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ABSTRACT  

Iron deficiency causes chlorosis in many plant species, resulting in yield loss and poor 

quality. Many tree species including poplar are susceptible to iron deficiency. Trees suffering 

from iron deficiency often show interveinal chlorotic leaves and in severe cases, branches or an 

entire tree may die. 

In this study, two trees of Populus tremula L.‘Erecta’ growing near each other but with 

contrasting leaf color phenotypes were used to study the causes of chlorosis and the mechanisms 

of tolerance or susceptibility to iron chlorosis in poplar. A leaf analysis revealed that the iron 

deficiency tolerant tree (PtG) had a higher level of dry matter content, chlorophyll (a+b), Chl a/b 

ratio, Zn and Fe content than the iron chlorosis susceptible tree (PtY). A hydroponic culture 

confirmed the differences in aforementioned physiological parameters between PtG and PtY 

responding to iron deficiency.  

Two iron-regulated transporter genes (PtIRT1 and PtIRT3), the native promoter of the 

PtIRT1 gene (PtIRT1-pro), and two basic helix-loop-helix (bHLH) transcription factors (PtFIT 

and PtIRO) were cloned and characterized for their responses to iron deficiency in PtG and PtY. 

Deduced amino acid analysis revealed that PtIRT1,  PtIRT3, PtFIT, and PtIRO in PtG were 

identical to those in PtY. Phylogenetic and putative domain analyses showed that PtIRT1, PtFIT, 

and PtIRO may function in iron homeostasis, while PtIRT3 may play a role in zinc transport in 

poplar. The expression of PtIRT1 and PtFIT are root-specific and up-regulated by iron 

deficiency. The expression of a GUS gene derived by PtIRT1-pro in tobacco was also up-

regulated by iron deficiency, but was not root-specific. The expression of PtIRT3 is ubiquitous 

and up-regulated by iron deficiency, but significantly down-regulated by zinc deficiency. A high 

correlation in the expression between PtFIT and PtIRT1 was observed in PtG, but not in PtY. 



iv 

Transgenic poplars overexpressing PtIRT1 or PtIRT3 did not have enhanced Fe accumulation; 

however, an enhanced tolerance to iron deficiency was found in transgenic plants overexpressing 

PtFIT. The results suggested that the transcription factor PtFIT may be involved in iron 

deficiency response through regulation of PtIRT1 and PtFIT itself may be regulated by other 

factors in poplar. 
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CHAPTER I. GENERAL INTRODUCTION 

Iron (Fe) is an essential plant nutrient involved in biosynthesis and functional 

maintenance of chlorophyll in plants (Abadia, 1992). Iron is an important component of the 

ferredoxin/thioredoxin system that catalyzes several photosynthesis enzymes and plays a key 

role in regulating many metabolic pathways in the chloroplast (Malkin and Niyogi, 2000). The 

structure and composition of photosynthetic membranes in chloroplasts changed under the 

condition of iron deficiency, causing interveinal chlorotic leaves with a network of green veins, 

which dramatically affected the entire photosynthetic system of higher plants (Terry, 1983; 

Morales et al., 1994; Bertamini et al., 2001; Andaluz et al., 2006). The iron chlorosis symptoms 

first occur on the young leaves in the early growing stage and will continue to develop on all 

leaves during the growing season. In severe cases, leaves turn brown and gradually die, and 

eventually, branches or even an entire tree may die. Iron chlorosis is often seen in calcareous and 

alkaline soils and will cause loss of productivity and yield (Mori, 1999). Many tree species 

including apple, citrus, banana, grape, pines, and poplar are susceptible to iron deficiency 

(Tagliavini and Rombolà, 2001).  

The mechanism of iron acquisition by higher plants can be distinctly classified into two 

strategies, reduction-based and chelation-based (Römheld and Marschner, 1986; Römheld, 1987; 

Mori, 1999; Guerinot and Yi, 1994; Kim and Guerinot, 2007). Non-graminaceous higher plants 

(known as Strategy I plants) employ the reduction-based strategy to uptake iron from the soil 

with the help of H
+
-ATPases, membrane-bound Fe(III)-chelate reductases, and Fe(II)-specific 

cation transporters. Graminaceous species (known as Strategy II plants) transfer the iron into 

roots by chelating soluble Fe(III) that is formed as a complex of Fe(III)-chelators in the 

rhizophere of plants.  
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Under iron deficiency, Strategy I plants induce a number of mechanisms to alleviate the 

stress. One mechanism is to release H
+
, reductants, and chelators. Enhancement of proton 

excretion in the rhizosphere can increase the ferric reduction capacity at the root surface to 

reduce Fe(III) to Fe(II). Release of chelators enhances the transport of Fe(II) through the 

plasmamembrane (Santi et al., 2005; Santi and Schmidt, 2008). It has been well documented that 

Fe(III) reduction is regulated by the genes in the FRO (Ferric Reductase Oxidase) family. Iron 

uptake and transport in plants is controlled by IRT (Iron-Regulated Transporter) genes belonging 

to the ZIP (zinc-regulated transporter, iron-regulated transporter-like protein) family (Guerinot, 

2000; Morrissey and Guerinot, 2009; Jeong and Connolly, 2009; Waters and Sankaran, 2011; 

Jain et al., 2014). These genes can be induced by iron deficiency and regulated by bHLH (basic 

helix-loop-helix) transcription factors (Colangelo and Guerinot, 2004; Jakoby et al., 2004; Yuan 

et al., 2005; Yuan et al., 2008; Long et al., 2010; Sivitz et al., 2012; Wang et al., 2013; Thomine 

and Vert, 2013). 

The genus Populus, belonging to the family Salicaceae, is comprised of 30-40 species 

classified into five sections based on leaf and flower characters. Poplar is widely used in paper 

(pulp production), energy (biofuel), forest (wood), and agforestry (shelterbelt) industries. Poplar 

has been a model tree species for both applied and basic research because of its rapid growth, 

well-developed micropropagation and transformation system, great genetic diversity, and small 

genome size (~ 500 Mbp) (Tuskan et al., 2004, 2006; Jansson and Douglas, 2007).  A total of 

41,427 genes are predicted in the poplar nuclear genome according to Populus trichocarpa 

Poptr2_0 submitted by US DOE Joint Genome Institute 

(http://www.ncbi.nlm.nih.gov/genome/98) and released in 2006 and then modified in 2013. This 

genome information has been used by researchers worldwide in various areas, such as 

http://www.ncbi.nlm.nih.gov/genome/98
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comparative genomics, molecular biology, and genetics (Tuskan et al., 2004; Jansson and 

Douglas, 2007; Polle and Douglas, 2010).  

In this study, two trees of European aspen (Populus tremula) ‘Erecta’ grown close to 

each other (3 meters apart) on the NDSU campus were found have contrasting phenotypes. One 

tree (PtG) grows normally with green leaves during the growing season. The other tree (PtY) has 

interveinal chlorotic leaves. The chlorosis symptom suggested that the two trees may suffer from 

iron deficiency stress. The objectives of this research were to analyze the physiological responses 

to iron deficiency and to identify and characterize genes involved in the iron metabolism in 

poplar trees. 
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CHAPTER II. LITERATURE REVIEW 

Iron is an essential nutrient for plants 

Iron (Fe), an essential micronutrient, is involved in biosynthesis and functional 

maintenance of chlorophyll in plants (Abadia, 1992). As an important component of the 

ferredoxin/thioredoxin system, iron catalyzes several photosynthesis enzymes and participates in 

the regulation of many metabolism pathways in the chloroplast (Malkin and Niyogi, 2000). 

Accumulated evidences show that iron functions as a co-factor involved in the formation of δ-

aminolevulinic acid (ALA) that intermediates chlorophyll synthesis in higher plants (Pushnik et 

al., 1984). The structure and composition of photosynthetic membranes in chloroplasts changed 

under iron deficiency. In several plant species, iron deficiency may decrease the number of 

thylakoid membranes and other photosynthetic units such as granal and stomatal lamellae 

(Spiller and Terry, 1980) and lower the efficiency of photosynthesis system II (PS II) (Belkhodja 

et al., 1998; Bertamini et al., 2001; Naumann et al., 2005). These structural and compositional 

changes impair the electron transport chain and the light harvesting system which results in the 

dramatical inhibition of the entire photosynthetic system of higher plants (Terry, 1983; Morales 

et al., 1994; Andaluz et al., 2006). Meanwhile, iron is an essential nutrient for human beings and 

iron deficiency leads to the major human nutritional disorder of anemia, particularly in 

populations of children and women (http://www.who.int/nutrition/topics/ida/en/index.html).  

Iron deficiency and its management in plants 

In plants, iron deficiency causes a decrease of chlorophyll content and alternates the 

chlorophyll structure, resulting in plant chlorosis. Iron chlorosis is one of the major problems in 

calcareous soils, especially in arid and semi-arid regions. Worldwide, about 30% of the 

cultivated soils are calcareous in which iron chlorosis limits agricultural production (Mori, 
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1999). Many tree species including apple, citrus, banana, grape, pines, and poplars are 

susceptible to iron deficiency (Tagliavini and Rombolà, 2001). Iron chlorosis has a primary 

symptom of interveinal chlorosis that shows a bright yellow leaf with a network of green veins. 

Symptoms first occur on the young leaves in the early growing stage and will continue to 

develop on all leaves during the growing season. In severe cases, leaves turn brown and 

gradually die, and eventually, branches or even an entire tree may die. 

Considerable research has been done on the control of iron chlorosis (Tagliavini and 

Rombolà, 2001; Abadia et al, 2011). Current practical methods for correcting iron chlorosis 

include 1) using species or cultivars tolerant to iron deficiency; 2) creating ideal soil/root 

environments to improve iron availability; 3) applying iron fertilizers to the soil and/or to the 

plant directly. Lack of iron deficiency tolerant germplasm and long breeding times make it 

difficult to develop cultivars having tolerance to iron deficiency via traditional breeding, 

especially for woody species. Creating an ideal soil/root environment, such as acidifying the soil 

and applying organic compounds to the soil to make iron more available is not always practical 

and desirable to large crop fields and landscapes. Soil application of iron elements has variable 

results and relatively high cost, and sometimes plants may be slow to respond to the iron supplies. 

Foliar spray and trunk injection may cause temporary leaf and trunk injury and have short-lasting 

effects. Compared with studies on annual crop species, limited research has been done for 

correcting iron chlorosis on woody plants. So far, there is no satisfactory method to control tree 

chlorosis throughout the entire life span of trees either in natural stands or in urban forestry.  

Iron availability in the soil 

Iron is sufficient in most cultivated soils with an average concentration of 20-40 g/kg 

(Cornell and Schwertmann, 2003). Iron is present in the soil in two forms, mineral Fe including 
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Fe(II) in primary minerals and Fe(III) in secondary minerals;  and absorbable Fe including 

soluble and exchangeable Fe and Fe-complexes bound to the organic matter (Colombo et al., 

2014). Most iron, particularly in calcareous or alkaline well-drained soils, predominantly exists 

in the ferric oxidation state [goethite (α-FeOOH) and hematite (α-Fe2O3)] that is not available for 

plants to uptake (Guerinot and Yi, 1994). Generally, the Fe concentration needs to be 10
-9

 -10
-4

 

M to keep the optimal growth of plants (Römheld and Marschner 1986). However, the 

concentration of inorganic Fe is as low as 10
-10 

M in aqueous aerated soil solution and that of 

soluble Fe(II) and Fe(III) are less than 10
-15 

M in well-aerated soil (Marschner, 1995; Boukhalfa 

and Crumbliss, 2002). Iron can be solubilized from mineral sources via weathering, but it is a 

slow process regulated by pH, oxygen concentration and the dissolution-precipitation process of 

minerals (Lindsay, 1988; Mengel, 1994). Reduction of Fe(III) to Fe(II) increases the Fe 

solubility, but further studies found that Fe(II) is not stable in the aerobic environment that is 

suitable for healthy growth of most plants. Therefore, the major concern is not only how much 

Fe(II) is reduced from Fe(III), but also how fast the plant is able to uptake and transport Fe(II) to 

the target site (Guerinot and Yi, 1994; Briat and Lobreaux, 1997). These findings resulted in a 

conclusion that the major role of Fe nutrition is played by Fe forms available to plant roots rather 

than the amount of inorganic Fe (Guerinot and Yi, 1994; Briat et al., 1995). 

Iron uptake, transport, and metabolism in plants 

The mechanism of iron acquisition by higher plants can be distinctly classified into 

reduction- and chelation-based strategies (Takagi, 1976; Römheld and Marschner, 1986; 

Römheld, 1987; Guerinot and Yi, 1994; Mori, 1999; Kim and Guerinot, 2007). Non-

graminaceous higher plants, known as Strategy I plants, employ a reduction-based strategy. The 

iron is acquired from the soil to roots through a coordinated action of H
+
-ATPases, membrane-
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bound Fe(III)-chelate reductases, and Fe(II)-specific cation transporters. In graminaceous 

species, also called Strategy II plants, Fe(III) chelators are used to acquire soluble Fe(III) from 

the rhizophere and the complex of Fe(III)-chelators are then transport into roots by the iron 

transporter.  

Under iron deficiency, a number of mechanisms have been induced in plants to alleviate 

the stress. In Strategy I plants, these mechanisms include release of reducing and chelating 

substances (reductants and chelators) and enhancement of proton excretion in the rhizosphere, 

which increases the reduction of Fe(III) to Fe(II) and benefits the transport of Fe(II) through 

plasmamembranes (Santi et al., 2005; Santi and Schmidt, 2008). In Arabidopsis, H
+
-ATPase 

(AHA) plays a role in iron deficiency response with its activity being found in iron-deficient 

roots (Colangelo and Guerinot, 2004; Dinneny et al., 2008). The Fe(III) reduction capacity 

positively correlated to iron deficiency resistance in some annual plants, such as soybean (Jolley 

et al., 1992), dry bean (Ellsworth et al., 1997), and some woody species (De la Guardia and 

Alcantara, 2002). Evidence showed that increased reductase activities under iron deficiency 

stress enhanced reduction of soluble Fe(III) to Fe(II), consequently increasing iron uptake by 

plants (Römheld, 1987). In strategy II species, plants produce iron-chelating mugineic acids that 

belong to phytosiderophores (PSs) and are present at the root surface to chelate Fe(III) under iron 

deficiency. The complex of Fe(III)-PSs is then transported into roots via YS1 (Yellow Stripe 1) 

and YSL1 (Yellow Stripe 1-Like) transporters (Curie et al., 2001, 2009). It is interesting that 

Fe(II) could be taken up in addition to Fe(III)-PSs complexes in rice without H
+
-ATPase and Fe 

(III)-chelate reductase activity which was often found in Strategy I plants (Cheng et al., 2007).  



 11 

Iron homeostasis in plants 

It has been well documented that Fe(III) reduction is regulated by the genes in the FRO 

(Ferric Reductase Oxidase) family and Fe uptake and transport is controlled by the IRT (Iron-

Regulated Transporter) genes belonging to the ZIP (zinc-regulated transporter, iron-regulated 

transporter-like protein) family in plants (Guerinot, 2000; Morrissey and Guerinot, 2009; Jeong 

and Connolly, 2009; Water and Sankaran, 2011). Various iron deficiency inducible genes 

including IRT and FRO are regulated by the bHLH (basic helix-loop-helix) transcription factors 

(Colangelo and Guerinot, 2004; Jakoby et al., 2004; Yuan et al., 2005; Yuan et al., 2008; Long et 

al., 2010; Sivitz et al., 2012; Thomine and Vert 2013; Wang et al., 2013). 

Ferric reduction oxidase (FRO) gene family  

The mechanism of iron reduction has been well characterized (Schmidt, 1999). 

Previously, an externally oriented reductase has been found to be responsible for the reduction of 

ferric iron and was localized on the root-cell plasma membrane (Bienfait et al., 1983; Buckhout 

et al., 1989; Holden et al., 1991; Schmidt, 1999). The FRO gene encodes Fe(III)-chelate 

reductase, reducing Fe(III) to soluble Fe(II). As a member of the flavocytochrome family, 

Fe(III)-chelate reductase has a function of transporting electrons across membranes and its 

activity increases when iron is deficient (Robinson et al., 1999; Bienfait, 1985). By contrast, iron 

deficiency decreases the activity of Fe(III)-chelate reductase in leaf mesophyll protoplasts, which 

may resulted in chlorotic leaves because of lower active Fe used for chlorophyll formation 

(Gonzalez-Vallejo et al., 2000; Mengel, 1994). In Arabidopsis, AtFRO2 is the main Fe(III)- 

chelate reductase expressed in the epidermal cells of iron-deficient roots (Robinson et al., 1999). 

A loss-of-function mutant (frd1) of FRO2 that was extremely chlorotic when grown on iron 

deficiency medium showed a defective iron uptake when iron was supplied as a Fe(III)-chelate 
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form (Connolly et al., 2003). In the other hand, overexpression of AtFRO2 in soybean increased 

the root ferric reductase activity and enhanced tolerance to iron deficiency induced chlorosis 

(Vasconcelos et al., 2006). In addition to AtFRO2, seven other AtFRO genes (FRO1, FRO3, 

FRO4, FRO5, FRO6, FRO7, and FRO8) were identified in Arabidopsis based on the sequence 

similarity (Wu et al., 2005; Mukherjee et al., 2006). The expression of the AtFRO genes in 

various tissues suggests that the AtFRO genes function differently in iron uptake. The AtFRO1 

and AtFRO4 genes are barely detected in all tissues. The AtFRO2 and AtFRO5 genes are 

primarily expressed in roots while AtFRO6, AtFRO7, and AtFRO8 genes are shoot-specific. The 

AtFRO3 is expressed at a higher level in roots and shoots. Besides, the promoter of FRO6 has 

multiple light-responsive elements, since the reporter gene driven by the AtFRO6 promoter was 

activated when exposed to light (Feng et al., 2006). Indeed, transgenic tobacco overexpressing 

AtFRO6 has higher ferric reductase activity in leaves than the control, leading to increased 

concentrations of ferrous iron, chlorophyll as well as reduced iron deficiency chlorosis (Li et al., 

2011). In summary, evidence suggested that the AtFRO genes appear to play important roles in 

uptake and subcellular compartmentalization of iron (Jain et al., 2014). It is well demonstrated 

that AtFRO2 serves to reduce solubilized Fe(III) to usable Fe(II) in roots. The AtFRO6 gene 

functions to reduce Fe(III) to Fe(II) at the cell surface of leaf cells. The AtFRO7 gene is known 

to contribute to delivery of iron to chloroplasts while mitochondrial family members AtFRO3 

and AtFRO8 genes are hypothesized to influence mitochondrial metal ion homeostasis. Recent 

research showed that AtFRO4 and AtFRO5 genes are more likely to function to reduce Cu
2+ 

to 

Cu
+
 at the root surface rather than iron (Bernal et al., 2012).  

Other than those in Arabidopsis, many FRO genes were also cloned and characterized in 

other species, such as pea (Waters et al., 2002), tomato (Li et al., 2004) and potato (Legay et al., 
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2012). In pea, the PsFRO1 gene also encodes a Fe(III)-chelate reductase and its expression was 

correlated with Fe(III)-chelate reductase activity and induced by iron deficiency. Moreover, 

PsFRO1 transcripts were detected in roots, leaves and nodules suggesting PsFRO1 may play a 

role in iron distribution within the plant rather than only iron uptake (Waters et al., 2002).  The 

LeFRO1 encoding a Fe(III)-chelate reductase protein was isolated from tomato (Li et al., 2004). 

Expression of LeFRO1 in yeast increased Fe(III)-chelate reductase activity. LeFRO1 protein was 

targeted on the plasma membrane and was detected in various tissues including roots, leaves, 

cotyledons, flowers, and young fruits. The expression level of LeFRO1 in roots was highly 

related to iron status. In potato, the expression of an EST, 94% homologous to LeFRO1, was 

induced dramatically in roots under the iron deficient condition (Legay et al., 2012).   

Iron-regulated transporter (IRT) gene family 

The IRT genes encode the iron transporter proteins that are essential for iron uptake and 

transport in plants (Vert et al., 2001, 2002). The IRT1, IRT2 and IRT3 genes isolated from 

Arabidopsis are members of the ZIP metal transporter family. The AtIRT1 gene was first 

identified from Arabidopsis by functional complementation of an iron uptake-deficiency mutant 

(fet3/fet4) in yeast (Eide et al., 1996). AtIRT1, expressed in the external cell layers of the root, 

was specifically induced in response to iron starvation. The IRT1 knock-out Arabidopsis 

mutation displayed chlorotic leaves, severe growth defect and even seedling lethality (Henriquies 

et al., 2002). The AtIRT2 gene, another important member of the ZIP family, is a homolog of the 

AtIRT1 gene. Both the AtIRT1 and AtIRT2 genes are divalent cation transporters; however, only 

AtIRT1 is required for iron homeostasis under the iron deficient condition because IRT2-insertion 

mutant (irt2) plants did not show the symptom of iron deficiency and overexpression of AtIRT2 

in IRT1 defective mutant (irt1-1) plants failed to restore the wild-type phenotype (Vert et al., 



 14 

2001). Expression of AtIRT2 was enhanced in roots of an AtIRT1 defective mutant as an altered 

response to iron deficiency (Henriques et al., 2002). Recent research proposed that AtIRT2 does 

not play a significant role in iron uptake from the soil, but may be involved in intracellular Fe 

trafficking and co-regulation with FRO2 and IRT1 (Vert et al., 2009). The AtIRT3 gene, which is 

a homolog of AtIRT1 and AtIRT2, also plays an important role in transport of divalent metal 

cations. Grotz et al. (1998) proposed that AtIRT3 shares more sequence similarity to AtZIP4 and 

more likely plays a role in Zn transport from soil to plants as its expression level was increased 

by zinc deficiency. Such an up-regulation of AtIRT3 in response to the zinc deficient condition 

was also reported by Talke et al. (2006) and Lin et al. (2009). Additionally, the AtIRT3 gene 

appeared to also be involved in iron uptake and transport in plants. Shanmugam et al. (2011) 

reported that overexpression of the AtIRT3 gene in the irt1-1 mutant rescued the growth defect of 

irt1-1 under iron deficiency. Unlike AtIRT1 and AtIRT2 expressing in root tissues only, GUS 

staining indicated that the IRT3 promoter was constitutively expressed in leaves, root tips, 

flowers, stamens, siliques and seeds (Lin et al., 2009).   

The IRT orthologs were found to be up-regulated by iron deficiency in other species 

including tomato (Eckhardt et al., 2001), tobacco (Hodoshima et al., 2007), cucumber (Waters et 

al., 2007), peanut (Ding et al., 2010), potato (Legay et al., 2012), and apple (Li et al., 2006). In 

tomato, LeIRT1 and LeIRT2 expressed in both iron-sufficient and iron-deficient roots, with 

LeIRT1 showing induction under iron deficiency (Eckhardt et al., 2001). Qu et al. (2005) found 

that the LeIRT2 transgenic plants of Malus robusta had enhanced iron deficiency tolerance 

indicated by higher leaf chlorophyll content and net photosynthetic rate. In potato, the expression 

level of IRT1 that is a homolog of LeIRT1 was relative low under the iron sufficient condition 

and significantly increased under the iron deficient condition in roots (Legay et al., 2012). In 
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woody plants, the expression level of MxIRT1 was strongly enhanced in the root of Malus 

xiaojinensis under the iron limited condition. Besides, MxIRT1 could complement iron uptake 

activity in a yeast (Saccharoomyces cerevisiae) mutant strain DEY1453 (fet3fet4) (Li et al., 

2006). In peanut, the AhIRT1 gene could restore the growth of yeast mutant fet3fet4 under the 

iron deficient condition and its expression was induced by iron deficiency in peanuts (Ding et al., 

2010).   A more recent study demonstrated that the transgenic tobacco plants overexpressing 

peanut AhIRT1 accumulated more Fe and showed tolerance to iron deficiency in calcareous soils 

(Xiong et al., 2014).  

Iron deficiency inducible transcription factor basic helix-loop-helix (bHLH) gene family 

The overexpression of IRT1 and FRO2 in plants has revealed post-transcriptional 

regulation. IRT1 mRNA was detected in the root and shoot of 35S-IRT1 plants regardless of iron 

status; however, IRT1 protein was only detected in iron-deficient roots (Connolly et al., 2002). 

Likewise, 35S-FRO2 plants showed increased FRO2 mRNA level, but Fe(III) chelate reductase 

activity elevated only when plants were iron deficient (Connolly et al., 2003). The mechanism of 

this regulation is currently not well known. 

The tomato fer (T3238fer) mutant and the cloning of the corresponding gene, FER, have 

offered the first clues as to how iron deficiency responses are regulated by plants (Ling et al., 

2002). The FER gene encodes a basic helix-loop-helix (bHLH) transcription factor that is a large 

family of transcription factors involved in gene regulation. The FER mRNA was detected in the 

root epidermis, the outer cortical layer of root tips, and in the vascular cylinder in the mature 

root-hair zone. The fer mutant failed to induce LeIRT1 expression under the iron deficient 

condition, indicating the direct role of LeFER in regulating the IRT1 gene in tomato. In addition, 
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FER expression was suppressed by iron sufficiency at post-transcriptional level (Brumbarova et 

al., 2005).  

An ortholog of LeFER named AtFIT1 (FER-Like Iron Deficiency-Induced Transcription 

Factor, also known as bHLH29 or FRU) is required for induction of iron mobilization genes in 

Arabidopsis. The AtFIT1 gene regulates iron deficiency inducible genes with known or putative 

functions in iron homeostasis, including the AtFRO and AtIRT genes (Colangelo and Guerinot, 

2004; Jakoby et al., 2004; Yuan et al., 2005). The expression of AtFIT1 is detected in the root 

epidermal cells of Arabidopsis and is enhanced under the iron deficient condition. The tomato fer 

mutant expressing AtFIT1 has restored iron deficiency responses and has survived under the iron 

deficient condition indicating AtFIT1 may have a function similar to LeFER (Yuan et al., 2005). 

Under the iron deficient condition, in Arabidopsis fit1 mutants that are chlorotic and defective, 

AtFRO2 mRNA was not detectable, suggesting that AtFIT1 regulates AtFRO2 at the level of 

mRNA accumulation. Eventhough AtIRT1 mRNA was still detectable, AtIRT protein is not 

detectable, which indicated that AtFIT1 controls AtIRT1 at the level of protein accumulation 

(Colangelo and Guerinot, 2004). Further study demonstrated that with the co-expression of 

another two bHLH transcription factors, forming AtFIT1/AtbHLH38 and AtFIT1/AtbHLH39 

complexes, AtFRO2 and AtIRT1 could be constitutively expressed even under the iron sufficient 

condition (Yuan et al., 2008). In addition, another two bHLH transcription factors (AtbHLH100 

and AtbHLH101) within the same subgroup of AtbHLH38 and AtbHLH39, were also strongly 

induced by iron deficiency in the root and leaf of Arabidopsis (Wang et al., 2007). Sivitz et al. 

(2012) found that AtIRT1 and AtFRO2 were not up-regulated in the bhlh100/bhlh101 double 

mutant that showed severe reduced growth and chorosis grown under iron deficiency. They also 

proposed that rather than the AtFIT1 target genes, AtbHLH100 and AtbHLH101 likely regulate 
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genes involved in the distribution of iron within plants and AtbHLH100 and AtbHLH101 play a 

FIT-independent regulation role on iron deficiency responses. In disagreement, Wang et al. 

(2013) reported that both AtbHLH100 and AtbHLH101 could interact with AtFIT1 according to 

the yeast two-hybrid analysis and bimolecular fluorescence complementation assay. Besides, 

they also concluded that AtbHLH38, AtbHLH39, AtbHLH100, and AtbHLH101 function 

redundantly in regulation of iron deficiency responses and uptake with different significance 

(AtbHLH39 > AtbHLH101 > AtbHLH38 > AtbHLH100).  

In Arabidopsis, in addition to AtFIT1 acting as a master regulator in the iron deficiency 

response, POPEYE (AtPYE, also known as AtbHLH047) was found to be pericycle specific and 

was also responding to iron deficiency (Long et al., 2010). AtPYE plays a role in maintaining 

iron homeostasis by regulating the expression of known iron homeostasis genes, such as AtIRT1, 

AtIRT2, and AtFRO3 and other genes involved in stress responses according to microarray data. 

In addition, AtPYE interacts with its homologs, including IAA–Leu Resistant3 (AtILR3, also 

known as AtbHLH105) or AtbHLH115 that is involved in metal ion homeostasis to regulate 

downstream targets. In other species, Legay et al. (2012) proposed that in potato, the expression 

of FER-like transcription factor that share 90% identities with the LeFER gene was also 

influenced by iron status. Besides, a strong positive correlation between expression of FER-like 

transcription factor and IRT1 gene was observed. In Malus xiaojinesis, three bHLH genes 

(MxbHLH01, MxIRO2 and MxFIT) were isolated and characterized. All three bHLH genes were 

localized to the nucleus (Xu et al., 2011; Yin et al., 2013, 2014). The expression of MxbHLH01 

was restricted to the root and up-regulated under the iron deficient condition. Besides, 

MxbHLH01 might interact with other proteins to regulate genes in response to iron deficiency 

(Xu et al., 2011). The MxIRO2 gene was induced by iron deficiency in roots and leaves. It might 
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form a heterodimer or multimer with other transcription factors to control the expression of 

genes related to iron absorption (Yin et al., 2013). The MxFIT gene was up-regulated in roots 

under iron deficiency at both mRNA and protein levels, while almost no expression was detected 

in leaves irrespective of iron supply. The transgenic Arabidopsis plants with MxFIT had 

increased AtIRT1 and AtFRO2 transcripts in roots under the iron deficient condition, showing a 

stronger resistance to iron deficiency (Yin et al., 2014). 

Poplar, a model tree species for molecular and biotechnology research 

The genus Populus, belonging to the family Salicaceae, includes 30-40 species that are 

classified into five sections according to leaf and flower characters. Due to a dioecious (rarely 

monoecious) breeding system, poplar could be propagated vegetatively. Poplar is widely used in 

paper (pulp production), energy (biofuel), forest (wood) and agforest (shelterbelt) industries.  In 

the research, poplar has been a model tree species for either applied or basic research because of 

its rapid growth, well-developed micropropagation and transformation system, and great genetic 

diversities (Tuskan, et al., 2004; Jansson and Douglas, 2007).  With 19 chromosomes and a 

relatively smaller genome size of ~ 500 Mbp, Populus trichocarpa was selected for genome 

sequencing (Tuskan et al., 2006). A total of 41,427 genes are predicted in poplar nuclear genome 

according to Populus trichocarpa Poptr2_0 submitted by US DOE Joint Genome Institute 

(http://www.ncbi.nlm.nih.gov/genome/98) and released in 2006 and then modified in 2013. This 

genome information has been used by researchers worldwide in various areas, such as 

comparative genomics, molecular biology, and genetics. (Tuskan, et al., 2004; Jansson and 

Douglas, 2007; Polle and Douglas, 2010). Therefore, poplar is ideal for the study of iron uptake 

and transport and its response to metal deficiency stress in woody species. 

http://www.ncbi.nlm.nih.gov/genome/98
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CHAPTER III. PHYSIOLOGICAL ANALYSIS OF IRON CHLOROSIS IN POPULUS 

TREMULA L. ‘ERECTA’ 

Abstract 

Two trees of Populus tremula L. ‘Erecta’ grown close to each other have contrasting 

phenotypes. One tree grows normally with green leaves during the growing season (PtG). The 

other tree has interveinal chlorotic leaves (PtY). Leaf chlorosis with green veins indicated that 

the chlorosis might be caused by iron deficiency. Soil tests revealed that the soil at the tree site is 

slightly alkaline with no significant variations in mineral elements around the trees. Leaf analysis 

showed that differences in physiological parameters including leaf dry weight, content of 

chlorophyll and carotenoids, Chl a/b ratio, and content of Zn and Fe were significant between 

PtG and PtY trees. Ferric reductase activity in the root revealed that PtG and PtY had a similar 

ferric reduction capacity and PtY showed more sensitivity to changes in pH. A hydroponic 

system was established for the iron deficiency treatment. Leaf analysis of the hydroponic plants 

showed differences in chlorophyll, carotenoid, and Chl a/b ratio between PtG and PtY under the 

iron deficient condition; however, no significant difference in leaf dry weight was found. Under 

iron deficiency, a significant increase in Zn in both trees was detected and Cu content was lower 

in PtG than in PtY. A significant decrease in Fe content was observed in both PtG and PtY trees 

and Fe content was significantly lower in PtY than in PtG, suggesting that the contrasting 

phenotypes of PtG and PtY might be due to their different tolerance to iron deficiency.  

Introduction 

Leaf chlorosis refers to yellowing of healthy leaves due to abnormal chlorophyll 

synthesis. Chlorophyll is the site of photosynthesis, therefore, leaf chlorosis will cause reduced 

plant growth and yield. In fruit trees, chlorotic plants often produce smaller fruits with poor 
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quality and severe chlorosis may cause tree death. Plant chlorosis can be induced by the 

deficiency of certain nutrients, such as iron (Fe), zinc (Zn), and nitrogen (N). There are two 

major reasons that may cause plant nutrient deficiency: lack of nutrients in the soil and the low 

availability of nutrients to the plant. A few causes may trigger inability of a plant to uptake 

nutrients from the soil, including root injury, compact soil, waterlogging, and high soil pH 

(alkaline soil) (Schuster, 2008). Different nutrient deficiencies result in different chlorosis 

symptoms. For example, old and mature leaf chlorosis may be caused by nitrogen deficiency, 

interveinal chlorosis can be caused by either iron or zinc deficiency and leaf marginal chlorosis 

may be caused by calcium deficiency (Taiz and Zeiger, 2010). Nutrient deficiency can be 

diagnosed by visual symptoms; however, a leaf or soil test is often used to distinguish various 

symptoms of nutrient deficiency and to interpret how the nutrient deficiency occurred.  

Two clonal trees of Populus tremula L. ‘Erecta’ with contrasting phenotypes were found 

on the North Dakota State University (NDSU) campus. According to the interveinal chlorosis 

symptom, we have hypothesized that leaf chlorosis of the trees is caused by iron deficiency. The 

tree with green leaves might be a natural mutant tolerant to iron chlorosis, while the tree with 

chlorotic leaves could be a wild type that is sensitive to iron deficiency. In this study, soil and 

leaf analyses were conducted to investigate the physiological differences that may contribute to 

the contrasting phenotype. A tissue culture system and a hydroponic system for the two 

genotypes were established to facilitate research on their responses to iron deficient and 

sufficient conditions. 
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Materials and methods 

Plant materials 

Upright European aspen (Populus tremula L. ‘Erecta’) was used in the study. Two trees 

of ‘Erecta’ grown close to each other (3 meters apart) on the NDSU campus have contrasting 

phenotypes. One tree grows normally with green leaves during the growing season (PtG). The 

other tree has leaves with interveinal chlorosis (PtY) (Figure 3.1a-b). 

 

 

 

 

 

 

 

 

 

 

Establishment of a tissue culture system  

Dormant apical buds were collected from PtG and PtY in August, 2009. Buds were 

washed with running tap water overnight. The bud scales were excised and subsequently surface 

sterilized in 70% ethanol (v/v) for one min, followed by 12% Clorox bleach (v/v) (0.6% sodium 

hypochlorite) for 10 min and rinsed four times with sterile distilled water. Surface sterilized buds 

were inserted in MS (Murashige and Skoog, 1962) basal medium supplemented with MS 

vitamins, 3% sucrose, and 0.65% agar in a 100 ml baby-food jar with 25 ml medium. The 

PtY PtG 

b a 

Figure 3.1. Two trees of Populus tremula L. ‘Erecta’ with contrasting leaf phenotypes as grown 

in the field. 
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medium pH was adjusted to 5.8 before autoclaving. Additionally, thidiazuron (TDZ) at 1.0 μM 

was added to the medium for bud dormancy relief and shoot initiation. To control contamination, 

1 ml PPM (Plant Preservative Mixture, PCT, Inc., Jefferson Place, Washington DC) was added 

per liter of medium. Cultures were placed in the culture room at 25 ± 2°C under cool-white 

fluorescent light at 36 μmol m
−2

 s
−1

 with a 16/8 h photoperiod. All experiments in this study 

were performed under these conditions unless otherwise noted. After initiation, three basal 

media, MS, Woody Plant Medium (WPM) (Lloyd and McCown, 1980) and Driver and Kuniyuki 

Walnut (DKW) (Driver and Kuniyuki, 1984), supplemented with BA at 0, 1.25, 2.5, 5.0 μM 

were tested for shoot proliferation. MS and DKW media were supplemented with MS vitamins, 

3% sucrose, 0.65% agar and the pH was adjusted to 5.8 before autoclaving. WPM medium was 

supplemented with 2.0% sucrose, 0.65% agar and the pH was adjusted to 5.2 before autoclaving. 

Twenty-five milliliter of medium was poured into each of the 100 ml baby-food jars. In vitro 

shoots (1-1.5 cm long) were inserted into the medium for shoot proliferation. Each treatment had 

three jars with 3–4 shoot explants in each jar. The number of explants forming new shoots and 

the number of responding explants forming more than five new shoots were recorded. 

Proliferated shoots (>2.5 cm long) were excised and placed vertically into rooting medium. Five 

media (MS, ½ MS, DKW, ½ DKW, and WPM) containing 0.5 μM NAA were compared for in 

vitro rooting. Each treatment had five magenta boxes with three shoots per box. All rooting 

cultures were kept in the culture room. After 4 weeks, rooting percentage and the number of 

shoots forming more than five roots were recorded. The experiment was conducted as a 

completely randomized design (CRD) and repeated three times. 
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Establishment of a hydroponic culture system  

A hydroponic system was set up in the culture room to control the growth condition of 

plants, as shown in Figure 3.2. The growth conditions were 25 ± 2°C, cool-white fluorescent 

light at 36 μmol m
−2

 s
−1

, and a 16/8 h photoperiod. The hydroponic system was comprised of 

black plastic containers (42 × 34 × 13 cm) with 30-hole PVC plate covers, hydroponic nutritional 

solution, and air pumps. Black containers were used to prevent the growth of algae and light 

destruction of hydroponic solutions. The PVC plate cover was placed on the top of the container 

and 1 cm away from the surface of hydroponic solution that prepared according to Hoagland and 

Arnon (1939). Each container contained seven liters of hydroponic solution. The hydroponic 

solutions were aerated with an air pump (TOPFIN
 
Aquarium Air Pump, Model: AIR-8000) and 

air stones (Blue Ribbon
®
 Blu-Mist

TM
 12’’ Air Stone, Model: 206) and were refreshed every 

week. In vitro plants with roots being trimmed to 1-2 mm long were transplanted into the 

hydroponic system. Each hole of a plate cover contained one individual plantlet. The container 

was then covered by plastic film to maintain the moisture. For acclimation, film was gradually 

removed from the container after one week.  

 

 

 

 

 

 

 

 

        Fe+                            

PtG       PtY            

a b 

Figure 3.2. Acclimated in vitro plants of Populus tremula L. ‘Erecta’ grown in a hydroponic 

system under iron sufficient (Fe+) or iron deficient (Fe-) conditions.  

       Fe-                           

PtG       PtY            
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Field soil test 

Soil samples were collected from three sites of the tree-growing area in three depths (0-

12, 12-24, and 24-48 inches) in June, 2012. After being air dried, samples were subjected to tests 

in the Soil Testing lab at NDSU. Soil pH, calcium carbonate equivalent (CCE), and mineral 

elements (Zn, Fe and Cu) were determined. Each samples had two runs as two replicates.  

Leaf test 

Sample collection 

For the field-grown trees, leaves were collected in mid-May, late-June, and mid-August, 

representing samples from the early (E), mid (M), and late (L) stages of a growing season. Leaf 

sampling was repeated in 2011 and 2012. Leaves in the middle portion of the current-year 

branches that were located outside the tree crown were collected (3-5 branches each tree). All 

collected leaves were cut to small pieces (1-2 cm
2
), well mixed, and divided into three samples 

(replicates) for leaf tests.   

The hydroponic system was used to evaluate the physiological responses of PtG and PtY 

to iron deficiency. The iron deficient treatment was performed by adding 200 µM ferrozine [3-

(2-pyridyl)-5,6-diphenyl-1,2,4-triazine sulphonate] (HACH Chemical Co., Ames, IA) into iron-

free hydroponic solution. Plants grown under full strength of hydroponic solution containing 30 

µM Fe(II)-EDTA was considered as the iron sufficient treatment. Leaves were collected from the 

middle portion of the 28-day-old hydroponic plant. Each treatment had five individual plants and 

was repeated three times.  

Leaf dry matter content 

Leaf dry matter content (DMC) was calculated as dry weight using the equation: 

DMC=DW/FW×100%, where DW is dry leaf weight and FW is fresh leaf weight. Leaf fresh 
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weight was recorded immediately after leaves were removed from the tree and leaf dry weight 

was recorded after leaves were oven-dried at 65 °C for 2 days.  

Chlorophyll content 

Leaf chlorophyll a (chl a), chlorophyll b (chl b), and carotenoids (xanthophylls and β-

carotene) were determined in this study. Chlorophyll was extracted from leaves according to the 

method of Lichtenthaler (1987).  In brief, fresh leaves were ground into powder in liquid 

nitrogen using pestle and mortar. About 0.2 g leaf powder was transferred to a 2.0 ml centrifuge 

tube containing 1.8 ml of 80% acetone and then vortexed for 10 s. The sample tube was placed in 

a 4°C refrigerator for >12 h and centrifuged at 10,000 rpm for 8 min. The absorbance of the 

mixture of 20 µl extraction (supernatant) and 980 µl of 80% acetone was measured at 470 nm, 

646.8 nm, and 663.2 nm using a BECKMAN DU-600 spectrophotometer (Beckman Coulter Inc. 

CA). The 80% acetone was used as a blank (reference) for the spectrophotometer. The content of 

chlorophyll in the cuvette (test cont.) was calculated as described by Lichtenthaler (1987): Chl a 

= 12.25A663.2-2.79A646.8; Chl b = 21.50A646.8-5.10A663.2; Chl 

a+b=7.15A663.2+18.71A646.8; Carotenoids = (1000A470-1.82Chl a-85.02Chl b)/198. The final 

content of chlorophyll was expressed in mg/kg fresh leaf using the equation: Final content = test 

cont.×1000×1.8/20/fresh leaf weight.  

Leaf mineral element content 

The dried leaf powders were sent to the NDSU Cereal Science lab for the analysis of 

mineral elements. A standard HNO3-H2O2 digestion method was employed as described by 

Alcock (1987). Mineral element contents were measured by AAS (Atomic Absorption 

Spectrometry) on a Varian SpectrAA150 (Varian Canada, Inc., Mississauga, Ontario, Canada) as 

described by Thavarajah et al. (2009). 
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Ferric reductase activity  

Ferric reductase activity (FRA) in the hydroponic plants under iron sufficient and 

deficient conditions was determined. Plants were grown in the iron sufficient solution [30µM 

Fe(III)-EDTA] or in the iron deficient solution [1µM Fe(III)-EDTA] for 28 days before the 

sampling. All roots and leaves in the middle port of the plant were collected separately. Each 

treatment had three replicates with 3-4 individual plants per replicate.   

Ferric reductase activity in the root or leaf was measured based on the intensity of the 

purple Fe(II)-ferrozine complex according to Gibbs (1976) and Yi and Guerinot (1996). A 

standard curve was developed using a serial dilution of Fe(II)-EDTA. In brief, a serial amount of 

Fe(II)-EDTA (30 µM) from 0 to 50 µl in increments of 5 were added into the assay solution 

containing 0.1 mM Fe(III)-EDTA and 0.3 mM ferrozine with pH 5.5 or 8.0. The total volume of 

the reaction was 40 ml. After 30 min, reaction solutions were subjected to the absorbance 

measurement at 562 nm (A562) using a SPECTRONIC 20D+ spectrophotometer (Thermo 

Electron Scientific Instruments LLC, Madison, WI, UAS). Each solution was read three times. 

The average of three reads was used to calculate the linear regression line. Harvested roots and 

leaves were rinsed with ddH2O three times and blotted dry with a paper tower. Each root or leaf 

sample was divided into two subsamples and weighed. One set of subsamples was submerged in 

40 ml assay solution at pH 5.5, while the other set was submerged in 40 ml assay solution at pH 

8.0. The mixtures (leaf or root tissue + assay solution) were shaken in the dark at 70 rpm for 30 

min. Leaf or root tissues were removed from the reaction solution. The absorbance of the assay 

solution was measured three times at 562 nm using a SPECTRONIC 20D+ spectrophotometer. 

An aliquot of the assay solution that had no roots or leaves was used as blank. The amount of 
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Fe(II) produced was calculated using the standard curve. The result was expressed in mol Fe(II)-

EDTA produced per g fresh weight (FW). 

Statistics 

Data obtained from all experiments were presented as the means ± SE of three replicates 

and subjected to analysis of variance (ANOVA) using the GLM procedure of SAS software 

Version 9.1 (SAS Institute 2004). 

Results 

Tissue culture of Populus tremula L. ‘Erecta’ 

A tissue culture system of P. tremula L.‘Erecta’ was established (Figure 3.3). A 

significant effect of both medium and BA on shoot proliferation was observed. The best 

combination of medium and BA for shoot proliferation was MS with 2.5 μM BA, in which 

97.2% of explants formed new shoots and 77.1% of responding explants developed more than 

five shoots (Figure 3.3 a) (Table 3.1). 

In vitro shoots greater than 2.5 cm in length were transferred to the rooting medium. The 

medium type had no significant effect on the rooting rate, but showed significant effect on the 

percentage of responding shoots forming more than five roots (Table 3.2). All shoots in ½ DKW 

medium supplemented with 0.5 μM NAA produced roots, followed by DKW, ½ MS, WPM, and 

MS with the rooting rate of 94.4%, 93.6%, 80%, and 54%, respectively. It was noted that 

lowering medium salt concentration increased the number of shoots with more than five roots 

produced. Around 80% of shoots produced more than five roots per responding shoot in ½ DKW 

and ½ MS media, while only 0, 24.1%, and 16.7% of responding shoots had more than five roots 

developed in full strength DKW, MS, and WPM media, respectively. In addition, roots were 
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induced 2 weeks earlier in the ½ strength medium compared to the full strength medium. The 

best medium for rooting was ½ strength MS with 0.5 μM NAA (Figure 3.3 b-c). 

 

 

 

 

 

 

 

 

Table 3.1. Effects of medium and BA on shoot proliferation rate (SPR) and percentage of 

explants having more than five new shoots (PEMFS) of Populus  tremula L.‘Erecta’
 z
. 

 

Medium SPR (%) PEMFS (%) 

MS 10.7 0 

MS + 1.25 μM BA 95.6 60.9 

MS + 2.5 μM BA 97.2 77.1 

MS + 5.0 μM BA 73.8 56.3 

DKW 2.6 0 

DKW + 1.25 μM BA 71.3 37.5 

DKW + 2.5 μM BA 47.4 25.7 

DKW + 5.0 μM BA 41.8 25 

WPM 5.1 0 

WPM + 1.25 μM BA 70.9 48.4 

WPM + 2.5 μM BA 86.3 27.1 

WPM + 5.0 μM BA 80.6 10.7 

z
 Data are presented as means of three replicates. 

 

a b c 

Figure 3.3. In vitro plants of Populus tremula L. ‘Erecta’ used in this study. a: shoots were 

proliferated in MS medium with 2.5 μM BA; b-c: in vitro shoots were rooted in ½ strength MS 

medium with 0.5 μM NAA. 
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Table 3.2. Effects of medium on in vitro rooting rate (IRR) and percentage of shoots forming 

more than five roots (PSMFR) of Populus  tremula L.‘Erecta’
 z
. 

 

Basal medium IRR (%) PSMFR (%) 

½ DKW 100 78.6 

DKW 94.4 0 

½ MS 93.6 86.9 

MS 54 24.1 

WPM 80 16.7 

z
 Data are presented as means of three replicates. 

 

A hydroponic culture system for Populus tremula L. ‘Erecta’   

All plants were surviving after two weeks of the acclimation process. Plants showed 

significant growth in the third week and the root system was completely recovered. An average 

of 6-8 expanded leaves were seen on each plant. Leaves were showing yellow only after one 

week of culture in the iron deficient hydroponic solution containing 200 µM ferrozine (Figure 

3.2).  

Soil test 

Soil pH and calcium carbonate equivalent 

The pH in the soil where PtG and PtY were grown was 7.42 - 7.88, indicating that the 

soil was slightly alkaline based on the soil classification of the United States Department of 

Agriculture Natural Resources Conservation Services (Soil survey division staff, 2011). No 

significant changes in pH among three layers (depth) of the soil were observed, but the soil of 

site 2 showed a slightly lower pH than the other two soil sites (Table 3.3). 

The soil CCE showed variations in sites and layers (depths) (Table 3.3). The soil in site 2 

showed the lowest CCE% value. The CCE value was similar between layers 1 and 2 (0-24"), but 
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significantly lower in layer 3 (24-48"). Significant differences in CCE were also observed among 

three sites in layer 2.    

 

Table 3.3. The pH and CCE of the field soil in three sites and three soil layers
 z
.  

 

           
 

pH 
  

CCE (%) 
 

 
 ----------------------   soil depth (inches)   ----------------------- 

 
0-12 12-24 24-48 0-12 12-24 24-48 

Site 1 7.61 7.87 7.56 5.75 6.70 4.95 

Site 2 7.58 7.51 7.42 4.70 4.80 1.07 

Site 3 7.63 7.85 7.58 5.80 8.35 2.85 

z
 Data are presented as means of two replicates. 

 

Soil mineral element contents  

Variations in the mineral element content were observed at different sites and in different 

layers of the soil (Figure 3.4). Different elements showed different patterns of distribution in the 

soil. The top layer of soil (0-12ʺ) contained significantly higher Zn than the other two layers of 

soils; however, the deep layer of soil (24-48ʺ) showed higher Fe content than other layers. 

Compared to other sites, site 2, particularly in the top 2 layers (0-24ʺ), contained significantly 

higher concentrations of all three elements. The Zn concentration at site 2 reached 40.4 mg/kg 

DW (dry weight), while it was only 1.61 mg/kg DW at site 3. The Fe concentration at site 2 was 

also relatively higher than the other two sites in the top two layers (0-24ʺ). The other two sites (1 

and 3) showed similar Fe concentration in layer 1 (14.60 and 13.75 mg/kg soil) and layer 2 

(11.55 and 12.20 mg/kg soil).  

 

 



 42 

 

 

 

 

 

 

 

 

Leaf test of the field-grown trees 

Leaf dry matter content 

Leaf dry matter content (DMC) was from 23.30 to 44.95% for PtY and from 35.72 to 

50.53% for PtG tree (Figure 3.5). The DMC of PtG and PtY sharply increased in the early and 

middle growing stages and maintained the same level in the late growing stage. Even though 

there is a slight difference, the pattern of DMC showed consistence among three years. ANOVA 

analysis revealed that the DMC was significantly different between PtG and PtY (p< 0.001) 

(Table 3.4). Compared to PtY, PtG had a significantly higher DMC in the whole growing season 

in two years (2011-2012), which indicated that PtG accumulated more biomass than PtY.  

Leaf chlorophyll content  

Total chlorophyll (a+b) content showed a significant difference in PtG and PtY (Figure 

3.6) across years. PtG had relatively constant chlorophyll content in the whole growing season of 

both 2011 and 2012. In PtY, the chlorophyll content first increased in the middle growing stage 

and then decreased in the late growing stage of 2011, and it decreased from the early to the late 

growing stage in 2012. A similar pattern of change for carotenoids content in three stages of a 
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Figure 3.4. Mineral element contents in the soil collected from three sites and three soil layers. 

Data is presented as means of two replicates.  
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growing season was observed (Figure 3.7). The Chl a/b ratio in PtG was stable ranging 2.86-3.10 

in the whole study. In PtY, the Chl a/b ratio was significantly increased in the middle (2012) and 

late growing stages (2011 and 2012), ranging 3.13-4.15 (Figure 3.6). ANOVA showed that the 

contents of chlorophyll and carotenoids and the Chl a/b ratio were significantly different in PtG 

and PtY (Table 3.4). Significantly higher contents of chlorophyll and carotenoids and 

significantly lower Chl a/b ratio were observed in PtG compared to PtY. 
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Figure 3.5. Leaf dry matter content (DMC) of the field-grown PtG and PtY trees in three stages 

of a growing season in year 2011 and 2012. E, M and L stand for the early, middle, and late 

stages of growing season, respectively. Values are means of three replicates and standard errors 

are indicated as a vertical line of the top of each bar. 
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Figure 3.6. Chlorophyll content and Chl a/b ratio of the field-grown PtG and PtY in three stages 

of a growing season in year 2011 and 2012. E, M and L stand for the early, middle, and late 

stages of growing season, respectively. Values are means of three replicates and standard errors 

are indicated as a vertical line of the top of each bar. 
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Leaf mineral element content 

As shown in Figure 3.8, Zn content significantly increased from the early to middle and 

late growing stage in both years (2011 and 2012). In PtY, Zn content peaked in the middle 

growing stage in 2011 and in the late growing stage in 2012. The Fe content was continuously 

increasing during the growing season in 2011. In 2012, Fe content decreased in the late growing 

stage. The Cu content reached its peak in the middle growing stage and then dramatically 

decreased in the late growing stage. PtG had the same pattern of mineral element content change 

in three stages of a growing season of both years. According to the ANOVA analysis, the Zn and 

Fe content were significantly different between PtG and PtY at the level of 0.05 and 0.001, 

respectively. Compared to PtY, PtG showed a significantly higher content of Zn across the 

growing stages and years. A significant difference in Fe content between PtG and PtY was found 

in the early growing stage of 2011 and the middle and late growing stage of 2012. No significant 

difference in Cu content was found between PtG and PtY.   
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Figure 3.7. Carotenoid content of the field-grown PtG and PtY in three stages of a growing 

season in year 2011 and 2012. E, M and L stand for the early, middle, and late stages of a 

growing season, respectively. Values are means of three replicates and standard errors are 

indicated as a vertical line of the top of each bar. 
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Table 3.4. Analysis of variance (ANOVA) of physiological parameters of the field-grown PtG 

and PtY trees in three stages of a growing season in year 2011 and 2012
 z
.  

 

 
DMC Chl a+b Chl a/b Caro Fe Zn 

Genotype *** *** *** *** * *** 

Stage *** * ** ** *** *** 

Genotype × Stage *** ** ** ** ns *** 

Year *** ns ns ns ns *** 

Year × Genotype *** ns ns ns ns * 

Year × Stage *** ** ns ** *** *** 

Year × Genotype × Stage * ns ** ns ns *** 

z 
Data are presented as means ±SE (n=3) 

DMC: leaf dry matter content; Chl: chlorophyll; Caro, carotenoids.  

*, **, ***: the significant differences at p< 0.05, 0.01, and 0.001, respectively.  

ns; nonsignificant differences at p<0.05. 

 

 

 

 

Figure 3.8. Mineral element (Fe, Zn and Cu) content of the field-grown PtG and PtY in three 

stages of a growing season in year 2011 and 2012. E, M and L stands for the early, middle, and 

late stages of a growing season, respectively. Values are means of three replicates and standard 

errors are indicated as a vertical line of the top of each bar. 
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Leaf test of the hydroponic trees responding to iron deficiency 

Leaf dry matter content   

The leaf dry matter content (DMC) of PtG and PtY grown in the hydroponic system 

under iron sufficient or deficient conditions showed no significant difference (Table 3.5), 

suggesting that the DMC was not affected by iron status in a short period of iron deficiency in 

the hydroponic culture.  

Leaf chlorophyll content 

The chlorophyll (a+b) and carotenoids were significantly reduced by iron deficiency in 

the hydroponic PtG and PtY plants (Table 3.5). The Chl a/b ratio was not affected by the iron 

status. Under the iron sufficient condition, no significant differences in chlorophyll and 

carotenoids were found between PtG and PtY. However, under the iron deficient condition, PtG 

accumulated a notably higher content of chlorophyll and carotenoids than PtY. The Chl a/b ratio 

was higher in PtY than in PtG under both iron sufficient and deficient conditions. 

 

Table 3.5. Leaf analysis of the hydroponic PtG and PtY plants under either the iron sufficient or 

deficient condition
 z
.  

 

 

           Fe sufficiency          Fe deficiency 

 

      PtG      PtY     PtG     PtY 

DMC (%) 14.40 ± 0.41 15.19 ± 0.61 14.50 ± 0.21 14.25 ± 0.16 

Chl (a+b) (mg/kg) 2096.05 ± 22.64 2042.15 ± 7.70 1820.02 ± 28.29 1504.11 ± 40.95 

Chl a/b ratio 2.33 ± 0.02 2.56 ± 0.04 2.25 ± 0.12 2.56 ± 0.03 

Carotenoids (mg/kg) 377.65 ± 8.00 326.86 ± 9.77 285.96 ± 18.93 207.10 ± 5.24 

z
 Data are presented as means±SE of three replicates. 
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Leaf mineral element content 

The analysis of mineral elements in the leaf showed that under iron deficiency, Fe 

content significantly decreased and Zn content significantly increased, while no significant 

change was detected in Cu content (Figure 3.9). PtG accumulated more Fe and Zn than that of 

PtY under iron deficiency. Under iron sufficiency, no difference in Fe was found between PtG 

and PtY; however, more Zn and Cu accumulated in PtY than in PtG. 

 

 

 

 

 

 

 

 

 

 

Ferric reductase activity  

Ferric reductase activity (FRA) was measured in PtG and PtY grown in the Fe(III)-EDTA 

solution at different pH. High pH (pH 8.0) significantly reduced the root FRA in PtYand had no 

effect on the root FRA in PtG under the iron sufficient condition. High pH significantly reduced 

the leaf FRA in PtG under both iron deficiency and sufficiency and increased the leaf FRA in 

PtY under iron sufficiency. Under low pH (5.5), iron deficiency decreased the root FRA in PtY 

and increased the leaf FRA in both PtG and PtY. Interestingly, at pH 8.0, iron deficiency showed 
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hydroponic system under iron sufficient (Fe+) or iron deficient (Fe-) conditions. Values are 
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no effect on the leaf FRA, but increased the root FRA in both PtG and PtY. Notably, PtG showed 

a significantly lower root FRA at pH 5.5 and the root FRA increased with an increase of pH 

under the iron sufficient condition. PtY had a significantly higher leaf FRA than PtG under either 

iron sufficient or deficient conditions.   

 

 

 

 

 

 

 

 

 

 

 

Discussion 

The objective of the study was to investigate the physiological causes of leaf chlorosis in 

Populus tremula L. ‘Erecta’ trees. In the very early growing stage, no visible difference in leaf 

color was found between PtG and PtY. However, the leaves of the PtY tree soon turnd yellow 

with veins remaining green and the leaves on the PtG tree remained green during the whole 

growing season (Figure 3.1a-b). The chlorosis symptom is the result of a physiological disorder 

caused by deficiency of certain elements, such as Mn, K, Zn, Fe, Mg, S, and N (Taiz and Zeiger, 

2010). In general, iron chlorosis appears first on young or terminal leaves and progresses to older 
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and lower leaves with eventual bleaching of the new growth under severe conditions (Whiting et 

al., 2011). In this study, analyses of the soil and leaves were conducted to diagnose possible 

reasons for chlorotic symptoms on the PtY tree.  

Soil analysis can reveal the chemical and physical characteristics in the soil. In this study, 

we evaluated the pH, calcium carbonate equivalent (CCE), and the content of Zn, Fe, and Cu in 

the field where PtG and PtY trees were grown. Soil pH directly affects the potential availability 

of minerals including some beneficial nutrients and some toxic elements to plants because the 

solubility of a few minerals is affected by soil pH (Fageria and Barbosa, 2008; Kang et al., 2011; 

Anugoolprasert et al., 2012). Most minerals are more soluble or available in acid soil than in 

alkaline soil; therefore plant nutritional deficiencies are often avoided in soil of pH 5.5 - 6.5. The 

CCE value can indicate the amount of lime needed to neutralize soil acidity. In the field where 

PtG and PtY were grown, the soil pH was slightly alkaline (pH 7.4-7.8) (Table 3.3) and the low 

CCE (1.07%-8.35%) in the soil also indicated the alkaline feature of the soil. A relatively high 

pH and low lime requirement suggested that this soil is not ideal for dissolving micronutrients, 

such as Fe, Zn, and Cu. The soil test also showed that Zn content had a wide range from 1.61 to 

40.40 mg/kg and the contents of Fe and Cu were ranged from 11.55 to 22.85 mg/kg and from 

1.46 to 6.68 mg/kg, respectively (Figure 3.4). The mineral contents of Zn, Fe, and Cu appear to 

be lower than those recommended by Agricola’s prediction of ideal soils for plant growth 

(http://www.soilminerals.com/IdealSoilII.htm). No significant difference in mineral content was 

observed between site 1 and site 3 except that Zn in top layer at site 1 was higher (14.45 mg/kg) 

than site 3 (4.60 mg/kg). Therefore, it can be concluded that there were no significant differences 

in the field conditions of PtG and PtY trees in this study.  
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Leaf tests were also conducted to investigate the cause of the contrasting phenotype of 

PtG and PtY. As shown in Figures 3.5, 3.6, and 3.7, PtG showed a significantly higher level in 

dry matter content (DMC), chlorophyll (a+b), and carotenoid content than PtY across all stages 

and years. In addition, the Chl a/b ratio in PtG was constant (~3.0), but varied in PtY (3.13-4.15). 

This indicates that the synthesis of chlorophyll in PtY might be negatively affected. Chlorophyll 

is an important biomolecule that allows plants to absorb energy from light for photosynthesis. 

The Chl a/b ratio is positively correlated with the ratio of PSII cores to light harvesting 

chlorophyll-protein complexes (LHCII) (Terashima and Hikosaka, 1995). The lower chlorophyll 

content and the higher Chl a/b ratio may result in decreased photosynthesis, which can interpret 

the low DMC in PtY. It was reported that deficiency of nitrogen, sulfur, zinc, or iron could 

influence the photosynthetic apparatus by affecting the synthesis of protein complexes in 

photosynthetic reactions (Abadia, 1992; Ciompi et al., 1996; Tsonev and Lidon, 2012; D'Hooghe 

et al., 2013). The chlorophyll synthesis was directly affected by the deficiency of N, Mg, and Fe 

(Lin and Stocking, 1978; Terry and Abadia, 1986; Abadia, 1992; Abadia and Abadia, 1993; 

Morales et al., 1994; Ciompi et al., 1996; Laing et al., 2000). Zinc could be indirectly involved in 

chlorophyll formation by regulating cytoplasmic concentrations of other nutrients (Kosesakal 

and Unal, 2009). The content of Zn, Fe, and Cu in the field-grown plants indicated that PtG had a 

significantly higher content of Zn and Fe than PtY (Figure 3.8). This may explain why the PtY 

tree had a lower content of chlorophyll.  

Tissue culture and the hydroponic culture system provided a controlled environment for 

plant growth and development; therefore they are ideal systems for inducing chlorosis symptoms 

under the nutrient deficient condition. A tissue culture system was developed here to proliferate 

PtG and PtY plants used for the hydroponic culture. Multiple copies of PtG and PtY were grown 
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in a hydroponic system with or without Fe(II)-EDTA to induce iron chlorosis symptoms. Ferric 

chelate reductase is involved in root iron uptake and chloroplast iron acquisition (Chaney et al., 

1972; Welch et al., 1993; Jeong et al., 2008; Takanori and Nishizawa, 2012). The activity of 

ferric chelate reductase at the plasma membrane of root epidermal cells increases when iron is 

deficient (Bienfait, 1985; Welch et al., 1993). By contrast, iron deficiency decreases the ferric-

chelate reducing activity in leaf mesophyll protoplasts (Gonzalez-Vallejo et al., 2000). A 

different result was reported by Li et al. (2011) , where ferric reductase was not changed in root 

tissues regardless of the Fe(III)-EDTA amount, but slightly decreased in leaf tissues under the 

Fe(III)-EDTA sufficient condition in tobacco. Our results showed the ferric reductase activity 

was not changed in the root of PtG regardless of iron status and was significantly induced by iron 

deficiency in the leaf of both PtG and PtY under pH 5.5. Conversely, under pH 8.0 (close to the 

soil pH where PtG and PtY were grown), ferric reductase activity in leaves was not changed by 

iron status, but in roots it was slightly induced by iron deficiency.  

The dry matter content, chlorophyll, and mineral element contents were also determined 

in hydroponically-grown PtG and PtY. No significant difference in DMC was found between 

PtG and PtY regardless of iron supply. The chlorophyll and carotenoid contents were 

significantly decreased under the iron deficient condition, which is consistent with the result of 

Morales et al. (2000) (Table 3.5). The iron deficiency showed no effect on the Chl a/b ratio in 

hydroponic plants. It is not surprising that Fe content was significantly decreased under the iron 

deficient condition. However, acquisition of other ions is also affected by iron deficiency. Welch 

et al. (1993) reported that the concentrations of a few divalent cations, such as Cu, Mn, and Mg, 

increased in the shoot of iron deficient pea seedlings. Cohen et al. (1998) presented that iron 

deficiency might facilitate the transport of heavy-metal divalent cations, such as Cd and Zn. 
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Martinez-Cuenca et al. (2013) also reported that Zn and Mn content was significant increased 

under the iron deficient condition in woody plants. In this study, Zn content was significantly 

increased in Populus tremula under iron deficiency; however, Cu content was not affected by 

iron status. Meanwhile, we also observed that PtY accumulated less Zn and Fe and more Cu than 

PtG under iron deficiency, indicating that the capability of PtY to uptake some divalent cations 

might be inhibited by certain factors. 

In conclusion, the leaf and soil test revealed that iron deficiency existed in the field and 

PtG and PtY trees were undergoing nutrient deficiency mainly due to the high soil pH. The lower 

content of dry matter, chlorophyll, carotenoid, Zn, and Fe in PtY tree indicates that PtY is more 

susceptible to iron chlorosis than PtG. The hydroponic culture further verified that PtY was more 

sensitive to iron deficiency. Thus, we predicted that the contrasting phenotypes of PtG and PtY 

were caused by their different sensitivity/tolerance to iron deficiency. 
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CHAPTER IV. CLONING AND CHARACTERIZATION OF THE IRON-REGULATED 

TRANSPORTER (IRT) GENES IN POPULUS 

Abstract 

Iron-Regulated Transporters (IRTs) play an important role in uptake and transport of iron 

and other metals in plants. In this research, two IRT genes (PtIRT1 and PtIRT3) and the promoter 

region of the PtIRT1 gene were cloned from the iron chlorosis sensitive (PtY) and resistant (PtG) 

trees of Populus tremula L. ‘Erecta’. Nucleotide sequence analysis showed no significant 

difference between PtG and PtY. The predicted proteins of the PtIRT genes contain a conserved 

ZIP domain with eight transmembrane (TM) regions. A ZIP signature sequence was located in 

the fourth TM domain. Phylogenetic analysis revealed that PtIRT1 was clustered with tomato 

and tobacco IRT genes that are highly responsible to iron deficiency. The PtIRT3 gene was 

clustered with AtIRT3 gene that was related to zinc and iron transport in plants. Tissue-specific 

expression analysis indicated that PtIRT1 only expressed in root tissues, while PtIRT3 

constitutively expressed in the whole plant. However, the histochemical staining of transgenic 

tobacco with the GUS gene deriven by the native promoter of PtIRT1 revealed that this promoter 

is not root specific. Under the iron deficient condition, the expression of PtIRT1 was 

dramatically increased and a significantly higher transcript level was detected in PtG than in PtY. 

Iron deficiency was also enhancing the expression of PtIRT3 in PtG. Differently, zinc deficiency 

down-regulated the expression level of PtIRT1 and PtIRT3 in both PtG and PtY; however, the 

expression of PtIRT1 was recovered at six days after zinc deficiency treatment in PtY. It was 

found that zinc was significantly accumulated under the iron deficient condition, whereas the 

zinc deficiency showed no significant effect on Fe accumulation. The Fe content in transgenic 

poplar lines overexpressing PtIRT1 and PtIRT3 did not increase under either the iron sufficient 
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or deficient condition even though the gene expression level was enhanced by iron deficiency. 

The results suggest that PtIRT1 might play a role in Fe uptake and contribute to the contrasting 

phenotypes of PtG and PtY, but its expression might be regulated through certain transcriptional 

factors that affect the function of its promoter. 

Introduction 

Iron (Fe), an essential plant nutrient, is involved in biosynthesis and functional 

maintenance of chlorophyll in plants (Abadia, 1992). Iron is an important component of Fe-S and 

heme proteins families that are involved in biological electron transfer in respiration and 

photosynthesis processes (Briat and Lobreaux, 1997). Meanwhile, iron is an essential nutrient for 

human beings and iron deficiency leads to the major human nutritional disorder of anemia, 

particularly in populations of children and women 

(http://www.who.int/nutrition/topics/ida/en/index.html).   

In plants, iron deficiency causes a decrease of chlorophyll content and alteration in 

chlorophyll structure, resulting in plant chlorosis. Iron is sufficient in most soils; however, most 

iron, particularly in calcareous or alkaline soils, predominantly exists in the ferric form [Fe(III)] 

that is not available for plant uptake (Guerinot and Yi, 1994). The mechanism of iron acquisition 

by plants can be distinctly classified into two strategies. Non-graminaceous species, known as 

Strategy I plants, acquire Fe from the soil by transport of soluble Fe(II) that is reduced by ferric 

reductase. Graminaceous species, also called Strategy II plants, release iron-chelating mugineic 

acid family phytosiderophores (MAs) to the root surface to chelate Fe(III). The complexes of 

Fe(III)-MAs are then transported into roots via YS1 (Yellow stripe 1) and YSL (Yellow stripe 1-

like) transporters (Takagi, 1976; Römheld and Marschner, 1986; Römheld, 1987; Guerinot and 

Yi, 1994; Mori, 1999; Curie et al., 2001, 2009).  

http://www.who.int/nutrition/topics/ida/en/index.html
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It has been well documented that iron uptake and transport in Strategy I plants involves 

two processes. One is an iron reduction process in which Fe(III) is reduced to Fe(II). This 

process is regulated by the genes in the FRO (Ferric Reductase Oxidase) family. The other is an 

Fe-transport movement that is controlled by the IRT (Iron-Regulated Transporter) genes 

belonging to the ZIP (zinc-regulated transporter, iron-regulated transporter-like protein) family 

(Guerinot, 2000; Morrissey and Guerinot, 2009; Jeong and Connolly, 2009; Water and Sankaran, 

2011; Kobayashi and Nishizawa, 2012).  Briefly, Strategy I plants increase the solubility of ferric 

ions on the root surface by excretion of proton and phenolic compounds from roots to the 

rhizosphere (Olsen et al., 1981; Santi, et al., 2005; Santi and Schmidt., 2009; Cesco et al., 2010). 

The acquirable ferrous ion is then formed by a redox reaction using ferric-chelate reductase on 

the root surface (Robinson et al., 1999; Wu et al., 2005; Mukherijee et al., 2006). The IRT 

transporter protein on the plasma membrane of the root epidermis/exodermis helps ferrous ion 

cross the membrane to the root symplast (Eide et al., 1996; Guerinot, 2000; Vert et al., 2001, 

2002; Connolly et al., 2002).  

The IRT genes, members of the ZIP metal transporter family, play an important role in 

iron uptake and transport in plants. Three IRT genes were identified from Arabidopsis. The 

AtIRT1 was first identified by functional complementation of an iron uptake-deficiency mutant 

(fet3/fet4) in yeast; AtIRT2 and AtIRT3 were found and named according to their similarity to 

AtIRT1 (Eide et al., 1996). AtIRT1 and AtIRT2 are divalent cation transporters and their 

expressions are specially induced in the root of iron deficient plants (Vert et al., 2001); however, 

only AtIRT1 is required for iron homeostasis under the iron deficient condition because IRT2-

insertion mutant (irt2) plants did not show the symptom of iron deficiency and overexpression of 

AtIRT2 in IRT1 defective mutant (irt1-1) plants failed to restore the wild-type phenotype 
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(Varotto et al., 2002; Vert et al., 2009). Recent research confirmed that AtIRT2 does not play a 

significant role in iron uptake from the soil, but may be involved in intracellular Fe trafficking 

and co-regulation with FRO2 and IRT1 (Vert et al., 2009). It was further proved that AtIRT1 

expressed in the external cell layers of the root, specifically in response to iron starvation since 

almost no AtIRT1 protein was detected after plants were returned to the iron sufficient condition 

(Connolly et al., 2002). Expression of AtIRT2 was enhanced in the root of the AtIRT1 defective 

mutant as an altered response to iron deficiency (Henriques et al., 2002).  AtIRT3 appeared to be 

also involved in iron uptake and transport in plants. Shanmugam et al. (2011) reported that 

overexpression of AtIRT3 in the irt1-1 mutant rescued the growth defect of irt1-1 under iron 

deficiency. However, the AtIRT3 gene may play an important role in transport of other divalent 

metal cations, particularly for zinc, and their homeostasis in the plant. Grotz et al. (1998) 

proposed that AtIRT3 has more sequence similarity to AtZIP4 and its mRNA was induced in 

zinc-limited plants. AtIRT3 might play a role in Zn transport from the soil to the plant as its 

expression was increased by zinc deficiency. Such an up-regulation of AtIRT3 in response to the 

zinc deficient condition was also reported by Talke et al. (2006) and Lin et al. (2009).  

The IRT orthologs were found to be up-regulated by iron deficiency in other species 

including tomato (Eckhardt et al., 2001), tobacco (Hodoshima et al., 2007), cucumber (Waters et 

al., 2007), peanut (Ding et al., 2010), potato (Legay et al., 2012), and apple (Li et al., 2006). 

Unlike in Arabidopsis, expression of LeIRT1 and LeIRT2 in tomato was observed in both iron 

sufficient and deficient roots, with LeIRT1 showing induction under iron deficiency (Eckhardt et 

al., 2001). Qu et al. (2005) reported that the transgenic Malus robusta overexpressing LeIRT2 

had increased iron deficiency tolerance. In potato, the expression of IRT1 was dramatically 

increased under the iron deficient condition in roots (Legay et al., 2012). The MxIRT1 gene in 
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Malus xiaojinensis was strongly enhanced in iron deficiency roots. Furthermore, MxIRT1 could 

complement iron uptake activity in a yeast (Saccharoomyces cerevisiae) mutant strain DEY1453 

(fet3fet4) (Li et al., 2006). In peanut, the AhIRT1 gene could restore the growth of yeast mutant 

fet3fet4 under the iron deficient condition and its expression was induced by iron deficiency in 

peanuts (Ding et al., 2010). A more recent study demonstrated that the transgenic tobacco plants 

overexpressing peanut AhIRT1 accumulated more Fe and showed tolerance to iron deficiency in 

calcareous soils (Xiong et al., 2014).  

Plants may be injured because of the oxidative stress caused by excessive Fe. The 

excessive Fe could promote the Fenton reaction, an iron-catalyzed reaction where hydrogen 

peroxide produces hydroxide and the highly reactive hydroxyl radical, which is harmful for 

plants (Marschner, 1995; Winterbourn, 1995). Barberon et al. (2011) reported that transgenic 

plants overexpressing AtIRT1 overaccumulated some metals including iron, zinc, manganese, 

and cobalt, causing the oxidative stress that resulted in reduced biomass and root elongation. 

Plants have ways to protect themselves from iron toxicity, such as reduction of iron uptake by 

degrading IRT1 protein (Connolly et al., 2002) or formation of the non-toxic iron storage protein 

ferritin (Ravet et al., 2009; Briat et al., 2010). In AtIRT1-transgenic Arabidopsis, the AtIRT1 

protein was only detected in the root under iron deficiency, resulting in no enhancement of iron 

uptake when iron was sufficient. Research by Shin et al. (2013) found that AtIRT1 was degraded 

by IDF1 (IRT1 DEGRADATION FACTOR1) under the iron sufficient condition to inhibit the 

overtransport of iron in Arabidopsis. 

Poplar is a model tree species for basic research. With the completed genome sequence of 

Populus trichocarpa available (Tuskan et al., 2006), multiple information resources and tools are 

ready for studying different traits using genomic approaches. Therefore, poplar is an ideal 
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species in which to study iron uptake and transport and response to metal deficiency stress in 

woody species. However, functional analysis of the IRT genes in woody species is rarely 

reported. In this study, two IRT genes and their promoter regions were isolated from Populus 

tremula. Sequence analysis was performed and a phylogenetic tree was constructed to 

characterize the features of the PtIRT genes. The expression profile of PtIRTs in both chlorotic 

(PtY) and normal (PtG) genotypes of P. tremula ‘Erecta’ was analyzed. Functions of the two 

PtIRT genes were analyzed by overexpressing them in another poplar species. Gene promoters of 

PtIRT1 were isolated and its function was also investigated in transgenic tobacco plants.  

Materials and methods 

Plant materials and growth conditions  

Iron deficiency sensitive (PtY) and tolerant (PtG) genotypes of European aspen (Populus 

tremula L. ‘Erecta’) were used in this study. An in vitro culture system was developed (Huang 

and Dai, 2011) and a hydroponic culture system has been set up, as described in Chapter III 

Material and Methods (page 34). 

For the iron or zinc sufficient treatment, plants were grown in full strength Hoagland’s 

solution containing 30 µM Fe(II)-ethylenediaminetetraacetic acid (EDTA) and 0.7 µM zinc 

sulfate heptahydrate (ZnSO4·7H2O). For the iron deficient treatment, Fe(II)-EDTA was removed 

from Hoagland’s solution and 200 µM ferrozine was added. For the zinc deficient treatment, 

ZnSO4·7H2O was removed from Hoagland’s solution. 

DNA/RNA extraction and cDNA preparation 

Genomic DNA of PtG and PtY was extracted from leaf tissues according to the method 

of Lodhi et al. (1994) with some modifications that included washing ethanol-precipitated DNA 

with 70% ethanol in a slow moving shaker for 3-5 h before being dissolved in TE buffer and 
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treated with both RNase A (10 mg/ml) and Proteinase K (1 mg/ml) for another 60 min at 37 °C. 

The DNA concentration was determined using a NanoDrop ND-1000 Spectrophotometer 

(Thermo Fisher Scientific Inc., Waltham, MA, USA) and stored at 4 °C until use. 

Total RNA was isolated using the QIAGEN RNeasy Plant Mini Kit (QIAGEN Inc, 

Valencia, CA, USA) according to the manufacturer’s instructions. RNA was isolated from three 

biological replicates in each treatment. Prior to cDNA synthesis, the RNA was quantified using a 

NanoDrop ND-100 spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA, USA) and 

agarose gel electrophoresis. A total of 1 µg RNA was treated with gDNA wipeout buffer to 

eliminate possible contaminating genomic DNA and then subjected to reverse transcription with 

RT primer mix (oligo-dT and random primers) and unique QIAGEN Omniscript and Sensiscript 

reverse transcriptases according to the manufacturer’s instructions of the QuantiTect Reverse 

Transcription Kit (QIAGEN Inc, Valencia, CA, USA).  

Isolation and sequence analysis of the PtIRT genes  

The sequence of the open reading frame (ORF) region of the PtIRT genes was retrieved 

using a homologous cloning method. To identify the IRT homologous genes in P. tremula, the 

ZIP domain amino acid sequences of the Arabidopsis IRT1 gene (GeneID: 827713) were used as 

a query to BLASTP the whole genome sequence of Populus trichocarpa (taxid: 3694) in NCBI 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). Candidate genes, which are considered as the orthologs 

of the AtIRT1 gene, were used as references to design primers for gene cloning using the 

PrimerSelect module of DNASTAR Lasergene
®
 software package (DNASTAR, Inc., Madison, 

WI, USA).  All primers are listed in Table 4.1. For gene cloning, PtG and PtY plants were 

transferred to the iron deficient hydroponic system for two weeks before leaf and root samples 

were collected. The PCR was performed according to the instruction of Elongase
®
 Enzyme Mix 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://goo.gl/maps/GFXwm
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(Invitrogen
TM

, Carlsbad, CA, USA). Target PCR products were purified using the QIAquick Gel 

Extraction Kit (QIAGEN Inc, Valencia, CA, USA). The purified PCR products were then cloned 

into the pGEM-T easy vector (Promega, Madison, WI, USA). Plasmid DNA was extracted from 

the white colonies grown on indicator plates containing X-gal and IPTG, using PerfectPrep
TM

 

Spin Mini Kit (5 PRIME Inc., Gaithersburg, MD, USA) and sent for sequencing at Iowa State 

University DNA Facility (Ames, IA, USA).  

The gene structure was predicted by alignment of the cloned genomic DNA sequence and 

the corresponding cDNA sequence using Splign software at NCBI website 

(http://www.ncbi.nlm.nih.gov/sutils/splign/splign.cgi). The domain of putative proteins was 

analyzed using SMART online (http://smart.embl-heidelberg.de/). The prediction of 

transmembrane regions and orientation was performed using online TMpred 

(http://www.ch.embnet.org/software/TMPRED_form.html). The predicted amino acid sequences 

of the PtIRT genes and the IRT genes from other species were used to decipher their exact 

relationship.  Phylogenetic analysis was conducted by the MegAlign module of DNASTAR 

Lasergene
®
 software package. The phylogenetic tree was visualized with software FigTree 

v1.4.0. 

Amplification of 5’-flanking sequences of the PtIRT genes 

The putative promoter region of the PtIRTs gene was identified from the upstream 

genome sequence of the corresponding PtIRT genes in Populus trichocarpa (taxid: 3694) using 

online software TSSP 

(http://linux1.softberry.com/berry.phtml?topic=tssp&group=programs&subgroup=promoter).  

Primer design, DNA fragment isolation, cloning, and sequencing were performed as described 

above.  

http://www.ncbi.nlm.nih.gov/sutils/splign/splign.cgi
http://smart.embl-heidelberg.de/
http://www.ch.embnet.org/software/TMPRED_form.html
http://linux1.softberry.com/berry.phtml?topic=tssp&group=programs&subgroup=promoter
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       Table 4.1. List of primers used in different experiments.  

 

Primer name Sequence (5’-3’) Application 

PtIRT1-F3 TAGCTAGAGAACCATCATCATCAAT PtIRT1gene clone   

PtIRT1-R3 GACTTGACAGATTCTTCCACGAG  

PtIRT3-F1 GAAGCAATCTCTAAATCAATGTCAA  PtIRT3 gene clone   

PtIRT3-R1 AACCACTAAGCTCAAGCCCAGACT  

PtIRT1-F6 AAATCCATGGCACAAGTTCC Semi-quantitative RT-PCR for PtIRT1 

PtIRT1-R6 GAGAGGCCTATCACAACT 

PtIRT3-F4 CATTCTCTTGGGCAGGAT Semi-quantitative RT-PCR for PtIRT3 

PtIRT3-R4 CCAGAAAGGGCCAAAACGAG 

PtAct1-F7 ATGGTTGGAATGGGGCAGAAG Semi-quantitative RT-PCR internal control 

PtAct1  PtAct1-R7 CGAAGGATGGCGTGTGGA 

PtIRT1-F50 TCTCGGAGCCTCAAACAACACT  Real-time quantitative PCR for PtIRT1 

PtIRT1-R50 AAAAATGCCATGACTGCCTTCTT 

PtIRT3-F31 GCGCACGCAGCACACCATAG Real-time quantitative PCR for PtIRT3 

PtIRT3-R53 GACCGTGCTCGTGCCCAGAT 

PtTIF5α -F GACGGTATTTTAGCTATGGAATTG Real-time quantitative PCR reference 

PtTIF5α  PtTIF5α-R CTGATAACACAAGTTCCCTGC 

PtIRT1-ProF1 ATCCAATGTCTTACGCCTCAAT PtIRT1 promoter region clone   

PtIRT1-ProR3 AGAAGAGGTGCACTTACCCC 

PtIRT1-ProF2 GTATCTaagcttAAAATCCAATGTCTTACGCCTCA Subclone of PtIRT1 gene promoter region 

clone   PtIRT1-ProR2 CATAGAtctagaTGATGATGATGGTTCTCTAG 

6
5
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Evaluation of tissue-specific expression of the PtIRT genes by semi-quantitative RT-PCR  

To determine the tissue-specific expression of the PtIRT genes, samples of the root tip, 

root, phloem, xylem, mature leaf, young leaf, and shoot tip were collected from PtG and PtY 

plants grown in the iron sufficient or deficient solution for six days. The transcripts were 

detected using semi-quantitative RT-PCR. Primers corresponding to the PtIRT gene and the 

Populus actin gene (accession no. XM_002298674.1) were designed by the module PrimerSelect 

of DNASTAR Lasergene
®
 software package (Table 4.1). Prior to RT-PCR, the quality of cDNA 

was assessed by PCR using actin-specific primers designed to span introns to detect genomic 

DNA contamination. PCR amplification was carried out in a 16 µl reaction solution that 

consisted of 1.0 µl (5 ng) cDNA template, 0.375 µM of each primer, 0.2 mM dNTP, 1.5 mM 

MgCl2, 1× GoTaq
®
 Flexi buffer, and 5 U Taq DNA Polymerase. The amplification conditions 

were: denaturing for 30 seconds at 94 °C (3 min before the first cycle), annealing for 40 seconds 

at 56 °C, and extension for 50 seconds at 72 °C (5 min after the final cycle) for 30 cycles. PCR 

products were separated in a 2% agarose gel at 110 volts (V) for 30 min. The gel was visualized 

under UV light and images were captured using a AlphaImager
®
 Gel Documentation System 

(ProteinSimple Inc., Santa Clara, California, USA).   

Quantitative expression of the PtIRT genes responding to iron or zinc deficiency by real-

time quantitative PCR 

The expression of the PtIRT genes in the root of PtG and PtY plants responding to iron or 

zinc deficiency was quantified using an ABI 7900HT Sequence Detection System (Applied 

Biosystems, Foster City, CA, USA). Samples for RNA extraction were collected from PtG and 

PtY plants after they were transferred to the iron or zinc deficient solution for 0, 0.5, 1, 3, and 6 

days. Each treatment had three biological replicates with 10 individual plants per replicate.  
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Gene specific primers were designed based on the sequences of the PtIRT genes and 

PtTIF5α (accession no: CV251327.1) was used as the internal control gene (Table 4.1). 

Amplification conditions were: (1) incubation at 95 °C for 5 min; (2) cDNA amplification for 35 

cycles at 95 °C for 15 s, 56 °C for 20 s, and 72 °C for 30 s. To evaluate amplification specificity, 

melting curve analysis was performed at the end of each PCR run according to the 

manufacturer’s recommendation. The melting curve temperature profile was generated through 

the cycle of 95 °C for 1 min, 60 °C for 1 min, and heating to 95°C in 20 min. Each sample had 

two technical replicates. Real-time PCR data were exported from ABI 7900 software version 

SDS v2.2 for calculation of mean threshold (Ct) values and standard deviations (SD).  

The absolute quantity of the target gene was determined according to the methods of 

Peirson et al. (2003) and Larionov et al. (2005). In brief, the artificial plasmid DNA template 

containing the real-time PCR amplicons of the gene was constructed using pGEM-T easy vector. 

The purified plasmid DNA was diluted at a 1:10 ratio from 10
-2

 ng/µl to 10
-6

 ng/µl. The standard 

curve was generated by the Absolute Quantification of ABI 7900 HT Fast Real-Time system 

according to the manufacture’s instructions. The copy number of each ng of plasmid DNA was 

calculated based on the method at http://cels.uri.edu/gsc/cndna.html. The copy number of the 

target gene were recorded automatically based on the equation of the regression line fitted to the 

standard curve. The amplification efficiency was calculated based on the slope of the standard 

curve at http://www.thermoscientificbio.com/webtools/qpcrefficiency/. The gene expression 

level data was finally presented as the ratio of copy number of PtIRTs to that of PtTIF5α.   

Expression vector construction and plant transformation  

The full coding region of the PtIRT gene was inserted to the pCAMBIA S1300 vector 

(Figure 4.1-4.2) to construct the gene expression vector Suppro::PtIRT. Another expression 

http://www.thermoscientificbio.com/webtools/qpcrefficiency/
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vector PtIRT1-pro::GUS was also constructed by replacing the CaMV35S promoter with the 

native PtIRT promoter in pBI121 plasmid (Figure 4.3). Three vectors, Suppro::PtIRT, PtIRT1-

pro::GUS, and CaMV35S::GUS were transformed into Agrobacterium tumefaciens strain 

EHA105 using the freeze-thaw method (Weigel and Glazebrook, 2006). The hpt gene coding 

hygromycin phosphotransferase is the selective marker for vector Suppro::PtIRT and NPTII 

coding neomycin phosphotransferase II is the selective marker for the other two vectors.  

The Suppro::PtIRT  genes were transferred to two other poplar species, P. tremula × P. 

alba ‘717’ and P. canescens × P. grandidentata ‘Cl6’ using an Agrobacterium-mediated method 

based on Dai et al. (2003) and Han et al. (2000). The PtIRT1-pro::GUS and CaMV35S::GUS 

cassettes were transferred to tobacco plants as described by Horsch et al. (1985) and Gallois and 

Marinho (1995). The media used for poplar and tobacco transformation are listed in Table 4.2.  

Gene transfer was confirmed by PCR using insertion-specific primers according to the 

method of Dai et al. (2003). Transgenic lines were proliferated in vitro and grown in the 

hydroponic culture system. Expression of the PtIRT genes in the transgenic plants responding to 

iron deficiency was evaluated using semi-quantitative PCR as described above. 

 

 

 

 

 

 

 

 

 Figure 4.1. Schematic representation of pGEM-T easy vector. 
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GUS histochemical and GUS activity assay 

The activity of the GUS enzyme (β-glucuronidase) in transgenic tobacco tissues was 

determined to evaluate the function of the PtIRT promoter. A GUS staining method was used to 

stain leaves and roots of transgenic tobaccos containing the gene cassette of PtIRT1-pro::GUS or 

CaMV35S::GUS according to Jefferson et al. (1987). Briefly, fresh leaf and root tissues 

collected from three transgenic plants of each gene vector and three non-transgenic plants (WT) 

were cut to small pieces and incubated in GUS staining buffer (100 mM NaPO4 buffer, pH 7.0, 2 

mM X-Gluc, 0.5 mM K3Fe(CN)6, 0.5 mM K4Fe(CN)6, 0.1% Triton X-100 and 10 mM 

Figure 4.2. Schematic representation of the Suppro::PtIRT vector. RB and LB: T-DNA right 

and left borders, respectively; CaMV-pro: CaMV 35S promoter from cauliflower mosaic virus; 

hpt: hygromycin phosphotransferase gene; CaMV-ter: CaMV-Poly A terminator; Super-pro: a 

trimer of the octopine synthase transcriptional activating element affixed to the mannopine 

synthase 2’ transcriptional activating element plus minimal promoter; Nos-ter: nopaline 

synthase terminator; and PtIRT: IRT genes cloned from Populus tremula L. ‘Erecta’. 

Figure 4.3. Schematic representation of the pBI121 vector. RB and LB: T-DNA right and left 

borders, respectively; Nos-pro: nopaline synthase promoter; NPTII: neomycin phosphotransferase II 

gene; Nos-ter: nopaline synthase terminator; CaMV-pro: CaMV 35S promoter from cauliflower 

mosaic virus; CaMV-ter: CaMV-Poly A terminator; and GUS: β-glucuronidase. 
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      Table 4.2. Medium used in plant transformation and proliferation. 

  

Explant Medium type Basal medium Hormones& antibiotic 
Time required 

     (Days) 
Conditions 

717 

 

Co-cultivation MS 5 μM 2iP; 10 μM NAA 

100 μM acetosyringone 
2-3 

Dark,  

25 ± 2°C 

Callus induction MS 5 μM 2iP; 10 μM NAA 

5 μM hygromycin 
28-30 

Dark, 

 25 ± 2°C 

Shoot induction MS 0.2 μM TDZ; 

5 μM hygromycin 
28-30 

16/8 h photoperiod,  

25 ± 2°C 

Rooting ½ MS 0.5 μM NAA; 

5 μM hygromycin 
28-30 

16/8 h photoperiod, 

25 ± 2°C 

Cl6 

 

Co-cultivation WPM 10 μM BA; 5 μM NAA 

100 μM acetosyringone 
2-3 

Dark,  

25 ± 2°C 

Callus induction WPM 10 μM BA; 5 μM NAA 

100 μM acetosyringone 
28-30 

Dark,  

25 ± 2°C 

Shoot induction WPM 0.05 μM TDZ; 

5 μM hygromycin 
28-30 

16/8 h photoperiod, 

25 ± 2°C 

Rooting ½ MS 0.5 μM NAA; 

5 μM hygromycin 
28-30 

16/8 h photoperiod, 

25 ± 2°C 

Tobacco 

 

Co-cultivation MS 5 μM BA; 

100 μM kanamycin 
2-3 

16/8 h photoperiod, 

25 ± 2°C 

Shoot induction MS 5 μM BA; 

100 μM kanamycin 
28-30 

16/8 h photoperiod, 

25 ± 2°C 

Rooting ½ MS 0.5 μM NAA; 

100 μM kanamycin 
28-30 

16/8 h photoperiod, 

25 ± 2°C 

7
0
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Na2EDTA) at 37 °C for 8-12 h.  Stained tissues were washed with 75% ethanol for several times 

to remove the chlorophyll and other pigments. Tissue staining was detected and photographed 

under a stereomicroscope. 

For the GUS activity assay, transgenic and WT tobacco plants were grown in the iron 

sufficient or deficient Hoagland’s solution. After six days, fresh leaves and roots were collected 

and immediately stored in a -80°C freezer. Quantification of GUS activity was performed using 

4-methylumbelliferyl-b-glucuronide (4-MUG) as described by Jefferson et al. (1987) with a few 

modifications. Protein was extracted from 50 mg tissues ground in liquid nitrogen in the 

extraction buffer (50 mM sodium phosphate buffer pH 7.0, 0.1 % β-mercaptoethanol, 10 mM 

Na2EDTA, 0.1% sodium lauroyl sarcosine, and 0.1% Triton X-100). The protein concentration 

was determined using Qubit Protein Assay Kit (Life Technologies, Grand Island, NY, USA) with 

a Qubit
®
 2.0 Fluorometer (Life Technologies, Grand Island, NY USA) following the 

manufacture’s instruction. A total of 20 µl protein solution was mixed with GUS assay buffer (2 

mM 4-MUG in the protein extraction buffer). The fluorescence was measured using a Gemini 

EM microplate reader (Molecular Devices, LLC, Sunnyvale, CA, USA) every 2 min within a 60 

min duration under excitation at 365 nm and emission at 455 nm with a slit width of 10 nm. GUS 

activity was represented by the change of fluorescence per min per g protein (∆Fn/min/g 

protein).   

Leaf test 

Transgenic aspen plants were grown in the hydroponic culture system. Treatments of iron 

sufficiency or deficiency were conducted as described above. Leaves were collected from plants 

nine days after the treatment. All leaf samples were oven-dried at 65°C for 2 days and subjected 
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to leaf tests in the North Dakota State University Cereal Science lab according to the method of 

Thavarajah et al. (2009).   

Results  

Identification of the PtIRT genes in Populus 

The IRT family is part of subfamily I of a larger superfamily of ZIP that includes three 

IRT genes and 12 ZIP genes in Arabidopsis (Guerinot, 2000). In an attempt to screen the ZIP 

family members in the Populus trichocarpa genome, the ZIP family domain derived from 

AtIRT1 (accession no: NP_567590) was used as a query in a BLASTP search in NCBI. A total of 

18 poplar protein sequences showed high similarity (E value <10
-5

) to AtIRT1. The domain 

information analyzed using SMART online is presented in Table 4.3. The number of amino acids 

in the ZIP domains varied from 278 to 362. Six of 18 putative proteins have less than 278 amino 

acids. Of the six proteins, five putative proteins showed partially high similarity to the ZIP 

domain (shadowed as yellow) and one putative protein (shadowed as blue) was predicted as a 

member of ZIP subfamily II that is comprised of eight ZIP genes from non-plant species. Thus, 

only 12 putative proteins were considered as candidate genes belong to the ZIP family in 

Populus trichocarpa.  

A phylogenetic tree was constructed by aligning putative Populus ZIP genes with other 

genes listed in Table 4.3 using Cluster W method (Figure 4.4). Two proteins (XP_002322355.1 

and XP_002322353.1) were clustered with most of the IRT genes of Strategy II plants. Another 

two proteins (XP_002315981.1 and XP_002311421.1) were clustered with the IRT genes of rice 

(Oryza sativa) that belongs to the Strategy I plant group. One protein (XP_002324173.1) was 

clustered with AtIRT3. Thus, two proteins (XP_002322355.1 and XP_002324173.1) were 

selected as the references to design specific primers to clone PtIRTs from PtG and PtY trees. 
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          Table 4.3. Putative protein information of the IRT genes and ZIP family genes. 

 

 

Predicted protein domain region 

Protein designation Signal  peptide 

Pfam: ZIP 

(PF02535) 

No. of 

amino acids  

LeIRT1 (AAF97509) 1-25 45-349 351 Iron regulated transporter1 

LeIRT2 (AAF97510) 1-25 45-349 353 Iron regulated transporter2 

AtIRT1 (NP_567590) 1-20 41-336 340 Fe(II) transport protein 1 

AtIRT2 (NP_001031670) 1-23 44-347 351 Fe(II) transport protein 2 

AtIRT3 (NP_564766) 1-17 61-422 426 Iron regulated transporter 3 

MxIRT1 (AAO17059) 1-29 51-361 365 Root iron transporter protein  

OsIRT1 (BAB85123) 1-33 59-371 375 Iron regulated metal transporter 

OsIRT2 (BAD18964) 1-25 52-367 371 Iron regulated transporter-like protein 

OsFe3+ (AAP92124) 1-33 59-371 375 Iron transporter Fe
3
 

CsIRT1 (AAT01414) 1-23 43-347 351 Iron regulated transporter 

NtIRT1 (BAF48330) 1-24 44-352 356 Iron transporter protein 

PsIRT1 (AAC17441) 1-27 44-345 349 Root iron transporter protein  

AtZIP1 (AAC24197) 1-28 48-352 356 Putative zinc transporter 

AtZIP2 (AAC24198) 1-29 61-350 354 Putative zinc transporter 

AtZIP3 (AAC24199) 1-25 51-336 340 Putative zinc transporter 

AtZIP4 (AAB65480) - 25-371 375 Putative zinc transporter 

AtZIP5 (AAL38432) 1-26 45-357 361 Similar to Fe(II) transport protein 

AtZIP6 (AAL38433) - 24-338 342 metal ion transmembrane transporter 

AtZIP7 (AAL38434) 1-26 53-362 366 metal ion transmembrane transporter 

AtZIP8 (AAL83293) 1-27 48-344 348 metal ion transmembrane transporter 
 

7
3
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          Table 4.3. Putative protein information of the IRT genes and ZIP family genes (Continued). 

 

AtZIP9 (AAL38435) - 1-341 345 metal ion transmembrane transporter 

AtZIP10 (AAL38436) 1-28 49-361 365 metal ion transmembrane transporter 

AtZIP11 (AAL67935) 1-25 45-322 327 metal ion transmembrane transporter 

AtZIP12 (AAL38437) 1-25 47-352 356 metal ion transmembrane transporter 

XP_002322355.1 - 28-334 337  

XP_002315981.1 - 16-325 328  

XP_002322353.1 - - 235  

XP_002307860.1 - 31-340 343  

XP_002315075.1 - 29-339 342  

XP_002307858.1 - 23-315 318  

XP_002312231.1 1-29 46-357 360  

XP_002326631.1 - 21-291 296  

XP_002338269.1 - 1-148 151  

XP_002313244.1 - 22-332 335  

XP_002299993.1 - 22-334 337  

XP_002307861.1 - 2-220 220  

XP_002324173.1 - 21-390 393  

XP_002311421.1 - 6-163 163  

XP_002313423.1 - 17-299 302  

XP_002332153.1 - - 79  

XP_002300374.1 1-20 48-346 349  

XP_002336493.1 - 1-217 225  

 

 

7
4
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Figure 4.4. Phylogenetic tree of the ZIP family genes in Populus and other species. The 

corresponding sources are Lycopersicon esculentum (Le), Nicotiana tabacum (Nt), Malus 

xiaojinensis (Mx), Pisum sativum (Ps), Cucumis sativus (Cs), Arabidopsis thaliana (At), and 

Oryza sativa (Os). Bar lenght indicates the amount of genetic change. 

Figure 4.5. Amino acid similarity among the IRT genes calculated by ClustalW. 
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Cloning and sequence analysis of the PtIRT genes  

Two IRT genes were cloned from PtG and PtY, named PtIRT1 and PtIRT3, according to 

their similarity to AtIRT (Figure 4.5). The PtIRT1 gene consists of three exons encoding a 357 

amino acid protein with a predicted molecular weight (MW) of 37.8 KDa and a theoretical 

isoelectric point (pI) of 7.7. The PtIRT3 gene has two exons encoding a 391amino acid protein 

with a predicted MW of 41.4 KDa and a pI of 6.4 (Figure 4.6). No difference was found in the 

nucleotide sequence of PtIRTs cloned from PtG and PtY. Indeed, an 845 bp fragment located 

upstream of the PtIRT1 start codon was also cloned from PtG and PtY. The nucleotide sequence 

alignment indicated that the fragments from PtG and PtY are identical. The plant promoter 

prediction software TSSP (Using RegSite Plant DB, Softberry Inc.) found one promoter at 

position 395 and a TATA box at position 365.  

According to the structure of other ZIP family members in Arabidopsis (Eide et al., 1996; 

Guerinot, 2000), PtIRT1 and PtIRT3 were predicted to possess the conserved ZIP domain (Pfam 

accession: PF02535) with eight potential transmembrane (TM) domains (Figure 4.7 and Figure 

4.8). A signal peptide was predicted in PtIRT1, while no signal peptide was found in PtIRT3. A 

highly conserved region containing the ZIP signature sequence was located in TM domain IV in 

PtIRT1 and PtIRT3. The histidine cluster proposed to be involved in the formation of a 

cytoplasmic heavy metal binding site is presented in PtIRT1 and PtIRT3 between TM domains 

III and IV (Eng et al., 1998; Roger et al., 2000). The region between TM domains III and IV was 

longer in PtIRT1 than in PtIRT3 and this region contains a potential metal-binding domain rich 

in histidine residues, suggesting that PtIRT1 and PtIRT3 may play different roles in metal 

transport in plants. These features of PtIRT1 and PtIRT3 indicate that PtIRT genes are members 

of the ZIP family.  

http://linux1.softberry.com/berry.phtml?topic=tssp&group=programs&subgroup=promoter
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PtIRT1 and PtIRT3 have similarity of 42.3-76.7% and 41.5-68.4% to the IRT1 and IRT3 

genes in other species, respectively (Figure 4.5). The PtIRT1 gene has the highest similarity to 

LeIRT1 (76.8%) and lowest similarity to AtIRT3 (42.3%). It is noted that PtIRT1 also has high 

similarity to MxIRT1 (73.6%) which is an iron transporter cloned from a tree species (Malus 

xiaojinensis) and whose expression was strongly enhanced in roots under iron deficiency. The 

PtIRT3 gene showed the highest similarity to AtIRT3 (68.4%). Indeed, PtIRT3 has an alanine-

100 (A100) instead of aspartic acid-100 (D100) at the corresponding position in all tested IRT1 

and IRT2 genes (indicated as *  in Figure 4.8). Besides, both PtIRT1 and PtIRT3 have relatively 

low similarity to OsIRT1 and OsIRT2 cloned from Strategy II plants.  

A phylogenetic tree (Figure 4.9) constructed using the predicted amino acid sequences of 

the IRT genes revealed that PtIRT1 was clustered with tomato and tobacco IRT genes that are 

highly responsive to iron deficiency (Eckhardt et al., 2001; Hodoshima et al., 2007), while 

PtIRT3 was clustered with AtIRT3 that is related to zinc and iron transport (Lin et al., 2009). 
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Figure 4.6. Comparison of gene structures of PtIRT1 and PtIRT3. 
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Figure 4.8. Amino acid alignment of deduced PtIRT genes with other reported IRT genes.  

Red lines indicate predicted transmembrane (TM) domains, and the green line indicates the 

signature of the ZIP family domain. The asterisk indicates the nucleotides associated with metal 

transport selectivity. Shaded areas represent identical residues (black) or similar residues (gray) 

found in most of the proteins.  

Figure 4.7. Prediction of protein domain and transmembrane regions of the PtIRT genes 

a, Protein domain predicted by SMART. The red box indicates signal peptide (SP) detected by 

the SignalP v4.0 program. The gray box indicates a ZIP domain predicted by HMMER3. 

b, Transmembrane (TM) prediction by TMpred. 
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Figure 4.8. Amino acid alignment of deduced PtIRT genes with other reported IRT genes 

(continued). Red lines indicate predicted transmembrane (TM) domains, and the green line 

indicates the signature of the ZIP family domain. The asterisk indicates the nucleotides 

associated with metal transport selectivity. Shaded areas represent identical residues (black) or 

similar residues (gray) found in most of the proteins.  
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Figure 4.9. Phylogenetic analysis of the PtIRT genes and 11 additional IRT genes from various 

plant species. The two PtIRT genes are framed. The corresponding sources are Lycopersicon 

esculentum (Le), Nicotiana tabacum (Nt), Malus xiaojinensis (Mx), Pisum sativum (Ps), 

Cucumis sativus (Cs), Arabidopsis thaliana (At), and Oryza sativa (Os). 
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Tissue-specific expression of the PtIRT genes  

The expression of PtIRTs were examined in various tissues including the root tip, root, 

phloem, xylem, mature leaf, young leaf, and shoot tip using semi-quantitative RT-PCR. As 

shown in Figure 4.10, PtIRT1 expressed only in the root (root tip and other root tissues) and the 

expression was relatively higher in PtY than in PtG. The highest expression level of PtIRT1 was 

observed in the root tip of PtY; however, PtIRT3 expressed in all tested tissues of both PtG and 

PtY with a higher expression level was detected in the leaf compared to other tissues. 

Furthermore, the most abundant transcript of PtIRT3 was observed in the mature leaf of PtG and 

the young leaf of PtY. Under the iron deficient condition, the PtIRT1 gene still expressed in root 

tissues only and was up-regulated, while PtIRT3 constitutively expressed in all tissues.  
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Figure 4.10. Expression of the PtIRT genes in different tissues of PtG and PtY under iron 

sufficient (Fe+) and deficient (Fe-) conditions. PtG: iron deficiency tolerant clone of Populus 

tremula; PtY: iron deficiency sensitive clone of Populus tremula; RT: root tips; R: roots; Ph: 

phloem; Xy: xylem; ML: mature leaf; YL: young leaf; ST: shoot tips. 
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Expression of the PtIRT genes responding to iron deficiency 

The expression of two PtIRT genes responding to iron deficiency was determined using 

real-time quantitative PCR. The absolute quantity (the copy number) of the target gene was 

measured according to the standard curve method (Peirson et al., 2003; Larionov et al., 2005) 

(Figure 4.11a). The primer specificity was evaluated by the resulting melting curve. Results 

indicated that all real-time PCR primers generated single PCR products (Figure 4.11b-d). The 

amplification efficiency of PtTIF5α (internal control), PtIRT1, and PtIRT3 primers were 87.75%, 

89.37%, and 87.92%, respectively. 

Under the iron deficient condition, the expression level of PtIRT1 continuously increased 

along with the increase of the exposure time to iron deficiency, indicating that PtIRT1 was up-

regulated by iron deficiency (Figure 4.12). The PtIRT1 gene in PtG and PtY showed a similar 

expression pattern; however, a significantly higher level of transcript was found in PtG one day 

after iron deficiency treatment. At day 6, the expression transcript was doubled in PtG. The 

expression of PtIRT3 was gradually increasing after iron deficiency treatment in PtG. In PtY, the 

expression level of PtIRT3 showed a fluctuate pattern and no significant increase was observed 

under iron deficiency. A significantly higher transcript level of PtIRT3 was detected in PtG than 

that in PtY three days after iron deficiency treatment (Figure 4.12). 

Expression of the PtIRT genes responding to zinc deficiency  

As shown in Figure 4.13, the PtIRT1 gene responded to zinc deficiency; however, a 

different expression pattern was found between PtG and PtY. In PtG, after zinc deficient 

treatment, the expression gradually increased from day 0 to day 1 and then significantly 

decreased. At day 6, the level of transcript was only half of that at day 0. In PtY, the expression 

of PtIRT1 significantly decreased and then gradually increased one day after the zinc deficient 
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treatment. At day 6, the expression level went back to the level at day 0. Similarly, the 

expression of the PtIRT3 gene was also down-regulated by zinc deficiency. In PtG, the 

expression sharply decreased at day 0.5 after the zinc deficiency treatment, then increased to the 

peak at day 1, and decreased again afterwards. In PtY, the expression was decreasing between 

day 0 and day 3 of the treatment, and then slightly increased at day 6. The expression level of 

PtIRT3 was higher in PtY than in PtG. Overall, the expression of the PtIRT genes was up-

regulated by iron deficiency and down-regulated by zinc deficiency.   
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Figure 4.11. Standard curves and melting curves for real-time PCR assay. a, Standard curves 

were constructed for PtTIF5α, PtIRT1, and PtIRT3, respectively; E stands for the PCR efficiency; 

b-d, melting curves of PCR products using specific primers for amplification of PtTIF5α, PtIRT1, 

and PtIRT3, respectively.  
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Accumulation of mineral elements in the leaf of PtG and PtY after iron or zinc deficient 

treatment 

The content of Mn, Fe, Zn, and Cu was determined in leaf tissues of PtG and PtY after 

iron or zinc deficient treatment. The element deficient treatment significantly decreased the 

Figure 4.12. Relative expression levels of the PtIRT genes in root tissues of PtG and PtY 

responding to iron deficiency. The relative expression is quantified by real-time PCR and 

normalized to the PtTIF5α gene. 

Figure 4.13. Relative expression levels of the PtIRT genes in root tissues of PtG and PtY 

responding to zinc deficiency. The relative expression is quantified by real-time PCR and 

normalized to the PtTIF5α gene. 
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content of the responding element. As shown in Table 4.4, the leaf Fe content was significantly 

lower in the iron deficient treatment and the leaf Zn content was significantly lower in the zinc 

deficient treatment. The content of Cu did not significantly change regardless of iron or zinc 

supply. The iron deficiency treatment slightly reduced the Mn accumulation. Interestingly, iron 

deficiency dramatically increased the accumulation of Zn in leaves. The contents of Zn in iron 

deficient-treated leaves of PtG and PtY were 168.82 and 134.51 mg/kg DW, respectively, while 

only 56.90 and 72.22 mg/kg DW of Zn were accumulated in iron sufficient-treated PtG and PtY 

leaves. The zinc deficiency treatment showed no significant effect on the content of Mn and Fe. 

Comparisons of element contents between PtY and PtG showed that PtG accumulated 

significantly higher Fe (40.74 mg/kg DW) than that of PtY (27.76 mg/kg DW). PtG also had a 

higher content of Zn (168.82 mg/kg DW) than PtY (134.51 mg/kg DW) under the iron 

deficiency condition.  

 

Table 4.4. The content of mineral elements in the leaves of PtG and PtY under iron or zinc 

sufficient (Fe+ or Zn+) and iron or zinc deficient (Fe- or Zn-) conditions
z
. 

 

  
Fe+ Fe- Zn+ Zn- 

Mn PtG 218.70±4.31 174.85±5.63 113.96±2.72 122.55±3.73 

 
PtY 232.38±7.20 195.56±9.87 112.63±1.22 112.32±1.19 

Fe PtG 68.43±0.38 40.74±0.55 68.27±2.02 63.34±2.59 

 
PtY 70.83±2.02 27.76±0.83 70.94±1.63 69.90±3.49 

Zn PtG 56.90±1.32 168.82±9.78 44.95±2.11 21.68±0.87 

 
PtY 72.22±4.24 134.51±11.46 41.24±0.53 21.29±0.19 

Cu PtG 13.55±0.26 13.13±0.26 11.97±0.18 11.44±0.31 

 
PtY 15.21±0.43 14.43±0.41 12.46±0.28 12.27±0.16 

z 
The content of mineral elements is expressed as mean ±SE in mg/kg DW (leaf dry weight). 
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Evaluation of the spatial expression pattern of the PtIRT1 gene 

To determine if the root-specific expression of the PtIRT1 gene was caused by the gene 

promoter specificity, the PtIRT1 gene promoter was cloned from P. tremula ‘Erecta’, as an 845 

bp fragment located upstream of the PtIRT1 start codon (ATG). The cloned promoter was fused 

to a GUS gene to form a PtIRT1-pro::GUS reporter system. This system was transferred into 

tobacco using an Agrobacterium-mediated transformation method. Nine transgenic tobacco lines 

were obtained. Histochemical GUS staining revealed that six of nine plants were GUS-stained 

blue in both leaf and root tissues, indicating that the PtIRT1 promoter was not root-specific 

(Figure 4.14). The activity of the GUS enzyme in leaf and root tissues was also determined. In 

the non-transgenic leaf and root tissues (WT), GUS activity was rarely detected. In the transgenic 

plants, the increase in fluorescence reached a linear phase after 10 min of the reaction (Figure 

4.15); therefore, the change of fluorescence per min was calculated from 10 to 60 min of the 

reaction. The GUS activity in root tissues of the PtIRT1-pro::GUS and CaMV35S::GUS 

(control) lines were enhanced by the iron deficient condition except TL10. In leaf tissues, no 

substantial changes in the GUS activity were observed between iron sufficient and deficient 

conditions with the exception of TL7 in which iron deficiency enhanced the GUS activity (Table 

4.5).  

 

 

 

 

 

 

Figure 4.14. Histochemical staining of GUS in transgenic and wild type tobacco plants. a-b, leaf 

tissues of transgenic and wild type tobacco; c-d, root tissues of transgenic and wild type tobacco.  

a                                b                               c                             d   
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Table 4.5.  GUS activity measured by MUG fluorimetric assay in transgenic tobacco plants
 z
. 

 

 

       Root Leaf 

 

Fe+ Fe- Fe+ Fe- 

35S 13.0-18.1 19.0-19.2 14.8-17.6 12.7-14.2 

TL1 15.1-17.4 18.0-20.7 9.73-15 13.0-18.0 

TL2 11.1-16.2 18.4-20.9 14.6-19.3 11.0-14.9 

TL3 13.6-19.7 17.2-20.4 12.94-23.1 15.2-16.5 

TL7 10.3-14.9 17.3-22.7 10.8-15.1 15.5-22.9 

TL10 19.1-21.5 19.8-22.9 10.9-13.8 12.9-14.2 

TL12 13.0-14.9 17.9-21.7 14.6-19.8 12.6-18.4 

  z 
The GUS activity is expressed as the change of fluorescence per min per g protein (∆Fn/min/g 

protein) from three biological replicates. 
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Figure 4.15 Time course of fluorescence of GUS quantitated in transgenic (TL2) and wild type 

(WT) tobacco.  
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Overexpression of the PtIRT genes in aspen hybrids  

PtIRT1 and PtIRT3 were overexpressed in P. tremula × P. alba ‘717’ and P. canescens × 

P. grandidentata ‘Cl6’ under control of the enhanced super promoter. Expression of the PtIRT1 

gene in transgenic aspen plants was also up-regulated by iron deficiency. In ‘Cl 6’ transgenic 

lines, PtIRT1 showed a low expression level under the iron sufficient condition except for line 2 

(Figure 4.16). In ‘717’ transgenic lines, expression of PtIRT1 was detected under both iron 

deficient and sufficient conditions. Iron deficiency significantly increased the transcript level in 

line 7 of ‘717’. Unlike PtIRT1, PtIRT3 expressed at a lower level in transgenic plants and did not 

respond to iron deficiency.  

Although the transgenic PtIRT genes expressed in the transgenic plants, the content of Fe 

and Zn in these plants was not significantly increased (Figure 4.17). The Fe content in both ‘Cl 

6’ and ‘717’ plants grown under the iron deficient condition was significantly lower than in 

plants under the iron sufficient condition; however, no significant difference was found in Fe 

content between transgenic and wild type lines under either iron sufficient or deficient 

conditions. The Zn content in both transgenic and wild type lines was not significantly affected 

by iron deficiency.  

 

 

 

 

 

 

 

Figure 4.16. Expression of PtIRT1 and PtIRT3 in the roots of transgenic lines of aspen in 

response to iron deficiency. Actin gene expression served as an internal control; +, iron sufficient 

conditions; -, iron deficient conditions.  
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Discussion 

Iron plays a crucial role in biosynthesis and maintenance of chlorophyll structure and 

function (Abadia, 1992); therefore, iron is directly related to plant growth and development. Iron 

uptake and transport in plants influence iron accumulation in plant organs, such as leaves, grains, 

and fruits, which are essential food sources for humans and animals. The IRT (Iron-Regulated 

Transporter) genes have been well researched for their roles in iron absorption and transport in 

many plant species (Eide et al., 1996; Vert et al., 2002); however, very limited research has been 

done on perennial woody species. In this study, two IRT genes were isolated from Populus 

tremula L. ‘Erecta’, a tree species in the genus Populus. Putative amino acid sequence analysis 

showed that the PtIRT genes had important features of ZIP metal transporters, such as highly 

conserved ZIP TM domains and a histidine-rich cluster between TM domains III and IV 

(Guerinot, 2000). Phylogenetic analysis showed that PtIRT1 was most closely related to LeIRT1, 

LeIRT2, and NtIRT1 genes (Figure 4.9). Eckhardt et al. (2001) reported that LeIRT1 transcripts 

were exclusively detected in roots of both iron deficient and sufficient tomato plants and its 

expression was strongly enhanced under iron deficiency. Hodoshima et al. (2007) reported that 

Figure 4.17. Fe and Zn content in leaves of transgenic plants overexpressing PtIRT1 under iron 

sufficient (+) and iron deficient (-) conditions. 
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NtIRT1 in tobacco was significantly induced by iron deficiency in root tissues. In this study, 

expression of PtIRT1 was exclusively observed in the root of P. tremula (Figure 4.10). Gene 

promoters play key roles in tissue-specific expression (Hochheimer and Tjian, 2003). The native 

promoter of the PtIRT1 gene was fused with the GUS report gene (PtIRT1-pro::GUS) to 

determine if the root-specific expression of the PtIRT1 gene was driven by its promoter itself. 

Histochemical GUS staining of the PtIRT1-pro::GUS transgenic tobacco plants showed that the 

expression of the GUS gene driven by the PtIRT1 promoter was not root-specific (Figure 4.14); 

however, the activity of the GUS enzyme in transgenic tobacco roots was significantly enhanced 

by iron deficiency compared to that in the leaf or that in the root under the iron sufficient 

condition (Table 4.5). It is known that the spatial and temporal expression of a gene is controlled 

by a promoter (Thomas and Chiang, 2006; Heintzman and Ren, 2007; Juven-Gershon and 

Kadonaga, 2010). Generally, a promoter contains a core region that is required for accurate 

initiation of transcription, proximal regulatory elements that have a specific transcription factor 

binding site, and distal regulatory elements including enhancers and silencers (Maston et al., 

2006). The enhancers particularly play an important role in regulation of tissue-specific gene 

expression (Ong and Corces, 2011), however, enhancers sometimes may locate up to 1 Mbp 

away from the regulated gene in both directions or even on a different chromosome (Spilianakis, 

et al., 2005; Maston et al., 2006; Pennacchio, et al., 2013). Obviously, the isolated 845 bp 

fragment from the upstream portion of the PtIRT1 gene contains the core region and the iron 

deficiency responding transcription factor binding site; whereas, other elements related to the 

root-specific expression of the gene may not be included in the promoter region of the PtIRT1 

gene.   
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Unlike PtIRT1 that only expressed in the root, PtIRT3 expressed in the root, stem 

(phloem and xylem), and leaf (Figure 4.10). PtIRT3 was clustered into a subgroup of AtIRT3 

(Figure 4.9). Lin et al. (2009) demonstrated that AtIRT3 is a plasma membrane-localized 

transporter of zinc/iron in yeast (Saccharomyces cerevisiae). Indeed, its expression in the root 

and shoot of Arabidopsis halleri was induced by the deficiency of iron or zinc. Although the 

sequence of AtIRT3 is similar to AtIRT1 and AtIRT2, the position of some amino acids may 

change the selectivity of metal transporters (Rogers et al., 2000). For example, the amino acid 

residues D100 and E103 in AtIRT1 were functional for Fe, Mn, and Zn transport; however, when 

the D100 was replaced by A100, AtIRT1 was only functional for Zn transport. If the E103 was 

replaced by A103, AtIRT1 would lose Zn transport ability. This indicated that A100 and E103 

are two important signal amino acids for Zn transport. It was shown that A100 and E103 were 

present in the predicted amino acid sequence of PtIRT3 (Figure 4.8), suggesting that PtIRT3 may 

play a role in Zn uptake and transport in poplar plants. 

The expression of the PtIRT1 and PtIRT3 genes responding to the iron and zinc 

deficiency in the iron deficiency sensitive (PtY) and resistant (PtG) Populus. tremula genotypes 

was conducted in this study. Results showed both PtIRT1 and PtIRT3 were responsive to iron 

and zinc deficiency (Figure 4.12 and 4.13), which suggests that PtIRT1 and PtIRT3 are involved 

in iron and zinc homeostasis in poplar trees. The PtIRT1 gene was clearly up-regulated by iron 

deficiency in poplar trees. More transcripts of PtIRT1 accumulated in PtG than in PtY under iron 

deficiency. Leaf tests also showed that Fe content was higher in PtG than in PtY under iron 

deficiency (Table 4.4); however, overexpression of the PtIRT1 gene in other poplar species 

showed no increase in Fe content under either iron sufficient or deficient conditions (Figure 

4.17). A similar finding was reported by Connolly et al. (2002) in that transgenic Arabidopsis 
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with AtIRT1 did not increase Fe content. Up-regulation of the PtIRT3 gene explains why zinc 

was accumulated in plants under iron deficiency (Table 4.4), but zinc deficiency had no effect on 

iron accumulation, which showed consistence with other reports (Lin et al 2009; Shamugam et al 

2011; Legay et al. 2012). It is noted that the expression of PtIRT3 was reduced in poplar plants 

under the zinc deficient condition; however, AtIRT3 was induced by zinc deficiency in 

Arabidopsis plants (Lin et al., 2009). Such a difference might be caused by the difference 

between woody and herbaceous plants. It is not uncommon to observe species-specific 

expression of genes. Populus and Arabidopsis are two model species for woody perennial and 

herbaceous annual species. They have distinct growth and development habits. Differences in 

gene expression between poplar and other herbaceous plants have been documented (Quesada et 

al. 2008; Yang et al. 2009). These gene expression differences may contribute to the observed 

differences in anatomy structure, body size, growth habit, and the growing environment between 

Populus and Arabidopsis. Although Populus (P. trichocarpa) has almost 90% of predicted genes 

homologous to A. thaliana genes (Tuskan et al. 2006), difference in the quantitative expression 

pattern of the orthologs was still observed between these two species (Quesada et al. 2008). 

Populus may have different regulations for these similar genes rather than distinct differences in 

gene functions. This variation in gene regulation may have resulted in developmental and 

morphological diversity (Kirst et al. 2003; Quesada et al. 2008).  
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CHAPTER V. MOLECULAR CHARACTERIZATION OF THE BASIC HELIX-LOOP-

HELIX (BHLH) GENES THAT ARE DIFFERENTIALLY EXPRESSED AND INDUCED 

BY IRON DEFICIENCY IN POPULUS 

Abstract 

The basic helix-loop-helix (bHLH) proteins play an important role in gene regulation by 

binding to specific DNA sequences affecting the rate of transcription. Five orthologs of eight 

Arabidopsis bHLH genes responding to iron deficiency in Populus were selected as candidate 

genes based on microarray analyses and previous studies. Open reading frame (ORF) regions of 

two bHLH genes (PtFIT and PtIRO) encoding a basic helix-loop helix protein were isolated from 

the iron deficiency susceptible (PtY) and tolerant (PtG) genotypes of Populus tremula L. 

‘Erecta’. The ORFs of PtFIT and PtIRO contain 939 and 795 bp nucleotides, respectively. Gene 

sequence analyses showed that each of the two genes was identical in PtG and PtY. Phylogenetic 

analysis revealed that PtFIT was clustered with the bHLH genes regulating iron deficiency 

responses in Arabidopsis, Lycopersicon esculentum, and Malus xiaojinensis, while PtIRO was 

clustered with another group of the bHLH genes that regulate iron deficiency responses in a FIT 

independent pathway. Tissue-specific expression analysis indicated that PtFIT was only 

expressed in the root, while PtIRO was rarely detected in all tested tissues. Real-time PCR 

showed that PtFIT was up-regulated in roots under the iron deficient condition. A higher level of 

PtFIT transcripts was detected in PtG than in PtY. Pearson Correlation Coefficient calculation 

suggested that there was a strong positive correlation (r=0.94) between PtFIT and PtIRT1 in PtG, 

while a weak correlation (r=0.49) was observed in PtY. It suggests that the chlorosis tolerance of 

PtG may be regulated by the PtFIT-dependent iron deficiency response pathway. The PtFIT-

transgenic poplar plants had an increased expression level of PtFIT and PtIRT1 responding to 
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iron deficiency. One PtFIT-transgenic line (TL2) accumulated more Fe under the iron sufficient 

condition and had enhanced iron deficiency tolerance with higher chlorophyll content and Chl 

a/b ratio under the iron deficient condition than the control plants. Thus, our results indicated that 

PtFIT is involved in iron deficiency response and overexpression of PtFIT would enhance the 

tolerance to iron deficiency in Populus.  

Introduction 

Iron deficiency induced chlorosis causes yield loss and poor quality of crops, particularly 

in calcareous and high pH soils. Iron deficiency is not caused by the lack of iron in the soil, but 

rather the low availability for plants to absorb (Römheld and Marschner, 1986; Guerinot and Yi, 

1994). Higher plants acquire iron from the soil through two strategies, reduction-based and 

chelation-based (Römheld and Marschner, 1986; Kobayashi and Nishizawa, 2012). Non-

graminaceous plants (known as Strategy I species) acquire iron through the reduction-based 

strategy, which is accomplished by reducing Fe(III) to absorbable Fe(II) and then the absorbable 

Fe(II) is transported into the root by the IRT1 transporter (Eide et al., 1996; Robinson, et al., 

1999). Graminaceous plants (known as Strategy II species) produce Fe(III) chelators, mugineic 

acid family phytosiderophores (MAs), to form a complex of Fe(III)-MAs that is transported into 

the root by YS1 (Yellow stripe 1) or YSL (Yellow stripe 1-like) transporter (Takagi, 1976; Curie 

et al., 2001; Murata et al., 2006; Inoue et al., 2009). Research has revealed that two groups of 

genes, Ferric reductase oxidase (FRO) and Iron-regulated transporter (IRT), are involved in 

iron reduction and transport in Strategy I species (Eide et al., 1996; Robinson, et al., 1999). 

When plants are exposed to the iron deficiency condition, the FRO and IRT genes are induced to 

reduce Fe(III) to Fe(II) and to regulate the transport of Fe(II) in plants (Eide et al., 1996; Vert et 

al., 2001; Jeong and Connolly, 2009). 
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Plants can survive under various stressful conditions by regulating the expression of 

genes that are involved in many biological changes. Gene regulation could be achieved by many 

ways, such as DNA methylation, transcriptional and post-transcriptional regulation, or regulation 

of translation (Latchman, 2007). Transcriptional regulation refers to the change at gene 

expression level via altering the transcription rate. Transcription factors are proteins that bind to 

a specific region of a promoter to control the transcription rate.  As a large family of transcription 

factors, the basic helix-loop-helix (bHLH) proteins play an important role in regulating genes 

involved in iron deficiency responses in plants. A bHLH transcription factor (LeFER) isolated 

from tomato offered the first clue to know how iron deficiency responses are regulated by plants 

(Ling et al., 2002). The fer mutant in tomato failed to induce LeIRT1 expression under the iron 

deficient condition, indicating the direct role of LeFER in regulating the LeIRT1 gene. In 

addition, LeFER expression was suppressed by iron sufficiency at the post-transcriptional level 

(Brumbarova et al., 2005). An ortholog of LeFER named AtFIT1 (FER-like iron deficiency-

induced transcription factor 1, also known as AtbHLH29 or AtFRU) is required for inducing the 

iron mobilization genes in Arabidopsis (Jakoby et al., 2004; Yuan et al., 2005). The AtFIT1 gene 

regulates several iron deficiency inducible genes with known or putative functions in iron 

homeostasis, including AtFRO2 and AtIRT1 (Colangelo and Guerinot, 2004). Colangelo and 

Guerinot (2004) reported that AtFIT1 regulated AtFRO2 at the level of mRNA accumulation and 

AtIRT1 at the level of protein accumulation. Further study demonstrated that with the co-

expression of another two AtbHLH transcription factors, forming AtFIT1/AtbHLH38 and AtFIT1/ 

AtbHLH39 complexes, AtFRO2 and AtIRT1 could be constitutively expressed even under the 

iron sufficient condition (Yuan et al., 2008). Additionally, another two AtbHLH transcription 

factors (AtbHLH100 and AtbHLH101) within the same subgroup of AtbHLH38 and AtbHLH39 
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were strongly induced by iron deficiency in the root and leaf of Arabidopsis (Wang et al., 2007). 

Sivitz et al. (2012) proposed that rather than the AtFIT1 target genes, AtbHLH100 and 

AtbHLH101 likely regulate genes involved in the distribution of iron within the plant, suggesting 

that AtbHLH100 and AtbHLH101 play an AtFIT1-independent regulation role in iron deficiency 

responses. With a different opinion, Wang et al. (2013) proposed that both AtbHLH100 and 

AtbHLH101 could interact with AtFIT1 according to the yeast two-hybrid analysis and 

bimolecular fluorescence complementation assay. Furthermore, Long et al. (2010) reported that 

in addition to AtFIT1 acting as a master regulator in the iron deficiency response, POPEYE 

(AtPYE, also known as AtbHLH047) expressed specifically in the pericycle was also responding 

to iron deficiency. AtPYE helps maintain iron homeostasis by regulating the expression of known 

iron homeostasis genes and other genes involved in transcription, development, and stress 

response according to microarray data. Additionally, AtPYE interacts with AtPYE homologs, 

including IAA–Leu Resistant3 (AtILR3, also named as bHLH105) or AtbHLH115 that is involved 

in metal ion homeostasis to regulate the downstream target genes. In other species, Legay et al. 

(2012) proposed that in potato, the expression of the FER-like transcription factor that share 90% 

identities with the LeFER gene was also influenced by iron status and a strong positive 

correlation between the expressions of the FER-like transcription factor and IRT1 was observed. 

In woody plants, three bHLH genes (MxbHLH01, MxIRO2, and MxFIT) were isolated and 

characterized in Malus xiaojinesis. The MxbHLH01 expression was restricted to the root and up-

regulated under the iron deficient condition and MxbHLH01 might interact with other proteins to 

regulate genes in response to iron deficiency (Xu et al., 2011). The MxIRO2 gene was induced in 

the root and leaf of Malus xiaojinesis under iron deficiency. It might form a heterodimer or 

multimer with other transcription factors to control the expression of genes related to iron 
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absorption (Yin et al., 2013). The MxFIT gene was up-regulated in roots under iron deficiency at 

both mRNA and protein levels, while almost no expression was detected in leaves irrespective of 

iron supply. The transgenic Arabidopsis plants with MxFIT had increased AtIRT1 and AtFRO2 

transcripts in roots under the iron deficient condition, showing a stronger resistance to iron 

deficiency (Yin et al., 2014). 

In a previous study described in Chapter IV, the PtIRT1 gene from Populus tremula was 

cloned and its expression was strongly induced by iron deficiency; particularly, the increment of 

PtIRT1 transcripts was much greater in the iron deficiency tolerant clone (PtG) than in the iron 

deficiency susceptible clone (PtY) of Populus tremula. However, overexpression of the PtIRT1 

gene in other transgenic poplar species did not enhance Fe accumulation compared to the wild 

type regardless of iron status. It indicated that some transcriptional control mechanisms might be 

involved in regulating PtIRT1 in iron uptake and transport in poplar. Therefore, we cloned and 

characterized the bHLH genes from both iron deficiency tolerant and susceptible clones of 

Populus tremula and overexpressed them in other poplar species. The results would offer a view 

of how transcription factors regulate genes in response to iron deficiency and further strengthen 

the understanding of iron deficiency response mechanisms in woody species.  

Materials and methods 

Discovery of the bHLH candidate genes in response to iron deficiency in Populus  

To identify bHLH proteins that may be in response to iron deficiency in Populus, the 

expression profile of the Arabidopsis bHLH genes in the root of Arabidopsis under iron 

deficiency at various time points was analyzed based on the published microarray data in NCBI. 

A total of 167 bHLH genes in Arabidopsis predicted by Carretero-Paulet et al. (2010) were used 

in this study. Microarray data were downloaded from the Gene Expression Omnibus under the 
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series entry GSE10502 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10502). The 

expression data of the AtbHLH genes were extracted from GSE10502 using BRB-Array Tools 

software (Simon et al., 2007). All extracted data were normalized based on the mean expression 

value of each gene and analyzed and graphed using the mean of Multi Experiment Viewer 

software (Saeed et al., 2006). Genes were hierarchically clustered based on ‘Pearson’s 

correlation’ distance matric and ‘average linkage’ method. Analysis of variance (ANOVA) was 

performed to identify the AtbHLH genes that expressed at a significantly different level in each 

treatment at the level of P≤0.01. The output genes were used as queries to BlastP their orthologs 

in Populus trichocarpa in NCBI. The putative orthologous genes showing high similarity to the 

AtbHLH genes in response to iron deficiency were considered as the candidates that may also 

respond to iron deficiency in Populus. 

Plant materials and growth conditions  

Iron deficiency tolerant (PtG) and susceptible (PtY) clones of Populus tremula L. 

‘Erecta’ was used in this study. Plants were maintained and grown in a hydroponic system 

comprised of a 30-hole PVC plate, black plastic container (42 × 34 × 13 cm), Hoagland’s 

solution, and an air pump. The PVC plate was floated on the solution that was prepared 

according to Hoagland and Arnon (1939). Each container contained seven liters of Hoagland’s 

solution that was aerated with an air pump (TOPFIN
 
Aquarium Air Pump, Model: AIR-8000) 

and refreshed every week. Each hole on the plate held one plant. The container was then covered 

by plastic film to maintain the moisture. To acclimate the plants, the film was gradually removed 

from the container after one week. For the iron sufficient treatment, plants were grown in full 

strength Hoagland’s solution containing 30 µM Fe(II)-ethylenediaminetetraacetic acid (EDTA). 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10502
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For the iron deficient treatment, Fe(II)-EDTA was removed from the Hoagland’s solution and 

200 µM ferrozine was added.   

RNA extraction and cDNA preparation 

Total RNA was isolated using the QIAGEN RNeasy Plant Mini Kit (QIAGEN Inc, 

Valencia, CA, USA) according to the manufacturer’s instructions. RNA was isolated from three 

biological replicates of each treatment. Prior to cDNA synthesis, the RNA was quantified by a 

NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA, USA) 

and agarose gel electrophoresis. A total of 1 µg RNA was treated with gDNA wipeout buffer to 

eliminate possible contaminating genomic DNA and then subjected to reverse transcription with 

RT primer mix (oligo-dT and random primers) and unique QIAGEN Omniscript and Sensiscript 

reverse transcriptases according to the manufacturer’s instructions of the QuantiTect Reverse 

Transcription Kit (QIAGEN Inc, Valencia, CA, USA). 

Gene cloning and sequence analysis  

The open reading frame (ORF) region of each candidate gene was cloned from Populus 

tremula using the homology cloning method. Primers were designed using the PrimerSelect 

module of the DNASTAR Lasergene
®
 software package (DNASTAR, Inc., Madison, WI, USA). 

All primers used for gene cloning and RT-PCR were listed in Table 5.1. The PCR was performed 

according to the instructions of the Elongase
®

 Enzyme Mix (Invitrogen
TM

, Carlsbad, CA, USA). 

Target PCR products were purified using the QIAquick Gel Extraction Kit (QIAGEN Inc, 

Valencia, CA, USA) and then ligated into the pGEM-T easy vector (Promega, Madison, WI, 

USA). Plasmid DNA was extracted from the white colonies grown on indicator plates containing 

X-gal and IPTG, using a PerfectPrep
TM

 Spin Mini Kit (5 PRIME Inc., Gaithersburg, MD, USA) 

and sent for sequencing at the Iowa State University DNA Facility (Ames, IA, USA). The 

http://goo.gl/maps/GFXwm
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domains of putative proteins were analyzed using SMART (http://smart.embl-heidelberg.de/). A 

phylogenetic tree was constructed using the predicted amino acid sequences of the bHLH genes 

from Populus and other species by the MegAlign module of the DNASTAR Lasergene
®
 

software package. 

Evaluation of the expression profile of the bHLH genes using semi-quantitative RT-PCR  

The expression profile of the bHLH genes in various poplar tissues including the root tip, 

root, phloem, xylem, mature leaf, young leaf, and shoot tip was analyzed using semi-quantitative 

RT-PCR. Samples were collected from PtG and PtY grown under the iron sufficient condition. 

Primers corresponding to the PtbHLH genes and the Populus actin gene (NCBI accession no: 

XM_002298674.1) were designed using the PrimerSelect module of the DNASTAR Lasergene
®
 

software package and listed in Table 5.1. Prior to RT-PCR, the quality of cDNA was assessed by 

PCR using actin-specific primers designed to span introns to detect genomic DNA 

contamination. PCR amplification was carried out in a 16 µl reaction that consisted of 5 ng 

cDNA template, 0.375 µM of each primer, 0.2 mM dNTP, 1.5 mM MgCl2, 1×Green GoTaq
®

 

Flexi buffer, and 5 U Taq DNA Polymerase. The amplification conditions were: denaturing for 

30 s at 94 °C (3 min before the first cycle), annealing for 40 s at 56 °C, and extension for 50 s at 

72 °C (5 min after the final cycle) for 30 cycles. PCR products were separated in a 2% agarose 

gel at 110 volts (V) for 30 min. The gel was visualized under UV light and images were captured 

using a AlphaImager
®
 Gel Documentation System (Proteinsimple Inc., Santa Clara, California, 

USA). 

 

 

http://smart.embl-heidelberg.de/
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Expression quantification of the bHLH genes responding to iron deficiency using real-time 

quantitative PCR 

The expression of the bHLH genes in the root of the poplar plant responding to iron 

deficiency was evaluated by real-time quantitative PCR using an ABI 7900HT Fast Real-Time 

PCR System (Applied Biosystems, Foster City, CA, USA). Samples for RNA extraction were 

collected from PtG and PtY plants after they were transferred to the iron deficient solution for 0, 

0.5, 1, 3, and 6 days. Each treatment had three biological replicates with 10 individual plants per 

replicate. Gene specific primers were designed based on the sequences of the PtbHLH genes and 

PtTIF5α (NCBI accession no: CV251327.1) was used as the internal control gene (Table 5.1). 

Amplification conditions were: (1) incubation at 95 °C for 5 min; (2) cDNA amplification for 35 

cycles at 95 °C for 15 s, 56 °C for 20 s, and 72 °C for 30 s. To evaluate amplification specificity, 

melting curve analysis was performed at the end of each PCR run according to the 

manufacturer’s recommendation. The melting curve temperature profile was generated through 

the cycle of 95 °C for 1 min, 60 °C for 1 min, and heating to 95 °C in 20 min. Each sample had 

two technical replicates. Real-time PCR data were exported from ABI 7900HT software version 

SDS v2.2. 

The absolute quantity of the target gene was determined according to the methods of 

Peirson et al. (2003) and Larionov et al. (2005). In brief, the artificial plasmid DNA template 

containing the real-time PCR amplicons of the target gene was constructed using the pGEM-T 

easy vector system. The purified plasmid DNA was diluted at 1:10 ratio from 10
-2

 ng/µl to 10
-6

 

ng/ µl. The standard curve was generated by the Absolute Quantification of ABI 7900HT Fast 

Real-Time PCR system according to the manufacturer’s instructions. The copy number 

corresponding to each ng of plasmid DNA was calculated based on the method at 
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http://cels.uri.edu/gsc/cndna.html. The amplification efficiency was calculated based on the slope 

of the standard curve at http://www.thermoscientificbio.com/webtools/qpcrefficiency/. The final 

expression data was presented as a ratio of the copy number of PtbHLHs to that of PtTIF5α. 

Expression vector construction and plant transformation  

The Suppro::PtbHLH vector was constructed using the pCAMBIA S1300 expression 

vector system (Figure 4.2).  Gene transformation was carried out using Agrobacterium-mediated 

method according to Dai et al. (2003) and Han et al. (2000). Briefly, leaves of P. canescens × P. 

grandidentata (‘Cl6’) were infected with Agrobacterum tumefaciens strain EHA 105 harboring 

the Suppro::PtbHLH vector for 30 min and then placed in woody plant medium WPM (Lloyd 

and McCown, 1980) containing 10 μM 6-benzylaminopurine (BA), 5 μM naphthaleneacetic acid 

(NAA) and 100 μM acetosyringone for 2-3 days in the dark. Co-cultivated leaves were rinsed 

with sterile water 3 times and placed in the selection medium (WPM with 10 μM BA and 5 μM 

NAA) supplemented with 5 μM hygromycin for callus induction under the dark condition. Four 

weeks later, induced calli were transferred to the shoot induction medium (WPM with 0.05 μM 

thidiazuron (TDZ) supplemented with 5 μM hygromycin) under a 16/8 h photoperiod condition. 

After another four weeks, the individual regenerated-shoots were rooted in ½ MS medium 

supplemented with 0.5 μM NAA and 5 μM hygromycin. Verified transgenic lines were 

proliferated and grown in the hydroponic culture system.  

Molecular characterization of transgenic events 

Transgenic lines were confirmed by PCR with the specific primers located in the flanking 

region of the insertions according to the method of Dai et al. (2003) (Table 5.1). The expression 

level of PtFIT and PtIRT1 was determined in the root of transgenic plants grown under either 

iron sufficient or deficient conditions by real-time quantitative PCR as described above. 

http://cels.uri.edu/gsc/cndna.html
http://www.thermoscientificbio.com/webtools/qpcrefficiency/
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      Table 5.1. Primers used in this study. 

 

Primer  Sequence (5’-3’) Application 

PtFIT-F3 GTATCTTCTAGAAAAGAATGGATAGGATGGATGA PtFIT cloning   

PtFIT-R3 CATAGAGAGCTCAGGGCTAAACAGATGGATT 

PtIRO-F2 TAATAACCCTCCAACTAATCCACA PtIRO cloning   

PtIRO-R2 GAAGGTTTTTGCGACAGTATCTAA 

PtFIT-F1 ACCGCCACAACGACTAAGAAGAC Semi-quantitative/real-time quantitative RT-

PCR for PtFIT PtFIT-R1 AACCAAGGACCGCAAAGCATA 

PtIRO-F2 TAATAACCCTCCAACTAATCCACA Semi-quantitative/real-time quantitative RT-

PCR for PtIRO PtIRO-R6 CATCTCTAAAGCTGCACTGTTCAT 

PtAct1-F7 ATGGTTGGAATGGGGCAGAAG Semi-quantitative RT-PCR internal control 

PtAct1  PtAct1-R7 CGAAGGATGGCGTGTGGA 

PtTIF5α-F GACGGTATTTTAGCTATGGAATTG Real-time quantitative PCR for reference 

PtTIF5α  PtTIF5α-R CTGATAACACAAGTTCCCTGC 

T-DNA-F ACGTCGCATGCTCCCGG Gene transfer confirmation 

T-DNA-R CATATGGTCGACCTGCAG  

 

1
1
0
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Physiological analysis of transgenic plants grown under the iron deficient condition 

The content of chlorophyll and carotenoids, Chl a/b ratio, and the content of Mn, Zn, Fe 

and Cu in the control and transgenic plants grown in either iron sufficient or iron deficient 

condition were determined.  Leaves were collected at day 9 after the treatment. The content of 

chlorophyll a, chlorophyll b, and carotenoids was determined following the method of 

Lichtenthaler (1987).  Briefly, chlorophyll was extracted from about 0.2 g ground leaves using 

1.8 ml 80% acetone overnight at 4°C. After centrifugation at 10,000 rpm for 8 min, the 

absorbance of the combined 20 µl supernatant extractions with 980 µl 80% acetone was 

measured at 470 nm, 646.8 nm, and 663.2 nm using a BECKMAN DU-600 spectrophotometer 

(Beckman Coulter Inc. CA) with 80% acetone as the reference for the spectrophotometer. The 

concentration of chlorophyll in each cuvette (test conc.) was calculated as follows: Chl a = 

12.25A663.2-2.79A646.8; Chl b = 21.50A646.8-5.10A663.2; Chl 

a+b=7.15A663.2+18.71A646.8; carotenoids (xanthophylls and β-carotene) = (1000A470-

1.82Chla-85.02Chlb)/198. The final chlorophyll concentration (mg/kg FW) was calculated using 

the equation: Conc. = test conc.×1000×1.8/20/sample weight. For determining the content of 

mineral elements, leaf samples were oven-dried at 65°C for 2 days and subjected to leaf tests in 

the North Dakota State University Cereal Science lab according to the method of Thavarajah et 

al. (2009).  

Statistical analysis 

Data were expressed as mean±SE. An unpaired two-tailed t-test was used to analyze 

significant differences between the treatment and the control.  
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Results 

Discovery of the bHLH candidate genes in response to iron deficiency in Populus 

A total of 117 AtbHLH genes had the corresponding probes in the array of GSE10502 

containing 22,810 genes based on the microarray gene annotation database. Figure 5.1a 

illustrates the expression pattern of individual AtbHLH genes. The seven time points of the iron 

deficiency treatment (0, 3, 6, 12, 24, 48, and 72 h) were clustered into three groups: Group 1 

included 0 and 3 h treatment; group 2 included 6, 12, and 24 h treatment, and Group 3 contained 

48 and 72 h treatment. A significant difference in gene expression was observed between group 1 

and 3, indicating that the bHLH genes might respond to iron deficiency at 3 h after the treatment 

and such a response could be clearly observed at 48 h after the treatment. According to the 

ANOVA analysis, 25 AtbHLH genes showed significant differences in the level of expression at 

seven time points (Figure 5.1b). Of these genes, nine (At007, At039ORG3, At047, At059UN12, 

At093, At101, At105ILR3, At115, and At143) were up-regulated and the rest of genes were down-

regulated by iron deficiency. Previous research confirmed that At105ILR3, At101, At115, 

At039ORG3, and At047 were transcription factors that positively regulate iron deficiency 

responses in plants (Wang et al., 2007, 2013; Yuan et al., 2008; and Long et al., 2010). In other 

research, the At093 gene was found to be involved in stomatal development (Ohashi-Ito and 

Bergmann, 2006) and At059UN12 may be related to fertilization (Pagnussat et al., 2005). No 

research was reported regarding the function of At007and At143. Therefore, the orthologs of 

At105ILR3, At101, At115, At039ORG3, and At047 in Populus trichocarpa were considered as 

the candidate genes that may regulate responses to iron deficiency in Populus. In addition, At029 

FRU, At038ORG2, and At100 likely play an important role in regulation of iron deficiency. No 

corresponding probes of At038ORG2 and At100 in the microarray were identified and the P 
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value of At029 FRU was 0.024 (> 0.01) according to the ANOVA analysis. All eight orthologs in 

Populus are listed in Table 5.2. 

 

Table 5.2. The BlastP identified candidates of the bHLH genes related to iron deficiency 

response in Populus. 

 

Arabidopsis accessions Populus accessions Query cover E-value Identity 

At029FRU (At2G28160) XP_002313541.2 95% 5.00E-86 50% 

At038ORG2 (At3G56970) XP_002307969.2 97% 7.00E-51 48% 

 
XP_002323250.2 97% 3.00E-49 47% 

At039ORG3(At3G56980) XP_002307969.2 93% 1.00E-45 47% 

 
XP_002323250.2 94% 3.00E-41 43% 

At047(At3G47640) XP_002303343.1 91% 1.00E-59 51% 

At100(At2G41240) XP_002307969.2 94% 2.00E-39 41% 

 
XP_002323250.2 94% 3.00E-36 42% 

At101(At5G04150) XP_002307969.2 93% 2.00E-39 44% 

At105ILR3 (At5G54680) XP_002316971.1 100% 1.00E-93 68% 

At115(At1G51070) XP_002316971.1 64% 1.00E-75 69% 

 

Cloning and sequence analysis of PtFIT and PtIRO  

The open reading frame (ORF) regions of two candidate genes were amplified from the 

cDNA of Populus tremula (PtG and PtY). The PCR primers were designed according to the 

corresponding nucleotide sequence information of XP_002313541.2 and XP_002323250.2. 

Nucleotide sequence alignment revealed that either of two genes was identical in both PtG and 

PtY. Based on their similarity to the bHLH genes, the two genes were named PtFIT  and PtIRO 

(iron-related transcription factor), respectively (Figure 5.2). The 939 bp ORF of PtFIT encoded 

a deduced protein of 313 amino acid residues with a molecular weight of 34.9 kDa and an  
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Figure 5.1. Expression profiles of the AtbHLH genes in response to iron deficiency at different 

time points after the iron deficient treatment.  a: Microarray analysis of the 117 AtbHLH genes. 

Genes and samples are ordered based on a hierarchical clustering analysis; b: Expression patterns 

of 25 AtbHLH genes showing significant differences at different time points. 

a b 
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isoelectric point of 4.74. The 795 bp ORF of PtIRO encoded a deduced protein of 265 amino 

acid residues with a molecular weight of 30.0 kDa and an isoelectric point of 6.55. Deduced 

amino acid sequence analysis revealed that PtFIT showed 14.0% - 57.1% identity to other bHLH 

genes (57.15% to AtbHLH29 and 55.7% to MxFIT). The PtIRO also showed 14.3% - 54.7% 

identity to other bHLH genes (54.7% to MxIRO2). Alignment analysis of amino acid sequences 

showed that PtFIT and PtIRO contained the conserved bHLH domain (Pfam accession: 

PF00010) (Figure 5.3). Phylogenetic analysis suggested that the bHLH proteins could be divided 

to two subgroups (Figure 5.4). PtFIT was clustered with AtbHLH29, LeFER, MxbHLH01, and 

MxFIT, while PtIRO was clustered with the rest of bHLHs. The distinct structures between these 

two subgroups might lead to the divergence in their functions. A similar result was reported by 

Carretero-Paulet et al. (2010) where AtbHLH29 and AtbHLH38/AtbHLH39 belong to two 

different subfamilies and play different roles.  

 

 

 

 

 

 

 

 

 

 

 

 

AtbHLH100 NP_181657 

AtbHLH101 ADY38577 

AtbHLH29 NP_850114 

AtbHLH38 NP_191256 

AtbHLH39 NP_191257 

HvIRO2 BAF30424 

LeFER NP_001234654 

MxbHLH01 ADY38577 

MxFIT 

MxIRO2  

OsIRO2 FAA00382 

PtFIT 

PtIRO 

Figure 5.2. Deduced amino acid sequence similarity of the PtFIT and PtIRO2 genes with other 

bHLH proteins calculated by ClustalW. The accession numbers of studied proteins follow the 

gene names. The corresponding sources are: Lycopersicon esculentum (Le), Malus xiaojinensis 

(Mx), Arabidopsis thaliana (At), Oryza sativa (Os), and Hordeum vulgare (Hv). 



116 

AtbHLH29     1 MEGRVN---ALSNINDLELHNFLVDPNFDQFINLIRGDHQTIDENPVLDFDLGPLQNSPC 

PtFIT        1 MDDPTGNSLAVETNYQFQLHDFIDEANFDRYIDLIRG------ENEITAFDCDLING--- 

MxFIT        1 -MDSLGNHQGGHNINDFELQDFIDDANFGQFIDIIRGD----GEDPAANFDPDLMMNG-C 

MxbHLH01     1 ------------------------------------------------------MING-C 

LeFER        1 --------MENNNVNDIGLINFLDEDNFEQFIELIRGETADPIVNFCPNYDCEHMTG--C 

AtbHLH38     1 ------------------MCALVPS-FFTNFGWPSTNQ---------YESYYG-----AG 

AtbHLH39     1 ------------------MCALVPP-LFPNFGWPSTGE---------YDSYYL-----AG 

AtbHLH100    1 ------------------MCALVPP-LYPNFGWPCG-----------DHSFYE-----TD 

MxIRO2       1 ------------------MLALSPP-MFSTIGWPIDQDP-------TSHDYYKDHITTAN 

PtIRO        1 -----------------MLEELSPISLFSTFGWPLEET--------ISHEQCS-----FR 

AtbHLH101    1 ---------MEYPWLQSQVHSFSPTLHFPSFLHPLDDS---------------------- 

 

 

AtbHLH29    58 FIDEN-QFIPTPVD----DLFDELPDLDSNVAES---FRSFDGDSVRAGGEEDEED-YND 

PtFIT       52 FLVDN-QFGLSTGDKFDCDLINHVPTHTSSAMEQDPNYVPFALPSFDGDMGLGAEE-DTD 

MxFIT       55 FDDYN-LFGQAGSTTPPVLMFGFNDAIVPDPTTS--LFATS--PNFDGEMKGGEEEYYND 

MxbHLH01     6 LDDYN-LFGPA-STTPPSPTFGFNDAFLPDPST----FVS-------------------- 

LeFER       51 FSAANAQFEPILSS------MDFYDTTLPDPISLY---------NCEIKLDNNDDEDDDE 

AtbHLH38    28 DNLNNGTFLELTVP-QTY----EVTHHQNSLGVS-------------------------- 

AtbHLH39    28 DILNNGGFLDFPVPEETYGAVTAVTQHQNSFGVS-------------------------- 

AtbHLH100   26 DVSN--TFLDFPLP-------DLTVTHEN------------------------------- 

MxIRO2      35 DQTAESSSLHILPS--------GHPQSELDRSTP-------------------------- 

PtIRO       31 DGETQDSFTHFPPS--------QPDVRQLDRSTS-------------------------- 

AtbHLH101   30 -KSHNINLHHMSLS---------HSNNTNSNNNN-------------------------- 

 

 

AtbHLH29   109 GDDSSATTTNNDGTRKTKTDRSRTLISERRRRGRMKDKLYALRSLVPNIT----KMDKAS 

PtFIT      110 EEDSSGTTTT---TKKTKKDRSRTLISERRRRGRMKEKLYALRSLVPNIT----KMDKAS 

MxFIT      110 GEDSSGTTTTMTTTLRQKVDRSRTLVSERKRRGSMKERLYALRSLVPNIT----KMDKAS 

MxbHLH01    40 --ETTNTNTITTTTKRQKVDRSRTLVSERKRRGRMKERLCALRSLVPNIT----KMDKAS 

LeFER       96 SSGTTATTKMTPTSKGTRTDRSRTLISERKRRGRMKEKLYALRSLVPNIT----KMDKAS 

AtbHLH38    57 ---VSSEGN-EIDNNPVVVKKLNHNASERDRRKKINTLFSSLRSCLPASD-QSKKLSIPE 

AtbHLH39    62 ---VSSEGN-EIDNNPVVVKKLNHNASERDRRRKINSLFSSLRSCLPASG-QSKKLSIPA 

AtbHLH100   46 ---VSSENNRTLLDNPVVMKKLNHNASERERRKKINTMFSSLRSCLPPTN-QTKKLSVSA 

MxIRO2      61 ---STTISG-ECSSVSPVAKKLNHNASERDRRKKINSLYSSLRSLLPADQPLQKKLSIPN 

PtIRO       57 ---FTAHSG-SGD--PTMAKKLNHNASERDRRKKINSLYSSLRSLLPAAD-QRKKLSIPY 

AtbHLH101   54 ---YQEEDR----GAVVLEKKLNHNASERDRRRKLNALYSSLRALLPLSD-QKRKLSIPM 

                                                                                                         Ӿ        Ӿ       Ӿ 
 

 

AtbHLH29   165 IVGDAVLYVQELQSQAKKLKSDIAGLEASLNSTG---GYQEHAPDAQKTQPFRGINPPAS 

PtFIT      163 IIGDAVLYVQELQMQANKLKADIASLESSLIGSD---GYQGSNRNPKNLQNTS-NNHPIR 

MxFIT      166 IVGDSVLYVQDLQQQAKKLKAEIASLEASLAGADDRDGHLEGSTKP-NKD--SNNDQFVS 

MxbHLH01    94 IVRDAVLYVQDSQMHAKKLNAEIANLEASLAG-----GYLQGSTKTKNKKKVSDNNHLAS 

LeFER      152 IIGDAILYVQGLQTKAKKLKVEIAEFESSS-------GIFQNAKKMNFTT-----YYPAI 

AtbHLH38   112 TVSKSLKYIPELQQQVKRLIQKKEEILVRVSG----------QRDFELYDK--QQPKAVA 

AtbHLH39   117 TVSRSLKYIPELQEQVKKLIKKKEELLVQISG----------QRNTECYVK--QPPKAVA 

AtbHLH100  102 TVSQALKYIPELQEQVKKLMKKKEELSFQISG----------QRDLVYTDQNSKSEEGVT 

MxIRO2     117 TVSRVVKYVPELQKQVEGLIRKREELLSRITK----------QESALHEEKN-QIKSAAR 

PtIRO      110 TVSRVLEYIPELQQQVERRIQRKEELLSKLSR----------QADDLTHQEN-QRKGTMH 

AtbHLH101  106 TVARVVKYIPEQKQELQRLSRRKEELLKRISR----------KTHQEQLRNKAMMDSIDS 

 

 

 

 

B H L

oop  

H

Figure 5.3. Amino acid alignment of the bHLH genes in this study. The bHLH conserved 

domain is indicated with lines. Shaded areas represent identical residues (black) or similar 

residues (gray) found in most of the proteins. ‘Ӿ’ indicates the motifs. 
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 AtbHLH29   222 KKIIQMDVIQVEEKGFYVRLVCNK--GEGVAPSLYKSLESLTSFQVQNSNLSSPSPDTYL 

 PtFIT      219 KKIIKMDVFQVEERGFYVRLVCNK--GEGVAASLYRALESLTSFSVQNSNLATTS-EGFV 

 MxFIT      223 KGILQIDVSQVEEKGFYVKVACNK--GGGVAISLYKALESLTSFDVQSSNLKTVSADRFE 

 MxbHLH01   149 KGIVQIDVSQVEEKGFYVKVACNK--GQVVATALYRALESLARFNVQSSNLNTVSAGRFE 

 LeFER      200 KRITKMDINQVEEKGFYVRLICNK--GRHIAASLFKALESLNGFNVQTSNLATST-NDYI 

 AtbHLH38   160 SYLSTVSATRLGDNEVMVQVSSSKIHNF-SISNVLGGIE-EDGFVLVDVSSSRSQGERLF 

 AtbHLH39   165 NYISTVSATRLGDNEVMVQISSSKIHNF-SISNVLSGLE-EDRFVLVDMSSSRSQGERLF 

 AtbHLH100  152 SYASTVSSTRLSETEVMVQISSLQTEKC-SFGNVLSGVE-EDGLVLVGASSSRSHGERLF 

 MxIRO2     166 SSLSAVSAYQLNDREVAIQISSLKTKNN-LLSDILLNLE-EEGLQILNASSFESSGGRVF 

 PtIRO      159 SSLSSVSASRLSDREVVIQISTNKLHRSPLMSEILVNLE-EAGLLLINSSSFESFGGRVF 

 AtbHLH101  156 SSSQRIAANWLTDTEIAVQIATS---KWTSVSDMLLRLE-ENGLNVISVSSSVSSTARIF 

 

 AtbHLH29   280 LTYTLDGTCFEQS-LNLPNLKLWITGSLLNQGFEFIKSFT-------- 

 PtFIT      276 LTFTLNVKESEQD-MNLPNLKLWVTGALLNQGFELLTA---------- 

 MxFIT      281 ITFALNVKKCEKDVVNLPNLKIWVTGAFLNQGFKLASGFSA------- 

 MxbHLH01   207 LAFTLNVCIYQYNMIFY-----YVLGWQFLQS---------------- 

 LeFER      257 FTFTLYVRECHEVDINFGNLKLWIASAFLNQGFDFETSPLV------- 

 AtbHLH38   218 YTLHLQVENMDDYKINCEELSERMLYLYEKCENSFN------------ 

 AtbHLH39   223 YTLHLQVEKIENYKLNCEELSQRMLYLYEECGNSYI------------ 

 AtbHLH100  210 YSMHLQIK---NGQVNSEELGDRLLYLYEKCGHSFT------------ 

 MxIRO2     224 YNLQFQVER--TYRLECESLSDKLMSFYGQEY---------------- 

 PtIRO      218 YNLHLQAMEG-TYTVECEALNERLVSLCEKRESLFPLNLSSPYSSCIF 

 AtbHLH101  212 YTLHLQMRG--DCKVRLEELINGMLLGLRQS----------------- 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Amino acid alignment of the bHLH genes in this study (continued). The bHLH 

conserved domain is indicated with lines. Shaded areas represent identical residues (black) or 

similar residues (gray) found in most of the proteins. ‘Ӿ’ indicates the motifs.  

Figure 5.4. A phylogenetic tree of the PtFIT, PtIRO2, and other bHLH genes constructed by 

ClustalW. The accession numbers of studied proteins follow the gene names. PtFIT and PtIRO 

are framed. The corresponding sources are: Lycopersicon esculentum (Le), Malus xiaojinensis 

(Mx), Arabidopsis thaliana (At), Oryza sativa (Os), and Hordeum vulgare (Hv). 
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Expression analysis of PtFIT and PtIRO  

The expression of PtFIT and PtIRO in the root tip, root, phloem, xylem, mature leaf, 

young leaf, and shoot tip of both PtG and PtY was determined using semi-quantitative PCR. As 

shown in Figure 5.5, PtFIT expressed only in the root tip and root, while a weak expression of 

PtIRO was detected in the young leaf and shoot tip. A real-time quantitative PCR was conducted 

to evaluate the expression profile of PtFIT in the root responding to iron deficiency at different 

times after the iron deficiency treatment (Figure 5.6). Results showed that a slight decrease of the 

PtFIT transcript was detected at day 0.5, then gradually increased and peaked at day 6 in PtG. In 

PtY, the expression of PtFIT showed the first peak at day 1, and then decreased until day 3. The 

second expression peak of PtFIT in PtY was detected at day 6. The expression level of PtFIT at 

day 6 was more than 2-fold higher in PtG than in PtY. 
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Figure 5.5. Tissue-specific expression of PtFIT and PtIRO in PtG and PtY determined by semi-

quantitative PCR. PtG: iron chlorosis tolerant clone of Populus tremula; PtY: iron chlorosis 

susceptible clone of Populus tremula; RT: root tip; R: root; Ph: phloem; Xy: xylem; ML: mature 

leaf; YL: young leaf; ST: shoot tip. 
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Overexpression of the PtFIT gene in P. canescens × P. grandidentata ‘Cl6’ 

Overexpression of the PtFIT gene was confirmed in five independent transgenic lines of 

P. canescens × P. grandidentata ‘Cl6’. One line with the empty vector (no PtFIT) was the 

control (NC). As shown in Figure 5.7, the expression level of PtFIT in transgenic lines decreased 

under the iron sufficient condition except TL5 that was similar to NC. Under the iron deficient 

condition, the expression of PtFIT significantly increased except in TL13. Two transgenic lines 

(TL12 and TL5) showed a significantly higher expression level of PtFIT than the control under 

iron deficiency. The expression pattern of PtIRT1 in PtFIT-transgenic lines was also evaluated. 

Similar to that of PtFIT, the expression of PtIRT1 was also inhibited under iron sufficiency and 

dramatically enhanced under iron deficiency (Figure 5.7). Compared to NC, PtIRT1 transcripts 

in transgenic plants were reduced more than half under the iron sufficient condition, while 

PtIRT1 transcripts were significantly increased in TL10 compared to NC under iron deficiency. 

Figure 5.6. Relative expression level of PtFIT in the root of PtG and PtY responding to iron 

deficiency at 0, 0.5, 1, 3, and 6 days. The relative expression is quantified by real-time PCR and 

normalized to the PtTIF5α gene. 
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On the other hand, PtIRT1 transcripts were increased 2.44 times in NC and 3.38-13.43 times in 

transgenic plants under the iron deficient condition. 

   

 

 

 

 

 

 

 

 

 

Physiological analysis of the PtFIT-transgenic lines responding to iron deficiency 

The contents of chlorophyll and mineral elements in the PtFIT-transgenic leaves were 

determined. As shown in Figure 5.8 and 5.9, no significant increase of chlorophyll (Chl a+b), 

Chl a/b ratio, or carotenoids was observed in transgenic lines under the iron sufficient condition. 

Under the iron deficient condition, the chlorophyll content decreased in TL10 and TL13 as well 

as in NC, but no significant changes in TL12, TL2, and TL5 were detected. The Chl a/b ratio 

also decreased under iron deficiency in all transgenic plants as well as in NC. TL2 had the 

highest Chl a/b ratio in all transgenic lines (Figure 5.8). Similarly, iron deficiency significantly 

decreased the content of carotenoids in NC, while no significant changes in transgenic plants 

except TL2 (Figure 5.9). The contents of Mn, Zn, Cu, and Fe in leaves of the transgenic plants 

under the iron deficient or sufficient condition were determined (Figure 5.10). In general, iron 

Figure 5.7. Quantitative assay of PtFIT and PtIRT expression in transgenic poplar plants. Plants 

were grown under iron sufficiency (Fe+) or deficiency (Fe-). NC: the transgenic line with the 

empty vector (no target gene). The relative expression is quantified by real-time PCR and 

normalized to the PtTIF5α gene. 
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deficiency showed no effect on Mn content, but slightly lowered the Zn content. Iron content 

was significantly decreased and Cu content was significantly increased under iron deficiency. 

Under the iron sufficient condition, transgenic lines accumulated more Zn and Fe with the 

exception that TL5 had a similar Fe content to NC. Under iron deficiency, TL2 and TL5 

accumulated more Zn than other lines and NC; while no significant difference in Fe, Mn, or Cu 

content was found among all transgenic and NC lines.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8. Chlorophyll content and Chl a/b ratio in the PtFIT-transgenic poplar lines under iron 

sufficient (Fe+) and deficient (Fe-) conditions. NC: the transgenic line with the empty vector (no 

target gene). 

 

 

Figure 5.9. Carotenoid content in the PtFIT-transgenic poplar lines under iron sufficient (Fe+) 

and deficient (Fe-) conditions. NC: the transgenic line with the empty vector (no target gene). 
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Figure 5.10. The content of Mn, Zn, Fe, and Cu in the leaf of the PtFIT-transgenic poplar lines 

under iron sufficient (Fe+) and deficient (Fe-) conditions. NC: the transgenic line with the empty 

vector (no target gene). 
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Figure 5.11. Correlation between the expression levels of PtIRT1 and PtFIT responding to iron 

deficiency calculated by Pearson Correlation Coefficient Calculator. Expression levels are 

normalized as a ratio to the PtTIF5α gene. 
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Discussion 

The basic helix-loop-helix (bHLH) is an important family of transcription factors 

(Massari and Murre, 2000). In this study, the orthologs of the AtbHLH genes responding to iron 

deficiency in Populus were discovered using microarray data. Microarray is a useful tool to 

explore the genes responding to changes of the environmental conditions. In Arabidopsis, the 

microarray method has been used to analyze the genome-wide responses of genes to iron 

deficiency, such as the differential expression in different tissues (shoots, roots, or leaves) or 

under different Fe supply conditions (Dinneny et al., 2008; Buckhout et al., 2009; Li and 

Schmidt, 2010; Long et al., 2010; Schuler et al., 2011; Ivanov et al., 2012; Sivitz et al., 2012; 

Waters et al., 2012).We analyzed the expression profile of the AtbHLH genes in response to iron 

deficiency in the root using the microarray data submitted by Dinneny et al.(2008). Twenty-five 

AtbHLH genes showed the responses to iron deficiency (Figure 5.1b). Among them, three up-

regulated genes (At039ORG3, At047, and At101) were also confirmed by other microarray 

analyses that involved in iron deficiency responses (Sivitz et al., 2012; Waters et al., 2012). Five 

orthologs of AtbHLH were identified in Populus trichocarpa according to the BlastP result and 

two out of five (PtFIT and PtIRO) that are homologues of XP_002313541.2 and 

XP_002323250.2 were cloned from Populus tremula.  

Amino acid sequence analyses revealed that the bHLH domain sequences of PtFIT and 

PtIRO had the highest similarity with AtbHLH29 and MxIRO2, respectively (Figure 5.2). 

AtbHLH29 and MxIRO2 functioned as regulators of the genes responding to iron deficiency 

(Colangelo and Guerinot, 2004; Jakoby et al., 2004; Yuan et al., 2005; Yin et al., 2013). 

Phylogenetic analysis showed that the two iron deficiency regulators were clustered into two 

groups (Figure 5.4). The PtFIT protein contained the typical threonine-glutamate-arginine (T-E-
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R) motif in the basic region of the bHLH domain at positions 5-9-13, as other members in the 

same subgroup. Differently, the feature showed in the PtIRO protein was histidine-glutamate-

arginine (H-E-R) (Figure 5.3). Research showed that H-E-R could bind to the G-box (5’-

CACGTG-3’) of a promoter and T-E-R was bound to a variation of the E-box (5’-CANNTG-3’) 

hexanucleotide sequence, revealing the different roles of the FIT and IRO genes in regulating 

iron deficiency response in plants(Heim et al., 2003; Li et al., 2006). Information in this study 

suggests that PtFIT and PtIRO cloned from Populus tremula belong to the bHLH family and 

may function differently in iron deficiency response in Populus.  

The up-regulated expression of PtFIT was observed and more transcripts were detected in 

roots under iron deficiency (Figure 5.5 and 5.6). Similar responses of AtbHLH29 and MxFIT 

were also reported (Jakoby et al., 2004; Yin et al., 2014). However, very weak expression of 

PtIRO was detected in the shoot tip of Populus tremula (Figure 5.5), which is different from the 

MxIRO2 gene that expressed in the leaf and root of Malus xiaojinensis under iron sufficiency 

(Yin et al., 2013). It indicates that PtIRO may have a different function from MxIRO2 and further 

research is needed to evaluate the possible function of PtIRO related to iron deficiency 

responses. This study also showed that the expression of PtFIT was higher in PtG than PtY at 

day 6 after the iron deficiency treatment. Research in Arabidopsis indicated that AtIRT1 is a 

major downstream gene regulated by AtFIT1 (Colangelo and Guerinot, 2004; Jakoby et al., 2004; 

and Yuan et al., 2005). In this study, the correlation between PtIRT1 and PtFIT responding to 

iron deficiency was strongly positive (r=0.94) between PtIRT1 and PtFIT in PtG (Figure 5.11), 

but the correlation in PtY was weak (r=0.49). This indicates that FIT in PtG functioned well in 

regulating IRT1 to respond to iron deficiency as reported in Arabidopsis (Colangelo and 

Guerinot, 2004; Jakoby et al., 2004; and Yuan et al., 2005); however, in PtY, the regulation 
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function of FIT might be inhibited or needs to be induced by other factors (Yuan et al., 2008) and 

lack of those factors or lack of connections between those factors may explain such a weak 

correlation between PtFIT and PtIRT.   

To further characterize the gene function, PtFIT driven by a constitutive super promoter 

(a trimer of the octopine synthase transcriptional activating element affixed to the mannopine 

synthase 2’ transcriptional activating element plus minimal promoter) was transferred into 

another poplar species (P. canescens × P. grandidentata ‘Cl6’). No enhanced constitutive 

expression of the PtFIT gene in transgenic lines was detected in this study. The transgenic plants 

had a relatively lower expression level of PtFIT under the iron sufficient condition compared to 

the control, while the expression of PtFIT was induced by iron deficiency in most transgenic 

plants (Figure 5.7). This indicates that there might be other factors regulating the expression of 

PtFIT and these factors can be activated by iron deficiency. As expected, the expression of 

PtIRT1 in PtFIT-transgenic plants was also inhibited by iron sufficiency and induced by iron 

deficiency (Figure 5.7). Additionally, the fold change of the PtIRT1 transcript was much greater 

in transgenic lines than in the control (Table 5.3). Previous research showed a similar result to 

which AtIRT1 transcripts were not accumulated under the iron sufficient condition, but increased 

under the iron deficient condition in transgenic Arabidopsis plants overexpressing AtFIT1 or 

MxFIT. This suggests that PtFIT might have the same function of inducing the expression of 

PtIRT1 as AtFIT1 and MxFIT have (Jakoby et al., 2004; Yuan et al., 2008; Yin et al., 2014). We 

predict that PtFIT could induce the expression of PtIRT1 and might play an important role in 

regulation of iron transport under iron deficiency. Under iron sufficiency, the PtFIT-transgenic 

poplar lines accumulated more Fe than the control plant. Notably, one line (TL2) showed an 

increased chlorophyll (Chl a+b) content and Chl a/b ratio compared to the control even under 
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iron deficiency. This result is consistent with the findings in transgenic Arabidopsis in which 

overexpression of MxFIT increased chlorophyll content (Yuan et al., 2014). Interestingly, the 

TL2 line showed no enhanced Fe accumulation under iron deficiency, suggesting that TL2 might 

use iron more efficiently; therefore, overexpression of PtFIT could help increase the tolerance to 

iron deficiency in poplar trees. 

In conclusion, two bHLH transcription factors (PtFIT and PtIRO) were cloned from 

Populus tremula. Functions of PtFIT in regulating iron deficiency were characterized. Results 

indicated that PtFIT might regulate PtIRT1 to involve in regulation of iron deficiency response in 

Populus, which provides useful information for further understanding the mechanisms of iron 

deficiency response in poplar trees and other woody species.  
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CHAPTER VI. GENERAL CONCLUSION 

Iron deficiency causes a decrease of chlorophyll content and alteration of chlorophyll 

structure, resulting in plant chlorosis. Iron chlorosis can be seen in many plant species, 

particularly in plants grown in alkaline and calcareous soils, causing yield loss and poor quality. 

Molecular mechanisms of iron metabolism including uptake, transport, and utilization in many 

annual and herbaceous species, such as Arabidopsis, rice, and tomato have been well 

documented; however, very limited research has been done for woody plants.   

Populus is a model woody species for both basic and applied research. The completion of 

the whole genome sequence of Populus trichocarpa largely facilitates research in molecular 

biology, genetics, and genomics for tree species. A few poplar species are also susceptible to iron 

chlorosis. Therefore, poplar is an ideal species to study iron uptake, transport, utilization, and 

metabolism for woody species.  

The dissertation included two main parts: literature review and manuscripts. The 

literature review provided the general background of the importance of iron in plants, iron 

availability in the soil, plant responses to iron deficiency and its management, regulation of iron 

uptake, transport, and metabolism in plants as well as the general information about Populus. 

The second part contained three papers that were written in a refereed journal format. Paper 1 

analyzed the physiological responses of Populus tremula to iron deficiency. Paper 2 reported the 

cloning and functional characterization of two iron-regulated transporter (IRT) genes in Populus 

tremula. Paper 3 discussed molecular cloning and characterization of the basic helix-loop-helix 

(bHLH) genes that may be involved in the regulation of iron deficiency responses in poplar trees. 

Plant materials used in this study were two clonal trees of Populus tremula L.‘Erecta’ 

grown near each other with contrasting phenotypes (PtG: green leaves and PtY: yellow leaves). 
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Soil analysis showed that the soil where two trees were grown was slightly alkaline (pH 7.42-

7.88). The quantity of major mineral elements (Fe, Zn, and Cu) in the soil was less than 

recommended. Leaf tests for the field-grown trees confirmed the differences in the content of dry 

matter, chlorophyll and carotenoids, Chl a/b ratio, and the content of Zn and Fe between the two 

trees. The hydroponic culture successfully induced the iron chlorosis and confirmed that the 

aforementioned differences were also significant between the two trees. Thus, the two trees 

showed the different tolerance to iron deficiency, which appeared to be the cause of contrasting 

phenotypes.  

The iron-regulated transporter (IRT) genes play an important role in iron uptake and 

transport in plants. In this study, two IRT genes (PtIRT1 and PtIRT3) were cloned from PtG and 

PtY to investigate their functions on iron uptake and transport and their responses to iron/zinc 

deficiency. Analysis of the deduced amino acids showed that both PtIRT1 and PtIRT3 were 

identical in PtG and PtY. They all contained the conserved ZIP domain with eight 

transmembrane regions (TM) and a ZIP signature sequence. Phylogenetic analysis suggested that 

PtIRT1 may function as an iron transporter, while PtIRT3 is more likely to be a zinc transporter. 

Analyses of gene expression indicated that PtIRT1 only expressed in root tissues, while PtIRT3 

constitutively expressed in all tested tissues. However, the activity of the GUS gene derived by 

the promoter of PtIRT1 was found both in the leaf and root of the transgenic tobacco lines. 

Expression analysis also showed that PtIRT1 and PtIRT3 were up-regulated by iron deficiency, 

while down-regulated by zinc deficiency. In addition, PtIRT1 showed a higher expression level 

in PtG than in PtY under iron deficiency. Interestingly, PtIRT1-transgenic poplar plants showed 

an enhanced expression of PtIRT1, but no increased Fe accumulation. Transgenic tobacco lines 

with PtIRT1-pro::GUS showed an enhanced GUS activity in the root under iron deficiency, 
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indicating PtIRT1-pro was responding to iron deficiency and the promoter of PtIRT1 might be 

regulated by the transcriptional factors. 

Two basic helix-loop-helix (bHLH) transcription factors (PtFIT and PtIRO) were isolated 

from PtG and PtY and their responses to iron deficiency were analyzed. Gene sequence analyses 

showed that each of the two genes was identical in PtG and PtY. The expression of PtFIT was 

detected only in root tissues and up-regulated by iron deficiency; however, the expression of 

PtIRO was rarely detected in all tested tissues. A higher level of PtFIRT transcripts was detected 

in PtG than in PtY. A strong positive correlation (r=0.94) between PtFIT and PtIRT1 in PtG was 

determined and such a correlation was very weak in PtY (r=0.49), indicating that PtG and PtY 

may have different mechanisms of regulating iron deficiency. The PtFIT-transgenic poplar plants 

had an enhanced Fe content under iron sufficiency. The expression of PtFIT and PtIRT1 was 

significantly enhanced by iron deficiency compared to the control plant. One of the transgenic 

poplar lines (TL2) had a higher chlorophyll content and Chl a/b ratio than the control, revealing 

its enhanced tolerance to iron deficiency.  

In conclusion, the iron chlorosis tolerant tree (PtG) could accumulate more Fe than the 

susceptible one (PtY) under iron deficiency, which might attribute to a higher expression level of 

PtFIT and PtIRT1 responding to iron deficiency. Transgenic plants with PtFIT showed an 

increased tolerance to iron deficiency. This research facilitates the understanding of iron uptake, 

transport, and regulation in poplar trees. It would be valuable for further elucidation of the 

mechanisms of iron deficiency response in poplar and other tree species.  

 

 

 


