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ABSTRACT 

Providing more realistic reliability prediction based on small proportion of failed 

population or test data has always been a challenging task. Manufacturers rely heavily on 

reliability prediction for designing warranty plan. Further, to predict warranty claims for the 

remaining warranty period, it is important to have more realistic reliability assessment by 

considering a larger proportion of the population or the maximum possible information on the 

remaining population. However, generally this information is not readily available and is very 

difficult to gather on the scattered population.   In this work, we propose to use customer usage 

rate profile to generate censored usage data on the remaining population that do not have any 

failure and warranty claim yet. We intend to use field data available such as warranty claims, 

field failures, recall data, and maintenance data to develop usage rate profile and subsequently 

estimate censored usage time. Finally, reliability estimation methodology is developed 

considering both censored data and field failure data to provide more reasonable reliability 

prediction for the remaining warranty period. The proposed methodology is demonstrated 

considering real life data from a big manufacturing company. 
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CHAPTER 1. INTRODUCTION 

In today’s competitive marketplace, appropriate product performance is one of the key 

quality factors to business success. In engineering perspective, there exists uncertainty due to 

many reasons such as: design, materials, manufacturing, and others fault into product 

performance. The measure of this product performance is denoted by product reliability. 

According to O’Connor (2002), reliability is “the probability that an item will perform a required 

function without failure under stated conditions for a stated period of time.” As quality assurance 

become a popular strategy to capture the market share, the manufacturer started to provide 

warranty heavily from 1980s. The warranty represents the liability of the premature failure under 

customer use.  

The warranty packages provided by manufacturers differ depending on product types, 

geographic area, and several other factors. For example, in USA automobile manufacturers 

generally provide 3 years or 36000 miles bumper to bumper warranty whichever comes first; but 

in most of Asian countries, unlimited miles are provided with few years of warranty (Alam and 

Suzuki 2009). The warranty policy also differs on repair upon failure, replacement upon failure, 

full free by manufacturer, or pro-rate cases. Sometimes, a manufacturer provides an extended 

warranty that customers can purchase. Regardless of packages and policies, warranty is always a 

liability as it incurs cost for the manufacturers by means of money and goodwill.  For example, 

in the United States, manufacturers spend more than $25 billion per year to resolve warranty 

related issues (Manna et al. 2007). To reduce this huge amount of warranty related costs, 

manufacturers have always been interested in knowing their product reliability and failure causes 

so that this knowledge can be utilized to improve the design of critical components as well as the 
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product. Further, the knowledge of product reliability will help manufacturers to designing 

warranty policies, budgeting for warranty, and managing spare parts effectively.  

During product design stage, components, sub-system, or total product is asses by 

accelerated testing for reliability estimation. In accelerated testing, product is undergo with 

higher operating condition to expedite the failure and by appropriate mathematical modeling 

time to failure and reliability in normal condition is estimated. One of the drawback of this 

accelerated test result is they do not capture the actual product performance under real usage 

environment. In a contrary, field failure data provide more reliable information about actual 

distribution compared to laboratory data (Suzuki 1985b, Karim and Suzuki 2007, Oh and Bai 

2001). Field data capture actual usage profile and the combined environmental exposure that are 

difficult to simulate in laboratory (Rai and Singh 2003). Among the readily available field data, 

warranty claims reflect the actual product performance in customer’s hand. 

Though readily available warranty data capture the actual product performance, but this 

data also has several drawbacks such as the sparse nature of data, incomplete, unclean, and 

delays and mistakes in reporting (Rai and Singh 2003). Incompleteness of data refers to 

unavailability of actual usage information of both failed and un-failed population.  Additionally, 

early warranty failure data represent a very small fraction of the entire population, whereas most 

of the warranty related decisions are made based on reliability estimates derived considering this 

small fraction of the failed population.  If someone estimates the reliability solely based on 

failure data then inferences drawn based on this estimate will usually be biased. It is, therefore, 

important to develop a more effective reliability assessment method that captures maximum 

possible information related to both failed and un-failed populations and provide more realistic 

reliability estimation.  
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There are many researches have attempted to estimate reliability and lifetime distribution 

considering part of un-failed population. For example, one of the most prominent efforts is using 

follow-up or supplementary survey data of un-failed population. A fraction of un-failed data is 

collected from follow-up studies and a pseudo-likelihood estimation approach is developed 

considering these follow-up data. Both parametric and non-parametric methods were attempted 

to estimate reliability (Suzuki 1985a, Suzuki 1985b, Kalbfleisch and Lawless 1988, Hu et al. 

1998). Suzuki (1987) used non-homogeneous Poisson process (NHPP), and Alam and Suzuki 

(2009) used only failure data while considering censored usage time as unknown. Oh and Bai 

(2001) proposed to incorporate after warranty field failure data to estimate reliability and lifetime 

distribution. Wu (2013) provided a very informative review on coarse warranty data analysis that 

covers approaches and methods used to estimate product reliability considering warranty claims 

and supplementary data. Kalbfleisch and Lawless (1988) provided some guidelines for collecting 

follow-up (supplementary) data.  However, in many cases the follow-up data collection is not an 

easy task.  It costs money and time, and provides partial (incomplete) information regarding un-

failed population. In some cases, it is impossible to collect the follow-up data. Therefore, life 

estimation for un-failed population is not an easy task and presents a major challenge in 

obtaining more realistic reliability estimates. 

To overcome these problems, this work proposes a usage rate based approach to capture 

the relevant data (accumulated usage) related to the un-failed population. Hu et al. (1998) also 

argued that the accumulated usage of the product is more relevant for engineering analysis 

purposes than the age. It is also assumed that customer usage rate is independent of failure for 

both failed and un-failed population.  The product usage rate is estimated using field data that 

includes warranty claims data, maintenance data, and other follow-up data such as recall data, 
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survey data, and other supplementary data if available. However, warranty claims and 

maintenance data are the most dominating among all available data as these are readily available 

with dealers and other service stations. The censored data (accumulated usage) is generated for 

un-failed population considering usage rate and age of the product. For censored data generation 

purposes, the proposed approach considers actual age of the individual (un-failed) units currently 

in service as well as age distribution of the population. Finally, a reliability estimation approach 

is suggested considering two different cases; where in the first case both failure and censored 

data follow the same distribution (Weibull) and in the second case these data sets follow two 

different (Weibull and lognormal) distributions.   

The rest of the work is organized as follows. In chapter 2, an extensive literature review 

is given on warranty data analysis. In chapter 3, proposed methodology on usage rate profile 

development is described. In chapter 4, reliability estimation model based on maximum 

likelihood method (MLE) is discussed in detail. In chapter 5, a case study with real warranty data 

is analyzed by proposed methodology. In chapter 6, conclusion of the work is given based on the 

case study results and future research guidelines are provided.  
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CHAPTER 2. LITERATURE REVIEW 

Warranty data analysis has been used extensively for early detection of reliability 

problems, finding opportunities for design improvement, and estimating field reliability. 

Estimation of field reliability is extremely important to manufactures for selecting appropriate 

warranty policy, establishing maintenance infrastructure, and designing spare parts inventory 

system. Since warranty data reflect real operating environment and usage rate, they are richer in 

information content then test data collected from laboratories.  The warranty data analysis 

approaches can be categorized as one-dimensional approach and two-dimensional approach. The 

one dimensional approach consists of age-based and usage-based analysis techniques where 

warranty limit is defined by either age or usage only. On the other hand, the two-dimensional 

approach considers both product age and accumulated usage simultaneously for reliability 

analysis purpose.  

In age-based analysis, the product age (calendar time), also known as time-in-service, is 

consider for estimating product reliability. Several researchers have proposed age-based 

warranty data analysis approaches (Kalbfleisch et al. 1991, Lawless 1998, Karim et al. 2001, 

Karim and Suzuki 2007).  More recent works include estimate lifetime distribution of warranty 

claims such as fitting Weibull distribution on small number of failure claims (Ion et al. 2007), 

estimating mixed distribution (Majeske 2003), and estimating life distribution considering sales 

delays (Wilson et al. 2009).  The “age” refers to calendar time since the product is delivering to 

customers. In many cases, the warranty data are available in different aggregated groups and in 

this situation exact age of product is difficult to found. To overcome these issues, three kinds of 

research found related to aggregated warranty claims: age, claims date, and sales date related 

aggregated data. In case of age also known as type I aggregated claims, total claims are 
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aggregated based on different age interval and this age interval can be constant or variable. 

Kalbfleisch et al. (1991) proposed a non-parametric estimator for expected number of claims of 

age aggregated data considering NHPP and Kalbfleisch and Lawless (1996) extend the work for 

variable age interval. In cases of claims date also known as type II aggregated claims, exact date 

of claims is not known rather total number of claims is aggregated for a specific period of time. 

Suzuki et al. (2000, 2001) and Karim et al. (2001) uses NHPP model for repairable items and 

employed expectation maximization (EM) algorithm for estimates number of claims. In case of 

sales delay also known as type III aggregated claims, exact sales date is not known rather total 

number of sales is aggregated for a specific period of time. Lawless and Kalbfleisch (1992) 

introduced an estimator using NHPP for expected number of claims of sales delay aggregated 

data and Wang et al. (2002) introduced parametric and non-parametric MLE of the claims for 

repairable and non-repairable cases respectively. 

The usage-based approach considers accumulated usage time or accumulated mileage 

(for automobile) as a measure of failure time. The major challenge in using usage-based 

approaches is obtaining censoring time for the surviving population that has not reported any 

failure. This causes difficulty in estimating the life distribution in the absence of censored 

population. Moreover, Wu (2012) claims that usage time distribution of non-failed products 

different than failed products, which makes reliability estimation task even more difficult. 

Nevertheless, the usage time is more useful and important for engineering analysis and reliability 

improvement (Hu et al. 1998). One of the most common approaches to deal with unknown 

censored data is supplementary data analysis (Suzuki 1985a, Kalbfleisch and Lawless 1988). Oh 

and Bai ( 2001) proposed to estimate lifetime distribution with additional field data and Attardi 

et al. (2005) introduced mixed Weibull regression model to estimate failure time of incomplete 
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data. Suzuki (1987) proposed NHPP while usage time of un-failed product cannot observe and 

Suzuki et al. (2008) proposed both parametric and semi-parametric method to estimate product 

field reliability without including un-failed product. Vintr and Vintr (2007) surveyed to 

customers for analyzing their usage behavior and intensity.  

For automobile, many researches consider both the age and usage time into their analysis 

that known as two-dimensional approach. The rational for considering two-dimensional 

approach is that automobile warranty coverage considers both age and mileage limits, and it is 

therefore important to develop methods capturing both age and usage time. Two-dimensional 

warranty data analysis literature can be classified into three different categories: marginal 

approach, bivariate approach, and composite scale approach. The marginal approach considers 

usage rate as random variable, which can be modeled either as discrete variable or as continuous 

variable with a density function. For example, Lawless et al. (1995) considered the occurrence of 

warranty claims for automobile when both age and mileage affect failure. Their model assesses 

the dependence of failures on age and mileage and estimates survival distributions and rates from 

warranty claims data. Kleyner and Sanborn (2006) present a model where the usage time is a 

primary variable and the mileage accumulation is estimated from field return data. Their 

approach accounts for an observed reduction in the number of warranty claims in the second half 

of the warranty period. The bivariate approach directly estimates a joint bivariate distribution 

from warranty data. Singpurwalla and Wilson (1993) develop a bivariate failure model for 

automobile warranty data indexed by time and mileage.  Several other researchers consider age 

and usage time together into the field reliability estimation such as, Yang and Zaghati (2002), 

Jung and Bai (2007), Lawless et al. (2009), and many others. The composite scale approach 

integrates the two scales (age and usage) to create a single composite scale and failures are 
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modelled as a counting process using this approach (Gertsbakh and Kordonsky 1998; Duchesne 

and lawless 2000). Ahn et al. (1998) and Iskandar and Blischke (2003) used power law process 

with the new time scale as a model for the reliability analysis of a repairable system. Moreover, 

early warranty data also used to detect the reliability issues of the product. For example, Lu 

(1998) uses early failure data to estimate and asses the product reliability. Wu and Meeker 

(2002) also propose to use early warranty data to identify reliability problems. Authors suggest 

stratifying and monitoring data more frequently so that, it increases the chance to detect 

manufacturing or other reliability problems.  

Though warranty data represents product usage under real environmental condition, there 

are several issues related to warranty data such as, aggregate claims, delays in reporting and 

sales, or incomplete censored data that introduce more uncertainty in reliability analysis 

approach. The aggregated claims have already been discussed in age-based analysis section of 

this chapter in above. The delays are mainly refers two kinds: reporting delays and sales delays. 

Both the reporting and sales delays are divided into two categories: type I and type II. The type I 

reporting delays is a delay by the manufacturer to report it after failure occurs and mostly it 

delays for verifying the claims. There are two approaches to deal with type I reporting delay. 

According to first one eliminate the reported cases (1992) and according to second approach 

incorporating reporting delay probabilities into the analysis. Lawless and Kalbfleisch (1992) and 

Kalbfleisch et al. (1991) proposed estimation of expected number of claims considering given 

reporting delay probabilities. Also, a NHPP model is used to estimate reporting lag distribution 

and expected claims number (Kalbfleisch et al. 1991, Suzuki et al. 2000, Kalbfleisch and 

Lawless 1991). The type II reporting delays is a delay by the customers not to report failure to 

the manufacturer immediately but while reported it is updated to claims immediately. Rai and 
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Sing (2006) proposed a non-parametric approach to estimate hazard rate functions for type II 

reporting delay warranty claims.  

The sales delays occur when the exact date of sales is unknown and this makes difficult 

to find the product or time-in-service. The larger sales delay also increases the chances of 

warranty claims (Robinson and McDonald 1991.). In type I sales delay, the manufacturer do not 

know the exact date of sales after its production date but only for failed items the failure times 

and censoring time may be obtained through warranty claims verification process (Suzuki et al. 

2001, Hu et al. 1998, Ion et al. 2007). Hu et al. (1996) proposed non-parametric estimation and 

Karim and Suzuki (2004) proposed NHPP model to estimate lifetime distribution for type I sales 

delay. Among the parametric approaches, Ion et al. (2007) and Karim (2008) introduced the 

Weibull and the lognormal distribution respectively to fit type I sales delay. In type II sales 

delay, both failed and un-failed items might not have exact censoring time because of unknown 

sales date and this situation occurs from type II aggregated claims (Mohan et al. 2008). Baxter 

(1994) introduced a non-parametric approach for lifetime distribution and Crowder and Stephens 

(2003) introduced moment based estimator for sales delay data. Lim (2003) and Karim and 

Suzuki (2004) proposed to estimate the distribution of the sales delay considering multinomial 

and poission model respectively. Wilson et al. (2009) proposed parametric approach to estimate 

lifetime distribution considering both sales and claims reporting delay. Rai and Singh (2006) 

consider the customer behavioral factor into the warranty claims that makes soft failure into 

reporting delay.  To deal with censored data, additional follow-up data is incorporated with 

warranty claims. 

For usage based analysis, though usage time is more useful, however, to get the usage 

information for non-failed population is a challenging task. To overcome this problem, a follow-
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up study of the non-failed population is proposed by Suzuki (1985a) and Kalbfleisch & Lawless 

(1988). A random survey is conducted to collect the usage time and other relevant information 

for a portion of non-failed population. To conduct this survey, total number of population should 

be known.  Lawless and Kalbfleisch (1992) reported few issues about follow-up survey data and 

guidelines for collecting survey and follow-up data. Suzuki (1985a) conducted a follow-up 

studies to collect non-failed usage information and proposed a modified Kaplan-Meier estimator 

for reliability analysis. In another work, pseudo-likelihood function has been developed to 

estimate the lifetime distribution from follow-up data, and both parametric ((Suzuki 1985b, 

Kalbfleisch & Lawless 1988) and nonparametric (Hu et al 1998) approach were used to estimate 

lifetime distribution from pseudo-likelihood function. This pseudo-likelihood method that uses 

follow-up data also extended to covariate analysis, where a regression model is developed 

between lifetime and dependents explanatory variables. For example, Karim & Suzuki (2007) 

took region, type of products, and failure modes as covariate with age based lifetime analysis and 

assume Weibull as a lifetime distribution. One of the major problems with the follow-up study 

data is it takes time, costs money, and sometimes it becomes impossible to collect information 

through customer survey. Yang and Zaghati (2002) also mention that survey data is expensive in 

many cases, and therefore, warranty claims is a solution for mileage accumulation model.  

In follow-up studies it consider warranty claims along with a portion of non-failed 

population data, however, total population is not considered either in age-based, usage time 

based, or two-dimensional approaches. Park (2005) considers non-failed censored information as 

missing data and use popular expectation maximum (EM) algorithm to estimate the ML function. 

Alam and Suzuki (2009) proposed a method to estimate the lifetime distribution considering 

non-failed population usage is unknown. To incorporate the all non-failed censored population, 
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we propose a usage rate based warranty analysis. In our approach, though we also consider non-

failed population usage time is unknown, but, usage time is then estimate by usage rate profile. 

Usage rate profile develops from field data where majority information came from warranty 

claims and procedure is describe in next section.  Known failure usage and estimated non-failed 

usage then utilize for lifetime parameter and reliability estimation. For more model and 

approaches, two review papers on warranty analysis are suggested to read (Wu 2012, Wu 2013). 
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CHAPTER 3. CUSTOMER USAGE RATE PROFILE 

In this section, proposed methodology of getting usage time of un-failed population is 

described. Customer usage profile is estimated by field data and as field data collected from 

different sources, a procedures is proposed for improve data quality. From the usage profile, it is 

also described the usage rate distribution and accumulated usage data for un-failed population.  

Different scenarios are described based on censored usage time of un-failed population.  

Customer usage rate profile provides more relevant information about the usage behavior 

of the entire population of the product. The term “usage” might vary from product to product, 

such as for an automobile, mileage is used to capture usage; for a copy machine, the number of 

copies is termed as usage; and for utility equipment, operation hour is used to capture the usage. 

It is, however, difficult to get the usage rate information for the entire population.  Several 

researchers have assumed that accumulated usage for an automotive product is different for 

failed and censored population, and in majority of cases the accumulated usage of censored 

population is unknown (Alam and Suzuki 2009). However, in reality the usage rate is 

independent of failure and hence it is fair to assume that the usage rate will be the same for failed 

and surviving populations. The reason behind this assumption is that usage rate depends on user 

behavior and not on failure of the product. Although occasionally severe failures might affect the 

usage rate to some extent, it does not have a major impact on the average usage rate. Lawless et 

al. (1995) also used a similar approach where failure time is assumed to be independent of 

mileage accumulation rate.  

Collecting the customer usage rate information has been a major challenge.  However, 

with the advancement in communication networks and service data management, now it is 

relatively easier to gather usage rate related data from several sources.  These sources include 
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recall data, maintenance data, warranty data, and online connect data. Partial surveys and recall 

data have been used as a part of censored data to estimate the parameters for field performance 

(Suzuki 1985b, Kalbfleisch and Lawless 1988). Regular maintenance data can be collected from 

dealers or maintenance departments where customers bring their product for regular maintenance 

during and after the warranty period.  It is important to keep in mind that this information is for 

the un-failed product because it is collected during regular maintenance only. Another source of 

usage data is warranty claims database. Since, warranty claims represent only failure data during 

the warranty period, it provides relatively better customer usage information, the number of 

hours accumulated, and other types of usage data that may be utilized to estimate usage rate of 

the product.  Though warranty data has several shortcomings, it contains a great source of 

information regarding the actual performance of the product. Another source of customer usage 

data is online connecting data. As technology grows, it is possible to track the usage of product 

utilizing microchip to capture real time utilization.  This approach is expensive and sometimes 

the customer might not allow tracking of their usage behavior, but it provides a possible mode to 

collect usage information in many possible cases (Hong and Meeker 2010, Meeker and Hong 

2013). Production and sales data can be utilized to capture the time that a product is in service 

also known as product age. In order to estimate usage rate, it is essential to gather both the 

accumulated usage and the time in service data accurately.  

Since accumulated usage data is collected from multiple sources, the quality and 

uncertainty in the data will vary significantly from one source to another.   For example, survey 

data might have higher uncertainty and more quality related issues as compared to warranty 

claims and maintenance data. Also the possibility of human error in data collection is much 

higher if data is gathered through a survey. This variation in the quality of data collected from 
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multiple sources poses the greatest challenge in estimating usage rate by combining data from 

several sources.  We, therefore, recommend using appropriate tools such as fuzzy logic or a 

neural network model to combine data coming from different sources and estimate usage rate. 

Fig. 1 shows the conceptual data filtering and processing model.  

Warranty 

Calims

Survey

Recall Maintenance

Online 

Data

Filtering 

Raw 

Data

Data 

Management

Parametric 

Usage Rate  
Distribution  

 

Fig. 1: Processing the different quality of data 

In order to process the data collected from several sources, it is important to identify the 

variables of interest such as product age, accumulated usage, product model, and other related 

variables. The outliers (extremely large or small and infeasible data points) in each category of 

variables should be removed. Also we need to screen out all other data points or variables that do 

not match with the product model under consideration. After gathering all relevant data, the 

usage rate is calculated considering the accumulated usage from the available data and product 

age (or time in service). If needed, the usage rate data is also filtered to take out infeasible data 

points. For example, if usage rate is calculated as actual use per day, then any usage rate data 

showing more than twenty four hours per day should be removed as it represents infeasible data 

points.  Any other kinds of outliers observed in the data should be analyzed and removed from 
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data set if necessary. This filtering process will improve the quality of data and present the final 

data set as if it is collected from a single source. 

Though data processing and filtering takes care of removing outliers and ensuring 

uniformity in data, there is still a possibility of having  some discrepancy as most of these data 

come from multiple sources with varying levels of quality.  We, therefore, strongly recommend 

establishing a mechanism to ensure the quality of data such as statistical process control method 

suggested by Jones-Farmer et al. (2014).  The intent is to develop a data quality control system 

similar to the manufacturing process, where refined data are treated as a final product and raw 

data coming from various sources are considered as input.  Once all the variables of interest are 

in hand, the usage rate is calculated. The usage rate    for the i
th

 vehicle out of n vehicle is 

obtained as 

   
  

  
                                                                                       (1) 

where    and    represent total usage and time in service for the i
th

 vehicle, respectively. It is 

important to note that total usage for any given vehicle can be obtained from warranty claim, 

maintenance and service records, and any other source available to manufacturers for getting 

vehicle related information. The time in service information can be obtained from the sales 

records of dealers. The following section discusses the estimation of usage rate distribution 

parameters.  

3.1. Usage Rate Distribution 

In this work, a parametric distribution analysis is applied for usage rate. Since usage rate 

varies from customer to customer, it is important to treat it as a random variable and establish an 

appropriate usage rate distribution.  Earlier studies (Hu et al. 1998, Lu 1998) show that for 

automobiles the usage rate is generally linear over time and follows the lognormal distribution. 
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The usage rate data histograms of two different industrial utility equipment show the lognormal 

distribution fit (see Fig. 2), which essentially supports the earlier assumption on usage rate 

distribution.  Further, the usage rate also differs from market segment to market segment as 

depicted in these two different distribution fits supporting our argument of treating usage rate as 

a random variable.  

We, therefore, model usage rate with the lognormal distribution and estimate the model 

parameters.  Considering a random variable U that follows a distribution with probability 

distribution function (pdf)  f(u), the likelihood function will be given as: 

             
 
                                                                                   (2) 

By taking the natural logarithm on both sides of Eqn. (2), the log likelihood function is 

written as; 

                   
 
                                                                       (3) 

where θ represents the parameters of interest that need to be estimated. For the lognormal 

distribution, these parameters are the location and the scale (standard deviation) θ = (µ, σ), 

respectively. The maximum likelihood estimates of these two parameters are given as:  

     
        

 
   

 
                                                                                  (4) 

   
  

                
   

 
                                                                         (5) 
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                                             (a)                                                                                              (b) 

Fig. 2: Lognormal fit usage rate for utility (a) equipment 1(b) equipment 2 

Generally, the distribution model is fitted based on the available data to estimate model 

parameters. However, the usage rate data gathered usually represents a small fraction of the 

surviving population and the estimation of model parameters based on this small fraction of the 

population will have higher uncertainty.  We, therefore, propose to use a parametric bootstrap 

resampling method (Efron 1979, Meeker and Escobar 1998) for estimation of model parameters. 

The bootstrap resampling method provides robust estimation of model parameters with tighter 

confidence intervals. The bootstrap method performs resampling of the same sample size and 

range as original sample, estimates the model parameters for each sample, and then provides the 

final estimation of model parameters by taking an average of all the sample parameters.  Fig. 3 

shows the graphical representation of the bootstrap method. The final estimates of model 

parameters are then used to generate censored usage time data for the surviving population. The 

next section provides a detailed discussion on generating censored usage time. 
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Fig. 3: Bootstrap resampling method for parametric estimation 

3.2. Censored Accumulated Usage Data 

To getting the censored accumulated usage time for all un-failed population is one of the 

main focuses of this research. As we assume usage rate is indifferent of failure so, it is same for 

failed and un-failed population.   Thus, once the usage rate distribution parameters are estimated, 

the next step is to generate censored data for the surviving population using these parameter 

estimates and age of the product. Assuming at any given point of time, the age of the product (or 

time in service) is also defined as a random variable, then the accumulated total usage is given 

as:  

                                                                                                        (6) 

Where    denotes the censored usage time, U and A represent random variables of usage rate and 

product age, respectively. The product age can be estimated by using product manufacturing and 

sales related information, which is easily available in the warranty database or with dealers. The 

measurement unit of A is calendar time such as days, weeks, or months, whereas usage rate is 

measured as usage per calendar time such as mileage per day or usage hours per day.   
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Since the accumulated usage (or censored) time    is a product of two random variables, 

it is also treated as a random variable. Considering usage rate and product age (time in service) 

as two independent variables, the expected value and variance of the accumulated usage time    

can be determined by the following equations (Kapadia et al. 2005): 

                                                                                            (7) 

                               
            

                        (8) 

If the distribution types and distribution model parameters of usage rate and product age are 

known, it becomes easier to generate censored data for the surviving population. To generate 

censored data for un-failed population, we consider two different scenarios as given below: 

Scenario 1:  the actual age (Ai) of each unit surviving in the field is known and 

Scenario 2: the product age A of the surviving population is treated as a random variable. 

Scenario 1: In this case, the product age   Ai   represents the actual calendar time of each 

unit within the warranty period. The actual age can be derived from   product manufacturing 

details, sales date, and total time spent in the field with some level of certainty but individual 

units might have a different age or time in service period. This allows us to consider the age of 

the product population in field as a variable. Considering the actual age of individual units Ai, the 

accumulated usage time is calculated as: 

                                                                                                          (9)                                                                                                                                             

where the random variable usage rate follow is assumed to follow lognormal 

distribution                   
   and   Ai is the actual age for the i

th
  unit.  The censored data for 

the surviving population can be generated using Eqn. (9), which requires random data generation 

on usage rate for the surviving population. The expected value and variance of usage rate data 
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for the surviving population following the lognormal distribution can be determined by 

considering the following Eqns. (Hogg et al. 2012): 

      
    

  
 

 
 
                                                                                     (10) 

                
       

 
                                                                 (11) 

One can also estimate the expected value and variance of the random variable A from the 

available product age data of individual units. Once these two parameters of both variables U and 

A are known, Eqns. (7) and (8) can be used to estimate the parameters of censored time 

distribution and subsequently generate censored time for the surviving population. 

Scenario 2: In the second scenario, we treat the population age as a random variable that 

follows a specific probability distribution function.  Generally, units are produced based on 

product demand or production capacity and subsequently end up in the field after selling them to 

customers. For example, auto companies produce a certain number of units every month and sell 

those units to customers in the market. At the same time, a certain amount of units will have 

spent enough time in the market and will be getting out of the warranty period. If we visualize 

this continuous process of a certain number of units being produced and getting into the market 

per unit time (week or month) and also almost a similar number of units are going out of the 

warranty period, it almost represents a steady flow process where on average there are a similar 

number of units moving through the system.   We believe that this scenario can be reasonably 

modeled as a uniform distribution function where one parameter represents warranty time length 

and the other parameter captures the average number of units entering and/or leaving the 

warranty period. 
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Considering that the distribution of usage rate follows the lognormal distribution 

                   
   and the product age follows the uniform distribution                , Eqn. 

(9) can be used to generate censored time data.  The distribution parameters for the usage rate 

distribution can be estimated using Eqns. (10) and (11), whereas the distribution parameters for 

the uniform distribution are given as: 

      
   

 
                                                                                              (12) 

       
      

  
                                                                                       (13) 

Using the distribution parameters of these two distributions, random data sets can be generated 

for both random variables.  The number of data points in each random data set should be equal to 

the surviving population size. These two random number data sets can then be used to generate 

censored time for the surviving population using Eqn. (9). Alternatively, given that the 

distribution parameters for both random variables are known, Eqns. (7) and (8) can be used to 

estimate the parameters of the accumulated usage (censored) time. These estimated parameters 

can then be used to generate censored data for the surviving population.  

Once censored data are available, the maximum likelihood method can be used to 

estimate model parameters of the combined data set for estimating product reliability. There exist 

few difficult to getting usage rate distribution but proposed data refinement and bootstrap 

method reduces the variation and statistical biasness. Moreover, different scenarios will help to 

understand the actual accumulated usage data and to estimate the overall reliability that is 

discussed in next section. 
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CHAPTER 4. RELIABILITY ESTIMATION 

From chapter 1, we know that reliability is a time dependent function. To estimate the 

reliability it is necessary to know about the usage hours of each failure product and usage hours 

of un-failed product. The usage hours for failure product can readily available from warranty 

claims and usage hours for un-failed product is getting by using the methodology described in 

chapter 3. In this section, we also proposed to model maximum likelihood function considering 

different and same distribution of un-failed population. 

For reliability estimation, we assume that field failure data follow the Weibull 

distribution as suggested in the literature (Meeker and Escobar 1998). The probability 

distribution and the survival (reliability) function of a Weibull random variable are given as 

follows:  

     
 

 
 
 

 
 
   

       
 

                                                                         (14) 

                         
 

                                                        (15)                                                                                                                 

where   and   are the shape factor and the characteristics life, respectively. To assess product 

reliability, the estimation of distribution parameters is the most critical step in warranty data 

analysis, especially when the data is acquired from different sources and censored data follows 

different distributions. In this work, we propose to look into those possibilities and use the 

maximum likelihood method for estimating model parameters.  

The simplest scenario is when there are only failure data and no censored data. The 

maximum likelihood function for failure data only is given as:  

             
 
                                                                                 (16) 
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Here r is the number of failures.  However, the necessity to provide a more realistic reliability 

estimate requires not only failure data but also to capture the maximum possible information 

related to the surviving population. The inclusion of this information as censored data results into 

a more complex data analysis problem, especially when we consider the different distribution 

function for both data sets.  For our investigation purpose, we developed two different likelihood 

functions to include both failure and censored data in reliability estimation efforts. In the first 

case, both failure time and censored usage time data are assumed to follow the Weibull 

distribution whereas in the second case we consider the lognormal distribution for censored data 

and the Weibull distribution for failure data.  

Case 1: When both the failure time and the censored time follow the Weibull 

distribution, the likelihood function is given as:  

                      
 
     

 
                                                       (17) 

where r is the number of failures, n is the total number of data points, θ is the parameter of 

interest, and f(ti, θ) and S(tcj, θ) are the probability distribution function and the survival function, 

respectively. Using the probability density function and survival function of Weibull distribution 

given in Eqns. (14-15), Eqn. (17) can be written as:  

         
 

 

 
    

  

 
 
   

   
  

        
   

     
                                     (18) 

After taking the logarithm of both sides of Eqn. (18), the log –likelihood function is given as: 

                                   
   

 
    

  

 
 
 

   
   

 
 
 

 
     

 
   

 
        (19) 

  Case 2: In the second case, we consider that censored usage time follows the lognormal 

distribution and failure data follow the Weibull distribution.  Both failure time T and censored 

time Tc are continuous random variables and are treated as independent variables. For failure 
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time T, the probability distribution and survival functions are given in Eqns. (14) and (15) 

respectively. For censored usage time data Tc, the probability distribution and the survival 

functions are written as: 

      
 

      
  

  
 

 
 
        

 
 
 
 
                                                             (20) 

            
        

 
      

        

 
                                              (21) 

where       is the cumulative distribution function of the standard normal distribution.  

The likelihood function when both failure time and censored time follow two different 

distributions is given as (Alam and Suzuki 2009):  

                       
 
                      

 

 
 
   

                 (22) 

This model considers censored time as an unknown and hence the integral part of the likelihood 

function makes the estimation of model parameters extremely difficult.  Since the proposed 

approach generates censored usage time for the surviving population and hence considers 

censored time as known, the likelihood function given in Eqn. (22) can be re-written as (Lawless 

2003):  

                                         
 
     

 
                        (23) 

Using probability distributions and survival functions of both Weibull and lognormal 

distributions, Eqns. (23) can be written as:  

         
 

 

 
    

  

 
 
   

   
  

         
        

 
     

 

       
  

  
 

 
 
         

 
 

 

 

      
   

     
         (24) 

After taking the logarithm of both sides of Eqn. (24), the log –likelihood function can be 

obtained as: 
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        (25) 

To find the estimate of model parameters,            , we need to maximize the log-

likelihood function of Eqns. (19) and  (25). However, for both equations it is impossible to 

achieve closed form solutions; it is, therefore, necessary to solve the log-likelihood function by 

using an appropriate numerical method. Modern statistical software R is used to find the MLEs 

by numerical method. A non-linear built-in optimization function optim that is based on an 

algorithm provided by Nelder & Mead (1965) is used to maximize the log-likelihood function.  

The R code is written for each log-likelihood function and then the optim function is used for 

maximizing the likelihood function.  The optim solution also provides the hessian matrix at the 

maximum point, which can further be used to determine the fisher information matrix.  It 

develops a 95% confidence interval for each parameter estimate by using the fisher information 

matrix. In the optim solution, the initial value of the estimate is important because it affects the 

convergence of the solution. Therefore, historically known values or close estimates based on 

some initial input needs to be used to address this problem. 

Once the distribution parameters are estimated, the field reliability is estimated using 

Eqn. (15). It is important to note that censored usage time information is to be used to update the 

distribution parameters for providing a more realistic reliability estimation of the product in the 

field. Fig. 4 depicts the proposed framework for estimating usage rate and product reliability 

considering both failure and censored populations. 
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Fig. 4: Framework to estimate reliability form field data 

 

 

 

 

 

 

 

 

 

 

 

 



 

27 

 

CHAPTER 5. A CASE EXAMPLE: UTILITY EQUIPMENT 

To demonstrate the applicability of the proposed approach, we consider the field data of 

real utility equipment. The product is used in construction, maintenance, agriculture, and other 

application areas. The manufacturer provides a twelve (12) month warranty with unlimited usage 

hours. The product is launched into market starting in 2009 and all the claims up to August 2013 

are recorded assuming that all failures within the warranty period have been reported and non-

reported items are considered as censored population. The product enters into the market in a 

staggered way as shown in Fig. 5. To protect the proprietary nature of the information, product 

details regarding product name and failure modes are not disclosed. Further, the actual failure 

data have been modified for demonstration purposes. 

X

X

X

~~
~~

X: Failed
~~: Censored

0 365Days
  

Fig. 5: Failed and censored data with staggered entry 

The available field data include warranty claims, maintenance, and recall data. Each type 

of field data contains the date of sale, date of failure (maintenance or recall), accumulated 

machine hours, and name of the failed component. Table 1 shows a sample of the field database. 

Some of the included claim data was out of the warranty period but considered in estimating the 

usage rate to increase the sample size and provide better estimates.  Further, the field data came 

from different sources with some level of variability in quality of data. Data screening was 

performed by removing outliers, infeasible data points, or any data points that showed negative 

time in service.  The final data set included a total of 9004 field claims with 6570 of the claims 
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within warranty period, 1120 claims beyond warranty period, and 1314 recall and maintenance 

data. These refined field data were then used to calculate the usage rate for each individual unit 

using Eqn. (1) considering the accumulated usage (machine) hours and age of the product.  The 

usage rate data provided a good fit to the lognormal distribution (see Fig. 6), which supports our 

initial assumption regarding usage rate distribution. The usage rate of this small fraction of the 

population is then used to estimate the usage rate of the entire population. The bootstrap 

resampling is used to get robust parameters of the usage rate distribution.  Table 2 shows the 

estimated parameters of usage rate distribution for the entire population. These estimated 

parameters of the lognormal distribution are then used to generate censored usage time data for 

the surviving population.  

Table 1: A sample of field database  
 

Model 

No 

Serial  

No 

Accumulated 

Usage Hours 

Failure 

Code/Mode 

(if 

applicable) 

Delivery 

Date 

Failure/Other 

Record Date 

Comments 

AB AB 123 120 Mechanical 1/10/2013 4/5/2013 Under warranty 

CD CD 456 35 --- 3/10/2013 3/25/2013 Recall  

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

 

Table 2: Estimated usage rate parameters value  

 

Usage rate  Parameters Estimate Lower 95% CI Upper 95% CI 

Lognormal     0.1821 0.1607 0.2034 

     1.0361 1.0221 1.0500 
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Fig. 6: Probability plot for usage rate distribution 

For generating censored usage time for the surviving population, we considered the units 

manufactured and sold during the year 2011. Table 3 shows a sample of the product built 

database where product manufacturing information and warranty end date are reported. For the 

units manufactured and sold during the year 2011, there were 780 claims recorded in the 

warranty data out of a total 2636 individual units in the field. It is important to note that only the 

first failure for each product is consider in this analysis. For generating censored time for the 

remaining un-failed population within warranty period, we considered two different cases as 

discussed earlier. In the first case, the actual age or time in service is extracted from product built 

information, and the censored usage time is generated for the remaining un-failed population 

using Eqns. (7-11). In the second case, it is assumed that the population age follows the uniform 

distribution. Considering both the population age and usage rate as two random variables 

following different distributions, the censored usage time data are generated using Eqns. (7-8) 
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and (10-13).   Once the censored data set for the un-failed population is available, lifetime 

parameters are estimated considering both failure and censored data.  Again two different 

scenarios were considered with respect to the censored data distribution where in one case we 

assumed both censored and failure data follow the Weibull distribution and in the second case 

we assumed that censored data follow the lognormal distribution.   Realizing that both MLE 

equations (Eqns. (19) and (25)) do not provide closed form solutions, the statistical software R is 

used for ML estimation. Tables 4-5 show the estimated parameters for different scenarios and 

cases.  Using these parameters and the survival function equation, system reliability is estimated 

for different usage times. Fig. 6 shows the reliability behavior of the system for the different 

scenarios discussed in the paper.  

Table 3: A sample of product built database 

 

Model 

No 

  Serial   

No 

Manufactu

ring Info. 

Retailed 

or Not 

Dealer 

Info. 

Built Data Delivery 

Data 

Warranty 

End 

AB AB 123 Plant A Yes Dealer G 12/15/2012 1/10/2013 1/10/2014 

CD CD 456 Plant B Yes Dealer K 12/20/2012 3/10/2013 3/10/2014 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
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Fig. 7: Probability plot considering only failure population 

Table 4: Estimated lifetime parameters considering Weibull distribution 

 

        Weibull Analysis                           Parameters 
Estimate Lower 95% 

CI 

Upper 95% 

CI 

 

         Only Failure 
   0.6645 0.6289 0.7000 

   84.39 74.97 93.81 

 

 

       Scenario 1 Case 1 
   0.4874 0.4574 0.5163 

   2229.99 1810.95 2649.03 

 

 

       Scenario 2 Case 1 
   0.4852 0.4561 0.5143 

   2330.49 1887.45 2773.53 
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Table 5: Estimated lifetime & usage parameters considering Weibull and lognormal distribution 

 

 Weibull-Lognormal Analysis            Parameters Estimate Lower 95% 

CI 

Upper 95% 

CI 

       Scenario 1 Case 2    0.4883 0.4594 0.5172 

   2214.36 1799.94 2628.78 

     5.35 5.30 5.40 

     1.18 1.14 1.21 

 

       Scenario 2 Case 2    0.4829 0.4547 0.5111 

   2242.58 1830.59 2654.56 

     5.38 5.33 5.43 

     1.17 1.14 1.21 

     

 

 
 

Fig. 8: Reliability comparison among different approaches 

Fig. 6 and Tables 4-5 show the Weibull parameters for both failure data as well as the 

combined data set indicating early failure issues.  It is found from the estimated results that for 

all cases the Weibull shape parameter value is approximately 0.50, which implies infant 

mortality rate (β~0.50<1). One of the reasons for infant mortality or decreasing failure rate is an 
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immature product design.  As this analysis was carried out within the second year of product 

launch, there is very high possibility that design will still has some deficiencies. The detailed 

failure analysis input will help the design community to further improve the product design by 

eliminating current failure modes.  Other factors that might play a significant role in early 

failures are manufacturing and quality related issues. The in-depth analysis of the fundamental 

root causes of early failure problems is important to improve the reliability of the product.  As 

given in Tables 4-5, the inclusion of the censored population information into the analysis 

increases the other Weibull parameter, characteristics life, significantly. This indicates the 

importance of incorporating information related to the surviving population for obtaining more 

realistic reliability estimates. However, the inclusion of additional information into the reliability 

analysis does not change the shape parameter of Weibull distribution, which confirms with the 

shape parameter property.  

When generating censored data for surviving populations, two scenarios were considered 

to capture the age of the population. First we considered the actual age of all individual units and 

in the second case age is considered as a random variable that follows the uniform distribution. 

Further,  in each given scenarios, two different cases were considered where in the first case both 

failure and censored data follow Weibull distribution and in the second case it is assumed that 

the censored data follow the lognormal distribution. The estimated values of the characteristic 

life show significant change from scenario one to scenario two (see Tables 4-5). In scenario one 

where we considered the actual age of all surviving units, the estimated characteristic life values 

were 2229.99 for case one and 2214.36 for case two. However, the estimated characteristic life 

value slightly increased to 2330.49 for case one and 2242.58 for case two when we treat the 

population age as a random variable following the uniform distribution. This clearly indicates 
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that the appropriate consideration of the population age while generating censored data for the 

surviving population is an important criterion.  It further highlights that a consideration of an 

appropriate distribution for the population age provides more realistic estimates and hence, it is 

not worth spending time and energy in computing the actual age of each individual unit in the 

field. Further, the chances of making errors or extracting unrealistic age data are very high if one 

attempts to estimate the age of each individual unit in the population. This insight certainly helps 

avoid putting unnecessary efforts in extracting actual age related information from the product 

built database or field warranty database. On the other hand, our analysis shows that there is not 

much difference in the estimated values of the characteristic life from case one to case two. This 

essentially shows that consideration for different distributions of the censored data set does not 

have a significant impact on the parameter estimation.  

The careful analyses of results clearly emphasize that providing a reliability assessment 

purely based on failure data is unrealistic and biased as it excludes useful information related to a 

larger proportion of the population, namely the surviving population. Fig. 7 shows a big gap 

between the reliability estimates based on pure failure data and a combined data set that includes 

censored time for the surviving population. This certainly supports the concern raised by several 

researchers and practitioners in the past on sole dependence on failure data analysis in the 

decision making process. Our further investigation on the process of generating censored data 

highlights the impact of random variable product age (A) on the reliability assessment. As shown 

in Fig. 7, the scenario two, wherein product age variable follows the uniform distribution, 

provides almost same reliability estimates as compared to scenario one wherein we considered 

the actual age of each individual unit in the field. This certainly cautions practitioners not to 

spend critical resources in extracting actual age data from the database but motivates them to 



 

35 

 

provide a more realistic distribution of population age to obtain a more accurate reliability 

assessment.  Our analysis did not show significant differences in the parameter estimates and 

reliability assessment from case one to case two when we considered the two different 

distributions, Weibull and lognormal distributions, for the censored data. Although consideration 

that the censored data follow the Weibull distribution makes the analysis process simpler, but it 

does not alter final outcome significantly. On the other hand, considering that the usage rate 

follows the lognormal distribution is important for generating censored time for the surviving 

population, which makes the parameter estimation process somewhat more complex. However, 

the final reliability assessment results do not show a significant departure from each other, which 

give us some level of confidence to conclude that the distribution type of censored time is not a 

significant factor in reliability assessment based on warranty data. 
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CHAPTER 6. CONCLUSION 

The proposed framework provides a more realistic reliability assessment methodology 

based on warranty data that includes failure time as well as censored time of the surviving 

population. The censored time for the surviving population is estimated considering usage rate 

that essentially captures the customer usage behavior. The inclusion of censored time of the 

surviving population in the parameter estimation has improved the reliability estimates 

significantly. The proposed approach considers different scenarios and cases to study the effects 

of product age distribution and censored data distribution. Our analysis shows that the censored 

data distribution assumption may not have much impact on the final reliability assessment results 

but consideration of the appropriate age distribution is important. The incorporation of the 

surviving population related information in reliability assessment provides more accurate and 

unbiased estimates that could be very helpful to manufacturers in managing spare parts 

production and inventory.  

The major challenge for the proposed approach is to gather more accurate information 

related to the surviving population and to generate censored time using this information. 

However, the availability of this information from different sources having various forms and the 

support of advanced communication and data management technology has been a great 

motivator to carry this work forward. 

 In our future research work, we propose to develop more refined methodology for 

generating censored data of the surviving populations, estimating the remaining life of the 

surviving populations, and developing a framework for spare parts management using the 

remaining life information. As we have the distribution of only un-failed population also, this 

can be used to estimate the remaining life to the component or total product. This remaining life 
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can be synchronizing with spare sprats production and inventory management. Other methods 

such as, regression and expectation maximization (EM) algorithm can be utilize for un-failed 

population estimation and estimate the efficiency of each methods.  
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APPENDIX 

A. Product Distribution 

Suppose, U and A are two continuous random variable and they are independent. The 

product of this two random variables is denoted by    that will be another random variable. 

Using the property of independent (Kapadia et al., 2005), Expected value of    will be, 

                                  

Similarly, using the property of independent, variance of    will be, 

                             

                                                                               

                                                                                      

                                                      
  

                                                
  

So,                           
                

        
        

   

                                       
            

    

B.  R code for only failure data: weibull analysis 

rm(list=ls()) 

data1<-read.csv(file.choose(), header=T)                   # read data from file 

x<-c(data1$Hours) 

r<-length(x) 

LL<-function(theta) {                                                 # likelihood function 

  b<-theta[1] 

  v<-theta[2] 
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   loglik<-r*log(b)-r*log(v)+(b-1)*sum(log(x/v))- sum((x/v)^b)            

  -loglik 

 } 

fit<-optim(c(runif(1),runif(1)),LL, hessian=T)             # maximizing likelihood function 

fisher_info <- solve(fit$hessian)                                   # confidence interval estimation 

prop_sigma <- sqrt(diag(fisher_info)) 

prop_sigma<-diag(prop_sigma) 

upper<-fit$par+1.96*prop_sigma 

lower<-fit$par-1.96*prop_sigma 

interval<-data.frame(value=fit$par, upper=upper, lower=lower)   

interval 

C. R code for combined failure and censored  data: weibull analysis  

 

rm(list=ls()) 

data1<-read.csv(file.choose(), header=T)                      # read data from file 

data2<-read.csv(file.choose(), header=T) 

x<-c(data1$Hours)                                                         # data into vector form 

w<-c(data2$Age) 

y<-rlnorm(length(w), mutc, sigmatc)                               # generated censored data 

r<-length(x) 

n<-length(x)+length(w) 

LL<-function(theta) {                                                     # likelihood function 

  b<-theta[1] 

  v<-theta[2] 
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   loglik<-r*log(b)-r*log(v)+(b-1)*sum(log(x/v))- sum((x/v)^b)- sum((y/v)^b)      

  -loglik 

 } 

fit<-optim(c(runif(1),runif(1)),LL, hessian=T)                  # maximizing likelihood function 

fisher_info <- solve(fit$hessian)                                        # confidence interval estimation 

prop_sigma <- sqrt(diag(fisher_info)) 

prop_sigma<-diag(prop_sigma) 

upper<-fit$par+1.96*prop_sigma 

lower<-fit$par-1.96*prop_sigma 

interval<-data.frame(value=fit$par, upper=upper, lower=lower)   

interval 

D. R code for combined failure and censored  data: weibull-lognormal analysis 

 

rm(list=ls()) 

data1<-read.csv(file.choose(), header=T)                        # read data from file 

data2<-read.csv(file.choose(), header=T) 

x<-c(data1$Hours)                                                          # data into vector form 

z<-c(data2$Age) 

y<-rlnorm(length(z), mutc, sigmatc)                                 # generated censored data 

r<-length(x) 

n<-length(x)+length(y) 

LL<-function(theta) {                                                     # likelihood function 

  b<-theta[1] 

  v<-theta[2] 
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  m<-theta[3] 

  s<-theta[4] 

   loglik<-(r*log(b)-r*log(v)+(b-1)*sum(log(x/v))- sum((x/v)^b)+ sum(log(1-pnorm((log(x)-

m)/s)))-sum((y/v)^b)-(n-r)*log(sqrt(2*pi))-(n-r)*log(s) 

              -sum(log(y))-sum(0.5*((log(y)-m)/s)^2)) 

     -loglik   

 } 

fit<-optim(c(runif(1),runif(1),4,1),LL, hessian=T)           # maximizing likelihood function 

fisher_info <- solve(fit$hessian)                                       # confidence interval estimation 

prop_sigma <- sqrt(diag(fisher_info)) 

prop_sigma<-diag(prop_sigma) 

upper<-fit$par+1.96*prop_sigma 

lower<-fit$par-1.96*prop_sigma 

interval<-data.frame(value=fit$par, upper=upper, lower=lower)   

interval 

 


