index,];

rm(index)

#######

##1.4##Seperate training/testing data sets

#######

index <- rep(FALSE, dim(X)[1])

train years <- seq(1994,2008,by=1)

test years <- c(2009,2010)

for(year in test years)

{

index <- index | (X$Year==year)

}

Test <- X[index,];

Train <- X[!index,];

rm(X)

#######

##1.5##Withdraw Temperature

#######

Train Y <- Train$Temperature

Train$Temperature <- NULL

Test Y <- Test$Temperature

Test$Temperature <- NULL

dt<- Train$Month*12*31+Train$Day

dt test<- Test$Month*12*31+Test$Day

#######
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##1.6##remove mean w.r.t. each day of a month.

#######

#The depth in train and test will be normalized. keep a copy of depth for later indexing

Train Depth <- Train$Depth

Test Depth <- Test$Depth

if (length(depths selected) == 1)

{

Train$Depth<-NULL

Test$Depth<-NULL

}

tt <- seq(0, dim(Train)[2]*length(days selected)*12)

Means <- seq(1, dim(Train)[2])

Stds <- seq(1, dim(Train)[2])

MeansResponse <- array(tt, dim=c(1,length(days selected),12))

Means[3:dim(Train)[2]] <- colMeans(Train[, 3:dim(Train)[2]])

for (i in 3:dim(Train)[2])

{

ttt <- sd(unlist(Train[, i]))

Stds[i] <- ttt

}

Stds[1] <- 1

Stds[2] <- 1

for (month in 1:12)

{

for (dayIndex in 1:length(days selected))

{

tt <- (Train$Month == month Train$Day == days selected[dayIndex])

if(length(grep(TRUE,tt))==0)

{

next

}

MeansResponse[1,dayIndex,month] <- mean(Train Y[tt])

Train Y[tt] = Train Y[tt]- MeansResponse[1,dayIndex,month]

tt <- (Test$Month == month Test$Day == days selected[dayIndex])

if(length(grep(TRUE,tt))==0)

{

next

}
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Test Y[tt] = Test Y[tt] - MeansResponse[1,dayIndex,month]

}

}

Train <- sweep(Train,2, Means)

Train <-Train

Test <- sweep(Test,2, Means)

Test <-Test

Train$Year <- NULL

Train$Month <- NULL # month information is included in Day column.

Test$Year <- NULL

Test$Month <- NULL

rm(tt)

############################################

##############2. Linear regression to get epsilon ################

############################################

lmode <- lm(Train Y ., Train[,2:dim(Train)[2]])

lmode$coefficients[grep(TRUE, is.na(lmode$coefficients))] <- 0

Residue <- lmode$residuals

############################################

###########3. Get updated beta iteratively until converge#########

############################################

max iteration <- 20

iteration <- 1

####Get initial results from linear regression results.####

last betas <- lmode$coefficients #keep track of betas

updated betas <- mat.or.vec(length(last betas),1)

E Inv <- mat.or.vec(length(last betas),length(last betas))

E Inv Last <- mat.or.vec(length(last betas),length(last betas))

R2 <- mat.or.vec(1, max iteration+1)

R2 Test <- mat.or.vec(1, max iteration+1)

R2[,iteration] <- (t(Residue) % ∗% Residue/(length(Residue)-1))ˆ0.5

predict Y <- (last betas[1] + matrix(unlist(Test[,2:dim(Test)[2]]),dim(Test)[1])

ResidueTest <- t(Test Y-predict Y)

R2 Test[,iteration] <- (ResidueTest % ∗% t(ResidueTest)/(length(ResidueTest)-1))ˆ0.5

BETA RECORDS <- mat.or.vec(length(last betas),max iteration)

BETA RECORDS[,1] <- last betas

TARGET RECORDS <- mat.or.vec(1,max iteration)

TARGET RECORDS[,1]<- 1
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OPTIMIZE RESULTS <- mat.or.vec(1, max iteration+1)

####Target function for Lasso####

lamda <- 10 * 1/(sqrt(dim(Train)[1]) * log(dim(Train)[1])) # 10 is a constant factor. We can try other values

fr <- function(lastbeta) ## Laso target function

{

n <- dim(Train)[1]

index <- rep(FALSE, length(lastbeta))

for(i in 1: length(lastbeta))

index[i] <- (index[i] — abs(lastbeta[i])<0.0001)

lastbeta[index] <- 0;

tt <- t(Train Y- (lastbeta[1] + matrix(unlist(Train[,2:dim(Train)[2]]),dim(Train)[1])%∗% lastbeta[2:length(lastbeta)]))

s <- tt % ∗% E Inv

s - s % ∗% t(tt)

abs(s/n) + lamda*sum(abs(lastbeta))

}

iteration = 1;

while(max(abs(updated betas-last betas)) > 0.001 & iteration < max iteration)

{

print(”Iteration:”)

print(iteration)

fileConn <- file(paste(”Iteration”,session,”.txt”,sep=””)) #save iteration to disk

writeLines(as.character(iteration), fileConn)

close(fileConn)

if(iteration>1)

{

last betas <- updated betas

}

#######

##3.2##covariance matrix w.r.t. time

#######

E <- mat.or.vec(dim(Train)[1],dim(Train)[1])

U <- Residue

U Mean <- mean(U)

for (j in 1:length(U))

{

for ( k in j:length(U))
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{

#gamma hat[h]

E[j,k] <- E[j,k] + 1/length(U)*sum((U[1:(length(U)-k+1)]-U Mean)*(U[k:length(U)]-U Mean))

E[k,j] <- E[j,k]

}

}

#There is some problem in calculating inverse matrix using R. Using Matlab instead.

#E Inv <- solve(E)

while(file.exists(”MatlabInUse.txt”))

{

Sys.sleep(30)

next

}

fileConn <- file(”MatlabInUse.txt”) #take over matlab connection

writeLines(as.character(session), fileConn)

close(fileConn)

####Open Matlab connection####

Matlab$startServer()

matlab <- Matlab()

isOpen <- open(matlab)

if(!isOpen)

{

Sys.sleep(30)

}

filename <- paste(tempfile(), ”.mat”, sep=””)

dir.create(paste(Date Path, ”/CovarianceMatrix”,session,”/”, sep=””));

filename2 <- paste(Date Path, ”/CovarianceMatrix”,session,”/”,iteration ,”.mat”, sep=””)

writeMat(filename, E=E)

evaluate(matlab, paste(”load′”,filename, ”′; ”,sep=””))

evaluate(matlab,”EInv = inv(E); ”)

evaluate(matlab, paste(”save′”,filename2,”′”, ”EInv”,sep=””))

E Inv <- readMat(filename2)

E Inv <- unlist(E Inv)

E Inv <- matrix(E Inv, ncol = length(E Inv)ˆ0.5)

unlink(filename)

evaluate(matlab,”exit;”)

close(matlab)

Sys.sleep(5)
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file.remove(”MatlabInUse.txt”);

#######

##3.4##Lasso to get updated betas

#######

optResult <- optim(last betas, fr)

updated betas - optResult$par

OPTIMIZE RESULTS[iteration] - optResult$value

#######

##3.5##update residue (Used to calculate covariance matrics)

#######

Residue <- Train Y-(updated betas[1] + matrix(unlist(Train[,2:dim(Train)[2]]),dim(Train)[1])% ∗%

updated betas[2:length(updated betas)])

iteration <- iteration+1

BETA RECORDS[,iteration] <- updated betas

R2[,iteration] <- (t(Residue) % ∗% Residue/(length(Residue)-1))ˆ0.5

predict Y <- (updated betas[1] + matrix(unlist(Test[,2:dim(Test)[2]]),dim(Test)[1])% ∗%

updated betas[2:length(updated betas)]);

ResidueTest <- Test Y - predict Y

R2 Test[,iteration] <- (t(ResidueTest) % ∗% ResidueTest/(length(ResidueTest)-1))ˆ0.5

filename3 <- paste(Date Path, ”/CovarianceMatrix ”,

as.character(depthsselected), ”/CurrentWorkspaceSave.mat”, sep = ””)

save.image(filename3)

}

iteration <- iteration -1

############################################

########4. Plot Results on both Train and Test data#######

############################################

#######

##4.1##plot rmse

#######

rmse <- function(obs, pred) sqrt(mean((obs-pred)ˆ2))

Train RMSE <- mat.or.vec(1, iteration)

Test RMSE <- mat.or.vec(1, iteration)

for (i in 1: iteration)

{

Train RMSE[i] <- rmse(Train Y,(BETA RECORDS[1,i] + matrix(unlist(Train[,2:dim(Train)[2]]),dim(Train)[1])%*%

BETA RECORDS[2:length(updated betas),i]))

Test RMSE[i] <- rmse(Test Y,(BETA RECORDS[1,i] + matrix(unlist(Test[,2:dim(Test)[2]]),dim(Test)[1])%*%
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BETA RECORDS[2:length(updated betas),i]))

}

plot.new()

g range <- range(0, Train RMSE, Test RMSE)

plot(t(Train RMSE), type=”o”, col=”blue”, ylim=g range, axes=TRUE, ann=FALSE)

lines(t(Test RMSE), type=”o”, pch=22, lty=2, col=”red”)

title(main=”rmse”, col.main=”red”, font.main=4)

title(xlab=”Iteration”, col.lab=rgb(0,0.5,0))

title(ylab=”rmse”, col.lab=rgb(0,0.5,0))

legend(1, g range[2], c(”Train”,”Test”), cex=0.8, col=c(”blue”,”red”), pch=21:22, lty=1:2);

#######

##4.2##plot beta convergence

#######

MAX BETA DIFF <- mat.or.vec(1, iteration)

MAX BETA DIFF[1] <- max(BETA RECORDS[,1])

for (i in 2: iteration)

{

MAX BETA DIFF[i] <- max(abs(BETA RECORDS[,i]-BETA RECORDS[,i-1]))

}

windows()

plot.new()

g range <- range(0, MAX BETA DIFF)

plot(t(MAX BETA DIFF), type=”o”, col=”blue”, ylim=g range, axes=TRUE, ann=FALSE)

title(main=”Convergence trend of beta”, col.main=”red”, font.main=4)

title(xlab=”Iteration”, col.lab=rgb(0,0.5,0))

title(ylab=”

max diff with last iteration”, col.lab=rgb(0,0.5,0))
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