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ABSTRACT 

Photochemical transformations are unique strategy in synthesis that enables us to 

access complex and structurally diverse organic scaffolds. However, the challenges in controlling 

the excited-state to perform stereoselective reactions left this method under-utilized. This 

dissertation describes a novel strategy that employs atropisomeric chromophores to perform 

stereospecific phototransformations. The success of this strategy is well established in thermal 

chemistry but not comprehensively investigated in photochemical transformations. This research 

largely relies on rotamer control in the ground state (NEER principle) wherein the axial chirality in 

the starting material was transferred to point chirality in the products upon excitation. 

The chapter 1 describes the principle differences between the asymmetric thermal and 

asymmetric photochemical reactions. Further, a survey of methodologies developed towards 

asymmetric phototransformations and their outcomes are described. A brief introduction about 

the atropisomeric systems in thermal chemistry and the preliminary investigations in 

phototransformations are also provided. 

In chapter 2, enantiospecific disrotatory 4π-ring closure of atropisomeric 2-pyridones 

were investigated. The differential axial chirality designed (sterics and H-bonding units) displayed 

distinct temperature and solvent dependency on the enantiospecificity of the reaction. Eyring plot 

was computed to calculate the differential activation enthalpy and entropy for the reaction. Also, 

the course of phototransformation was followed through single-crystal XRD to decipher the 

preferred mode of cyclization for a given isomer of 2-pyridones. The high-pressure racemization 

and photoreaction study revealed that pressure provided stable chiral axis even at elevated 

temperature resulting in higher enantiomeric excess (ee) in the photoproduct. 

The chapters 3-5 describe the [2+2]-photocycloaddition of atropisomeric enamide, 

maleimide and imine derivatives. The design features on these molecules allowed us to perform 

complementary reactions that are not observed in the literature. These modifications were 

significant improvement to “axial to point chiral” strategy that improves the versatility of the 

photoreactions. For example switching of the excited state in enamides, continuous flow visible-
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light photocatalysis of maleimides and unusual photocycloaddition of stabilized imines are notable 

features. 

This dissertation encompasses detailed studies on the mechanism, scope and 

photophysical studies on new atropisomeric chromophores such as 2-pyridones, enamides, 

maleimides and imine derivatives that provides excellent avenue to access chirally enriched 

building blocks. 
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1. CHAPTER 1: INTRODUCTION TO SYNTHETIC ORGANIC 

PHOTOCHEMISTRY AND STRATEGIES TOWARDS ASYMMETRIC 

PHOTOTRANSFORMATIONS 

1.1. Introduction 

The demand for chiral building blocks in the field of pharmaceutical industry and drug 

discovery has been increasing at an exponential rate. The percentage of single enantiomer drug 

in the market is also at a steady increase.1 Administering enantiomerically pure drugs has its 

advantage in terms of its potency, safety and cost effectiveness. Yet, the volume of structural and 

topological diversity in the chiral elements makes it extremely challenging to access them in the 

desired purity and quantity. In this regard, the field of asymmetric synthesis has evolved into a 

powerful and indispensible tool in organic synthesis that allow us to access optically pure 

molecules. However, with the newer additions of both synthetic and natural drug molecules that 

are piling up every year, need for a vast library of methodologies is necessary. While on one side, 

rapid expansion of library of methodologies are being investigated, on the other side, revising a 

methodology that are focused on improving the yield and efficiency with a greener protocol are 

being given equal importance. In this regard, photochemistry is more appealing as it not only 

allows us to rapidly build complexity in an organic molecule but also allow us to construct multiple 

stereogenic centers at once, all with environmentally benign processes. 

 

1.2. Synthetic photochemistry 

Light has been an integral part in the evolution and sustenance of life on earth whose 

interaction with earth is older than life itself. It is the source of energy that maintains our livelihood 

through photosynthesis. Life on earth has mastered the art of harnessing the power of sun to its 

advantage over millennia. Yet, synthetic organic chemistry is still at its infancy in employing light 

for the synthesis of molecules. In 1834, Trommsdorff documented the first organic 

phototransformation when he observed the crystals of α-santonin (1) turn yellow and burst 

(Scheme 1.1).2-4 Since then, progress in the synthetic organic photochemistry has been firmly 
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stepping up towards accessing the desired target molecule with high control over 

stereochemistry. However, the challenges associated in achieving such goals are vast. The 

reason lies in little understating of the excited state behavior of the molecules and failure of 

simple extrapolation of the ground state (thermal reactions) behavior to the excited states. 

Progress in the organic photochemistry accelerated after the development of spectroscopic 

techniques that assisted in understanding the process of excitation and relaxation pathways of 

molecules. 

 

Scheme 1.1: Photoreaction of α-santonin both in solution and in crystal. (Reproduced from 
reference 4 with permission from American Chemical Society, 2007). 

 
To understand the type of interaction that a chromophore has with light, it is very 

important to understand the nature of light itself. Light is made up of electromagnetic radiation 

that spans from low energy infrared (longer wavelength) to high-energy ultraviolet (shorter 

wavelength) spectrum (figure 1.1). 
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Figure 1.1: Electromagnetic spectrum of light.5 

When a photon of appropriate (resonance) energy interacts with a chromophore, a 

process of absorption takes place where the energy of the photon is transferred to the organic 

molecule promoting it to an electronically excited state. According to Stark-Einstein law, the 

photon with resonance energy can only bring about single electronic transition. However, this 

generally accepted rule could have exceptions where more than one photon can be absorbed to 

cause single electronic transitions as in the case of two-photon absorption events. Now, the 

excited molecule has multitude of pathways to relax to the ground state either as the same 

molecule or as a different molecule (products). The resonance energy of a chromophore depends 

on the type of atom and types of bonds involved in the excitation process. Since the energy is 

directly related to the frequency of light employed obeying well-known Einstein equation (figure 

1.2), it is very important to know the frequency of light employed in arising the desired excitation. 

 

Figure 1.2: Photoexcitation of electron from HOMO to LUMO. 

E = hν

Where,

E
ne

rg
y

excitation
hν

singlet triplet

HOMO

LUMO

Plank-Einstein equation:

E = Energy of a photon
h = Plank's constant (1.054 × 10-34 js)
ν = Frequency of the photon
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Two principle mechanism by which the excited molecule relax to ground state are 

radiative and non-radiative processes as described in the simplified Jablonski diagram (figure 

1.3). In a non-radiative relaxation process, one electronic state is converted to another by 

thermal/vibrational relaxation without the emission of light, a process known as internal 

conversion. Internal conversion can further be divided into two types of processes with respect to 

whether or not the process accompanied by the change in the multiplicity. If there is no spin 

change, the transition is termed as “spin allowed transition” where the higher excited singlet 

states decay to the lowest excited singlet states by thermal relaxation. However, if the transition is 

accompanied by a spin change it is called “spin forbidden transition” where the singlet excited 

state is converted to a triplet excited state through a process known as intersystem crossing (ISC). 

 

Figure 1.3: Simplified Jablonski diagram. 

In a radiative relaxation process, the excited molecule relaxes to ground state by 

emission of photon (light). In singlet manifold, the excited singlet state (Sn) relaxes to the ground 

singlet state (S0) by emission of a photon termed as the fluorescence. In this scenario, there is no 

overall change in the spin multiplicity. In broader strokes, regardless of which excited state the 

molecule is promoted in an excitation process, the emission is observed from the lowest excited 

singlet state known as Kasha’s rule. Exceptions to this rule are observed where molecule emits 

from their higher excited states (Sn > 1). In some cases, the excited singlet state can undergo 

“spin forbidden” intersystem crossing to the excited triplet state. The radiative emission from the 
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lowest excited triplet state is called as phosphorescence. Since the process is “spin forbidden” 

the phosphorescence generally occur at a longer time scales compared to the fluorescence 

processes. 

While a photon has the ability to initiate the above processes not all the excitation leads 

to the desired products and it’s very challenging to control the undesired pathways of relaxation. 

The efficiency of the given process is defined by its quantum yield (φ). 

 

Equation 1.1 

Depending on the type of chromophore involved, the outcome of the reactions can be 

quite different based on the relative efficiencies of various processes involved after excitation. 

 

1.3. Photochemical apparatus 

The history of synthetic photochemistry started to evolve as early as 1800’s.2 Since then, 

it has slowly developed into a powerful method to construct complex structural organic motifs that 

are sometimes inaccessible through ground state chemistry.6,7 Appreciation for the potential of 

photochemistry has resulted in significant advancement that provides wide array of methods to 

perform photoreactions. For example, introduction of flow photoreaction has broadened the scope 

of large-scale reactions in manifold.8-10 

 

1.3.1. Choice of irradiation source 

The organic chromophores can be excited with wide spectrum of light source ranging 

from low energy visible region to high energy UV region. Depending on the type of chromophore, 

the choice of wavelength can be arrived at. The most widely employed irradiation source is 

mercury arc lamp in combination with immersion well reactors. The mercury arc lamp provides a 

wide array of spectral distribution that allows us to excite most of the organic chromophores of 

interest. In general, 3 types of mercury arc lamps are available viz., low, medium and high-

pressure arc lamp that differ in their spectral output and intensity. Another important consideration 

Quantum yield (Φ) =
Number of molecule undergo desired process

Number of photons absorbed
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is the operating temperature of these lamps, which can vary from 50 to 800 oC. So, these lamps 

are placed inside a double-jacketed immersion well that is continuously circulated with cold water 

(suitably connected to flow sensor to cut-off power supply incase water flow drops less than 

specified level). In some cases, the wide spectral distribution might be disadvantageous that can 

bring about unwanted side reactions or decomposition.11 In such instances, a narrow band of light 

sources are employed as in the case of Rayonet reactors (that comes with varying light sources 

such as ∼254, ∼300, ∼350 and ∼420 nm) or monochromatic laser irradiations. 

Yet another important aspect of irradiation is the type of glassware used for the 

photoreactions. They can also act as a source of filter thus providing desired reaction conditions 

while employing broadband irradiation source. Most commonly employed glassware includes 

uranium (> 350 nm), Pyrex (> 300 nm), Vycor (> 240 nm) and Quartz (> 200 nm). Apart from 

these filter glasses, several specially made filter glasses and filter solutions are available in the 

literature to accommodate the special needs for a given reaction.12 The following table 1.1 

provides some of the common organic chromophores and their transitions.13 

 

Figure 1.4: Spectral distribution of 450W mercury lamp (courtesy: Hanovia®-UV). 
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Table 1.1: HOMO-LUMO transition of organic chromophoresa 

Entry Chromophore Transition λmax (nm) εmax (mol-1.I.cm-1) 

1 N=O n-π* ∼ 660 200 
2 C=S n-π* ∼ 520 100 
3 N=N n-π* ∼ 350 100 
4 C=C-C=O n-π* ∼ 350 30 
5 C=O n-π* ∼ 280 20 
6 NO2 n-π* ∼ 270 20 
7 C≡N n-π* ∼ 260 150 
8 S=O n-π* ∼ 210 1.5×103 
9 Benzene ring π-π* ∼ 260 200 
10 Naphthalene π-π* ∼ 310 200 
11 Anthracence π-π* ∼ 380 1×104 
12 C=C-C=O π-π* ∼ 220 2×105 
13 C=C-C=C π-π* ∼ 220 2×105 
14 C=C π-π* ∼ 180 1×105 
15 C-C σ-σ* < 180 1×105 
16 C=H σ-σ* < 180 1×103 
aData obtained from Burns group meeting hand out, Q. Ong 

 

1.3.2. Choice of solvents 

The solvent plays an important role in the organic photochemistry. Several stringent 

expectations have to be met in order for a solvent to be successfully employed in the 

photoreactions. Some of the guidelines are listed below, 

i) The solvent should dissolve the reactant(s) to form a homogenous solution otherwise 

transmission of light becomes a concern. 

ii)  The solvent should be optically transparent in the region where the reactant(s) absorb 

the light. 

iii) The solvent should be photochemically inert thus only serving as a medium for the 

reaction. It is often noticed that wrong choice of solvents can lead to various side 

reactions and decomposition. 

iv) The solvent should not quench the excited state of the reacting species chemically, 

thermally or photochemically. 
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v) Optimal concentration of the solute should be arrived at, as too low or too high 

concentration might not bring about efficient photoreactions (Beer-Lambert’s law). 

vi) The solute should be void of any impurities (chemical species or gaseous species such 

as oxygen) that can affect the light absorption/reaction process. 

The following table lists approximate UV cut-off wavelength for some of the common 

organic solvents.14,15 

Table 1.2: UV cut-off wavelength of some common organic solvents 

Entry Solvent UV cut-off Entry Solvent UV cut-off 
1 Water 185 10 Chloroform 245 
2 Acetonitrile 190 11 Tetrahydrofuran 245 
3 n-hexanes 195 12 Ethyl acetate 255 
4 Ethanol 204 13 Acetic acid 250 
5 Methanol 205 14 Carbon tetrachloride 265 
6 Cyclohexane 215 15 Dimethylsulfoxide 277 
7 Diethyl ether 215 16 Benzene 280 
8 1,4-Dioxane 230 17 Toluene 285 
9 Methylene chloride 230 18 Acetone 330 

 

1.3.3. Choice of sensitizers 

A sensitizer is a chemical species that absorb the light and transfer it to the reactants 

(either through energy transfer or electron transfer) thus initiating a chemical process. The need 

for a sensitizer is essential in reactions where the excited state population of the reactant is short 

lived to undergo desired chemical reaction. Also, sometimes sensitizer act as an optical shield 

that protects reactant(s)/product(s) from undergoing photodecomposition. Similar to solvents, the 

sensitizer also has to meet several criteria to be an efficient sensitizer. Some of the criteria are, 

i) The sensitizer should absorb the light efficiently and must have sufficient lifetime in the 

excited state in order to transfer its energy to the reactants. 

ii) There should be a spectral overlap between the emission of sensitizer and absorption 

of reactant (comparable energy levels) for an efficient energy transfer to occur. 

iii) The sensitizer should be photostable thus allowing for multiple cycles of energy 

transfer to occur. 
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Figure 1.5: List of common triplet sensitizers and their triplet energies.16 

 

1.4. Challenges in asymmetric organic phototransformations 

Synthetic organic photochemistry has been widely utilized to access some of the highly 

strained and structurally complex motif with relative ease.17 Pumping in very high energy into the 

molecule through absorption in a short time allows us to perform reactions that are impossible by 

conventional routes.18 Yet with such a promise, carrying out stereoselective reactions proved to 

be highly challenging. The reason lies in the inability to control the excited state to a desired 

pathway. An important requirement to achieve higher stereoselectivity in the photoreactions is 

preorganization. Pre-organization allows the molecule to be in a reaction-ready state where the 

energy of the excited chromophore is channeled to a desired pathway. While this strategy seems 

to be perfect, obtaining necessary preorganization comes with challenges in itself. Over the 

years, several avenues were looked at in achieving such predisposition that will allow us to 

perform stereoselective phototransformations. Some of the highly successful strategies in the 

thermal reaction simply could not be extended to the phototransformations. The fundamental 
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challenge involved in obtaining higher selectivity in photoreaction is due to inefficient chiral 

induction process during the short excited-state lifetime of the chromophore. 

 

Figure 1.6: Comparison between diastereomeric transition states in thermal (left) and 
photochemical (right) reactions. 

 

For example, in a thermal reaction, the chiral inductors such as chiral auxiliaries, 

catalysts--etc interact with prochiral reactants resulting in the desired chiral discrimination. The 

extent of interaction/stabilization with reactants can affect the outcome of stereoselectivity in the 

products. For example, a differential activation energy (ΔΔEa) of 2.83 kcal⋅mol-1 at 298 K is 

sufficient to bring about 99% ee for a given enantioselective transformation. Unlike thermal 

reactions, in a photochemical transformation, such approach proved to be futile. The reason lies 

in energetics and the reaction coordinates involved in a given reaction. Up on shinning light, the 

reactants are promoted to the excited state that are highly energetic, short-lived and have very 

less energy barrier to undergo any transformation that relax them to the ground state. With such a 

scenario, any means to control the stereoselectivity in the phototransformations proved to be 

ineffective. Tackling this bottleneck required new approaches that take into the account of 

inherent reactivity of the excited state molecule and the time limitation to bring about such chiral 

discrimination. Working towards addressing such an enormous challenge, researchers through 

painstaking effort, careful observation and design strategy came up with several methodologies to 
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perform stereoselective phototransformations.19 The efforts were met with varying degree of 

success and the following section provides a glimpse of those endeavors. 

 

1.5. Strategies towards asymmetric phototransformations 

1.5.1. Chiral light source for asymmetric phototransformations 

The earliest known example of asymmetric phototransformation was performed using 

circularly polarized light (CPL). In 1874, Le Bel envisioned the possibility of employing circularly 

polarized light to perform stereoselective reactions.20 In 1894, Van’t Hoff reiterated Le Bel’s 

theory and the use of circularly polarized light.21 Also, the advent of Circular Dichroism (CD) by 

Cotton in the year 1896 further strengthened the prospect of asymmetric photochemistry. The 

asymmetric photochemistry with the aid of CPL is often described as “absolute asymmetric” as 

the substrates involved in the reaction do not have net chirality. In principle, the CPL in the 

asymmetric transformations can be classified into three main categories a) Partial photo-

resolution, b) Asymmetric photo-destruction and c) asymmetric synthesis. The photo-resolution 

using CPL was not experimented until 1929 when Kuhn and coworkers reported the first kinetic 

photo-resolution of racemic ethyl-α-bromopropionate (2) and N,N-dimethyl-α-azidopropionamide 

(3) (Scheme 1.2).22-24 

 

Scheme 1.2: Photo-resolution of ethyl-α-bromopropionate (top) and N,N-dimethyl- 
α-azidopropionamide (bottom) using circularly polarized light. 
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During the irradiation with CPL, photo-resolution occurred via homolytic cleavage of α-C-

Br or α-C-N3 bond followed by recombination resulting in resolution. The anisotropy factor (g) of 

the molecule (anisotropy factor is the measure of preferential excitation of one enantiomer over 

the other towards l- and r-CPL at a given wavelength) played a crucial role in the determining the 

optical resolution in a given molecule. Similarly, Rau and coworkers reported the resolution of 

tertramethyl-tetraaza-spirononadiene (10) by asymmetric photo-destruction strategy by using 

circularly polarized light (Scheme 1.3).25 From their study, they assumed that the (S)-isomer 

underwent photolysis to a greater extent over the (R)-isomer resulting in resolution. 

 

Scheme 1.3: Asymmetric photo-destruction of tertramethyl-tetraaza-spirononadiene 10. 

In principle, the resolution occurs because of the differential reaction rate of one 

enantiomer over the other that occurs through the differential absorption (molar absorption 

coefficient) of CPL (right CPL over left CPL) for a given enantiomer. In 1971, Kagan and 

coworkers demonstrated the absolute asymmetric synthesis of hexahelicenes through the 

oxidative photocyclization of diarylethylenes (12) and (13) (Scheme 1.4) in presence of iodine.26 

Control studies revealed the observation are not due to the photo-reduction of hexahelicenes (14) 

that would also result in the net optical activity. 
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Scheme 1.4: Electrocyclization of diarylethylenes 12-13 to helicenes 14 mediated by circularly 
polarized light. 

 

While most of the research on CPL mediated asymmetric synthesis was focused on 

prebiotic interest, little emphasis were given to develop a method that will be of synthetic use on a 

large scale practical application. In 2005, Soai and coworkers demonstrated such a feet by 

employing CPL on pyrimidyl alcohol (15) to result in slight enrichment followed by autocatalytic 

synthesis leading in very high enantiomeric excess in pyrimidyl alcohol (Scheme 1.5).27,28 

 

Scheme 1.5: Autocatalytic synthesis of pyrimidyl alkanol 15 mediated by circularly polarized light 
(Reproduced from reference 27, with permission from American Chemical Society, 1976). 
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catalyzed the asymmetric autocatalysis of 2-alkynylpyrimidine carbaldehyde (16) and 

diisopropylzinc (17) resulting in highly enantioenriched pyrimidyl alkanol (15) (> 99.5% ee). 

 

1.5.2. Asymmetric photoreactions in the crystalline state 

One of the oldest and successful methodologies employed in asymmetric 

phototransformation is the solid-state photoreaction. The idea of performing asymmetric 

phototransformations in crystalline matrix was conceived as early as 1908.29 However, to perfect 

the idea that are more practical and applicable required careful understanding and analysis of the 

crystals and its photo-response.30 The crystal lattice control the outcome of the reactions and are 

termed as “Topochemically controlled reactions”. The solid-state photoreactions hold huge 

promise, as even an achiral starting material with suitable crystallization technique would 

crystallize in chiral space group providing an avenue for “absolute asymmetric synthesis”. 

Carrying out asymmetric solid-state photoreactions involve two important aspects viz., i) 

Generating chiral crystals; ii) Performing topochemically controlled reactions. Out of 230 unique 

space groups available, only 65 of them are chiral and to carry out asymmetric photoreactions, it 

is necessary that the molecule crystallize in a chiral space group.31 Even in the chiral space 

group, the reactive groups must be placed appropriately (Schmidt distance <4.2 Å) for a 

successful reaction to take place.32 Schmidt and coworkers performed extensive studies on the 

solid-state photoreactions, especially on the [2+2]-photodimerization of cinnamic acid derivatives 

and put forward some important guidelines for efficient reactions in the solid-state.33,34 
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Scheme 1.6: Solid-state photoreaction of cinnamic acid derivatives (Reproduced with permission 
from reference 35; Copyright American Chemical Society, 1987). 

 

In the case of cinnamic acid derivatives (18 and 20), the cis-trans isomerization of the 

double bond predominated in the solution, whereas in the solid-state the preferred dimerization 

occurred smoothly to produce desired cyclobutane derivatives (Scheme 1.6). However in the 

solid-state, depending on the polymorph of the crystal employed (α, β and γ) the product outcome 

differed. In the γ-polymorph, the distance of the double bond was greater than 4.2 Å (4.7-5.1 Å) 

thus failing to undergo the desired photodimerization. Insights gained from these studies allowed 

Schmidt and coworkers to extend this methodology to perform bimolecular solid-state 

photoreactions in a stereoselective fashion. For instance, they have demonstrated lattice-

controlled bimolecular photocycloaddition of chiral crystals (Scheme 1.7).36 The mixture of 2,6-

dichlorophenyl-4-phenyl-trans,trans-1,3-butadiene (22) and its corresponding thienyl analogue 

(23) (∼15 %) crystallized in a chiral P212121 space group that up on irradiation furnished 

enantioenriched cyclobutane derivatives (24 and 25) (ee = 70%).30 
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Scheme 1.7: Stereoselective bimolecular solid-state photoreaction 1,3-butadiene derivatives. 

The homo-dimerization was avoided by carefully choosing the percentage of thienyl 

analogue (∼15 %) and by selective excitation of longer wavelength absorbing thienyl derivative. 

Scheffer and coworkers reported the first example of intramolecular absolute asymmetric 

synthesis through photochemical di-π-methane rearrangement and Norrish-Yang reaction.37 The 

dibenzobarralene diester derivative (26) crystallized in a chiral space group P212121 that upon 

irradiation resulted in the desired dibenzosemibullvalene photoproduct (27) with very high ee 

(>99%) as ascertained by 1H-NMR using chiral shift reagent (Scheme 1.8). The temperature 

during photolysis played a crucial role on the ee of the reaction, as higher temperature led to 

lower ee, a reason attributed to the melting of crystal that disrupts the topochemical control. 

 

Scheme 1.8: Di-π-methane rearrangement of dibenzobarralene diester derivative 26 in the solid-
state. 
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Similarly, they also employed adamantyl-p-chloroacetophenone derivative (28) for 

Norrish-Yang reaction (Scheme 1.9) wherein excitation of the ketone was followed by 

intramolecular H-abstraction (Norrish type II) from γ-carbon to carbonyl oxygen via a six-

membered transition state leading to the formation of corresponding cyclobutanol derivative (29) 

in high ee (80%). 

 

Scheme 1.9: Norrish-Yang reaction of adamantyl-p-chloroacetophenone derivative 28. 

In another example of absolute asymmetric synthesis, Sakamoto and coworkers reported 

[2+2]-photocycloaddition of achiral N-(thiobenzoyl)methacrylamide (30) in the solid-state to yield 

thietane photoproduct (31) (Scheme 1.10). This topochemically controlled (the distance between 

the reacting alkene and thiocarbonyl was within the Schmidt’s distance) reaction occurred only 

with modest stereospecificity in the solid-state (40% ee). They also showed that by employing 

seeding technique they were able to access bulk quantities of (+)- or (-)-30 providing an easy 

avenue to scale up. 

 

Scheme 1.10: [2+2]-Photocycloaddition of N-(thiobenzoyl)methacrylamide derivative 30. 
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Similarly, Toda and coworkers reported 6π-electrocyclic ring closure of 3,4-

bis(phenylmethylene)-N-Me succinimide derivative (32) to yield enantioenriched photoproducts 

(Scheme 1.11).38 

 

Scheme 1.11: 6π-Electrocyclization of 3,4-bis(phenylmethylene)-N-Me succinimide derivative 32. 

However, photoreaction of other derivatives did not yield optically active products. The 

reason for the failure to yield optically active photoproducts could not be ascertained, as there 

was not enough crystallographic information about these substrates. While “absolute asymmetric 
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group. 
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a tool to access chiral crystal and the asymmetric induction is in principle achieved through the 

crystal lattice of the molecule. Scheffer and coworker have contributed extensively and 

demonstrated the wide applicability of this approach to several photochemical transformations in 

the solid-state.39 For example, they reported solid-state photoisomerization of trans,trans-2,3-

diphenyl-1-benzoylcyclopropane derivative (35) tethered to ionic chiral auxiliary (Scheme 1.12). 

 

Scheme 1.12: Photoisomerization of ionic auxiliary tethered diphenyl-1-benzoylcyclopropane 
derivative 35. 

 

The resulting photoproduct was derivatized to its corresponding methyl ester and 

analyzed for its ee. Out of five chiral auxiliaries examined, three of them resulted in very high ee 

(>90%) while the other two gave rather moderate ee’s (54-67%). The possible origin for the 

observed higher selectivity was attributed to both topochemical and conformational effect. On the 

other hand, the lack of crystallographic information prevented them from deducing the exact 

reason for the lower selectivity. Following up their research, the same group elegantly 

demonstrated a method to access optically active amine through Norrish-Yang cyclization of ionic 

chiral auxiliary derivatized amino ketone (Scheme 1.13).40 Irradiation of the aminoketone (37) in 

solution resulted in racemic cis- and trans-cyclobutanol (38 and 39) in 2:1 ratio along with achiral 
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Scheme 1.13: Norrish-Yang reaction of ionic salt of aminoketone derivative 37. 

The high ee in the photoproduct (38) was attributed to the geometric orientation and 

restriction of molecular motions in the crystalline lattice that allowed for high topochemical control 

in the reaction. While this method allows for excellent enantiocontrol in the photoreaction, the 

formation of cleavage product (40) could not be suppressed that seemed to dominate the 

product(s) yield. A possible reason for this could be the competitive reaction of H-abstraction and 

cleavage of the 1,4-biradical intermediate. 

These ionic chiral auxiliaries provide an excellent avenue for performing highly 

stereoselective phototransformations. Also, various attributes of these chiral crystals such as the 

ease of preparation, crystallinity, high melting point due to strong lattice forces, high topochemical 

control…etc., makes them attractive for asymmetric phototransformations. 
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material that is inside the crystal matrix. However, the nanocrystals, owing to their smaller size 
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crystal-to-single-crystal transformations. Nakanishi and coworkers demonstrated the first 

topochemical polymerization of diolefin derivatives viz., p-phenylenediacrylate (41) and 2,5-

distyrylpyrazine (42) that occurred single-crystal-to-single-crystal.41 

 

Figure 1.7: p-Phenylenediacrylate 41 and 2,5-distyrylpyrazine derivative 42 employed in single-
crystal-to-single-crystal phototransformations. 

 

The nanocrystals were prepared by the reprecipitation approach,42 wherein a saturated 

solution of diolefin in THF was injected into water while stirring vigorously. The nanocrystals were 

then subjected to photopolymerization. The other methods that are utilized to prepare 

nanocrystals involve fast evaporation method43, sonocrystallization techniques44… etc. Garcia-

Garibay and coworkers elegantly demonstrated the application of this method by stereocontrolled 

synthesis of natural product (α)-cuparenone (Scheme 1.14).45 
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Scheme 1.14: Synthesis of cuparenone 45 natural product through photoreaction in 
nanocrystalline suspension (reproduced from 45; Copyright: 2007 WILEY-VCH Verlag GmbH & 
Co. KGaA, Weinheim). 

They synthesized both the enantiomer of the natural product by starting with optically 

pure intermediates that was accessed through resolution of chiral auxiliary tethered β-keto-

methylbenzamide derivatives (43 and 46). Using this photochemical nanocrystalline solid-solid 

transformation strategy they were able construct adjacent quaternary chiral center in one step 

and access both the enantiomers (> 99% ee) of the (α)-cuparenone (45) in 60% yield over 4 

steps, which was a significant improvement over the existing methods to access these natural 

products. 
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1.5.4. Asymmetric photoreactions using chiral solvents 

Creating asymmetry in the environment of the reacting species, at least in principle can 

effect asymmetric induction during photochemical transformations. But the type and the extent of 

interaction that the chiral environment has on the reactants dictate the effectiveness of this 

approach. Asymmetric induction by chiral solvent was one of the earliest strategies evaluated 

towards asymmetric phototransformations. Weiss and coworkers examined the cis-trans 

isomerization of 1,2-diphenylcyclopropane (48) in the presence of chiral solvents (50a-c) and 

triplet sensitizer acetone or singlet sensitizer naphthalene (Scheme 1.15).46 

 

Scheme 1.15: Cis-trans isomerization of 1,2-diphenylcyclopropane 48 in chiral solvents. 

The analysis of the isolated trans sample revealed that the net asymmetric induction in 

the sample was very poor (2.3% optical purity). The low level of selectivity was attributed to the 

inability of the chiral solvents to create chiral environment (chiral center of the solvent to be 

present near the locus of isomerization) or poor interaction. Similarly, Nakazaki and coworkers 

reported cis-trans isomerization of α,β-unsaturated ketone that occurred under direct excitation in 

presence of L-(+)-tartarate, which resulted in optical purity of 0.5-1.0%.47 Seebach and coworkers 

reported asymmetric photopinacolization of ketones in the presence of chiral amino ethers 

(Scheme 1.16).48,49 In this reaction, the chiral amine (52) acted both as a solvent and a hydrogen 

donor. 
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Scheme 1.16: Asymmetric photopinacolization of ketones in presence of chiral amino ethers. 

The optical yield obtained for this reaction was significantly higher for this class of chiral 

inductors. During the reaction, the electron transfer from the amine to the excited ketone resulting 

in a charge transfer complex. The proton transfer between the charge transfer complex produced 

a radical pair, which upon combination resulted in the corresponding pinnacol that was biased by 

the weakly coordinated chiral amine leading to chiral induction. Further, the observation was 

extended to various carbonyl compounds such as benzaldehyde, propiophenone etc., that in 

presence of additives such as pentane, toluene or methanol resulted in enhanced optical yield 

(up to 23%). Boyd and coworkers investigated the photochemical synthesis of oxaziridines (56) 

from prochiral nitrones (55) in presence of chiral solvents.50 The reaction proceeded at -78 oC 

with 1:1 mixture of fluorotrichloromethane and chiral 2,2,2-trifluorophenylethanol to result in 

enantioenriched oxaziridine product (56) (Scheme 1.17). The origin of stereoselectivity was 

explained based on the chiral complex generated between the nitrone and chiral solvent that was 

stabilized by hydrogen bond. The temperature and the substituent on the nitrogen greatly affected 

the outcome of the enantioselectivity in the reaction. 
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Scheme 1.17: Asymmetric synthesis of oxaziridines from nitrones in presence of chiral solvents. 

While the initial investigations shown to be optimistic, further research along these lines 

proved to be futile. The main reason for its failure laid in the ill defined role played by the chiral 

solvents such as poor stereodifferentiation as a result of less active role in the reaction and 

passive chiral environment that could not be defined. Yet another issue associated with this 

approach is the use of large excess of chiral element to impart chiral induction in the desired 

reaction that severely limits its use in the large-scale reactions. 

 

1.5.5. Asymmetric phototransformations mediated by chiral sensitizers 

The success realized in asymmetric phototransformations through the confinement of 

chromophores (solid-state photoreactions or supramolecular chemistry) or using chiral light 
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Some of the fundamental limitations of these methods such as challenges involved in scaling up 
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scalability, but presented with whole new set of challenges in controlling stereoselectivity in 
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source. One of the efficient methods introduced to achieve stereoselectivity was to employ chiral 
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transformation through “excited-state sensitizer-substrate interactions” thus influencing the 

stereochemical outcome of a reaction.51 The first report of enantio-differentiating 

photosensitization was by Hammond and coworkers, who employed a chiral amide to influence 

the stereochemical isomerization of trans-1,2-diphenylcyclopropane (57) (Scheme 1.18).52 

 

Scheme 1.18: Photoisomerization of trans-1,2-diphenylcyclopropane mediated by chiral 
sensitizer. 

 

A benzene solution of cyclopropane (57) was irradiated long enough to result in 

photostationary state of cis-trans isomers (1.03), followed by the specific rotation analysis that 

revealed a definite asymmetric induction in the isomerization process. They attributed the 

enantioenrichment to the formation of intimate interaction between chiral donor and acceptor. 

Following this research, several uni- and bimolecular photoreactions were reported that resulted 

in excellent selectivity in the photoproduct. For example, Inoue and coworkers reported an 

elegant approach towards enantioselective isomerization of (Z)-cycloheptene to (E)-cycloheptene 

using chiral alkyl pyromellitates (Scheme 1.19).53 The enantioenriched (E)-cycloheptene was 

trapped in situ with dienes at -70 oC that resulted in the Diels-Alder adduct (63) or by oxidation 

with OsO4 to afford trans-1,2-cycloheptanediol (62). 
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Scheme 1.19: Enantioselective isomerization/ trapping of (Z)-cycloheptane. 

The thermal [4+2]-cycloaddition was assumed to undergo with stereoretention and the 

selectivity in the thermal product displayed enantioenrichment in the photoisomerization process. 

Detailed investigations in related systems revealed that the polar solvents were less efficient for 

the isomerization reaction leading to poor ee in the product. Also, the fluorescence quenching 

studies bolster the hypothesis that intimate sensitizer-substrate interactions are needed to 

achieve higher selectivity. Extension of this approach to bimolecular reactions was also 

investigated, and the studies revealed that the stereoselectivity achieved in the bimolecular 

reactions are inferior compared to unimolecular reactions. For example, Schuster and coworkers 

reported enantioselective Diels-Alder reaction between cyclohexadiene (64) and styrene 

derivatives (65) sensitized by atropisomeric tetracyanobinapthyl and bis(2,10-

dicyanoanthracence) derivatives (Scheme 1.20).54,55 The reaction proceeded via a ternary 

complex of singlet excited sensitizer, diene and dienophile (“triplex Diels-Alder”). 

chiral sensitizer
hν, -70 oC

hexanes

(R)-E (S)-E

OsO4

OH

OHOH

OH

(S,S)-62 (R,R)-62

O

Ph

Ph

O

Ph

Ph

O

Ph

Ph

(S,S)-63 (R,R)-63

61
chiral sensitizer

COOR*

COOR*

*ROOC

*ROOC

R* =

77% ee

(Z)-60

-70 oC

-70 oC



 28 

 

Scheme 1.20: Enantioselective Diels-Alder reactions of styrene derivative mediated by chiral 
sensitizer. 

 

The photophysical studies revealed the formation of two diastereomeric exciplexes 

between the sensitizer and styrene that react with the diene. The diastereomeric exciplexes 

equilibrated even at low temperature (-65 oC) albeit slowly and the observed ee in the product 

was the result of trapping of the complexes by diene (64). 

Continued effort in stereodifferentiating sensitization reactions revealed several unique 

details about the mechanism and limitations of this methodology. The deeper understanding 
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desired reaction. The reactions that are promoted by weak interactions such as exciplex 
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such as solvent, temperature and concentration. Judicious choice of these parameters will allow 

us to obtain higher selectivity in the desired photochemical transformations. 
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The presence of an optically pure chiral entity in a reaction should impart certain level of 

asymmetric induction in a given reaction. These diastereoselective reactions were given 
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auxiliary), the methodology becomes more useful as it not only provides useful handle to 

separate the diastereomeric photoproducts by chromatographic techniques, but also allows us to 

reuse them for further cycle’s of reactions, at least in principle. While several attempts were not 

as fruitful as desired, some of the diastereoselective phototransformations provided excellent 

chiral induction in the process and led to new directions in asymmetric photochemistry. For 

example, in 2001, Mariano and coworkers reported highly diastereoselective intramolecular  

[2+2]-photocycloaddition of chiral auxiliary tethered eniminium salts (Scheme 1.21).56 

 

Scheme 1.21: [2+2]-photocycloaddition of chiral eniminium salt 68. 

The C2-symmetric pyrrolidino-cyclohexeniminium perchlorates (68) in acetonitrile 

underwent facile [2+2]-photocycloaddition, which up on base work up resulted in cyclobutane 

derivatives (69) with good de. The observed selectivity was the result of facial shielding provided 

by the R1 substituent and the steric bulk of which dictated the outcome of de in the photoproduct. 

Döpp and coworkers reported a highly diastereoselective photo Diels-Alder reaction of  

1-acetonapthone (70) to a chiral auxiliary derivatized acrylonitrile (71) (Scheme 1.22).57 

 

Scheme 1.22: Photo Diels-Alder reactions of chiral ionic salt. 
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The reaction proceeded smoothly in cyclohexane to furnish the desired Diels-Alder 

adduct in good yield and selectivity. Further hydrolysis of the adduct resulted in enantioenriched 

bicyclic systems. Griesbeck and coworkers reported a highly enantio- and diastereoselective 

synthesis of diazepine (74) derivatives through decarboxylative photocyclization (Scheme 1.23).58 

 

Scheme 1.23: Stereoselective synthesis of diazepine derivatives through decarboxylative 
photocyclization. 

 

The origin of high level of stereoselectivity in the product was explained based on the 

memory of chirality, wherein the intermediate 1,7-diradical which is formed via decarboxylation 

retains the chirality via memory effect. The reaction proceeded through a mixture of singlet and 

triplet biradical intermediate in which the singlet underwent cyclization stereospecifically and the 

triplet had a leakage in the chiral transfer that was reflected in the enantiomeric excess in the 

product. 
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1.5.7. Asymmetric phototransformations mediated by organized assemblies 

The photoreaction in confined media is probably an inspiration from nature, where 

several transformations occur with in confined spaces. The supramolecular cavities serve as a 

packet that accommodate a guest molecule and sets them in a reaction ready state, which affects 

the kinetics, selectivity and the outcome of a given reaction. Initial investigations involved the 

employment of naturally occurring supramolecules such as cyclodextrins or serum albumins. 

Insights gained from these assemblies led to several synthetic scaffolds such as modified 

cyclodextrins, zeolites, cucurbiturils, calixarenes, and micelles etc., which were more promising 

and efficient in promoting asymmetric phototransformations. Ramamurthy and coworkers 

reported highly enantio-differentiating 4π-photocyclization of tropolone derivatives (75) in 

presence of chirally modified zeolites (Scheme 1.24).59-61 Several approaches such as zeolites 

coadsorbed with chiral inductor, chiral auxiliary tethered prochiral substrate, and combination of 

both were attempted to evaluate the outcome of the stereoselectivity of the photoreaction. 

 

Scheme 1.24: [2+2]-Photocycloaddition of tropolone ethers. 

Irradiation of a slurry of tropolone ether adsorbed NaY in hexanes along with chiral 

inductor (-)-ephedrine resulted in bicyclo[3.2.0] photoproduct (76) in 78% ee. However, longer 

irradiation resulted in the formation of secondary photoproduct (77) along with reduction in the 

enantiomeric excess (ee = 68% for 45 mins irradiation). Moisture in the zeolite critically affected 

the selectivity in the photoproduct, thus posing stringent limitation on the reaction conditions. The 

origin of selectivity was explained based on “three-point interaction” where the tropolone ether 
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photoreaction of photodimerization of 1-anthracence carboxylates (AC, 78) mediated by 

γ-cyclodextrin (Scheme 1.25).62 

 

 

Scheme 1.25: Photodimerization of anthracence carboxylates 78 mediated by supramolecular 
host. 

 

The γ-cyclodextrins and AC formed 1:2 inclusion complex in the ground state, which upon 

irradiation resulted in photodimerization. The distribution of photoproducts reflected the ratio of 

different structural host-guest complexes formed in the ground state. The enantioselectivity in the 

chiral photoproducts depended on the temperature. For example, the ee at 25 and 0 oC was 32% 

and 41% respectively. It was one of the highest selectivity obtained for the photodimerization 

reaction. Sivaguru and coworkers reported photodimerization of 6-methylcoumarin (83) in the 

presence of catalytic amount of cucurbit[8]uril (Scheme 1.26).63,64 Photodimerization in the 

absence of cucurbit[8]uril (CB[8]) was ineffective only resulting in 10% conversion in 1 h with 

mixture of syn and anti photoadducts. On the other hand, in the presence of 10 mol% CB-[8], the 

reaction proceeded efficiently with high syn selectivity (syn HH:HT = 70:30). 
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Scheme 1.26: Photodimerization of 6-methyl coumarin 83 mediated by cucurbit-[8]-uril. 

Photophysical and kinetic study revealed that the catalyzed reaction was at least 9 times 

faster than the uncatalyzed reaction. The amount of CB[8] played a critical role in the dimerization 

reaction. The best efficiency was achieved at 70 mol% beyond which the efficiency dropped down 

which was attributed to the formation of aggregation of host and formation of 1:1 host-guest 

complex. They also carried out detailed mechanistic study and proposed catalytic cycle in which 

the formation of 1:1 complex determined to be the rate-limiting step. 
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introduced and demonstrated wide utility of Kemp triacid hydrogen bonding template that proved 

to be superior over existing templates and had wide scope in promoting enantioselective 

photoreactions. For example, they reported highly enantioselective intramolecular [2+2]-

photocycloaddition of 2-quinolone derivatives (88) to yield enantioenriched complex cyclobutane 

scaffolds (Scheme 1.27).65 

 

Scheme 1.27: Enantioselective intramolecular [2+2]-photocycloaddition of 2-quinolone 
derivatives 88 mediated by chiral lactam 89. 

 

The rigid template backbone provided efficient facial discrimination up on binding (Ka = 

∼580 M-1 determined from binding studies carried out on 89 and 2-quinolinone) to the  

2-quinolinone leading to enantioselectivity in the photoreaction. They also showed that up on 

using the optical antipode of the chiral lactam ((-)-89), they could switch the enantiomer in the 

photoproduct thus allowing them to access both the stereoisomers of the photoproducts. By 

simple modification of the template backbone that is instilled with the sensitizer ((+)-93), they 

were able to perform sensitized enantioselective photoreactions efficiently (Scheme 1.28).66 
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Scheme 1.28: Enantioselective synthesis of pyrrolizidine 94 through photo-induced electron 
transfer. 

 

The reaction was initiated by photo-induced electron transfer (PET) between the excited 

benzophenone (part of the template) and amine (which is a part of the reactant) followed by the 

conjugate addition of the radical to the quinolinone resulting in enantioenriched spirocyclic 

pyrrolizidine derivatives (94). Once again, the origin of enantioselectivity was explained based on 

the chiral environment provided by the template when the prochiral starting material was bound. 

As the sensitizer is part of the chiral template, it provided them an opportunity to employ sub-

stoichiometric amount of the chiral template. However, the reduction in the enantioselectivity was 

attributed to the racemic background reaction, which occurred to a significant extent even in the 
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organocatalyst that was proved to be superior in promoting highly enantioselective [2+2]-

photocycloaddition of coumarin derivatives (Scheme 1.29).67 

 

Scheme 1.29: Enantioselective intramolecular [2+2]-photocycloaddition of coumarin mediated by 
atropisomeric thiourea. 

 

Detailed photophysical analysis revealed that the organocatalyst has lower triplet energy 

than the prochiral coumarin substrate (95), thus an uphill energy transfer was not feasible. 

However, the substrate bound catalyst resulted in the formation of exciplex (static and dynamic 

excited state complex) thus allowing facile energy transfer. They also invoked a dual catalytic 

cycle depending on the amount of organocatalyst present in the reaction (catalyst loading). 

These findings not only showed a steep increase in the potential of asymmetric 

phototransformations but also the practicality aspect of the methodologies introduced in recent 

literature. Also, these impressive improvements will further pave way for new ideas and 

approaches that will make the asymmetric phototransformation in solution more viable in the 

synthetic community. 
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1.6. Impact of axial chirality in asymmetric transformations 

A special class of stereoisomers that lack stereogenic center, yet exist as a pair of 

enantiomers are called atropisomers (figure 1.8). The chirality arises due to the restricted rotation 

around a single bond that is dictated by several factors and the important one being the sterics 

around the chiral axis. This phenomenon in compounds was first observed and reported by 

Christie and Kenner in 1922 in 6,6’-dinitrobiphenyl-2,2’-dicarboxylic acid (98).68 Since then, 

several new atropisomeric scaffolds have been identified and designed for various applications in 

the field of chemistry.69,70 The important application of atropisomers is in the field of 

organometallic chemistry as a chiral ligand to the metal center.71 For example, suitably 

substituted biphenyl (99) and binaphthyl (100) are widely used as a coordinating ligand to metal 

center that binds to the substrate and promote asymmetric transformation. 

 

Figure 1.8: Atropisomeric scaffolds. left: (P) and (M)-isomers of 6,6’-Dinitrobiphenyl-2,2’-
dicarboxylic acid 98; middle: biphenyl 99 and right: binaphthyl 100. 

 

While early investigations were mainly focused on the kinetic analysis of these twisted 

molecules such as racemization barrier, mechanism of racemization, later in the mid 90’s, first 

application of these molecules in the “atropselective”72 reactions were demonstrated by Curran 

and Clayden. Their findings kindled new interest in atropisomeric molecules as potential chiral 

auxiliaries, catalysts and reagents to perform stereospecific transformations. Also, the presence 

of axial chirality imparts new reactivity/selectivity on compounds that are thus far not observed in 

achiral or point chiral molecules.  
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1.6.1. Atropisomeric transformations in thermal chemistry 

In 1991, Fuji and coworkers reported the stereospecific alkylation of a ketone (101) in 

which the alkylated product (102) retained the stereochemistry of the starting material (Scheme 

1.30).73 The asymmetric induction observed in the product was attributed to the transient axial 

chirality generated in the achiral enolate intermediate. Presence of the axial chirality was proved 

by trapping the enolate as an enol ether that showed optical activity. 

 

Scheme 1.30: Enantiospecific alkylation of ketone derivative 101. 

This report was followed by Curran’s work that served as the first report of stereospecific 

thermal transformations of atropisomeric compounds. In 1994, Curran and coworkers reported 

stereospecific transformations of atropisomeric maleimides and acrylanilides with very high 

atropselectivity.74 For example, atropisomeric acrylanilide (103) underwent facile cycloaddition 

with benzonitrile oxide to give isoxazoline derivatives (104 and 105) with excellent 

diastereoselectivity (dr = 97:3) (Scheme 1.31). 
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Scheme 1.31: Atropselective photocycloaddition of acrylanilides with benzonitrile oxide 
(Reproduced with permission from reference 74; Copyright 1994 American Chemical Society). 

 

These atropisomers were stable at room temperature but underwent racemization at 

elevated temperature due to the labile chiral axis. They also reported radical cyclization of axially 

chiral acrylanilides (106) in which the axial chirality in the starting material was transferred to the 

point chirality in the product with very high fidelity (Scheme 1.32).75 

 

Scheme 1.32: Atropselective radical cyclization of o-iodo acrylanilide derivatives (Reproduced 
with permission from reference 75. Copyright 1999 American Chemical Society). 
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intermediate generated did not have such high racemization barrier due to the loss of iodide 

group. Fortunately, in these molecules, the radical cyclization occurred at a much higher rate 

constant than the racemization leading to excellent chirality transfer in the newly formed 

stereocenter in the oxindole derivatives (107). During the same period, Clayden and coworkers 

were extensively involved in the evaluation of atropisomeric amides (108) as a potential avenue 

to perform stereospecific transformations.76 For example, in 1996, they reported stereospecific 

reduction of ketones in atropisomeric amides (Scheme 1.33).77 

 

Scheme 1.33: Diastereoselective reduction of atropisomeric amide derivative 108. 

The observed selectivity in the product was rationalized based on the ability of the 

atropisomer to bias/direct the incoming nucleophile. The nucleophile approached the ketone from 

the less hindered face away from the amide unit. Enhanced selectivity was observed if bulky 

nucleophile such as LiBHEt3 was employed. They also expanded the utility of these atropisomeric 

amides in effecting stereospecific electrophilic addition reactions.78 
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Scheme 1.34: Diastereoselective reactions of ortho lithiated atropisomeric amide derivative 110. 

The laterally lithiated atropisomeric amides adds to several electrophiles to furnish 

products with excellent diastereoselectivity (Scheme 1.34). Configuration of the major product 

was assigned as syn with respect to the amide carbonyl group and further confirmed by X-ray 

crystal structure in some cases. Once again, the origin of stereoselectivity was attributed to the 

stable axial chirality in the atropisomeric amide. 
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1.6.2. Asymmetric photochemistry of frozen chirality 

While the thermal chemistry of atropisomeric compounds was moving at a faster phase, 

the photochemical counterpart was somewhat still at its infancy. One of the major reasons for its 

dormancy lied in the concern over the ability of axial chirality to dictate stereoselectivity in the 

short lived excited state of atropisomeric chromophores. Bach and coworkers who investigated 

the stereoselectivity in the Paternò-Büchi reaction of excited benzaldehyde with atropisomeric 

enamides where the atropisomers reacted from the ground state made one of earliest report on 

photochemical transformations involving atropisomeric chromophores.79 Further work along this 

line to evaluate atropisomeric systems for stereospecific photochemical transformations were not 

pursued with diligence. During this time, Sakamoto and coworkers reported the photochemistry of 

molecules with “Frozen chirality” that were generated by chiral crystallization of achiral 

materials.31 For example, in 2005, they reported the photocycloaddition of molecularly chiral 

napthamides (115) with 9-cyanoanthracene (116) in solution (Scheme 1.35).80 

 

Scheme 1.35: Photocycloaddition of molecularly chiral naphthamides with 9-cyanoanthracence. 

These molecularly chiral crystals when dissolved in solvent retained their chirality at low 

temperature (τ1/2 at 20 oC was ∼60 min) long enough to react with 9-cyanoanthracence to result in 

chiral photoadduct. Similarly, they also reported highly stereoselective [2+2]-photocycloaddition of 

coumarincarboxamides (118) with various alkenes (Scheme 1.36).81 
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Scheme 1.36: Intermolecular [2+2]-photocycloaddition of molecularly chiral 
coumarincarboxamides with alkenes. 

 

The methanolic solution of chirally crystallized coumarincarboxamides composed of 

single enantiomer reacted with alkenes to result in the product albeit with lower ee. The reason 

attributed for lower ee was longer reaction time that led to racemization and photoracemization 

that occurred from the singlet-excited state. The problem was overcome by benzophenone-

sensitized (triplet pathway) reaction that resulted in excellent enantiomeric excess in the 

photoadduct (ee = 98%). 

While the photochemistry of “Frozen chirality” was promising, the method suffered from 

the ability of the molecule to crystallize in a chiral space group and the reaction conditions such 

as reaction time, solvent choice that greatly affected the outcome of the reactivity/selectivity in the 

desired photochemical transformations. 
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“Species formed up on π-π* excitation of the various transoid and cisoid ground-state 

rotamers of a triene or a polyene in general will not equilibrate during the short excited-state 

lifetime because of the increased bond order of the ground state C-C single bonds”84 

This statement elucidates that the product distribution will reflect upon the ground-state 

composition of various conformational equilibrium of rotamers in the starting material. One of the 

interesting examples of existence of NEER principle was demonstrated in the low temperature 

irradiation of previtamin D (Scheme 1.37).82 

 

Scheme 1.37: Photochemical cis-trans isomerization of previtamin-D (P) and tachysterol3 (T) and 
NEER principle. (Reproduced from reference 82, with permission from Wiley-VCH Verlag GmbH 
& Co. KGaA). 
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showed that the rotamers do not interconvert during the excited state even though the resulting 

ground state product was highly unstable due to sterics. 

The NEER principle serves as the counterpart of Curtin-Hammett principle for ground 

state reactions. However, the NEER principle hold good as long as the rate of photoreaction is 

higher at least by a factor 10 than the rate of rotameric interconversion. So at room temperature, 

the NEER principle operates as long as the barrier to interconversion is greater than 8 kcal⋅mol-1. 

The NEER principle was mainly put forward for the observations in singlet excited state. 

However, further study on various molecules proved that the NEER principle does operate in 

triplet state as well. So, this principle can be conveniently extended to the stereospecific 

photoreactions of non-biaryl atropisomeric systems (figure 1.9). The individual isomers of the 

atropisomers A or B that have sufficient energy barrier to rotation towards racemization in the 

ground state when irradiated goes to the excited state A* or B*. 

 

Figure 1.9: NEER principle in non-biaryl atropisomeric systems leading to efficient chirality 
transfer. 

 

The excited rotamers do not undergo interconversion in the excited state following the 

NEER principle leading to stereospecific photoproducts that is dictated by the geometry of the 

starting material (A to P1 and B to P2). If the photoreaction is carried out on optically pure 

atropisomers, in principle, complete “axial to point chirality” can be achieved. This led us to initiate 

a research program where our group mainly focused on applying this strategy to stereospecific 

phototransformations and to achieve highly enantioenriched photoproducts.  

ΔG‡B A

B* A*×
hν hν

Interconverting rotamers

No interconvertion

P1P2



 46 

1.6.4. Asymmetric photochemistry of non-biaryl atropisomers 

In 2009, Sivaguru and coworkers initiated comprehensive analysis on the photochemistry 

of stable non-biaryl atropisomers in solution. For example, they reported highly enantiospecific 

6π-photocyclization of acrylanilides (125) in solution resulting in cis and trans photoproducts 

(Scheme 1.38).85,86 

 

Scheme 1.38: Enantiospecific 6π-ring closure of atropisomeric acrylanilides. 

The “conrotatory” cyclization occurred on the carbon bearing t-Bu group thus eliminating 

the isoprene unit and relieving the unnecessary strain in the molecule. The enantio- and 

diastereomeric excess in the photoproducts however depended on the substitution on the alkene 

and the mechanism of photocyclization. For instance, under direct irradiation (singlet pathway), 

the presence of β-substitution (R1) is indispensible to achieve selectivity. In a singlet pathway, the 

initial conrotatory cyclization underwent stereospecifically resulting in planar enolate with defined 

R1 chirality. The protonation of the enolate occurred non-stereospecifically resulting in cis and 

trans photoproduct (126 and 127). On the other hand, in a sensitized irradiation (triplet pathway), 

the cyclization and the subsequent hydrogen abstraction occurred stereospecifically via radical 

pathway resulting in highly enantioenriched photoproducts.87 They also employed other means 
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such as photoreaction in the solid state where the conformation was rigidly controlled by the 

crystalline matrix88 and in the presence of alkali metal ions89 that promoted radical pathway by 

spin-orbit coupling to achieve higher selectivity in the α-substituted acrylanilides. In the same 

year, they also reported stereospecific Norrish-Yang cyclization (hydrogen abstraction) of 

atropisomeric α-oxoamides (128) (Scheme 1.39).90 The reaction proceeds via the excitation of 

carbonyl chromophore, which abstracted a hydrogen from suitably positioned N-methyl 

substituent resulting in benzylic 1,4-diradical. 

 

Scheme 1.39: Enantiospecific Norrish-Yang reaction of atropisomeric α-oxoamides 128. 

The benzylic radical then underwent cyclization leading to products such as β-lactam, 

oxazolidin-4-oneand open chained amide. The ratio of the product distribution depended on the 

reaction conditions.91 In the reported condition, the major product was the β-lactam (129) that 

forms through radical recombination. One interesting observation was that the temperature 

dependence of enantiospecificity. At lower temperature, rotation of 1,4-diradical was inhibited 

thus resulting in enantioenriched photoproduct (ee = 80%). 
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1.7. Summary and outlook 

The approaches and the outcome of the efforts provide an excellent understanding of the 

advantages and disadvantages of a particular method in achieving stereoselectivity in the desired 

photochemical transformations. Based on the literature precedence, the success of atropisomeric 

scaffolds in performing stereoselective thermal transformations and preliminary investigation 

atropisomeric chromophores in photochemical transformations allowed us to envision a 

comprehensive evaluation of atropisomeric systems in asymmetric phototransformations. The 

forthcoming chapters or the theme of this thesis elaborately describes the investigations carried 

out and the consequence of those works on non-biaryl atropisomeric chromophores in various 

asymmetric photochemical transformations. 
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2 CHAPTER 2: ENANTIOSPECIFIC 4π-RING CLOSURE OF 

ATROPISOMERIC 2-PYRIDONES IN SOLUTION 

 Introduction 2.1.

Pyridin-2-ones and their corresponding heterocyclic analogues are important 

components in many active pharmaceuticals and drug candidates. In this regard, the chemistry 

of pyridones was well investigated. The unsubstituted pyridin-2-ones and its corresponding 

constitutional isomer pyridin-4-ones can exist as tautomer between a keto and an enol form 

(lactam vs lactim form) that is affected by the polarity of the solvent; nonpolar solvents favoring 

enol form and polar solvents favoring keto form (Figure 2.1). 

 

Figure 2.1: Tautomerization in 2-pyridones and 4-pyridones. 

The photochemistry of 2-pyriondes was first reported by Paudler and coworkers while 

investigating photodimerization of α,β-unsaturated lactams.1,2 Through absorption and dipole 

moment analysis they proposed that the product obtained was a head-tail cyclobutane resulting 

from [2+2]-dimerization reaction (Scheme 2.1). However further investigations using various 

other analytical methods such as NMR spectroscopy, infrared spectroscopy and X-ray 

crystallography it was confirmed that the product formed was a [4+4]-adduct instead of the  

[2+2]-adduct.3,4 

 

The material in this chapter was co-authored by Elango Kumarasamy (EK), Dr. Josepha L. 
Jesuraj (JJ), Joseph N. Omlid (JO), Dr. Angel Ugrinov (AU), Dr. Anoklase J.-L. Ayitou (AJA), Dr. 
Gaku Fukuhara (GF), Dr. Yoshihisa Inoue (YI) and Dr. J. Sivaguru (JS). EK in consultation with 
JS synthesized all compounds and carried out experiments with the help of JJ and JO. AU 
recorded XRD data and solved the structures reported in this chapter. AJA and GF carried out 
pressure experiments on compounds mentioned in this chapter and elsewhere. EK and JS came 
up with mechanistic rationale of the reaction and the conclusion provided in this section. YI 
shared his insights in explaining the behavior of atropisomeric compounds under high pressure. 
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Scheme 2.1: Intermolecular photoreactions of 2-pyridones. 

Corey and coworkers reported the first synthetically useful version of intramolecular 

reactions of 2-pyridones and pyrones in ethereal solution that resulted in cyclobutene derivatives 

(Scheme 2.2).5 These scaffolds appeared to be promising in terms of accessing the derivatives 

of cyclobutadiene which otherwise proved difficult to be synthesized by thermal means. 

 

Scheme 2.2: Intramolecular 4π-ring closure of 2-pyridones (R = NH) and pyrones (R = O). 

At this point, the photoreactions were called as internal photoaddition reactions. 

However, further research along this line and understanding of pericyclic reactions led to a set of 

empirical rules about reactions that occur through concerted transition state preserving the 

orbital symmetries.6,7 These set of rules were put forwarded by Woodward and Hoffman called 

as “Woodward-Hoffman rules” and for their contribution Hoffman was awarded Noble prize in 

chemistry in 1981 (R. B. Woodward died 2 years before the Nobel prize was announced). Under 

dilute conditions, UV irradiation of 2-pyridone led to 4π-disrotatory ring closure furnishing  

β-lactam photoproducts with 2 new chiral centers (Scheme 2.3). However, in concentrated 

solution dimerization was the major reaction pathway leading to complex scaffolds with multiple 

stereocenters. 
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Scheme 2.3: Disrotatory modes in intramolecular 4π-ring closure of 2-pyridones. 

The 4π-ring closure occurs through the “disrotatory” mode as shown in Scheme 2.3. 

However, the “disrotation” can occur in two ways i.e., inward or outward leading to enantiomeric 

photoproducts. In the absence of any chiral bias, two modes of cyclization occur at equal 

probability resulting in racemic β-lactam photoproducts. Due to the synthetic potential of  

2-pyridones and wide presence of β-lactam in many drug molecules and antibiotics, the need for 

an enantioselective synthesis was more pressing than ever. Working towards this challenge, 

several interesting methodologies were developed that met with varying degree of success. 

Toda et al. reported solid-state irradiation of 1:1 inclusion complexes of 2-pyridones (136) and 

optically active host (135) that resulted in highly enantioenriched β-lactam derivatives (137).8 

 

Scheme 2.4: Solid-state 4π-ring closure of 1:1 inclusion complex of 2-pyridones. 

While the selectivity in the reaction was very high, the reaction times were much longer 

and the general applicability of this approach largely depended on the ability of the mixture to 

form chiral crystals. Similarly, Tanaka and coworkers reported irradiation of inclusion complexes 

of 2-pyridones and optically active host as a slurry in water (with hexadecyltrimethylammonium 

bromide as surfactant) which resulted in excellent yield and enantiomeric excess.9 Bach and 

coworkers reported the first enantioselective photoreactions of 2-pyridones (138) in solution in 

the presence of Kemp triacid derived chiral host (139) resulting in modest enantiomeric excess 

(20-23%) and yield (Scheme 2.5).10 
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Scheme 2.5: Enantioselective 4π-ring closure of 2-pyridones in solution. 

One of the reasons attributed for lower enantioselectivity was poor binding affinity of the 

2-pyridones to the chiral template (139) resulting in significant background reaction and the 

catalyst was unable to differentiate the diastereomeric transition state (inward vs. outward) 

effectively thus resulting only in marginal selectivity. In 2007, Ramamurthy and coworkers 

reported an elegant approach to achieve higher enantioselectivity in the photoreaction of  

N-alkyl-2-pyridones (141 and 144) within zeolites (Scheme 2.6).11 They employed two strategies 

to provide asymmetric induction in the reaction viz., chiral inductor and chiral auxiliary approach. 

In chiral inductor approach, despite using excess of chiral element (10 fold excess), the 

observed ee in the photoproduct was only moderate at best and hugely influenced by the type of 

zeolite, type of cation, nature of reaction site… etc. 
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Scheme 2.6: Stereoselective 4π-ring closure of 2-pyridones based on chiral inductor and chiral 
auxiliary approach. 

 

Computational analysis showed that the “cation-dipolar interaction” to be the primary 

interaction. In the best scenario, the cation and the substrate interaction provided a rigid 

complex to which the chiral inductor interacted further favoring one mode of cyclization over the 

other resulting in enantioenriched β-lactam product. This effect was pronounced in the case of 

chiral auxiliary where the chiral element is attached to the substrate resulting in higher 

enantioselectivity in the product. 

Based on literature reports, it was evident that each methodology has its own 

advantages and shortcomings and there was still a need for a method that would furnish  

β-lactam products in high yield and selectivity. With the promise of atropisomeric systems in the 

6π-photocyclization of acrylanilides,12 we were prompted to evaluate axial-point chiral transfer 

strategy in 4π-ring closure reaction of 2-pyridones. As a step towards this study, we synthesized 

atropisomeric 2-pyridones based on the literature reports, which are detailed in the experimental 

section. The following chart 2.1 lists all of the compounds synthesized towards for our 

investigations. 
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Chart 2.1: Structures of atropisomeric 2-pyridones, their photoproducts and compounds used for 
their synthesis. 

 

 Evaluation of diastereoselectivity in 4π-ring closure of point chiral auxiliary tethered 2-2.2.

pyridones. 

To understand the influence of chiral auxiliary and its ability to bring about chiral 

induction in 4π-ring closure of 2-pyridone in solution, we synthesized chiral auxiliary tethered  

2-pyridones (148) and evaluated its photoreactions (Scheme 2.7). The optically pure 2-pyridone 

obtained from HPLC separations was subjected to broadband irradiation conditions at various 

temperatures (25 and -25 °C). The analysis of the results revealed that the diastereoselectivity of 

the newly formed chiral center was rather low with the best result being diastereomeric excess 

(de) of 10% (entry 9-10). 

 

Scheme 2.7: 4π-Ring closure of point chiral auxiliary 2-pyridones 148.  
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Table 2.1: Diastereoselective 4π-ring closure of point chiral 2-pyridone 148 

Entry T (°C) t (h) Solvent Compd 149 (% de) 

1 25 5 MeOH (+)-148 5 

2 (-)-148 5 

3 25 5 MeCN (+)-148 7 

4 (-)-148 9 

5 25 5 Toluene (+)-148 -6 

6 (-)-148 -5 

7 -25 15 MeOH (+)-148 6 

8 (-)-148 8 
9 -25 15 MeCN (+)-148 10 

10 (-)-148 10 

11 -25 15 Toluene (+)-148 -9 

12 (-)-148 -9 
The irradiation was carried out using 450W medium pressure mercury lamp with Pyrex cutoff under 
constant flow of N2. The results carry an error of ±3. 

 

The results clearly indicated the inability of the chiral auxiliary to induce desired level of 

stereoselectivity in the 4π-ring closure reaction even though it’s placed right close to the reaction 

center. Even at low temperature (-25 °C) the influence of chiral auxiliary in bringing about the 

facial discrimination seemed to be minimal. 

 

 Enantiospecific 4π-ring closure of atropisomeric 2-pyridones 2.3.

Considering the inefficiency of point chiral auxiliary in inducing desired level of facial 

selectivity in solution, we envisioned the use of atropisomeric systems as an avenue to bring 

about stereoselectivity in the 4π-ring closure of 2-pyridones. We reasoned that the steric bias 

imparted by the axial chirality would prevail even during the excited state and might efficiently 

discriminate the diastereotopic transition states. We designed three distinct atropisomeric  

2-pyridones, 146a-c in which the sterics that dictates the axial chirality was varied to evaluate its 

influence on the stereoselectivity in the photoreactions (Figure 2.2). In the first example, we 

chose to incorporate bulky tert-butyl group at the ortho position (146a) that acted as the steric 

bias and face-shielding group. In the other two systems (146b-c), we incorporated a hydroxyl 

group to evaluate the influence of H-bonding in stereospecific 4π-ring closure reaction. 
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Figure 2.2: Atropisomeric 2-pyridones 146a-c employed for stereospecific 4π-ring closure. 

The atropisomeric 2-pyridones were easily synthesized according to procedures 

reported in the literature.13,14 The presence of axial chirality was verified through various 

analytical studies such as HPLC analysis, circular dichroism, optical rotation and single crystal 

XRD analysis. 

 

 Racemization kinetics of atropisomeric 2-pyridones 2.4.

2.4.1. Racemization kinetics of atropisomeric 2-pyridones 146a-c 

The atropisomeric compounds exist because of the restricted rotation around the chiral 

axis. If provided sufficient energy, the restricted rotation can be overcome resulting in 

racemization. However, in stereoselective reactions, the presence of a stable chirality is 

necessary. This ensures efficient translation of axial to point chirality leading to successful 

enantio control induction in the resulting photoproducts. So the evaluation of racemization barrier 

for newly synthesized atropisomeric compounds became critical. Apart from this, the role of  

H-bonding in stabilizing the axial chirality can be appreciated by a detailed study on the 

racemization kinetics at various temperatures and solvents. Racemization barrier on optically 

pure atropisomeric 2-pyridones in a given solvent was evaluated by incubating a solution of 

optically pure 2-pyridones in oil bath maintained at a constant temperature. 
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Scheme 2.8: Racemization kinetics of atropisomeric 2-pyridones. 

The decrease in the enantiomeric excess (ee) over time was monitored using HPLC on 

a chiral stationary phase. The first order kinetic plot of ln (% ee) vs. time gave the rate constant 

of racemization (krac). The activation energy barrier, half-life and rate of racemization were 

calculated from the following equation.15 

 

        Equation 2.1 

 

        Equation 2.2 

 

The half-life of racemization (τ1/2rac), was calculated using the rate constant of 

racemization krac (assuming 1-P0 = 0 at t = 0) 

 

        Equation 2.3 

 

 

        Equation 2.4 
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Where, 

krac = 2kenant; R0 is the initial concentration of the (R)-enantiomer; 

χ = R0 - R, S (concentration of the racemate at time t); and 

krac is the rate constant for racemization 

Note: R0 = R + S 

At 50% ee, the equation becomes: 

 

        Equation 2.5 

 

The following calculation given in table 2.2 is an example (146a, CH3CN, 65 °C) of 

processing the data obtained from HPLC analysis and fitting the values in the equations to 

calculate the rate, half-life and energy barrier for racemization. Similar analysis can be 

performed on other substrates for given conditions (various temperature and solvents) to 

ascertain the kinetic parameters. 

  

τ1/2rac = ln 2
2kenant

or ln 2
krac
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Table 2.2: Calculation of energy barrier for 2-pyridone 146a in MeCN at 65 °C 

 

The racemization kinetics was carried out on atropisomeric 2-pyridones at various 

temperature and solvent which are listed in the table 2.3 
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Table 2.3: Rate constant (krac), half-life (τ1/2) and energy-barrier (ΔG‡
rac) for racemization in 

atropisomeric 2-pyridones 146 

Ent. T (°C) Parameters Compd H2O CH3OH CH3CN Toluene 

1 

65 

τ1/2 (days) 

146a -a 23.5 5.3 1.45 

2 146b 2.5 2.8 (h)b 1.1 (h)b 0.6 (h)b 

3 146c -a 0.27 (h)b 0.47 (h)b 0.50 (h)b 

4 
ΔG‡

rac 

(kcal⋅mol-1) 

146a -a 29.9 28.9 25.5 

5 146b 28.4 26.3 25.7 22.8 

6 146c -a 24.7 25.1 25.2 

7 

krac (s-1) 

146a -a 3.4 x10-7 1.5 x10-6 5.5 x10-6 

8 146b 3.2 x10-6 6.8 x10-5 1.7 x10-4 3.1x10-4 

9 146c -a 7.05 x10-4 4.03 x10-4 3.8 x10-4 

10 

45 

τ1/2 (days) 

146a -a - c 77.8 22.7 

11 146b 27.7 21.8 (h) b 10.6 (h) b 3.4 (h) b 

12 146c -a 1.3 (h) b 2.1 (h) b 1.8 (h) b 

13 
ΔG‡

rac 

(kcal⋅mol-1) 

146a - a - c 28.8 28.0 

14 146b 28.2 26.0 25.6 24.8 

15 146c -a 24.2 24.5 24.4 

16 

krac (s-1) 

146a - a - c 1.03 x10-7 3.5 x10-7 

17 146b 2.9 x10-7 8.8 x10-6 1.8 x10-5 5.6 x10-5 

18 146c -a 14 x10-5 9.5 x10-5 11 x10-5 

19 

25 

τ1/2 (days) 

146a - a - c - c 120 

20 146b - c 4.0 4.6 1.8 

21 146c -a 15 (h) b 46 (h) b 46 (h) b 

22 
ΔG‡

rac 

(kcal⋅mol-1) 

146a - a - c - c 27.2 

23 146b - c 25.2 25.3 24.8 

24 146c -a 24.1 24.8 24.8 

25 

krac (s-1) 

146a - a - c - c 6.7 x10-8 

26 146b - c 2.0 x10-6 1.7 x10-6 4.4 x10-6 

27 146c - a 12 x10-6 4.2 x10-6 4.1 x10-6 

Reported values carry an error of +5%.a The compound 146a and 146c was not soluble in water, hence data not 
provided. bThe half-life of racemization given in hours. cThe compound did not racemize even after 60 days, hence 
data not provided. 
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The analysis of the racemization values in table 2.3 clearly indicated the distinctive 

behavior of atropisomeric 2-pyridones. For example, 2-pyridone 146a having o-tert-butyl group 

(pure sterics) had higher racemization barrier at a given temperature compared to 146b-c that 

had smaller sterics (Table 2.3; compare entry 1-3). The racemization value followed the order 

146a>146b>146c for a given temperature and solvent. Also, the type of solvent employed for 

the racemization kinetics had a huge impact on the racemization values (Table 2.3; compare 

entry 1). The polar protic solvent (e.g., MeOH) was able to stabilize the axial chirality much 

better than a non-polar aprotic solvent (e.g., toluene). These effects were pronounced for 146b, 

where the hydroxyl group efficiently formed an intra and inter molecular H-bonding with the 

solvent (Figure 2.3). In short, more/stronger the H-bonds, higher are the stabilization in terms of 

racemization barrier. 

 

Figure 2.3: Intra- and intermolecular H-bonding stabilization in atropisomeric 2-pyridones. 

However, the racemization values of 146c did not follow the trend detailed above. The 

non-polar aprotic solvent seemed to stabilize the axial chirality more than the polar protic 

solvent. This might be due to the hydrophobic nature of the phenyl group that inhibited the  

H-bonding interaction from the solvent thus decreasing the racemization barrier. 

All the results from the racemization kinetics pointed out that the newly synthesized 

atropisomeric 2-pyridones possess significantly higher racemization barrier at ambient 

conditions and can be employed for the enantiospecific photochemical transformations without 

losing the absolute configuration of the individual isomer. 

  

Toluene Acetonitrile Methanol Water

O
H

H
H

O
O

N

R1R1

N
R1

R1

O
H O NR1

R1

O H
O

OH
Me

HO
O

N

R1R1

C

H

Me

N

O
O

N

R1 R1

H
O ON

R1 R1

increasing strength of stabilization
intramolecular H-bonding



 70 

2.4.2. Effect of pressure on racemization kinetics on 2-pyridone 146c 

Pressure, volume and temperature are triad of parameters that are highly interrelated. 

Changing one parameter invariably affects the other, which provides an excellent avenue to 

probe dynamic chemical processes. It is well known that the atropisomeric compounds are 

susceptible to racemization at elevated temperature, which prevents us from taking advantage of 

their chemistry that requires higher temperature. To circumvent this problem, we envisioned 

exploring the effect of pressure in racemization process and stereospecific 

phototransformations. By keeping one of these three parameters constant (P, V, T), the relation 

between the other two can be probed. 

The racemization kinetics of atropisomeric 2-pyridone 146c was carried out at various 

temperature and pressure. For a qualitative understanding of the influence of pressure on 

racemization, it is essential to calculate the activation volume (ΔV‡rac) for the racemization 

process (Eq 2.6 and 2.7).16 The activation volume was obtained from the difference between the 

partial molar volume of the transition state and the sum of the partial volumes of the reactant(s) 

at a given temperature and pressure, which was obtained at the equilibrium between the applied 

force and internal pressure. 

 

          Equation 2.6 

          Equation 2.7 

          Equation 2.8 

          Equation 2.9 

          Equation 2.10 

 

As temperature and pressure affects the rate constant of racemization; at a given 

temperature T (in Kelvin), the effect of pressure P (in MPa) on the racemization rate constant krac 

is given by equations 2.6-2.10,17,18 where, τ1/2 is the half-life of racemization, R is the gas 

ΔVrac
‡ = -RT (∂lnkrac / ∂P)T

(lnkrac)T  / RT)P  + C- (ΔVrac
‡

=

ln[[P]0 / ([P]0 - χ)] ln[([P] + [M]) / ([P]-[M])]= krac t=

τ1/2 = ln2 / krac

(lnkrac / T ) ‡
ΔSrac / R - (ΔHrac / RT   +  ln (kB / h)‡=
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constant (8.314 cm3 MPa⋅K-1⋅mol-1), C is a constant, [P]0 is the initial concentration of the P 

isomer, χ = [P0-([P],[M])], ([P],[M]) represents the concentration of racemate at time t, kB is the 

Boltzmann constant, and h is Planck’s constant. The racemization is a macroscopic 

phenomenon compared to enantiomerization which is a microscopic phenomenon, the relation 

between both is given by krac = 2⋅kenant, where kenant is the rate constant for enantiomerization.15 

Racemization studies were carried out using CD spectroscopy in spectrometric-grade 

solvents in a custom-built high-pressure vessel (refer to experimental section for details). Two 

distinct set of experiments were performed viz., a) racemization at constant pressure and 

variable temperature; b) racemization at constant temperature and variable pressure 

 

2.4.3. Racemization kinetics on 2-pyridone 146c at normal pressure (0.1 MPa) 

The first set of experiments (Table 2.4, Figure 2.4) was performed under isobaric 

conditions (0.1 MPa) while varying the temperature. The change in the ellipticity of the CD signal 

during the course of the study was used to determine the racemization rate constant (krac), 

activation free energy (ΔG‡
rac), activation enthalpy (ΔH‡

rac), and activation entropy (ΔS‡
rac) for 

racemization. Analysis of table 2.4 and figure 2.4 showed that the 2-pyridone 146c displayed a 

decrease in half-life upon increasing the temperature. For example, the half-life of 146c in 

methylcyclohexanes (MCH) at 323 and 343 K was 2.1 h and 13 min respectively. Similarly, the 

half-life depended on the type of solvent employed, where a non-polar solvent seemed to 

stabilize the axial chirality effectively than a polar solvent. For example, half-life of 146c at 343 K 

in MCH and ethanol was 13 and 7.7 min respectively. 
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Figure 2.4: Racemization kinetics of optically pure compound (-)-146c monitored by CD 
spectroscopy at 0.1 MPa in MeCN. (Reproduced from reference 19; Copyright: 2013 WILEY-
VCH Verlag GmbH & Co©).  
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Table 2.4: Rate constant (krac), energy barrier (ΔG‡
rac) and half-life of racemization (τ1/2) for 

optically pure atropisomers 146c at different temperatures and at pressure of 0.1 MPa.a 

Entry Solventb T (K) krac (s-1)c ΔG‡
rac (kcal⋅mol-1) τ1/2

c 

1 
MeCN 

323 9.0 × 10-5 25.0 2.1 h 

2 333 3.1 × 10-4 25.0 38 min 

3 343 9.1 × 10-4 25.0 13 min 

4 
EtOH 

323 3.5 × 10-4 24.1 33 min 

5 333 1.0 × 10-3 24.2 12 min 

6 343 1.5 × 10-3 24.6 7.7 min 
a Analysis of the racemization kinetics was performed inside a built high-pressure cell with diamond windows 
and monitored by CD spectroscopy. All of these values carry an error of 10 %. b 7.36 ×10-5 M in EtOH and 9.03 
×10-5 in MeCN. c krac and τ1/2 were obtained from Equations (2.8) and (2.9), respectively. 

 

The activation enthalpy (ΔH‡
rac), and activation entropy (ΔS‡

rac) calculated from the 

Eyring plot (Figure 2.5 and Eq. 2.10) showed that the sign of ΔS‡
rac is negative (-2.55 J⋅mol-1⋅K-1) 

suggesting that the racemization is entropically unfavorable as it involved steric encounters 

during racemization process, on the other hand a positive value was obtained for ΔH‡
rac  

(103 kJ⋅mol-1). 

 

Figure 2.5: Eyring plots for the racemization of 2-pyridone 146c at 0.1 MPa (MeCN). 
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2.4.4. Racemization kinetics on 2-pyridone 146c at elevated pressure (12 MPa) 

In the second set of experiments (Figure 2.6 and 2.7), the temperature was kept 

constant and the pressure was varied to determine the activation volume (ΔV‡
rac) for the 

racemization. A comparison is provided in the figure 2.6 that clearly showed the influence of 

pressure on racemization. For example, the half-life of racemization (τ1/2) at 0.1 MPa and  

12 MPa was 0.2 and 2.9 h respectively. To comprehend the influence of pressure on 

racemization, it is essential to understand the activation volume (ΔV‡
rac) involved in the 

racemization process at various pressures. From equation 2.6 and 2.7, for a given temperature, 

a rate acceleration will be observed for processes that has negative differential activation volume 

as observed in case of certain cycloaddition reactions where the transition state partial molar 

volume is diminished20-22 compared to a process that has a positive differential activation volume 

in which case the rate deceleration will be observed. 

 

Figure 2.6: Comparison of racemization kinetics of 2-pyridone 146c in MeCN at 0.1 (left) and  
12 MPa (right). 

 

In the non-biaryl atropisomeric 2-pyridone 146c, the activation volume was positive 

suggesting that the partial molar volume is increased in the transition state. Thus, the high 

pressure decelerates the racemization process resulting in higher racemization barrier. Also, the 

activation volume (ΔV‡
rac) in 2-pyridone was considerably larger (651 cm3⋅mol-1) that made the 

pressure to have higher influence on the racemization (moderate increase in pressure slowed 
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down racemization effectively). In other word, at high pressure, the solvent cluster surrounding 

the atropisomeric 2-pyridones will be tightly packed inhibiting the racemization process 

considerably. 

 

Figure 2.7: Left: Plot of the pressure dependence of racemization to determine the activation 
volume for 2-pyridone 146c at 343 K; Right: Effect of pressure and role of solvents and non-
bonding interactions on racemization. 

 

 Enantiospecific photoreactions of atropisomeric 2-pyridones 2.5.

2.5.1. Enantiospecific photoreactions in various solvents 

The enantiospecific photoreactions of atropisomeric 2-pyridones were carried out on 

optically pure P/M isomers in various solvents ranging from polar protic to nonpolar aprotic and 

at various temperatures (Scheme 2.9). The idea was to understand/evaluate the influence of 

axial chirality, intra/intermolecular H-bonding and temperature during enantiospecific 4π-ring 

closure of 2-pyridones. 

 

Scheme 2.9: Enantiospecific phototransformation of atropisomeric 2-pyridones 146a-c.  
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The results in table 2.5 clearly indicated that the solvent and temperature played a 

crucial role in the enantiomeric excess (ee) in the β-lactam photoproduct. The extent of influence 

depended on the type of atropisomeric 2-pyridone evaluated. For example, the ee for the  

tert-butyl substituted 2-pyridone 146a, was only marginally affected up on changing solvent, with 

polar protic solvents favoring higher ee values (compare values in entry 1, Table 2.5). Similarly, 

the ee of the reaction was only minimally altered upon varying the temperature (compare entries 

1 and 5, Table 2.5). 

However, the solvent and temperature had significant impact on the ee for the  

2-pyridones 146b-c that had the ability to form intra/intermolecular H-bonding. For instance in 

146b, the ee was higher in polar protic solvent such as H2O compared to nonpolar aprotic 

solvent such as toluene (compare entry 9, Table 2.5). Similarly, lowering the temperature 

resulted in higher ee values in the photoproducts (compare entries 7-11, Table 2.5). 
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Table 2.5: Enantiospecific 4π-ring closure of atropisomeric 2-pyridones 146a-c: Enantiomeric excess for 147a-c in various solvents and 
temperaturesa 

Entry T (°C) t (h) 
Enantiomeric excess in 147 (% ee) 

Toluene MeCN MeOH H2O 
(P)-146a (M)-146a (P)-146a (M)-146a (P)-146a (M)-146a (P)-146a (M)-146a 

1 65 2 72 (S,R) 72 (R,S) 84 (S,R) 84 (R,S) 86 (S,R) 86 (R,S) -b -b 
2 45 3 76 (S,R) 76 (R,S) 82 (S,R) 82 (R,S) 88 (S,R) 88 (R,S) -b -b 
3 25c,d 5 70 (S,R) 70 (R,S) 86 (S,R) 86 (R,S) 84 (S,R) 84 (R,S) -b -b 
4 5 10 72 (S,R) 72 (R,S) 88 (S,R) 88 (R,S) 82 (S,R) 82 (R,S) -b -b 
5 -25 15 72 (S,R) 72 (R,S) 82 (S,R) 82 (R,S) 86 (S,R) 86 (R,S) -b -b 
6f 25 18 67 % conversion 74 % conversion 76 % conversion - 

 (+)-146b (-)-146b (+)-146b (-)-146b (+)-146b (-)-146b (+)-146b (-)-146b 
7 65 2 21 (B) 22 (A) 51 (B) 51 (A) 62 (B) 61 (A) 93 (B) 93 (A) 
8 45 3 60 (B) 61 (A) 84 (B) 83 (A) 85 (B) 87 (A) 94 (B) 94 (A) 
9 25 5 64 (B) 65 (A) 76 (B) 77 (A) 87 (B) 88 (A) 93 (B) 93 (A) 

10 5 10 82 (B) 83 (A) 82 (B) 84 (A) 88 (B) 89 (A) 95 (B) 95 (A) 
11 -25 15 82 (B) 84 (A) 89 (B) 88 (A) 93 (B) 93 (A) -e -e 
12f 25 18 75 % conversion 87 % conversion 97 % conversion 98 % conversion 

 (-)-146c (+)-146c (-)-146c (+)-146c (-)-146c (+)-146c (-)-146c (+)-146c 
13 65 20g 69 (B) 69 (A) 70 (B) 70 (A) 86 (B) 86 (A) -b -b 
14 45 25g 88 (B) 88 (A) 90 (B) 90 (A) 90 (B) 90 (A) -b -b 
15 25 35g 94 (B) 94 (A) 94 (B) 94 (A) 97 (B) 97 (A) -b -b 
16 5 2 63 (B) 63 (A) 75 (B) 76 (A) 79 (B) 79 (A) -b -b 
17f 25 -h 36 % conversion (5 h) 44 % conversion (7 h) 60 % conversion (10 h) - 

a Irradiations were performed using 450W medium pressure mercury lamp under constant flow of N2. (+) and (-) represents the signs of optical rotation of 146 in MeOH. 
For 146a, (S,R) and (R,S) represent the (1S,4R) and (1R,4S) configurations, respectively. For 146b and 146c, A and B refer to the elution order for a given pair of 
enantiomers. bNot soluble in water. cSimilar ee were observed at Pyrex and 340 nm cutoff filters. dThe ee values at 25 °C in toluene were 82% (2 h), 76% (4 h), 70% (5 h), 
and 68% (6 h). eBelow the freezing point of the solvent. fThe conversion and mass balance were calculated based on 1H NMR using triphenylmethane as the internal 
standard. gThe irradiation time given in minutes. For 146c, to keep the conversions below 10%, irradiation times were shortened as follows, for MeOH 5 mins (65 °C), 11 
min (45 °C), and 12 min (25 °C). Similarly for toluene and MeCN irradiation times were limited to 35 mins (25 °C). hThe irradiation times are given in parenthesis.  
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2.5.2. Effect of pressure on enantiospecific 4π-ring closure of 2-pyridones 146a-c 

The photoreactions of optically pure 2-pyridone 146c was investigated in MeCN at 70 °C 

under various pressures (0.1-100 MPa, Table 2.6). At ambient pressure (0.1 MPa) and at high 

temperature, the ee of the photoproduct was rather low (ee = 4%). Upon slightly increasing the 

pressure to 20 MPa, a clear increase in the ee value was observed that upon further increasing 

the pressure to 100 MPa resulted in an ee of 27%. Higher pressure enabled efficient transfer of 

axial chirality from the starting material to point chirality in the photoproduct. Further increase in 

the pressure resulted in precipitation/crystallization of the 2-pyridone 146c leading to a cloudy 

solution inhibiting the photochemical reaction. 

 

Table 2.6: Enantiospecific 4π-ring closure of 2-pyridone 146c under various pressures in MeCN 
at 70 °C.a 

Entry Compound t (h) 
(%) ee in photoproduct 

0.1 MPa 20 MPa 100 MPa 

1 (-)-146c 1 4 (B) 18 (B) 27 (B) 

a The samples were placed inside a pressure cell that was equipped with sapphire windows. Irradiation 
was performed by using an optical fiber that contained a light source from an Xe lamp. The values are an 
average of two runs and carry an error of ±20%, owing to experimental limitations of handling the 
samples at elevated pressure and temperature in the cell.b (+) and (-) denote the sign of the optical 
rotation of the reactant.c A and B refer to the elution order of the enantiomers during HPLC analysis on a 
chiral stationary phase. 

 

To appreciate the effect of pressure on the enantiospecificity of the reaction; it is critical 

to understand the influence of pressure and the solvent molecules on the substrate. Under 

ambient pressure, the substrate was surrounded by weak solvent cluster that was governed by 

weak interactions such as van der Waals forces and H-bonding interactions. Upon increasing the 

pressure, the solvent molecules are forced to close in that freeze the molecular conformation of 

the substrate. As racemization involved the rotation of N-Caryl bond, it has to overcome the 

pressure provided by the surrounding solvent molecules, which in turn was highly influenced by 

the applied pressure. Also, the reorganization of solvent molecules around the chiral axis during 

N-Caryl bond rotation was highly impacted by the applied pressure. Thus, these changes 

contribute to the change in the activation volume (ΔV‡
rac) values. Larger the value of ΔV‡

rac, higher 
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will be the influence of pressure on racemization. The observed ee in the photoproduct can be 

expressed as a function of differential activation volume (ΔΔV‡
S-R) as shown in the equation 

          Equation 2.11 

It is important to note that the ΔV‡
rac and ΔΔV‡

S-R are quite different in the sense that, 

ΔV‡
rac is the change in volume accompanied during the racemization of atropisomers; on the 

other hand ΔΔV‡
S-R is the difference in the diastereomeric transition state volume during the 

course of photochemical transformations. 

 

 

Figure 2.8: Left: Plot of the pressure dependence of the relative rate constant at 343 K to 
determine the differential activation volume (ΔΔV‡) during the 4π-ring closure of 2-pyridone 146c 
in MeCN. Right: The absolute value of ΔΔV‡ is provided because the sign will depend on which 
enantiomer in the photoproduct is enhanced during the photochemical transformation. kS and kR 
represent the rate of formation of the individual enantiomeric photoproducts. (Reproduced from 
reference19, Copyright: 2013 WILEY-VCH Verlag GmbH & Co©). 
 

Thus the ΔΔV‡
S-R (Figure 2.8, right) represents the rate of formation of kS over its 

enantiomer kR that determines the enantiomeric excess in the photoproduct. The plot of ln k vs. 

pressure (Figure 2.8, left) resulted in a straight line suggesting that the pressure did not alter the 

operating mechanism. 
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2.5.3. Reaction kinetics of 4π-ring closure of 2-pyridone 146a monitored by UV-Vis 

spectroscopy 

The course of photochemical transformation of atropisomeric 2-pyridones was followed 

by UV-Vis spectroscopy. A solution of 2-pyridones (146a ∼0.16 mM and 146b ∼0.22 mM) in a 

given solvent was irradiated at 25 oC using 450 W medium pressure mercury lamp with Pyrex 

filter. The decrease in the concentration of starting material was monitored by UV-Vis 

spectroscopy. The slope of ln(concentration) vs. time gave the rate of the reaction (Figure 2.9). 

 

Figure 2.9: Top: Time dependent irradiation of 2-pyridone 146a in MeCN followed by UV-Vis 
spectroscopy (c ∼ 0.16 mM) leading to photoproduct 147a. Bottom: Plot of ln[conc. of 146a] vs. 
time. 
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Figure 2.10: Rate of disappearance of 2-pyridone 146a in different solvents (c ∼ 0.16 mM). Inset: 
Time dependent irradiation to monitor the reaction progress. Inset: Formation of β-Lactam – 147a 
(Red) and disappearance of the reactant 2-pyridone (146a (Blue). 

 

Figure 2.11: Rate of disappearance of 2-pyridone 146b in different solvents (c ∼ 0.22 mM). 

Comparison of Figure 2.10 and 2.11 clearly indicated that the rate of reaction was faster 

in polar protic solvents compared to nonpolar aprotic solvents. For example the rate reaction for 

146a in methanol and toluene was 0.0035 min-1 and 0.0021 min-1 respectively (Figure 2.10). 

Similar conversions were observed in the case of 146b as shown in figure 2.11 albeit with smaller 

slope.  
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2.5.4. Conversion and mass balance after photoreactions in 2-pyridones 

Conversion and mass balance in 2-pyridones 146a-c (∼2.2 mM) were obtained by 

irradiating a racemic mixture in respective solvents (methanol, acetonitrile, toluene, and water 

(only for 146b)). The solution in a Pyrex tube was irradiated using 450 W medium-pressure 

mercury lamp with 295 nm filter for 18 h at room temperature under constant flow of nitrogen. 

After the irradiation, a stock solution of internal standard in chloroform (triphenylmethane) was 

added to the reaction mixture. The solvent from the mixture was completely evaporated under 

reduced pressure. The residue was dissolved in 1 mL of deuterated chloroform and 1H-NMR was 

recorded. From the integral value of respective peaks, the % conversion and mass balance was 

calculated using the formula given below. 

         Equation 2.12 

Where, Na and Ni are the number of nuclei giving rise to the relevant analyte and internal 

standard signals respectively. Similarly mola and moli are the molarity of analyte and the internal 

standard in deuterated chloroform respectively. 

Table 2.7: Conversion and mass balance in photoreactions of 2-pyridones 146a-c. 

Entry Solvent Compound Conversion (%) Mass balance (%) 

1 

Toluene 

146a 67 88 

2 146b 75 92 

3 146c 36 97 

4 

Acetonitrile 

146a 74 84 

5 146b 87a 83a 

6 146c 44 92 

7 

Methanol 

146a 76 94 

8 146b 97 89 

9 146c 60 87 

10 

Water 

146a -b -b 

11 146b 98 91 

12 146c -b -b 
a Reaction at a concentration of 2.2 mM resulted in uncharacterized side product. But when concentration was 
changed to 0.22 mM, only to 4π-ring closure photoproduct was observed. b The compound was not soluble in 
water. Reported values carry an error of +5%.  

mola moli X
Integral of analyte
Integral of Int. Std Ni

NaX=
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2.5.5.  Time dependent irradiation of 2-pyridone 146c in various solvents 

The enantiospecific photoreaction that determines the ee in the photoproduct competes 

with racemization during the photoreaction. So, the rate of individual processes (photoreaction vs. 

racemization) determines the resultant ee in the product and the recovered starting material (SM). 

To understand the effect of longer irradiation times in atropisomeric 2-pyridones and the erosion 

in enantiomeric purity, we carried out time dependent irradiation of 146a and 146c. Time 

dependent irradiation was carried out by irradiating optically pure isomers in various solvents for a 

given time period in a Pyrex tube using a 450 W medium-pressure mercury lamp under constant 

flow of N2. After the reaction, the solvent was removed and the photoproduct and the starting 

material were isolated by preparative thin layer chromatography and the ee in the photoproduct 

and in the recovered SM was analyzed on a chiral stationary phase using HPLC. 

Analysis of table 2.8 clearly indicated that longer irradiation times led to higher 

conversion albeit taking a toll in the observed ee values in the photoproducts. Interestingly, the 

enantiomeric excess in the SM also diminished during the course of irradiation time. The ee 

values obtained in the recovered SM in the photoreaction and the analysis of ee values in the 

sample kept in dark for the same time period was quite contrasting. For example, in the case of 

146a, ee of recovered SM at 6 h of irradiation was 30% (Table 2.8, entry 4), on the other hand, no 

racemization was observed in the sample kept in dark (τ1/2 = 120 days in toluene at 25 °C). 

Additionally, under our irradiation conditions (Pyrex cutoff), no reversible photoreaction 

was observed that is usually observed in electrocyclic ring closure reactions. So the reduction in 

the ee, both in the SM and in the photoproduct might not be the result of reversible photoreaction 

(section 2.5.6). One possible explanation for the observed racemization could be the accelerated 

racemization during the excited/transition state. In the excited state, the optically pure 2-pyridone 

can either go to the photoproduct or relax to the ground state. The transformation to the 

photoproduct occurred with high chiral induction as observed from the ee values at the early time 

of the reaction. On the other hand, if the excited state relaxed to the reactant, then that process 

might not occur specifically thus resulting in the formation of both the isomers of SM with similar 

probability resulting in reduced ee in the reactant. 



 

 

84 

Table 2.8: Time dependent irradiation of atropisomeric 2-pyridones 146a and 146c in various solvents. 

Entry Compd Solvent T (oC) T (min) 
Conv.b 

(%) 

Enantiomeric excess (% ee)a 
Photoproduct Recovered SMb 

(1S,4R)-147a (1R,4S)-147a (P)-146a (M)-146a 
1 

146a Toluene 25 

2c - 82 82 72 76 
2 4c - 76 74 48 50 
3 5c - 70 70 38 42 
4 6c - 68 64 30 30 

 (-)-147c (+)-147c (-)-146c (+)-146c 
5 146c 

MeOH 65 

5 5 86 (B) 86 (A) 62 62 
6 146c 10 9 74 (B) 74 (A) 56 56 
7 146c 25 13 54 (B) 54 (A) 27 27 
8 146c 60 50 24 (B) 24 (A) 2 2 
9 146c 

MeCN 65 
20 5 70 (B) 70 (A) 44 44 

10 146c 45 15 56 (B) 56(A) 28 28 
11 146c 

Toluene 65 
20 6 69 (B) 69 (A) 46 46 

12 146c 50 15 48 (B) 48 (A) 14 14 
13 146c MeOH 45 11 5 90 (B) 90 (A) 73 73 
14 146c MeCN 45 25 6.5 90 (B) 90 (A) 68 68 
15 146c Toluene 45 25 7 88 (B) 88 (A) 66 66 
16 146c MeOH 25 12 10 97 (B) 97 (A) 90 90 
17 146c MeCN 25 35 10 94 (B) 94 (A) 71 71 
18 146c Toluene 25 35 8 94 (B) 94 (A) 70 70 

a Reported values carry an error of +3%. A and B refers to elution order for a given pair of enantiomers.b Conversion; SM- starting material. C Time is reported in hour. 
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2.5.6.  Control studies on photo-reversibility of bicyclo-β-lactam 147 to 2-pyridone 146 

The electrocyclic ring closure reactions are known to be reversible depending on the 

wavelength of irradiation. So we carried out control studies on the photoproduct 147a under 

different irradiation conditions to scrutinize the photo-reversibility of bicyclo-β-lactam 147 to its 

corresponding 2-pyridone 146. Enantiopure photoproduct (1S,4R)-147a in toluene (4.36 mM) was 

irradiated using a 450W medium-pressure mercury lamp under a) Pyrex cutoff; b) 340 nm cutoff 

and c) Quartz cutoff, at room temperature under constant flow of nitrogen for 5 h. After the 

irradiation, the solvent was evaporated under reduced pressure, and the crude mixture was 

dissolved in suitable solvent (hexanes/2-propanol mixture) and analyzed on a chiral stationary 

phase using HPLC. 

 

Figure 2.12: (a) UV-Vis spectrum of 146a and 147a in methanol (c = ∼0.143 mM). (b) Irradiation 
of (1S, 4R)-147a in toluene with Pyrex cutoff; (c) with 340 nm cutoff filter and (d) with Quartz 
cutoff. 
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a) Irradiation with Pyrex cutoff. 

The photo-reversibility under Pyrex cutoff was negligible and the corresponding 

enantiomer of the photoproduct (1R, 4S)-(+)-147a as well as the starting material was not 

observed (Figure 2.12; b). 

b) Irradiation with 340nm filter. 

The photo-reversibility under 340 nm filter was negligible and the corresponding 

enantiomer of the photoproduct (1R, 4S)-(+)-147a as well as the starting material was not 

observed (Figure 2.12; c). 

c) Irradiation with Quartz cutoff. 

The photo-reversibility under Quartz cutoff filter was significant. Both the enantiomer of 

the starting material and the corresponding enantiomer of the photoproduct (1R, 4S)-(+)-147a 

were observed (Figure 2.12; d). 

This control study clearly showed that the photo-reversibility was highly dependent on the 

irradiation wavelength. Lower wavelength (Quartz cutoff) irradiation caused significant reversibility 

in the photoreaction. This can be explained from the UV-vis spectrum of the photoproduct that 

showed significant absorption (Figure 2.12; a) in the lower wavelength region (<280 nm). As a 

result the photoproduct is excited at a lower wavelength resulting in the reversibility to form 

certain percentage of the reactant. On the contrary, the photoproduct does not have absorption 

profile in the Pyrex cutoff or 340 nm filter cutoff wavelengths where only the reactant is the only 

absorbing species.  
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 Eyring plots for calculating differential activation parameters 2.6.

2.6.1. Eyring plots of atropisomeric 2-pyridones 146a-c 

The temperature and solvent dependency of the photoreaction clearly pointed out that 

the enthalpic and entropic components are operating in the system. To delineate the individual 

enthalpic and entropic components in the system we resort to the calculation of differential 

activation parameters (ΔΔH‡ and ΔΔS‡) using Eyring plots. The following equations were 

employed to arrive at the Eyring plots. 

          Equation 2.13 

 

 

  Equation 2.14 

 

 

          Equation 2.15 

 

          Equation 2.16 

 

          Equation 2.17 
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          Equation 2.19 

 

          Equation 2.20 

 

 

          Equation 2.21 

 

The calculation provided the magnitude and the signs of activation parameters for a given 

isomer of the atropisomeric 2-pyridones. The values provided crucial information about the 

enthalpic and entropic components in the system and provided insights into the effect of solvent 

and temperature on ee values in the photoproducts. The following modified Eyring equation was 

employed to obtain the differential activation parameters for the 4π-ring closure of 2-pyridones. 

 

         Equation 2.22 

 

         Equation 2.23 

 

         Equation 2.24 

 

 

As,
ΔG = ΔH  - TΔS‡‡‡

Hence,

ln
kR
kS

= ΔΔSR-S ΔΔHR-S

RTR

‡‡

100 % ee

100 % ee
lnln

kSR
kRS

=

ΔGSR-RS = ΔHSR-RS  - TΔSSR-RS
‡‡‡

ln
kSR
kRS

= ΔΔSSR-RS ΔΔHSR-RS

RTR

‡‡

Also,

ln
kR
kS

= ln kR ln kS =
−ΔGR −ΔGS

‡ ‡

RT RT



 

 
89 

 

Figure 2.13: Eyring plot for the photoreactivity of atropisomeric 2-pyridones a) 146a (left), b) 
146b (middle) and c) 146c (left). 

Analysis of Table 2.9 revealed that for 146a, ΔΔS‡ was dominant with a near- 

zero/minimal contribution from ΔΔH‡. This was evident from the near-zero slope of the Eyring plot 

in all the solvents investigated (Figure 2.13, left). As the contribution from the ΔΔH‡ was minimal, 

the reaction was insensitive to the operating temperature/solvent. This implied that the 4π-ring 

closure of 146a was primarily entropically governed. This broader generalization was based on 

the observed free N-Caryl bond rotation in the photoproduct 147a compared to the starting 

material 146a. The large release in the steric congestion served as the primary driving force 

(higher ΔΔS‡) for the reaction and this manifested itself as the entropic control of the 

enantiospecificity in 147a. Also, for (P)-146a, the positive ΔΔS‡ value suggested that (1S,4R)-

147a favored over (1R,4S)-147a. Similarly, for (M)-146a, the negative ΔΔS‡ value suggested that 

(1R,4S)-147a favored over (1S,4R)-147a. 
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Table 2.9: Differential activation enthalpic and entropic parameters for enantiospecific 4π-ring 
closure of atropisomeric 2-pyridones 

Entry Compound Solvent ΔΔH‡ (kcal⋅mol-1) ΔΔS‡ (cal⋅K⋅mol-1) 

1 (P)-146a Toluene 0.123 4.08 

2 (M)-146a -0.123 -4.08 

3 (P)-146a Acetonitrile -0.008 4.91 

4 (M)-146a 0.008 -4.91 

5 (P)-146a Methanol 0.243 5.87 

6 (M)-146a -0.243 -5.87 

7 (+)-146b Toluene -3.519 -8.82 

8 (-)-146b 3.320 8.12 

9 (+)-146b Acetonitrile -2.386 -3.88 

10 (-)-146b 2.445 4.06 

11 (+)-146b Methanol -2.843 -4.55 

12 (-)-146b 2.843 4.59 

13 (+)-146b Water -0.847 4.09 

14 (-)-146b 0.847 -4.09 

15 (+)-146c Toluene 8.87 22.7 

16 (-)-146c -8.87 -22.7 

17 (+)-146c Acetonitrile 8.64 21.8 

18 (-)-146c -8.64 -21.8 

19 (+)-146c Methanol 8.08 19.0 

20 (-)-146c -8.08 -19.0 

 

On the other hand, for 146b, the differential enthalpic (ΔΔH‡) and entropic (ΔΔS‡) 

contributions were highly governed by the type of solvents employed. In a nonpolar solvent 

(toluene), the relative contribution from enthalpy was substantial compared to a polar solvent 

(MeOH and H2O). This was reflected in the larger slope in the Eyring plot upon varying the 

solvent and temperature (Figure 2.13, middle). For example, nonpolar aprotic solvent such as 

toluene (where only intramolecular H-bonding is possible) had the largest slope in the graph 

whose enthalpic contribution was significant. This suggested that the transition state was 

considerably affected by the intramolecular H-bonding upon photochemical transformations. 

  



 

 
91 

Interestingly for 146b, the signs of ΔΔH‡ and ΔΔS‡ were different for a given solvent. In 

MeOH, MeCN, and toluene, ΔΔH‡ and ΔΔS‡ had the same sign; on the contrary, the ΔΔH‡ and 

ΔΔS‡ had opposite signs in water. The ee value in the reaction was dictated by the relative 

contribution form ΔΔH‡ and ΔΔS‡ as given in ln(kSR/kRS) term (Eq 2.24). Also, ln(kSR/kRS) was 

affected by the temperature through ΔΔH‡/RT term in eq 2.24. For 146b, the ΔΔH‡ and ΔΔS‡ 

values in toluene, MeOH, and MeCN are comparable and had the same sign. So, when the 

temperature increased, the relative contribution from the ΔΔH‡/RT term decreased. This affected 

the magnitude of the ln(kSR/kRS) term (eq 2.24) thus reflecting in temperature dependence of the 

ee values. The degree of change in the ln(kSR/kRS) term depended on the contribution from ΔΔH‡. 

For example, toluene showed a pronounced change (higher contribution from ΔΔH‡) and water 

shows marginal change (lower contribution from ΔΔH‡) in the ln(kSR/kRS) value. However, since 

ΔΔH‡ and ΔΔS‡ values carry opposite signs in water, regardless of their relative contributions, the 

ln(kSR/kRS) term increased but only moderately as ΔΔH‡/RT contribution is lower. As a result, for a 

given isomer of the 146b, same enantiomer was enhanced but with minimal change in ee across 

the temperature. 

For 146c, a similar trend was followed as observed in the case of 146b in toluene, MeOH 

and MeCN (Table 2.9, entries 15-20). Due to the fast racemization of 146c at higher 

temperatures, ΔΔH‡ and ΔΔS‡ values were computed at low conversions (∼ 5-10%) to estimate 

their influence at the initial stages of the reaction. As observed in 146b, the ΔΔH‡ values for 146c 

are comparable to the ΔΔS‡ values for a given reaction temperature and solvent (toluene, MeOH 

and MeCN). Since, both ΔΔH‡ and ΔΔS‡ had the same sign in MeOH, MeCN, and toluene, the 

change in temperature affected the contribution from the ΔΔH‡/RT (higher temperature decreases 

ΔΔH‡/RT) thus changing the magnitude of the ln(kSR/kRS). This is reflected in the temperature 

dependence of the ee values (similar to 146b). 
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2.6.2. Enthalpy-Entropy compensation plots atropisomeric 2-pyridones 146a-c 

The enthalpy-entropy compensation23 plot (Figure 2.14) of 146a-c fitted for different 

solvents resulted in a strait line passing through the origin (Figure 2.14-top). This suggested that 

irrespective of the solvent employed, same mechanism was operating in all the substrates 

investigated. 

Similarly, the enthalpy-entropy compensation plot was fitted for the individual substrates 

(Figure 2.14-bottom). The slope of entropy-enthalpy compensation plot has a unit of temperature 

(called the isokinetic temperature, β, the temperature at which enantioselectivity become identical 

irrespective of the solvents employed).24 The slope was 0.39 in both 146b-c, while it was 0.025 in 

the case of 146a (Figure 2.14-bottom). As the temperature affects the slope values, the smaller 

slope value in the case of 146a indicated a higher contribution from entropic factor than enthalpic 

factor (entropic control) in the stereodifferentiating mechanism. 

 

Figure 2.14: Enthalpy-entropy compensation plot fitted with respect to different solvents 
employed (Top) and fitted for individual substrates 146a-c (bottom).  
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 Mechanistic rationale through single crystal XRD analysis 2.7.

2.7.1. Investigation of mechanistic rationale using single crystal XRD analysis of 146a and 

147a 

The photoreaction of 2-pyridones occurs via a 4π-conrotatory ring closure with equal 

probability to both inward and outward mode. However, the atropisomeric system was designed 

to bias one over the other to obtain enantiospecific photoreaction. While the result from table 2.5 

clearly suggested enantiomeric excess in the reaction, the preferred mode of ring closure (inward 

vs outward) for a given isomer of the pyridone was not known. To gain more insights into to the 

mechanistic rationale, we followed the course of reaction through single crystal XRD. Individual 

optically pure isomers of 2-pyridone 146a were crystallized and its absolute configuration was 

determined using Flack parameters. Similarly, absolute configurations of the photoproducts were 

also determined. Combining the results obtained from the enantiospecific reactions and absolute 

configurations of the individual isomers (both starting material and the photoproduct), a clear 

mechanistic pathway was realized. According to the result, the (P)-146a preferentially favored the 

formation of (1S,4R)-147a photoproduct and the (M)-146a preferentially favored the formation of 

(1R,4S)-147a (Scheme 2.10). 

 

Scheme 2.10: Mechanistic rationale for 4π-ring closure of atropisomeric 2-pyridones 146a. 
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Mechanistically, for (P)-146a, the 4π dis-“inward” cyclization was likely hindered by the 

developing steric interactions between the hydrogens in the pyridone ring and the o-tert-butyl 

group in the transition state, while the 4π dis-“out” where the cyclization occurring away from  

o-tert-butyl group was favored, resulting in the observed enantioenriched photoproduct. In terms 

of enthalpic and entropic factors governing the cyclization, apart from internal steric present in the 

molecule, external factors such as solvent molecules and temperature played crucial role in 

determining the enantiospecificity of the reaction. For sterically bulky 146a, few solvent molecules 

would be enough to freeze the C-N bond rotation irrespective of the temperature. So, 

temperature did not have much influence on the enantiospecificity of the reaction. On the other 

hand, for 146b and 146c, apart from smaller sterics and intramolecular H-bonds, intermolecular 

H-bonds with the solvent (with the amide carbonyl) are necessary to freeze the C-N bond 

rotation (Scheme 2.11). So the temperature affected the enantiospecificity of the reaction as it 

determined strength and magnitude of the H-bonds. 

 

Scheme 2.11: Mechanistic rationale for 4π-ring closure of atropisomeric 2-pyridones 146b-c. 
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clusters above and below the plane of the pyridone ring. According to scheme 2.10, the dis-“in” 

cyclization in (P)-146 isomer would suffer from greater molecular constraints (steric constraints 

for 146a; sterics, H-bonding, and solvent clusters for 146b and 146c) over the dis-“out” cyclization, 

which was revealed in the ΔΔG‡ values. The degree of ΔΔG‡ was mainly controlled by the 

entropic difference in the transition state (ΔΔS‡) in 146a (for dis-“in” vs dis-“out” mode of 

cyclization). On the other hand, the degree of ΔΔG‡ was controlled by both entropic and enthalpic 

factors in 146b and 146c. 

 

 Variable temperature NMR studies on Photoproduct 147a 2.8.

The axial chirality in the starting material responsible for the enantiospecificity in the 

photoreaction was lost in the photoproduct. As established,25 the reduced C-N-C bond angle in 

the β-lactam photoproduct allows for the facile bond rotation making it enantiomeric. As 

temperature plays an essential part in the racemization and energy barrier to rotation, we 

attempted to record variable temperature NMR studies to ascertain the energy barrier for 

hindered rotation in N-Caryl bond. Optically pure photoproduct (1R,4S)-147a was taken in CHCl3 

and proton NMR (400 MHz) was recorded at various temperature. Even at -50 °C, We did not 

notice any diastereotopic peaks due to the restricted rotation around N-Caryl bond. It is clear that 

the N-Caryl bond rotation was fast in the β-lactam photoproduct due to the reduced C-N-C bond 

angle. 
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Scheme 2.12: Variable temperature NMR carried out on (1R,4S)-147a photoproduct.  
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 Correlating experimental CD spectra, computed CD spectra and X-ray structures. 2.9.

The experimental CD spectra of individual isomers of 146a and its photoproducts 147a 

were correlated with electronic spectra that were computed using DFT calculations.26,27 The 

crystal structures of (M)-146a, (P)-146a, (1S,4R)-147a and (1R,4S)-147a were optimized using 

DFT method at B3LYP/6-311++G(2d) level. The optimized structures from the DFT calculations 

were then subjected for TD-DFT (B3LYP/6-311++G(2d) calculations and the electronic CD 

spectra of the individual stereoisomers were obtained from the output file using the GaussSum 

software package v2.2 (sigma values from 0.3 to 0.7 eV). The optimization was performed with 

“50-50 nstates= 12”. The computed CD spectra were compared with the experimental data. The 

basis set was a good approximation to the basis set limit as evident from good agreement 

between the experimental and computed spectra with only minor differences between length and 

velocity rotational strengths. Additionally, we were interested in the qualitative comparison 

between the spectral shapes for the individual isomers with the experimental CD spectra. During 

optimization, methanol was used as a solvent in the case of 146a, while for 147a, the optimization 

was done in the gas phase. Although there were observable differences in the wavelength shifts 

(10-20 nm) between the experimental and computed CD spectra, the sign of ellipticity matched 

for a given stereoisomer (Figure 2.15 and 2.16). 
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Figure 2.15: Left: Experimental CD spectra of (P)-146a (top) and (M)-146a (bottom). Right: Computed CD spectra of (P)-146a (top) 
and (M)-146a (bottom) (Reproduced from ΔΔ 28, with permission from American Chemical Society, 2011). 
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Figure 2.16: Left: Experimental CD spectra of (1R,4S)-147a (top) and (1S,4R)-147a (bottom). Right: Computed CD spectra of (1R,4S)-
147a (top) and  (1S,4R)-147a (bottom). (Reproduced from reference 28, with permission from American Chemical Society, 2011). 
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 X-Ray structural parameters 2.10.

Structure determination: Single crystal X-ray diffraction data of the compounds 146a, 

146b and 147a were collected on a Bruker Apex Duo diffractometer with a Apex 2 CCD area 

detector at T = 100K. Cu radiation was used. Single crystal X-ray diffraction data sets of 

compounds 146c and 147c were collected on a SIEMENS diffractometer with a 1K CCD area 

detector (graphite-monochromated Mo Kα radiation) at ambient temperature. All structures were 

process with Apex 2 v2010.9-1 software package (SAINT v. 7.68A, XSHELL v. 6.3.1). Direct 

method was used to solve the structures after multi-scan absorption corrections. Details of data 

collection and refinement are given in the table below. 
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Table 2.10: X-Ray structural parameters for 2-pyridones 146a-c 
 

 (M)-146a (P)-146a Mono (P)-146a Ortho 146b 146c 
Formula C15H17NO C15H17NO C15H17NO C14H15NO2 C24H19NO2 
FW 227.30 227.30 227.30 229.27 353.40 
cryst. Size [mm] .21x.19x.07 0.16x.12x.08 .22x.12x.07 .21x.17x.08 .60x.12x.08 
cryst. system Monoclinic Monoclinic Orthorhombic Orthorhombic Monoclinic 
Space Group, Z P2(1), 8 P2(1), 8 P2(1), 8 Pbca, 8 P2(1)/n, 4 
a [Å] 15.3180(4) 15.3223(5) 6.8746 (2) 8.5768(4) 17.601(1) 
b [Å] 11.4327(3) 11.4272(3) 12.4881 (4) 15.0166(6) 6.388(4) 
c [Å] 16.0022(4) 16.0413(5) 30.4034 (9) 18.4260(8) 18.243(1) 
α [Å] 90 90 90 90 90 
ß [Å] 117.601(1) 117.824(2) 90 90 114.990(8) 
γ [Å] 90 90 90 90 90 
V [Å3] 2483.48(11) 2483.96(13) 2610.15(14) 2373.16(18) 1859.10(18) 
ρcalc [g/cm3] 1.216 1.216 1.157 1.283 1.263 
µ [cm-1] 0.592 0.592 0.563 0.691 0.080 
Radiation Type Cu Cu Cu Cu Mo 
F(000) 976 976 976 976 744 
no of measured refl. 30596 28036 25477 17287 13835 
no of indep. reflec. 8491 8142 4435 2058 3349 
no of refl. (I ≥ 2σ) 8378 7885 4390 2026 2142 
Resolution [Å] 0.84 0.84 0.84 0.83 0.83 
R1/wR2 (I ≥ 2σ)a [%] 4.19 / 11.50 6.87 / 17.15 2.61 / 6.92 3.69 / 9.92 4.68 / 10.82 
R1/wR2 (all data) [%] 4.25 / 11.59 7.02 / 17.24 2.64 / 6.95 4.23 / 11.23 9.00 / 13.68 
Crystalliz. solvent CH2Cl2 CH2Cl2 Hex / CH2Cl2 MeOH Hex / CHCl3 

[a] R1 = Σ||Fo| - |Fc|| / Σ|Fo|, wR2 = [Σw[(Fo)2 – (Fc)2]2 / Σw(Fo
2)2]1/2 for Fo

2 > 2σ(Fo
2), w = [σ2(Fo)2 + (AP)2 + BP]-1 where P = [(Fo)2 + 2(Fc)2] / 3 and A, B 

coefficients for all compounds are as follow: M-146a, A (B) = 0.0447 (2.0145); P-146a Mon, A (B) = 0.0264 (6.6473); P-146a Orth, A (B) = 0.0383 (0.4633);146b, 
A (B) = 0.0614 (0.6753); 146c, A (B) = 0.0739 (0.0). 
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Table 2.11: X-Ray structural parameters for bicyclo β-lactam photoproduct 147. 
 

 (1S,4R)-147a (1R,4S)-147a 147c 
Formula C15H17NO C15H17NO C24H19NO2 
FW 227.30 227.30 353.40 
cryst. Size [mm] .19x.18x.05 .25x.11x.05 .80x.60x.16 
cryst. system  Monoclinic Monoclinic Monoclinic 
Space Group, Z P2(1), 2 P2(1), 2 P2(1)/c, 4 
a [Å] 8.5144(2) 8.5149(10) 8.502(4) 
b [Å] 5.8077(2) 5.8102(7) 12.948(6) 
c [Å] 13.3132(4) 13.3204(16) 17.246(8) 
α [Å] 90 90 90 
ß [Å] 108.292(1) 108.261(5) 90.711(5) 
γ [Å] 90 90 90 
V [Å3] 625.06(3) 625.82(13) 1898.3 
ρcalc [g/cm3] 1.208 1.206 1.237 
µ [cm-1] 0.588 0.587 0.078 
Radiation Type Cu Cu Mo 
F(000) 244 244 744 
no of measured refl. 7374 7444 14955 
no of indep. reflec. 2087 2084 4301 
no of refl. (I ≥ 2σ) 2075 2061 2919 
Resolution [Å] .84 .84 0.76 
R1/wR2 (I ≥ 2σ)a [%]  2.57 / 6.61 2.77 / 7.11 4.39 / 11.45 
R1/wR2 (all data) [%] 2.58 / 6.63 2.79 / 7.14 7.09 / 13.36 
Crystalliz. solvent Hex / IPA Hex/CH2Cl2 Hex / CHCl3 

[a] R1 = Σ||Fo| - |Fc|| / Σ|Fo|, wR2 = [Σw[(Fo)2 – (Fc)2]2 / Σw(Fo
2)2]1/2 for Fo

2 > 2σ(Fo
2), w = [σ2(Fo)2 + (AP)2 + BP]-1 where P = [(Fo)2 + 

2(Fc)2] / 3 and A, B coefficients for all compounds are as follow: 1S,4R_147a, 0.0369 (0.1018); 1R,4S_147a, 0.0415 (0.0941); 147c, A (B) = 
0.0578 (0.3379). 
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Figure 2.17: X-ray structure of (M)-(-)-146a (crystallized from dichloromethane). 

 

Figure 2.18: X-ray structure of (P)-(+)-146a (crystallized from dichloromethane). 

 

Figure 2.19: X-ray structure of (P)-(+)-146a (crystallized from hexanes/dichloromethane). 

 

Figure 2.20: X-ray structure of 146b (crystallized from methanol).  
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Figure 2.21: X-ray structure of 146c (crystallized from hexanes/chloroform). 

 

Figure 2.22: X-ray structure of photoproduct (1S,4R)-(-)-147a (crystallized from Hex./IPA). 

 

Figure 2.23: X-ray structure of photoproduct (1R,4S)-(+)-147a (crystallized from Hex./DCM). 

 

Figure 2.24: X-ray structure of photoproduct 147c (crystallized from hexanes/chloroform).  
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 Summary and outlook 2.11.

The enantiospecific disrotatory 4π-ring closure in atropisomeric 2-pyridones proceeded 

efficiently to furnish enantioenriched β-lactam products. The ortho substituents that impart axial 

chirality to the molecule were modified to understand the influence of sterics and H-bonding in the 

molecule. The H-bonding substrates displayed distinct temperature and solvent dependency on 

the racemization and enantiospecificity of the reaction, while the molecule that lacked H-bonding 

ability (pure sterics) had only marginal dependence on the racemization and enantiospecificity of 

the reaction. Eyring plot was computed to calculate the differential activation enthalpy and 

entropy for the reaction. Also, the course of phototransformation was followed through single 

crystal XRD to decipher the preferred mode of cyclization for a given isomer of atropisomeric  

2-pyridones. The high-pressure racemization and photoreaction study revealed that pressure 

provided stable chiral axis even at elevated temperature resulting in higher enantiomeric excess 

in the photoproduct. 

 

 Experimental section 2.12.

2.12.1. General methods 

All commercially obtained reagents/solvents were used as received; chemicals were 

purchased from Alfa Aesar®, Sigma-Aldrich®, Acros®, TCI America®, Mallinckrodt®, and 

Oakwood® Products, and were used as received without further purification. Unless stated 

otherwise, reactions were conducted in oven-dried glassware under nitrogen atmosphere.  

1H-NMR and 13C-NMR spectra were recorded on Varian 400 MHz (100 MHz for 13C) and on  

500 MHz (125 MHz for 13C) spectrometers. Data for 1H NMR are reported as chemical shift (δ 

ppm) with the corresponding integration values. Coupling constants (J) are reported in hertz (Hz). 

Standard abbreviations indicating multiplicity were used as follows: s (singlet), b (broad),  

d (doublet), t (triplet), q (quartet), m (multiplet) and virt (virtual). Data for 13C-NMR spectra are 

reported in terms of chemical shift (δ ppm). Electrospray Ionization Spectra were recorded on a 

Bruker – Daltronics® BioTof mass spectrometer in positive (ESI+) ion mode. HPLC analyses were 

performed on Waters® HPLC equipped with 2525 pump. Waters® 2767 sample manager was 
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used for automated sample injection. All HPLC injections were monitored using a Waters® 2487 

dual wavelength absorbance detector at 254 and 270 nm. Analytical and semi-preparative 

injections were performed on chiral stationary phase using various columns as indicated below. 

i) Regis® PIRKLE COVALENT (R,R) WHELK–01 

a) 25 cm x 4.6 mm column for analytical injections. 

b) 25 cm x 10 mm column for semi-preparative injections. 

ii) CHIRACEL® OD-H 

a) 0.46 cm x 25 cm column for analytical injections. 

b) 10 mm x 25 cm column for semi-preparative injections. 

iii) CHIRALPACK® IC 

a) 0.46 cm x 25 cm column for analytical injections. 

b) 10 mm x 25 cm column for semi-preparative injections 

iv) CHIRALPAK® AD-H 

a) 0.46 cm x 15 cm column for analytical injections. 

b) 10 mm x 25 cm column for semi-preparative injections. 

v) CHIRALPACK® IC 

a) 0.46 cm x 25 cm column for analytical injections. 

b) 10 mm x 25 cm column for semi-preparative injections 

vi) CHIRALPACK® ASH 

a) 0.46 cm x 25 cm column for analytical injections. 

Masslynx software version 4.1 was used to monitor/analyze the HPLC injections and to 

process HPLC traces. Igor Pro® Software version 6.0 was used to process the HPLC graphics. 

UV-Vis spectra were recorded on Shimadzu 2501PC UV-Vis spectrometer using UV quality 

fluorimeter cells (with range until 190 nm) purchased from Luzchem. Optical activity values were 

recorded on JASCO® DIP – 370 digital polarimeter. CD spectra were recorded on JASCO® DIP – 

710 digital CD spectrometer. When necessary, the compounds were purified by combiflash 

equipped with dual wavelength UV-Vis absorbance detector (Teledyn ISCO) using hexanes:ethyl 

acetate as the mobile phase and Redisep® cartridge filled with silica (Teledyne ISCO) as 
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stationary phase. In some cases, compounds were purified by column chromatography on silica 

gel (Sorbent Technologies®, silica gel standard grade: porosity 60 Å, particle size: 230 x 400 

mesh, surface area: 500 – 600 m2/g, bulk density: 0.4 g/mL, pH range: 6.5 – 7.5). Unless 

indicated, the Retardation Factor (Rf) values were recorded using a 5-50% hexanes:ethyl acetate 

(or) 5-10% chloroform:methanol as mobile phase and on Sorbent Technologies®, silica Gel TLC 

plates (200 mm thickness w/UV254). 

All computations were performed using Gaussian 03 package.29 GaussView 3.09 and 

GaussSum software package v2.2 were used to process, render the structures and spectra. 

The plot of CD spectrum was carried out using molar ellipticity vs wavelength (nm) and 

the molar ellipticity was calculated using the formula,30 

Molar ellipticity [Δε] = [θ] / 32980cl 

Where, 

c = Concentration in mols/lit; l = Path length in cm; θ = Ellipticity measured in 

millidegrees.  
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2.12.2. High-pressure spectroscopic measurements, apparatus, setup and data collection 

Circular Dichroism (CD) experiments at various pressures were performed on a JASCO 

J-820YH spectropolarimeter. All spectroscopic measurements under high pressure were 

performed using a custom built high-pressure vessel (Figures 2.25). This high-pressure vessel 

was fitted with three optical windows made of sapphire or diamond with an effective aperture of  

9 mm or 3 mm i.d., respectively. The apparatus was designed and manufactured by Teramecs 

Co., Kyoto, Japan. The window materials were sapphire for UV-vis and fluorescence 

spectroscopy and birefringence-free diamond for CD spectroscopy. 

 

 

Figure 2.25: Custom designed high-pressure vessel for spectroscopic measurements. 
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Figure 2.26: Custom designed quartz cell for high-pressure experiments. 

A quartz inner cell (Figure 2.26) with an inner dimension 3 mm (W) × 2 mm (D) × 7 mm 

(H) connected to a short flexible Teflon tube for adjusting the volume change under pressure was 

filled with a sample solution. The top end of the quartz cell was stoppered, and the whole cell was 

placed inside the pressure vessel. The vessel was fixed in the sample chamber of the 

spectrometer (Figure 2.27). The temperature in the sample chamber was maintained using a 

temperature control unit and the sample was maintained at a set hydrostatic pressure (varying 

from 0.1 MPa to 25 MPa). 

 

Figure 2.27: High pressure setup in a CD spectrometer.  
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2.12.3. Procedure for the synthesis of 2-benzyloxypyridine derivative 159 

 

Scheme 2.13: Synthesis of 2-benzyloxypyridine derivative 159. 

The 2-benzyloxypyridine derivative 160 was synthesized according to a procedure 

reported in the literature.31 To a solution of 1-phenylethanol 161 (3.24 g, 26.5 mmol) in  

1,4-dioxane (40 mL) at room temperature, 2-chloropyridine (2.0 g, 17.7 mmol) and potassium  

tert-butoxide (2.97 g, 26.5 mmol) was added. The resulting mixture was heated to 100 oC and 

maintained for 18 h. After the reaction, the mixture was cooled to room temperature and diluted 

with DI water (15 mL). The aqueous layer was extracted with ethyl acetate (3 × 15 mL). The 

combined organic layer was washed with brine solution (20 mL), filtered and solvent was 

evaporated and reduced pressure to yield the crude product. The crude was purified by 

combiflash using hexanes:ethyl acetate mixture. 

Rf = 0.80 (80% hexanes:20% ethyl acetate). Yield = 76% 

1H-NMR (400 MHz, CDCl3, δ ppm): 8.10-8.08 (m, 1H), 7.53-7.49 (m, 1H), 

7.45-7.42 (m, 2H), 7.34-7.30 (m, 2H), 7.26-7.22 (m, 1H), 6.80-6.73 (m, 

2H), 6.22 (q, J = 6.5 Hz, 1H) and 1.63 (d, J = 6.5 Hz, 3H). 

  

N Cl
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Ph
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N O PhReflux, 18 h

KOt-Bu, 1,4-dioxane

161 159160

N O Ph
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2.12.4. Procedure for the synthesis of point chiral pyridone derivative 148 

 

Scheme 2.14: synthesis of point chiral 2-pyridone derivative 148. 

A mixture of 2-benzyloxypyridine derivative 159 (1.3, 6.52 mmol) and LiI (0.44 g, 3.26 

mmol) in a sealed vial was heated to 100 °C in an oil bath for 8 h. After the reaction, the mixture 

was diluted with ethyl acetate (20 mL) and filtered through celite bed. The filtered solution was 

concentrated to get the crude product. The crude was purified by combiflash using hexanes:ethyl 

acetate mixture to get the pure product. 

Rf = 0.40 (100% ethyl acetate). Yield = 27% 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.35-7.21 (m, 6H), 7.07-7.04 (m, 1H), 

6.58-6.55 (m, 1H), 6.43 (q, J = 7.1 Hz, 1H), 6.08-6.04 (m, 1H) and 1.68 

(d, J = 7.1 Hz, 3H). 

13C NMR (100 MHz, CDCl3, δ ppm): 162.6, 140.4, 138.9, 134.5, 129.0, 

128.1, 127.6, 120.9,106.5, 52.5 and 19.2. 

HPLC analysis conditions: 

For analytical conditions, 

I). Column   : CHIRALPAK-IC 

Abs. detector  : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 95:5 

Flow rate  : 1.0 mL/min 

Retention times (min) : ∼23.77 [(+)-148] and ∼24.89 [(-)-148] 

II). Column   : CHIRALPAK-ASH 

Abs. detector  : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 80:20 

Flow rate  : 0.5 mL/min 

Retention times (min) : ∼22.30 [(+)-148] and ∼45.54 [(-)-148] 
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N O
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For preparative conditions, 

I) Column   : CHIRALPAK-IC 

Abs. detector  : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 85:15 

Flow rate  : 3 mL/min 

Retention times (min) : ∼52.56 [(+)-148] and ∼70.14 [(-)-148] 

Optical Rotation [α]D28: 

HPLC retention time (CHIRALPAK-IC) at ∼ 23.77 min, (c ∼0.036%, MeOH) = +356 deg. 

HPLC retention time (CHIRALPAK-IC) at ∼ 24.89 min, (c ∼0.036%, MeOH) = -350 deg. 

 

Figure 2.28: CD spectra of point chiral pyridone derivative 148 measured in methanol (c = [(+)-
148] ∼0.121 mM and [(-)-148]) ∼0.111 mM). 
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2.12.5. Synthesis of piperidine-2,6-dione derivative 151 

 

Scheme 2.15: Synthesis of piperidine-2,6-dione derivative 151. 

Piperidine-2,6-dione derivative 151 was synthesized using a procedure reported in the 

literature.13 To a solution of 2-tert-butylaniline 153 (5 g, 33.5 mmol) in toluene (40 mL), glutaric 

anhydride 152 (4.6 g, 40.2 mmol) was added. The reaction mixture was refluxed for 1.5 h and 

cooled to room temperature. The precipitated solid was filtered and washed with pentane to get 

the crude product as a white solid. The crude was sufficiently pure to proceed to the next stage. 

To the crude (8.6 g, 32.5 mmol) in chloroform (175 mL) under N2 atmosphere, 1, 1’-

carbonyldiimidazole (5.8 g, 35.8 mmol) was slowly added. The reaction mixture was refluxed for 

12 h. After the reaction, the mixture was cooled to room temperature and washed with DI water  

(2 x 150 mL), 2N HCl (1 x 150 mL or until the solution is neutral) and brine solution (1 x 150 mL). 

The organic layer was dried over anhyd. Na2SO4, filtered and the solvent was evaporated under 

reduced pressure. The crude product was purified by combiflash using hexanes:ethyl acetate 

mixture (80:20) to get the title compound 151 as a white solid (isolated yield = 70%). 

Rf = 0.4 (80% hexanes:20% ethyl acetate). 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.56-7.53 (dd, J = 8.0, 1.6 Hz, 1H), 

7.34-7.32 (m, 1H), 7.26-7.22 (m, 1H), 6.79-6.77 (dd, J = 8.0, 1.6 Hz, 1H), 

2.80-2.77 (t, J = 6.4 Hz, 4H), 2.11-2.05 (Q, J = 6.4 Hz, 2H) and 1.27 (s, 

9H). 

13C-NMR (100 MHz, CDCl3, δ ppm): 173.3, 146.8, 133.4, 131.4, 131.2, 

129.2, 127.4, 36.0, 33.6, 31.7 and 17.2. 

NH2

OO O

NO O

151152153

1. Toluene, 110 oC,  2 h

2. CDI, CHCl3, reflux, 2 h

NO O

151
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2.12.6. Synthesis of 2-tert-butyl-dihydro-2-pyridone derivative 150 

 

Scheme 2.16: Synthesis of 2-tert-butyl-dihydro-2-pyridone derivative 150. 

To a solution of piperidine-2,6-dione 151 (5.6 g, 22.7 mmol) in DCM at -78 oC under  

N2 atmosphere, DIBAL (1M solution in hexanes, 5.8 g, 40.9 mmol) was slowly added over a 

period of 10 min and stirred for 15 min at -78 oC. The reaction mixture was quenched with DI 

water (40 mL) at -78 oC, followed by the addition of 2N NaOH (12 mL). The reaction mixture was 

slowly warmed to room temperature and poured into a saturated solution of sodium potassium 

tartarate (250 mL). The organic layer was separated and the aqueous layer was extracted with 

DCM (2 x 200 mL). The combined organic layers were dried over anhyd. Na2SO4, filtered and the 

solvent was evaporated under reduced pressure to get the crude product that was directly to 

taken to next step. 

To a solution of crude (3.4 g, 13.7 mmol) in DCM (50 mL) at 0 oC, triethylamine (5.8 mL, 

41.0 mmol) was added followed by the addition of methanesulfonyl chloride (1.7 mL, 21.8 mmol) 

over a period of 10 min. The mixture was stirred for 2 h at 0 oC and warmed to room temperature. 

To the reaction mixture DI water (150 mL) was added, stirred and the layers were separated. The 

organic layer was washed with satd. NaHCO3 solution (150 mL) and satd. brine solution (150 

mL). The organic layer was dried over anhyd. Na2SO4, filtered and the solvent was evaporated 

under reduced pressure. The crude product was purified by combiflash using hexanes:ethyl 

acetate mixture (80:20) to get the product. 
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1. DIBAL, DCM, -78 oC, 30 mins

2. MsCl, Et3N, DCM, 0 oC, 2 h
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Rf = 0.70 (80% hexanes:20% ethyl acetate), Yield = 70%. 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.51-7.49 (dd, J = 8.0, 1.6 Hz, 1H), 

7.31-7.23 (m, 1H), 7.23-7.21 (m, 1H), 6.98-6.96 (dd, J = 7.6, 1.6 Hz, 1H), 

6.04-6.02 (td, J = 8.0, 1.6 Hz, 1H), 5.22-5.18 (m, 1H), 2.67-2.63 (m, 2H), 

2.452.41 (m, 2H) and 1.34 (s, 9H). 

13C-NMR (100 MHz, CDCl3, δ ppm): 170.4, 147.7, 139.6, 133.0, 131.1, 

128.8, 128.7, 127.7, 105.1, 35.9, 32.2, 31.9 and 20.6. 

  

NO

150
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2.12.7. Synthesis of atropisomeric tert-butyl-2-pyridone 146a 

 

Scheme 2.17: Synthesis of tert-butyl-2-pyridone 146a. 

To a solution of diisopropylamine (3.0 mL, 21.0 mmol) in dry THF (30 mL) at 0 oC under 

N2 atmosphere, n-butyl lithium (1.6 M in hexanes, 12.6 mL, 20.1 mmol) was slowly added over a 

period of 10 min. The reaction mixture was warmed to room temperature and stirred for 30 min. 

The reaction mixture was cooled to -78 oC, and a solution of dihydropyridin-2(1H)-one 150 (2.2 g, 

9.6 mmol) in dry THF (30 mL) was slowly added over a period of 20 min and then the mixture was 

stirred for 45 min -78 oC. A mixture of phenylselenyl chloride (1.8 g, 9.6 mmol) and hexamethyl 

phosphoramide (1.7 g, 9.6 mmol) in dry THF (30 mL) was slowly added to the reaction mixture 

over a period of 20 min. The reaction mixture was stirred for 45 min at -78 oC. The reaction 

mixture was carefully quenched with satd. NH4Cl solution over a period of 20 min. The reaction 

mixture was warmed to room temperature slowly and the layers were separated. The aqueous 

layer was extracted with ethyl acetate (2 x 45 mL). The combined organic layers were dried over 

anhyd. Na2SO4, filtered and the solvent was evaporated under reduced pressure to get the crude 

product. 

The crude was dissolved in DCM and cooled to 0 oC. To this solution, pyridine (1.5 mL, 

19.1 mmol) was added, followed by the addition of H2O2 (30% in water, 2.2 mL, 19.1 mmol). The 

reaction mixture was warmed to room temperature and stirred for 30 min. To the reaction mixture 

DI water (10 mL) was added, stirred for 10 min and the layers were separated. The organic layer 

was dried over anhyd. Na2SO4, filtered and the solvent was evaporated under reduced pressure. 

The crude was purified by column chromatography using hexanes:2-propanol mixture (90:10) to 

get the title compound 146a as a white to pale yellow solid (isolated yield = 42%). 

TLC condition - Rf = 0.25 (80% hexanes:20% ethyl acetate)  

NO

146a

1. LDA,HMPA, PhSeCl,
   THF, -78 oC, 2 h

2.H2O2, pyridine, DCM, 2 h
NO

150
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.59-7.56 (dd, J = 8.0, 1.6 Hz, 1H), 7.39-7.33 (m, 2H), 7.27-

7.19 (m, 2H), 6.99-6.96 (dd, J = 7.6, 1.6 Hz, 1H), 6.60-6.58 (m, 1H), 6.21-6.17 (m, 1H) and 1.23 

(s, 9H). 

 

Figure 2.29: 1H-NMR (400 MHz, CDCl3, δ ppm) of tert-butyl-2-pyridone 146a.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 163.9, 146.3, 140.4, 139.7, 139.3, 130.4, 129.5, 129.4, 

127.6, 122.1, 105.3, 36.1 and 31.9. 

 

Figure 2.30: 13C-NMR (100 MHz, CDCl3, δ ppm) of tert-butyl-2-pyridone 146a.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 250.1202 

Observed  : 250.1201 

|Δm|  : 0.4 ppm 

 

Figure 2.31: HRMS of tert-butyl-2-pyridone 146a. 

HPLC analysis conditions: 

For analytical conditions, 

I). Column   : CHIRALPAK–AD-3 

Abs. detector  : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 95:5 

Flow rate  : 1.0 mL/min 

Retention times (min) : ∼8.90 [P-(+)-146a] and ∼9.90 [M-(-)-146a] 

 

II) Column   : RR-WHELK-01 10/100 FEC 

Abs. detector  : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 95:5 

Flow rate  : 1 mL/min 

Retention times (min) : ∼28.49 [M-(-)-146a] and ∼35.88 [P-(+)-146a] 

NO

146a
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For preparative conditions 

I). Column   : RR-WHELK-01 10/100 FEC 

Abs. detector  : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 95:5 

Flow rate  : 2.5 mL/min  

Retention times (min) : ∼51.45 [M-(-)-146a] and ∼103.27 [P-(+)-146a] 

 

Optical Rotation [α]D28: 

HPLC retention time (RR-WHELK-01 10/100 FEC) at ∼ 28.49 min, (c ∼0.034%, MeOH) = -72.2 deg. 

HPLC retention time (RR-WHELK-01 10/100 FEC) at ∼ 35.88 min, (c ∼0.034%, MeOH) = +69.4 deg. 

 

 

Figure 2.32: CD spectra of tert-butyl-pyridone 146a measured in methanol (c ∼ 0.26 mM). 
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2.12.8. Synthesis of 2-pyridyl derivative 156a-b 

 

Scheme 2.18: Synthesis of 2-pyridyl derivative 156a-b. 

2-pyridyl derivative 156 was synthesized using a procedure reported in the literature.14 To 

stirred slurry of 2-hydroxypyridine 157 (5.0 g, 52.6 mmol) and anhyd. potassium carbonate (18.2 

g, 131.7 mmol) in dry acetone (100 mL) under N2 atmosphere, corresponding acid chloride 158 

(2.5 equiv.) was slowly added over a period of 15 min. The reaction mixture was refluxed for 3 h.  

The reaction mixture was cooled to room temperature and filtered through celite bed. The solvent 

was evaporated under reduced pressure to get the crude product. The crude was purified by 

combiflash using hexanes:ethyl acetate mixtures. (Isolated crude yield: 80-85%). 

TLC condition - Rf = 0.45 (50% hexanes:50% ethyl acetate). 

Note: The 2-pyridyl acetate (156a, R1 = Me) decomposes in silica column or when stored. 

It is better to proceed to the next stage immediately. The solvent removal was carried out at 20-

25 oC to avoid any decomposition. 

1H-NMR (400 MHz, CDCl3, δ ppm): 8.29-8.28 (m, 1H), 7.71-7.67 (m, 1H), 

7.13-7.67 (m, 1H), 6.99-6.97 (d, J = 8 Hz, 1H) and 2.22 (s, 3H). 

13C-NMR (100 MHz, CDCl3, δ ppm): 169.1, 157.9, 148.5, 139.8,122.3, 

116.7 and 21.3. 

1H-NMR (400 MHz, CDCl3, δ ppm): 8.11-8.09 (m, 2H), 7.59-7.51 (m, 2H), 

7.47-7.43 (m, 3H), 6.68-6.66 (d, J = 9.2 Hz, 1H) and 6.39-6.35 (t, J = 6.4 

Hz, 1H). 

13C-NMR (100 MHz, CDCl3, δ ppm): 171.9, 165.7, 142.4, 134.6, 133.4, 

130.5, 130.2, 128.6, 120.4 and 108.1.  

N OH + R1 Cl

O

N O

O

R1Reflux, 3 h

Acetone, K2CO3

156a-b157 158a-b
a) R1 = Me
b) R1 = Me

N O

O

156a

N O

O

Ph
156b
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2.12.9. Synthesis of pyridin-2(1H)-one derivative 154a-b 

 

Scheme 2.19: Synthesis of pyridin-2(1H)-one derivative 154a-b. 

A solution of 2-pyridyl derivative 156a-b and isoamyl nitrite (10.6 mL, 78.9 mmol) in dry 

DCM (55 mL) were refluxed under N2 atmosphere. A solution of anthranilic acid 155 (10.8 g, 78.9 

mmol) in dry acetone (50 mL) was added to the refluxing mixture slowly over a period of 2 h and 

then refluxed for 5 h. The reaction mixture was cooled to room temperature and the solvent was 

evaporated under reduced pressure. The crude product was purified by combiflash in 

hexanes:ethyl acetate mixture (50:50) to afford the title compound 154 as a brown solid. (Isolated 

yield: 50-55%).  

Rf = 0.15 (50% hexanes:50% ethyl acetate) 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.28-7.70 (dd, J = 7.6 Hz, 1H), 7.61-

7.57 (dt, J = 7.6, 1.6 Hz, 1H), 7.52-7.49 (dt, J = 7.6, 1.2 Hz, 1H), 7.43-7.39 

(m, 1H), 7.31-7.24 (m, 2H), 6.59-6.57 (m, 1H), 6.29-6.26 (dt, J = 6.8, 1.6 

Hz, 1H) and 2.48 (s, 3H). 

13C-NMR (100 MHz, CDCl3, δ ppm): 199.4, 162.5, 140.6, 138.4, 138.1, 

137.3, 132.6, 129.1, 128.6, 128.2, 121.8, 106.5 and 28.7. 

 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.81-7.79 (m, 2H), 7.65-7.61 (m, 1H), 

7.53-7.48 (m, 3H), 7.40-7.35 (m, 4H), 7.28-7.24 (m, 1H) 6.41-6.39 (d, J = 

9.2 Hz, 1H) and 6.20-6.17 (dt, J = 8.0, 0.8 Hz, 1H). 

13C-NMR (100 MHz, CDCl3, δ ppm): 195.2, 162.3, 140.3, 139.4, 138.3, 

137.1, 136.7, 133.3, 131.9, 130.5, 129.9, 129.5, 128.43, 128.42, 128.1, 

126.7, 121.7 and 106.1.  
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N O
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+
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2.12.10. Synthesis of 2-pyridones 146b and 146c 

 

Scheme 2.20: Synthesis of pyridin-2(1H)-one 146b and 146c. 

To a solution of pyridin-2(1H)-one 154 (1.0 g, 4.7 mmol) in dry THF under N2 

atmosphere, corresponding magnesium bromide (3M solution in diethyl ether, 2.0 equiv.) was 

slowly added over a period of  20 min and stirred for 12 h at room temperature. The reaction 

mixture was cooled to 0 oC and quenched with satd. NH4Cl solution slowly over a period of 10 

min. The reaction mixture was warmed to room temperature and the layers were separated. The 

aqueous layer was extracted with DCM (2 x 15 mL). The combined organic layers were dried 

over anhyd. Na2SO4, filtered and the solvent was evaporated under reduced pressure. The crude 

was purified by column chromatography using chloroform:methanol mixture (98:2) to get the title 

compound 146b-c as a brown solid (Isolated yield: 50-55%). 

Rf = 0.60 (95% chloroform:5% methanol) for 146b. 

Rf = 0.54 (50% hexanes:50% ethyl acetate) for 146c. 
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OHONO O
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146a-b
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.56-7.58 (dd, J = 8.0, 1.6 Hz, 1H), 7.56-7.58 (m, 2H), 7.27-

7.58 (m, 1H), 7.21-7.24 (m, 1H), 6.97-6.98 (d, J = 7.6 Hz, 1H), 6.54-6.58 (d, J = 9.2 Hz, 1H), 6.19-

6.23 (t, 1H), 3.61 (s, 1H), 1.52 (s, 3H) and 1.34 (s, 3H). 

 

Figure 2.33: 1H-NMR (400 MHz, CDCl3, δ ppm) of atropisomeric 2-pyridone 146b. 

  

N
O
H

O

14
6b



 

 125 

13C-NMR (100 MHz, CDCl3, δ ppm): 164.5, 144.7, 140.7, 139.2, 138.7, 129.9, 129.7, 128.9, 

128.0, 121.7, 106.1, 72.5, 31.9 and 31.5. 

 

Figure 2.34: 13C-NMR (100 MHz, CDCl3, δ ppm) of atropisomeric 2-pyridone 146b.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 252.0995 

Observed : 252.1002 

|Δm|  : 0.8 ppm 

 

Figure 2.35: HRMS of atropisomeric 2-pyridone 146b. 

HPLC analysis conditions: 

For analytical conditions 

I). Column  : CHIRALPAK–AD-3  

Abs. detector  : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 95:5 

Flow rate  : 1 mL/min 

Retention times (min) : ∼14.30 [(+)-146b] and ∼14.85 [(-)-146b] 

 

II). Column   : RR-WHELK-01 10/100 FEC 

Abs. detector  : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 90:10 

Flow rate  : 1.5 mL/min 

Retention times (min) : ∼16.20 [(-)-146b] and ∼33.30 [(+)-146b] 

  

N OHO

146b
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For preparative conditions 

I). Column   : RR-WHELK-01 10/100 FEC 

Abs. detector  : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 95:5 

Flow rate  : 3.0 mL/min 

Retention times (min) : ∼38.12 [(-)-146b] and ∼80.00 [(+)-146b] 

 

Optical Rotation [α]D28: 

HPLC retention time (RR-WHELK-01) at ∼16.20 min, (c ∼0.019%, MeOH) = -116 deg. 

HPLC retention time (RR-WHELK-01) at ∼33.30 min, (c ∼0.019%, MeOH) = +116 deg. 

 

Figure 2.36: CD spectra of atropisomeric 2-pyridone 146b measured in methanol (c ∼ 0.14 mM 
for [(+)-146b] and ∼ 0.15 mM for [(-)-146b]). 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.53-7.50 (m, 2H), 7.44-7.39 (dt, 1H), 7.35-7.25 (m, 5H), 

7.24-7.17 (m, 2H), 7.14-7.01 (m, 5H), 6.55-6.53 (m, 1H), 6.49-6.46 (m, 1H), 6.31 (s, 1H) and 5.7-

5.73 (m, 1H). 

 

Figure 2.37: 1H-NMR (400 MHz, CDCl3, δ ppm) of atropisomeric 2-pyridone 146c.  

N

PhPh
O

H

O

14
6c

*

* = solvent



 

 129 

13C-NMR (100 MHz, CDCl3, δ ppm): 164.9, 146.8, 146.3, 144.5, 140.5, 139.8, 139.1, 131.7, 

130.0, 129.8, 129.4, 128.2, 128.0, 127.97, 127.1, 126.8, 126.7, 120.8, 106.4 and 80.2. 

 

Figure 2.38: 13C-NMR (100 MHz, CDCl3, δ ppm) of atropisomeric 2-pyridone 146c. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 376.1308 

Observed : 376.1299 

|Δm|  : 2.4 ppm 

 

Figure 2.39: HRMS of atropisomeric 2-pyridone 146c. 

HPLC analysis conditions: 

For analytical conditions 

I). Column   : RR-WHELK-01 10/100 FEC 

Abs. detector  : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 90:10 

Flow rate  : 1.5 mL/min 

Retention times (min) : ∼23.93 [(-)-146c] and ∼38.52 [(+)-146c] 

For preparative conditions 

I). Column   : RR-WHELK-01 10/100 FEC 

Abs. detector  : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 90:10 

Flow rate  : 4.0 mL/min  

Retention times (min) : ∼25.23 [(-)-146c] and ∼44.62 [(+)-146c] 
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Optical Rotation [α]D28 : 

HPLC retention time (RR-WHELK-01) at ∼ 23.93 min, (c ∼0.100%, CHCl3) = -206 deg. 

HPLC retention time (RR-WHELK-01) at ∼ 38.52 min, (c ∼0.100%, CHCl3) = +206 deg. 

 
Figure 2.40: CD spectra of atropisomeric 2-pyridone 146c measured in acetonitrile  
(c ∼ 0.141 mM). 
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2.12.11. Process for photoreaction of 2-pyridones 

 

Scheme 2.21: General irradiation procedure for 2-pyridone 147a-c. 

Optically pure P/M isomer of substituted pyridones 146a-c (4.36 mM of 146a-b; 2.83 mM 

of 146c) in respective solvents (methanol, acetonitrile, toluene, and water (only for 146b)) were 

irradiated for a given time interval in Pyrex tube using a 450 W medium-pressure mercury lamp, 

at various temperatures and under constant flow of nitrogen. After irradiation, the solvent was 

evaporated under reduced pressure and the photoproducts were isolated by preparative thin 

layer chromatography and characterized by NMR spectroscopy, mass spectrometry, single 

crystal XRD, CD, [α]D and by HPLC. HPLC analysis of the crude photoproduct on chiral stationary 

phases gave the optical purity of the photoproducts. 

Note: Concentration employed for light induced 4π-ring closure is critical. High 

concentration leads to [4+4]-photocycloaddition side products. 

 

2.12.12. General procedure for photoreactions under high pressure 

The photochemical reactions under elevated pressure was performed as follows: optically 

pure atropisomeric 2-pyridone was dissolved in dry (1.4 mM) and transferred into a custom 

designed quartz cell; the cell is then placed in a high-pressure vessel that is equipped with a 

sapphire window. The irradiations were carried out using an optical fiber carrying a light source 

from a Xenon lamp with 300±10 nm band-pass filter from Asahi® spectra 302 Max power supply 

unit.  
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.44-7.42 (m, 1H), 7.28-7.18 (m, 2H), 6.98-6.96 (m, 1H), 

6.72-6.68 (m, 2H), 4.57-4.56 (t, J = 2.4 Hz, 1H), 4.35-4.34 (m, 1H) and 1.40 (s, 9H). 

 

Figure 2.41: 1H-NMR (400 MHz, CDCl3, δ ppm) of β-lactam photoproduct 147a.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 170.6, 149.1, 141.3, 138.9, 137.9, 128.8, 128.7, 127.5, 

127.3, 58.7, 58.2, 35.5 and 31.6. 

 

Figure 2.42: 13C-NMR (100 MHz, CDCl3, δ ppm) of β-lactam photoproduct 147a.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 250.1202 

Observed : 250.1203 

|Δm|  : 0.4 ppm 

 

Figure 2.43: HRMS of β-lactam photoproduct 147a. 

HPLC analysis conditions: 

For analytical conditions 

I). Column     : CHIRALPAK-AD-3 

Abs. detector    : 254 nm and 270 nm 

Mobile phase    : Hexanes:2-propanol = 95:5 

Flow rate     : 0.5 mL/min  

Retention times (min) : ∼10.30 min [(1S,4R)-(-)-147a] and ∼11.12 min [(1R,4S)-(+)-147a]. 

N

O

147a
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For preparative conditions 

I). Column  : RR-WHELK-01 10/100 FEC 

Abs. detector : 254 nm and 270 nm 

Mobile phase : Hexanes:2-propanol = 98:2 

Flow rate  : 3.0 mL/min 

Retention times (min): ∼55.32 min [(1S,4R)-(-)- 147a] and ∼75.12 min [(1R,4S)-(+)- 147a] 

 

Optical Rotation [α]D28: 

HPLC retention time (CHIRALCEL-AD-3) at ∼ 10.30 min, (c ∼0.024%, MeOH) = -91.6 deg. 

HPLC retention time (CHIRALCEL-AD-3) at ∼ 11.32 min, (c ∼0.023%, MeOH) = +95.8 deg. 

Figure 2.44: CD spectra of β-lactam photoproduct 147a measured in methanol (c ∼ 0.16 mM for 
[(+)-147a] and ∼ 0.18 mM for [(-)-147a] respectively). 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.54-7.51 (m, 1H), 7.28-7.25 (m, 2H), 7.07-7.04 (m, 1H), 6.70-

6.67 (m, 2H), 4.75-4.74 (m, 1H), 4.32-4.31 (m, 1H), 2.83 (broad s, 1H) and 1.64 (s, 6H). 

 

Figure 2.45: 1H-NMR (400 MHz, CDCl3, δ ppm) of β-lactam photoproduct 147b. 
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13C NMR (100 MHz, CDCl3, δ ppm): 170.5, 145.4, 141.6, 139.3, 136.3, 128.5, 128.3, 127.3, 

126.8, 72.7, 58.8, 57.7, 31.5 and 31.4. 

 

Figure 2.46: 13C-NMR (100 MHz, CDCl3, δ ppm) of β-lactam photoproduct 147b. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 252.0995 

Observed : 252.0999 

|Δm|  : 1.6 ppm 

 

Figure 2.47: HRMS of β-lactam photoproduct 147b. 

 

HPLC analysis conditions 

For analytical conditions 

I). Column   : CHIRALPAK-AD-3 

Abs. detector  : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 95:5 

Flow rate   : 1 mL/min  

Retention times (min) : 11.37 min [(+)-147b]  and 13.59 min [(-)-147b] 
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II). Column   : RR-WHELK-01 10/100 FEC 

Abs. detector  : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 90:10 

Flow rate  : 1.5 mL/min  

Retention times (min): ∼11.95 min [(-)-147b] and ∼17.10 min [(+)-147b] 

For preparative conditions 

I). Column   : RR-WHELK-01 10/100 FEC 

Abs. detector  : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 97:3 

Flow rate  : 4.0 mL/min 

Retention times (min): ∼60.52 min [(-)-147b] and ∼80.37 min [(+)-147b] 

 

Optical Rotation [α]D28 : 

HPLC retention time (RR-WHELK-01) at ∼11.95 min, (c ∼0.024%, MeOH) = -18.8 deg. 

HPLC retention time (RR-WHELK-01) at ∼17.10 min, (c ∼0.024%, MeOH) = +18.8 deg. 

 

 

Figure 2.48: CD spectra of β-lactam photoproduct 147b measured in methanol (c ∼ 0.080 mM). 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.49-7.46 (m, 2H), 7.41-7.40 (m, 2H), 7.33-7.28 (m, 5H), 

7.25-7.20 (m, 2H), 7.17-7.08 (m, 2H), 6.91-6.88 (dd, 1H), 6.58-6.57 (m, 1H), 6.50-6.49 (m, 1H), 

5.85 (s, 1H), 3.67-3.66 (m, 1H) and 3.61-3.62 (t, 1H). 

 

Figure 2.49: 1H-NMR (400 MHz, CDCl3, δ ppm) of β-lactam photoproduct 147c.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 165.6, 147.5, 147.0, 145.2, 141.3, 140.5, 139.9, 132.3, 

130.7, 130.5, 130.1, 128.96, 128.8, 128.7, 127.9, 127.6, 127.4, 121.4, 107.2 and 80.96. 

 

Figure 2.50: 13C-NMR (100 MHz, CDCl3, δ ppm) of β-lactam photoproduct 147c.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 376.1308 

Observed  : 376.1312 

|Δm|  : 1.1 ppm 

 

Figure 2.51: HRMS of β-lactam photoproduct 147c. 

HPLC analysis conditions: 

For analytical conditions 

I). Column   : RR-WHELK-01 10/100 FEC 

Abs. detector  : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 90:10 

Flow rate   : 1.5 mL/min  

Retention times (min) : ∼12.48 min [(-)-147c] and ∼17.92 min [(+)-147c] 

For preparative conditions 

I). Column   : RR-WHELK-01 10/100 FEC 

Abs. detector  : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 90:10 

Flow rate   : 3.0mL/min 

Retention times (min) : ∼31.89 min [(-)-147c] and ∼42.78 min [(+)-147c] 
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Optical Rotation [α]D28 : 

HPLC retention time (RR-WHELK-01) at ∼ 12.48 min, (c ∼0.032%, MeOH) = -46.6 deg. 

HPLC retention time (RR-WHELK-01) at ∼ 17.92 min, (c ∼0.030%, MeOH) = +43.3 deg. 

 

 

Figure 2.52: CD spectra of β-lactam photoproduct 147c measured in methanol (c ∼ 0.15 mM). 
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2.12.13. HPLC analysis of photoproducts upon irradiation of (P)-(+)-146a and (M)-(-)-146a. 

 

Figure 2.53: HPLC chromatogram of photoproducts upon irradiation of P-(+)-146a and M-(-)-
146a. 
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2.12.14. HPLC analysis of photoproducts upon irradiation of (+)-146b and (-)-146b. 

 

Figure 2.54: HPLC chromatogram of photoproducts upon irradiation of (+)-146b and (-)-146b.  
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3 CHAPTER 3: STEREOSPECIFIC INTRAMOLECULAR [2+2]-

PHOTOCYCLOADDITION OF ATROPISOMERIC ENAMIDES 

3.1. Introduction 

The [2+2]-photocycloaddition reaction is one of the hallmarks of photochemical 

transformations employed in the organic synthesis.1,2 The diversity of the provides avenues to 

access several carbocyclic and heterocyclic four membered derivatives with high stereochemical 

control.3 For example, [2+2]-photocycloaddition of 2,3-dihydro-4-pyridone was extensively 

investigated to access several natural products and structurally important motifs as demonstrated 

by Comins and coworkers in the diastereoselective synthesis of lupin alkaloid plumerinine (165) 

(Scheme 3.1).4,5 In their stereoselective synthetic protocol, the key strategy involved  

[2+2]-photocycloaddition of 2,3-dihydro-4-pyridone derivatives. 

 

Scheme 3.1: Synthesis of plumerinine alkaloid through [2+2]-photocycloaddition reaction. 

In 2013, Bach and coworkers reported the corresponding enantioselective  

[2+2]-photocycloaddition version of 4-pyridone derivatives (Scheme 3.2).6 Coordination of chiral 

Lewis acid (168) to the enone derivative (166) resulted in the bathochromic shift in UV-vis 

spectrum and also provided efficient enantiotopic facial discrimination. 

 

 

The material in this chapter was co-authored by Elango Kumarasamy (EK) Dr. J. Sivaguru (JS). 
EK in consultation with JS synthesized all compounds and carried out all the experiments 
provided in this chapter. EK and JS came up with the mechanistic rationale and the conclusion 
described in this chapter. 
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Irradiating the complex with monochromatic light at 366 nm enabled them to perform 

enantioselective [2+2]-photocycloaddition reaction (broad wavelength irradiation leads to lower ee 

in the photoproduct due to racemic background reaction). Utilizing this strategy they 

demonstrated the enantioselective synthesis of (+)-lupinine and (+)-thermopsine natural products. 

 

Scheme 3.2: Enantioselective [2+2]-photocycloaddition of 5,6-dihydro-4-pyridones. 

In the above-mentioned systems, the enone was in excited state to which the ground 

state alkene adds resulting in cyclobutane derivatives. Similar to 5,6-dihydro-4-pyridones, the 

photochemistry of 3,4-dihydro-2-pyridones (structural isomer of 2,3-dihydro-4-pyridones) was well 

explored.7 For example, Bach and coworkers reported Paternò-Büchi reactions of dihydro-2-

pyridones with benzaldehyde that resulted in oxetane photoproducts (Scheme 3.3).3,8,9 

 

Scheme 3.3: Paternò-Büchi reactions of enamides with carbonyl compounds. 
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In this diastereoselective reaction, the excited benzaldehyde (169) reacted to the ground 

state cyclic enamide 3,4-dihydro-2-pyridone (170) (scheme 3.3, top) and atropisomeric acyclic 

enamide (172) (scheme 3.3, bottom) to furnish desired oxetane photoproducts in good yield. In 

the later case, the bulky t-Bu group provided necessary bias to the incoming carbonyl group 

resulting in diastereoselective oxetane photoproduct (de = 62%). However in these systems, the 

carbonyl chromophore is in the excited state, which adds to the ground state of the enamides.10 

We envisioned a complementary photoreaction that involved the excited state of enamides 

(scheme 3.4). The motivation behind this idea was to evaluate the possibility of accessing 

cyclobutane and oxetane derivatives. Also, this methodology avoids other side reactions involved 

in the excited state chemistry of carbonyl compounds such as α-cleavage, H-abstraction, 

disproportionation, pinacol coupling. 

 

Scheme 3.4: Possibility of intramolecular [2+2]-photocycloaddition in enamides. 

Another important modification that we aimed to evaluate in the photochemistry of 

atropisomeric enamides was to replace the traditional bulky group such as t-butyl group that 

provided axial chirality with less bulkier group such as methyl group. While it is known that the 

two less bulky groups can create a chiral axis, the strength of such chiral axis was not evaluated 

thoroughly. We intended to carry out detailed racemization kinetics to gain quantitative 

understanding of less bulky groups over t-butyl group in imparting stable chiral axis. Added 

advantage of this method is that one of the methyl groups could be modified to hold the ground 

state alkene partner allowing us to freeze the axial chirality upon photoreaction (permanently 

locking the axial chirality) eliminating the axial chirality in the photoproduct. Keeping these ideas 
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in mind, we synthesized the following atropisomeric enamides (chart 3.1) according to the 

procedures reported in literature. 

 

Chart 3.1: Structures of atropisomeric enamides, their photoproducts and compounds used for 
their synthesis. 
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Chart 3.1: Structures of atropisomeric enamides, their photoproducts and compounds used for 
their synthesis (continued). 
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3.2. Racemization kinetics of atropisomeric enamides 

The racemization kinetics of atropisomeric enamides was carried out in order to gain 

insights into the energy barrier to racemization. Following similar protocol described in section 2.4 

in chapter 2, racemization kinetics was performed and barriers for racemization were calculated 

 

Table 3.1: Activation energy, rate and half-life for racemization of optically pure non-biaryl 
atropisomeric enamides 174.a 

Entry Compd Solvent T (oC) τ1⁄2rac ΔG‡
rac (kcal·mol-1) krac (s-1) 

1 174a IPA 75 9.8 days 30.2 8.2 × 10-7 

2 174b IPA 75 15.0 days 30.5 5.4 × 10-7 

3 174c IPA 75 10.2 days 30.2 7.8 × 10-7 

4 174e IPA 75 4.7 h 27.5 4.1 × 10-5 

5 174f IPA 75 9.6 h 28.0 2.0 × 10-5 

6 174g Hex-IPA 23 44 min 22.2 2.6 × 10-4 

7 174j IPA 75 0.9 h 26.3 2.1 x 10-4 

8 174l IPA 75 17.8 h 28.4 1.1 x 10-5 

a Reported values carry an error of +5%. Hex- hexanes, IPA- 2-propanol. 

Analysis of racemization parameters in table 3.1 clearly indicated that the energy barrier 

for racemization in atropisomeric enamides depended on the type of substitution and ring size 

apart from the solvent and temperature. 

In the six membered enamides 174a-c, energy barrier for racemization was fairly high. 

The energy barrier imparted by two methyl substituents was comparable if not higher than the 

chiral axis provided by single tert-butyl group as in the case of tert-butyl-2-pyridone (146a in 

chapter 2). For example, the racemization barrier of enamide 174a was 30.2 kcal·mol-1 (IPA,  

75 °C), where as for tert-butyl-2-pyridone 146a was 29.9 kcal·mol-1 (MeOH, 65 °C). While an 

absolute comparison cannot be made as the solvent and the temperature of racemization study 

were slightly different, the result clearly showed that the two smaller bulkier groups flanking the 
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chiral axis can be as efficient as single bulky steric biasing group in providing a stable chiral axis. 

Substitution on the alkenyl tether had slight influence resulting in higher racemization barrier 

(compare entries 1-3, table 3.1). 

On the other hand, the energy barrier for the five membered atropisomeric enamides 

174e-g significantly reduced. It is well established that the non-biaryl atropisomeric system with 

reduced ring size (reduced C-N-C bond angle), have a lower energy barrier for racemization.11 

For example, substrate 174e, which had similar substituent under similar racemization conditions, 

had a racemization barrier of 27.5 kcal·mol-1 with the half-life of 4.7 h (174a had a half-life of  

9.8 days at 75 °C). Further, the racemization barrier was highly influenced when the flanking 

group was altered as in the case of 174g. For example, when the alkenyl tether was replaced for 

an oxy alkenyl tether (where the flanking group was methyl and oxygen instead of a methyl and 

methylene group), the racemization barrier was significantly reduced to 22.2 kcal·mol-1 with the 

half-life of 44 mins at 23 °C. 

Acyclic enamides with sufficient steric bulk around the chiral axis presented a high-

energy barrier towards racemization. For example, substrate 174l, had a racemization value of 

28.4 kcal·mol-1 with the half-life of 17.8 h in IPA at 75 °C. Even though the substrate lacked the 

rigidity of a cyclic system, the presence of sufficient steric bulk around the chiral axis compensate 

resulting in higher racemization barrier. 

A smaller change in the sterics greatly affected the racemization barrier on atropisomeric 

enamides. As the racemization barrier critically influences the outcome of stereospecificity in the 

photoproduct, the substituents and structural analysis provided crucial information about the 

requirement to design a stable axially chiral enamides for an efficient “axial to point chiral 

transfer” in the desired [2+2]-photocycloaddition reaction. 
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3.3. Photophysical studies on non-biaryl atropisomeric enamides 

The photophysical studies of non-biaryl atropisomeric enamides 174a-c were carried out 

in two spectrometric grade solvents viz ethanol (EtOH) and methylcyclohexane (MCH). The 

standard reference for fluorescence quantum yield was phenol in water (φr = 0.14) and the 

fluorescence quantum yield was calculated using the following equation,12 

          Equation 3.1 

Where, 

φs is the fluorescence quantum yield of the sample,  

φr is the fluorescence quantum yield for the reference solution (i.e. phenol in water), 

Is is the fluorescence intensity of the sample, 

Ir is the fluorescence intensity of the reference solution (phenol in water), 

As is the absorbance value of the sample, 

Ar is the absorbance value of the reference solution (phenol in water), 

ηs is the refractive index of the solvent (ethanol = 1.361 and MCH = 1.422) for the sample 

and 

ηr is the refractive index of the solvent (water = 1.333) for the reference (phenol in water). 

 

3.3.1. Emission measurements of atropisomeric enamide 174a. 

The following parameters were maintained during Fluorescence acquisition. 

Excitation slit-width = 1 nm; Emission slit-width = 2 nm; 

Integration time = 0.1 sec; Wavelength increment = 1 nm; 

The fluorescence quantum yield (φf) of 174a was ∼ 0.094 in EtOH and ∼ 0.103 in MCH. 

The phosphorescence spectra were recorded at 77 K in EtOH and MCH glass. The 

following parameters were employed during acquisition: 

Excitation: 298 nm for EtOH and 299 nm for MCH; emission: 318-576 nm for EtOH and 

319-578 nm for MCH; excitation slit-width: 5 nm; emission slit-width: 8 nm; time per flash: 3000 

φs (η2/η2)φr (Is/Ir)(As/Ar) s r=
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msec for EtOH and 2500 msec for MCH; flash per count: 10; delay time: 100 msec; wavelength 

increment: 3 nm; sample window: 2500 msec for EtOH and 2000 msec for MCH. 

 

Figure 3.1: Fluorescence at room temperature ('), fluorescence at 77 K (') and 
phosphorescence at 77 K (•) for 174a recorded in EtOH (left) and MCH (right) (c∼1.03 mM). 

 
The phosphorescence decay profiles were recorded at 77 K in EtOH and MCH using a 

PhosLamp with a trigger pulse delay of 1%. The sample in EtOH was excited at 298 nm and the 

emission was monitored at 462 nm. The sample in MCH was excited at 299 nm and the emission 

was monitored at 491 nm. Following parameters were maintained during acquisition: 

Excitation slit-width = 5 nm; emission slit-width = 8 nm; time (phosphorescence) range = 2.8 sec; 

number of sweeps = 200. 

 

Figure 3.2: Phosphorescence decay profile of 174a in EtOH (left) and MCH (right) at 77 K  
(c ∼ 1.03 mM).  
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3.3.2. Emission measurements of atropisomeric enamide 174b. 

The following parameters were maintained during Fluorescence acquisition. 

Excitation slit-width = 1nm; Emission slit-width = 2 nm; 

Integration time = 0.1 sec; Wavelength increment = 1 nm; 

The fluorescence quantum yield (φf) of 174b was ∼0.057 in EtOH and ∼ 0.067 in MCH. 

The phosphorescence spectra were recorded at 77 K in EtOH and MCH glass. The 

following parameters were employed during acquisition: 

Excitation: 297 nm for EtOH and 301 nm for MCH; Emission: 317-574 nm for EtOH and 

321-582 nm for MCH; excitation slit-width: 5 nm; emission slit-width: 8 nm; time per flash: 3000 

msec for EtOH and 2500 msec for MCH; flash per count: 10; delay time: 100 msec; wavelength 

increment: 3 nm; sample window: 2500 msec for EtOH and 2000 msec for MCH. 

 

Figure 3.3: Fluorescence at room temperature ('), fluorescence at 77 K (') and 
phosphorescence at 77 K (•) for 174b recorded in EtOH (left) and MCH (right) (c ∼ 0.91 mM). 

 

The phosphorescence decay profiles were recorded at 77 K in EtOH and MCH using a 

PhosLamp with a trigger pulse delay of 1%. The sample in EtOH was excited at 297 nm and the 

emission was monitored at 460 nm. The sample in MCH was excited at 301 nm and the emission 

was monitored at 488 nm. Following parameters were maintained during acquisition: 

Excitation slit-width = 5 nm; emission slit-width = 8 nm; time (phosphorescence) range = 2.8 sec; 

number of sweeps = 200. 
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Figure 3.4: Phosphorescence decay profile of 174b in EtOH (left) and MCH (right) at 77 K  
(c ∼ 0.91 mM). 

 

3.3.3. Emission measurements of atropisomeric enamide 174c. 

The following parameters were maintained during Fluorescence acquisition. 

Excitation slit-width = 1nm; Emission Slit-width = 2 nm; 

Integration time = 0.1 sec; Wavelength increment = 1 nm; 

The fluorescence quantum yield (φf) of 174c was ∼0.082 in EtOH and ∼0.098 in MCH. 

The phosphorescence spectra were recorded at 77 K in EtOH and MCH glass. The 

following parameters were employed during acquisition: 

Excitation: 297 nm for EtOH and 301 nm for MCH; Emission: 317-574 nm for EtOH and 

321-582 nm for MCH; excitation slit-width: 5 nm; emission slit-width: 8 nm; time per flash: 3000 

msec for EtOH and 2500 msec for MCH; flash per count: 10, delay time: 100 msec; wavelength 

increment: 3 nm; sample window: 2500 msec for EtOH and 2000 msec for MCH. 
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Figure 3.5: Fluorescence at room temperature ('), fluorescence at 77 K (') and 
phosphorescence at 77 K (•) for 174c recorded in EtOH (left) and MCH (right) (c ∼ 0.91 mM). 

 

The phosphorescence decay profiles were recorded at 77 K in EtOH and MCH using a 

PhosLamp with a trigger pulse delay of 1%. The sample in EtOH was excited at 297 nm and the 

emission was monitored at 467 nm. The sample in MCH was excited at 301 nm and the emission 

was monitored at 492 nm. Following parameters were maintained during acquisition: 

Excitation slit-width = 5 nm; emission slit-width = 8 nm; time (phosphorescence) range = 2.8 sec; 

number of sweeps = 200. 

 

Figure 3.6: Phosphorescence decay profile of 174c in EtOH (left) and MCH (right) at 77 K  
(c ∼ 0.91 mM). 
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Table 3.2: Fluorescence quantum yield, phosphorescence lifetime and triplet energy of 
atropisomeric enamide 174a-c in ethanol and methylcyclohexane. 

Entry Compd Solvent Fluorescence 
quantum yield (φf) 

Phosphorescence 
lifetime (sec) 

Triplet energy 
(kcal.mol-1) 

1 
174a 

EtOH ∼ 0.094 ∼ 0.47 ∼ 73.88 

2 MCH ∼ 0.103 ∼ 0.30 ∼ 72.56 

3 
174b 

EtOH ∼ 0.057 ∼ 0.49 ∼ 74.07 

4 MCH ∼ 0.067 ∼ 0.29 ∼ 73.3 

5 
174c 

EtOH ∼ 0.082 ∼ 0.50 ∼ 75.44 

6 MCH ∼ 0.098 ∼ 0.26 ∼ 73.88 

 
 
 

3.4. Stereospecific [2+2]-photocycloaddition of atropisomeric enamides 

The atropisomeric enamides were classified based on the ring size and the type of 

ground state partners (alkenyl vs. carbonyl groups) and were investigated towards the 

stereospecific photocycloaddition reaction. 

3.4.1.  Stereospecific [2+2]-photocycloaddition of six membered enamides 174a-d 

The first set of investigations were carried out on six membered enamides 174a-d. The 

photoreaction of enamides proceeded efficiently under acetone sensitized irradiation conditions 

resulting in the desired cyclobutane products. The direct irradiation did not result in the product 

formation, which was verified by irradiating enamides in various solvents (toluene, methanol and 

acetonitrile). Photophysical analysis of the atropisomeric enamides revealed that the triplet 

energy was around ∼73 kcal⋅mol-1 and enabled us to employ other sensitizers such as xanthone 

and acetophenone that had similar triplet energies. However, the conversion depended on the 

type of sensitizer employed. For instance, the conversions in 174a for 3 h irradiation with 

xanthone and acetone as sensitizers were comparable (70 and 76% conversions). On the other 

hand, the conversion for 3 h with acetophenone was rather poor (29% conversion). 
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Scheme 3.5: Stereospecific [2+2]-photocycloaddition of 6-membered enamides 174a-d. 

Surprisingly, the butenyl tethered atropisomeric enamide 174d, did not result in the 

desired reaction both under direct and sensitized irradiation conditions. Even longer irradiation 

times (6 h) only led to conversion less than 10%. In most cases, the starting material was 

recovered with significant amount of decomposition in longer irradiated samples. We believe that 

the butenyl chain length was not suitable for photoreaction, presumably because of the unfavored 

approach of the alkene towards the excited enamide. 
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 165 

Table 3.3: Stereospecific [2+2]-photocycloaddition of 6-membered enamides 174a-da 

 
a(+) and (-) represent the sign of optical rotation (MeOH at 25 °C). Reported values are an average of 3 runs with ±3% 
error. Photoreaction was performed with 30 mol% sensitizer at 25 °C except for 174a-b which the was done at -30 °C to 
avoid unwanted side products. For 174a and 174c an uncharacterized product was observed with 8-10% yield. A and B 
refer to the elution order for a given pair of enantiomers in the HPLC. Absolute configuration was determined by single 
crystal XRD using Flack parameters. b The ee values were determined by HPLC on a chiral stationary phase, Identical ee 
values were observed for both photoproducts 175b and 176b. c The diastereomeric ratio (dr) was determined by 1H-NMR 
spectroscopy. Conversion (% Convn) and mass balance (% MB) were calculated by 1H-NMR spectroscopy with Ph3CH as 
an internal standard. e No photoproduct was observed.  

(-)-(R,R,R)-175a

70 (96)

> 98% ee (> 98:2)(+)-174a

(+)-(S,S,S)-175a > 98% ee (> 98:2)(-)-174a

Substrate productEntry

1

Conv. (MB)b

N O O

Solv/sens. t  (h)

acetone 3

76 (89)MeOH/xanthone 3

29 (92)MeOH/acetophenone 3

175a

175a

(B)-175b

39 (79)

(+)-174b

(A)-175b(-)-174b

2
N O N O

acetone 24

21 (82)MeOH/xanthone 3

20 (87)MeOH/acetophenone 12

175b

175b

N

90 (77)3

N O

acetone

3

174d

4

N O N O

acetone

2.5

(-)-(R,R,R)-175c

(+)-(S,S,S)-175c

-e -

(+)-174c

(-)-174c

[%] ee,c  dr (2:3)d

> 98% ee (2.8:1)

> 98% ee (2.8:1)

> 98% ee (4.3:1)

> 98% ee (4.3:1)

> 98% ee (> 98:2)

> 98% ee (> 98:2)

> 98% ee (> 98:2)

> 98% ee (> 98:2)

-

92 (84)MeOH/xanthone 2.5

33 (86)MeOH/acetophenone 12

175c

175c

> 98% ee (> 98:2)

> 98% ee (> 98:2)
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The photoreaction of allyl tether substituted enamide 174a-c was monitored thin layer 

chromatography. After the consumption of starting material, the solvent was evaporated under 

reduced pressure and the residue was purified by chromatography to get pure photoproducts. 

Analysis of the photoproducts revealed the presence of two diastereomers 175 and 176. The 

relative orientation of the hydrogen atoms in the lactam ring was cis in photoproduct 175. On the 

other hand, the relative orientation of the hydrogen atoms in the lactam ring was trans in the case 

of photoproduct 176. The diastereomeric ratio (dr) between photoproducts 175 and 176 was 

calculated from the 1H-NMR analysis of the crude reaction mixture. 

Analysis of table 3.3 revealed that the reaction proceeded with excellent control over 

enantiospecificity resulting in enantioenriched photoproduct (ee >98%). However, the dr 

depended on the type of alkenyl tether involved in the reaction. For example, dr >98:2 was 

observed in the photoreaction of 174a and 174c whose terminal carbon was unsubstituted. On 

the other hand, the dr of 174b whose terminal carbon in the alkenyl tether was disubstituted was 

only 2.8:1 in acetone and 4.3:1 in methanol. 

 

3.4.2.  Stereospecificity in the [2+2]-photocycloaddition of 5 membered enamides 174e-g 

The photoreaction of the 5-membered enamides proceeded smoothly at room 

temperature yielding the cyclized photoproduct in good isolated yield. On the contrary to the 

butenyl tethered six membered enamide 174d that underwent recovery of the starting material 

and decomposition, the butenyl tethered enamide 174f underwent smooth photoreaction to yield 

the corresponding cyclobutane photoproduct. While the dr in the photoproduct was high in all the 

cases, the enantiomeric excess in the photoproduct depended on the substituents governing the 

axial chirality. The alkenyl substituted enamides as in the case of atropisomeric enamides 174e-f 

(that had methyl and methylene group around the chiral axis), resulted in photoproducts with 

>96% ee. On the other hand, the oxy alkenyl tether as in the case of 174g (that had oxygen and 

methylene group around the chiral axis) only resulted in the photoproducts with <20% ee. 
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Scheme 3.6: Stereospecific [2+2]-photocycloaddition of 5-membered enamides 174e-g. 

The enantiomeric excess in the photoproducts can be appreciated by analyzing the 

racemization barrier of the enamides investigated. The enamides 174e-f had a half-life of 4.7 h at 

75 °C that provided stable chiral axis at room temperature for an efficient chirality transfer to 

occur resulting in >96% ee in the photoproduct. On the other hand, the half-life of racemization 

for enamide 174g was 44 mins at 23 °C which only presented very small energy barrier towards 

racemization. So, the racemization competed with photoreaction significantly eroding the optical 

purity of the starting material. As a consequence, the resultant ee of the photoreaction was very 

low (<20%). This study reiterated the importance of stable axial chirality in effecting very high 

enantiomeric excess in the photoproduct. 
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Table 3.4: Stereospecific [2+2]-photocycloaddition of 5-membered enamides 174e-ga 

 
aThe conditions, notations and footnotes are similar as listed in the table 3.3. The photoreactions were performed at 25 
°C. bThe yields reported are for the isolated photoproducts. cThe conversion was calculated from NMR using 
triphenylmethane as an internal standard, mass balance is given in parenthesis.  

(-)-(1R,5S,6R)-175e

85b

> 98% ee(+)-174e

(+)-(1S,5R,6S)-175e > 98% ee(-)-174e

Substrate productEntry

1
1

5

6

Yield [%],  [%] ee

N O
O

Solv/sens. t  (h)

acetone 0.5

84 (89)cMeCN/xanthone 0.5

38 (88)cMeCN/acetophenone 0.5

175e

175e

(-)-(1R,5S,6R)-175f

77b

> 96% ee(+)-174f

(+)-(1S,5R,6S)-175f > 96% ee(-)-174f

2
1

5

6N O N
O

acetone 1.3

84 (94)cMeCN/xanthone 1.3

20 (92)cMeCN/acetophenone 1.3

175f

175f

N

72b

> 20% ee

> 20% ee

3 acetone

N O
O

N
O

1.3 O

(A)-175g

(B)-175g

(A)-174g

(B)-174g
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3.4.3.  [2+2]-Photocycloaddition of enamides with carbonyl partners 

The photoreaction of atropisomeric enamides 174h-j with carbonyl compounds not only 

provided access to oxetane photoproduct but also provided an excellent opportunity to evaluate 

the ability of enamides to act both as an excited state and ground state partner (Paternò-Büchi 

reaction) in the [2+2]-photocycloaddition reactions. 

Depending on the type of carbonyl group involved (aldehyde vs ketone), the nature and 

the location of the excited state in the photoreaction changed between nπ* or ππ*. For example, 

when the carbonyl tether was an aldehyde as in the case of 174h, the excited state was on the 

enamides that allowed for sensitized irradiation conditions to result in oxetane photoproduct 175h 

(the direct irradiation did not give rise to the desired photoproduct). On the other hand, when the 

carbonyl partner was methyl ketone as in the case of 174i, certain percentage of photoproduct 

formed (∼7% conversion) resulted from the excitation of methyl ketone as observed in the direct 

irradiation conditions (in MeCN). This trend significantly improved up on employing phenyl ketone 

as the carbonyl partner in 174j that on direct irradiation resulted in complete conversion in 3 h. In 

this case, a complete switch in the excited state occurred wherein the enamide acted as a ground 

state partner to the excited phenyl ketone resulting in oxetane photoproducts (Paternò-Büchi 

reaction). 

Initial screening of photoreaction on the carbonyl derivatives as in the case of 174h-j was 

conducted on achiral compounds. We anticipated that the approach could be easily transformed 

to stereospecific reactions by simply installing bulky group at the ortho position of the N-phenyl 

ring to make them axially chiral. So the phenyl ketone derivative 174j was synthesized 

atropisomeric and the enantiospecificity in the reaction was evaluated. 
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Table 3.5: Stereospecific [2+2]-photocycloaddition of enamides with carbonyl group 174h-ja 

 
aThe conditions, notations and footnotes are similar as listed in the table 3.2. The photoreactions were performed at  
25 °C. b The yield reported are for the isolated photoproducts. cThe conversion was calculated from NMR using 
triphenylmethane as an internal standard, mass balance is given in parenthesis. dThe reaction was performed at -30 °C to 
avoid the formation of uncharacterized impurity.  
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Photoreaction on individual optically pure isomers resulted in 72% ee at room 

temperature that increased to 88% upon lowering the temperature albeit with longer reaction 

times. Also, room temperature irradiation resulted in an uncharacterized impurity that seems to 

increase at higher temperature. So, the reaction temperature was maintained at -30 °C to avoid 

the formation of the undesired product (further studies to identify the side product will be carried 

out in the lab). 

These studies clearly demonstrated the ability of atropisomeric enamides to act as both 

excited state and ground state reaction partner to yield cyclobutane and oxetane photoproducts in 

excellent yield. The enantio- and diastereomeric excess in the product was dictated by the 

substituent on the alkenyl tether and barrier for C-Naryl restricted bond rotation. 

 

3.4.4.  [2+2]-Photocycloaddition of atropisomeric acyclic enamides 174k-l 

The [2+2]-photocycloaddition of the acyclic enamides where the excited state is in the 

enamide was not investigated so far. So, we attempted to evaluate atropisomeric acyclic 

enamides 174h-i towards the stereospecific [2+2]-photocycloaddition reaction. 

 

Scheme 3.7: Stereospecific [2+2]-photocycloaddition of acyclic enamides 174k-l. 

Both under direct and sensitized irradiation conditions, no photoreaction was observed. 

Even after prolonged irradiation, only starting material was recovered. This observation was 

somewhat disappointing as these compounds had fairly high energy-barrier to rotation and its 

basic chromophore responsible for the photoreaction was kept intact except lacking the rigidity of 

a cyclic system. 
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3.5. Mechanistic rationale for [2+2]-photocycloaddition of alkene to enamides 174 

 

 

Scheme 3.8: Mechanistic rationale for stereospecific [2+2]-photocycloaddition of atropisomeric enamides 174 to alkenes 
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The possible mechanistic pathway for the [2+2]-photocycloaddition was hypothesized 

from the photophysical and photochemical data. We believe that the photoreaction was initiated 

from the triplet state of the enamide ([174]*3) upon sensitization. This speculation was based on 

the observation that the triplet energy transfer from external sensitizers such as acetone (ET∼ 74 

kcal⋅mol-1), xanthone (ET∼ 74 kcal⋅mol-1) and acetophenone (ET∼ 73 kcal⋅mol-1) having similar 

triplet energies occurred very efficiently and that the direct irradiation (in methanol, acetonitrile, 

chloroform or toluene) did not yield the desired cyclobutane photoproduct. The possible 

explanation for the observed ee value that occurred with high fidelity and diastereomeric ratio in 

the photoproduct is given in the scheme 3.7. 

We believe that upon sensitization, triplet excited state of the enamide 174 ([174]*3) was 

produced that cyclized to form the triplet 1,4-biradical t-BR1. Depending on the type of  

R2 substituent, the triplet 1,4-biradical t-BR1 can be either primary radical as in the case of 174a 

and 174c-g (where the R2 = H) or tertiary radical as in the case of 174b (where the R2 = Me).  

In the case of primary radical, the intersystem crossing to singlet 1,4-biradical, s-BR1 and 

subsequent cyclization occurred rapidly resulting in cyclobutane photoproduct 175 with high 

enantiomeric excess and diastereomeric ratio (ee and dr >98%). On the other hand, if the radical 

is tertiary, the intersystem crossing and cyclization occurred slowly causing a minor leakage in 

the diastereocontrol. The reason was in the stability of the tertiary radical that lived long enough 

for the pyramidal inversion of the β-carbon of the lactam ring to occur resulting in t-BR2. Now the 

mixture of 1,4-biradicals viz., t-BR1 and t-BR2 intersystem crosses to singlet 1,4-biradicals viz.,  

s-BR1 and s-BR2 leading to enantiomeric and diastereomeric photoproducts 175 and 176 

respectively. The first cyclization leading to the formation of 1,4-biradicals occurred with very high 

axial to point chiral transfer leading to excellent control over enantiospecificity in the photoproduct. 

Thus the strategy provided an avenue to build quaternary chiral center with high enantiomeric 

purity as in the case of 174c. 

A similar mechanistic pathway can be envisioned for the [2+2]-photocycloaddition of 

enamides to the carbonyl group. However, depending on the type of carbonyl group, the 

mechanism can slightly varied. For example, in the case of 174h-j, a certain percentage of ketone 
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excited state could be involved where enamide acted as a ground state partner leading to same 

oxetane photoproducts. 

 

3.6. Cleavage of oxygen tethered and oxetane photoproducts 

The oxygen in the alkenyl tether as in the enamide 175g was strategically placed to 

enable us to cleave the tether after the photoreaction. This revealed enantioenriched and 

functionalizable building block for further synthetic transformations. The cleavage was achieved 

using BBr3 in DCM at ambient conditions with excellent yield. 

 

Scheme 3.9: Cleavage of ether linkage of photoproduct 174g using BBr3. 

Similarly, the cleavage of oxetane ring in the photoproduct 175j was achieved by 

hydrogenolysis using Pd(OH)2 in methanol with good isolated yield. 

 

Scheme 3.10: Cleavage of oxetane in the photoproduct 175j using Pd(OH)2. 
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3.7. X-ray structural parameters 

Structure determination: Single crystal X-ray diffraction data of the compounds 17a, 175c and 176b were collected on a 

Bruker Apex Duo diffractometer with a Apex 2 CCD area detector at T = 100K. Cu radiation was used. All structures were 

processed with Apex 2 v2011.4-1 software package (SAINT v. 7.68A, XSHELL v. 6.14). Direct method was used to solve the 

structures after multi-scan absorption corrections. Details of data collection and refinement are given in the table below. 

Table 3.6: Single crystal X-ray diffraction data of the compounds 175a, 175c and 176b 

Entry 175a-(S,S,S) 175a-(R,R,R) 175c-(R,R,R) 175c-(S,S,S) 176b 
Formula C15H17NO C15H17NO C17H21NO C17H21NO C17H21NO 

FW 227.30 227.30 255.35 255.35 255.35 
cryst. size_max [mm] 0.37 0.20 0.34 0.37 0.33 
cryst. size_mid [mm] 0.14 0.16 0.28 0.35 0.17 
cryst. size_min [mm] 0.04 0.04 0.23 0.09 0.03 

cryst. system Hexagonal Hexagonal Monoclinic Monoclinic Triclinic 
Space Group, Z P61, 6 P65, 6 P21, 2 P21, 2 P-1, 4 

a [Å] 7.3117(2) 7.3171(2) 6.8497(2) 6.8456(2) 9.3999(7) 
b [Å] 7.3117(2) 7.3171(2) 13.0702(3) 13.0609(2) 9.6886(6) 
c [Å] 37.2526(9) 37.2390(11) 7.9554(2) 7.9584(2) 16.2607(10) 
α [Å] 90 90 90 90 100.574(3) 
ß [Å] 90 90 105.727(1) 105.815(1) 98.903(3) 
γ [Å] 120 120 90 90 103.446(3) 
V [Å3] 1724.74(8) 1726.66(8) 685.56(3) 684.62(3) 1385.48(16) 

ρcalc [g/cm3] 1.313 1.312 1.237 1.239 1.224 
µ [cm-1] 0.639 0.638 0.589 0.590 .583 

Radiation Type Cu Cu Cu Cu Cu 
F(000) 732 732 276 276 552 

no of measured refl. 14783 13311 8534 7269 34128 
no of indep. refl. 1958 1966 2442 2403 4965 
no of refl. (I ≥ 2σ) 1949 1930 2426 2376 4361 

Resolution [Å] .84 .84 .84 .84 .84 
R1/wR2 (I ≥ 2σ)a [%] 2.99/7.73 2.87/7.51 2.83/7.83 2.79/7.32 4.32/10.58 
R1/wR2 (all data) [%] 3.01/7.74 2.93/7.56 2.85/7.85 2.81/7.35 4.97/11.01 
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Table 3.7: Single crystal X-ray diffraction data of the compounds 175e-f 

Entry 175e-(R,S,R) 175e-(S,R,S) 175f-(R,R,R) 175f-(S,S,S) 
Formula C16H19NO C16H19NO C17H21NO C17H21NO 

FW 241.32 241.32 255.35 255.35 
cryst. size_max [mm] 0.376 0.23 0.196 0.268 
cryst. size_mid [mm] 0.145 0.044 0.104 0.19 
cryst. size_min [mm] 0.044 0.032 0.022 0.048 

cryst. system Orthorhombic Orthorhombic Orthorhombic Orthorhombic 
Space Group, Z P212121(4) P212121(4) P212121(4) P212121(4) 

a [Å] 9.3935(2) 9.3923(2) 8.5255(2) 8.5245(2) 
b [Å] 10.7059(3) 10.7073(2) 12.7647(4) 12.7658(4) 
c [Å] 12.8032(3) 12.7975(3) 13.2058(4) 13.206(4) 
α [Å] 90.00 90.00 90.00 90.00 
ß [Å] 90.00 90.00 90.00 90.00 
γ [Å] 90.00 90.00 90.00 90.00 
V [Å3] 1287.57(5) 1287.00(5) 1437.13(7) 1437.11(7) 

ρcalc [g/cm3] 1.245 1.245 1.180 1.180 
µ [cm-1] 0.599 0.599 0.562 0.562 

Radiation Type Cu Cu Cu Cu 
F(000) 520.0 520.0 552.0 552.0 

no of measured refl. 10713 8410 10687 7402 
no of indep. refl. 2228 2181 2514 2508 
no of refl. (I ≥ 2σ) 2169 2075 2401 2434 

Resolution [Å] 0.84 0.84 0.84 0.84 
R1/wR2 (I ≥ 2σ)a [%] 2.59/6.57 2.84/7.15 2.73/6.84 2.76/6.80 
R1/wR2 (all data) [%] 2.68/6.64 3.05/7.29 2.92/6.97 2.87/6.89 
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Figure 3.7: X-ray structure of photoproduct (+)-(S,S,S)-175a (crystallized from hexanes/IPA) . 

 

 

Figure 3.8: X-ray structure of photoproduct (-)-(R,R,R)-175a (crystallized from hexanes/IPA). 

 

 

Figure 3.9: X-ray structure of photoproduct 176b (crystallized from hexanes/CHCl3). 
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Figure 3.10: X-ray structure of photoproduct (+)-(S,S,S)- 175c (crystallized from hexanes/CHCl3). 

 

 

Figure 3.11: X-ray structure of photoproduct (-)-(R,R,R)-175c (crystallized from hexanes/CHCl3). 

 

 

 

Figure 3.12: X-ray structure of photoproduct (+)-(S,R,R)-175e (crystallized from hexanes/CHCl3). 

  

N

O

Me
H

H
(S)

(S)

(S)

N

O

Me
H

H
(R)

(R)
(R)

(R)
N

O

H
H H

(R)

(S)



 

 179 

 

Figure 3.13: X-ray structure of photoproduct (-)-(R,S,S)-175e (crystallized from hexanes/CHCl3). 

 

 

Figure 3.14: X-ray structure of photoproduct (+)-(R,R,R)-175f (crystallized from hexanes/CHCl3). 

 

 

Figure 3.15: X-ray structure of photoproduct (-)-(S,S,S)- 175f (crystallized from hexanes/CHCl3). 
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3.8. Summary and outlook 

The evaluation of intramolecular [2+2]-photocycloaddition of atropisomeric enamides 

provided an excellent avenue to access both cyclobutane and oxetane photoproducts. The 

presence of a stable axial chirality ensured efficient chirality (axial to point chiral) transfer 

resulting in enantiomerically enriched photoproducts. On the other hand, the substituents on the 

alkenyl tether dictated the diastereomeric excess in the photoproduct, which in turn was 

controlled by the stability of the radical intermediates generated. The photophysical and 

photochemical data provided insights about the mechanistic pathway and explained the observed 

stereoselectivity in the photoproducts. Depending on the type of carbonyl chromophore involved 

in the reaction, the enamide either acted as an excited state or ground state partner leading to 

same photoproduct. Further the oxygen-tethered photoproducts was cleaved to reveal more 

functionalizable enantioenriched synthetic building blocks. 

 

3.9. Experimental section 

All commercially obtained reagents/solvents were used as received; chemicals were 

purchased from Alfa Aesar®, Sigma-Aldrich®, Acros organics®, TCI America®, Mallinckrodt®, and 

Oakwood® Products, and were used as received without further purification. Unless stated 

otherwise, reactions were conducted in oven-dried glassware under nitrogen atmosphere. 1H-

NMR and 13C-NMR spectra were recorded on Varian 400 MHz (100 MHz for 13C) and on 500 

MHz (125 MHz for 13C) spectrometers. Data from the 1H-NMR spectroscopy are reported as 

chemical shift (δ ppm) with the corresponding integration values. Coupling constants (J) are 

reported in hertz (Hz). Standard abbreviations indicating multiplicity were used as follows: s 

(singlet), b (broad), d (doublet), t (triplet), q (quartet), m (multiplet) and virt (virtual). Data for 13C 

NMR spectra are reported in terms of chemical shift (δ ppm). High-resolution mass spectrum data 

in Electrospray Ionization mode were recorded either on a Bruker – Daltronics® BioTof mass 

spectrometer in positive (ESI+) ion mode or on a Waters® SYNAPT G2-Si connected to 

ACQUITY UPLC system. HPLC analyses were performed on Waters® HPLC equipped with 2525 

pump. Waters® 2767 sample manager was used for automated sample injection. All HPLC 
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injections were monitored using a Waters® 2487 dual wavelength absorbance detector at 254 and 

270 nm. Analytical and semi-preparative injections were performed on chiral stationary phase 

using various columns as indicated below.  

 

i) Regis® PIRKLE COVALENT (R,R) WHELK–01 

a) 25 cm x 4.6 mm column for analytical injections. 

b) 25 cm x 10 mm column for semi-preparative injections. 

ii) CHIRACEL® OD-H 

a) 0.46 cm x 25 cm column for analytical injections. 

b) 10 mm x 25 cm column for semi-preparative injections. 

iii) CHIRALPACK® IC 

a) 0.46 cm x 25 cm column for analytical injections. 

b) 10 mm x 25 cm column for semi-preparative injections 

iv) CHIRALPAK® AD-H 

a) 0.46 cm x 15 cm column for analytical injections. 

b) 10 mm x 25 cm column for semi-preparative injections. 

v) CHIRALCEL – OD-3 

a) 0.46 cm x 15 cm column for analytical injections. 

vi) CHIRAPAK – AD-3 

a) 0.46 cm x 15 cm column for analytical injections. 

 

Masslynx software version 4.1 was used to monitor/analyze the HPLC injections and to 

process HPLC traces. Igor Pro® Software version 6.0 was used to process the HPLC graphics. 

UV-Vis spectra were recorded on Shimadzu 2501PC UV-Vis spectrometer using UV quality 

fluorimeter cells (with range until 190 nm) purchased from Luzchem. Optical activity values were 

recorded on JASCO® DIP – 370 digital polarimeter. CD spectra were recorded on JASCO® J-815 

with JASCOPTC-423S/15 temperature controller maintained by liquid nitrogen. When necessary, 

the compounds were purified by combiflash equipped with dual wavelength UV-Vis absorbance 

detector (Teledyn ISCO) using hexanes:ethyl acetate as the mobile phase and Redisep® 

cartridge filled with silica (Teledyne ISCO) as stationary phase. In some cases, compounds were 

purified by column chromatography on silica gel (Sorbent Technologies®, silica gel standard 

grade: porosity 60 Å, particle size: 230 x 400 mesh, surface area: 500 – 600 m2/g, bulk density: 
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0.4 g/mL, pH range: 6.5 – 7.5). Unless indicated, the Retardation Factor (Rf) values were 

recorded using a 5-50% hexanes:ethyl acetate as mobile phase and on Sorbent Technologies®, 

silica Gel TLC plates (200 mm thickness w/UV254). 

The plot of CD spectrum was carried out using molar ellipticity vs wavelength (nm) and 

the molar ellipticity was calculated using the formula,13 

Molar ellipticity [Δε] = [θ] / 32980cl 

Where, 

c = Concentration in mols/lit; l = Path length in cm; θ = Ellipticity measured in millidegrees. 

 
Photophysical Methods: 

Spectrophotometric solvents (Sigma-Aldrich®) were used when ever necessary unless or 

otherwise mentioned. UV quality fluorimeter cells (with range until 190 nm) were purchased from 

Luzchem®. Absorbance measurements were performed using a Shimadzu® UV-2501PC UV-Vis 

spectrophotometer. Emission spectra were recorded on a Horiba Scientific® Fluorolog 3 

spectrometer (FL3-22) equipped with double-grating monochromators, dual lamp housing 

containing a 450-watt CW xenon lamp and a UV xenon flash lamp (FL-1040), 

Fluorohub/MCA/MCS electronics and R928 PMT detector. Emission and excitation spectra were 

corrected in all the cases for source intensity (lamp and grating) and emission spectral response 

(detector and grating) by standard instrument correction provided in the instrument software. 

Fluorescence (steady state) and phosphorescence (77 K) emission spectra were processed by 

FluorEssence® software. Phosphorescence lifetime measurements were performed using DAS6® 

V6.4 software. The goodness-of-fit was assessed by minimizing the reduced chi squared function 

and further judged by the symmetrical distribution of the residuals. 
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NH2

OH

194

3.10. General procedure for the synthesis of substituted aniline derivatives and their 

precursors 

3.10.1. Synthesis of 2-amino benzyl alcohol derivative 194 

 

Scheme 3.11: Synthesis of 2-amino benzyl alcohol derivative 194. 

The benzyl alcohol derivative was 194 synthesized according to the literature reported 

procedure.14 To a slurry of lithium aluminum hydride (2.5 equiv.) in dry THF (50 mL) under N2 

atmosphere at 0 oC, a solution of 3-methylanthranillic acid 195 (4.0 g, 1.0 equiv) in dry THF (50 

mL) was added over a period of 15 min without allowing the internal temperature to rise above 5 

oC. The resulting mixture was allowed to warm to room temperature over 12 h. After the 

completion of the reaction, the mixture was cooled to 0 oC and quenched with saturated Na2SO4 

solution (20 mL). To the resulting solid DCM (75 mL) was added, stirred for 15 min, filtered and 

the filtered solid was washed with DCM (50 mL). The combined organic layer was dried over 

anhyd. Na2SO4, filtered and the solvent was removed under reduced pressure to get the crude 

product. The crude product was directly taken to next step without further purification. 

Rf = 0.45 (50% hexanes: 50% ethyl acetate) for 194 (Yield = 90%). 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.03-7.01 (m, 1H), 6.92-6.90 (m, 1H), 

6.65-6.61 (m, 1H), 4.61 (s, 2H), 3.40 (bs, 3H) and 2.15 (m, 3H). 

13C-NMR (100 MHz, CDCl3, δ ppm): 144.3, 130.7, 127.3, 124.4, 122.9, 

117.9, 64.7 and 17.5. 
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3.10.2. Synthesis of 2-methoxymethyl aniline derivative 193 

 

Scheme 3.12: Synthesis of 2-methoxymethyl aniline derivative 193. 

To a solution of amino benzyl alcohol derivative 194 (5.0 g, 1.0 equiv) in methanol (40 

mL) at 0 oC, Concd. H2SO4 (1.1 equiv.) was added slowly. The resulting mixture was heated to 50 

oC for 7 h. After the completion of reaction, the mixture was cooled to 10 oC and neutralized with 

saturated Na2CO3 carefully during which a brisk effervescence was observed. The aqueous layer 

was extracted with DCM (3 × 40 mL). The combined organic layer was dried over anhyd. Na2SO4, 

filtered and the solvent was removed under reduced pressure to get the crude product. The crude 

product was purified by combiflash using hexanes: ethyl acetate mixture. 

Rf = 0.80 (50% hexanes: 50% ethyl acetate) for 193 (Yield = 77%). 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.05-7.03 (m, 1H), 6.96-6.94 (m, 1H), 

6.6-6.62 (m, 1H), 4.49 (s, 2H), 4.12 (bs, 2H), 3.33 (s, 3H) and 2.17 (s, 3H). 

13C-NMR (100 MHz, CDCl3, δ ppm): 144.6, 130.7, 128.3, 122.5, 121.5, 

117.5, 74.1, 57.6,and 17.5. 
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186a

NH2

186b

NH2

3.10.3. Synthesis of 2-alkenyl-6-methylaniline 186a-b 

 

Scheme 3.13: Synthesis of 2-alkenyl-6-methylaniline derivative 186a-b. 

To a solution methoxy aniline derivative 193 (5.3 g, 1.0 equiv) in dry THF (40 mL) at 0 oC, 

allyl magnesium halide (2.0 M in THF, 2.2 equiv) was added slowly over 15 min. The resulting 

mixture was allowed to warm to room temperature over 15 h. After the completion of reaction, the 

mixture was cooled to 0 oC and quenched with dil. HCl. The aqueous layer was extracted with 

DCM (3 × 50 mL). The combined organic layer was dried over anhyd. Na2SO4, filtered and the 

solvent was removed under reduced pressure to get the crude product. The crude product was 

purified by combiflash using hexanes: ethyl acetate mixture. 

Rf = 0.70 (90% hexanes: 10% ethyl acetate) for 186a, (Yield = 60%). 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.02-6.96 (m, 2H), 6.73-6.69 (m, 1H), 

6.04-5.94 (m, 1H), 5.18-5.13 (m, 2H), 3.65 (bs, 2H), 3.35 (d, J= 6 Hz, 2H) 

and 2.21 (s, 3H). 

13C-NMR (100 MHz, CDCl3, δ ppm): 143.2, 136.3, 129.0, 128.2, 123.6, 

122.6, 118.4, 116.3, 36.98 and 17.8. 

Rf = 0.60 (90% hexanes: 10% ethyl acetate) for 186b, (Yield = 75%). 

1H-NMR (400 MHz, CDCl3, δ ppm): 6.95-6.93 (m, 2H), 6.68-6.64 (m, 1H), 

5.9-5.83 (m, 1H), 5.15-4.97 (m, 2H), 3.77 (bs, 2H), 2.61-2.57 (m, 2H), 2.40-

2.35 (m, 2H) and 2.18 (s, 3H). 

13C-NMR (100 MHz, CDCl3, δ ppm): 142.4, 138.4, 128.6, 127.4, 125.6, 

122.4, 118.3, 115.2, 33.1, 31.2 and 17.98.  

NH2

O RMgCl, THF

25 oC, 12 h

NH2
X

193 186a-b
a) X = CH2
b) X = CH2-CH2
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3.10.4. Synthesis of 3-chloro-3-methylbut-1-yne 203 

 

Scheme 3.14: Synthesis of 3-chloro-3-methylbut-1-yne 202. 

The 3-chloro-3-methylbut-1-yne 202 was synthesized according to the literature reported 

procedure.15 To a mixture of anhyd. calcium chloride (3.3 g, 29.7 mmol) cuprous chloride (2.4 g, 

24.2 mmol) copper powder (37.7 mg, 0.6 mmol) and conc. hydrochloric acid (25 mL) was added 

acetylinic alcohol (5 g, 59.4 mmol) at 0 oC over ten mins. The resulting mixture was stirred for 1 h 

at 0 oC. The phases were separated and the organic layer was washed with ice-cold conc. 

hydrochloric acid (2 X 20 mL). The organic layer was dried over anhyd. potassium carbonate (5 

g), filtered and the crude product was purified by distillation under reduced pressure to yield 65 % 

of the pure acetylinic chloride. 

Note: As tertiary acetylinic chloride is highly acid and heat sensitive, distillation 

temperature was kept below 50 oC and small amount of anhyd. K2CO3 was kept in the distillation 

flask to avoid any decomposition or isomerization. 

 

1H-NMR (400 MHz, CDCl3, δ ppm): 2.59 (s, 1H) and 1.83 (s, 6H). 

13C-NMR (100 MHz, CDCl3, δ ppm): 86.7, 72.0, 57.1, 34.7 and 32.3. 
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3.10.5. Synthesis of N-acetylinic-aniline derivative 200 

 

Scheme 3.15: Synthesis of N-acetylinic-aniline derivative 200. 

The N-acetylinic-aniline derivative 200 was synthesized according to the procedure 

reported in the literature.16 To a mixture of aniline 201 (3 g, 30 mmol), cuprous chloride (85 mg), 

copper powder (85 mg), triethylamine (5.4 mL, 39 mmol), water (0.8 mL) and THF (8 mL) at room 

temperature added acetylinic chloride 202 (4.0 g, 39 mmol) in THF (8mL) slowly over 10 mins. 

The resulting mixture was stirred at room temperature over 1 h. To the reaction mixture DI water 

(10 mL) and DCM (20 mL) was added, stirred for 5 mins and the layers were separated. The 

aqueous layer was extracted with DCM (2 X 20 mL). The combined organic layer was dried over 

anhyd. Na2SO4, filtered and concentrated under reduced pressure to get the crude product. The 

crude product was purified by combiflash using hexanes:ethyl acetate mixture (95:5) to get the 

pure product. 

Rf = 0.50 (95% hexanes:5% ethyl acetate), Yield = 40 % 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.33 -7.31 (m, 1H), 7.12-7.08 (m, 

2H), 6.75-6.72 (m, 1H), 3.54 (s, 1H), 2.38 (m, 1H), 2.15 (s, 3H) and 1.67 

(s, 6H). 

13C-NMR (100 MHz, CDCl3, δ ppm): 143.7, 130.5, 126.7, 123.8, 118.3, 

114.5, 88.9, 70.7, 47.8, 30.8 and 18.0. 

Cl
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Cu, CuCl, TEA

THF, H2O, rt, 1 h

HN

202201 200
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3.10.6. Synthesis of N-allyl-aniline derivative 199 

 

Scheme 3.16: Synthesis of N-allyl-aniline derivative 199. 

In a flame dried flask charged Lindlar’s catalyst (5% Pd on CaCO3 poisoned with lead,  

95 mg, 5 Wt%) under nitrogen atmosphere. To this added a solution of acetylinic aniline 200  

(1.9 g, 11 mmol) in dry diethyl ether (60 mL) through cannula. The nitrogen was evacuated and 

the flask was filled with H2. The mixture was stirred at room temperature for 2 h. After the 

reaction, the solution was filtered through celite bed and the bed was washed with diethyl ether 

(20 mL). The combined organic layer was concentrated to get the crude product. The crude 

product was purified by combiflash using hexanes:ethyl acetate mixture (95:5) to get pure 

product. 

Rf = 0.60 (95% hexanes:5% ethyl acetate), Yield = 90% 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.03-6.99 (m, 2H), 6.83-6.81 (m, 1H), 

6.63-6.59 (m, 1H), 6.01-5.99 (m, 1H), 5.21-5.16 (m, 1H), 5.12-5.09 (m, 

2H), 3.56 (s, 1H), 2.13 (s, 3H) and 1.42 (s, 6H). 

13C-NMR (100 MHz, CDCl3, δ ppm): 146.5, 144.7, 130.4, 126.5, 122.7, 

116.9, 113.7, 112.9, 54.6, 28.8 and 18.1. 
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3.10.7. Synthesis of 2-methyl-6-allyl-aniline derivative 186c 

 

Scheme 3.17: Synthesis of 2-methyl-6-allyl-aniline derivative 186c. 

A solution of 2-methyl-N-allyl-aniline derivative 199 (1.7 g, 9.7 mmol) and p-

toluenesulfonic acid monohydrate (185 mg, 0.97 mmol) in 9:1 acetonitrile:water mixture (120 mL) 

was refluxed for 6 h. After the reaction, the mixture was cooled to room temperature and the 

solvent was removed under reduced pressure. The residue was taken up in DCM (50 mL) and 

the organic layer was washed with DI water (50 mL), dried over anhyd. Na2SO4, filtered and the 

solvent was removed under reduced pressure to get the crude product. The crude product was 

purified by combiflash using hexanes:ethyl acetate mixture (90:10) to get the title product as a 

pale yellow liquid in 65% yield. 

TLC condition - Rf = 0.30 (90% hexanes:10% ethyl acetate) 
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NH2

199 186c
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1H-NMR (400 MHz, CDCl3, δ ppm): 6.94-6.91 (m, 2H), 6.66-6.63 (m, 1H) 5.24-5.21(m, 1H), 3.60 

(s, 2H), 3.23-3.21 (d, J= 6.8 Hz, 2H), 2.16 (s, 3H) and 1.74 (s, 6H). 

 

Figure 3.16: 1H-NMR (400 MHz, CDCl3, δ ppm) of 2-methyl-6-allylanine derivative 186c. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 143.1, 133.6, 128.7, 127.7, 125.5, 122.38, 122.36, 118.4, 

31.4, 26.0, 18.1 and 17.9. 

 

Figure 3.17: 13C-NMR (100 MHz, CDCl3, δ ppm) of 2-methyl-6-allylanine derivative 186c.  
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HRMS-ESI (m/z) ([M + H]+): 

Calculated : 176.1434 

Observed  : 176.1436 

|Δm|  : 1.1 ppm 

 

Figure 3.18: HRMS of 2-methyl-6-allylanine derivative 186c. 
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3.10.8. Synthesis of 2-iodo-4,6-dimethylaniline 206 

 

Scheme 3.18: Synthesis of 2-iodo-4,6-dimethylaniline 206. 

Synthesis of iodinating agent benzyltrimethylammonium dichloroiodate (BTMA ICl2): 

The compound was synthesized using previously reported procedure.17 To a solution of 

iodinemonochloride (3.0 g, 18.6 mmol) in DCM (37 mL) at room temperature added a solution of 

benzyltrimethylammonium chloride (3.5 g, 18.6 mmol) in de-mineralized water (22 mL) slowly 

over a period of 10 mins. The resulting mixture was stirred at room temperature for 30 mins. The 

layers were separated and the organic layer was washed with DM water (10 mL), dried over 

anhyd. Na2SO4, filtered and the solvent was removed under reduced pressure to get the crude 

product as a brownish yellow solid. The crude product was directly used for iodination reaction 

without further purification (isolated crude product yield: 98%). 

Note: The iodine monochloride was purchased as 1M solution in DCM, which was again 

diluted using required amount of DCM. The crude BTMA ICl2 can also be recrystallized in DCM: 

diethyl ether mixture. 

To a mixture of aniline 207 (1.0 g, 8.2 mmol) and calcium carbonate (1.4 g) in 

DCM:methanol (50:50 mixture, 50 mL) at room temperature added a solution of 

benzyltrimethylammonium dichloroiodate (2.9 g, 8.2 mmol) in DCM (30 mL) slowly over 30 mins. 

The resulting mixture was stirred at room temperature for 1 h. After the reaction, the mixture was 

filtered through celite bed under vacuum and the bed was washed with DCM (50 mL). The 

combined filtrate was concentrated under reduced pressure. The residue was taken up in  

5% NaHSO3 aqueous solution (40 mL) and the aqueous layer was extracted with diethyl ether  

NH2
I

NH2

DCM:MeOH (1:1 v/v)
CaCO3, rt, 1 h,

BTMACl ICl

BTMA ICl2

207 206
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(3 × 30 mL). The combined organic layer was dried over anhyd. Na2SO4, filtered and the solvent 

was removed under reduced pressure to get the crude product. The crude product was purified 

by combiflash using hexanes:ethyl acetate mixture (95:5) to get the title compound as a brownish 

solid. 

Rf = 0.35 (95% hexanes:5% ethyl acetate), Yield = 67% 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.34 (s, 1H) and 6.82 (s, 1H), 3.90 

(bs, 2H), 2.18 (s, 3H) and 2.16 (s, 3H). 

13C-NMR (100 MHz, CDCl3, δ ppm): 142.5, 137.0, 131.6, 129.5, 122.7, 

85.0, 20.0 and 19.1. 
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3.10.9. Synthesis of N-Diallyl-2-Iodo-4,6-Dimethylaniline 205 

 

Scheme 3.19: Synthesis of 2-iodo-4,6-dimethylaniline 205. 

The compound was synthesized according to the literature reported procedure.18 Mixture 

of aniline (5 g, 20.2 mmol), allyl bromide (4.4 mL, 50.9 mmol) and sodium carbonate (6.4 g, 60.6 

mmol) in DMF (150 mL) was heated to 150 oC in a sealed tube and maintained for 2 h. After the 

reaction, the mixture was cooled to room temperature and poured into cold de-mineralized water 

(200 mL). The aqueous layer was extracted with diethyl ether (3 X 50 mL). The combined organic 

layer was washed with DI water (2 X 50 mL) to remove traces of DMF, dried over anhyd. Na2SO4, 

filtered and the solvent was removed under reduced pressure to get the crude product. The crude 

product was purified by combiflash using hexanes:ethyl acetate mixture (98:2)  to get the title 

compound as a pale yellow oil (isolated yield = 90%). 

TLC condition - Rf = 0.90 (90% hexanes:10% ethyl acetate) 

DMF, Na2CO3

Reflux, 2 h

NH2
I

Br

N
I

206 205
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.52 (s, 1H), 6.90 (s, 1H), 5.97-5.87 (m, 2H), 5.14-5.09 (m, 

2H), 5.02-4.99 (m, 2H), 3.74-3.60 (m, 4H), 2.27 (s, 3H) and 2.20 (s, 3H). 

 

Figure 3.19: 1H-NMR (400 MHz, CDCl3, δ ppm) of N-allyl-2-iodo-4,6-dimethylaniline 205. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 147.7, 139.0, 138.1, 137.0, 136.9, 132.4, 116.6, 104.6, 56.2, 

20.3 and 20.0. 

 

Figure 3.20: 13C-NMR (100 MHz, CDCl3, δ ppm) of N-diallyl-2-iodo-4,6-dimethylaniline 205.  
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HRMS-ESI (m/z) ([M + H]+): 

Calculated : 328.0557 

Observed  : 328.0548 

|Δm|  : 2.7 ppm 

 

Figure 3.21: HRMS of N-diallyl-2-iodo-4,6-dimethylaniline 205. 

N
I

205



 

 199 

3.10.10. Synthesis of N-Diallyl-2,4-Dimethyl-6-allyl-aniline derivative 204 

 

Scheme 3.20: Synthesis of N-Diallyl-2,4-Dimethyl-6-allyl-aniline derivative 204. 

The compound was synthesized according to a procedure reported in the literature.19 To 

a solution of N-diallyl-2-iodo aniline derivative 205 (5.9 g, 18.0 mmol) in dry THF (120 mL) at  

-15 oC under N2 atmosphere added iPrMgCl⋅LiCl (1.3M in THF, 15.2 mL, 19.8 mmol) slowly over 

10 mins. The mixture was maintained at -15 oC for 45 mins after which 3-chloro-2-methylpropene 

(2.13 mL, 21.6 mmol) and CuCN.2LiCl (0.16 mL, 0.9 mmol) was added. The reaction mixture was 

slowly allowed to warm to room temperature over 12 h. The reaction mixture was quenched with 

Satd. NH4Cl solution (50 mL), stirred and the layers were separated. The aqueous layer was 

extracted with diethyl ether (2 X 75 mL). The combined organic layer was dried over anhyd. 

Na2SO4, filtered and the solvent was removed under reduced pressure to get the crude product. 

The crude product was purified by combiflash using hexanes:ethyl acetate mixture (95:5) to get 

the title compound as a pale yellow oil (isolated yield = 92%). 

TLC condition - Rf = 0.75 (100% hexanes) 

CuCN.2LiCl, rt, 12 h

N
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iPrMgCl,THF, -15 oC, 30 min
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1H-NMR (400 MHz, CDCl3, δ ppm): 6.79 (s, 2H), 5.86-5.76 (m, 2H), 5.09-5.08 (m, 1H), 5.05-5.03 

(m, 1H), 4.99-4.96 (m, 2H), 4.82-4.81 (m, 1H), 4.58- 4.578 (m, 1H), 3.64-3.51 (m, 4H), 3.37 (s, 

2H), 2.25 (s, 3H), 2.22 (s, 3H) and 1.697 (s, 3H). 

 

Figure 3.22: 1H-NMR (400 MHz, CDCl3, δ ppm) of N-Diallyl-2,4-Dimethyl-6-allyl-aniline 204. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 145.9, 138.96, 137.5, 137.3, 134.7, 130.1, 129.6, 128.6, 

116.1, 112.1, 56.8, 40.2, 23.0, 21.0 and 19.9. 

 

Figure 3.23: 13C-NMR (100 MHz, CDCl3, δ ppm) of N-Diallyl-2,4-Dimethyl-6-allyl-aniline 204. 
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HRMS-ESI (m/z) ([M + H]+): 

Calculated : 256.2060 

Observed  : 256.2051 

|Δm|  : 3.5 ppm 

 

Figure 3.24: HRMS of N-Diallyl-2,4-Dimethyl-6-allyl-aniline 204. 
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3.10.11. Synthesis of 2,4-Dimethyl-6-allyl-aniline derivative 186d 

 

Scheme 3.21: Synthesis of 2,4-Dimethyl-6-allyl-aniline derivative 186d. 

Deallylation of aniline 204 was achieved using a procedure reported in the literature.20  

In a flame dried flask charged Pd(PPh3)4 (183 mg, 0.16 mmol) and 1,3-dimethylbarbituric acid 

(12.8 g, 82 mmol). To this mixture added a solution of N-diallyl-6-(2-methylallyl)-aniline derivative 

204 (4.2 g, 16.4 mmol) in dry DCM (100 mL) via cannula. The resulting solution was heated to 35 

oC and maintained for 16 h. After the reaction the mixture was cooled to room temperature and 

the solvent was removed under reduced pressure. The residue was taken in a Satd. Na2CO3 

solution (250 mL) and the aqueous layer was extracted with diethyl ether (3 X 75 mL). The 

combined organic layer was washed with Satd. Na2CO3 solution (2 X 50 mL), dried over anhyd. 

Na2SO4, filtered and the solvent was removed under reduced pressure to get the crude product. 

The crude product was purified by combiflash using hexanes:ethyl acetate mixture (95:5)  to get 

the title compound as a pale yellow oil (isolated yield = 92%). 

Note: The product accompanied by inseparable di-allylated 1,3- 

dimethylbarbituric acid byproduct. So the mixture was taken to next step 

where it gets removed by filtration after the reaction. The relative 

percentage of the product was determined by 1H-NMR spectroscopy. 

TLC condition - Rf = 0.35 (100% hexanes) 

Pd(PPh3)4, DCM, 35 oC, 16 h

N NH2

1,3-Dimethylbarbituric acid

204 186d

N

N

O

OO

Di-allylated 1,3-dimethyl-
barbituric acid



 

 204 

1H-NMR (400 MHz, CDCl3, δ ppm): 6.78 (s, 1H), 6.72 (s, 1H), 4.85-4.84 (m, 1H), 4.73-4.728 (m, 

1H), 3.54 (bs, 2H), 3.24 (s, 2H), 2.20 (s, 3H), 2.13 (s, 3H) and 1.71 (s, 3H). 

 

Figure 3.25: 1H-NMR (400 MHz, CDCl3, δ ppm) of 2,4-Dimethyl-6-allyl-aniline derivative 186d. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 144.0, 141.0, 129.61, 129.56, 127.2, 123.5, 122.6, 111.7, 

41.6, 22.5, 20.6 and 17.7. 

 

Figure 3.26: 13C-NMR (100 MHz, CDCl3, δ ppm) of 2,4-Dimethyl-6-allyl-aniline derivative 186d.  
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HRMS-ESI (m/z) ([M + H]+): 

Calculated : 176.1434 

Observed  : 176.1438 

|Δm|  : 2.3 ppm 

 

Figure 3.27: HRMS of 2,4-Dimethyl-6-allyl-aniline derivative 186d. 

NH2
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3.10.12. Synthesis of tert-butyl-o-toluylcarbamate derivative 197a-b 

 

Scheme 3.22: Synthesis of tert-butyl-o-toluylcarbamate derivative 197a-b. 

Boc protected o-toluylcarbamate derivative 197a-b was synthesized according to 

a procedure reported in the literature.21 A mixture of aniline (2.0 g, 18.7 mmol) and (Boc)2O 

(4.9 g, 22.44 mmol) in a dry THF (20 mL) was refluxed for 4 h. After the reaction, the solution was 

cooled to room temperature, DI water (50 mL) and ethyl acetate (20 mL) was added, stirred for  

10 min and the layers were separated. The aqueous layer was extracted with ethyl acetate (2 × 

15 mL). The combined organic layer was washed with brine solution (10 mL), dried over anhyd. 

Na2SO4, filtered and the solvent was removed under reduced pressure to get the crude product. 

The crude product was purified by combiflash using hexanes: ethyl acetate mixture. 

Rf = 0.60 (80% hexanes: 20% ethyl acetate) for 197a, (Yield = 89%). 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.79-7.77 (m, 1H), 7.19-7.10 (m, 2H), 

7.01-6.96 (m, 1H), 6.43 (bs, 1H), 2.21 (s, 3H) and 1.54 (s, 9H). 

13C-NMR (100 MHz, CDCl3, δ ppm): 153.4, 136.6, 130.5, 127.9, 126.9, 

123.98, 121.5, 80.4, 28.6 and 17.9. 

Rf = 0.50 (80% hexanes: 20% ethyl acetate) for 197b, (Yield = 87%). 

1H-NMR (400 MHz, CD3OD, δ ppm): 6.83 (s, 2H), 2.21 (s, 3H), 2.16 (s, 

6H) and 1.48 (s, 9H) 

13C-NMR (100 MHz, CD3OD, δ ppm): 159.7, 140.2, 139.8, 135.8, 132.4, 

83.1, 31.6, 23.8 and 21.1. 

(Boc)2, THF

NH2 HN
Boc

 reflux, 4 h

R4 R4

R3 R3

201 (R3,R4 = H)
198 (R3,R4 = Me)

197a-b

HN
Boc

197a

HN
Boc

197b
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3.10.13. Synthesis of 2-aminophenyl-propanol derivative 189b 

 

Scheme 3.23: Synthesis of 2-aminophenyl-propanol derivative 189b. 

The lithiation protocol was followed as the procedure reported in the literature.22 To a 

solution of Boc protected aniline derivative 197a (2.40 g, 11.6 mmol) in dry THF (25 mL) at -45 

oC, sec-BuLi (1.4M in cyclohexanes, 29.0 mmol) was added over a period of 15 min. The solution 

was stirred for 15 min followed by the addition of acetaldehyde (2.28 mL, 40.6 mmol). The 

mixture was allowed to warm to room temperature over a period of 30 min and further stirred for 2 

h. After the reaction, the solution was cooled to 0 oC, quenched with saturated NH4Cl solution 

extracted with ethyl acetate (2 x 20 mL). The combined organic layer was washed with brine 

solution (20 mL), dried over anhyd. Na2SO4, filtered and the solvent was removed under reduced 

pressure to get the crude product. The crude product was directly taken to next step without 

purification. 

The crude product was dissolved in DCM (50 mL) and cooled to 0 oC followed by the 

addition of trifluoroacetic acid (11 mL). The mixture was warmed to room temperature and stirred 

for further 2 h. After the reaction, DI water (30 mL) was added to the mixture, stirred and the 

layers were separated. The organic layer was washed with 3M HCl (2 x 15 mL). The combined 

aqueous layer was washed with DCM (2 x 15 mL) and cooled to 0 oC. The pH of the solution was 

adjusted to 12 by the slow addition of solid NaOH pellets, extracted with diethyl ether (3 x 20 mL). 

The combined organic layer was washed with water (20 mL), brine solution (20 mL), dried over 

Na2SO4, filtered and concentrated to get the crude. The crude was purified by combiflash to get 

the pure product. 
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1. sec-BuLi, -45 oC, 15 mins, THF 
    then R1CHO, 3 h OH

197a 189b
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Rf = 0.35 (50% hexanes: 50% ethyl acetate) for 189b, (Yield = 63%). 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.06-6.98 (m, 2H), 6.76-6.72 (m, 1H), 

6.66-6.63 (m, 1H), 4.02 (h, J = 6.2 Hz, 1H), 3.51-3.49 (m, 3H), 2.64-2.62 

(m, 2H) and 1.21 (d, J = 6.2 Hz, 3H). 

13C-NMR (100 MHz, CDCl3, δ ppm): 145.4, 131.5, 127.8, 124.6, 119.3, 

116.7, 68.9, 41.4 and 23.5. 

OH

NH2

189b
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3.10.14. Synthesis of 2,4-Dimethyl-6-propylaniline 187 

 

Scheme 3.24: Synthesis of 2,4-Dimethyl-6-propylaniline 187. 

To a solution of Boc protected aniline derivative 197b (5.0 g, 21.3 mmol) in dry THF (25 

mL) at -45 oC, sec-BuLi (1.4M in cyclohexanes, 53.1 mmol) was added. The solution was stirred 

for 15 min followed by the addition of ethyl iodide (5.2 mL, 63.75 mmol). The mixture was allowed 

to warm to room temperature over a period of 30 min and further stirred for 2 h. After the reaction, 

the solution was cooled to 0 oC, quenched with saturated NH4Cl solution extracted with ethyl 

acetate (2 x 20 mL). The combined organic layer was washed with brine solution (20 mL), dried 

over anhyd. Na2SO4, filtered and the solvent was removed under reduced pressure to get the 

crude product. The crude product was directly taken to next step without purification. 

The crude product was dissolved in DCM (200 mL) and cooled to 0 oC followed by the 

addition of trifluoroacetic acid (50 mL). The mixture was warmed to room temperature and stirred 

for further 2 h. After the reaction, the reaction mixture was cooled to 0 oC, added DI water  

(75 mL), adjusted the pH to 12 by adding solid NaOH pellets without allowing the internal 

temperature to rise above 10 oC, extracted with DCM (2 x 30 mL). The combined organic layer 

was washed with water (20 mL), brine solution (20 mL), dried over Na2SO4, filtered and 

concentrated to get the crude product. To the crude product, diethyl ether (75 mL) was added, 

stirred for 15 min and filtered through celite bed and the solid was washed with diethyl ether (20 

mL). The combined filtrate was concentrated and purified by combiflash to get the pure product. 

Rf = 0.70 (80% hexanes: 20% ethyl acetate) for 187, (Yield = 40%). 
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1H-NMR (400 MHz, CDCl3, δ ppm): 6.82 (s, 2H), 5.65 (bs, 2H), 2.53 (t, J=7.6 Hz, 2H), 2.28 (s, 

3H), 2.23 (s, 3H), 1.67 (h, J = 7.4 Hz, 2H) and 1.02 (t, J = 7.2 Hz, 3H). 

 

Figure 3.28: 1H-NMR (400 MHz, CDCl3, δ ppm) of 2,4-Dimethyl-6-ethyl-aniline derivative 187. 

  

N
H
2

18
7



 

 212 

13C-NMR (100 MHz, CDCl3, δ ppm): 136.5, 129.9, 129.4, 128.7, 128.4, 124.7, 33.7, 22.6, 20.8, 

17.9 and 14.3. 

 

Figure 3.29: 13C-NMR (100 MHz, CDCl3, δ ppm) of 2,4-Dimethyl-6-ethyl-aniline derivative 187.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 164.1434 

Observed  : 164.1438 

|Δm|  : 2.4 ppm 

 

Figure 3.30: HRMS of 2,4-Dimethyl-6-ethyl-aniline derivative 187. 
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3.10.15. Synthesis of (2,4-Dimethyl-6-(2-oxo-2-phenyl)-Boc derivative 190 

 

Scheme 3.25: Synthesis of (2,4-dimethyl-6-(2-oxo-2-phenylethyl)-Boc derivative 190. 

To a solution of Boc protected aniline derivative 197b (2.0 g, 8.50 mmol) in dry THF  

(25 mL) at -45 oC, sec-BuLi (1.4M in cyclohexanes, 21.2 mmol) was added. The solution was 

stirred for 15 min followed by the addition of benzaldehyde (2.6 mL, 25.5 mmol) and the mixture 

was allowed to warm to room temperature over a period of 30 min and further stirred for 2 h. After 

the reaction, the solution was cooled to 0 oC, quenched with saturated NH4Cl solution extracted 

with ethyl acetate (2 x 20 mL). The combined organic layer was washed with brine solution (20 

mL), dried over anhyd. Na2SO4, filtered and the solvent was removed under reduced pressure to 

get the crude product. The crude product was purified by combiflash using hexanes:ethylacetate 

mixtures. 

Rf = 0.50 (50% hexanes: 50% ethyl acetate) for 9c, (Yield = 62%). 

1H-NMR (400 MHz, CDCl3, δ ppm): 8.03-8.01 (m, 2H), 7.58-7.54 (m, 1H), 

7.47-7.43 (m, 2H), 6.96 (s, 1H), 6.84 (s, 1H), 6.43 (bs, 1H), 4.25 (s, 2H), 

2.25 (s, 3H), 2.24 (s, 3H) and 1.43 (s, 9H). 

13C-NMR (100 MHz, CDCl3, δ ppm): 198.7, 154.3, 137.0, 136.8, 136.7, 

133.5, 132.8, 132.4, 130.8, 129.2, 128.9, 128.7, 79.9, 42.5, 28.5, 21.2 

and 18.6. 

HN HN
sec-BuLi, -45 oC, 15 mins, THF 
    then benzaldehyde, 2 h O

Ph

197b 190

Boc Boc

HN
O

Ph

190

Boc
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3.10.16. Synthesis of (2,4-Dimethyl-6-(2-oxo-2-phenyl)-Boc derivative 189c 

 

Scheme 3.26: Synthesis of 4,6-dimethylphenyl-(2-(2-hydroxy-2-phenylethyl)-)-Boc. 

To a slurry of LiAlH4 (0.11 g, 2.95 mmol) in dry THF (15 mL) at 0 oC slowly added a 

solution of (2,4-dimethyl-6-(2-oxo-2-phenylethyl)-Boc derivative 190 (1.0 g, 2.95 mmol) over a 

period of 10 min. After the addition, the mixture was allowed to warm to room temperature and 

further stirred for 2 h. After the reaction, the solution was cooled to 0 oC, quenched with saturated 

NH4Cl solution extracted with ethyl acetate (2 x 20 mL). The combined organic layer was washed 

with brine solution (20 mL), dried over anhyd. Na2SO4, filtered and the solvent was removed 

under reduced pressure to get the crude product. The crude product was directly taken to next 

step. 

The crude product was dissolved in DCM (20 mL) and cooled to 0 oC followed by the 

addition of trifluoroacetic acid (11 mL). The mixture was allowed to warm to room temperature 

and further stirred for 2 h. After the reaction, DI water (20 mL) was added to the mixture, stirred 

and the layers were separated. The organic layer was washed with 3M HCl (2 x 10 mL). The 

combined aqueous layer was washed with DCM (2 x 10 mL) and cooled to 0 oC. The pH of the 

solution was adjusted to 12 by the slow addition of solid NaOH pellets, extracted with diethyl 

ether (3 x 15 mL). The combined organic layer was washed with DI water (20 mL), brine solution 

(20 mL), dried over Na2SO4, filtered and concentrated to get the crude. The crude was purified by 

combiflash to get the pure product. 

Rf = 0.45 (50% hexanes: 50% ethyl acetate) for 189c, (Yield = 53%). 

  

HN NH2

1. LiAlH4, THF, rt, 2 h OH

Ph

190 189c

O

Ph 2. TFA, DCM, rt, 2 h

Boc



 

 216 

1H-NMR (400 MHz, CDCl3, δ ppm): 8.32 (bs, 3H), 7.21-7.14 (m, 5H), 6.81 (s, 1H), 6.55 (s, 1H), 

4.78 (d, J = 7.8 Hz, 1H), 3.03-2.97 (m, 1H), 2.86-2.82 (m, 1H) and 2.18 (s, 6H). 

 

Figure 3.31: 1H-NMR (400 MHz, CDCl3, δ ppm) of 1-phenylethanol-aniline derivative 189c.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 142.98, 137.6, 132.0, 131.4, 130.95, 130.8, 128.5, 127.9, 

127.7, 125.8, 75.95, 41.7, 20.8 and 17.3. 

 

Figure 3.32: 13C-NMR (100 MHz, CDCl3, δ ppm) of 1-phenylethanol-aniline derivative 189c.  
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HRMS-ESI (m/z) ([M + H]+-H2O): 

Calculated : 224.1434 

Observed  : 224.1437 

|Δm|  : 1.3 ppm 

 

Figure 3.33: HRMS of 1-phenylethanol-aniline derivative 189c. 
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3.10.17. Synthesis of (2,4-Dimethyl-6-(2-oxo-2-phenyl)-Boc derivative 188a-c 

 

Scheme 3.27: Synthesis of TIPS protected alcohol derivatives 188a-c. 

The TIPS protected imide was synthesized following procedure reported in the 

literature.23 To a solution of corresponding aniline 189a-c (1.0 g, 1.0 equiv.) and imidazole  

(2.4 equiv.) in dry DMF (10 mL) at room temperature, triisopropylsilyl chloride (TIPSCl, 1.2 equiv.) 

was added. The resulting mixture was heated to 70 oC and maintained until complete 

consumption of starting material. After the reaction, the mixture was cooled to room temperature, 

added DI water (40 mL), extracted with Diethyl ether (3 × 15 mL). The combined organic layer 

was washed with DI water (15 mL), brine solution (15 mL), dried over anhyd. Na2SO4, filtered and 

the solvent was removed under reduced pressure to get the crude product. The crude product 

was purified by combiflash using hexanes: ethyl acetate mixture. 

  

189a-c

NH2 NH2

R4 R4

R3 R3
TIPSCl, Imidazole OTIPS

R1

188a-c
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Rf = 0.85 (80% hexanes: 20% ethyl acetate) for 188a, (Yield = 80%). 

1H-NMR (400 MHz, CD3OD, δ ppm): 6.98-6.92 (m, 2H), 6.72-6.70 (m, 1H), 6.66-6.62 (m, 1H), 

3.92 (t, J = 6.0 Hz, 2H), 2.75 (t, J = 6.0 Hz, 2H) and 1.05-0.997 (m, 21H). 

 

Figure 3.34: 1H-NMR (400 MHz, CD3OD, δ ppm) of silyloxy-ethyl-aniline derivative 188a.  
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13C-NMR (100 MHz, CD3OD, δ ppm): 149.6, 134.3, 130.95, 129.6, 122.7, 120.1, 68.6, 38.8, 21.2 

and 15.9. 

 

Figure 3.35: 13C-NMR (100 MHz, CD3OD, δ ppm) of silyloxy-ethyl-aniline derivative 188a.  
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HRMS-ESI (m/z) ([M + H]+): 

Calculated : 294.2248 

Observed  : 294.2255 

|Δm|  : 2.4 ppm 

 

Figure 3.36: HRMS of silyloxy-ethyl-aniline derivative 188a. 
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Rf = 0.70 (80% hexanes: 20% ethyl acetate) for 188b, (Yield = 89%). 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.03-6.97 (m, 2H), 6.71-6.63 (m, 2H), 4.31-4.24 (m, 1H), 3.94 

(bs, 2H), 2.80-2.67 (m, 2H), 1.19 (d, J = 6.0 Hz, 3H) and 1.04-1.02 (m, 21H). 

 

Figure 3.37: 1H-NMR (400 MHz, CDCl3, δ ppm) of silyloxy-2-propyl-aniline derivative 188b.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 145.9, 131.7, 127.5, 124.5, 118.7, 116.1, 70.0, 42.3, 23.9, 

18.3, 18.2 and 12.8. 

 

Figure 3.38: 13C-NMR (100 MHz, CDCl3, δ ppm) of silyloxy-2-propyl-aniline derivative 188b. 
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HRMS-ESI (m/z) ([M + H]+): 

Calculated : 308.2410 

Observed  : 308.2417 

|Δm|  : 2.3 ppm 

 

Figure 3.39: HRMS of silyloxy-2-propyl-aniline derivative 188b. 
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Rf = 0.85 (80% hexanes: 20% ethyl acetate) for 188c, (Yield = 53%). 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.297-7.23 (m, 5H), 6.75 (s, 1H), 6.65 (s, 1H), 5.03-5.00 (m, 

1H), 3.49 (bs, 2H), 3.04 (dd, J = 13.9, 7.5 Hz, 1H), 2.80 (dd, J = 14.0, 4.9 Hz, 1H), 2.18 (s, 3H), 

2.11 (s, 3H), 0.96 (s, 12H) and 0.89-0.88 (m, 9H). 

 

Figure 3.40: 1H-NMR (400 MHz, CDCl3, δ ppm) of silyloxy-2-phenylethyl-aniline derivative 188c.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 145.6, 141.5, 130.3, 129.5, 128.2, 127.4, 127.2, 126.2, 

123.7, 122.6, 77.2, 20.6, 18.1, 18.04, 18.0 and 12.6. 

 

Figure 3.41: 13C-NMR (100 MHz, CDCl3, δ ppm) of silyloxy-2-phenylethyl-aniline derivative 188c.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 420.2693 

Observed  : 420.2703 

|Δm|  : 2.4 ppm 

 

Figure 3.42: HRMS of silyloxy-2-phenylethyl-aniline derivative 188c. 
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3.11. General procedure for synthesis of atropisomeric enamides and their precursors 

3.11.1. Synthesis of six membered piperidine-2,6-dione derivatives 182a-d 

 

Scheme 3.28: Synthesis of piperidine-2,6-dione derivatives 182a-d. 

The Piperidine-2,6-dione derivatives 182a-d (7.6 mmol) were synthesized according to 

the literature reported procedure.24 To a solution of corresponding aniline derivative 7 (10 mmol) 

in toluene (20 mL) at 25 oC, glutaric anhydride 191 (9.1 mmol) was added. The resulting mixture 

was refluxed for 2 h. The reaction mixture was cooled to room temperature and the residue was 

diluted with n-pentane (50 mL). The precipitated solid was filtered and washed with n-pentane  

(20 mL) and dried under vacuum. The crude product was directly taken to next step without 

further purification. 

To the crude product from above reaction dissolved in chloroform under N2 atmosphere 

1,1’-carbonyldiimidazole (12 mmol) was added. To resulting solution was refluxed for 14 h. After 

the reaction, the solution was cooled to room temperature and DI water was added. The mixture 

was stirred and the layers were separated. The organic layer was washed with DI Water (2 X 100 

mL), cold aqueous 2N HCl (2 X 75 mL or until the imidazole byproduct is removed) and brine 

solution (1 X 100 mL). The organic layer was dried over anhyd. Na2SO4, filtered and the solvent 

was evaporated under reduced pressure to get the crude product. The crude product was purified 

by combiflash using hexanes:ethyl acetate mixture (80:20) to get the title product. 

Note: During the addition of 1,1’-carbonyldiimidazole evolution of CO2 gas was observed.  
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a) R1-R4 = H; X = CH2
b)  R1,R3-R4 = H; R2 = Me; X = CH2
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Rf = 0.60 (50% hexanes:50% ethyl acetate) for 182a, Yield = 76% 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.25-7.12 (m, 1H), 7.15-7.11 (m, 2H), 5.84-5.74 (m, 1H), 

5.06-5.03 (m, 1H), 5.01-5.00 (m, 1H), 3.14-3.12 (m, 2H), 2.81-2.77 (m, 4H), 2.12-2.05 (m, 2H) 

and 2.04 (S, 3H). 

 

Figure 3.43: 1H-NMR (400 MHz, CDCl3, δ ppm) of 2-allyl-6-methyl-glutarimide derivative 182a.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 172.1, 137.3, 136.6, 135.7, 133.5, 129.2, 129.1, 128.1, 

116.3, 36.6, 33.3, 17.8 and 17.5. 

 

Figure 3.44: 13C-NMR (100 MHz, CDCl3, δ ppm) of 2-allyl-6-methyl-glutarimide derivative 182a.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 266.1151 

Observed  : 266.1153 

|Δm|  : 0.7 ppm 

 

Figure 3.45: HRMS of 2-allyl-6-methyl-glutarimide derivative 182a. 
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Rf = 0.60 (50% hexanes:50% ethyl acetate) for 182b. 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.23-7.19 (m, 1H), 7.12-7.08 (m, 2H), 5.15-5.11 (m, 1H), 

3.06-3.04 (d, J= 6.8 Hz, 2H), 2.8-2.76 (m, 4H), 2.10-2.05 (m, 2H), 2.03 (s, 3H), 1.69 (s, 3H) and 

1.61 (s, 3H). 

 

Figure 3.46: 1H-NMR (400 MHz, CDCl3, δ ppm) of 2-dimethylallyl-glutarimide derivative 182b.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 172.1, 138.7, 135.5, 133.3, 133.1, 129.0, 128.8, 127.7, 

122.2, 33.3, 30.5, 25.8, 18.1, 17.8 and 17.6. 

 

Figure 3.47: 13C-NMR (100 MHz, CDCl3, δ ppm) of 2-dimethylallyl-glutarimide derivative 182b.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 294.1465 

Observed  : 294.1464 

|Δm|  : 0.3 ppm 

 

Figure 3.48: HRMS of 2-dimethylallyl-glutarimide derivative 182b. 
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Rf = 0.70 (50% hexanes:50% ethyl acetate) for 182c. 

1H-NMR (400 MHz, CDCl3, δ ppm): 6.97 (s, 1H), 6.92 (s, 1H), 4.78-4.77 (m, 1H), 4.69-4.68 (m, 

1H), 3.07 (s, 2H), 2.78-2.75 (m, 4H), 2.29 (s, 3H), 2.10-2.03 (m, 2H), 1.99 (s, 3H) and 1.55 (s, 

3H). 

 

Figure 3.49: 1H-NMR (400 MHz, CDCl3, δ ppm) of 2-methylallyl-glutarimide derivative 182c.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 172.1, 144.4, 138.6, 136.4, 135.3, 131.3, 130.1, 129.5, 

112.4, 41.3, 33.2, 22.0, 21.3, 17.7 and 17.6. 

 

Figure 3.50: 13C-NMR (100 MHz, CDCl3, δ ppm) of 2-methylallyl-glutarimide derivative 182c.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 294.1465 

Observed  : 294.1464 

|Δm|  : 0.3 ppm 

 

Figure 3.51: HRMS of 6-methylallyl-glutarimide derivative 182c. 
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Rf = 0.30 (80% hexanes:20% ethyl acetate) for 182d 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.26-7.22 (m, 1H), 7.16-7.13 (m, 2H), 5.86-5.76 (m, 1H), 

5.03-4.94 (m, 2H), 2.80 (t, J = 6.5 Hz, 2H), 2.43-2.39 (m, 2H), 2.27-2.22 (m, 2H), 2.11-2.06 (m, 

2H) and 2.05 (s, 3H). 

 

Figure 3.52: 1H-NMR (400 MHz, CDCl3, δ ppm) of 2-butenyl-glutarimide derivative 182d. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 172.3, 138.8, 138.2, 135.5, 133.3, 129.0, 128.8, 127.5, 

115.1, 33.97, 33.3, 30.98, 17.9 and 17.7. 

 

Figure 3.53: 13C-NMR (100 MHz, CDCl3, δ ppm) of 2-butenyl-glutarimide derivative 182d.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 280.1308 

Observed : 280.1312 

|Δm|  : 1.4 ppm 

 

Figure 3.54: HRMS of 6-butenyl-glutarimide derivative 182d. 
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3.11.2. Synthesis pyrrolidine-2,5-dione derivatives 182-185 

 

Scheme 3.29: Synthesis of pyrrolidine-2,5-dione derivatives 182-185. 

A mixture of aniline 196, 186-188 (1.0 g, 6.79 mmol) and 2,2-dimethylsuccinicanhydride 

192 (1.1 equiv, 7.45 mmol) in a round bottom flask was heated to 190 oC and maintained for 2 h. 

After the reaction, the mixture was cooled to room temperature and the residue was purified by 

combiflash using hexanes and ethyl acetate mixtures (90:10). 
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Rf = 0.85 (80% hexanes:20% ethyl acetate) for 182e (Yield = 80%). 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.27-7.23 (m, 1H), 7.16-7.12 (m, 2H), 5.84-5.74 (m, 1H), 

5.03-4.97 (m, 2H), 3.18 (d, J=6.8 Hz, 2H), 2.71 (s, 2H), 2.08 (s, 3H), 1.421 (s, 3H) and 1.416 (s, 

3H). 

 

Figure 3.55: 1H-NMR (400 MHz, CDCl3, δ ppm) of 6-methyl-2-allyl-succinimide derivative 182e. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 182.2, 175.03, 137.97, 137.2, 136.2, 136.1, 130.3, 129.8, 

129.4, 128.3, 116.6, 44.2, 40.8, 36.5, 26.4, 25.6, and 17.9. 

 

Figure 3.56: 13C-NMR (100 MHz, CDCl3, δ ppm) of 6-methyl-2-allyl-succinimide derivative 182e. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 280.1308 

Observed  : 280.1310 

|Δm|  : 0.7 ppm 

 

Figure 3.57: HRMS of 6-methyl-2-allyl-succinimide derivative 182e. 
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Rf = 0.85 (80% hexanes:20% ethyl acetate) for 182f (Yield = 83%). 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.27-7.24 (m, 1H), 7.15-7.13 (m, 2H), 5.83-5.73 (m, 1H), 

5.01-4.93 (m, 2H), 2.74 (s, 2H), 2.47-2.43 (m, 2H), 2.23-2.19 (m, 2H), 2.08 (m, 3H), 1.437 (s, 3H) 

and 1.43 (s, 3H). 

 

Figure 3.58: 1H-NMR (400 MHz, CDCl3, δ ppm) of 6-butenyl-succinimide derivative 182f. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 182.52, 175.2, 139.7, 137.9, 136.1, 130.1, 129.7, 129.0, 

127.8, 115.2, 44.3, 40.8, 34.4, 31.2, 26.2, 25.95 and 17.95. 

 

Figure 3.59: 13C-NMR (100 MHz, CDCl3, δ ppm) of 6-butenyl-succinimide derivative 182f. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 294.1465 

Observed  : 294.1463 

|Δm|  : 0.7 ppm 

 

Figure 3.60: HRMS of 6-butenyl-succinimide derivative 182f. 
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Rf = 0.85 (80% hexanes:20% ethyl acetate) for 184 (Yield = 74%). 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.25 (bs, 1H), 7.01-6.97 (m, 1H), 6.74-6.71 (m, 1H), 6.54-6.52 

(m, 1H), 2.61 (s, 2H), 2.03 (s, 3H), 1.35 (s, 3H) and 1.28 (s, 3H). 

 

Figure 3.61: 1H-NMR (400 MHz, CDCl3, δ ppm) of 6-hydroxy-succinimide derivative 184. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 183.4, 176.5, 152.5, 137.3, 130.4, 122.1, 118.6, 114.4, 43.9, 

40.96, 26.2, 25.3 and 17.6. 

 

Figure 3.62: 13C-NMR (100 MHz, CDCl3, δ ppm) of 6-hydroxy-succinimide derivative 184. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 256.0944 

Observed : 256.0949 

|Δm|  : 1.9 ppm 

 

Figure 3.63: HRMS of 6-hydroxy-succinimide derivative 184. 
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Rf = 0.85 (80% hexanes:20% ethyl acetate) for 183a (Yield = 84%). 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.41-7.24 (m, 3H), 7.04-7.02 (m, 1H), 3.78-3.75 (t, J= 7.6 Hz), 

2.72 (s, 2H), 2.68-2.62 (m, 2H), 1.43 (s, 3H), 1.41 (s, 3H) and 1.08-0.97 (m, 21H). 

 

Figure 3.64: 1H-NMR (400 MHz, CDCl3, δ ppm) of 6-silyloxyethyl-succinimide derivative 183a. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 182.7, 175.3, 136.9, 131.3, 129.6, 128.6, 127.7, 63.6, 44.2, 

40.8, 35.3, 26.2, 25.6, 18.2 and 12.1. 

 

Figure 3.65: 13C-NMR (100 MHz, CDCl3, δ ppm) of 6-silyloxyethyl-succinimide derivative 183a. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 426.2435 

Observed  : 426.2428 

|Δm|  : 1.6 ppm 

 

Figure 3.66: HRMS of 6-silyloxyethyl-succinimide derivative 183a. 
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Rf = 0.80 (50% hexanes:50% ethyl acetate) for 183b (Yield = 90%). 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.39-7.25 (m, 3H), 7.01-6.99 (m, 1H), 4.1, 3-4.03 (m, 1H), 

2.77-2.70 (m, 3H), 2.46-2.39 (m, 1H), 1.42 (d, J = 4.3 Hz, 3H), 1.40 (d, J = 2.6 Hz, 3H) and 1.00 

(m, 24H). 

 

Figure 3.67: 1H-NMR (400 MHz, CDCl3, δ ppm) of 6-silyloxypropyl-succinimide derivative 183b. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 182.6, 182.5, 175.2, 175.1, 137.3, 137.2, 131.8, 131.5, 

131.46, 129.5, 129.4, 128.6, 128.5, 127.6, 127.5, 69.3, 69.1, 44.2, 44.17, 41.9, 41.7, 40.7, 40.66, 

26.2, 26.08, 25.8, 25.7, 23.9, 23.8, 18.3, 18.26, 12.7 and 12.66. 

 

Figure 3.68: 13C-NMR (100 MHz, CDCl3, δ ppm) of 6-silyloxypropyl-succinimide derivative 183b. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 440.2591 

Observed : 440.2584 

|Δm|  : 1.6 ppm 

 

Figure 3.69: HRMS of 6-silyloxypropyl-succinimide derivative 183b. 
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Rf = 0.65 (80% hexanes:20% ethyl acetate) for 183c (Yield = 62%). 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.24-7.08 (m, 11H), 6.94 (s, 1H), 6.90 (s, 1H), 6.88 (s, 1H), 

5.95 (d, J = 4.8 Hz, 1H), 5.50 (d, J = 4.8 Hz, 1H), 5.32 (dd, J = 9.4, 4.8 Hz, 2H), 4.94 (t, J = 5.8 

Hz, 1H), 4.79 (t, J = 6.8 Hz, 1H), 2.97 (dd, J = 13.6, 7.0 Hz, 1H), 2.74 (d, J = 5.8 Hz, 2H), 2.66 

(dd, J = 13.4, 6.9 Hz, 1H), 2.27 (s, 3H), 2.26 (s, 3H), 2.04 (s, 3H), 1.99 (s, 3H), 1.27 (s, 6H), 1.23 

(s, 3H), 1.22 (s, 3H), 0.91-0.86 (m, 32H) and 0.80-0.79 (m, 10H). 

 

Figure 3.70: 1H-NMR (400 MHz, CDCl3, δ ppm) of 6-silyloxyphenethyl-succinimide 183c.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 182.1, 181.9, 145.96, 145.4, 137.9, 137.5, 137.0, 136.99, 

136.1, 132.3, 132.1, 132.0, 131.7, 130.8, 130.5, 129.9, 129.8, 128.1, 128.0, 127.3, 127.2, 126.5, 

126.4, 117.2, 117.15, 76.7, 75.9, 46.1, 45.97, 43.73, 42.7, 24.1, 23.9, 23.7, 23.4, 18.2, 18.13, 

18.10, 18.04, 17.9, 12.5 and 12.5. 

 

Figure 3.71: 13C-NMR (100 MHz, CDCl3, δ ppm) of 6-silyloxyphenethyl-succinimide 183c.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 530.3061 

Observed  : 530.3056 

|Δm|  : 0.9 ppm 

 

Figure 3.72: HRMS of 6-silyloxyphenethyl-succinimide 183c. 
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Rf = 0.85 (80% hexanes:20% ethyl acetate) for 185 (Yield = 60%). 

1H-NMR (400 MHz, CDCl3, δ ppm): 6.95 (s, 2H), 2.78 (s, 2H), 2.28 (d, J = 8.4 Hz, 5H), 2.04 (s, 

3H), 1.54-1.45 (m, 2H), 1.42 (s, 3H), 1.41 (s, 3H) and 0.89 (t, J = 7.3 Hz, 3H). 

 

Figure 3.73: 1H-NMR (400 MHz, CDCl3, δ ppm) of 6-ethyl-succinimide derivative 185.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 182.6, 175.4, 140.0, 139.4, 135.6, 129.7, 128.7, 127.4, 44.2, 

40.8, 34.0, 26.2, 25.9, 23.7, 21.4, 17.8 and 14.4 

 

Figure 3.74: 13C-NMR (100 MHz, CDCl3, δ ppm) of 6-ethyl-succinimide derivative 185. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 296.1621 

Observed  : 296.1624 

|Δm|  : 1.0 ppm 

 

Figure 3.75: HRMS of 6-ethyl-succinimide derivative 185. 
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3.11.3. Synthesis of 2-methyl-6-allyloxy-pyrrolidine-2,5-dione derivative 182g 

 

Scheme 3.30: Synthesis of 2-methyl-6-allyloxy-pyrrolidine-2,5-dione derivative 182g. 

To a solution imide derivative 184 (1.0 g, 4.29 mmol) and anhyd. potassium carbonate 

(1.78 g, 12.87 mmol) in dry acetone (15 mL) at room temperature under N2 atmosphere allyl 

bromide (0.94 mL, 10.75 mmol) was added. The resulting mixture was refluxed for 2 h. After the 

reaction, the mixture was cooled to room temperature and the solid was filtered and the solid was 

washed with acetone (10 mL). The combined organic layer was concentrated under reduced 

pressure to get the crude product. The crude product was purified by combiflash using hexanes: 

ethyl acetate mixture. 

Rf = 0.70 (50% hexanes:50% ethyl acetate) for 182g (Yield = 82%). 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.22-7.18 (m, 1H), 6.86-6.84 (m, 1H), 6.77-6.75 (m, 1H), 

5.93-5.83 (m, 1H), 5.29-5.24 (m, 1H), 5.18-5.15 (m, 1H), 4.44 (dt, J = 5.3, 1.6 Hz, 2H), 2.68 (s, 

2H), 2.09 (s, 3H), 1.39 (s, 3H) and 1.38 (s, 3H). 

 

Figure 3.76: 1H-NMR (400 MHz, CDCl3, δ ppm) of 6-allyloxy-succinimide derivative 182g.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 182.3, 175.0, 154.1, 137.8, 132.9, 130.2, 122.9, 120.6, 

117.8, 110.8, 69.4, 44.2, 40.9, 26.1, 25.8 and 17.6. 

 

Figure 3.77: 13C-NMR (100 MHz, CDCl3, δ ppm) of 6-allyloxy-succinimide derivative 182g. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 296.1257 

Observed : 296.1246 

|Δm|  : 3.7 ppm 

 

Figure 3.78: HRMS of 6-allyloxy-succinimide derivative 182g. 

  

ON
O

O

182g



 

 268 

3.11.4. Synthesis of atropisomeric enamide derivatives 174a-g 

 

Scheme 3.31: Synthesis of atropisomeric enamide derivatives 174a-g. 

To a solution of corresponding piperidine-2,6-dione derivative 182a-g (7.6 mmol) in DCM 

(25 mL) under N2 atmosphere at -78 oC was added DIBAL (25% Wt/Wt in hexanes, 13.7 mmol). 

The mixture was stirred at -78 oC for 30 mins. The reaction mixture was quenched with DI water 

(10 mL) followed by the addition of aq. 2N NaOH solution (10 mL). The reaction mixture was 

slowly warmed to room temperature and the mixture was poured into saturated solution of 

Rochelle’s salt (sodium potassium tartarate, 200 mL). The aqueous layer was extracted with 

DCM (3 X 75 mL). The combined organic layer was dried over anhyd. Na2SO4, filtered and the 

solvent was evaporated under reduced pressure to get the crude product. The crude product was 

directly taken to next step without further purification. 

To the crude product from above reaction dissolved in DCM (75 mL) at 0 oC under N2 

atmosphere was added methanesulfonyl chloride (12.16 mmol) and triethylamine (22.8 mmol). 

The resulting solution was stirred at 0 oC for 2 h. After the reaction, DI water (50 mL) was added 

and the mixture was stirred for 10 mins and the layers were separated. The aqueous layer was 

extracted with of DCM (2 X 20 mL). The combined organic layer was dried over anhyd. Na2SO4, 

filtered and the solvent was evaporated under reduced pressure to get the crude product. The 

crude product was purified by combiflash using hexanes:ethyl acetate mixture (80:20) to get the 

title product 1 in 65% yield over two steps. 

Note: The samples turn dark brown over time, so they were stored in amber vials in freezer.  
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Rf = 0.40 (50% hexanes:50% ethyl acetate) for 174a. 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.23-7.09 (m, 3H), 5.91-5.81 (m, 2H), 5.26-5.22 (m, 1H), 

5.05-5.01 (m, 2H), 3.26-3.24 (m, 2H), 2.68-2.64 (t, J = 8 Hz, 2H), 2.47-2.43 (m, 2H) and 2.16 (s, 

3H). 

 

Figure 3.79: 1H-NMR (400 MHz, CDCl3, δ ppm) of 6-allyl-dihydropyridone derivative 174a. 
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13C NMR (100 MHz, CDCl3, δ ppm): 168.95, 138.3, 138.0, 136.6, 136.4, 130.9, 129.2, 128.6, 

127.98, 116.4, 106.4, 36.1, 31.9, 20.7 and 17.9. 

 

Figure 3.80: 13C-NMR (100 MHz, CDCl3, δ ppm) of 6-allyl-dihydropyridone derivative 174a.  
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HRMS-ESI (m/z) ([M + Na]+): Calculated: 250.1202; Observed: 250.1208; |Δm|: 2.4 ppm 

 

Figure 3.81: HRMS of 6-allyl-dihydropyridone derivative 174a. 

 

HPLC analysis conditions: 

For analytical conditions, 

I). Column : RR-WHELK-01 10/100 FEC; Abs. detector wavelength : 254 nm and 270 nm; Mobile 

phase: Hexanes:2-propanol = 95:5; Flow rate: 1.0 mL/min; Retention times (min): ∼ 28.92 [(+)-

174a and ∼ 32.13 [(-)-174a] 

II). Column: CHIRALPAK-IC; Abs. detector wavelength: 254 nm and 270 nm; Mobile phase: 

Hexanes:2-propanol = 90:10; Flow rate: 1.0 mL/min; Retention times (min): ∼ 16.24 [(-)-174a] and 

∼ 19.64 [(+)-174a 

For preparative conditions, 

I). Column: CHIRALPAK-IC; Abs. detector wavelength: 254 nm and 270 nm; Mobile phase: 

Hexanes:2-propanol = 95:5; Flow rate: 3.0 mL/min; Retention times (min) : ∼ 32.72 [(-)-174a and ∼ 

40.62 [(+)-174a] 

 

Optical rotation [α]D26 :  

HPLC retention time (RR-WHELK-01) at ∼ 28.92 min, (c ∼0.725%, MeOH) = +34.37 deg 

HPLC retention time (RR-WHELK-01) at ∼ 32.13 min, (c ∼0.725%, MeOH) = -32.27 deg. 
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Rf = 0.40 (50% hexanes:50% ethyl acetate) for 174b. 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.18-7.15 (m, 1H), 7.09-7.07 (m, 2H), 5.90-5.88 (m, 1H), 5.25-

5.17 (m, 2H), 3.19-3.17 (d, J = 7.2 Hz, 2H), 2.69-2.65 (m, 2H), 2.46-2.42 (m, 2H), 2.15 (s, 3H), 

1.69 (m, 3H) and 1.64 (m, 3H). 

 

Figure 3.82: 1H-NMR (400 MHz, CDCl3, δ ppm) of 6-dimethylallyl-dihydropyridone 174b. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 168.9, 139.5, 138.2, 136.2, 133.1, 130.9, 128.8, 128.5, 

127.7, 122.4, 106.2, 31.8, 30.2, 25.9, 20.7, 18.1 and 17.9. 

 

Figure 3.83: 13C-NMR (100 MHz, CDCl3, δ ppm) of 6-dimethylallyl-dihydropyridone 174b. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 278.1515 

Observed  : 278.1516 

|Δm|  : 0.4 ppm 

 

Figure 3.84: HRMS of 6-dimethylallyl-dihydropyridone 174b. 

HPLC analysis conditions: 

For analytical conditions, 

I). Column   : CHIRALPAK-IC  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 90:10 

Flow rate   : 1.5 mL/min  

Retention times (min) : ∼ 8.94 [(-)-174b and ∼ 10.89 [(+)-174b] 

For preparative conditions, 

I). Column   : CHIRALPAK-IC  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 95:5 

Flow rate   : 3.0 mL/min  

Retention times (min) : ∼ 28.39 [(-)-174b and ∼ 35.92 [(+)-174b] 

Optical rotation [α]D26: 

HPLC Rt (CHIRALPACK® IC) at ∼8.94 min, (c ∼0.369%, MeOH) = -70.90 deg. 

HPLC Rt (CHIRALPACK® IC) at ∼ 10.89 min, (c ∼0.369%, MeOH) = +70.63 deg.  
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Rf = 0.50 (50% hexanes:50% ethyl acetate) for 174c. 

1H-NMR (400 MHz, CDCl3, δ ppm): 6.94 (s, 1H), 6.90 (s, 1H), 5.88-5.85 (td, J =7.6, 1.6 Hz, 1H), 

5.22-5.18 (m, 1H), 4.80-4.797 (m, 1H), 4.64-4.636 (m, 1H), 3.21-3.11 (m, 2H) 2.67-2.63 (m, 2H), 

2.45-2.395 (m, 2H), 2.27 (s, 3H), 2.11 (s, 3H) and1.63 (s, 3H). 

 

Figure 3.85: 1H-NMR (400 MHz, CDCl3, δ ppm) of 6-methylallyl-dihydropyridone derivative 174c.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 168.98, 144.2, 138.1, 137.1, 136.1, 135.9, 131.1, 130.0, 

129.0, 112.6, 105.99, 40.1, 31.9, 22.6, 21.3, 20.7 and 17.8. 

 

Figure 3.86: 13C-NMR (100 MHz, CDCl3, δ ppm) of 6-methylallyl-dihydropyridone derivative 
174c.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 278.1515 

Observed  : 278.1517 

|Δm|  : 0.7 ppm 

 

Figure 3.87: HRMS of 6-methylallyl-dihydropyridone derivative 174c. 

HPLC analysis conditions: 

For analytical conditions, 

I). Column   : CHIRALPACK® IC  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 90:10 

Flow rate   : 1.0 mL/min  

Retention times (min) :  ∼ 15.55 [(-)-174c and ∼ 17.83 [(+)-174c] 

For preparative conditions, 

I). Column   : CHIRALPAK-IC  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 95:5 

Flow rate   : 3.0 mL/min  

Retention times (min) : ∼ 33.97 [(-)-174c and ∼ 40.57 [(+)-174c] 

Optical rotation [α]D26: 

HPLC Rt (CHIRALPACK® IC) at ∼ 15.55 min, (c ∼0.700%, MeOH) = -48.07 deg. 

HPLC Rt (CHIRALPACK® IC) at ∼ 17.83 min, (c ∼0.700%, MeOH) = +48.80 deg.  
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Rf = 0.35 (80% hexanes:20% ethyl acetate) for 174d (Yield = 70%). 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.20-7.16 (m, 1H), 7.12-7.09 (m, 2H), 5.91 (dt, J = 7.6, 1.6 

Hz, 1H), 5.87-5.77 (m, 1H), 5.28-5.24 (m, 1H), 5.04-4.93 (m, 1H), 2.69-2.66 (m, 2H), 2.62-2.49 

(m, 2H), 2.48-2.43 (m, 2H), 2.32-2.26 (m, 2H) and 2.16 (s, 3H). 

 

Figure 3.88: 1H-NMR (400 MHz, CDCl3, δ ppm) of 6-butenyl-dihydropyridone derivative 174d.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 169.1, 139.7, 138.3, 136.3, 131.1, 128.9, 128.5, 127.7, 

115.1, 106.5, 34.4, 31.9, 31.1, 20.7 and 17.9. 

 

Figure 3.89: 13C-NMR (100 MHz, CDCl3, δ ppm) of 6-butenyl-dihydropyridone derivative 174d. 

  

N
O

17
4d

*= solvent

*



 

 280 

HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 264.1359 

Observed  : 264.1365 

|Δm|  : 2.3 ppm 

 

Figure 3.90: HRMS of 6-butenyl-dihydropyridone derivative 174d. 
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Rf = 0.40 (80% hexanes:20% ethyl acetate) for 174e (Yield = 75%). 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.21-7.18 (m, 1H), 7.12-7.09 (m, 2H), 6.29 (d, J= 4.8 Hz, 1H), 

5.90-5.80 (m, 1H), 5.47 (d, J= 4.8 Hz, 1H), 5.03-4.94 (m, 2H), 3.25-3.23 (m, 2H), 2.14 (s, 3H) 

1.30 (s, 3H) and 1.29 (s, 3H). 

 

Figure 3.91: 1H-NMR (400 MHz, CDCl3, δ ppm) of 6-allyl-pyrrolone derivative 174e. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 181.62, 138.6, 136.97, 136.6, 134.4, 131.5, 129.1, 128.7, 

127.97, 117.8, 116.5, 46.2, 36.1, 23.9, 23.6 and 18.1. 

 

Figure 3.92: 13C-NMR (100 MHz, CDCl3, δ ppm) of 6-allyl-pyrrolone derivative 174e. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 264.1359 

Observed  : 264.1358 

|Δm|  : 0.4 ppm 

 

Figure 3.93: HRMS of 6-allyl-pyrrolone derivative 174e. 

HPLC analysis conditions: 

For analytical conditions, 

I). Column   : CHIRALPAK-IC  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 95:5 

Flow rate   : 1.0 mL/min 

Retention times (min) : ∼ 12.05 [(-)-174e] and ∼ 14.52 [(+)-174e 

For preparative conditions, 

I). Column   : CHIRALPAK-IC  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 98:2 

Flow rate   : 3.0 mL/min  

Retention times (min) : ∼ 27.55 [(-)-174e and ∼ 34.63 [(+)-174e] 

Optical rotation [α]D26: 

HPLC retention time (CHIRALPAK-IC) at ∼ 12.05 min, (c ∼ 0.12 %, MeOH) = -18.18 deg. 

HPLC retention time (CHIRALPAK-IC) at ∼ 14.52 min, (c ∼ 0.12 %, MeOH) = +18.55 deg.  
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Rf = 0.40 (80% hexanes:20% ethyl acetate) for 174f (Yield = 72%). 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.21-7.17 (m, 1H), 7.11-7.09 (m, 2H), 6.31 (d, J= 4 Hz, 1H), 

5.83-5.73 (m, 1H), 5.497 (d, J= 4.8 Hz, 1H), 5.00-4.91 (m, 2H), 2.61-2.48 (m, 2H), 2.30-2.18 (m, 

2H), 2.14 (s, 3H), 1.297 (s, 3H) and 1.29 (s, 3H). 

 

Figure 3.94: 1H-NMR (400 MHz, CDCl3, δ ppm) of 6-butenyl-pyrrolone derivative 174f. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 181.7, 140.5, 138.1, 136.97, 134.4, 131.5, 128.9, 128.7, 

127.8, 118.1, 115.1, 46.2, 34.8, 31.4, 23.8, 23.7 and 18.1. 

 

Figure 3.95: 13C-NMR (100 MHz, CDCl3, δ ppm) of 6-butenyl-pyrrolone derivative 174f.  
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HRMS-ESI (m/z) ([M + Na]+): Calculated: 278.1515; Observed: 278.1504; |Δm|: 3.9 ppm 

 

Figure 3.96: HRMS of 6-butenyl-pyrrolone derivative 174f. 

HPLC analysis conditions: 

For analytical conditions, 

I). Column   : CHIRALPAK-IC  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 90:10 

Flow rate   : 1.0 mL/min 

Retention times (min) : ∼ 10.78 [(-)-174f] and ∼ 12.57 [(+)-174f] 

For preparative conditions, 

I). Column   : CHIRALPAK-IC  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 95:5 

Flow rate   : 3.0 mL/min  

Retention times (min) : ∼ 21.58 [(-)-174f and ∼ 25.58 [(+)-174f] 

Optical rotation [α]D24 : 

HPLC Rts (CHIRALPAK-IC) at ∼ 10.78 min, (c ∼ 0.83 %, MeOH) = -24.26 deg. 

HPLC Rts (CHIRALPAK-IC) at ∼ 12.57 min, (c ∼ 0.83 %, MeOH) = +24.54 deg.  
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Rf = 0.45 (80% hexanes:20% ethyl acetate) for 174g (Yield = 63%). 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.16-7.12 (m, 1H), 6.84-6.82 (m, 1H), 6.76-6.74 (m, 1H), 6.35 

(d, J = 4.8 Hz, 1H), 5.97-5.87 (m, 1H), 5.41 (d, J = 4.8 Hz, 1H), 5.34 (dq, J = 17.2, 1.8 Hz, 1H), 

5.17 (dq, J = 10.8, 1.6 Hz, 1H), 4.45 (dt, J = 4.8, 1.6 Hz, 2H), 2.16 (s, 3H), 1.28 (s, 3H) and 1.27 

(s, 3H). 

 

Figure 3.97: 1H-NMR (400 MHz, CDCl3, δ ppm) of 6-allyloxy-pyrrolone derivative 174g.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 181.8, 154.9, 138.2, 133.1, 132.1, 128.9, 124.96, 122.98, 

117.0, 116.96, 110.8, 69.3, 46.0, 24.0, 23.7 and 17.9. 

 

Figure 3.98: 13C-NMR (100 MHz, CDCl3, δ ppm) of 6-allyloxy-pyrrolone derivative 174g. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 280.1308 

Observed  : 280.1296 

|Δm|  : 4.3 ppm 

 

Figure 3.99: HRMS of 6-allyloxy-pyrrolone derivative 174g. 

HPLC analysis conditions: 

For analytical conditions, 

I). Column   : CHIRALPAK-ADH  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 95:5 

Flow rate   : 1.0 mL/min 

Retention times (min) : ∼ 6.80 [(PkA)-174g] and ∼ 10.55 [(PkB)-174g 

For preparative conditions, 

I). Column   : CHIRALPAK-ADH 

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 95:5 

Flow rate   : 3.0 mL/min  

Retention times (min) : ∼ 9.87 [(PkA)-174g and ∼ 15.69 [(PkB)-174g] 

(PkA and PkB refers to the order of elution of the isomers in HPLC on a chiral stationary phase)  
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Rf = 0.85 (80% hexanes:20% ethyl acetate) for 181a (Yield = 84%). 
1H-NMR (400 MHz, CDCl3, δ ppm): 7.37-7.34 (m, 1H), 7.28-7.21 (m, 2H), 7.14-7.12 (m, 1H), 6.48 

(d, J = 4.8 Hz, 1H), 5.45 (d, J = 4.8 Hz, 1H), 3.82 (t, J = 6.9 Hz, 1H), 2.77 (t, J = 6.9 Hz, 1H), 1.29 

(s, 6H) and 1.05-0.94 (m, 21H). 

 

Figure 3.100: 1H-NMR (400 MHz, CDCl3, δ ppm) of 6-silyloxyethyl-pyrrolone derivative 181a. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 181.99, 136.9, 135.98, 132.0, 131.3, 128.3, 127.5, 127.4, 

117.7, 63.7, 46.3, 35.2, 23.7, 18.2 and 12.1. 

 

Figure 3.101: 13C-NMR (100 MHz, CDCl3, δ ppm) of 6-silyloxyethyl-pyrrolone derivative 181a. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 410.2488 

Observed  : 410.2480 

|Δm|  : 1.9 ppm 

 

Figure 3.102: HRMS of 6-silyloxyethyl-pyrrolone derivative 181a. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.34-7.32 (m, 1H), 7.25-7.198 (m, 2H), 7.12-7.09 (m, 1H), 

6.80 (d, J= 4.8Hz, 1H), 5.44 (d, J= 4.8Hz, 1H), 4.10 (h, J = 6.2 Hz, 1H), 2.77-2.62 (m, 2H), 1.28 

(s, 3H), 1.276 (s, 3H), 1.06 (d, J = 6.0 Hz, 3H) and 0.96 (m, 21H). 

 

Figure 3.103: 1H-NMR (400 MHz, CDCl3, δ ppm) of 6-silyloxypropyl-pyrrolone derivative 181b. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 181.8, 136.97, 136.1, 132.1, 131.8, 128.1, 127.4, 127.3, 

117.7, 69.5, 46.3, 41.8, 24.2, 23.8, 23.7, 12.3, 18.2 and 12.7. 

 

Figure 3.104: 13C-NMR (100 MHz, CDCl3, δ ppm) of 6-silyloxypropyl-pyrrolone derivative 181b. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 424.2642 

Observed : 424.2649 

|Δm|  : 1.7 ppm 

 

Figure 3.105: HRMS of 6-silyloxypropyl-pyrrolone derivative 181b. 
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(The compound exists as a diastereomers due to both axial and point chirality); Rf = 0.85, 0.80 

(80% hexanes:20% ethyl acetate) for 181c (Yield = 60%). 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.24-7.08 (m, 11H), 6.94 (s, 1H), 6.90 (s, 1H), 6.88 (s, 1H), 

5.95 (d, J = 4.8 Hz, 1H), 5.50 (d, J = 4.8 Hz, 1H), 5.32 (dd, J = 9.4, 4.8 Hz, 2H), 4.94 (t, J = 5.8 

Hz, 1H), 4.79 (t, J = 6.8 Hz, 1H), 2.97 (dd, J = 13.6, 7.0 Hz, 1H), 2.74 (d, J = 5.8 Hz, 2H), 2.66 

(dd, J = 13.4, 6.9 Hz, 1H), 2.27 (s, 3H), 2.26 (s, 3H), 2.04 (s, 3H), 1.99 (s, 3H), 1.27 (s, 6H), 1.23 

(s, 3H), 1.22 (s, 3H), 0.91-0.86 (m, 32H) and 0.80-0.79 (m, 10H). 

 

Figure 3.106: 1H-NMR (400 MHz, CDCl3, δ ppm) of 6-silyloxyphenethyl pyrrolone 181c. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 182.1, 181.9, 145.96, 145.4, 137.9, 137.5, 137.0, 136.99, 

136.1, 132.3, 132.1, 132.0, 131.7, 130.8, 130.5, 129.9, 129.8, 128.1, 128.0, 127.3, 127.2, 126.5, 

126.4, 117.2, 117.15, 76.7, 75.9, 46.1, 45.97, 43.73, 42.7, 24.1, 23.9, 23.7, 23.4, 18.2, 18.13, 

18.10, 18.04, 17.9, 12.5 and 12.5. 

 

Figure 3.107: 13C-NMR (100 MHz, CDCl3, δ ppm) of 6-silyloxyphenethyl-pyrrolone 181c. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 514.3112 

Observed : 514.3101 

|Δm|  : 2.1 ppm 

 

Figure 3.108: HRMS of 6-silyloxyphenethyl-pyrrolone 181c. 
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Rf = 0.75 (80% hexanes:20% ethyl acetate) for 179 (Yield = 66%). 

1H-NMR (400 MHz, CDCl3, δ ppm): 6.91 (s, 2H), 6.29 (d, J = 4.8 Hz, 1H), 5.48 (d, J = 4.8 Hz, 1H), 

2.43-2.35 (m, 2H), 2.28 (s, 3H), 2.10 (s, 3H), 1.56-1.44 (m, 2H), 1.295 (s, 6H) and 0.89 (t, J = 7.3 

Hz, 3H). 

 

Figure 3.109: 1H-NMR (400 MHz, CDCl3, δ ppm) of 6-ethyl-pyrrolone derivative 179.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 181.8, 140.9, 138.3, 136.5, 131.8, 131.8, 129.4, 128.5, 

117.8, 46.2, 34.2, 24.1, 23.9, 23.7, 21.3, 18.0 and 14.5. 

 

Figure 3.110: 13C-NMR (100 MHz, CDCl3, δ ppm) of 6-ethyl-pyrrolone derivative 179. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 280.1672 

Observed : 280.1673 

|Δm|  : 3.6 ppm 

 

Figure 3.111: HRMS of 6-ethyl-pyrrolone derivative 179. 
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3.11.5. Synthesis of silyloxyethyl-pyrrol-2-one derivative 180a-c 

 

Scheme 3.32: Synthesis of 2-hydroxyphenyl-pyrrol-2-one derivative 180a-c. 

To a solution of silyloxyethyl derivative 181a-c (2.0 g, 1.0 equiv.) in THF (20 mL) under at 

room temperature, TBAF (1M in THF, 1.1 equiv.) was added. The resulting solution was heated 

to reflux and maintained until complete consumption of starting material. After the reaction, the 

mixture was cooled to room temperature and diluted with DI water (30 mL) and extracted with 

ethyl acetate (2 × 20 mL). The combined organic layer was dried over anhyd. Na2SO4, filtered 

and the solvent was evaporated under reduced pressure to get the crude product. The crude 

product was purified by combiflash using a hexanes:ethyl acetate mixture (50:50) to get the title 

product. 
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Rf = 0.30 (50% hexanes:50% ethyl acetate) for 180a (Yield = 66%). 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.33-7.22 (m, 3H), 7.12-7.09 (m, 1H), 6.44 (d, J= 4.8 Hz, 1H), 

5.47 (d, J= 4.8 Hz, 1H), 3.74 (s, 1H), 2.73 (t, J= 6.4 Hz, 2H), 2.63 (bs, 1H) and 1.27 (s, 6H). 

 

Figure 3.112: 1H-NMR (400 MHz, CDCl3, δ ppm) of 6-hydroxyethyl-pyrrolone derivative 180a.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 182.6, 136.7, 136.0, 131.7, 130.8, 128.7, 127.7, 127.6, 

118.4, 62.5, 46.6, 34.5 and 23.6. 

 

Figure 3.113: 13C-NMR (100 MHz, CDCl3, δ ppm) of 6-hydroxyethyl-pyrrolone derivative 180a.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 254.1151 

Observed : 254.1144 

|Δm|  : 2.7 ppm 

 

Figure 3.114: HRMS of 6-hydroxyethyl-pyrrolone derivative 180a. 
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Rf = 0.35 (50% hexanes:50% ethyl acetate) for 180b (Yield = 82%). 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.34-7.23 (m, 3H), 7.12-7.10 (m, 1H), 6.43 (d, J= 4.8 Hz, 1H), 

5.47 (d, J= 4.8 Hz, 1H), 3.97-3.89 (m, 1H), 2.69 (dd, J = 14.0, 4.3 Hz, 1H), 2.55 (dd, J = 14.0, 8.7 

Hz, 1H), 2.44 (bs, 1H), 1.28 (s, 3H), 1.27 (s, 3H) and 1.16 (d, J= 6.4 Hz, 3H). 

 

Figure 3.115: 1H-NMR (400 MHz, CDCl3, δ ppm) of 6-hydroxypropyl-pyrrolone derivative 180b.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 182.4, 136.8, 136.1, 131.8, 131.3, 128.7, 127.8, 127.7, 

118.3, 68.0, 46.5, 41.2, 24.0, 23.7 and 23.6. 

 

Figure 3.116: 13C-NMR (100 MHz, CDCl3, δ ppm) of 6-hydroxypropyl-pyrrolone derivative 180b. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 268.1308 

Observed  : 268.1313 

|Δm|  : 1.9 ppm 

 

Figure 3.117: HRMS of 6-hydroxypropyl-pyrrolone derivative 180b. 
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Rf = 0.20 (80% hexanes:20% ethyl acetate) for 180c (Yield = 93%). 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.32-7.21 (m, 10H), 7.02 (s, 2H), 6.98 (s, 2H), 6.31 (d, J = 4.8 

Hz, 1H), 6.17 (d, J = 4.8 Hz, 1H), 5.51-5.49 (m, 2H), 4.83-4.78 (m, 2H), 3.46-3.44 (m, 1H), 2.88-

2.80 (m, 2H), 2.76-2.68 (m, 2H), 2.48-2.44 (m, 1H), 2.31 (s, 3H), 2.298 (s, 3H), 2.11 (s, 3H), 2.11 

(s, 3H), 1.33 (s, 3H), 1.32 (s, 3H), 1.31 (s, 3H) and 1.296 (s, 3H). 

 

Figure 3.118: 1H-NMR (400 MHz, CDCl3, δ ppm) of 6-hydroxyphenethyl-pyrrolone 180c.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 183.2, 182.5, 145.2, 144.7, 138.8, 138.5, 136.96, 136.9, 

136.8, 136.5, 132.3, 132.2, 131.7, 131.5, 130.5, 130.4, 130.1, 129.2, 128.5, 128.46, 127.6, 127.4, 

125.95, 125.8, 118.5, 118.1, 74.9, 73.7, 46.5, 46.3, 42.2, 41.9, 24.0, 23.7, 23.6, 23.61, 21.3, 

18.26 and 18.1. 

 

Figure 3.119: 13C-NMR (100 MHz, CDCl3, δ ppm) of 6-hydroxyphenethyl-pyrrolone 180c. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 358.1762 

Observed  : 358.1778 

|Δm|  : 4.5 ppm 

 

Figure 3.120: HRMS of 6-hydroxyphenethyl-pyrrolone 180c. 
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3.11.6. Synthesis of atropisomeric oxo-pyrrol-2-one derivative 174h-i 

 

Scheme 3.33: Synthesis of atropisomeric oxo-pyrrol-2-one derivative 174h-j. 

To a slurry of Dess-Martin periodinane (1.2 equiv) in DCM (20 mL) at 0 oC, a solution of 

corresponding alcohol derivative 180h-j (500 mg, 1.0 equiv) in DCM (5 mL) was added. The 

resulting mixture was warmed to room temperature and stirred for 2 h. The reaction was 

quenched with 1N NaOH solution (10 mL) and the mixture was extracted with DCM (2 × 15 mL). 

The combined organic layer was dried over anhyd. Na2SO4, filtered and the solvent was 

evaporated under reduced pressure to get the crude product. The crude product was purified by 

combiflash using a hexanes:ethyl acetate mixture to get the title product. 
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Rf = 0.60 (50% hexanes:50% ethyl acetate) for 174h (Yield = 73%). 

1H-NMR (400 MHz, CDCl3, δ ppm): 9.61 (t, J= 1.7 Hz, 1H), 7.33-7.23 (m, 3H), 7.18-7.16 (m, 1H), 

6.44 (d, J= 4.9 Hz, 1H), 5.46 (d, J= 4.9 Hz, 1H), 3.60-3.59 (m, 2H) and 1.24 (s, 6H). 

 

Figure 3.121: 1H-NMR (400 MHz, CDCl3, δ ppm) of 6-acetaldehyde-pyrrolone derivative 174h.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 199.2, 181.6, 136.5, 131.8, 131.2, 130.4, 128.9, 128.6, 

126.8, 118.8, 47.2, 46.5 and 23.5. 

 

Figure 3.122: 13C-NMR (100 MHz, CDCl3, δ ppm) of 6-acetaldehyde-pyrrolone derivative 174h.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 252.0995 

Observed  : 252.0994 

|Δm|  : 0.4 ppm 

 

Figure 3.123: HRMS of 6-acetaldehyde-pyrrolone derivative 174h. 

  

N OO

174h



 

 316 

Rf = 0.50 (50% hexanes:50% ethyl acetate) for 174i (Yield = 82%). 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.27-7.24 (m, 2H), 7.19-7.17 (m, 1H), 7.12-7.09 (m, 1H), 6.39 

(d, J = 4.8 Hz, 1H), 5.41 (d, J = 4.8 Hz, 1H), 3.65 (s, 2H), 2.04 (s, 3H) and 1.22 (s, 6H). 

 

Figure 3.124: 1H-NMR (400 MHz, CDCl3, δ ppm) of 6-acetone-pyrrolone derivative 174i. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 205.2, 181.3, 136.2, 132.2, 131.7, 131.3, 128.3, 126.8, 

118.2, 47.3, 46.2, 29.5 and 23.5. 

 

 

Figure 3.125: 13C-NMR (100 MHz, CDCl3, δ ppm) of 6-acetone-pyrrolone derivative 174i.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 266.1151 

Observed  : 266.1146 

|Δm|  : 1 .9 ppm 

 

Figure 3.126: HRMS of 6-acetone-pyrrolone derivative 174i. 

  

N O

O

174i



 

 319 

Rf = 0.55 (80% hexanes:20% ethyl acetate) for 174j (Yield = 68%). 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.93-7.91 (m, 2H), 7.53-7.49 (m, 1H), 7.43-7.39 (m, 2H), 

6.997 (s, 1H), 6.896 (s, 1H), 6.26 (d, J = 4.8 Hz, 1H), 5.31 (d, J = 4.8 Hz, 1H), 4.34 (d, J = 17.4 

Hz, 1H), 4.01 (d, J = 17.4 Hz, 1H), 2.28 (s, 3H), 2.11 (s, 3H), 1.22 (s, 3H) and 0.96 (s, 3H). 

 

Figure 3.127: 1H-NMR (400 MHz, CDCl3, δ ppm) of 6-acetophenone-pyrrolone derivative 174j.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 197.6, 181.8, 138.7, 136.9, 136.4, 133.8, 133.5, 132.5, 

131.9, 131.0, 129.9, 128.8, 128.4, 117.7, 46.0, 42.5, 23.8, 23.5, 21.3 and 18.1. 

 

Figure 3.128: 13C-NMR (400 MHz, CDCl3, δ ppm) of 6-acetophenone-pyrrolone derivative 174j. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 358.1621 

Observed  : 358.1623 

|Δm|  : 0.6 ppm 

 

Figure 3.129: HRMS of 6-acetophenone-pyrrolone derivative 174j. 

HPLC analysis conditions: 

For analytical conditions, 

I). Column    : RR-WHELK-01 10/100 FEC 

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase   : Hexanes:2-propanol = 70:30 

Flow rate   : 1.5 mL/min 

Retention times (min)  : ∼ 6.77 [(-)-174j] and ∼ 13.64 [(+)-174j 

For preparative conditions, 

I). Column    : CHIRALPAK-ADH 

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase   : Hexanes:2-propanol = 80:20 

Flow rate   : 3.0 mL/min  

Retention times (min)  : ∼ 18.08 [(-)-174j and ∼ 36.35 [(+)-174j] 

Optical rotation [α]D24: 

HPLC retention time (RR-WHELK) at ∼ 18.08 min, (c = ∼1.4 %, MeOH) = -113.68 deg. 

HPLC retention time (RR-WHELK) at ∼ 36.35 min, (c = ∼1.4 %, MeOH) = +116.16 deg.  

N
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O
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3.11.7. Synthesis of 6-methyl-2-allyl-N-cyclohexenyl acetamides 174k 

 

Scheme 3.34: Synthesis of atropisomeric N-cyclohexenyl acetamide 174k. 

A mixture of aniline 186a (1.0 g, 6.79 mmol), p-toluenesulfonic acid (130 mg, 0.1 equiv.) 

and cyclohexanone 208 (3.51 mL, 33.9 mmol) in dry toluene (30 mL) was refluxed with Dean-

Stark apparatus for 12 h. The reaction was concentrated under 25 oC under reduced pressure. 

The crude was taken in toluene (10 mL) and cooled to 0 oC, to which acetyl chloride (0.97 mL, 

13.6 mmol) and triethylamine (2.84 mL, 20.4 mmol) was added. The resulting mixture was stirred 

at 0 oC for 2 h. After the reaction, DI water (15 mL) was added and the mixture was extracted with 

ethyl acetate (2 × 15 mL). The combined organic layer was washed with brine solution (10 mL), 

dried under saturated Na2SO4, filtered and the solvent was evaporated under reduced pressure to 

get the crude product. The crude was purified by combiflash using hexanes and ethyl acetate 

mixture (90:10). 

Rf = 0.35 (80% hexanes:20% ethyl acetate) for 174k (Yield = 50%). 

  

NH2

N

O
1. PTSA, toluene
    Dean-Stark reflux, 12 h

2. CH3COCl, Et3N, 0 oC, 2 h

O

186a

174k

208



 

 323 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.18-7.04 (m, 3H), 5.899-5.79 (m, 1H), 5.09-4.99 (m, 3H), 

3.26 (d, J= 6.8 Hz, 2H), 2.57-2.40 (m, 2H), 2.18 (s, 3H), 1.97-1.967 (m, 2H), 1.68 (s, 3H) and 

1.63-1.52 (m, 4H). 

 

Figure 3.130: 1H-NMR (400 MHz, CDCl3, δ ppm) of 6-allyl-cyclohexenylenamide 174k.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 170.3, 140.8, 139.4, 138.2, 136.7, 136.2, 129.4, 128.3, 

128.1, 118.6, 117.0, 35.6, 28.3, 24.8, 24.1, 23.4, 22.2 and 18.4. 

 

Figure 3.131: 13C-NMR (100 MHz, CDCl3, δ ppm) of 6-allyl-cyclohexenylacetamide 174k.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 292.1672 

Observed  : 292.1663 

|Δm|  : 3.1 ppm 

 

Figure 3.132: HRMS of 6-allyl-cyclohexenylenamide 174k. 

HPLC analysis conditions: 

For analytical conditions, 

I). Column   : CHIRALPAK-IC  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 95:5 

Flow rate   : 1.0 mL/min 

Retention times (min) : ∼ 20.65 [(A)-174k] and ∼ 22.33 [(B)-174k] 

For preparative conditions, 

I). Column   : CHIRALPAK-IC  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 99:1 

Flow rate   : 4.0 mL/min  

Retention times (min) : ∼ 57.38 [(A)-174k] and ∼ 63.17 [(B)-174k] 

(A and B refers to the order of elution for a given pair of isomers on HPLC) 
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3.11.8. Synthesis of atropisomeric 6-methyl-2-allyl-N-vinyl acetamide 174l 

 

Scheme 3.35: Synthesis of atropisomeric N-vinyl enamide derivative 174l. 

To a mixture of aniline 186a (1.0 g, 6.79 mmol) and 3Å molecular sieves (1.0 g) in dry 

toluene (10 mL) at 0 oC, acetaldehyde (0.76 mL, 13.6 mmol) was added and the resulting mixture 

was stirred at room temperature for 24 h. After the reaction, the mixture was filtered through celite 

and concentrated at 25 oC under reduced pressure. The resulting crude was taken in toluene  

(10 mL) and cooled to 0 oC, to which acetyl chloride (0.73 mL, 10.2 mmol) and triethylamine  

(2.4 mL, 17 mmol) was added. The resulting mixture was stirred at 0 oC for 2 h. After the reaction, 

DI water (15 mL) was added and the mixture was extracted with ethyl acetate (2 × 15 mL). The 

combined organic layer was washed with brine solution (10 mL), dried under saturated Na2SO4, 

filtered and solvent was evaporated under reduced pressure to get the crude product. The crude 

was purified by combiflash using hexanes and ethyl acetate mixture (90:10). 

Rf = 0.55 (80% hexanes:20% ethyl acetate) for 174l (Yield = 41%). 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.63 (dd, J = 16.0, 8.8 Hz, 1H), 7.27-7.23 (m, 1H), 7.19-7.15 

(m, 2H), 5.87-5.77 (m, 1H), 5.09-5.03 (m, 2H), 4.30 (d, J = 8.8 Hz, 1H), 3.75 (d, J = 16.0 Hz, 1H), 

3.18 – 3.16 (m, 2H), 2.11 (s, 3H) and 1.73 (s, 3H). 

 

Figure 3.133: 1H-NMR (400 MHz, CDCl3, δ ppm) of 6-allyl-vinylacetamide derivative 174l.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 169.4, 138.6, 136.7, 136.2, 136.0, 131.3, 129.7, 129.1, 

128.4, 117.1, 95.4, 35.3, 22.8 and 17.6. 

 

Figure 3.134: 13C-NMR (100 MHz, CDCl3, δ ppm) of 6-allyl-vinylacetamide derivative 174l.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 238.1202 

Observed  : 238.1197 

|Δm|  : 2.1 ppm 

 

Figure 3.135: HRMS of 6-allyl-vinylacetamide derivative 174l. 

HPLC analysis conditions: 

For analytical conditions, 

I). Column   : CHIRALPAK-IC  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 90:10 

Flow rate   : 1.0 mL/min 

Retention times (min) : ∼ 6.35 [(A)-174l] and ∼ 6.77 [(B)-174l] 

(A and B refers to the order of elution for a given pair of isomers on HPLC) 
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3.12. General irradiation procedures and characterization of photoproducts 

3.12.1. Process for photoreaction of atropisomeric enamides 174a-j 

 

Scheme 3.36: General irradiation procedure for atropisomeric enamides 174a-j. 

A solution of optically pure atropisomeric enamides 174a-j (∼2.0-4.0 mM or ∼1 mg/1 mL) 

in acetone or with the combination of methanol/MeCN and the sensitizer (xanthone or 

acetophenone) were irradiated at -30 oC for a given time interval in Pyrex tube using a 450 W 

medium-pressure mercury lamp under constant flow of nitrogen. After irradiation, the solvent was 

evaporated under reduced pressure and the photoproducts were isolated by preparative thin 

layer chromatography and characterized by NMR spectroscopy, mass spectrometry, single 

crystal XRD, CD, [α]D and by HPLC. HPLC analysis of the photoproduct on chiral stationary 

phases gave the optical purity of the photoproducts. 

 

3.12.2. Conversion and mass balance after photoreactions in enamides 174a-c 

Conversion and mass balance was obtained by irradiating the racemic mixture of 

enamides (2.23 mM for 174a and 1.95 mM 174b-c) in acetone or with the combination of 

methanol and the sensitizer (xanthone or acetophenone) in Pyrex test tube with a 450 W 

medium-pressure mercury lamp for given time interval and temperature under constant flow of 

nitrogen. After irradiation, a stock solution of internal standard in chloroform (triphenylmethane, 

4.09 mM) was added to the reaction mixture. The solvent from the mixture with the internal 

standard was completely evaporated under reduced pressure. The residue was dissolved in 1 mL 
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of deuterated chloroform and 1H-NMR was recorded. From the integral value of respective peaks, 

the % conversion and mass balance was calculated using the formula given in equation 2.12. 

Table 3.8: Conversion and mass balance in photoreactions of enamides 174a-c.a 

Entry Compd Solvent Sensitizer T (oC) t (h) (%) Convn (%) MB 

1 
174a 

Acetone Acetone -30 3 70 96b 

2 Methanol xanthone -30 3 76 89 

3 Methanol Acetophenone -30 3 29 92 

4 
174b 

Acetone Acetone -30 24 39 79 

5 Methanol xanthone -30 3 21 82 

6 Methanol Acetophenone -30 12 20 87 

7 
174c 

Acetone Acetone 25 2.5 90 77 

8 Methanol xanthone 25 2.5 92 84 

9 Methanol Acetophenone 25 12 33 86 
a Reported values carry an error of +5%.b 8-10 % of uncharacterized impurity was observed incase of 
174a and 174c. Convn – conversion; MB- mass balance. Longer irradiation of xanthone sensitizer 
leads to decomposition, so the irradiation time was limited to 3 h. 

 

While the ee values in the photoproducts remained the same at both -30 oC and at 25 oC, 

the conversion and mass balance of the photoreaction was affected significantly. For compounds 

174a-b, the reactions at 25 oC showed good conversion with poor mass balance. On the other 

hand, at -30 oC there was excellent mass balance and conversion. In the case of 174c the 

uncharacterized side product was higher at -30 oC than the photoproduct. But at -30 oC the 

uncharacterized side product was less than 8%. Prolonged irradiation after consumption of the 

reactants 174a-c (>80% conversion) led to decomposition. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.12-7.03 (m, 2H), 6.96-6.94 (m, 1H), 3.99-3.96 (t, J = 8.4 Hz, 

1H), 2.99-2.89 (m, 1H), 2.86-2.81 (m, 1H), 2.70-2.60 (m, 1H), 2.57-2.45 (m, 3H), 2.43-2.36 (m, 

1H), 2.34-2.24 (m, 1H), 2.21 (s, 3H), 1.94-1.84 (m, 1H) and 1.74-1.68 (m, 1H). 

 

Figure 3.136: 1H-NMR (400 MHz, CDCl3, δ ppm) of cyclobutane photoproduct 175a.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 169.7, 137.6, 135.9, 135.2, 129.1, 126.5, 124.98, 55.3, 36.2, 

34.2, 32.7, 30.5, 29.8, 28.6 and 18.8. 

 

Figure 3.137: 13C-NMR (100 MHz, CDCl3, δ ppm) of cyclobutane photoproduct 175a.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 250.1202 

Observed  : 250.1211 

|Δm|  : 3.6 ppm 

 

Figure 3.138: HRMS of cyclobutane photoproduct 175a. 

HPLC analysis conditions: 

For analytical conditions, 

I). Column   : RR-WHELK-01 10/100 FEC  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 80:20 

Flow rate   : 1.0 mL/min  

Retention times (min) : ∼ 19.20 [(+)-(S,S,S)-175a] and ∼ 34.63 [(-)-(R,R,R)-175a] 
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2a
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Compound 174a: Optical Rotation [α]D26 

HPLC Rt (RR-WHELK-01) at ∼19.20 min, (c ∼0.725%, MeOH) = +126.6 deg. 

HPLC Rt (R-WHELK-01) at ∼ 34.63 min, (c ∼0.725%, MeOH) = -126.3 deg. 

 

Figure 3.139: CD spectra of cyclobutane photoproduct 175a measured in MeOH (c ∼ 0.048 mM). 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.098-7.02 (m, 2H), 6.96-6.94 (m, 1H), 4.09-4.05 (t, J= 8.4 

Hz, 1H), 2.63-2.57 (m, 1H), 2.54-2.42 (m, 3H), 2.296-2.22 (m, 2H), 2.21 (m, 3H), 2.12-2.05 (m, 

1H), 1.99-1.89 (m, 1H), 1.24 (s, 3H) and 1.06 (m, 3H). 

 

Figure 3.140: 1H-NMR (400 MHz, CDCl3, δ ppm) of cyclobutane photoproduct 175b.  
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13C-NMR 100 MHz, CDCl3, δ ppm): 170.2, 137.4, 136.1, 135.3, 129.0, 126.4, 124.8, 51.1, 49.1, 

42.6, 33.5, 33.4, 32.97, 29.3, 24.2, 18.9 and 18.8. 

 

Figure 3.141: 13C-NMR (100 MHz, CDCl3, δ ppm) of cyclobutane photoproduct 175b.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 278.1515 

Observed  : 278.1514 

|Δm|  : 0.4 ppm 

 

Figure 3.142: HRMS of cyclobutane photoproduct 175b. 

HPLC analysis conditions: 

For analytical conditions, 

I). Column   : CHIRALPACK® IC 

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 95:5 

Flow rate   : 1.0 mL/min  

Retention times (min) : ∼ 55.32 [(+)-175b] and ∼ 57.64 [(-)-175b] 

N O

175b
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Optical Rotation [α]D26: 

HPLC Rt (CHIRALPACK® IC) at ∼ 55.32 min, (c ∼0.854%, MeOH) = +81.1 deg 

HPLC Rt (CHIRALPACK® IC) at ∼ 57.64 min, (c ∼0.854%, MeOH) = -80.5 deg. 

 

Figure 3.143: CD spectra of cyclobutane photoproduct 175b measured in MeOH (c ∼ 0.035 mM). 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.08-7.06 (m, 1H), 7.01-6.95 (m, 2H), 3.66 - 3.62 (m, 1H), 

2.94-2.81 (m, 2H), 2.73-2.62 (m, 2H), 2.37-2.25 (m, 2H), 2.16 (s, 3H) 1.96-1.84 (m, 2H), 1.19 (s, 

3H), 1.13 (s, 3H). 

 

Figure 3.144: 1H-NMR (400 MHz, CDCl3, δ ppm) of cyclobutane photoproduct 176b. 
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13C-NMR (100 MHz, CDCl3 and DMSO, δ ppm): 169.1, 136.5, 133.6, 133.3, 126.6, 126.4, 125.5, 

52.8, 50.2, 45.5, 39.1, 35.4, 28.1, 23.9, 23.2, 21.7 and 19.8. 

 

Figure 3.145: 13C-NMR (100 MHz, CDCl3, δ ppm) of cyclobutane photoproduct 176b.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 278.1515 

Observed  : 278.1519 

|Δm|  : 1.4 ppm 

 

Figure 3.146: HRMS of cyclobutane photoproduct 176b. 

HPLC analysis conditions: 

For analytical conditions, 

I). Column   : CHIRALPACK® IC 

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 95:5 

Flow rate   : 1.0 mL/min  

Retention times (min) : ∼ 37.62 [(+)-176b] and ∼ 54.03 [(-)-176b] 

N O

H

H

176b



 

 343 

Compound 176b: Optical Rotation [α]D26: 

HPLC Rt (CHIRALPACK® IC) at ∼ 37.62 min, (c ∼0.172%, MeOH) = +15.53 deg 

HPLC Rt (CHIRALPACK® IC) at ∼ 57.64 min, (c ∼0.172%, MeOH) = -15.46 deg. 

 

Figure 3.147: CD spectra of cyclobutane photoproduct 176b measured in MeOH (c ∼ 0.086 mM). 
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1H-NMR (400 MHz, CDCl3, δ ppm): 6.92 (s, 1H), 6.75 (s, 1H), 3.44-3.42 (d, J= 8.4 Hz, 1H), 2.94-

2.87 (m, 1H), 2.65-2.62 (m, 1H), 2.54-2.48 (m, 1H), 2.39-2.26 (m, 3H), 2.25 (s, 3H), 2.16 (s, 3H), 

2.12-2.06 (m, 1H), 1.89-1.82 (m, 2H) and 0.93 (s, 3H). 

 

Figure 3.148: 1H-NMR (400 MHz, CDCl3, δ ppm) of cyclobutane photoproduct 175c.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 169.5, 135.9, 135.3, 134.5, 134.47, 129.7, 126.5, 61.6, 41.6, 

41.1, 37.1, 32.6, 28.4, 27.1, 26.1, 21.2 and 18.7. 

 

Figure 3.149: 13C-NMR (100 MHz, CDCl3, δ ppm) of cyclobutane photoproduct 175c.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 278.1515 

Observed  : 278.1514 

|Δm|  : 0.4 ppm 

 

Figure 3.150: HRMS of cyclobutane photoproduct 175c. 

HPLC analysis conditions: 

For analytical conditions, 

I). Column   : CHIRALPAK IC  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 90:10 

Flow rate   : 1.0 mL/min  

Retention times (min) : ∼ 81.63 [(+)-S,S,S-175c] and ∼ 89.90 [(-)-R,R,R-175c] 

 

II). Column   : RR-WHELK-01 10/100 FEC  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 90:10 

Flow rate   : 1.0 mL/min  

Retention times (min) : ∼ 39.35 [(+)-S,S,S-175c] and ∼ 79.74 [(-)-R,R,R-175c] 

N O

175c



 

 347 

Compound 175c: Optical Rotation [α]D26: 

HPLC Rt (CHIRALPACK® IC) at ∼ 39.35 min, (c = 1.04%, MeOH) = +156.9 deg 

HPLC Rt (CHIRALPACK® IC) at ∼ 79.74 min, (c = 1.04%, MeOH) = -156.4 deg. 

 

Figure 3.151: CD spectra of cyclobutane photoproduct 175c measured in MeOH (c ∼ 0.052 mM). 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.08-7.02 (m, 2H), 6.92-6.90 (m, 1H), 3.98-3.94 (m, 1H), 

2.98-2.85 (m, 2H), 2.75-2.696 (m, 1H), 2.59-2.51 (m, 1H), 2.398 (d, J= 14Hz, 1H), 2.27 (s, 3H), 

1.86-1.79 (m, 1H), 1.22 (s, 3H) and 1.14 (m, 3H). 

 

Figure 3.152: 1H-NMR (400 MHz, CDCl3, δ ppm) of cyclobutane photoproduct 175e.
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13H-NMR (100 MHz, CDCl3, δ ppm): 178.02, 135.3, 134.5, 134.3, 128.6, 126.4, 126.2, 55.4, 43.9, 

41.8, 32.1, 31.9, 31.6, 25.7, 18.3 and 18.1 

 

Figure 3.153: 13C-NMR (100 MHz, CDCl3, δ ppm) of cyclobutane photoproduct 175e. 

N
O

*

*= solvent

17
5e



 

 350 

HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 264.1359 

Observed  : 264.1358 

|Δm|  : 0.4 ppm 

 

Figure 3.154: HRMS of cyclobutane photoproduct 175e. 

HPLC analysis conditions: 

For analytical conditions, 

I). Column   : CHIRALPAK-AS-H  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 95:5 

Flow rate   : 1.0 mL/min 

Retention times (min) : ∼ 5.90 [(+)-175e] and ∼ 9.97 [(-)-175e] 

 

 Optical rotation [α]D26: 

HPLC Rts (CHIRALPAK-AS-H) at ∼ 5.90 min, (c ∼ 0.841 %, MeOH) = +73.76 deg 

HPLC Rts (CHIRALPAK-AS-H) at ∼ 9.97 min, (c ∼ 0.841 %, MeOH) = -75.14 deg 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.11-7.06 (m, 2H), 7.01-6.99 (m, 1H), 4.02-3.98 (m, 1H), 

3.08-3.01 (m, 1H), 2.68-2.60 (m, 2H), 2.45-2.398 (m, 1H), 2.21-2.14 (m, 1H), 2.13 (s, 3H), 2.03-

1.97 (m, 1H), 1.62-1.47 (m, 2H), 1.174 (s, 3H) and 1.171 (s, 3H). 

 

Figure 3.155: 1H-NMR (400 MHz, CDCl3, δ ppm) of cyclobutane photoproduct 175f. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 178.1, 141.9, 136.3, 136.1, 128.98, 128.05, 127.2, 57.89, 

43.5, 42.5, 34.0, 28.7, 26.7, 25.5, 24.7, 18.3 and 17.7. 

 

Figure 3.156: 13C-NMR (100 MHz, CDCl3, δ ppm) of cyclobutane photoproduct 175f. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 278.1515 

Observed  : 278.1505 

|Δm|  : 3.6 ppm 

 

Figure 3.157: HRMS of cyclobutane photoproduct 175f. 

HPLC analysis conditions: 

For analytical conditions, 

I). Column   : CHIRALPAK-AS-H  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 90:10 

Flow rate   : 1.0 mL/min 

Retention times (min) : ∼ 5.34 [(+)-175f]  and ∼ 7.87 [(-)-175f 

 

Optical rotation [α]D22 :  

HPLC Rts (CHIRALPAK-AS-H) at ∼ 5.34 min, (c ∼ 0.657 %, MeOH) = +62.81 deg 

HPLC Rts (CHIRALPAK-AS-H) at ∼ 7.87 min, (c ∼ 0.657%, MeOH) = -63.97 deg. 

  

O
N

175f



 

 354 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.097-7.06 (m, 1H), 6.95-6.93 (m, 1H), 6.88-6.86 (m, 1H), 

4.17-4.04 (m, 1H), 4.07 (dd, J = 12.8, 2.8 Hz, 1H), 3.66 (dd, J = 13.2, 3.2 Hz, 1H), 2.72-2.66 (m, 

1H), 2.59-2.54 (m, 1H), 2.36-2.28 (m, 1H), 2.15 (m, 3H), 2.12-2.05 (m, 1H), 1.16 (s, 3H) and 1.14 

(s, 3H). 

 

Figure 3.158: 1H-NMR (400 MHz, CDCl3, δ ppm) of cyclobutane photoproduct 175g.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 178.2, 157.0, 137.8, 130.2, 128.7, 126.1, 119.7, 70.6, 57.1, 

43.4, 42.2, 36.0, 25.5, 23.6, 18.2 and 17.8. 

 

Figure 3.159: 13C-NMR (100 MHz, CDCl3, δ ppm) of cyclobutane photoproduct 175g. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 280.1308 

Observed  : 230.1301 

|Δm|  : 2.5 ppm 

 

Figure 3.160: HRMS of cyclobutane photoproduct 175g. 

HPLC analysis conditions: 

For analytical conditions, 

I). Column   : CHIRALPAK-AD-H  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 95:5 

Flow rate   : 1.0 mL/min 

Retention times (min) : ∼ 5.34 [(-)-175g] and ∼ 7.87 [(+)-175g 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.39-7.37 (m, 1H), 7.29-7.24 (m, 1H), 7.18-7.15 (m, 1H), 

7.12-7.10 (m, 1H), 5.39-5.35 (m, 1H), 4.87-4.86 (m, 1H), 4.23-4.21 (m, 1H), 3.10 (dd, J= 18, 8.4 

Hz, 1H), 3.10 (dd, J= 17.6, 8.4 Hz, 1H), 2.68 (d, J= 17.6 Hz, 1H), 1.20 (s, 3H) and 1.15 (s, 3H). 

 

Figure 3.161: 1H-NMR (400 MHz, CDCl3, δ ppm) of cyclobutane photoproduct 175h.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 179.7, 135.8, 131.8, 129.0, 127.3, 126.98, 126.1, 84.8, 80.4, 

55.1, 45.3, 32.7, 21.6 and 16.3. 

 

Figure 3.162: 13C-NMR (100 MHz, CDCl3, δ ppm) of cyclobutane photoproduct 175h.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 252.0995 

Observed  : 252.0997 

|Δm|  : 0.8 ppm 

 

Figure 3.163: HRMS of cyclobutane photoproduct 175h. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.38-7.35 (m, 1H), 7.31-7.27 (m, 1H), 7.19-7.16 (m, 1H), 

7.12-7.097 (m, 1H), 4.79 (d, J = 3.8 Hz, 1H), 3.92 (d, J = 3.8 Hz, 1H), 2.86 (d, J = 16.4 Hz, 1H), 

2.76 (d, J = 16.4 Hz, 1H), 1.61 (s, 3H), 1.21 (s, 3H) and 1.16 (s, 3H). 

 

Figure 3.164: 1H-NMR (400 MHz, CDCl3, δ ppm) of cyclobutane photoproduct 175i.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 179.9, 136.3, 132.6, 128.9, 127.5, 127.2, 126.0, 88.5, 82.4, 

59.7, 45.3, 40.9, 25.3, 22.1 and 16.6. 

 

Figure 3.165: 13C-NMR (100 MHz, CDCl3, δ ppm) of cyclobutane photoproduct 175i.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 266.1151 

Observed  : 266.1142 

|Δm|  : 3.4 ppm 

 

Figure 3.166: HRMS of cyclobutane photoproduct 175i. 

  

N

O

O

175i



 

 363 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.39-7.26 (m, 5H), 7.02 (s, 1H), 6.82 (s, 1H), 4.87 (d, J = 3.6 

Hz, 1H), 4.06 (d, J = 4.0 Hz, 1H), 3.11 (d, J = 16.0 Hz, 1H), 3.03 (d, J = 16.0 Hz, 1H), 2.32 (s, 

3H), 2.30 (s, 3H), 1.33 (s, 3H) and 1.16 (s, 3H) 

 

Figure 3.167: 1H-NMR (400 MHz, CDCl3, δ ppm) of cyclobutane photoproduct 175j. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 179.5, 143.98, 137.4, 134.94, 133.4, 133.3, 129.95, 128.9, 

127.8, 126.7, 124.1, 91.5, 83.1, 62.3, 45.5, 43.4, 22.3, 21.4, 17.6 and 16.5. 

 

 

Figure 3.168: 13C-NMR (100 MHz, CDCl3, δ ppm) of cyclobutane photoproduct 175j.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 356.1621 

Observed  : 356.1608 

|Δm|  : 3.7 ppm 

 

Figure 3.169: HRMS of cyclobutane photoproduct 175j. 

HPLC analysis conditions: 

For analytical conditions, 

I). Column   : RR-WHELK-01 10/100 FEC  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 80:20 

Flow rate   : 1.0 mL/min 

Retention times (min) : ∼ 9.23 [(+)-175j] and ∼ 19.00 [(-)-175j] 

For preparative conditions, 

I). Column   : RR-WHELK-01 10/100 FEC  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 90:10 

Flow rate   : 1.0 mL/min 

Retention times (min) : ∼ 18.05 [(+)-175j] and ∼ 36.69 [(-)-175j] 

Optical rotation [α]D24: 

HPLC retention time (RR-WHELK) at ∼ 9.23 min, (c ∼1.9 %, MeOH) = +64.86 deg 

HPLC retention time (RR-WHELK) at ∼ 19.00 min, (c ∼1.9%, MeOH) = -64.82 deg.  
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3.13. Cleavage of photoproducts of atropisomeric enamides 

3.13.1. Cleavage of enamide photoproduct 175g using BBr3 

 

Scheme 3.37: Cleavage of photoproduct 175g using BBr3. 

To a solution of photoproduct 175g (100 mg, 0.39 mmol) in dry DCM (20 mL) at -78 oC 

under N2 atmosphere added BBr3 (1M solution in DCM, 3.11 mmol). The resulting mixture was 

allowed to warm to room temperature and stirred for 24 h. After the reaction, the solution was 

cooled to 0 oC and quenched with saturated NaHCO3 solution. The aqueous layer was extracted 

with DCM (2 X 10mL). The combined organic layer was washed with brine solution (20 mL), dried 

over anhyd. Na2SO4, filtered and the solvent was removed under reduced pressure to get the 

crude product. The product was purified by combiflash using hexanes:ethyl acetate mixture. 

Rf = 0.35 (80% hexanes:20% ethyl acetate) for 177 (Yield = 71%). 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.21-7.08 (m, 1H), 6.91-6.89 (m, 1H), 6.79-6.77 (m, 1H), 

4.74-4.70 (m, 1H), 3.17 (dd, J = 10.0, 8.0 Hz, 1H), 3.03 (dd, J = 10.0, 8.2 Hz, 1H), 2.77-2.65 (m, 

1H), 2.28-2.199 (m, 1H), 2.23 (s, 3H) 1.85-1.78 (m, 1H), 1.21 (s, 3H) and 1.20 (s, 3H). 

 

Figure 3.170: 1H-NMR (400 MHz, CDCl3, δ ppm) of cleavage product 177.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 182.2, 152.4, 134.2, 128.9, 126.7, 124.5, 118.2, 58.7, 43.1, 

40.8, 40.1, 31.5, 28.1, 26.5, 19.5 and 18.2. 

 

Figure 3.171: 13C-NMR (100 MHz, CDCl3, δ ppm) of cleavage product 177.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 360.0570 

Observed  : 360.0573 

|Δm|  : 0.8 ppm 

 

Figure 3.172: HRMS of cleavage product 177. 
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3.13.2. Cleavage of enamide photoproduct 175j using Pd(OH)2 

 

Scheme 3.38: Cleavage of photoproduct 175j using Pd(OH)2. 

The ring opening of oxetane was achieved following a literature reported procedure.8 A 

mixture of oxetane 175j (30 mg, 0.09 mmol) and Pd(OH)2 (20 wt% in charcoal, mg, mmol) in 

methanol (5 mL) was stirred under H2 atmosphere for 2 h. After the reaction, the mixture was 

filtered through the celite and the solid was washed with methanol (10 mL). The combined 

organic layer was concentrated to get the crude product. The crude was purified by combiflash 

using hexanes:ethyl acetate mixture. 

Rf = 0.25 (80% hexanes:20% ethyl acetate) for 178 (Yield = 93%). 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.36-7.34 (m, 2H), 7.28-7.24 (m, 2H), 7.18-7.14 (m, 1H), 6.87 

(s, 1H), 6.82 (s, 1H), 4.737 (d, J= 5.2 Hz, 1H), 4.58-4.55 (m, 1H), 3.49 (t, J = 4 Hz, 1H), 3.29-3.21 

(m, 2H), 2.76-2.72 (m, 1H), 2.21 (s, 3H), 2.09 (s, 3H), 1.10 (s, 3H) and 0.797 (s, 3H) 

 

Figure 3.173: 1H-NMR (400 MHz, CDCl3, δ ppm) hydroxy-tetrahydro-pyrroloquinolinone 178.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 181.8, 145.5, 141.3, 139.5, 137.8, 137.0, 134.5, 133.7, 

133.0, 131.3, 130.9, 82.2, 65.2, 51.8, 49.4, 36.5, 27.8, 26.0, 24.1 and 23.4. 

 

 

Figure 3.174: 13C-NMR (100 MHz, CDCl3, δ ppm) of hydroxy-tetrahydro-pyrroloquinolinone 178.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 358.1783 

Observed  : 358.1781 

|Δm|  : 0.6 ppm 

 

Figure 3.175: HRMS of hydroxy-tetrahydro-pyrroloquinolinone 178.  
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3.14. UV-Vis spectrum of non-biaryl atropisomeric enamides 174a-c and its photoproducts. 

The UV-Vis spectra of atropisomeric enamides 174a-c and its photoproducts were 

measured in methanol (c ∼ 0.1 mM). 

 

Figure 3.176: UV-Vis spectra of 174a-c, 175a-c and 176b in methanol (c ∼ 0.1 mM). 
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3.15. Variable temperature NMR (VT-NMR) of enamide photoproduct 175a. 

To ascertain the enantiomeric nature of the individual photoproduct 175, variable 

temperature 1H-NMR was carried out. Enantiopure photoproduct [(-)-(R,R,R)-175a] was dissolved 

in CDCl3 and 1H-NMR was recorded at different temperatures viz, 50, 25, -25 and -50 oC. There 

was no observable diastereomeric protons in the temperature range investigated (50 to -50 oC) 

indicating the lack of chiral conformers in the photoproduct. 

 

Figure 3.177: Variable temperature 1H-NMR on enantiopure (-)-(R,R,R)-175a at various 
temperatures. 
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4 CHAPTER 4: STEREOSPECIFIC INTRAMOLECULAR [2+2]-

PHOTOCYCLOADDITION OF ATROPISOMERIC MALEIMIDES 

4.1. Introduction 

Maleimides are versatile reactants that find wide application in the ground state (thermal 

transformations) as well as in the excited state (photochemical transformations). The presence of 

electron deficient double bond that is in conjugation with imides carbonyls (conjugate acceptor) 

makes it both a reactive and a functionalizable chromophore. 

 

Scheme 4.1: Various photochemical transformations of maleimides. 

Photocycloaddition of maleimides is the widely known photoreactivity of the maleimides. 

Some of the variants of photocycloaddition includes [2+2]1, [4+2]2 and [5+2]3,4 as shown in 

scheme 4.1. 

The material in this chapter was co-authored by Elango Kumarasamy (EK), Ramya Raghunathan 
(RR), Dr. Steffen Jockusch (SJ), Dr. Angel Ugrinov (AU) and Dr. J. Sivaguru (JS). EK and RR in 
consultation with JS synthesized all the compounds and carried out all the experiments. A part of 
the results based on the atropisomeric maleimide system that is not reported in this thesis will be 
part of RR’s thesis. AU recorded XRD data and solved the structures reported in this chapter. SJ 
performed photophysical studies detailed in this chapter. EK, RR, SJ and JS came up with the 
mechanistic rationale and the conclusion described in this chapter. 
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Despite the success of atropisomeric maleimides in thermal chemistry, the photochemical 

studies were not investigated extensively. This provided a perfect platform for us to evaluate the 

influence of axial chirality in promoting stereospecific [2+2]-photocycloaddition reactions in 

atropisomeric maleimides. Milburn and other research groups have evaluated the photochemistry 

of maleimides and thiomaleimides and showed that the reaction proceed smoothly to yield 

cyclobutane photoproducts (Scheme 4.2 and 4.3).1,5,6 Interestingly, N-alkyl maleimides 209 

provided an access to chemoselective products depending on the type of irradiation conditions.6 

 

Scheme 4.2: Chemoselectivity in the photochemical transformation of N-alkyl maleimides 209. 

The direct irradiation of N-alkylmaleimide in acetonitrile resulted in [5+2]-

photocycloaddition by the cleavage to N-CO bond leading to azepine products 211 (scheme 4.2). 

On the other hand, benzophenone sensitized irradiation in acetonitrile led to [2+2]-

photocycloaddition resulting in cyclobutane products 214. Such diversity in the maleimides makes 

them very useful synthetic building blocks. Similarly, Baker and coworkers reported intra and 

intermolecular [2+2]-photocycloaddition of thiomaleimides 215 leading to cyclobutane products 

216 in excellent yield (Scheme 4.3).1 

 

Scheme 4.3: [2+2]-Photocycloaddition of thiomaleimides 215. 
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The sulfur substitution on the maleimides caused bathochromic shift along with increase 

in the extinction coefficient in UV-vis spectrum (maleimide with λmax of 273 nm, mono 

thiomaleimides 215b with λmax of 339 nm and dithiomaleimide 215c with λmax of 393 nm) allowing 

for efficient reaction. Despite their synthetic utility, stereoselective phototransformations of 

maleimides in the literature were scarce. In one such example, Milburn and coworkers reported a 

diastereoselective intramolecular [2+2]-photocycloaddition of valinol, phenylglycinol derived 

tetrahydrophthalimides 217 that was attached to a cleavable temporary tether.5 The 

diastereoselectivity between the endo and exo photoproduct 218 was moderate to good in some 

cases. 

 

Scheme 4.4: [2+2]-Photocycloaddition of chiral auxiliary, temporary tether appended 
tetrahydrophthalimide 217 (reproduced from reference 5, copyright© Elsevier Ltd, 2007). 

 

The presence of temporary tether allowed them for further synthetic modifications to 

useful building blocks. Based on the literature precedence and the importance of maleimide 

scaffold in the organic synthesis, we designed atropisomeric maleimides to evaluate them 

towards stereospecific phototransformation. The atropisomeric maleimides and their 

intermediates listed in the following chart were synthesized according to the procedure reported 

in literature. 
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Chart 4.1: Structures of imine derived maleimides, their photoproducts and compounds used for 
their synthesis. 
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4.2. Reactivity of N-aryl atropisomeric maleimides in photocycloaddition reaction 

The N-alkenyl maleimides (with suitable chain length) are known to undergo 

chemoselective [2+2] or [5+2]-photocycloaddition depending on the irradiation conditions.6 We 

were interested in evaluating the newly synthesized atropisomeric maleimides towards 

photocycloaddition reaction. In our study, irrespective of the irradiation conditions, the 

chemoselectivity was completely dictated by the chain length of alkenyl tether (Scheme 4.5). For 

example, when maleimide 219a (that had butenyl chain length) was subjected to photoreaction, 

only [2+2]-photocycloaddition was observed (direct or sensitized). On the other hand, when the 

maleimide derivative 223 that had allyl chain length subjected to direct irradiation conditions only 

[5+2]-photocycloaddition was observed, while sensitized irradiation resulted in the isomerization 

of allyl chain double bond leading to styrene type products. 

 

Scheme 4.5: Chain length dependent chemoselectivity of atropisomeric maleimides in 
photocycloaddition reaction. 

 

This chain length dependent chemoselectivity, we believe was the consequence of 

molecular constraints imposed on the maleimides and the kinetics of the individual reaction ([2+2] 

vs [5+2]) that forced it to undergo one reaction pathway vs. another. For example, the length of 

the allyl substituent in the maleimide 223 was short that prevented it from reaching to maleimide 

double bond to form [2+2]-adduct. So, the excited maleimide underwent facile N-CO bond 

cleavage resulting in the insertion of allyl double bond leading to [5+2]-adduct. On the other hand, 

the butenyl-substituted maleimide 219a is too long to undergo [5+2]-adduct. So, the excited 

maleimide was instantly quenched by the butenyl substituent to form [2+2]-adduct. 
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4.3. Racemization barrier in atropisomeric maleimides 

N-Aryl maleimides are known to be inherently twisted owing to the steric congestion 

between imide carbonyls and the ortho hydrogens of the phenyl ring.7,8 However, the simple 

hydrogen substitutions do not present enough sterics to have a stable chiral axis. Thus, in the 

newly synthesized maleimides 219, the presence of methyl group at the ortho position (6-position 

of maleimide) was indispensible to have higher energy barrier for rotation. The maleimides that 

lacked this methyl group (219h-i) were not axially chiral at room temperature. So, we carried out 

racemization kinetics to evaluate the strength of energy barrier towards racemization. 

Racemization kinetics of optically pure atropisomeric maleimides 219a-b and 219e was carried at 

100 °C in toluene. The course of racemization (% ee) was monitored by HPLC analyses on a 

chiral stationary phase at various time intervals. The activation energy barrier is provided in the 

table 4.1. 

Table 4.1: Rate constant, half-life and energy barrier for racemization on atropisomeric 
maleimides 

Entry Compound 
Parameters 

τ1/2 (days) krac (s-1) ΔG‡
rac (kcal⋅mol-1) 

1 219a 3.5 2.27 × 10-6 31.6 

2 219b 3.5 2.33 × 10-6 31.6 

3 219e 3.5 2.40 × 10-6 31.6 

The racemization kinetics was followed by HPLC analysis on a chiral stationary phase. Values 
carry an error of ±5%. 

 

Analysis of the kinetic parameters on atropisomeric maleimides 219 provided insights into 

the energy barrier to rotation around the N-Caryl chiral axis (Table 4.1). For example, in the case 

of 219a, the half-life for racemization (τ1/2) was 3.5 days at 100 °C, corresponding to a 

racemization rate constant (krac) of 2.27 × 10-6 s-1 and an activation energy barrier (ΔG‡
rac) of 31.6 

kcal⋅mol-1. These results clearly show that the newly synthesized atropisomeric maleimides have 

sufficiently high-energy barriers to be employed for stereospecific photoreactions at without the 

loss of absolute configuration.  
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4.4. Intramolecular [2+2]-photocycloaddition of atropisomeric maleimides 

 

Scheme 4.6: [2+2]-Photocycloaddition of atropisomeric maleimides 219. 

The photoreactions of newly synthesized atropisomeric maleimides 219 were evaluated 

under different irradiation conditions and solvent that proceeded smoothly to furnish [2+2]-

photoadduct(s) in excellent isolated yield and mass balance. Three different sets of irradiation 

conditions were tested: (a) direct irradiation; (b) sensitized irradiation under UV light (e.g., using 

xanthone as a sensitizer); and (c) metal-free sensitized irradiation under visible-light (e.g., using 

thioxanthone as a sensitizer). After the photoreaction, the solvent was evaporated under reduced 

pressure, and the product(s) were purified by column chromatography. The NMR, HPLC and X-

ray diffraction (XRD) analyses revealed that the presence of two diastereomeric photoproducts 

viz., exo-photoadduct 220 and endo-photoadduct 221. In the major exo-photoproduct 220, the 

terminal carbon of the alkene tether was oriented away from the carbon bearing the R1 

substituent of the maleimide. Where as in the minor endo-photoproduct 221, the terminal carbon 

of the alkene tether was oriented toward the carbon bearing the R1 substituent of the maleimide. 

The atropisomeric maleimide 219a was chosen as a model system to optimize the irradiation 

conditions. 
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4.4.1. Control studies towards stereospecific [2+2]-photocycloaddition of atropisomeric 

maleimides 

The optimized conditions for the photoreactions were obtained after several screening 

reactions carried out on atropisomeric maleimide 219a. These reactions provided crucial 

information about the solvents, type of irradiations, sensitizers, temperature and time. The 

following table provides the list of those trial experiments. 

Table 4.2: Control experiments on atropisomeric maleimide 219 for optimization of 
photoreactions 

Entry Compd Solvent Conditions 
dr 

(220:221) 

Convn 

(%) 

MB 

(%) 

1 219a MeCN bb, rt, 12 h 79:21 > 98 - 

2 219a MeCN ∼350 nm, rt, 2 h No reaction 

3 219a MeCN Xanthone, 350 nm, rt, 1 h 79:21 > 99 - 

4 219a MeCN Thioxanthone, 420 nm, rt, 1 h 79:21 > 98 95 

5 219a MeCN ∼300 nm, rt, N2, 6 h - 93 97 

6 219a MeCN ∼300 nm, rt, O2, 6 h - 88 92 

7 219a MeCN ∼300 nm, -30 oC, 12 h 79:21 - - 

8 219a Methanol ∼300 nm, -60 oC, 12 h 79:21 - - 

9 219a Toluene ∼300 nm, -60 oC, 12 h 219a crashed out 

10 219e Acetone bb, rt, 12 min >99:1 > 98 55 a 

11 219e MeCN ∼350 nm, rt, 12 h >99:1 92 80 

Note: MeCN- acetonitrile; bb- broad band (450W mercury lamp); rt- room temperature; The reactions were run with 
∼3.9 mM concentration either under constant bubbling of N2 or N2 degassed solution (except for entry 6). Convn- 
conversion, MB- mass balance. ∼300, ∼350 and ∼420 nm irradiations were carried out in a Rayonet reactor. a 
Isolated yield. 

 

The analysis of table 4.2 clearly indicated that the photocycloaddition reaction proceeded 

smoothly under sensitization. For example under xanthone and thioxanthone sensitized reaction 

completed within 1 h (entry 3 and 4). The reaction proceeded to similar conversions both under 

O2 and N2 atmospheres (entry 5 and 6) and the temperature or solvent did not have any influence 

on the dr of the photoproducts (entry 7 and 8).  
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4.4.2. Solvent screening for the UV/Visible light mediated photoreaction of maleimides 

219a and 219e 

Various solvents were investigated for the xanthone and thioxanthone sensitized 

photoreaction of atropisomeric maleimide 219a. In a standard experiment, maleimide 219a with 

30 mol % of sensitizer in a respective solvent (∼3.9 mM concentration) was degassed with N2 for 

15 min and then sealed. This solution was irradiated in a Rayonet reactor (∼350 nm for xanthone 

and ∼420 nm for thioxanthone, respectively) for 1 h. After the reaction, a stock solution of internal 

standard (triphenylmethane) was added and the solution was concentrated under reduced 

pressure to obtain the crude reaction mixture. 1H-NMR spectroscopy was recorded on the crude 

reaction mixture and from the integral values the conversion and mass balance were calculated. 

Table 4.3: Solvent screening for sensitized photoreaction of 219a 

Entry Solvent 
% Conversion (% mass balance) 

Xanthone Thioxanthone 

1 Methanol > 98 (> 98) > 98 (> 98) 

2 Acetonitrile > 98 (> 98) > 98 (> 98) 

3 Ethyl acetate > 98 (95) 83 (> 98) 

4 THF Decomposed - 

5 Chloroform > 98 (81) > 98 (> 98) 

6 Dichloromethane > 98 (> 98) > 98 (> 98) 

7 Benzene 44 (78) 73 (> 98) 

8 Toluene - (36) 41 (> 98) 

9 MCH 27 (> 98) 26 (> 98) 

Note: The reported value carry an error of ±5%. 

The photoreaction with xanthone and thioxanthone in various solvents proceeded with 

good conversion and excellent mass balance. However, in certain solvents such as benzene 

toluene and methylcyclohexane (MCH) poor conversion and mass balance was observed. In THF 

however complete decomposition was observed with no trace of either starting material or 

photoproduct.  
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4.4.3. Visible light photocatalysis - Sensitizer loading for photoreaction of maleimide 219a 

and 219e 

The efficiency of visible light photoreaction with 30 mol% of the thioxanthone was high 

(reaction completed in 1 h). So, to evaluate the % of conversion in 219a with respect to mol% of 

sensitizer, we conducted visible light photoreaction with varying mol % of the thioxanthone. In a 

typical reaction, the maleimides were taken in acetonitrile (c ∼ 3.9 mM) and desired mol% of 

thioxanthone was added and the solution was degassed with N2 for ∼15 min, sealed and 

irradiated at ∼420 nm in a rayonet reactor for 1 h. After the reaction, a stock solution of internal 

standard was added and the solvent was evaporated. 1H-NMR was recorded on the crude 

reaction mixture and from the integral values of the peaks conversion and mass balance were 

calculated (refer to section 4.11). 

Table 4.4: Sensitizer loading for thioxanthone sensitized photoreaction of maleimides 219a and 
219e 

Entry Compd Sensitizer (mol%) Conversion (%) Mass balance (%) 

1 

219a 

5 60 > 98 

2 10 81 > 98 

3 15 86 > 98 

4 20 100 88 

5 

219e 

5 40 > 98 

6 10 71 87 

7 15 100 > 98 

8 20 100 > 98 

Note: The reported value carry an error of ±5%. 

The result clearly showed that the thioxanthone was extremely efficient in promoting the 

visible light photoreaction. For example, even with 5 mol% sensitizer loading 60% conversion was 

achieved in 1 h. However, the sensitizer loading was maintained at 30 mol%, to ensure that the 

catalyst always absorb the light thus acting as an optical shield to prevent decomposition of 

starting material or photoproduct.  



 389 

4.4.4.  Analysis of dr in the photoproducts for maleimides 219a and 219d in various 

solvents under direct irradiation 

The photoreaction of atropisomeric maleimides resulted in the formation of mixture of 

diastereomeric products 220 and 221. We screened atropisomeric maleimides 219a and 219d in 

various solvents viz., toluene, MCH, acetone, acetonitrile and methanol (c ∼ 3.88 mM) to 

ascertain the role of solvent in biasing one product over the other. In a typical experiment, a 

solution of atropisomeric maleimide 219a and 219d in a given solvent was irradiated with a 450W 

medium-pressure mercury lamp under constant flow of nitrogen for 5 h at 25 °C. After 5 h of 

irradiation, the solvent was evaporated under reduced pressure and the NMR of the crude 

reaction mixture was recorded in CDCl3. From the integral values, diastereomeric ratio (dr) 

between 220 and 221 was analyzed. 

Table 4.5: Analysis of dr in the photoproducts of maleimides 219a and 219d in various solvents. 

Entry Compd 
Solvents 

Toluene MCH Acetone Acetonitrile Methanol 

1 219a 73:27 77:23 79:21 78:22 73:27 

2 219d 77:23 78:22 74:26 79:21 71:29 

Note: The results are an average of 2 runs with ±5 error limit. MCH- methylcyclohexane. 

The result showed that the solvent plays a minimal role in dictating the dr in the 

photoproducts. Screening from non-polar solvent such as MCH to polar solvent such as methanol 

resulted in similar dr values. Also, from the low temperature (-60 °C) screening studies, it was 

revealed that the temperature also had only minimum influence over the dr in the photoproducts. 
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4.4.5. Stereospecific [2+2]-photocycloaddition of atropisomeric maleimides 219 

 

Scheme 4.7: Stereospecific [2+2]-photocycloaddition of atropisomeric maleimides 219a-g. 

The photoreaction of maleimides was performed under optimized conditions to evaluate 

the enantiomeric excess and diastereomeric ratio in the product (Scheme 4.7). The photoreaction 

was performed under the given conditions in table 4.6 until complete consumption of starting 

material as observed in thin layer chromatography (TLC). After the reaction, the products were 

isolated either in preparative TLC or column chromatography. The NMR analysis of the crude and 

the HPLC analysis revealed the dr and enantiomeric excess in the photoproducts respectively. 

Analysis of Table 4.6 disclosed several interesting characteristics in the [2+2]-

photocycloaddition reaction of atropisomeric maleimides. The enantiomeric excess in the 

photoproduct of all the maleimides analyzed were >98% (219a-b and 219e). This was a clear 

indication of the influence of stable chiral axis that enabled efficient chirality transfer resulting in 

enantioenriched photoproducts. 

The diastereomeric ratio in the photoproduct was affected by the substituents at the 

alkenyl tether (R2-R3) and the maleimide double bond (R1). So, we systematically changed the 

substituents R1-R3 and X to evaluate the influence of substituents in determining the dr in the 

photoproducts. The X substituent that connects the alkene tether (O, CH2 and O2Si2Ph2) and N-

phenyl ring had only minimal influence over the dr. For example, comparing 219a and 219d 

shows that the dr was only minimally affected up on changing the X group from O to CH2. Even 

increasing the chain length as in the case of 219c (X = O-(SiPh2)-O) did not improve the dr in the 

photoproduct. This result was a slight surprise as the literature precedence shows that silyl tether 

had good control over the dr.5 When the R1 group was changed to bromine, further decrease in 
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the dr was noted (61:39). To our surprise, when a bulky substituent was employed for the 

photoreaction as in the case of 219e (R1 = Ph), complete control over the dr was obtained. When 

the optically pure 219e was employed for photoreaction, complete enantio- and diastereomeric 

control was achieved. If the maleimide double bond contained disubstitution as in the case of 

219g (R1= Me, R2= Br), slight reversal in the dr was observed that favors endo photoproduct 

(220:221 = 42:58). 

Table 4.6: Intramolecular [2+2]-photocycloaddition of atropisomeric maleimidesa 

 
a Irradiations of 219e was performed with 30 mol % thioxanthone as the triplet sensitizer in acetonitrile solvent at room 
temperature using a Rayonet reactor equipped with 420 nm lamps. For all other substrates, the photoreactions were 
performed in acetone at room temperature using a 450 W medium-pressure Hg lamp with a Pyrex cutoff filter. b The ratios 
were determined by 1H-NMR spectroscopy of the crude samples. c The ee values were obtained from HPLC analysis on a 
chiral stationary phase, and the results are averages of three runs with an error of ±3%. The absolute configuration was 
determined by XRD with Flack parameters. 
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minimal influence. The presence of oxygen at the alkenyl tether allowed us to cleavage the tether 

after the photoreaction, revealing the enantioenriched building blocks. 

 

4.4.6. Continuous flow visible-light photocatalysis of atropisomeric maleimides 219a 

 

Scheme 4.8: General irradiation procedure for maleimides 219a. 

The efficiency of thioxanthone in effecting the [2+2]-phototransformations provided us an 

opportunity to evaluate the reaction under visible light using household light (Compact 

Fluorescent Light bulbs). This idea was appealing, as the reaction condition was redox-neutral 

and metal- free. Apart from using visible-light, we also attempted to run the reaction under flow 

condition so that our methodology could be easily scaled up with increased efficiency. With the 

simplest set up available in our lab, we designed a flow set up and optimized the irradiation 

conditions. In a typical reaction, a N2 degassed acetonitrile solution of maleimide (c ∼ 3.9 mM) 

and thioxanthone (10 mol%) in a 100 mL round bottom flask was pumped through a peristaltic 

pump (8 RPM = ∼ 0.83mL/min and 4 RPM = ∼0.45mL/min) into FEP tubing that was coiled 

around a 40W CFL bulb. The solution after the irradiation was collected at the end in a round 

bottom flask, concentrated under reduced pressure, analyzed by 1H-NMR and was purified by 

combiflash. 
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Figure 4.1: Flow set up for visible light photocatalysis of maleimides 219a. 

Several trial runs were carried out to optimize the best conditions for flow photolysis. The 

following table summarizes the trials. 

Table 4.7: Reaction optimization for flow photolysis of 219a under visible light conditions.a 

Entry Compd 
Parameters 

t (min) 
Conversion 

(%) Lamp Flow (RPM) Sens. (mol%) 

1 219a 13W 4 30 15 50 

2 219a 13W 4 100 15 30 

3 219a 20W 4 30 15 50 

4 219a 20W 8 30 35 72 

5 219a 40W 8 10 35 > 98 

6 219a 40W Batch mode 10 35 21 

7 219a 40W Batch mode 10 180 63 

a Entries 1-3 were tested on a FEP tubing with dimension 1/16×0.03×20ft that had internal volume ∼3 mL 
around the lamp. t is the residence time of the solution during irradiation. Sens.- sensitizer loading for a given 
reaction. Conversion was calculated by NMR spectroscopy analysis of the crude sample. Batch mode was 
conducted using a test tube placed at ∼ 2.5 cm from the lamp (the similar distance for the FEP tubing from the 
lamp). 
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Complete conversion of maleimide 219a was observed achieved (3.9 mM with 10 mol % 

sensitizer and a flow rate of 0.83 mL/min) within 35 min of irradiation, while the batch mode for 

the similar scale only resulted in 23% conversion in 35 min. These results clearly demonstrate the 

efficacy of [2+2] photoreactions of maleimides even under visible-light conditions. 

 

4.5. Photophysical studies on atropisomeric maleimides 

To understand the nature of excited states and the reactivity of atropisomeric maleimides, 

we carried out detailed photophysical studies. However, the maleimides with alkenyl tether found 

to be too reactive to provide any significant information about the excited states even at 77 K. To 

avoid the photochemical reaction and to understand its photophysical properties, atropisomeric 

maleimide 222e was synthesized wherein the alkenyl part of the maleimide was saturated while 

retaining the chromophore part of the maleimide intact. This approach completely avoided the 

photoreaction thus providing more information about the excited states. 
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4.5.1. Triplet-triplet absorbance studies on atropisomeric maleimides 222e and 219e 

Lase flash photolysis studies were carried out on maleimides whose alkenyl tether was 

saturated and unsaturated (222e and 219e) in acetonitrile solution. The saturated alkenyl tether 

was evaluated to prevent the fast [2+2]-photocycloaddition reaction. 

 

Figure 4.2: (A): Transient absorption spectrum monitored 0-3 µs after pulsed laser excitation 
(355 nm, 7 ns pulse length) of argon saturated MeCN solution of 222e. (B): Absorbance kinetic 
traces monitored at 410 nm of argon saturated MeCN solution of 222e (red) and 219e (green) 
with matching absorbance of 0.3 at 355 nm. (Reproduced from reference 9, with permission from 
American Chemical Society, 2014). 

 

To obtain the triplet-triplet absorption (TTA) spectrum of maleimide 222e under direct 

excitation, an argon purged acetonitrile solution of the maleimide 222e that had an absorbance of 

0.3 (1 cm path length) at the excitation wavelength (355 nm) was placed in a 1×1 cm quartz cell 

with reservoir. Kinetic traces at varying probe wavelength (260 – 800 nm) were measured after 

pulsed laser excitation (Ex = 355 nm, 7 ns pulse length). From these kinetic traces the transient 

absorption was plotted (figure 4.1). 

The transient absorption of 222e was centered on 400 nm that decayed with a lifetime of 

50 µs. The transient was quenched by molecular oxygen (kq = 2 × 10-9 M-1⋅s-1), and was assigned 

to the TTA of the maleimide chromophore. The triplet transient absorption of 222e was further 

ascertained by its generation from excited thioxanthone (TX) sensitizer through triplet energy 

transfer. Similar TTA studies carried out on 219e (maleimide with an alkenyl tether) revealed that 

the triplet lifetime of maleimide was only 450 ns. 
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Figure 4.3: (A): Transient absorption spectra monitored 0-0.8 µs (blue) and 10-20 µs (red) after 
pulsed laser excitation (355 nm, 7 ns pulse length) of argon saturated MeCN solutions of TX and 
222e (0.05 mM). (B): Absorbance kinetic traces monitored at 410 nm of argon saturated MeCN 
solutions of TX containing 0.1 mM of 222e (red) or 219e (green). (C): Absorbance kinetic traces 
monitored at 620 nm (blue) and 410 nm (green) after pulsed laser excitation using front face 
geometry and a 2 mm optical path length. (Reproduced from reference 9, with permission from 
American Chemical Society, 2014). 
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Comparison of the TTA at 410 nm upon laser excitation at 355 nm between the 

maleimide with a saturated alkyl tether (222e) and the maleimide with alkenyl tether (219e) 

revealed the efficiency of the photoreaction. For example, the lifetime of 222e and 219e was  

50 µs and 450 ns respectively suggesting that the excited state of 219e (3219e*) is highly 

deactivated by the [2+2]-photocycloaddition reaction. 

Similarly, the TTA studies were carried out on thioxanthone sensitizer TX in Argon-

saturated acetonitrile solution in the presence of maleimide to understand the interaction between 

the sensitizer and the maleimide. Excitation of TX (Ex = 355 nm, 7 ns pulse length) resulted in the 

transient absorbance monitored at 620 nm. This initial triplet absorption was quenched by 

maleimide 222e (decay of the absorbance at 620 nm) to generate 3222e * (rise in absorbance at 

420 nm) that was monitored at 420 nm. This suggested that the excited state TX acted as a 

donor, while the maleimide acted as an acceptor. 

 

Figure 4.4: (A): Singlet oxygen phosphorescence decay traces monitored at 1270 nm generated 
by pulsed laser excitation (355 nm, 7 ns pulse length) of air saturated CCl4 solutions of 222e or 
phenalenone with matching absorbance of 0.3 at 355 nm. (B): Normalized singlet oxygen 
phosphorescence spectrum generated by steady-state irradiation (355 nm) of 222e in air 
saturated CCl4 solution. (Reproduced from reference 9, with permission from American Chemical 
Society, 2014). 
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Once the involvement of triplet transient of maleimide 222e was confirmed, we attempted 

to evaluate the triplet quantum yield of maleimide 222e by the generation of singlet oxygen. The 

singlet oxygen generation was carried out by pulsed irradiation of an aerated CCl4 solution of 

maleimide. The relative triplet quantum yield of the maleimide (Φ1O2 ≈ 0.04) was calculated by 

comparing the efficiency with phenalenone as the reference standard (Φ1O2 = 0.98).10 The result 

revealed that the maleimides had very poor intersystem crossing quantum yield and produce very 

low amounts of the triplet upon direct irradiation. 

 

4.6. Mechanistic rationale for stereospecific [2+2]-photocycloaddition 

On the basis of photochemical and photophysical investigations, we postulated that the 

intramolecular [2+2]-photocycloaddition proceeded via triplet manifold. We believe that the 

electron rich alkene likely interacts with the half-filled π orbital of the ππ* excited state of the 

maleimide.11 As the triplet reaction goes through spin inversion, we believe the photoproduct 

formed via two-step process (scheme 4.9). The initial step was the formation of triplet  

1,4-diradical (labeled as DR1-DR4) that was followed by the cyclization step, in which the triplet 

1,4-diradical intersystem crosses to the corresponding singlet 1,4-diradical and recombines to 

form the cyclobutane photoproduct 220 or 221. 



 399 

 

Scheme 4.9: Mechanistic rationale for [2+2]-photocycloaddition of atropisomeric maleimides 219. 
(Reproduced from reference 9, with permission from American Chemical Society, 2014). 

 
While the formation of the exo and endo-photoproduct can be explained based on the 

general two-step process, the conformational equilibrium and the type of diradical formed that 

dictates the exo-endo selectivity needs further substantiation. In the case of maleimides, the exo-

photoproduct could have originated from the conformer “219-conf(A)” in which the CH2 group of 

the alkenyl tether is positioned away from the R1 substituent of the maleimide double bond. The 

initial step of the photoreaction could have led to the formation of either DR1 or DR2. Similarly, 

the formation of endo-photoproduct could have formed from the conformer “219-conf(B)” in which 

the CH2 group of the alkenyl tether is positioned towards the R1 substituent of the maleimide 

double bond. In this case, the initial step of the photoreaction could have led to either DR3 or 
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DR4. These triplet 1,4-diradicals then intersystem cross to singlet 1,4-diradicals and cyclize to 

form the photoproducts. 

To gain more insight into the formation of preferred triplet 1,4-diradical, we carried out 

scrambling studies in 219b. The maleimide 219b has a methyl substituent at the terminal carbon 

of the alkenyl tether. The analysis of photoproducts revealed that the no products corresponding 

to the scrambling of the alkenes was observed. For example, irradiation of 219b only resulted in 

exo- and endo-adduct (220b and 221b) with only trace of scrambled photoproduct (scheme 4.10). 

 

Scheme 4.10: Scrambling studies with maleimides 219b (for clarity the endo photoproduct is 
omitted in the scheme). 

 
The absence of scrambling could be the result of two scenarios. In the first scenario, the 

1,4-diradical DR1 was likely preferred over DR2 resulting in major photoproduct. In the second 

scenario, the 1,4-diradical DR2 that was formed in the initial step cyclized at a much higher rate 

compared to bond rotation (responsible for the scrambling products) retaining the 

stereospecificity of the reaction. However, this was unlikely as the reaction proceeds in a triplet 

manifold, the 1,4-diradical DR2 will be in triplet state. In order to cyclize, the triplet diradical has to 

intersystem cross, which presents sufficient time for the 1,4-diradical DR2 to scramble. Although, 

this assertion could have exceptions, the absence of scrambling products suggests that the first 

scenario is the likely operating mechanism. 

Also, the mechanistic rationale for the direct irradiation was assumed to undergo singlet 

pathway. This assertion is based on the photophysical studies and literature precedence. 12 The 

photophysical data indicated that the maleimides have poor inter system crossing efficiency. Also, 

the similar conversions in presence of both N2 and O2 (oxygen known to quench to triplet states 

efficiently) confirmed the presence of singlet-excited state. The literature precedence supports the 
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via exciplex formation.12 The exo/endo selectivity in the photoproducts again was dictated by the 

orbital interaction between the electron rich alkene tether and the maleimide double bond that is 

dictate by the R1 substituent. 

The atropisomeric N-phenyl substituted maleimides present new findings that 

complement the existing reports wherein the irradiation conditions dictate the product outcome. 

For example, the N-alkenyl maleimides form [5+2]-product up on direct irradiation and [2+2]-

product up on sensitized irradiation. Where as in the case of atropisomeric maleimides, it is the 

chain length that dictated the chemoselectivity in the product. This chemoselectivity was the 

result of molecular constraints imposed on the reacting alkene tether. 

 

4.7. X-Ray crystal structure data for atropisomeric maleimides and its photoproducts 

Structure determination: Single crystal X-ray diffraction data of the compounds 219, 220 

and 221 were collected on a Bruker Apex Duo diffractometer with a Apex 2 CCD area detector at 

T = 100K. Cu radiation was used. All structures were process with Apex 2 v2010.9-1 software 

package (SAINT v. 7.68A, XSHELL v. 6.3.1). Direct method was used to solve the structures after 

multi-scan absorption corrections. Details of data collection and refinement are given in the table 

below. 

 



 

 

402 

Table 4.8: Crystal structure data for atropisomeric maleimides and its photoproducts 

 219e (1R,5S,6R) 
-220a 

(1S,5R,6S) 
-220a 

(1R,5S,7S) 
-221a 

(1S,5R,7R) 
-221a 

(1R,5S,6R,7R) 
-220b 

Formula C20H17NO3 C15H15NO3 C15H15NO3 C15H15NO3 C15H15NO3 C16H17NO3 
FW 319.35 257.28 257.28 257.28 257.28 271.30 
cryst. size_max 

[mm] 

0.27 0.26 0.227 0.206 0.244 0.196 
cryst. size_mid 

[mm] 

0.22 0.09 0.185 0.168 0.084 0.13 
cryst. size_min 

[mm] 

0.07 0.05 0.13 0.114 0.045 0.085 
cryst. system  Orthorhombic Monoclinic Orthorhombic Orthorhombic Orthorhombic Monoclinic 
Space Group, Z ‘P b c a’, 8 P12121, 8 P212121, 4 P212121, 4 P21212, 4 ‘P1211’, 2 
a [Å] 10.9776(3) 14.5256(3) 7.2608(2) 10.9054(3) 10.9133(2) 10.0478(3) 
b [Å] 9.9868(3) 6.9706(2) 12.2775(4) 17.4588(4) 17.4560(4) 7.4742(2) 
c [Å] 28.5806(8) 24.6411(6) 13.9906(5) 6.6865(2) 6.68560(10) 10.4273(3) 
α [Å] 90 90 90 90 90 90 
ß [Å] 90 92.0890(10) 90 90 90 117.9950(10) 
γ [Å] 90 90 90 90 90 90 
V [Å3] 3133.32(5) 2493.31(11) 1247.18(7) 1273.08(6) 1273.62(4) 691.45(3) 
ρcalc [g/cm3] 1.354 1.371 1.370 1.395 1.389 1.303 
µ [mm-1] 0.739 0.784 0.784 0.816 0.815 0.733 
Radiation Type Cu Cu Cu Cu Cu Cu 
F(000) 1344 1088 544 568 564 288 
no of measured refl. 20129 35878 8134 7147 9437 9074 
no of indep. refl. 2756 8708 2189 2197 2245 2430 
no of refl. (I ≥ 2σ) 2623 8348 2164 2124 2202 2413 
Resolution [Å] 0.84 0.84 0.84 0.84 0.84 0.84 
R1/wR2 (I ≥ 2σ)a [%]  3.24/8.03 2.79/6.82 2.55/6.66 3.27/8.94 3.37/9.69 2.48/6.56 
R1/wR2 (all data) 

[%] 

3.39/8.14 2.97/6.95 2.58/6.75 3.42/9.08 3.43/9.75 2.50/6.59 
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Table 4.8: Crystal structure data for atropisomeric maleimides and its photoproducts (continued) 

 (1S,5R,6S,7S)-220b (1S,5R,6S)-220d (1R,5S,6S)-221d (1R,5S,6R)-220e (1S,5R,6S)-220e 
Formula C16H17NO3 C16H17NO2 C16H17NO2 C20H17NO3 C20H17NO3 
FW 271.30 255.30 255.30 319.35 319.35 
cryst. size_max [mm] 0.28 0.11 0.22 0.21 0.238 
cryst. size_mid [mm] 0.134 0.1 0.1 0.077 0.164 
cryst. size_min [mm] 0.054 0.042 0.08 0.04 0.07 
cryst. system  Monoclinic Orthorhombic Orthorhombic Monoclinic Monoclinic 
Space Group, Z ‘P1211’, 2 P212121, 4 P212121, 4 ‘P1211’, 2 ‘P1211’, 2 
a [Å] 10.0586(15) 10.5289(2) 10.4120(3) 10.5871(2) 10.5863(5) 
b [Å] 7.4726(11) 10.8797(2) 11.0795(3) 7.2845(2) 7.2819(3) 
c [Å] 10.4252(15) 11.1329(2) 11.1114(4) 10.7784(3) 10.7905(5) 
α [Å] 90 90 90 90 90 
ß [Å] 117.968(5) 90 90 112.488(2) 112.547(2) 
γ [Å] 90 90 90 90 90 
V [Å3] 692.08(18) 1275.29(4) 1281.81(7) 768.04(3) 768.24(6) 
ρcalc [g/cm3] 1.302 1.330 1.323 1.381 1.381 
µ [mm-1] 0.732 0.700 0.696 0.754 0.753 
Radiation Type Cu Cu Cu Cu Cu 
F(000) 288 544 544 336 336 
no of measured refl. 7545 7617 10517 10176 9986 
no of indep. refl. 2334 2173 2235 2675 2684 
no of refl. (I ≥ 2σ) 2310 1985 2127 2580 2661 
Resolution [Å] 0.84 0.84 0.84 0.84 0.84 
R1/wR2 (I ≥ 2σ)a [%]  2.64/6.81 3.43/7.82 4.13 / 11.07 2.63/6.49 2.48/6.40 
R1/wR2 (all data) [%] 2.67/6.83 3.94/8.08 4.35 / 11.24 2.79/6.60 2.49/6.42 
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Figure 4.5: Atropisomeric maleimide 219e (crystallized from hexanes/2-propanol). 

 

 

Figure 4.6: Photoproduct (-)-(1R,5S,6R)-220a (crystallized from hexanes/CHCl3). 

 

 

Figure 4.7: Photoproduct (+)-(1S,5R,6S)-220a (crystallized from hexanes/CHCl3). 
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(B is the second isomer that elutes from chiral stationary phase in HPLC analysis) 

Figure 4.8: Photoproduct (B)-(1S,5R,7R)-221a (crystallized from hexanes/CHCl3). 

 

(A is the first isomer that elutes from chiral stationary phase in HPLC analysis) 

Figure 4.9: Photoproduct (A)-(1R,5S, 7S)-221a (crystallized from hexanes/CHCl3). 

 

Figure 4.10: Photoproduct (-)-(1R,5S,6R,7R)-220b (crystallized from hexanes/CHCl3).  
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Figure 4.11: Photoproduct (+)-(1S,5R,6S,7S)-220b (crystallized from hexanes/CHCl3). 

 

 

Figure 4.12: Photoproduct (-)-(1R,5S,6R)-220e (crystallized from hexanes/CHCl3). 

 

 

Figure 4.13: Photoproduct (+)-(1S,5R,6S)-220e (crystallized from hexanes/CHCl3). 
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(A is the first isomer that elutes from chiral stationary phase in HPLC analysis) 

Figure 4.14: Photoproduct (A)-(1S,5R,6S)-220d (crystallized from hexanes/2-propanol). 

 

 

Figure 4.15: Photoproduct (1R,5S,7S)-221d (crystallized from hexanes/CHCl3). 
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4.8. Summary and outlook 

The [2+2]-photocycloaddition of atropisomeric maleimides revealed several unique 

features of atropisomeric maleimides towards photocycloaddition reaction. On contrary to N-

alkenyl maleimides, the atropisomeric maleimides, irrespective of irradiation conditions, the 

chemoselectivity between [2+2] vs. [5+2]-photocycloaddition was dictated by length of the alkenyl 

tether. The reaction proceeded smoothly under direct and sensitized irradiation to result in 

regioisomeric products (exo and endo photoadduct). The regioselectivity in the photoreaction was 

highly affected by the substituents on the alkenyl tether and the maleimide double bond but only 

minimally influenced by solvent or temperature. The photoreaction was very efficient under both 

UV and visible light irradiation conditions thus allowing us to use household lamp to perform 

reactions. Integrating visible light photoreaction with continuous flow setup provided opportunity 

to scale up the photoreactions. Detailed photophysical studies carried out on the maleimides 

provided crucial insights about the nature of excited states and their lifetime, which helped to 

explain the photoreactivity of atropisomeric maleimides. 

 
4.9. Experimental section 

4.9.1. General methods 

All commercially obtained reagents/solvents were used as received; chemicals were 

purchased from Alfa Aesar®, Sigma-Aldrich®, Acros organics®, TCI America®, Mallinckrodt®, and 

Oakwood® Products, and were used as received without further purification. Unless otherwise 

stated, reactions were conducted in oven-dried glassware under nitrogen atmosphere. 1H-NMR 

and 13C-NMR spectra were recorded on Varian 400 MHz (100 MHz for 13C) and on 500 MHz (125 

MHz for 13C) spectrometers. Data from the 1H-NMR spectroscopy are reported as chemical shift 

(δ ppm) with the corresponding integration values. Coupling constants (J) are reported in hertz 

(Hz). Standard abbreviations indicating multiplicity are used as follows: s (singlet), b (broad),  

d (doublet), t (triplet), q (quartet), m (multiplet) and virt (virtual). Data for 13C NMR spectra are 

reported in terms of chemical shift (δ ppm). High-resolution mass spectrum data in Electrospray 

Ionization mode were recorded on a Bruker – Daltronics® BioTof mass spectrometer in positive 

(ESI+) ion mode. HPLC analyses were performed on Waters® HPLC equipped with 2525 pump or 
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on Dionex® Ultimate 3000 HPLC. Waters® 2767 sample manager was used for automated sample 

injection on Waters® HPLC Ultimate 3000 sample injector was used for injection on Dionex® 

HPLC. All HPLC injections were monitored using a Waters® 2487 dual wavelength absorbance 

detector at 254 and 270 nm or on Dionex® HPLC were monitored using a diode array detector 

(DAD3000125). Analytical and semi-preparative injections were performed on chiral stationary 

phase using various columns as indicated below. 

i) Regis® PIRKLE COVALENT (R,R) WHELK–01 

a) 25 cm x 4.6 mm column for analytical injections. 

b) 25 cm x 10 mm column for semi-preparative injections. 

ii) CHIRALCEL® OD-H 

a) 0.46 cm x 25 cm column for analytical injections. 

b) 10 mm x 25 cm column for semi-preparative injections. 

iii) CHIRALPAK® AD-H 

a) 0.46 cm x 25 cm column for analytical injections. 

b) 10 mm x 25 cm column for semi-preparative injections 

Masslynx software version 4.1 was used to monitor/analyze the HPLC injections on 

Waters® and to process HPLC traces. Chromeleon 7 software was used to monitor and process 

HPLC injections on Dionex® HPLC. Igor Pro® Software version 6.0 was used to process the 

HPLC graphics. Optical activity values were recorded on JASCO® DIP – 370 digital polarimeter. 

CD spectra were recorded on JASCO® J-815 with JASCOPTC-423S/15 temperature controller 

maintained by liquid nitrogen. When necessary, the compounds were purified by combiflash 

equipped with dual wavelength UV-Vis absorbance detector (Teledyne ISCO) using 

hexanes:ethyl acetate as the mobile phase and Redisep® cartridge filled with silica (Teledyne 

ISCO) as stationary phase. In some cases, compounds were purified by column chromatography 

on silica gel (Sorbent Technologies®, silica gel standard grade: porosity 60 Å, particle size: 230 x 

400 mesh, surface area: 500 – 600 m2/g, bulk density: 0.4 g/mL, pH range: 6.5 – 7.5). Unless 

indicated, the Retardation Factor (Rf) values were recorded using a 5-50% hexanes:ethyl acetate 

as mobile phase and on Sorbent Technologies®, silica Gel TLC plates (200 mm thickness 

w/UV254). 
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The plot of CD spectrum was carried out using molar ellipticity vs wavelength (nm) and 

the molar ellipticity was calculated using the formula,13 

Molar ellipticity [Δε] = [θ] / 32980cl 

Where, 

c = Concentration in mols/lit; l = Path length in cm; θ = Ellipticity measured in millidegrees. 

Photophysical Methods: 

Spectrophotometric solvents (Sigma-Aldrich®) were used when ever necessary unless 

mentioned otherwise. UV quality fluorimeter cells (with range until 190 nm) were purchased from 

Luzchem®. Absorbance measurements were performed using a Shimadzu® UV-2501PC UV-Vis 

spectrophotometer. Laser flash photolysis (LFP) experiments employed the pulses from a 

Spectra Physics GCR-150-30 Nd:YAG laser (355 nm, ca 5 mJ/pulse, 7 ns pulse length) and a 

computer controlled system that has been described elsewhere.14 

Information about photoreactor with flow set up: 

Peristaltic pump: The peristaltic pump employed was purchased from Fischer Scientific® 

(model No: 72-320-048). The pump can dispense liquid ranging from 4-200 RPM (This can be 

manually calibrated to mL/min by collecting the amount of liquid pumped per minute). 

40W CFL bulb: The light bulb was purchased from Grainger® (Lumapro; item no: 2CUU4) 

and delivers 2400 lumens of brightness. 

FEP tubing: The FEP (Fluorinated ethylene propylene tubing) tubing was purchased from 

IDEX-Health & Science® (product no: 1521L, natural) with the dimension of 1/8×0.062×50ft. The 

tube was rapped around a test tube stand in a rectangular fashion surrounding the lamp. The 

total volume of solvent in the tube that is exposed to the light was around 28-30 mL. The 

residence time was dependent on the flow rate (with 8RPM, i.e. 0.83mL/min the residence time 

was about 35 min). 
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4.10. General procedure for synthesis atropisomeric maleimide derivatives 219a-q and their 

precursors 

4.10.1. Synthesis of acetamide derivative 229a-b 

 

Scheme 4.11: Synthesis of acetamide derivative 229a-b. 

The acetamide derivative was synthesized according to a procedure reported in the 

literature.15 To a solution of corresponding aniline 196a-b (3.0 g, 1.0 equiv.) in ethyl acetate (30 

mL) at 0 oC, acetic anhydride (2.3 equiv.) was added slowly over 15 min. The mixture was 

allowed to warm to room temperature over 4 h during which a solid started to precipitate out of 

the solution. The mixture was concentrated under reduced pressure to leave ∼10% of the initial 

ethyl acetate. To this slurry, hexanes (50 mL) was added, stirred for 10 min and filtered. The solid 

residue was washed with hexanes (15 mL), dried and directly taken for the next step without 

further purification. 

Rf = 0.20 (50% hexanes:50% ethyl acetate), Yield for 229a = 94% 

1H-NMR (400 MHz, CD3OD, δ ppm): 7.00-6.96 (m, 1H), 6.699-6.68 (m, 

2H), 2.16 (s, 3H) and 2.14 (s, 3H). 

13C-NMR (100 MHz, CD3OD, δ ppm): 175.7, 156.7, 140.3, 131.5, 127.1, 

125.0, 117.6, 25.3 and 20.9. 

Rf = 0.25 (50% hexanes:50% ethyl acetate), Yield for 229b = 98% 

1H-NMR (400 MHz, CD3OD, δ ppm): 7.56-7.53 (m, 1H), 6.99-6.95 (m, 

1H), 6.84 (m, 2H) and 2.14 (s, 3H). 

13C-NMR (100 MHz, CD3OD, δ ppm): 174.9, 152.5, 129.8, 129.5, 126.7, 

123.3, 120.0 and 26.2.  
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HN

O

25 oC, 4 h
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X = H, Me
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X = H, Me
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4.10.2. Synthesis of o-allylated acetamide derivative 228a-b 

 

Scheme 4.12: Synthesis of o-allylated acetamide derivative 228a-b. 

To a solution of acetamide derivative 229 (3.5 g, 1 equiv) in dry acetone (35 mL) anhyd. 

potassium carbonate (3.0 equiv) and allyl bromide (2.5 equiv) were added at 25 oC. The resulting 

mixture was refluxed for 4 h. After the completion of the reaction, the mixture was cooled to 25 

oC, filtered through celite and the solid was washed with acetone (15 mL). The combined organic 

layer was concentrated and the residue was taken up in DCM (50 mL) and washed with DI water 

(2 × 15 mL) and brine solution (1 × 15 mL). The organic layer was dried over anhyd. Na2SO4, 

filtered and the solvent was removed under reduced pressure to get the crude product. The crude 

product was directly taken to next step without further purification. 

Rf = 0.75 (95% DCM:5% methanol), Yield for 228a = 88% 

1H-NMR (400 MHz, CD3OD, δ ppm): 7.12-7.06 (m, 1H), 6.82-6.797 (m, 

2H), 6.07-5.97 (m, 1H), 5.41-5.35 (m, 1H), 5.22-5.19 (m, 1H), 4.52-4.499 

(m, 2H), 2.17 (m, 3H) and 2.12 (m, 3H). 

13C-NMR (100 MHz, CD3OD, δ ppm): 175.2, 158.2, 141.1, 137.6, 131.5, 

128.6, 126.2, 119.8, 114.2, 72.9, 25.3 and 20.9. 

Rf = 0.70 (50% hexanes:50% ethyl acetate), Yield for 228b = 87% 

1H-NMR (400 MHz, CD3OD, δ ppm): 8.34-8.32 (m, 1H), 7.78 (bs, 1H), 

6.99-6.90 (m, 2H), 6.84-6.82 (m, 1H), 6.08-5.99 (m, 1H), 5.39-5.347 (dd, 

J =17.2, 1.2 Hz, 1H), 5.31-5.28 (dd, J =10.4, 1.2 Hz, 1H), 4.56 (d, J = 4.8 

Hz, 2H) and 2.16 (s, 3H). 

13C-NMR (100 MHz, CD3OD, δ ppm): 168.3, 146.9, 133.0, 128.2, 123.7, 

121.5, 120.2, 118.4, 111.6, 69.7 and 25.1.  
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4.10.3. Synthesis of o-allylated aniline derivative 226a-b 

 

Scheme 4.13: Synthesis of o-allylated aniline derivative 226a-b. 

To o-allylated acetamide derivative 228 (2.9 g), 6M HCl (7 mL) was added at 25 oC. The 

resulting mixture was refluxed for 3-6 h. After the completion of the reaction, the mixture was 

cooled to 0 oC. The pH of the reaction mixture was adjusted to 14 by slowly adding 4M NaOH 

solution without allowing the internal temperature to rise above 10 oC. The aqueous layer was 

extracted with ethyl acetate. The combined organic layer was dried over anhyd. Na2SO4, filtered 

and the solvent was removed under reduced pressure to get the crude product. The crude 

product was purified by combiflash using hexanes: ethyl acetate mixture (80:20). 

Rf = 0.80 (80% hexanes: 20% ethyl acetate), Yield for 226a = 78% 

1H-NMR (400 MHz, CDCl3, δ ppm): 6.74-6.43 (m, 3H), 6.15-6.04 (m, 1H), 

5.44-5.39 (m, 1H), 5.30-5.27(m, 1H), 4.57-4.55 (m, 2H), 3.79 (bs, 2H) 

and 2.19 (s, 3H). 

13C-NMR (100 MHz, CDCl3, δ ppm): 146.1, 134.8, 133.9, 123.1, 123.0, 

117.7, 117.5, 109.9, 69.6 and 17.4. 

Rf = 0.80 (80% hexanes: 20% ethyl acetate), Yield for 226b = 70% 

1H-NMR (400 MHz, CDCl3, δ ppm): 6.89-6.84 (m, 2H), 6.79-6.74 (m, 2H), 

6.19-6.09 (m, 1H), 5.50-5.44 (qd, J = 17.6, 1.6 Hz, 1H), 5.36-5.32 (qd, J 

= 10.8, 1.6 Hz, 1H), 4.61-4.58 (m, 2H) and 3.33 (bs, 2H). 

13C-NMR (100 MHz, CDCl3, δ ppm): 146.5, 136.9, 133.9, 121.7, 118.6, 

117.6, 115.5, 112.4, and 69.4.  
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4.10.4. Synthesis of 2-methyl-6-propoxyaniline 227 

 

Scheme 4.14: Synthesis of 2-methyl-6-propoxyaniline 227. 

 Bromopropane (3.7 mL, 40.5 mmol) was added to a mixture of aniline 196a (2.0 g, 16.2 

mmol), anhyd. K2CO3 (6.7 g, 48.6 mmol) and NaI (0.2 g, 1.62 mmol) in dry acetone (25 mL) at 

room temperature. The resulting mixture was refluxed for 48 h. After the reaction, the mixture was 

cooled to room temperature, filtered through celite and the solid was washed with acetone. The 

combined organic layer was concentrated under reduced pressure to get the crude product. The 

crude was purified by combiflash using a hexanes:ethyl acetate mixture. 

Rf = 0.50 (80% hexanes: 20% ethyl acetate), yield for 227 = 40%. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 6.75-6.66 (m, 3H), 3.98 (t, J = 6.5 Hz, 2H), 3.79 (bs, 2H), 2.21 

(s, 3H), 1.87 (dq, J = 14.0, 7.1 Hz, 2H) and 1.09 (t, J = 7.4 Hz, 3H). 

 

 

Figure 4.16: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of 2-methyl-6-propyloxyaniline 227.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 146.6, 134.7, 122.8, 122.7, 117.8, 109.4, 70.1, 23.0, 17.5 

and 10.9. 

 

Figure 4.17: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of 2-methyl-6-propyloxyaniline 227. 
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HRMS-ESI (m/z) ([M + H]+): 

Calculated : 166.1226 

Observed  : 166.1229 

|Δm|  : 1.8 ppm 

 

Figure 4.18: HRMS of 2-methyl-6-propyloxyaniline 227. 
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4.10.5. Synthesis of citraconicimide derivative 224a-b 

 

Scheme 4.15: Synthesis of citraconicimide derivative 224a-b. 

To a solution of aniline 196a-b (5.0 g, 40.6 mmol) in toluene (25 mL) at 25 oC, citraconic 

anhydride 225a (5.46 g, 48.7 mmol) was added with stirring in a round bottom flask. The resulting 

mixture was refluxed for 2 h after which it was cooled to room temperature and the mixture was 

diluted with hexanes (50 mL). The precipitated solid was filtered and washed with hexanes (20 

mL) and dried under vacuum. The crude product was directly taken to next step without further 

purification. 

Rf = 0.40 (50% hexanes: 50% ethyl acetate), Yield for 224a = 94%. 

Rf = 0.60 (90% DCM: 10% MeOH), yield for 224b = 51%. 

1H-NMR (400 MHz, CD3OD, δ ppm): 7.25-7.21 (m, 1H), 7.06-7.04 (m, 

1H), 6.92-6.85 (m, 1H), 6.53 (s, 1H) and 2.07 (s, 3H). 

13C-NMR (100 MHz, CD3OD, δ ppm): 175.4, 174.5, 157.96, 150.4, 134.1, 

134.03, 131.6, 123.4, 123.0, 120.2 and 13.8. 
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1H-NMR (400 MHz, CD3OD, δ ppm): 7.14-7.098 (m, 1H), 6.74-6.72 (m, 2H), 6.58 (s, 1H), 2.11 (s, 

3H) and 2.04 (s, 3H). 

 

Figure 4.19: 1H-NMR (400 MHz, CD3OD, δ ppm) spectrum of 6-hydroxy-citraconicimide 224a. 
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13C-NMR (100 MHz, CD3OD, δ ppm): 175.4, 174.5, 158.3, 150.5, 142.7, 133.7, 131.7, 124.8, 

122.3, 117.3, 20.5 and 13.7. 

 

Figure 4.20: 13C-NMR (100 MHz, CD3OD, δ ppm) spectrum of 6-hydroxy-citraconicimide 224a.  

*

*= solvent

N
O

O

O
H

22
4a



 

 421 

HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 240.0631 

Observed  : 240.0639 

|Δm|  : 3.3 ppm 

 

Figure 4.21: HRMS of 6-hydroxy-citraconicimide derivative 224a. 
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4.10.6. Synthesis of atropisomeric maleimide derivatives 219a-b 

 

Scheme 4.16: Synthesis of atropisomeric maleimide derivative 219a-b. 

To a mixture of citraconicimide derivative 224a (1.0 g, 1.0 equiv.) and anhyd. potassium 

carbonate (3.0 equiv.) in dry acetone (10 mL), corresponding allyl bromide (2.5 equiv.) was added 

in a round bottom flask. The resulting mixture was refluxed for 4 h or until the complete 

consumption of citraconicimide. The reaction mixture was cooled to room temperature and filtered 

through celite bed. The solid was washed with acetone and the combined organic layer was 

concentrated to get the crude product. The crude product was purified by combiflash using a 

hexanes:ethyl acetate mixture. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.24-7.19 (m, 1H), 6.88-6.86 (m, 1H), 6.78-6.76 (m, 1H), 

6.46-6.45 (q, J =1.6 Hz, 1H), 5.91-5.82 (m, 1H), 5.26-5.14 (m, 2H), 4.48-4.46 (m, 2H), 2.14 (s, 

3H) and 2.13 (s, 3H). 

 

Figure 4.22: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of 6-allyloxy-citraconicimide 219a.
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13C-NMR (100 MHz, CDCl3, δ ppm): 171.1, 170.0, 154.9, 146.2, 139.1, 132.96, 130.1, 128.1, 

122.9, 119.98, 117.2, 110.7, 69.2, 17.97 and 11.4. 

 

Figure 4.23: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of 6-allyloxy citraconicimide 219a.
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 280.0944 

Observed  : 280.0954 

|Δm|  : 3.6 ppm 

 

Figure 4.24: HRMS of 6-allyloxy citraconicimide derivative 219a. 

HPLC analysis conditions: 

For analytical conditions, 

I). Column    : CHIRALPAK-ADH  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase   : Hexanes:2-propanol = 98:2 

Flow rate   : 1.0 mL/min 

Retention times (min)  : ∼ 15.09 [(+)-219a] and ∼ 17.40 [(-)-219a] 

For preparative conditions, 

I). Column    : CHIRALPAK-ADH  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase   : Hexanes:2-propanol = 99.4:0.6 

Flow rate   : 3.0 mL/min  

Retention times (min)  : ∼ 45.60 [(+)-219a and ∼ 54.99 [(-)-219a]  
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Optical rotation [α]D22: 

HPLC retention time (CHIRALPAK-ADH) at ∼ 15.09 min, (c ∼ 0.308 %, MeOH) = +57.45 deg 

HPLC retention time (CHIRALPAK-ADH) at ∼ 17.40 min, (c ∼ 0.308 %, MeOH) = -59.45 deg. 

 

Figure 4.25: CD spectra of 6-allyloxy citraconicimide 219a measured in methanol (c ∼ 1.7 mM). 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.24-7.19 (m, 1H), 6.85-6.84 (m, 1H), 6.79-6.76 (m, 1H), 

6.46-6.45 (m, 1H), 5.73-5.64 (m, 1H), 5.55-5.48 (m, 1H), 4.40-4.39 (m, 2H), 2.15-2.14 (m, 3H), 

2.13 (s, 3H) and 1.67-1.65 (m, 3H). 

 

Figure 4.26: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of 6-crotyloxy citraconicimide 219b.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 171.1, 170.1, 155.1, 146.2, 139.0, 130.1, 129.7, 128.1, 

125.97, 122.7, 120.1, 110.97, 69.4, 17.99, 17.97 and 11.4. 

 

Figure 4.27: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of 6-crotyloxy citraconicimide 219b.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 294.1101 

Observed  : 294.1099 

|Δm|  : 0.7 ppm 

 

Figure 4.28: HRMS of 6-crotyloxy citraconicimide 219b. 

HPLC analysis conditions: 

For analytical conditions, 

I). Column    : CHIRALPAK-ADH  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase   : Hexanes:2-propanol = 95:5 

Flow rate   : 1.0 mL/min 

Retention times (min)  : ∼ 12.15 [(+)-219b] and ∼ 14.97 [(-)-219b 

For preparative conditions, 

I). Column    : CHIRALPAK-ADH  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase   : Hexanes:2-propanol = 99:1 

Flow rate   : 3.0 mL/min  

Retention times (min)  : ∼ 41.78 [(+)-219b and ∼ 57.07 [(-)-219b 

Optical rotation [α]D24 : 

HPLC retention time (CHIRALPAK-ADH) at ∼ 12.15 min, (c ∼ 1.25 %, MeOH) = +42.53 deg 

HPLC retention time (CHIRALPAK-ADH) at ∼ 14.97 min, (c ∼ 1.25 %, MeOH) = -42.84 deg.  
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4.10.7. Synthesis of atropisomeric maleimide derivative 219c 

 

Scheme 4.17: Synthesis of atropisomeric maleimide derivative 219c. 

The silyl derivative of atropisomeric maleimide 219c was synthesized according to a 

procedure reported in the literature.5 To a solution of citraconicimide 224a (0.5 g, 2.30 mmol) 

derivative in DCM (10 mL) under N2 atmosphere at 25 oC, triethylamine (0.64 mL, 4.60 mmol) 

was added. The resulting mixture was stirred for 20 min followed by the addition of 

dichlorodiphenylsilane (0.97 mL, 4.60 mmol). After stirring for 12 h, the solvent was removed 

under reduced pressure and the crude product was directly taken to the next step without further 

purification. 

To a mixture of allyl alcohol (1.20 mL, 17.25 mmol) and triethylamine (2.40 mL, 17.25 

mmol) in DCM (20 mL), a solution of the crude product from the above reaction in DCM (30 mL) 

was added over a period of 15 min and the mixture was further stirred for 12 h. After the reaction, 

the solvent was completely removed under reduced pressure. The residue was taken in a 

saturated NaHCO3 solution and extracted with diethyl ether. The combined organic layer was 

dried under anhyd. Na2SO4, filtered and concentrated at 35 oC to the yield crude product. The 

crude product was purified by combiflash using a hexanes:ethyl acetate mixture. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.61-7.59 (m, 4H), 7.39-7.38 (m, 2H), 7.35-7.30 (m, 4H), 

7.07-7.03 (m, 1H), 6.88-6.83 (m, 2H), 6.45-6.43 (q, J = 1.6 Hz, 1H), 5.92-5.83 (m, 1H), 5.31-5.25 

(m, 1H), 5.09-5.06 (m, 1H), 4.31-4.29 (m, 2H), 2.16 (s, 3H) and 2.094 (d, J = 2 Hz, 3H). 

 

Figure 4.29: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of 6-silyloxy citraconicimide 219c.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 170.8, 169.9, 151.1, 146.4, 139.1, 136.1, 134.97, 134.9, 

131.7, 131.66, 130.9, 129.99, 128.1, 128.0, 123.8, 121.7, 117.0, 115.3, 64.6, 18.2 and 11.4. 

 

Figure 4.30: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of 6-silyloxy citraconicimide 219c.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 478.1445 

Observed  : 478.1427 

|Δm|  : 3.8 ppm 

 

Figure 4.31: HRMS of 6-silyloxy citraconicimide derivative 219c. 

 

HPLC analysis conditions: 

For analytical conditions, 

I). Column    : CHIRALPAK-ODH  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase   : Hexanes:2-propanol = 98:2 

Flow rate   : 1.0 mL/min 

Retention times (min)  : ∼ 7.43 [PkA] and ∼ 8.39 [PkB] 

(PkA and PkB refers to the order of elution of the isomers on the chiral stationary phase) 
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4.10.8. Synthesis of atropisomeric maleimide derivatives 219d,f,h 

 

Scheme 4.18: Synthesis of axially chiral maleimide derivative 219d,f,h. 

A mixture of aniline 226a,c (1.0 g, 1.0 equiv.) and anhydride 225a-b (1.1 equiv.) in 

toluene (5 mL) was refluxed for 2 h. The reaction mixture was cooled to room temperature and 

the solvent was evaporated to get the crude product. The crude product was purified by 

combiflash using a hexanes:ethyl acetate mixture. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.27-7.24 (m, 1H), 7.15-7.13 (m, 2H), 6.48-6.47 (m, 1H), 

5.81-5.71 (m, 1H), 4.99-4.91 (m, 2H), 2.49-2.45 (m, 2H), 2.26-2.21 (m, 2H), 2.16-2.15 (q, J = 2 

Hz, 3H) and 2.08 (s, 3H). 

 

Figure 4.32: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of 6-butenyl citraconicimide 219d. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 171.1, 170.2, 146.1, 141.0, 137.96, 137.3, 129.6, 129.5, 

128.9, 127.8, 127.6, 115.3, 34.4, 31.4, 18.2 and 11.4. 

 

Figure 4.33: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of 6-butenyl citraconicimide 219d. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 278.1151 

Observed  : 278.1150 

|Δm|  : 0.4 ppm 

 

Figure 4.34: HRMS of 6-butenyl citraconicimide derivative 219d. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.30-7.26 (m, 1H), 7.17-7.14 (m, 2H), 7.02 (s, 1H), 5.81-5.71 

(m, 1H), 5.00-4.93 (m, 2H), 2.49-2.45 (m, 2H), 2.27-2.12 (m, 2H) and 2.09 (s, 3H). 

 

Figure 4.35: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of 6-butenyl bromomaleimide 219f. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 167.9, 164.6, 140.9, 137.7, 137.3, 132.4, 131.8, 130.1, 

129.0, 128.8, 127.8, 115.6, 34.3, 31.3 and 18.3. 

 

Figure 4.36: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of 6-butenyl bromomaleimide 219f.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 342.0100 

Observed  : 342.0101 

|Δm|  : 0.3 ppm 

 

Figure 4.37: HRMS of 6-butenyl bromomaleimide derivative 219f. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.34-7.29 (m, 1H), 7.16-7.14 (m, 1H), 7.01-6.94 (m, 2H), 

6.44-6.43 (m, 1H), 5.94-5.84 (m, 1H), 5.29-5.16 (m, 2H), 4.51-4.49 (m, 2H), 2.10 (d, J = 1.6 Hz, 

3H). 

 

Figure 4.38: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of 6-allyloxy-citraconicimide 219h.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 170.98, 169.9, 154.6, 146.2, 132.9, 130.5, 130.3, 127.97, 

121.2, 120.9, 117.4, 113.7, 69.3 and 11.4. 

 

Figure 4.39: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of 6-allyloxy-citraconicimide 219h.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 266.0788 

Observed  : 266.0786 

|Δm|  : 0.8 ppm 

 

Figure 4.40: HRMS of 6-allyloxy-citraconicimide derivative 219h. 
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4.10.9. Synthesis of maleimide derivatives 219e,i 

 

Scheme 4.19: Synthesis of maleimide derivatives 219e,i. 

To a solution of corresponding aniline derivative 226a-c (10 mmol) in toluene (20 mL) at 

25 oC, substituted maleic anhydride 225c-d (10.1 mmol) was added. The resulting mixture was 

heated to 45 oC and maintained for 2 h. After the reaction, the mixture was cooled to room 

temperature and the residue was diluted with hexanes (50 mL). The precipitated solid was filtered, 

washed with hexanes (20 mL) and dried under vacuum. The crude product was directly taken to 

next step without further purification. 

To the crude product from above reaction dissolved in chloroform under N2 atmosphere 

1,1’-carbonyldiimidazole (12 mmol) was added. The resulting solution was refluxed for 14 h. After 

the reaction, the solution was cooled to room temperature and DI water was added. The mixture 

was stirred and the layers were separated. The organic layer was washed with DI Water (2 × 100 

mL), cold aqueous 2N HCl (2 × 75 mL or until the imidazole byproduct was removed) and brine 

solution (1 × 100 mL). The organic layer was dried over anhyd. Na2SO4, filtered and the solvent 

was evaporated under reduced pressure to get the crude product. The crude product was purified 

by combiflash using a hexanes:ethyl acetate mixture (90:10). 

Note: During the addition of 1,1’-carbonyldiimidazole evolution of CO2 gas was observed. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 8.03-7.99 (m, 2H), 7.49-7.44 (m, 3H), 7.29-7.24 (m, 1H), 

6.94-6.91 (m, 1H), 6.83-6.81 (m, 1H), 5.94-5.85 (m, 1H), 5.31-5.24 (m, 1H), 5.18-5.14 (m, 1H), 

4.52-4.499 (m, 2H) and 2.22 (m, 3H). 

 

Figure 4.41: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of 6-silyloxy citraconicimide 219e.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 169.9, 169.6, 154.9, 144.2, 139.2, 132.96, 131.4, 130.3, 

129.2, 129.1, 129.0, 124.7, 122.98, 119.96, 117.3, 110.8, 69.2 and 18.1. 

 

Figure 4.42: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of 6-silyloxy citraconicimide 219e.  

*= solvent

*

N

P
h OO

O

21
9e



 

 447 

HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 342.1101 

Observed  : 342.1093 

|Δm|  : 2.3 ppm 

 

Figure 4.43: HRMS of 6-silyloxy citraconicimide derivative 219e. 

HPLC analysis conditions: 

For analytical conditions, 

I). Column   : CHIRALPAK-ADH  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 90:10 

Flow rate   : 1.0 mL/min 

Retention times (min) : ∼ 13.32 [(+)-219e] and ∼ 16.95 [(-)-219e 

For preparative conditions, 

I). Column   : CHIRALPAK-ADH  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 97:3 

Flow rate   : 3.0 mL/min  

Retention times (min) : ∼ 37.55 [(+)-219e and ∼ 52.30 [( -)-219e]  
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Optical rotation [α]D22: 

HPLC retention time (CHIRALPAK-ADH) at ∼ 13.32 min, (c ∼ 0.292 %, MeOH) = +30.49 deg 

HPLC retention time (CHIRALPAK-ADH) at ∼ 16.95 min, (c ∼ 0.292 %, MeOH) = -29.47 deg. 

 

Figure 4.44: CD spectra of 2-allyloxy-phenylmaleimides 219e measured in MeOH (c ∼ 0.4 mM). 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.998-7.97 (m, 2H), 7.47-7.45 (m, 3H), 7.397-7.35 (m, 1H), 

7.26-7.24 (m, 1H), 7.07-6.989 (m, 2H), 6.88 (s, 1H), 5.97-5.88 (m, 1H), 5.34-5.28 (m, 1H), 5.20-

5.17 (m, 1H) and 4.56-4.53 (m, 2H). 

 

Figure 4.45: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of 6-allyloxy-phenylmaleimide 219i. 

  

*= solvent

*

N

P
h OO

O

21
9i



 

 450 

13C-NMR (100 MHz, CDCl3, δ ppm): 169.8, 169.5, 154.7, 144.1, 132.9, 131.4, 130.7, 130.4, 129.2, 

129.1, 128.99, 124.6, 121.3, 120.8, 117.5, 113.7 and 69.3. 

 

Figure 4.46: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of 6-allyloxy-phenylmaleimide 219i.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 328.0944 

Observed  : 328.0942 

|Δm|  : 0.6 ppm 

 

Figure 4.47: HRMS of 6-allyloxy-phenylmaleimide derivative 219i. 
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4.10.10. Synthesis of atropisomeric maleimide derivatives 219g 

 

Scheme 4.20: Synthesis of atropisomeric maleimide derivative 219g. 

Synthesis of bromocitraconic anhydride 225d: The bromocitraconic anhydride 225d 

was synthesized according a procedure reported in the literature.16 A mixture of citraconic 

anhydride 225a (1.0 g, 8.92 mmol), bromine (0.46 mL, 8.92 mmol) and aluminum bromide (27 

mg, 0.098 mmol) in a sealed vial was heated to 120 oC for 12 h. After the reaction, the mixture 

was cooled to room temperature, diluted with ethyl acetate (30 mL), filtered through celite and 

washed with DI water (2 x 15 mL) and saturated NaCl solution. The combined organic layer was 

dried over anhyd. Na2SO4, filtered and concentrated under reduced pressure to yield crude 

product. The crude product was sufficiently pure to be taken to next step. 

To a solution of aniline derivative 226a (500 mg, 1.1 equiv.) in toluene (5 mL) 

corresponding anhydride 225d (1.0 equiv.) was added and the resulting mixture was heated to 50 
oC for 2 h. After the reaction, the solvent was concentrated and the residue was directly taken to 

next step. 

To the residue from the above reaction in glacial acetic acid (5 mL), anhyd. sodium 

acetate (236 mg, 2.88 mmol) was added. The resulting mixture was refluxed for 2 h. After the 

reaction, the mixture was cooled to room temperature and diluted with ethyl acetate (20 mL). The 

organic layer was washed with DI water (2 x 15 mL), saturated NaHCO3 solution (2 × 15 mL), 

dried over anhyd. Na2SO4, filtered and concentrated under reduced pressure to yield crude 

product. The crude product was purified by combiflash using a hexanes:ethyl acetate mixture. 

 

(Yield = 80%). 1H-NMR (400 MHz, CDCl3, δ ppm): 2.11 (s, 3H). 

13C-NMR (100 MHz, CDCl3, δ ppm): 163.7, 160.3, 145.8, 127.0 and 11.6.  
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.25-7.21 (m, 1H), 6.89-6.86 (m, 1H), 6.78-6.76 (m, 1H), 

5.91-5.82 (m, 1H), 5.25-5.16 (m, 2H), 4.48 (d, J = 4.8 Hz, 2H), 2.14 (s, 3H) and 2.12 (s, 3H). 

 

Figure 4.48: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of 6-allyloxy bromo-citraconicimide 
219g.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 168.6, 164.7, 154.8, 142.95, 139.1, 132.8, 130.4, 125.7, 

122.95, 119.7, 117.4, 110.8, 69.2, 18.0 and 11.2. 

 

Figure 4.49: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of 6-allyloxy bromo-citraconicimide 
219g.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 358.0049 

Observed  : 358.0053 

|Δm|  : 1.1 ppm 

 

Figure 4.50: HRMS of 6-allyloxy bromo-citraconicimide derivative 219g. 

HPLC analysis conditions: 

For analytical conditions, 

I). Column   : CHIRALPAK-ADH  

Abs. detector wavelength: 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 95:5 

Flow rate  : 1.0 mL/min 

Retention times (min) : ∼ 7.40 [PkA] and ∼ 8.20 [PkB] 

(PkA and PkB refers to the order of elution of the isomers in HPLC on a chiral stationary phase) 
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1H-NMR (400 MHz, CDCl3, δ ppm): 8.02-7.99 (m, 2H), 7.47-7.46 (m, 3H), 7.26-7.23 (m, 1H), 

6.91-6.88 (m, 2H), 6.82-6.799 (m, 1H), 3.89 (t, J = 6.3 Hz, 2H), 2.21 (s, 3H), 1.66 (h, J = 7.3 Hz, 

2H) and 0.89 (t, J = 7.4 Hz, 3H). 

 

Figure 4.51: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of 6-propyloxy-phenylmaleimide 
222e.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 169.98, 169.7, 155.4, 144.1, 139.1, 131.4, 130.3, 129.2, 

129.17, 128.97, 124.6, 122.6, 119.9, 110.3, 70.15, 22.7, 18.0 and 10.6. 

 

Figure 4.52: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of 6-propyloxy-phenylmaleimide 
222e.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 344.1257 

Observed  : 344.1252 

|Δm|  : 1.5 ppm 

 

Figure 4.53: HRMS of 6-propyloxy-phenylmaleimide derivative 222e. 
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4.11. Process for photoreaction of atropisomeric maleimides 219a-g 

 

Scheme 4.21: General irradiation procedure for maleimides 219a-g. 

Enantiospecific reactions: A solution of optically pure atropisomeric maleimides 

obtained from HPLC preparative separation on a chiral stationary phase (2.5-4.0 mM or 1 mg/1 

mL) in appropriate solvent (acetone or MeCN) or with the combination of MeCN/30 mol% 

sensitizer (xanthone or thioxanthone) was irradiated in either one of the following procedures. 

a) The solution in a Pyrex tube was irradiated with a 450W medium-pressure mercury lamp under 

constant flow of nitrogen for a given time interval. b) Irradiated in a Rayonet reactor fitted with 

bulb of desired wavelength. After the irradiation, the solvent was evaporated under reduced 

pressure and the photoproducts were isolated by preparative thin layer chromatography and 

characterized by NMR spectroscopy, mass spectrometry, single crystal XRD, CD, [α]D and by 

HPLC. HPLC analysis of the photolysate on a chiral stationary phase gave the optical purity of 

the photoproducts. 

Large-scale reactions: Large-scale reactions were carried out on racemic maleimides 

as batches (4 × 20 mL test tubes per batch). After the irradiation, the solutions were combined 

and the solvent was evaporated under reduced pressure. The residue was purified by combiflash 

using a hexanes:ethyl acetate mixture as mobile phase. 

In some cases (219e) N2 degassed solutions of maleimide placed in a merry-go-round 

(8 x 10 mL test tubes) were irradiated in a Rayonet reactor for given time period. After the 

irradiation, the solutions were combined and the solvent was evaporated under reduced pressure. 

The residue was purified by combiflash using a hexanes:ethyl acetate mixture as mobile phase. 
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Conversion and mass balance were obtained from NMR integration of the crude 

photosylate against triphenylmethane as an internal standard using the following formula 

 

Equation 2:12 

Where, Na and Ni are the number of nuclei giving rise to the relevant analyte and internal 

standard signals respectively. Similarly mola and moli are the molarity of analyte and the internal 

standard in deuterated chloroform, respectively. The dr of the photoproducts 220 and 221 were 

calculated from the crude reaction mixture after the photoreaction.  

mola moli X
Integral of analyte
Integral of Int. Std Ni

NaX=
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.21-7.18 (m, 1H), 7.08-7.06 (m, 1H), 6.97-6.95 (m, 1H), 

4.40-4.36 (dd, J = 14, 4.8 Hz, 1H), 3.72 (d, J = 14 Hz, 1H), 3.09-3.01 (m, 2H), 2.64-2.51 (m, 2H), 

2.36 (s, 3H) and 1.57 (s, 3H). 

 

Figure 4.54: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of cyclobutane photoproduct 220a.  

N
O

OO

*= solvent
*

*

22
0a



 

 462 

13C-NMR (100 MHz, CDCl3, δ ppm): 182.2, 181.8, 156.4, 139.4, 132.4, 129.8, 126.7, 120.4, 74.5, 

52.4, 48.6, 43.1, 23.9, 17.6 and 15.7. 

 

Figure 4.55: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of cyclobutane photoproduct 220a.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 280.0944 

Observed  : 280.0941 

|Δm|  : 1.1 ppm 

 

Figure 4.56: HRMS of cyclobutane photoproduct 220a. 

HPLC analysis conditions: 

For analytical conditions, 

I). Column   : CHIRALPAK-OD-H 

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 90:10 

Flow rate   : 1.0 mL/min 

Retention times (min) : ∼15.87 [(-)(1R,5S,6R)-220a] & ∼20.57 [(+)-(1S,5R,6S)-220a 

 

For preparative conditions, 

I). Column   : CHIRALPAK-OD-H  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 95:5 

Flow rate   : 3.0 mL/min  

Retention times (min) : ∼35.30 [(-)(1R,5S,6R)-220a] & ∼45.40 [(+)-(1S,5R,6S)-220a 
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Optical rotation [α]D23: 

HPLC retention time (CHIRALPAK-ODH) at ∼ 15.87 min, (c ∼ 0.208 %, CHCl3) = -23.85 deg 

HPLC retention time (CHIRALPAK-ODH) at ∼ 20.57 min, (c ∼ 0.208 %, CHCl3) = 24.27 deg. 

 

Figure 4.57: CD spectrum of cyclobutane photoproduct 220a measured in MeOH (c ~ 1.8 mM). 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.22-7.18 (m, 1H), 7.08-7.06 (m, 1H), 6.97-6.95 (m, 1H), 4.40 

(dd, J = 13.6, 4.8 Hz, 1H), 3.71 (d, J = 13.6 Hz, 1H), 3.45 (d, J = 8.8 Hz, 1H), 2.99-2.92 (m, 1H), 

2.79-2.76 (m, 1H), 2.65-2.59 (m, 1H), 2.34 (s, 3H) and 1.52 (s, 3H). 

 

 

Figure 4.58: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of cyclobutane photoproduct 221a.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 185.1, 179.8, 156.4, 139.3, 132.3, 129.8, 126.7, 120.4, 74.3, 

51.76, 45.3, 37.4, 33.2, 19.6 and 17.6. 

 

Figure 4.59: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of cyclobutane photoproduct 221a.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 280.0944 

Observed  : 280.0942 

|Δm|  : 0.7 ppm 

  

Figure 4.60: HRMS of cyclobutane photoproduct 221a. 

HPLC analysis conditions: 

For analytical conditions, 

I). Column   : CHIRALPAK-OD-H  

Abs. detector wavelength: 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 90:10 

Flow rate   : 1.0 mL/min 

Retention times (min) : ∼10.92 [(1R,5S,7S)-221a] & ∼12.64 [(1S,5R,7R)-221a] 

For preparative conditions, 

I). Column   : CHIRALPAK-OD-H  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 95:5 

Flow rate   : 3.0 mL/min  

Retention times (min) : ∼ 24.83 [(1R,5S,7S)-221a] & ∼28.62 [(1S,5R,7R)-221a]  
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.20-7.16 (m, 1H), 7.07-7.05 (m, 1H), 6.94-6.92 (m, 1H), 4.41 

(dd, J = 13.6, 4.8 Hz, 1H), 3.69 (d, J = 13.6 Hz, 1H), 3.02-2.97 (m, 1H), 2.82 (s, 1H), 2.35 (s, 3H), 

2.17-2.15 (m, 1H), 1.64 (s, 3H) and 1.55 (d, J = 7.6 Hz, 3H). 

 

Figure 4.61: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of cyclobutane photoproduct 220b.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 182.5, 181.6, 156.4, 139.4, 132.1, 129.8, 126.7, 120.4, 73.7, 

55.3, 50.3, 49.2, 33.5, 21.4, 17.6 and 17.5. 

 

Figure 4.62: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of cyclobutane photoproduct 220b.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 294.1101 

Observed  : 294.1094 

|Δm|  : 2.4 ppm 

 

Figure 4.63: HRMS of cyclobutane photoproduct 220b. 

HPLC analysis conditions: 

For analytical conditions, 

I). Column   : CHIRALPAK-AD-H  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 95:5 

Flow rate   : 1.0 mL/min 

Ret. tim. (min): ∼14.03 [(-)-(1R,5S,6R,7R)- 220b] and ∼15.20 [(+)-(1S,5R,6S,7S)- 220b] 

For preparative conditions, 

I). Column   : CHIRALPAK-AD-H  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 97:3 

Flow rate   : 3.0 mL/min 

Ret. tim. (min): ∼ 28.53 [(-)-(1R,5S,6R,7R)- 220b] and ∼40.17 [(+)-(1S,5R,6S,7S)- 220b] 

Optical rotation [α]D27: 

HPLC retention time (CHIRALPAK-ADH) at ∼ 14.03 min, (c ∼ 1.1%, CHCl3) = -21.26 deg 

HPLC retention time (CHIRALPAK-ADH) at ∼ 15.20 min, (c ∼ 1.1%, CHCl3) = +21.27 deg.  

N O

O
O

220b



 

 471 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.71-7.66 (m, 2H, Major+minor), 7.56-7.51 (m, 2H, 

Major+minor), 7.46-7.24 (m, 6H, Major+minor), 7.09-7.06 (m, 1H, Major+minor), 6.87-.6.84 (m, 

1H, Major+minor), 6.80-6.77 (m, 1H, Major+minor), 4.20-4.16 (m, 1H, Major+minor), 3.77-3.73 

(m, 1H, Major+minor), 3.25-3.23 (m, 1H, minor), 2.99-2.94 (m, 1H, Major+minor), 2.93-2.90 (m, 

1H, minor), 2.75-2.61 (m, 2H, major), 2.57-2.52 (m, 1H, major), 2.36-2.30 (m, 1H, minor), 2.07 (s, 

3H, major), 2.06 (s, 3H, minor), 1.54 (s, 3H, major) and 1.52 (s, 3H, minor) 

 

Figure 4.64: 1H-NMR (400 MHz, CDCl3+CD3OD, δ ppm) spectrum of cyclobutane 
photoproducts 220c and 221c.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 181.3, 178.7, 177.9, 175.9, 150.8, 137.4, 135.7, 135.5, 

135.3, 135.2, 135.2, 134.6, 131.0, 131.0, 130.6, 130.4, 130.3, 130.2, 130.1, 129.7, 128.5, 128.2, 

128.2, 128.1, 128.06, 128.0, 124.8, 124.7, 123.0, 122.8, 120.4, 62.7, 62.4, 47.3, 46.9, 44.98, 

43.3, 42.4, 33.5, 30.0, 21.8, 20.6, 20.3, 18.3 and 18.1. 

 

Figure 4.65: 13C-NMR (100 MHz, CDCl3+CD3OD, δ ppm) spectrum of cyclobutane 
photoproducts 220c and 221c.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 478.1445 

Observed  : 478.1442 

|Δm|  : 0.6 ppm 

 

Figure 4.66: HRMS of cyclobutane photoproducts 220c and 221c. 
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1H-NMR (400 MHz, CDCl3+CD3OD, δ ppm): 7.19-7.16 (m, 2H), 7.07-7.04 (m, 1H), 3.09-2.99 (m, 

2H), 2.80-2.59 (m, 3H), 2.25 (s, 3H), 2.21-2.14 (m, 1H), 2.12-2.03 (m, 1H), 1.68-1.62 (m, 1H) and 

1.50 (s, 3H). 

 

Figure 4.67: 1H (400 MHz, CDCl3, δ ppm) spectrum of cyclobutane photoproduct 220d. 
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13C-NMR (100 MHz, CDCl3+CD3OD, δ ppm): 185.5, 185.3, 145.5, 141.6, 138.4, 133.1, 132.9, 

132.8, 54.8, 50.7, 46.6, 33.5, 31.5, 27.2, 20.5 and 18.5. 

 

Figure 4.68: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of cyclobutane photoproduct 220d. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 278.1151 

Observed  : 278.1158 

|Δm|  : 2.5 ppm 

 

Figure 4.69: HRMS of cyclobutane photoproduct 220d. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.19-7.16 (m, 2H), 7.04-7.02 (m, 1H), 3.38-3.32 (m, 1H), 

3.18-3.12 (m, 1H), 2.79 (dd, J = 16.3, 10.4 Hz, 1H), 2.65–2.53 (m, 2H), 2.45-2.41 (m, 1H), 2.30 

(s, 3H), 2.11-2.03 (m, 1H), 1.75-1.68 (dd, J = 16.0, 10.4 Hz, 1H) and 1.50 (s, 3H). 

 

Figure 4.70: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of cyclobutane photoproduct 221d.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 183.5, 178.7, 150.1, 141.4, 137.8, 134.4, 129.4, 129.1, 50.5, 

44.96, 34.9, 33.3, 27.8, 27.4, 19.6 and 17.5. 

 

Figure 4.71: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of cyclobutane photoproduct 221d. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 278.1151 

Observed  : 278.1153 

|Δm|  : 0.7 ppm 

 

Figure 4.72: HRMS of cyclobutane photoproduct 221d. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.50-7.42 (m, 4H), 7.37-7.34 (m, 1H), 7.25-7.21 (m, 1H), 

7.11-7.07 (m, 1H), 7.03-7.01 (m, 1H), 4.54 (dd, J = 14, 4.4 Hz, 1H), 3.98 (d, J = 14 Hz, 1H), 3.76-

3.74 (m, 1H), 3.17-3.04 (m, 2H), 2.74 (d, J =11.6 Hz, 1H) and 2.36 (s, 3H). 

 

Figure 4.73: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of cyclobutane photoproduct 220e.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 181.4, 179.3, 156.5, 140.4, 139.5, 135.0, 132.4, 129.9, 

129.1, 128.2, 126.9, 120.4, 74.7, 59.5, 50.9, 42.96, 24.9 and 17.6. 

 

Figure 4.74: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of cyclobutane photoproduct 220e. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 342.1101 

Observed  : 342.1094 

|Δm|  : 2.0 ppm 

 

Figure 4.75: HRMS of cyclobutane photoproduct 220e. 

HPLC analysis conditions: 

For analytical conditions, 

I). Column   : CHIRALPAK-AD-H  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 90:10 

Flow rate   : 1.0 mL/min 

Retention times (min) : ∼11.28 [(-)-(1R,5S,6R)-220e] & ∼16.64 [(+)-(1S,5R,6S)-220e] 

For preparative conditions, 

I). Column   : CHIRALPAK-AD-H  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase  : Hexanes:2-propanol = 97:3 

Flow rate   : 3.0 mL/min  

Retention times (min) : ∼ 34.85 [(-)-(1R,5S,6R)-220e] & ∼55.75 [(+)-(1S,5R,6S)-220e] 
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Optical rotation [α]D23: 

HPLC retention time (CHIRALPAK-ADH) at ∼ 11.28 min, (c ∼ 0.690 %, CHCl3) = -85.22 deg 

HPLC retention time (CHIRALPAK-ADH) at ∼ 16.64 min, (c ∼ 0.690 %, CHCl3) = +84.66 deg. 

 

Figure 4.76: CD spectrum of cyclobutane photoproduct 220e measured in MeOH (c ~ 0.1 mM). 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.26–7.16 (m, 2H), 7.04-7.02 (m, 1H), 3.48–3.45 (m, 1H), 

3.37–3.28 (m, 2H), 2.82 (dd, J = 16.8, 10.4 Hz, 1H), 2.67 (dd, J = 16.8, 10.0 Hz, 1H), 2.34-2.32 

(m, 1H), 2.31 (s, 3H), 2.12-2.04 (m, 1H) and 1.86 (dd, J = 16.7, 10.0 Hz, 1H). 

 

Figure 4.77: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of cyclobutane photoproduct 220f. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 177.4, 173.9, 140.7, 138.0, 134.2, 129.8, 129.7, 129.2, 55.4, 

51.7, 47.3, 27.9, 27.8, 24.5 and 17.6. 

 

Figure 4.78: 13C-NMR (400 MHz, CDCl3, δ ppm) spectrum of cyclobutane photoproduct 220f. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 342.0100 

Observed  : 342.0098 

|Δm|  : 0.6 ppm 

 

Figure 4.79: HRMS of cyclobutane photoproduct 220f. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.22-7.20 (m, 2H), 7.04-7.02 (m, 1H), 3.85 (d, J = 9.6 Hz, 

1H), 3.44-3.37 (m, 1H), 3.16 (dd, J = 13.2, 10.8 Hz, 1H), 2.89-2.86 (m, 1H), 2.75-2.61 (m, 2H), 

2.33 (s, 3H), 2.16-2.06 (m, 1H) and 1.699-1.61 (m, 1H). 

 

Figure 4.80: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of cyclobutane photoproduct 221f.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 176.6, 175.5, 140.9, 137.9, 133.8, 129.8, 129.7, 129.2, 54.7, 

45.5, 37.2, 36.7, 27.7, 26.8 and 17.6. 

 

Figure 4.81: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of cyclobutane photoproduct 221f. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 342.0100 

Observed  : 342.0096 

|Δm|  : 1.2 ppm 

 

Figure 4.82: HRMS of cyclobutane photoproduct 221f. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.24-7.20 (m, 1H), 7.10-7.08 (m, 1H), 6.97-6.95 (m, 1H), 4.37 

(dd, J = 14.0, 5.2 Hz, 1H), 3.86 – 3.73 (m, 1H), 3.05 (m, 1H), 2.82 (m, 2H), 2.37 (s, 3H) and 1.53 

(s, 3H). 

 

Figure 4.83: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of cyclobutane photoproduct 220g. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 181.4, 175.0, 156.4, 139.5, 131.5, 130.2, 127.1, 120.4, 73.6, 

62.6, 51.0, 49.6, 31.5, 19.2 and 17.7. 

 

Figure 4.84: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of cyclobutane photoproduct 220g. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 358.0049 

Observed  : 358.0055 

|Δm|  : 1.7 ppm 

 

Figure 4.85: HRMS of cyclobutane photoproduct 220g. 
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5 CHAPTER 5: INTRAMOLECULAR [2+2]-PHOTOCYCLOADDTION OF 

IMINES TO ENAMIDES 

5.1. Introduction 

[2+2]-Photocycloaddition that involves carbon-carbon, carbon-oxygen and carbon-sulfur 

chromophores are frequently encountered in the literature that led to variety of four membered 

carbocyclic and heterocyclic ring systems. However, the [2+2]-photocycloaddition reaction of 

carbon-nitrogen analogues are scarcely observed in the literature. The main reason for its 

scarcity lies in its other reaction pathways such as photoisomerization, photoreduction, 

photoelimination/fragmentation and electron transfer reaction pathways that makes it harder to 

engage in [2+2]-photocycloaddition. Occasionally, there are scattered reports on the  

[2+2]-photocycloaddition of cyclic imines (that cannot undergo photoisomerization) and stabilized 

imines wherein the imine nitrogen is connected to electron withdrawing substituent which inhibits 

other electron transfer pathways.1,2 For example in 1972, Tsuge and coworkers reported the first 

photocycloaddition of 2,5-diphenyl-1,3,4-oxadiazole 231 to indene 230 and furan in presence of 

catalytic amount (5 mol%) of iodine (Scheme 5.1). 3,4 

 

Scheme 5.1: [2+2]-Photocycloaddition of 2,5-diphenyl-1,3,4-oxadiazole with indene. 

Similarly, Koch and coworkers reported [2+2]-photocycloaddition of 3-ethoxyisoindolone 

with various alkenes such as dimethoyethene and cyclohexene (Scheme 5.2).5-9 

N

O

N

Ph Ph N N

OPh Ph
hν

 (300W Hg lamp)

231230 232
I2, 24 h

The material in this chapter was co-authored by Elango Kumarasamy (EK), and Dr. J. 
Sivaguru (JS). EK in consultation with JS synthesized all compounds and carried out all the 
experiments. Further mechanistic investigations related to this project will be carried out by 
junior graduate students in JS lab. 
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Scheme 5.2: [2+2]-Photocycloaddition of 3-ethoxyisoindolone with olefins. 

The structure of 233 was cleverly chosen to resemble α,β-unsaturated ketone whose 

photochemistry is well understood. The 3-ethoxyisoindolone does not undergo the desired 

photocycloaddition with electron deficient alkenes such as fumaronitrile. To understand the 

structural requirement to undergo the desired [2+2]-photocycloaddition, they carried out 

photoreaction with modified chromophore (Scheme 5.3). For example, they examined the 

photoreaction of 2-phenyl-2-oxazolin-4-one 238 that underwent smooth photocycloaddition with 

dimethoxyethene 234 to furnish azetidine derivatives 239.8 

 

Scheme 5.3: [2+2]-Photocycloaddition of 2-phenyl-2-oxazolin-4-one with dimethoxyethene. 

On the contrary, the non-stabilized imine as in the case of oxazinone derivative 240 failed 

to undergo photoreaction with dimethoxyethene derivative (Scheme 5.4). Based on these results, 

the authors concluded that the reactive imines that undergo photocycloaddition react from their 

low lying ππ* excited state. However, the imines that have low lying nπ* excited state do not 

undergo the desired photoreaction but undergo other reactions characteristics of nπ* excited state 

such as hydrogen abstraction.10,11 This was further confirmed by the hydrogen abstraction of 

oxazinone in the presence of 2-propanol solvent resulting in reductive dimers. 
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Scheme 5.4: [2+2]-Photocycloaddition of oxazinone with dimethoxyethene 

Similarly, other types of stabilized imines are reported to undergo photocycloaddition 

reaction. For example, Swenton and coworkers reported [2+2]-photocycloaddition of uracil and 

thymine derivatives (Scheme 5.5).12,13 The authors attributed the unusual reactivity of 242 

towards the conjugation of cyclic imine system to electron withdrawing group that prevent other 

side reactions. However elaborate photophysical investigations were not carried out to solidify the 

mechanism of the photoreaction. 

 

Scheme 5.5: [2+2]-Photocycloaddition of uracil and thymine derivatives with tetramethylethylene. 

Sampedro carried out detailed experimental and computational study on the [2+2]-

photocycloaddition of isoxazoline derivatives 245 with furan 246 and reiterated the importance of 

electron withdrawing group in facilitating the photoreaction (Scheme 5.6).14 

 

Scheme 5.6: [2+2]-Photocycloaddition of isoxazoline derivatives with furan. 
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The photocycloaddition of the excited imine competes with deactivation process. The 

analysis of conical intersection of the reaction revealed that the presence of electron withdrawing 

group in the system prevented such deactivation process. Also, the substituent (electron 

withdrawing vs. electron donating) greatly affected the outcome of stereo- and regioselectivity in 

the reaction. Similar type of experimental study carried out by Mukai and coworkers on 

isoxazoline derivative revealed the importance of electron withdrawing group on the 

chromophore.15 Also, the reaction was observed to undergo via exciplex formation with high 

regiospecificity. 

In all the above examples, the chromophore was constrained in the ring that facilitated 

the reaction. The acyclic imine in the [2+2]-photocycloaddition reaction has not been reported so 

far. Milburn and coworkers documented the only report that emerged recently concerning the 

photocycloaddition of acyclic imines (Scheme 5.7).16 The stabilized-imine tethered maleimides 

249 undergo facile [5+2]-photocycloaddition to furnish 1,3-diazepine derivatives 250. 

 

Scheme 5.7: [5+2]-Photocycloaddition of imine tethered maleimides. 

In this higher order photocycloaddition reaction, the E/Z mixture of stabilized imine 

(hydrazones and oximes) which is in the ground state adds to the excited maleimide resulting in 

the 1,3-diazepine derivatives in good isolated yields. The non-stabilized imines do not engage in 

the [5+2]-photocycloaddition reaction. With this literature background, we evaluated some 

stabilized imine derived enamides as an exploratory study to survey the feasibility of [2+2]-

photocycloaddition of imines. The following compounds were synthesized according to the 

procedures reported in the literature. 
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Chart 5.1: Structures of imine derived enamides, their photoproducts and compounds used for 
their synthesis. 

 
5.2. [2+2]-Photocycloaddition of imine tethered enamides 

The initial investigation on the [2+2]-photocycloaddition was carried out on the stabilized 

imines (hydrazones and oximes). The reaction proceeds smoothly under xanthone-sensitized 

irradiation with in 1 h in acetonitrile solvent to furnish the desired photocycloadduct 252  

(Table 5.1). 

 

Scheme 5.8: [2+2]-Photocycloaddition of imine tethered enamides. 
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Table 5.1: [2+2]-Photocycloaddition of imine tethered enamidesa 

 
aThe photoreaction was performed in MeCN with 30 mol% xanthone as sensitizer in a Rayonet reactor 
equipped with ∼350 nm bulbs  using merry-go-round apparatus at room temperature. The reaction usually 
completes in 1 h and monitored by 1H-NMR and TLC. The ratio of E:Z isomers in the starting material were 
calculated from 1H-NMR of the crude reaction mixture. 
 
 

While reaction proceeded smoothly under described conditions, longer irradiation or 

broadband irradiation only resulted in the decomposition of reaction mixture. The reaction was 

monitored by 1H-NMR spectroscopy and TLC. After the reaction, the solvent was evaporated and 

the crude product was purified by column chromatography and confirmed by NMR, HRMS and 

single crystal XRD. Lower wavelength (420 nm) irradiation did not result in the product formation. 

The reaction tolerates wide substitution pattern in the hydrazone and oximes derived enamides 

as evident from table 5.1. The E:Z ratio in the starting material does not seem to affect the 

reaction and proceed to completion resulting in single photoproduct. The analysis of the crystal 
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structure data revealed that the orientation of hydrogens in the newly formed stereocenter are syn 

to each other. 

Further investigations such as stereospecific [2+2]-photocycloaddition using 

atropisomeric chromophores and detailed photophysical studies are to be carried out in order to 

understand the nature of excited states and the ability of axial chirality in imparting very high 

chirality transfer. Photophysical studies will provide key information to ascertain the type of 

excited state (excited enamide vs. excited imine) that initiates the photocycloaddition reaction. 

These studies are currently underway in our lab by junior graduate students. 

 
5.3. X-ray structure data for photoproduct 252a 

 

Figure 5.1: X-ray structure of photoproduct 252a (crystallized from hexanes/DCM). 

X-Ray data: Formula = C23H21N3O3S; FW = 397.48; Cryst. size_max [mm] = 0.24; cryst. size_mid 

[mm] = 0.1; Cryst. size_min [mm] = 0.052; Cryst. System = Monoclinic; Space Group, Z = 8; a 

[Å] = 24.7877(6); b [Å] = 10.2096(3); c [Å] = 16.2987(4); α [Å] = 90; β [Å] = 112.7980(10); γ 

[Å] = 90; V [Å3] = 3802.51(17); ρcalc [g/cm3] = 1.389; µ [mm-1] = 1.747; Radiation Type = CuKα 

(λ = 1.54178); F(000) = 1680.0; no of measured refl. = 27306; no of indep. refl. = 3363 [Rint = 

0.0353, Rsigma = 0.0180]; Resolution [Å] = 0.84; R1/wR2 (I ≥ 2σ)a [%] = 0.0324/0.0786; R1/wR2 

(all data) [%] = 0.037/0.0813. 
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5.4. Summary and outlook 

The initial investigation on the [2+2]-photocycloaddition of imines with maleimides not 

only provides easy access to azetidine derivatives but also provides a perfect platform to 

investigate the reactivity of imines in general toward photocycloaddition reaction. Detailed 

photochemical and photophysical analysis will shed crucial insights into the nature of excited 

states involved in the reaction and will allow us to tailor make imines chromophores that can 

undergo facile photocycloaddition reaction. 

 
5.5. Experimental section 

5.5.1. General methods 

All commercially obtained reagents/solvents were used as received; chemicals were 

purchased from Alfa Aesar®, Sigma-Aldrich®, Acros organics®, TCI America®, Mallinckrodt®, and 

Oakwood® Products, and were used as received without further purification. Unless stated 

otherwise, reactions were conducted in oven-dried glassware under nitrogen atmosphere.  

1H-NMR and 13C-NMR spectra were recorded on Varian 400 MHz (100 MHz for 13C) and on 500 

MHz (125 MHz for 13C) spectrometers. Data from the 1H-NMR spectroscopy are reported as 

chemical shift (δ ppm) with the corresponding integration values. Coupling constants (J) are 

reported in hertz (Hz). Standard abbreviations indicating multiplicity were used as follows:  

s (singlet), b (broad), d (doublet), t (triplet), q (quartet), m (multiplet) and virt (virtual). Data for  

13C NMR spectra are reported in terms of chemical shift (δ ppm). High-resolution mass spectrum 

data in Electrospray Ionization mode were recorded either on a Bruker – Daltronics® BioTof mass 

spectrometer in positive (ESI+) ion mode or on a Waters® SYNAPT G2-Si connected to 

ACQUITY UPLC system. HPLC analyses were performed on Waters® HPLC equipped with 2525 

pump or on Dionex® Ultimate 3000 HPLC. Waters® 2767 sample manager was used for 

automated sample injection on Waters® HPLC or Ultimate 3000 sample injector was used for 

injection on Dionex® HPLC. All HPLC injections on Waters® HPLC were monitored using a 

Waters® 2487 dual wavelength absorbance detector at 254 and 270 nm or on Dionex®. HPLC 

were monitored using a diode array detector (DAD3000125). Analytical and semi-preparative 

injections were performed on chiral stationary phase using various columns as indicated below 
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i) Regis® PIRKLE COVALENT (R,R) WHELK–01 

a) 25 cm × 4.6 mm column for analytical injections 

b) 25 cm × 10 mm column for semi-preparative injections 

ii) CHIRACEL® OD-H 

a) 0.46 cm × 25 cm column for analytical injections 

b) 10 mm × 25 cm column for semi-preparative injections 

iii) CHIRALPACK® IC 

a) 0.46 cm × 25 cm column for analytical injections 

b) 10 mm × 25 cm column for semi-preparative injections 

iv) CHIRALPAK® AD-H 

a) 0.46 cm × 15 cm column for analytical injections 

b) 10 mm × 25 cm column for semi-preparative injections 

Masslynx software version 4.1 was used to monitor/analyze the HPLC injections and to 

process HPLC traces. Igor Pro® Software version 6.0 was used to process the HPLC graphics. 

UV-Vis spectra were recorded on Shimadzu 2501PC UV-Vis spectrometer using UV quality 

fluorimeter cells (with range until 190 nm) purchased from Luzchem. Optical activity values were 

recorded on JASCO® DIP – 370 digital polarimeter. CD spectra were recorded on JASCO® J-815 

with JASCOPTC-423S/15 temperature controller maintained by liquid nitrogen. When necessary, 

the compounds were purified by combiflash equipped with dual wavelength UV-Vis absorbance 

detector (Teledyn ISCO) using hexanes:ethyl acetate as the mobile phase and Redisep® 

cartridge filled with silica (Teledyne ISCO) as stationary phase. In some cases, compounds were 

purified by column chromatography on silica gel (Sorbent Technologies®, silica gel standard 

grade: porosity 60 Å, particle size: 230 x 400 mesh, surface area: 500 – 600 m2/g, bulk density: 

0.4 g/mL, pH range: 6.5 – 7.5). Unless indicated, the Retardation Factor (Rf) values were 

recorded using a 5-50% hexanes:ethyl acetate as mobile phase and on Sorbent Technologies®, 

silica Gel TLC plates (200 mm thickness w/UV254).  
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5.5.2. Synthesis of hydrazone derivatives of enamides 251a, g-h 

 

Scheme 5.9: Synthesis of hydrazone derivatives of enamides 251a, g-h. 

The hydrazone derivatives of enamides was synthesized according to a procedure 

reported in the literature.16 To a mixture of hydrazide (1.1 equiv.) and 3 Å molecular sieves (200 

mg) in dry DCM (3 mL) at room temperature a solution of aldehyde (100mg, 0.44 mmol, 1.0 

equiv.) in DCM (2 mL) was slowly added. The resulting mixture was stirred for 6-12 h. The 

reaction was monitored by TLC and after the reaction the mixture was filtered through celite and 

washed with DCM (5 mL). The combined organic layer was concentrated under reduced pressure 

to yield the crude product. The crude was purified by combiflash using hexanes:ethyl acetate 

mixture to obtain pure product as a mixture of E:Z isomers (The ratio of E:Z isomers was 

ascertained from 1H-NMR crude reaction mixture). 

  

N OO N ON

X

X-NH2

3Å  MS, rt, 6-12 h

174h 251a, g-h
a) X = NHTs
g) X = NHBoc
h) X = NHCOPH
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1H-NMR (400 MHz, CDCl3, δ ppm): 8.86 (bs, 1H, minor), 8.08 (bs, 1H, major), 7.77-7.75 (m, 2H, 

minor), 7.72-7.70 (m, 2H, major), 7.27-7.22 (m, 3H, major+minor), 7.19-7.09 (m, 3H, 

major+minor), 7.01-6.98 (m, 1H, major), 6.80 (t, J = 5.2 Hz, 1H, minor) 6.40 (d, J = 4.8 Hz, 1H, 

minor), 6.34 (d, J = 4.8 Hz, 2H, major), 5.49 (d, J = 4.8 Hz, 1H, minor), 5.43 (d, J = 4.8 Hz, 3H, 

major), 3.34-3.33 (m, 2H, major+minor), 2.398-2.381 (m, 3H, major+minor) and 1.22-1.21 (m, 6H, 

major+minor). 

 

Figure 5.2: 1H-NMR (400 MHz, CDCl3, δ ppm) of N-tosyl imine derivative 251a.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 182.4, 182.1, 149.8, 147.1, 144.7, 144.0, 143.9, 135.96, 

135.8, 135.7, 133.7, 133.4, 132.6, 131.3, 130.9, 130.3, 130.1, 129.7, 129.66, 128.5, 128.47, 

128.3, 128.2, 128.16, 127.2, 126.8, 119.6, 118.6, 46.8, 46.5, 34.7, 31.8, 30.6, 23.6, 23.5 and 21.8. 

 

Figure 5.3: 13C-NMR (100 MHz, CDCl3, δ ppm) of N-tosyl imine derivative 251a.  
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HRMS-ESI (m/z) ([M + Na]): 

Calculated : 420.1352 

Observed  : 420.1348 

|Δm|  : 0.9 ppm 

 

Figure 5.4: HRMS of N-tosyl imine derivative 251a. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 8.26 (s, 1H), 7.21-7.206 (m, 3H), 7.13-7.06 (m, 2H), 6.38 (d, J 

= 4.8 Hz, 1H), 5.42 (d, J = 4.8 Hz, 1H), 3.40 (d, J = 5.6 Hz, 2H), 1.40 (s, 9H) and 1.21 (s, 6H). 

 

Figure 5.5: 1H-NMR (400 MHz, CDCl3, δ ppm) of N-Boc imine derivative 251g. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 182.3, 152.9, 144.97, 135.8, 134.5, 131.3, 131.0, 128.7, 

128.1, 127.3, 118.4, 77.6, 46.4, 34.8, 28.5, 28.47 and 23.6. 

 

Figure 5.6: 13C-NMR (100 MHz, CDCl3, δ ppm) of N-Boc imine derivative 251g.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 366.1794 

Observed  : 366.1799 

|Δm|  : 1.4 

 

Figure 5.7: HRMS of N-Boc imine derivative 251g.  
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1H-NMR (400 MHz, CDCl3, δ ppm): 10.11 (s, 1H), 7.78-7.76 (m, 2H), 7.54-7.51 (m, 1H), 7.43-7.39 

(m, 1H), 7.34-7.28 (m, 2H), 7.21-7.19 (m, 3H), 7.06-7.03 (m, 1H), 6.38 (d, J = 4.8 Hz, 1H), 5.43 

(d, J = 4.8 Hz, 1H), 3.44 (d, J = 5.6 Hz, 2H) and 1.19 (s, 6H). 

 

Figure 5.8: 1H-NMR (400 MHz, CDCl3, δ ppm) of N-Benzohydrazide imine derivative 251h.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 182.6, 164.4, 150.0, 135.8, 134.1, 133.3, 131.96, 131.2, 

131.1, 128.8, 128.7, 128.3, 127.7, 127.3, 118.7, 46.5, 34.9 and 23.5. 

 

Figure 5.9: 13C-NMR (100 MHz, CDCl3, δ ppm) of N-Benzohydrazide imine derivative 251h.  
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HRMS-ESI (m/z) ([M + H]+): 

Calculated : 348.1712 

Observed  : 348.1721 

|Δm|  : 2.6 ppm 

 

Figure 5.10: HRMS of N-Benzohydrazide imine derivative 251h. 
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5.5.3. Synthesis of oxime derivatives of enamides 251b-f 

 

Scheme 5.10: Synthesis of oxime derivatives of enamides 251b-f. 

To a mixture of oxime hydrochloride (1.1 equiv.), pyridine (1.5 equiv.) and 3Å molecular 

sieves (200 mg) in dry DCM (3 mL) at room temperature a solution of aldehyde (100mg, 0.44 

mmol, 1.0 equiv.) in DCM (2 mL) was slowly added. The resulting mixture was stirred for 6-12 h. 

The reaction was monitored by TLC and after the reaction the mixture was filtered through celite 

and washed with DCM. The combined organic layer was concentrated under reduced pressure to 

yield the crude product. The crude was purified by combiflash using hexanes:ethyl acetate 

mixture to obtain pure product as a mixture of E:Z isomers (The ratio of E:Z isomers was 

ascertained from 1H-NMR crude reaction mixture). 

  

N OO N ON

X

XNH2.HCl

pyridine, 3Å  MS 
rt, 6-12 h

174h 251b-f
b) X = OH       e) X = O-t-Bu
c) X = OMe     f) X = OBn
d) X = OEt
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1H-NMR (400 MHz, CDCl3, δ ppm): 8.46 (bs, 1H, minor), 8.03 (bs, 1H, major), 7.45 (t, J = 5.9 Hz, 

1H, major), 7.3-7.14 (m, 5H, major+minor) 7.17-7.14 (m, 1H, major+minor), 6.74 (t, J = 5.1 Hz, 

1H, minor), 6.46-6.44 (m, 1H, major+minor), 5.47 (dd, J = 4.9, 1.0 Hz, 1H, major+minor), 3.63 (d, 

J = 5.1 Hz, 2H, minor), 3.44 (d, J = 5.9 Hz, 2H, major), 1.28 (s, 3H, major+minor) and 1.27 (s, 3H, 

major+minor). 

 

Figure 5.11: 1H-NMR (400 MHz, CDCl3, δ ppm) of N-hydroxy oxime derivative 251b.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 181.94, 181.9, 150.0, 149.96, 135.94, 135.9, 134.7, 133.98, 

131.4, 131.2, 130.97, 130.9, 128.7, 128.6, 128.3, 128.2, 127.4, 127.3, 118.6, 118.5, 46.51, 46.5, 

32.3, 28.3, 23.7 and 23.6. 

 

Figure 5.12: 13C-NMR (100 MHz, CDCl3, δ ppm) of N-hydroxy oxime derivative 251b.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 267.1104 

Observed  : 267.1095 

|Δm|  : 3.4 ppm 

 

Figure 5.13: HRMS N-hydroxy oxime derivative 251b. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.37 (t, J = 6.2 Hz, 1H, minor), 7.29-7.27 (m, 6H, 

major+minor), 7.17-7.14 (m, 2H, major+minor), 6.64 (t, J = 5.2 Hz, 1H, major), 6.44 (dd, J = 4.8, 

4.0 Hz, 2H, major+minor), 5.47 (d, J = 4.8 Hz, 2H, major+minor), 3.85 (s, 3H, major), 3.78 (s, 3H, 

major), 3.58 (d, J = 5.2 Hz, 2H, major), 3.43 (d, J = 6.0 Hz, 2H, minor), 1.29 (s, 6H, minor) and 

1.27 (s, 3H, major). 

 

Figure 5.14: 1H-NMR (400 MHz, CDCl3, δ ppm) of N-methoxy oxime derivative 251c.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 181.7, 148.96, 148.5, 136.0, 135.95, 134.8, 134.2, 131.4, 

131.2, 130.9, 130.8, 128.7, 128.6, 128.2, 128.1, 127.4, 127.2, 118.5, 118.3, 61.9, 61.6, 46.5, 32.3, 

29.0, 23.7 and 23.6. 

 

Figure 5.15: 13C-NMR (100 MHz, CDCl3, δ ppm) of N-methoxy oxime derivative 251c.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 281.1260 

Observed  : 281.1253 

|Δm|  : 2.5 ppm 

 

Figure 5.16: HRMS of N-methoxy oxime derivative 251c. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.38 (t, J= 6.2 Hz, 1H, Z), 7.27-7.26 (m, 6H, Z+E), 7.16-7.12 

(m, 2H, Z+E), 6.63 (t, J= 5.2 Hz, 1H, E), 6.44-6.42 (m, 2H, Z+E), 5.46-5.45 (m, 2H, Z+E), 4.09 (q, 

J= 7.0 Hz, 2H, Z), 4.03 (q, J= 7.0 Hz, 2H, E), 3.58 (d, J = 5.1 Hz, 2H, Z), 3.42 (d, J = 6.2 Hz, 2H, 

E), 1.27 (s, 6H, Z), 1.26 (s, 6H, E) and 1.23-1.18 (m, 6H, E+Z) 

 

Figure 5.17: 1H-NMR (400 MHz, CDCl3, δ ppm) of N-ethoxy oxime derivative 251d.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 181.7, 148.7, 148.2, 135.96, 135.9, 135.0, 134.3, 131.5, 

131.2, 130.9, 130.8, 128.6, 128.6, 128.2, 128.1, 127.4, 127.2, 118.4, 118.3, 69.7, 69.3, 46.4, 32.3, 

29.1, 23.7, 23.6, 14.8 and 14.7. 

 

Figure 5.18: 1H-NMR (400 MHz, CDCl3, δ ppm) of N-ethoxy oxime derivative 251d.  
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HRMS-ESI (m/z) ([M + H]+): 

Calculated : 273.1603 

Observed  : 273.1608 

|Δm|  : 1.8 ppm 

 

Figure 5.19: HRMS of N-ethoxy oxime derivative 251d. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.36 (t, J = 6.2 Hz, 1H), 7.28-7.26 (m, 6H), 7.17-7.13 (m, 2H), 

6.63 (t, J = 4.8 Hz, 1H), 6.43 (t, J = 4.8 Hz, 2H), 5.45 (d, J = 4.8 Hz, 2H), 3.56 (d, J = 4.8 Hz, 2H), 

3.41 (d, J = 6.2 Hz, 2H), 1.28 (s, 6H), 1.27 (s, 6H), 1.24 (s, 9H) and 1.23 (s, 9H). 

 

Figure 5.20: 1H-NMR (400 MHz, CDCl3, δ ppm) of N-(t-butoxy) oxime derivative 251e. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 181.9, 181.8, 147.7, 147.2, 135.9, 135.8, 135.5, 134.7, 131.6, 

131.3, 130.95, 130.7, 128.6, 128.5, 127.96, 127.9, 127.4, 127.2, 118.3, 118.1, 78.5, 78.4, 46.4, 

32.3, 29.2, 27.8, 27.7 and 23.7. 

 

Figure 5.21: 13C-NMR (100 MHz, CDCl3, δ ppm) of N-(t-butoxy) oxime derivative 251e.  
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HRMS-ESI (m/z) ([M + H]+): 

Calculated : 301.1916 

Observed  : 301.1919 

|Δm|  : 1.0 ppm 

 

Figure 5.22: HRMS of N-(t-butoxy) oxime derivative 251e. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.49 (t, J = 6.2 Hz, 1H), 7.34-7.26 (m, 16H), 7.17-7.14 (m, 

2H), 6.73 (t, J = 5.0 Hz, 1H), 6.40 (t, J = 4.4 Hz, 2H), 5.45 (m, 2H), 5.11 (s, 2H), 5.05 (m, 2H), 

3.65 (d, J = 5.0 Hz, 2H), 3.45 (d, J = 6.2 Hz, 2H), 1.29 (s, 6H) and 1.26 (s, 6H). 

 

Figure 5.23: 1H-NMR (400 MHz, CDCl3, δ ppm) of N-benzyloxy oxime derivative 251f.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 181.8, 181.75, 149.6, 149.3, 138.1, 137.9, 136.0, 135.9, 

134.8, 134.2, 131.5, 131.2, 130.96, 130.9, 128.7, 128.6, 128.4, 128.23, 128.2, 128.1, 128.03, 

128.0, 127.4, 127.2, 118.5, 118.3, 76.1, 75.9, 46.5, 32.3, 29.3 and 23.7. 

 

Figure 5.24: 13C-NMR (100 MHz, CDCl3, δ ppm) of N-benzyloxy oxime derivative 251f. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 357.1573 

Observed  : 357.1574 

|Δm|  : 0.3 ppm 

 

 

Figure 5.25: HRMS of N-benzyloxy oxime derivative 251f. 
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5.5.4. General irradiation procedure for imine derived enamides 251a-f 

 

Scheme 5.11: Intramolecular [2+2]-photocycloaddition of stabilized imines with enamides. 

A N2 saturated solution of imine derivatives 251a-f in MeCN (1mg/1mL or 2.5-4.1 mM) 

with xanthone sensitizer (30 mol%) was irradiated in a Rayonet reactor equipped with ∼350 nm 

bulbs until the reaction is complete as monitored by the 1H-NMR spectroscopy (and TLC). After 

the reaction, the solvent was evaporated under reduced pressure and the residue was purified by 

combiflash to get the pure product. 

The large-scale photoreactions were performed as batches on the same concentration  

(8 × 10 mL test tubes per batch) using merry-go-round apparatus. After the reaction, the solvent 

was evaporated under reduced pressure and the residue was purified by combiflash to get the 

pure product. 

Note: For the given scale (10 mg) the reaction was complete in 1 h. Longer irradiation 

leads to decomposition of photoproducts. The Rf of most of the photoproducts and their starting 

materials were same, so 1H-NMR spectroscopy was used to monitor the reaction. A solution of 

imines undergoes decomposition even when stored in dark, so the operations have to be carried 

out so as to reduce the pre-irradiation time as less as possible. 

  

NN O

X
hν (∼350 nm)

Xanthone (30 mol%)

MeCN, 25 °C, t  (h)

N
N OX

251a-h 252a-h



 531 

1H-NMR (400 MHz, CD2Cl2, δ ppm): 7.77-7.34 (m, 2H), 7.41-7.38 (m, 1H), 7.33-7.31 (m, 2H), 

7.28-7.24 (m, 1H), 7.18-7.14 (m, 1H), 7.05-7.03 (m, 1H), 6.18 (bs, 1H), 4.06-3.99 (m, 2H), 3.85 

(d, J = 5.0 Hz, 1H), 2.77 (dd, J = 18.4, 8.0 Hz, 1H), 2.46 (m, 3H), 2.39 (d, J = 18.8 Hz, 1H), 1.12 

(s, 3H) and 0.81 (s, 3H). 

 

Figure 5.26: 1H-NMR (400 MHz, CD2Cl2, δ ppm) of N-tosyl imine photoproduct 252a.  
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13C-NMR (100 MHz, CD2Cl2, δ ppm): 178.2, 144.6, 135.7, 134.7, 130.5, 129.7, 128.8, 128.5, 

126.2, 125.6, 124.9, 76.0, 70.4, 47.4, 44.3, 29.1, 22.3, 21.3 and 16.3. 

 

Figure 5.27: 13C-NMR (400 MHz, CD2Cl2, δ ppm) of N-tosyl imine photoproduct 252a.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 224.1434 

Observed  : 224.1437 

|Δm|  : 1.3 ppm 

 

Figure 5.28: HRMS of N-tosyl imine photoproduct 252a. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.50-7.48 (m, 1H), 7.29-7.25 (m, 1H), 7.17-7.14 (m, 2H), 5.60 

(bs, 1H), 4.17 – 4.11 (m, 1H), 4.08-4.04 (m, 1H), 3.83 (d, J = 5.2 Hz, 1H), 3.11 (dd, J = 18.4, 8.0 

Hz, 1H), 2.94 (d, J = 18.4 Hz, 1H), 1.28 (s, 3H) and 1.25 (s, 3H). 

 

Figure 5.29: 1H-NMR (400 MHz, CDCl3, δ ppm) of N-hydroxy oxime photoproduct 252b.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 179.0, 134.7, 129.6, 129.2, 126.6, 125.6, 125.1, 76.1, 66.5, 

46.2, 44.3, 29.2, 22.3 and 17.3. 

 

Figure 5.30: 13C-NMR (100 MHz, CDCl3, δ ppm) of N-hydroxy oxime photoproduct 252b.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 267.1104 

Observed  : 267.1103 

|Δm|  : 0.4 ppm 

 

Figure 5.31: HRMS of N-hydroxy oxime photoproduct 252b. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.46-7.44 (m, 1H), 7.25-7.20 (m, 1H), 7.13-7.08 (m, 2H), 

4.08-4.05 (m, 1H), 4.00-3.96 (m, 1H), 3.74 (d, J = 5.4 Hz, 1H), 3.49 (s, 3H), 3.14 (dd, J = 18.0, 

8.0 Hz, 1H), 2.96-2.91 (m, 1H), 1.28 (s, 3H) and 1.20 (s, 3H). 

 

 

Figure 5.32: 1H-NMR (400 MHz, CDCl3, δ ppm) of N-methoxy oxime photoproduct 252c.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 179.1, 134.98, 130.1, 129.2, 126.7, 125.8, 125.2, 75.9, 66.2, 

62.0, 46.3, 44.1, 30.7, 22.5 and 18.3. 

 

Figure 5.33: 13C-NMR (100 MHz, CDCl3, δ ppm) of N-methoxy oxime photoproduct 252c.  
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HRMS-ESI (m/z) ([M + H]+): 

Calculated : 259.1447 

Observed  : 259.1451 

|Δm|  : 1.5 ppm 

 

Figure 5.34: HRMS of N-methoxy oxime photoproduct 252c. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.46-7.44 (m, 1H), 7.24-7.20 (m, 1H), 7.13-7.08 (m, 2H), 

4.08-4.06 (m, 1H), 4.00-3.96 (m, 1H), .3.78-3.76 (m, 1H), 3.72-3.61 (m, 2H), 3.11 (dd, J = 18.0, 

8.4 Hz, 1H), 2.93-2.89 (m, 1H), 1.25 (s, 3H), 1.19 (s, 3H) and 1.11 (t, J = 7.0 Hz, 3H). 

 

Figure 5.35: 1H-NMR (400 MHz, CDCl3, δ ppm) of N-ethoxy oxime photoproduct 252d. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 79.1, 135.0, 130.2, 129.2, 126.7, 125.8, 125.2, 75.98, 69.1, 

66.4, 46.5, 44.1, 30.3, 22.6, 18.3 and 14.9. 

 

Figure 5.36: 13C-NMR (100 MHz, CDCl3, δ ppm) of N-ethoxy oxime photoproduct 252d.  
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HRMS-ESI (m/z) ([M + H]+): 

Calculated : 273.1603 

Observed  : 273.1606 

|Δm|  : 1.1 ppm 

 

Figure 5.37: HRMS of N-ethoxy oxime photoproduct 252d. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.43-7.42 (m, 1H), 7.25-7.21 (m, 1H), 7.12-7.11 (m, 2H), 

4.15-4.12 (m, 1H), 4.02-3.97 (m, 1H), 3.83-3.82 (m, 1H), 3.09 (dd, J = 17.6, 9.0 Hz, 1H), 2.99-

2.94 (m, 1H), 1.27 (s, 3H), 1.19 (s, 3H) and 1.14 (s, 9H). 

 

Figure 5.38: 1H-NMR (400 MHz, CDCl3, δ ppm) of N-(t-butoxy) oxime photoproduct 252e.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 178.8, 135.6, 131.5, 128.9, 126.9, 126.1, 125.0, 77.7, 75.5, 

70.0, 48.0, 44.9, 30.9, 28.7, 23.7 and 18.1. 

 

Figure 5.39: 13C-NMR (100 MHz, CDCl3, δ ppm) of N-(t-butoxy) oxime photoproduct 252e.  

= solvent*

N

O
N

O

25
2e

*

t-B
u



 545 

HRMS-ESI (m/z) ([M + H]+): 

Calculated : 301.1916 

Observed  : 301.1923 

|Δm|  : 2.3 ppm 

 

Figure 5.40: HRMS of N-(t-butoxy) oxime photoproduct 252e.  
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.44-7.41 (m, 1H), 7.32-7.18 (m, 5H), 7.22-7.18 (m, 1H), 

7.09-7.04 (m, 1H), 6.99-6.97 (m, 1H), 4.71 (d, J = 11.6 Hz, 1H), 4.57 (d, J = 11.6 Hz, 1H), 4.05 (t, 

J = 5.6 Hz, 1H), 4.02 – 3.95 (m, 1H), 3.87 (d, J = 5.3 Hz, 1H), 2.78 (dd, J = 18.4, 8.4 Hz, 1H), 

2.31 (d, J = 18.3 Hz, 1H), 1.31 (s, 3H) and 1.22 (s, 3H). 

 

Figure 5.41: 1H-NMR (400 MHz, CDCl3, δ ppm) of N-benzyloxy oxime photoproduct 252f.  
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13C-NMR (100 MHz, CDCl3, δ ppm): 179.1, 138.2, 134.9, 130.4, 129.2, 128.9, 128.6, 128.2, 126.6, 

125.8, 125.1, 76.4, 75.9, 66.9, 46.6, 44.2, 29.7, 22.6 and 18.4. 

 

Figure 5.42: 13C-NMR (100 MHz, CDCl3, δ ppm) of N-benzyloxy oxime photoproduct 252f.  
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HRMS-ESI (m/z) ([M + H]+): 

Calculated : 335.1760 

Observed  : 335.1762 

|Δm|  : 0.6 ppm 

 

Figure 5.43: HRMS of N-benzyloxy oxime photoproduct 252f.  
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.42-7.40 (m, 1H), 7.23-7.19 (m, 1H), 7.10-7.09 (m, 2H), 

6.21 (bs, 1H), 4.90 (s, 1H), 4.59 (s, 1H), 4.01 (t, J = 5.2 Hz, 1H), 2.96 (dd, J = 18.0, 8.0 Hz, 1H), 

2.72 (d, J = 18.0 Hz, 1H), 1.46 (s, 9H), 1.17 (s, 3H) and 1.16 (s, 3H). 

 

 

Figure 5.44: 1H-NMR (400 MHz, CDCl3, δ ppm) of N-Boc imine photoproduct 252g.  
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13C-NMR (100 MHz, DMSO, δ ppm): 178.7, 154.5, 134.8, 130.4, 129.1, 125.8, 125.1, 124.9, 78.5, 

73.0, 63.2, 46.4, 43.9, 28.8, 20.1, 21.8 and 17.2. 

 

Figure 5.45: 13C-NMR (100 MHz, CDCl3, δ ppm) of N-benzyloxy oxime photoproduct 252g.  
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 366.1794 

Observed  : 366.1790 

|Δm|  : 1.1 ppm 

 

Figure 5.46: HRMS of N-benzyloxy oxime photoproduct 252g.  
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1H-NMR (400 MHz, DMSO, δ ppm): 9.91 (bs, 1H), 7.77-7.75 (m, 2H), 7.53-7.49 (m, 1H), 7.45-

7.41 (m, 2H), 7.31-7.29 (m, 1H), 7.23-7.095 (m, 3H), 4.61-4.58 (m, 1H), 4.40 (d, J = 5.2 Hz, 1H), 

4.19 (t, J = 4.8 Hz, 1H), 2.99 (dd, J = 18.4, 8.0 Hz, 1H), 2.69 (d, J = 18.0 Hz, 1H) and 1.07 (s, 

6H). 

 

Figure 5.47: 1H-NMR (400 MHz, DMSO, δ ppm) of N-benzoylhydrazide imine photoproduct 
252h.  
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13C-NMR (100 MHz, DMSO, δ ppm): 184.3, 170.9, 140.3, 138.96, 136.9, 135.97, 134.6, 133.8, 

132.6, 131.3, 130.7, 130.4, 77.9, 68.8, 52.3, 49.6, 34.5, 27.2 and 22.6. 

 

Figure 5.48: 1H-NMR (400 MHz, DMSO, δ ppm) of N-benzoylhydrazide imine photoproduct 
252h.  
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HRMS-ESI (m/z) ([M + H]+): 

Calculated : 348.1712 

Observed  : 348.1714 

|Δm|  : 0.6 ppm 

 

Figure 5.49: HRMS of N-benzoylhydrazide imine photoproduct 252h.  
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6. CHAPTER 6: CONCLUSIONS 

In the quest for newer methodology in the field of asymmetric synthesis to access diverse 

and stereochemically rich building blocks, phototransformations has offered a definite promise. 

Photochemistry not only levels with synthetic potential of a methodology but also levels with 

green chemistry standards that utilize environmentally benign reagent photon. However, in order 

to take full advantage of its ability, certain fundamental challenges such as controlling the excited 

state to develop controllable/predictable stereochemistry in a methodology has to be developed. 

Synthetic strategies that were developed to address this bottleneck have met with varying degree 

of success. 

The introductory chapter explains the principal difference between the asymmetric 

synthesis carried out under thermal conditions and under photochemical conditions. Also, the 

failure of synthetic methodologies (successful in thermal chemistry) in photochemical 

transformations is explained based on the energy profile of the transition states involved in 

thermal and photochemical transformations. A brief summary of the methodologies developed to 

address stereoselectivity in the photochemical transformation such as reaction in solid-state, 

confined media, template mediated reaction, chiral auxiliary tethered substrates …etc and their 

degree of success is also revealed. The impact of axial chirality in thermal reaction towards 

asymmetric reactions and the preliminary investigations of axially chiral chromophore in 

asymmetric phototransformation are also disclosed. 

To explore further in the role axial chirality in performing asymmetric phototransformation 

and in the effort to make it a general established strategy, this thesis describes the asymmetric 

phototransformation of variety of atropisomeric chromophores. The presence of axial chirality 

imparts predisposition to the reacting chromophore to undergo highly stereospecific reactions. 

These molecules are designed to withstand racemization at ambient conditions where the 

photoreactions are performed. The excited atropisomeric chromophore generally do not undergo 

racemization obeying Havinga’s NEER principle (Non-Equilibrating Excited-state Rotamers) 

resulting in stereospecific phototransformation, where the product selectivity is dictated by the 

absolute configuration of the starting material. 
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The dissertation explores the photoreaction involving 4π-electrons viz., 4π-ring closure of 

2-pyridones and [2+2]-photocycloaddition of enamides and maleimides. In chapter 2, we disclose 

enantiospecific 4π-ring closure of 2-pyridones that result in enantioenriched β-lactam 

photoproducts. The presence of differential axial chirality (with pure sterics or with a blend of 

sterics and H-bonding) affects the enantiospecificity in the photoreaction as temperature and 

solvent was varied. This dependence was explained based on the differential activation 

parameters (differential activation enthalpy and entropy) by performing Eyring plots. The 

preferred mode of cyclization was deciphered by following the course of reaction through single 

crystal X-ray diffraction. High-pressure studies carried on racemization and photoreaction 

provided excellent avenue to perform enantiospecific photoreactions at high temperatures. 

Chapter 3 and 4 involves [2+2]-photocycloaddition of atropisomeric enamides and 

maleimides. The enamides undergo stereospecific photocycloaddition under sensitized irradiation 

to result in oxetane and cyclobutane products with high ee. The reaction proceeds via the 

excitation of enamides through energy transfer from the sensitizer, which is not reported in the 

literature so far. Also, analysis on the substitution in the reacting partner (alkenyl and carbonyl) 

and the ring size of enamides provides excellent mechanistic details, scope and limitations of this 

approach. The chapter 4 details photocycloaddition of atropisomeric maleimides. The reaction 

proceeds under variety of conditions including visible light to produce cyclobutane photoproducts 

in excellent yield. This unprecedented highly stereospecific reaction results in regioisomeric 

products that are dictated by substitution on the alkenyl tether and at the maleimides double 

bond. Detailed photophysical analysis provides insights about the nature and lifetime of excited 

state species involved in the photocycloaddition reaction. Merging flow set up with visible light 

photoreaction provided an excellent avenue to perform large-scale photoreaction. 

Also, results of preliminary investigations of [2+2]-photocycloaddition of enamides to 

stabilized imines are detailed in chapter 5. In this novel report, unusual photocycloaddition of 

imines to enamides are observed that result in the formation of azetidine derivatives in good yield. 

Further mechanistic and photophysical studies will provide crucial details that would allow us to 

access four membered heterocyclic compounds. 
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In conclusion, the “axial to point chiral transfer” in photochemical transformation is a 

cutting edge strategy to access enantiomerically enriched building blocks. The axial chirality not 

only imparts excellent stereotopic bias but also provides unique reactivities that are not known for 

non-atropisomeric systems. Further research along this line in the Sivagroup at North Dakota 

State University is ongoing to unravel the richness and scope of this methodology. 


