

FAULT TOLERANT AND ADAPTIVE SYSTEMS WITH FOCUS ON

NETWORKS-ON-CHIPS

A Dissertation

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Hamed Sajjadi Kia

In Partial Fulfillment

for the Degree of

DOCTOR OF PHILOSOPHY

Major Department:

Electrical and Computer Engineering

February 2014

Fargo, North Dakota

North Dakota State University

Graduate School

Title

Fault tolerant and adaptive systems with focus on networks on chip

 By

Hamed Sajjadi Kia

 The Supervisory Committee certifies that this disquisition complies with North Dakota State

University’s regulations and meets the accepted standards for the degree of

 DOCTOR OF PHILOSOPHY

 SUPERVISORY COMMITTEE:

 Dr. Sudarshan Srinivasan

 Chair

Dr. Cristinel Ababei

Dr. Samee Khan

 Dr. Rui Dai

 Approved:

 06/03/2014 Dr. Scott C. Smith

 Date Department Chair

iii

ABSTRACT

The first step in design of reliable systems is the ability to evaluate the reliability of the

system. This is an important step in the process of designing reliable systems because design

techniques that proactively improve the lifetime reliability of systems on chip (SoC) require

some form of redundancy. The cost (area, power, and design time overheads) associated with

such redundancy makes developing systems with resilience to all types of failure mechanisms

impractical. To address this problem we developed an accurate reliability evaluation algorithm

that is capable of identifying the vulnerable subblocks of the system. The proposed reliability

evaluation methodology can also be utilized to develop a new lifetime aware floorplanning

strategy that is capable of identifying the most reliable floorplan for a given design. We consider

this an essential step toward a design approach where reliability is a primary objective.

Recent advances in CMOS technology and integration of multiple processing elements in

a single chip has also made the on chip communication a challenge in design of multi-processor

SoCs (MPSoC). Networks on Chip (NoC) has been introduced as a new communication medium

in response to the rising need for the new communication structure for MPSoCs. While NoC is

proven to be an efficient communication structure for SoC, the same failure mechanisms and

processing faults that have adverse effects on processing elements can also render NoC

inoperable. We proposed a new multi layered reliable design methodology for NoCs as a hybrid

solution composed of multiple layers of fault tolerant design techniques to address this challenge.

The proposed structure for NoCs can address hard failures across three levels of abstraction. In

first layer (software layer), we use a reliability aware mapping algorithm to assign application

tasks on NoC such that network reliability is improved. In second and third layers (architecture

and network-routing layers), we design an NoC architecture that uses self-repairable links and a

iv

distributed routing. The combination of these techniques in the proposed layered approach helps

to provide a better performance and tradeoff between the improvement in reliability and cost due

to the required redundancy and extra logic.

v

ACKNOWLEDGMENTS

I am grateful to acknowledge and thank all of those who assisted me during my graduate

studies at North Dakota State University. First, I would like to thank Dr. Cristinel Ababei and Dr.

Sudarshan Srinivasan my academic advisors. Their guidance, support, and patience throughout

my years as a graduate student are truly appreciated. Special thanks go to Dr. Samee Khan and

Dr. Rajesh Kavasseri for their support and encouragement throughout my studies. Also special

thanks are given to my other graduate committee member, Dr. Rui Dai. I would also like to thank

Dr. Hyunsook Do for her help during my proposal defense. Finally, I would like to thank my

family for their patience and unceasing support.

vi

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGMENTS .. v

LIST OF TABLES .. xii

LIST OF FIGURES ... xiii

LIST OF ABBREVIATIONS .. xvi

CHAPTER 1. INTRODUCTION ... 1

1.1. Motivation .. 1

1.2. Dissertation outline .. 3

1.3. References .. 4

CHAPTER 2. A NEW RELIABILITY EVALUATION METHODOLOGY WITH

APPLICATION TO LIFETIME ORIENTED CIRCUIT DESIGN ... 9

2.1. Abstract .. 9

2.2. Introduction .. 10

2.2.1. Related work .. 10

2.2.1.1. Reliability evaluation techniques ... 10

2.2.1.2. Floorplanning ... 12

2.2.2. Contribution ... 12

2.3. Lifetime failure models .. 13

2.3.1. Importance of lifetime distribution of failure mechanisms ... 13

2.3.2. Time dependent dielectric breakdown (TDDB) .. 13

vii

2.3.2.1. TDDB lifetime model .. 14

2.3.3. Negative bias temperature instability (NBTI) ... 14

2.3.3.1. NBTI lifetime model .. 15

2.3.4. Electromigration (EM) .. 15

2.3.4.1. EM lifetime model ... 16

2.3.5. Thermal cycling (TC) .. 16

2.3.5.1. TC lifetime model .. 17

2.3.6. Stress migration (SM) .. 17

2.3.6.1. SM lifetime model ... 17

2.4. Proposed reliability evaluation methodology ... 17

2.4.1. Reliability evaluation: TDDB and NBTI failure mechanisms 20

2.4.2. Reliability evaluation: EM, SM, and TC failure mechanisms 23

2.4.3. Discussion .. 24

2.5. Lifetime aware floorplanning ... 25

2.6. Simulation results ... 27

2.6.1. Router architecture .. 27

2.6.2. Technology node and set-up parameters ... 28

2.6.3. Results ... 29

2.6.3.1. Lifetime aware floorplanning and reliability evaluation 29

2.6.3.2. Vulnerability analysis .. 34

viii

2.7. Conclusion .. 37

2.8. References .. 37

CHAPTER 3. IMPROVING FAULT TOLERANCE OF NETWORK-ON-CHIP LINKS VIA

MINIMAL REDUNDANCY AND RECONFIGURATION ... 44

3.1. Abstract .. 44

3.2. Introduction .. 44

3.3. Previous work ... 45

3.4. Contributions .. 47

3.5. Proposed self-repairing link structure .. 47

3.5.1. Non-segmented link structure .. 47

3.5.2. Proposed segmented link structure .. 50

3.6. Fault detection .. 54

3.7. Simulation and experimental results .. 54

3.7.1. Reliability .. 56

3.7.2. Area ... 57

3.7.3. Power consumption ... 58

3.7.4. Delay .. 58

3.7.5. Discussion .. 59

3.8. Conclusion .. 59

ix

3.9. References .. 60

CHAPTER 4. FAULT-TOLERANT AND CONGESTION-AWARE ADAPTIVE ROUTING

ALGORITHM FOR REGULAR NETWORKS-On-Chip ... 63

4.1. Abstract .. 63

4.2. Introduction .. 63

4.3. Related work and contribution ... 64

4.4. Proposed adaptive routing .. 66

4.4.1. General NoC topology description .. 67

4.4.2. Ball-and-string model based shortest path computation procedure 68

4.4.3. Adaptive routing .. 72

4.4.4. Addressing link failures ... 74

4.4.5. Deadlock .. 75

4.5. Hardware implementation .. 75

4.5.1. Modified router architecture .. 75

4.6. Experimental results ... 79

4.6.1. Adaptive routing to address ... 79

4.6.2. Adaptive routing to address link failures ... 83

4.7. Conclusion .. 83

4.8. References .. 84

x

CHAPTER 5. FAULT-TOLERANCE ORIENTED MULTI-LAYERED DESIGN

METHODOLOGY FOR NETWORKS-ON-CHIP .. 88

5.1. Abstract .. 88

5.2. Introduction .. 88

5.3. Previous work related to fault tolerance and adaptive routing ... 90

5.3.1. Fault tolerance for NoCs.. 90

5.3.2. Adaptive routing for NoCs .. 91

5.4. Proposed fault tolerance oriented design methodology for NoCs...................................... 94

5.5. Energy and reliability aware mapping for regular NoCs ... 95

5.6. Reconfigurable NoC links with spare wires ... 97

5.7. Proposed distributed adaptive routing .. 98

5.7.1. Description of the local control unit (LCU) .. 100

5.8. Experimental results ... 107

5.8.1. Simulations of the mapping algorithm .. 107

5.8.2. Cost estimations ... 108

5.9. Conclusion .. 109

5.10. References .. 110

CHAPTER 6. CONCLUSION.. 117

6.1. Future work .. 119

xi

6.2. References .. 120

xii

LIST OF TABLES

Table Page

4.1. Comparison against XY routing .. 83

5.1. Area and power overhead of different fault tolerant links. .. 98

5.2. Testcases and their characteristics used for mapping simulations. 108

5.3. Simulations results achieved with the energy and reliability aware mapping algorithm. ... 109

5.4. Area and power overhead of different fault tolerant routing algorithms for NoC. 109

xiii

LIST OF FIGURES

Figure Page

2.1. Top level block diagram of the proposed reliability evaluation methodology. 18

2.2. Pseudocode description of the proposed reliability evaluation methodology. 19

2.3. Flow chart of the proposed reliability evaluation methodology for TDDB and NBTI

 failure mechanisms. ... 20

2.4. Pseudocode of the device level Monte Carlo algorithm, Monte_Carlo_1() from Fig. 2.3. ... 21

2.5. Flow chart of the proposed reliability evaluation methodology for EM, TC, and SM

 failure mechanisms. ... 24

2.6. Pseudocode of the sub-block level Monte Carlo algorithm, Monte_Carlo_2() from

 Fig.2.5. ... 25

2.7. Pseudocode of the proposed lifetime aware floorplanning strategy. 26

2.8. NoC router architecture.. 28

2.9. The best floorplan of the NoC router found by the lifetime aware floorplanning strategy

 described in Fig. 2.7. .. 30

2.10. Mean time to failure of individual sub-blocks for a) TDDB, b) NBTI, c) EM, d) TC,

 and e) SM cases. Each of the five bars in each cluster corresponds to each of the five best

 floorplans. f) Overall MTTF of each of the five best floorplans. .. 31

2.11. Illustration of the amount of the improvement in the expected lifetime of the first

 floorplan compared to the other 4 floorplans. .. 34

2.12. Percentage of transistors with MTTF value lower than selected threshold for a) TDDB

 and b) NBTI cases. ... 36

3.1. Example of typical 2D regular mesh NoC topology. ... 45

3.2. (a) Simplified block diagram of an n-bit reconfigurable link structure with k redundant

 bits. (b) Details of the reconfiguration logic for an example with k = 4................................ 49

3.3. Illustration of proposed segmented link structure. ... 51

3.4. Block diagram of the proposed segmented self-repairing link. In each segment, the link is

 divided into groups of main wires and redundant wires. ... 53

3.5. System level diagram utilized for reliability computation. .. 53

3.6. Block diagram of the error detection circuit for one bit of the link. Each wire of the link is

xiv

 equipped with an error detection circuit. ... 55

3.7. Simulation result that illustrates how a segmented link recovers a faulty bit of the link. A

 fault is injected on 63th bit of the main link. ... 56

3.8. Percentage of increase in reliability achieved with the proposed segmented link

 compared to the non-segmented link. .. 57

3.9. Percentage of increase in area occupied by the proposed segmented link compared to

 non-segmented link. ... 57

3.10. Percentage of increase in power consumption of the segmented link compared to non-

 segmented link. .. 58

3.11. Percentage of increase in link delay of the segmented link compared to non-segmented

 link. .. 59

4.1. (a) Example of 2D regular mesh. (b) Typical router architecture. ... 67

4.2. (a) Computation of edge weight. (b) Edge weights for a network graph associated with a

 3x2 NoC. (c) The network matrix A and the parent-array of the network graph. 69

4.3. Applying the algorithm to network matrix. ... 70

4.4. The pseudocode of the shortest path computation procedure. ... 72

4.5. NoC partitioned into four partitions controlled by four LMUs. .. 73

4.6. Block diagram of the communication between two adjacent routers. 76

4.7. (a) Block diagram of the input buffer. (b) Block diagram of the output buffer. 77

4.8. Header flit description.. 77

4.9. CTG and optimized mapping of the first multimedia benchmark. .. 81

4.10. Comparison of the average latency achieved by the proposed adaptive routing, the

 traditional XY routing algorithm and DyXY algorithm for the first benchmark. 81

4.11. CTG and optimized mapping of the second multimedia benchmark. 82

4.12. Comparison of the average latency achieved by the proposed adaptive routing and the

 traditional XY routing algorithms for the second benchmark. .. 82

4.13. The mapping of the third benchmark. .. 84

4.14. Throughput depredation for different amount of fault injection. ... 84

5.1. Modified Y Chart diagram of the proposed fault tolerance design methodology for NoCs. . 94

xv

5.2. Illustration of the problem of mapping for regular mesh NoCs. Assigning application

 tasks t5, t6 as shown in the solution to the left, leads a higher minimal length path

 diversity which translates into better network reliability. .. 95

5.3. Block diagram of a reconfigurable link structure with spare wires and two segments. 97

5.4. Illustration of partitioning of a given NoC architecture into regions. Each region is

 managed by a local control unit (LCU). .. 102

5.5. Block diagram of the proposed adaptive routing algorithm for router14. 103

5.6. The 9 links used for routing data entered router14. .. 104

5.7. Illustration of the process of updating the routing tables. .. 106

xvi

LIST OF ABBREVIATIONS

NoC Networks on Chip

SoC Systems on Chip

TDDB Time Dependent Dielectric Breakdown

NBTI Negative Bias Temperature Instability

TC Thermal Cycling

EM Electromigration

SM Stress Migration

MC Monte Carlo

MTTF Mean Time To Failure

RAMP Reliability Aware MicroProcessor

SOFR Sum-Of-Failure-Rates

FaRBS Failure Rate Based Spice

MaCRO Maryland Circuit Reliability Oriented

CTG Communication Task Graph

MPSoC Multi-Processor Systems on Chip

1

CHAPTER 1. INTRODUCTION

 1.1. Motivation

 Continuous downscaling of integrated circuit technology has led to new reliability

challenges. The increased effects of aging mechanisms and processing faults have caused

performance degradation in sub-micron integrated circuits. Therefore, lifetime reliability has

become a fundamental challenge in the design of Systems on Chip (SoCs). To maintain

downscaling benefits, SoCs need to be designed with built in resilience techniques. More

importantly, reliability must become one of the main objectives across the system design process

[1.2]–[1.4]. The first step in doing so is to evaluate system reliability. Evaluation of reliability

can be a challenging task because it is affected by numerous factors including aging or wearout

mechanisms (e.g., time-dependent dielectric breakdown (TDDB) [1.5], negative bias temperature

instability (NBTI) [1.6], [1.7], electromigration (EM) [1.8], [1.9], thermal cycling (TC), and

stress migration (SM) [1.10]), process variations, dynamic power and thermal management,

workload conditions, and system architecture and configuration. The information acquired by

accurately evaluating the reliability of the different components of the system can enable system

designers to focus their efforts on failure mechanism specific techniques and on the reliability

crucial blocks.

 In this dissertation we focus on the reliability challenge that we are facing in design of sub-

micron integrated circuits with focus on the networks on chip (NoC) which forms the

communication structure for multiprocessor SoC (MPSoCs) [1.11], [1.12]. Fault tolerance is one

of the oldest resilience areas [1.13], [1.14] and relies on redundancy as a technique to

compensate for the random failure of components to improve reliability [1.15]. However the cost

associated with different fault tolerant techniques makes hardening SoC against all failure

2

mechanisms impractical. As a solution to this challenge we propose a new accurate reliability

evaluation mechanism that is capable of identifying the reliability crucial blocks and the failure

mechanism that has the most adverse effect on lifetime reliability of a given system. The

proposed algorithm can also be utilized in developing a lifetime aware floorplanning algorithm

that is capable of identifying the most reliable floorplan for the system.

 NoC reliability is a growing challenge in the design of MPSoCs [1.16]. Previous work has

focused mainly on processing elements or the computation units of MpSoCs. They address

reliability by employing fault resilient techniques based on error detection [1.17], failure

prediction [1.18], and error masking [1.19]. While in the field of computer networks there has

been a lot of work done on reliability, there have been only few recent attempts to estimate or

indirectly optimize NoC reliability. The organization in layers of NoCs resembles the open

system interconnection (OSI) protocol stack. Therefore, it is convenient to discuss fault tolerant

design techniques for NoCs in association with this organization. At the physical layer, wires

may be subject to delay variations [1.20], while routers may be impacted by single event upsets

(SEUs) [1.21]. The data link layer can provide the functional and procedural means to detect and

possibly correct errors that may occur in the physical layer, by employing error correcting codes

(ECCs) [1.22]–[1.24], data encoding [1.25], [1.26], and redundancy based reconfiguration [1.27].

At the network layer, reliability of the routing algorithms can be enhanced by routing multiple

copies of the same packet via multiple paths [1.28]–[1.31] or by adaptive re-routing [1.32]. The

system software provides an abstraction of the underlying hardware platform, which can be

leveraged by the application developer to effectively exploit the hardware’s capabilities via

reconfiguration [1.33].

3

 In this dissertation we propose a new multi layered fault-tolerance oriented design

methodology for NoCs as a hybrid solution composed of several reliability and fault tolerance

design techniques applied at the CAD tool, NoC architecture, and network-routing levels. It is

this layered approach, which combines the benefits of the proposed techniques at different levels

that improves NoC resilience significantly. Under our proposed approach it will take a very large

number of hard faults to render NoC inoperable. What makes the proposed method even more

powerful is that it is very cost effective in terms of area and power overheads.

1.2. Dissertation outline

Chapter 2 demonstrates a new circuit level vulnerability and reliability evaluation

methodology and its application in developing a lifetime aware floorplanning strategy. This

methodology is based on a divide and conquer approach, and enjoys the benefits of transistor

level accuracy and of block level efficiency. At the core of the lifetime estimation engine lies a

Monte Carlo algorithm which works with failure times modeled as Weibull and lognormal

distributions for several aging mechanisms including time dependent dielectric breakdown,

negative bias temperature instability, electromigration, thermal cycling, and stress migration.

Chapter 3 discusses a new approach to partition links in a NoC into multiple segments

and use spare wires at the level of each segment to address permanent errors due to

manufacturing or wearout defects. Because different segments of the spare wires address

different errors from different segments, the proposed reconfigurable link structure can tolerate a

larger number of errors with a reduced number of spare wires. Experimental results on area,

power consumption, delay, and reliability show that the optimal link is achieved when the link is

partitioned into two segments.

4

Chapter 4 presents a new fault-tolerant and congestion-aware adaptive routing algorithm

for NoCs. The proposed algorithm is based on the ball-and-string model and employs a

distributed approach based on partitioning of the regular NoC architecture into regions controlled

by local monitoring units. Experimental results based on an actual Verilog implementation

demonstrate that the proposed adaptive routing algorithm improves significantly the network

throughput.

Chapter 5 formulates the problem of energy consumption and reliability oriented

application mapping on regular Network-on-Chip topologies and presents a multi layered

approach to design fault resilient NoC. Simulation results demonstrate that reliability can be

improved significantly without sacrificing much of energy consumption.

Chapter 6 provides a summary, conclusion, and outlook based on this dissertation.

1.3. References

[1.1] S. Borkar, “Designing reliable systems from unreliable components: the challenges of

transistor variability and degradation,” IEEE Micro, vol. 25, no. 6, pp. 10-16, Nov. 2005.

[1.2] V. Raghunathan, M.B. Srivastava, and R.K. Gupta, “A survey of techniques for energy

efficient on-chip communication,” ACM/IEEE Design Automation Conference (DAC), 2003.

[1.3] A. DeHon, H.M. Quinn, and N.P. Carter, “Vision for cross-layer optimization to address

the dual challenges of energy and reliability,” ACM/IEEE Design, Automation and Test in

Europe Conference (DATE), 2010.

[1.4] S. Mitra, K. Brelsford, and P.N. Sanda, “Cross-layer resilience challenges: metrics and

optimization,” ACM/IEEE Design, Automation and Test in Europe Conference (DATE), 2010.

[1.5] J.H. Stathis, “Reliability limits for the gate insulator in CMOS technology,” IBM Journal of

Research and Development, vol. 46, 2002.

5

[1.6] D.K. Schroder and J.A. Babcock, “Negative bias temperature instability: road to cross in

deep submicron silicon semiconductor manufacturing,” Journal of Applied Physics, vol. 94, no.

1, pp. 1-18, July 2003.

[1.7] R. Vattikonda, W. Wang, and Y. Cao, “Modeling and minimization of PMOS NBTI effect

for robust nanometer design,” ACM/IEEE Design Automation Conference (DAC), 2006.

[1.8] S.M. Alam, C.L. Gan, D.E. Troxel, and C.V. Thompson, “Circuit-level reliability analysis

of Cu interconnects,” International Symposium on Quality Electronics Design (ISQED), 2004.

[1.9] Z. Lu, J. Lach, M.R. Stan, and K. Skadron, “Temperature-aware modeling and banking of

IC lifetime reliability,” IEEE Micro, vol. 25, no. 6, pp. 40-49, Nov./Dec. 2005.

[1.10] Failure mechanisms and models for semiconductor devices, JEDEC Publication JEP122E,

2009.

[1.11] W.J. Dally, B.P. Towles, “Principles and Practices of Interconnection Networks,” Morgan

Kaufmann, 2004.

[1.12] G. De Micheli and L. Benini, “Networks on Chip,” Morgan Kaufmann, 2006.

 [1.13] J. Von Neumann, “Probabilistic logic and the synthesis of reliable organizms from

unreliable components,” Automata Studies, C.E. Shannon and J. McCarthy Eds., Princeton Univ.

Press, 1956.

[1.14] E. Moore and C.E. Shannon, “Reliable circuits using less reliable relays,” Journal of the

Franklin Institute, 1956.

[1.15] J.P.G. Sterbenz, D. Hutchison, E. Cetinkaya, A. Jabbar, J.P. Rohrer, M. Scholler, and P.

Smith, “Resilience and survivability in communication networks: strategies, principles, and

survey of disciplines,” Computer Networks, 2010.

6

[1.16] J.D. Owens, W.J. Dally, R. Ho, D.N. Jayasimha, S.W. Keckler, and L.S. Peh, “Research

challenges for on-chip interconnection networks,” IEEE Micro, vol. 27, no. 5, Sept.-Oct. 2007.

[1.17] S. Feng, S. Gupta, A. Ansari, and S. Mahlke, “Shoestring: probabilistic soft error

reliability on the cheap,” ASPLOS, 2010.

[1.18] Y. Li, Y.M. Kim, E. Mintarno, D.S. Gardner, and S. Mitra, “Overcoming early-life failure

and aging for robust systems,” IEEE Design & Test of Computers, 2009.

[1.19] M. Choudhury, V. Chandra, K. Mohanram, R. Aitken, “TIMBER: time borrowing and

error relaying for online timing error resilience,” ACM/IEEE Design, Automation and Test in

Europe Conference (DATE), 2010.

[1.20] C. Hernandez, F. Silla, J. Duato, “A methodology for the characterization of process

variation in NoC links,” ACM/IEEE Design, Automation and Test in Europe Conference

(DATE), 2010.

[1.21] A. Ejlali, B.M. Al-Hashimi, P. Rosinger, and S.G. Miremadi, “Joint consideration of fault-

tolerance, energy-efficiency and performance in on-chip network,” ACM/IEEE Design,

Automation and Test in Europe Conference (DATE), 2007.

[1.22] H. Zimmer and A. Jantsch, “A fault model notation and error control scheme for switch-

to-switch buses in a Network-on-Chip,” International Conference on, Hardware/Software

Codesign and System Synthesis, 2003.

[1.23] S.R. Sridhara and N.R. Shanbhag, “Coding for system-on-chip networks: a unified

framework,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 13, no. 6,

June 2005.

7

[1.24] S. Murali, T. Theocharides, N. Vijaykrishan, M.J. Irwin, L. Benini, and G. De Micheli,

“Analysis of error recovery schemes for Networks on Chips,” IEEE Design &Test of Computers,

2005.

[1.25] D. Bertozzi, L. Benini, and G. De Micheli, “Error control schemes for on-chip

communication links: the energy-reliability trade-off,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 24, no. 6, June 2005.

[1.26] R. Singhal, G. Choi, and R. Mahapatra, “Information theoretic approach to address delay

and reliability in long onchip interconnects,” ACM/IEEE EEE/ACM International Conference on

Computer-Aided Design, 2006.

[1.27] T. Lehtonen, D. Wolpert, P. Liljeberg, J. Plosila, and P. Ampadu, “Self-adaptive system

for addressing permanent errors in on-chip interconnects,” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 18, no. 4, 2010.

[1.28] M. Pirretti, G.M. Link, R.R. Brooks, N. Vijaykrishnan, M.T. Kandemir, and M.J. Irwin,

“Fault tolerant algorithms for Network-On-Chip interconnect,” IEEE Computer society Annual

Symposium on VLSI, 2004.

[1.29] S. Manolache, P. Eles, and Z. Peng, “Fault and energy-aware communication mapping

with guaranteed latency for applications implemented on NoC,” ACM/IEEE Design Automation

Conference (DAC), 2005.

[1.30] S. Murali, D. Atienza, L. Benini, and G. De Micheli, “A multi-path routing strategy with

guaranteed in-order packet delivery and fault-tolerance for networks on chip,” ACM/IEEE

Design, Automation and Test in Europe Conference (DATE), 2006.

[1.31] A. Patooghy and S.G. Miremadi, “Complement routing: a methodology to design reliable

routing algorithm for network on chips,” Microprocessors and Microsystems, 2010.

8

[1.32] A.D. Choudhury, G. Palermo, C. Silvano, and V. Zaccaria, “Yield enhancement by robust

application-specific mapping on Network-on-Chips,” International Workshop on Network on

Chip Architectures, 2009.

[1.33] L. Zhang, Y. Yu, J. Dong, Y. Han, S. Ren, and X. Li, “Performance asymmetry-aware

topology virtualization for defect-tolerant NoC-based many-core processors,” ACM/IEEE

Design, Automation and Test in Europe Conference (DATE), 2010.

9

CHAPTER 2. A NEW RELIABILITY EVALUATION METHODOLOGY WITH

APPLICATION TO LIFETIME ORIENTED CIRCUIT DESIGN

 This paper was presented in IEEE transactions on device and materials reliability, vol. 13,

no. 1, March 2013. The authors of the paper are Hamed Sajjadi Kia and Cristinel Ababei. The

preliminary results of this research were published in a paper titled: A new reliability evaluation

methodology and its application to network-on-chip routers, in IEEE/IFIP international

conference on VLSI and System-on-Chip (VLSI-SoC), 2012.

2.1. Abstract

We propose a new circuit-level vulnerability and reliability evaluation methodology and

utilize it to develop a lifetime aware floorplanning strategy. Our work is motivated by

increasingly adverse aging failure mechanisms, which have made reliability a growing

fundamental challenge in the design of integrated circuits. Because the proposed methodology is

based on a divide-and-conquer approach, it enjoys the benefits of transistor level accuracy and of

block-level efficiency. At the core of the lifetime estimation engine lies a Monte Carlo algorithm

which works with failure times modeled as Weibull and lognormal distributions for several aging

mechanisms including time-dependent dielectric breakdown, negative bias temperature

instability, electromigration, thermal cycling, and stress migration. To demonstrate the value of

the proposed reliability evaluation methodology and floorplanning strategy, we apply them to a

network-on-chip router design example. The new floorplanning approach is able to find

floorplans with up to 15% difference in the lifetime of the router design. In addition, the

proposed reliability evaluation methodology identifies the routing computation and virtual

channel allocation units as the most vulnerable subblocks of the design. Such information can be

10

very useful to designers to predict circuit and system mean time to failure and to focus on cost-

effective design techniques targeted at specific parts of the design to improve its lifetime.

2.2. Introduction

Reliability has become a growing fundamental challenge in the design of integrated

circuits due to increasingly adverse aging failure mechanisms that can cause performance

degradation and eventual device and system failure [2.1]. To maintain downscaling benefits,

increasingly complex integrated circuits must be designed with built-in resilience techniques

[2.2]–[2.4]. To achieve that, one of the main difficulties is to evaluate reliability. Evaluation of

reliability is a challenging task because reliability is affected by numerous factors including

aging or wearout mechanisms [2.5] (e.g., time-dependent dielectric breakdown (TDDB) [2.6],

negative bias temperature instability (NBTI) [2.7]–[2.9], electromigration (EM) [2.10], [2.11],

thermal cycling (TC), and stress migration (SM) [2.12]), process variations, dynamic power and

thermal management, workload conditions, and system architecture and configuration.

2.2.1. Related work

2.2.1.1. Reliability evaluation techniques

While there has been significant work carried out to estimate reliability [2.14]–[2.24], we

discuss next two approaches that are related to our work. An extensive review of previous

reliability simulation tools can be found in [2.25]. The RAMP approach [2.15] models the mean

time to failure (MTTF) of a processor microarchitecture as a function of temperature related

failure rates of individual structures on chip. It divides the processor into several discrete

structures (e.g., ALU, register files, etc) and applies analytical models to each structure. Then, it

combines the structure level MTTFs to compute the overall MTTF of the entire processor

11

assumed as a series failure system. Because the lifetime distributions of failure mechanisms are

assumed to be exponential [2.16], the reliability is calculated by applying the sum-of-failure-

rates (SOFR) model. This approach is not realistic because failure rates of units increase with

time due to aging. To address this limitation of the SOFR model, RAMP 2.0 [2.17], [2.26] uses

lognormal distributions, which are harder to deal with analytically. One of the main limitations

of the RAMP approach as an architecture level approach is its accuracy. In addition, it may

estimate equal MTTFs for blocks of different sizes but with activity factors that cancel out the

area proportionality factor. Another more recent class of simulation based reliability evaluation

approaches are based on Spice simulations. Failure rate based Spice (FaRBS) [2.27] and

Maryland circuit reliability oriented (MaCRO) [2.29], [2.30] are circuit-level reliability

simulation methods. Both of these methods utilize degradation models for TDDB, NBTI, and hot

carrier degradation (HCD). They are based on a series of accelerated lifetime models and failure

equivalent circuit models for these wearout mechanisms [2.25], [2.32]. They employ Spice to

calculate electrical parameters of fresh and degraded devices and to predict their degradation or

failure from these parameters [2.27]. The main advantage of this class of simulation methods is

the device level granularity that enables reliability analysis at transistor level to identify the most

vulnerable transistors. There are some issues related to the Spice based reliability simulation.

These approaches do not consider the layout of the system and simulations are done under worst

case temperature scenarios, which is not realistic. Besides, Spice circuit simulations tend to take

long time especially when done for large circuits. In addition, both methods (FaRBS and

MaCRO) are developed under the assumption that failure rate is constant. As discussed above

this assumption is inaccurate.

12

2.2.1.2. Floorplanning

Floorplanning is an important step during the design of integrated circuits. Because the

relative locations of different subblocks are decided during floorplanning, the overall temperature

profile of the chip is directly affected by the quality of the floorplanning step. As such, there has

been significant work done on the problem of thermal aware floorplanning [2.33]–[2.39]. Even

though reliability is directly related to temperature, it has been significantly less investigated.

Nevertheless, a reliability aware voltage island partitioning and floorplanning algorithm for SoC

is reported in [2.40]. The algorithm considers the sensitivity of the SoC to soft errors and does

not address aging mechanisms. The authors of [2.41] define reliability in terms of supply voltage

noise margin and propose a floorplanning algorithm that distributes the thermal profile evenly

and reduces the power supply noise. The effect of temperature on the probability of errors in

SRAM memories is discussed in [2.42], where a leakage aware floorplanner is introduced.

Currently, there is no aging failure mechanisms aware floorplanning method reported in the

literature.

2.2.2. Contribution

To address the limitations of previous reliability evaluation methods, we propose a new

circuit-level reliability evaluation methodology. To this end, our main contribution is as follows:

1) We propose and implement a new divide-and-conquer-based reliability evaluation

methodology. Its core engine employs a Monte Carlo algorithm, which works with failure times

modeled realistically as Weibull and lognormal distributions for five different aging failure

mechanisms: TDDB, NBTI, EM, TC, and SM. Hence, our results are more accurate and realistic

compared to previous works that are based on the assumption that lifetime distributions are

exponential. 2) We utilize the proposed reliability evaluation methodology to develop a new

13

lifetime aware floorplanning strategy that is capable of identifying the most reliable floorplan for

a given design. We consider this an essential step toward a design approach where reliability is

also a primary objective. To demonstrate the usefulness of the proposed algorithms, we apply

them to an NoC router as a design example. We analyze its reliability, identify its most

vulnerable subblocks, and generate the most reliable floorplan for it.

2.3. Lifetime failure models

2.3.1. Importance of lifetime distribution of failure mechanisms

Many proposed lifetime reliability models assume a uniform device density on the chip

and an identical vulnerability of devices to failure mechanisms [2.14]. The lifetime distributions

of failure mechanisms are usually assumed to be exponential [2.15], [2.16], [2.18], [2.26], [2.43].

As discussed in the previous section, this allows system-level reliability to be calculated by

applying the sum-of-failure-rates (SOFR) model. However, this approach is not realistic because

failure rates of units increase with time due to aging. To address this issue and to develop an

accurate reliability model, more general lifetime distributions (e.g., Weibull and lognormal) must

be utilized. On the other hand, when Weibull or lognormal distributions are utilized the

prediction of reliability becomes more difficult and therefore Monte Carlo simulations must be

employed [2.16], [2.26], [2.43]. In this paper, we adopt Weibull distribution modeling for

TDDB, NBTI, TC, and SM and lognormal distribution modeling for EM because these

distributions have been found to best fit the corresponding wearout mechanisms [2.12].

2.3.2. Time dependent dielectric breakdown (TDDB)

Time-dependent dielectric breakdown is caused by formation of a conducting path

through the gate oxide to substrate due to electron tunneling current. TDDB has become

14

increasingly severe as the thickness of the gate oxide decreased due to continuous technology

downscaling. Under the same stress conditions, devices can feature directly hard breakdown or

several soft breakdown events before the final hard breakdown [2.31]. While in this paper we

utilize a recently proposed model [2.32], the proposed reliability evaluation methodology is

flexible and can be changed by replacing (1) with different models as they are discovered.

2.3.2.1. TDDB lifetime model

The model for MTTFTDDB is described by the following expression [2.32]:

(2.1)

where A is the transistor’s gate oxide area, β is the Weibull slope parameter, F is cumulative

failure percentile, T is temperature, and Vgs is gate source voltage of the MOSFET. Model fitting

parameters a, b, c, d, β, and F are determined from experimental data. In this paper, we utilize

typical values of these parameters [2.32]: β = 1.2, F = 0.01%, a = −78, b = 0.081, c = 8.81× ,

and d = −7.75× .

2.3.3. Negative bias temperature instability (NBTI)

Negative bias temperature instability mainly affects PFETs, when they are stressed at

large negative gate voltages and high temperatures. NBTI manifests as a gradual increase in the

threshold voltage and consequent decrease in drain current and transconductance. The

degradation exhibits logarithmic dependence on time. This effect has become more severe with

technology downscaling, with the increase of the electric field applied to the gate oxide, and with

the decrease of operating voltages.

15

2.3.3.1. NBTI lifetime model

The model for MTTFNBTI is described by the following expression [2.28], [2.29]:

(

)

(

)

(2.2)

where k is Boltzmann’s constant, and E1, E2 are material and oxide electric field dependent

parameters. In addition, E2 is a voltage dependent parameter and therefore it depends on the

operation of circuit. Values of E1 and E2 are given by:

E1 = Eit – Eg + EF (2.3)

E2 = Efx – EF +

(2.4)

where Eit and Efx are the trap energy level at the oxide/Si interface and the trap energy in the

oxide, respectively. EF is Fermi energy, is a constant, Eox is the applied electric field across the

gate and can be computed as follows [2.32]:

(2.5)

2.3.4. Electromigration (EM)

Electromigration is generally considered to be the result of momentum transfer from the

electrons, which move in the applied electric field, to the ions which make up the lattice of the

interconnect material. As a result, ions get dislocated from their original positions and migrate

along the interconnect. Over time this phenomenon knocks a significant number of atoms far

from their original positions. Failure results either from voids growing over the entire line width

that cause breaking of the line or extrusions or hillocks that cause short circuits to neighboring

lines.

16

2.3.4.1. EM lifetime model

EM has an exponential dependence on temperature. The model for MTTFEM is based on

Black’s equation [2.5], [2.12] and is described by the expression below. This model is widely

adopted and studied for a long time [2.13]. Its limitations depend on the probability distributions

that one assumes for this failure mechanism; it is widely accepted that a lognormal distribution is

more realistic [2.12]:

(2.6)

where J is the current density in the wire, Jcrit is the critical current density required for

electromigration, EaEM is the activation energy for electromigration, k is the Boltzmann’s

constant, and T is the absolute temperature in Kelvin. n and EaEM are constants. We use 1.1 for n

and 0.9 for EaEM as modeled in RAMP. Notice that J is usually 2 orders of magnitude higher than

Jcrit in interconnects; hence, we approximate (J − Jcrit J) [2.12], [2.15].

2.3.5. Thermal cycling (TC)

Degradation due to each temperature cycle accumulates in time and can potentially lead

to permanent damage. The effect is mostly seen in the package and die interface. The package is

affected with two types of thermal cycles: (1) Large thermal cycles that occur a few times a day

like powering up and down or going into stand-by mode. (2) Small cycles that occur a few times

a second. These are due to changes in workload behavior and context switching. The effect of

small thermal cycles at high frequencies has not been well studied by the packaging community,

and valid models are not available. Hence, we do not consider models for the reliability impact

of small thermal cycles, which is a limitation of the model that we adopt below.

17

2.3.5.1. TC lifetime model

The model for MTTFTC is described by the following expression [2.15]:

(2.7)

where T is the average temperature of the structure, and Tambient is the ambient temperature.

Notice that (T − Tambient) models the thermal cycle. q is Coffin-Manson exponent, and for the

package it is equal to 2.35 [2.15].

2.3.6. Stress migration (SM)

Mechanical stress because of different thermal expansion rates of different materials in

devices and circuits can lead to stress migration. This mechanical stress is proportional to the

change in the temperature which is measured with respect to the stress free temperature of the

metal. In general, SM is a phenomenon where the metal atoms in the interconnects migrate. It

can lead to open circuit, or increased resistance.

2.3.6.1. SM lifetime model

The model for MTTFSM is described by the following expression [2.15]:

(2.8)

where T is the operating temperature, T0 is the stress free temperature, n and EaSM are material

dependent constants. We utilize a value of 2 for n, 0.9 for EaSM, and 500K for T0 as advised in

[2.5], [2.29].

2.4. Proposed reliability evaluation methodology

The block diagram with the flow chart of the proposed reliability evaluation methodology

is shown in Fig. 2.1 while the corresponding pseudocode is shown in Fig. 2.2. The salient

features of our methodology are as follows. First, in order to deal with complexity due to circuit

18

size we adopt a divide and conquer approach. The hierarchy of the structure of a design is

partitioned to zoom-in to lower levels where the analysis is tractable within reasonable

computational time. Second, similar to MaCRO method [2.29], [2.30], we employ subblock level

Spice simulations to derive transistor operating parameters. However, we conduct Spice

simulations at realistic temperatures (different subblocks have different temperatures) rather than

at a single worst-case temperature for the entire system as it is done pessimistically in [2.29],

[2.30]. Third, we model failure times using Weibull and lognormal distributions that have been

found to better fit experimental data [2.12]. Fourth, the block level reliability (as MTTF) is

estimated via Monte Carlo simulations, which capture the combined effects of all the aging

mechanisms considered. This process is implemented such that the design hierarchy is zoomed-

out back to upper levels. Finally, as it will be discussed in the next section the proposed method

has the ability to identify the most vulnerable sub-blocks from a reliability point of view.

Figure 2.1. Top level block diagram of the proposed reliability evaluation methodology.

19

Figure 2.2. Pseudocode description of the proposed reliability evaluation methodology.

The output of the proposed reliability evaluation methodology consists of the actual

estimate of the time to failure1 or MTTF of the design (line number 12 in Fig. 2.2) and

vulnerabilities of each individual sub-block as percentage of transistors with average failure time

shorter than the selected threshold (discussed in the next subsection). MTTF is estimated using a

MIN MAX type of analysis similar to [2.16] in order to be able to handle redundant sub-blocks

that may be introduced for improving reliability via, for example, redundancy based fault

tolerance techniques.

Because of the hierarchical approach and of the Spice level simulations, the proposed

reliability evaluation methodology enjoys the benefits of both RAMP like and Spice simulation

based reliability evaluation approaches discussed in the first section. In the next subsections, we

describe the two Monte Carlo (MC) algorithms from Fig. 2.2. In the case of TDDB and NBTI

failure mechanisms, the first MC algorithm works at the device level where operating

temperatures and voltages are utilized. The remaining failure mechanisms, EM, TC, and SM, are

20

modeled at the sub-block level in the second MC algorithm where only operating temperatures

are utilized.

2.4.1. Reliability evaluation: TDDB and NBTI failure mechanisms

The block diagram that illustrates the main steps of the proposed reliability evaluation

methodology to address TDDB and NBTI failure mechanisms is shown in Fig. 2.3. Additional

details are provided by the pseudocode description from Fig. 2.4. Following the flow chart from

Fig. 2.3, the main steps of the proposed reliability evaluation methodology are as follows:

Step 1: We start from a given hierarchical description of the design under consideration.

This description can be in any hardware description language such as VHDL or Verilog. In

addition, transistor and technology parameters are assumed to be given based on the technology

node in which the design is to be fabricated.

Figure 2.3. Flow chart of the proposed reliability evaluation methodology for TDDB and NBTI

failure mechanisms.

21

Figure 2.4. Pseudocode of the device level Monte Carlo algorithm, Monte_Carlo_1() from Fig.

2.3.

Step 2: The design is synthesized, placed, and routed using Cadence tools [2.44], but any

other CAD tool can be utilized. The resulting layout represents the block level floorplan, which

is divided into individual structures or sub-blocks based on the initial structural description of the

design. In this way, we basically obtain for each sub-block its layout, location, and aspect ratio.

In addition, power consumption estimates are also generated using Cadence tools.

Step 3: The floorplan and power estimates are then fed into HotSpot [2.45]. HotSpot is an

accurate and fast thermal model based on an equivalent circuit of thermal resistances and

capacitances that correspond to microarchitecture blocks. The output of the HotSpot simulation

is a list with temperatures of each sub-block. Our approach addresses one of the limitations of

MaCRO like methods [2.29], [2.30]. As mentioned earlier, instead of doing worst-case

22

temperature simulations we work with the actual operating temperature for each sub-block. In

addition, we utilize Weibull and lognormal rather than exponential distributions. Therefore,

reliability of each sub-block can be evaluated more accurately.

Step 4: These temperatures are utilized together with circuit netlists generated from

within Cadence tools to perform sub-block level Spice simulations. These simulations provide us

with the transistor operating parameters necessary to be plugged into the equations modeling the

wearout mechanisms described in Section 2.3. It is important to note that the level of design

hierarchy at which this is done directly impacts the computational runtime, which increases with

sub-block-circuit size.

Step 5: At this stage we have everything that is needed by the lifetime failure models

described by equations 1 and 2 (or equations 2.6, 2.7, and 2.8 utilized by the algorithm described

in the next subsection). At the core of the proposed methodology we employ a Monte Carlo

simulation algorithm (see Figure 2.4) implemented and run in Matlab [2.46]. Our technique is

inspired from the RAMP method [2.15], [2.17], [2.26] but executed at the sub-block level where

the elementary unit is the device or transistor.

The MC algorithm proceeds with the following main steps (1) For each failure

mechanism run N = simulations: (a) for each transistor, generate failure time samples from

the corresponding distribution and (b) use MIN analysis of these times by assuming the sub-

block as a series system to calculate the time to failure

 of simulation j = 1, ...,N. (2)

Calculate the overall sub-block time to failure for the current failure mechanism as =

 ∑

. (3) Calculate the value of the overall sub-block’s time to failure as the minimum

among the failure times due to each failure mechanism.

23

In our experiments, we found that in order to better differentiate between sub-blocks one

only needs to focus on the most vulnerable transistors in a given sub-block. Hence, we introduce

a threshold that helps to identify transistors whose lifetime samples are smaller than this

threshold. As an indicator of how vulnerable a sub-block is, we calculate the percentage of

transistors whose lifetime sample is smaller than the selected threshold. This is illustrated in the

pseudocode description of the algorithm presented in Fig. 2.4. The threshold value is selected

during the reliability qualification process as a function of the desired expected lifetime. An

example is provided in the simulation results section. Computational runtime of the methodology

described in Fig. 2.3 is in the order of hours for the design example studied later in the

simulation results section. This computational runtime is mainly due to the Spice simulations and

does not include the time spent on coding in Verilog the structural description of the design or

the synthesis step with Cadence tools.

2.4.2. Reliability evaluation: EM, SM, and TC failure mechanisms

The block diagram that illustrates the main steps of the proposed reliability evaluation

methodology to address EM, SM, and TC failure mechanisms is shown in Fig. 2.5 and is similar

to that in Fig. 3. The main difference is that here the Monte Carlo analysis is done at the sub-

block level as in the RAMP approach [2.16]. Therefore, only the HotSpot thermal simulator is

utilized to estimate the operating temperature of each sub-block. Details of the MC simulation,

which bears similarities that from Fig. 2.4, are provided by the pseudocode description from Fig.

2.6. Because in this case we work at sub-block level and do not perform Spice simulations, the

computational runtime of the methodology described in Fig. 2.5 is in the order of minutes for the

design example studied later in the simulation results section.

24

Figure 2.5. Flow chart of the proposed reliability evaluation methodology for EM, TC, and SM

failure mechanisms.

2.4.3. Discussion

The information acquired from the proposed reliability evaluation methodology described

in Fig. 2.2 can be useful to circuit and system designers to develop fault tolerant or robust

circuits and systems. Armed with information about what are the reliability critical sub-blocks

and transistors, designers can concentrate their design efforts [2.47], [2.48] with wearout

mechanism specific techniques only on those, thereby saving area and power. In the next

sections we provide two examples of scenarios where the proposed reliability evaluation

methodology is utilized to search for lifetime aware floorplans and to investigate NoC routers.

25

Figure 2.6. Pseudocode of the sub-block level Monte Carlo algorithm, Monte_Carlo_2() from

Fig. 2.5.

2.5. Lifetime aware floorplanning

As an example on how the proposed reliability evaluation methodology can be utilized,

we propose a lifetime aware floorplanning strategy. The objective of the proposed floorplanning

strategy is to seek a floorplan that offers the longest lifetime for the design it represents, aside

from optimizing traditional objectives such as total wire length or area. Because the lifetime

estimation procedure (described by the algorithm from Fig. 2.2) has a computational runtime that

makes it impractical to be included within the inner loop of the simulated annealing (SA)

optimization engine (which may have hundreds or thousands of iterations), we adopt a heuristic

approach described in the pseudocode from Fig. 2.7.

The idea is to utilize an existing floorplanning algorithm and run it multiple times starting

from different initial conditions and then retain for lifetime evaluation only a smaller number of

final floorplans. The following steps describe the proposed lifetime aware floorplanning strategy:

Step 1: Start from a given HDL description of the target design and utilize Cadence tools

(though any other available tool can be utilized) to generate an initial layout.

26

Figure 2.7. Pseudocode of the proposed lifetime aware floorplanning strategy.

Step 2: Run traditional floorplanner a large number of times, say N = 100. We utilize an

existing simulated annealing floorplanning algorithm, which works with a B*Tree representation

of the design and with a traditional cost function: [2.49].

Initial conditions are set by resetting with a different seed the internal random number generator

utilized to generate random sub-block swaps during the annealing process. In this way, during

each run, the floorplanning algorithm arrives to a different final floorplan whose quality thus

depends on the initial seed and the selected weight. During this step, the best − according to the

traditional cost function − say M = 5 floorplans are recorded for processing in the next step. Each

of these recorded M floorplans have already satisfactory wirelength and area.

Step 3: Estimate lifetime of each of the best M floorplans recorded in the previous step

using the proposed reliability evaluation methodology from Section 2.4. Record and finally

return the floorplan with the longest lifetime.

27

Given that the B*Tree floorplanner is very efficient and by keeping M reasonable small,

the proposed lifetime aware floorplanning strategy is an effective approach to generate a

floorplan solution that is a good tradeoff between wirelength, area, and reliability. The proposed

floorplanning strategy is utilized in the simulation results presented in the next section. Finally,

we note that one may want for the floorplanning process to be done such that certain constraints

including fixed location or relative position among sub-blocks are satisfied. In such cases, one

only needs to replace in the proposed strategy the floorplanning algorithm with another that is

capable of handling such constraints.

2.6. Simulation results

In this section, we demonstrate the use of the proposed reliability evaluation

methodology and the lifetime aware floorplanning strategy on a Network-on-Chip (NoC) router

as a design example. We select the router as our target design because it is the key component of

an NoC, which has become the dominant communication paradigm in today’s SoCs to cope with

the ever increasing complexity of integrated circuits. In addition, the reliability of NoCs has been

studied significantly less compared to that of cores. Thus, our objective is to analyze the

microarchitecture of a typical NoC router to identify its most vulnerable components and to

generate its most reliable floorplan. While our discussion focuses on an NoC router, the entire

analysis is applicable to any other block.

2.6.1. Router architecture

We focus our attention on the popular pipelined router architecture [2.50] whose block

diagram is shown in Fig. 2.8. The main components of this architecture include: routing

computation (RC), virtual channel allocation (VA), switch allocation (SA), crossbar switch,

input ports, and output ports. We first code the router’s structural description in Verilog.

28

Specifics of this description include: 5 input and 5 output ports, 2 virtual channels per port, 4 sets

of registers for each virtual channel of each port, and 16 bites wide links. The Verilog description

is utilized as input to the proposed reliability evaluation methodology described in Fig. 2.2 as

well as the proposed lifetime aware floorplanning strategy from Fig. 2.7.

Figure 2.8. NoC router architecture.

2.6.2. Technology node and set-up parameters

We utilize Nangate 45nm Open Cell Library [2.51] within Cadence tools to synthesize

and generate the layout of the router. In addition, Cadence tools generate Spice netlists and a list

of power consumptions for each sub-block of the router. The traditional floorplanner utilized in

the floorplanning strategy from Fig. 2.7 is set to be run for N = 100 times and M = 5 best

floorplans are recorded. The power consumption values and the floorplans are utilized by

HotSpot to estimate temperatures of the all sub-blocks. As mentioned earlier we partition the

router into the following sub-blocks: RC, VA, SA, crossbar, and input and output ports. Spice

simulations of all sub-block netlists are done at-temperature (as found by HotSpot) to estimate

device operating parameters that are utilized inside the algorithm from Fig. 2.4.

29

The Monte Carlo algorithms introduced in Section 2.4 require the generation of lifetime

samples (i.e., MTTFs) for devices (Fig. 2.4) or sub-blocks (Fig. 2.6) from corresponding Weibull

or lognormal distributions as modeled in Section 2.3. To do that we utilize Matlab built-in

functions. Because in the case of the Weibull distribution, we utilize a value for the shape

parameter = 1.2 [2.18] and have available the mean value MTTF as computed by the equations

from Section 2.3, we need first to compute the scale parameter using the equation below to be

able to use Matlab built-in functions.

 (

)

(2.9)

where Г(·) is the Gamma function and MTTF is the mean time to failure of the device/sub-block

computed by equations 2.1, 2.2, 2.7, and 2.8. Because the router architecture has no redundancy

(no fault tolerance techniques built-in) the overall lifetime is estimated like for a series system. In

other words, the MIN MAX analysis from line number 12 of the algorithm from Fig. 2.2 needs

only to take the minimum among all sub-blocks’ MTTFs.

2.6.3. Results

2.6.3.1. Lifetime aware floorplanning and reliability evaluation

Once the layout of the router is generated with the Cadence tools we run the lifetime

aware floorplanning algorithm described in Fig. 2.7. The best M = 5 floorplans (the one which

turns out with the best MTTF is shown in Fig. 2.9) are recorded for further reliability evaluation,

which requires also thermal simulation with HotSpot. As we plan to make publicly available the

proposed algorithms, the whole methodology is automated and can be run with a simple Perl

script.

30

Figure 2.9. The best floorplan of the NoC router found by the lifetime aware floorplanning

strategy described in Fig. 2.7.

Once the M = 5 best floorplans are found out, we then evaluate each of them to estimate

their time to failure. To do that, we utilize the reliability evaluation methodology described in

Fig. 2.2. The Monte Carlo algorithms on lines 10 and 11 of Fig. 2.2 and detailed in Fig. 2.4 and

Fig. 2.6 estimate the mean times to failure of all sub-blocks for each of the five best floorplans.

These MTTFs are reported in Fig. 2.10. We observe that while the MTTF of each block exhibits

a sizable variation among all five floorplans, the relative comparison of MTTFs of different sub-

blocks of a given floorplan stays relatively the same. Overall MTTFs of all five floorplans are

plotted in Fig. 2.10(f). Note that the first floorplan has the longest lifetime and therefore it is

identified as the most reliable floorplan for the studied NoC router. Fig. 2.11 shows with how

much the first floorplan is better from an expected lifetime perspective compared to the other

four floorplans. This figure demonstrates the value of the proposed lifetime aware floorplanning

strategy.

In this example, the expected lifetime of the first floorplan is with 15% longer than the

expected lifetime of the fifth floorplan.

31

(a)

(b)

Figure 2.10. Mean time to failure of individual sub-blocks for a) TDDB, b) NBTI, c) EM, d) TC,

and e) SM cases. Each of the five bars in each cluster corresponds to each of the five best

floorplans. f) Overall MTTF of each of the five best floorplans.

32

(c)

(d)

Figure 2.10. Mean time to failure of individual sub-blocks for a) TDDB, b) NBTI, c) EM, d) TC,

and e) SM cases (continued). Each of the five bars in each cluster corresponds to each of the five

best floorplans. f) Overall MTTF of each of the five best floorplans.

33

(e)

(f)

Figure 2.10. Mean time to failure of individual sub-blocks for a) TDDB, b) NBTI, c) EM, d) TC,

and e) SM cases (continued). Each of the five bars in each cluster corresponds to each of the five

best floorplans. f) Overall MTTF of each of the five best floorplans.

34

Figure 2.11. Illustration of the amount of the improvement in the expected lifetime of the first

floorplan compared to the other 4 floorplans.

2.6.3.2. Vulnerability analysis

Note that the reliability evaluation methodology described in Fig. 2.3 provides us with

sub-block vulnerabilities (computed as percentages of transistors with lifetime shorter than the

selected threshold) to TDDB and NBTI failure mechanisms. This information basically helps us

identify the most vulnerable sub-blocks in each floorplan. Although such information is not

utilized by the lifetime aware floorplanning algorithm, it can prove very useful to system

designers who want to develop effective (targeted) resilience techniques. This is the subject of

our discussion in this section.

The proposed reliability evaluation methodology provides two types of vulnerability

analysis. The first method operates at sub-block level and takes into account all failure

mechanisms described in Section 2.3. It checks estimated MTTFs of all sub-blocks for different

failure mechanisms and identifies the sub-block with the smallest MTTF and its corresponding

failure mechanism. For example, applying this method to the case of the first floorplan from Fig.

35

2.9, the most vulnerable sub-block is output port 5 and the corresponding failure mechanism is

thermal cycling (TC).

The second method of vulnerability analysis operates at device level and only considers

TDDB and NBTI failure mechanisms. This method is described in detail in Fig. 2.4. It requires

first a threshold value, which must be defined by the system designer. This threshold reflects the

time until when the system designer expects/hopes that the system will operate correctly without

any failure. The main idea of the second vulnerability analysis is to identify and report the sub-

block that has the highest percentage of transistors with MTTF less than the threshold value. In

our example of the NoC router, we select the threshold value to be 8 years. The percentage of

vulnerable transistors to TDDB and NBTI failure mechanisms in each sub-block is shown in Fig.

2.12. We observe that RC and VA sub-blocks contain the highest percentages of transistors with

lifetime shorter than the selected threshold despite the fact that their area is smaller compared to

for example the area of input registers. This can be explained by the fact that RC and VA

components experience higher switching activities compared to the other router components,

which in turn leads to higher temperatures. Note that this information could not be obtained with

RAMP like reliability evaluation approaches.

It is well known that typically, resilience techniques to harden a system against different

failure mechanisms require some form of redundancy. Such redundancy consumes valuable area

and power resources, especially for designs with tight area and power budgets. As such, it may

not be practical and desirable to develop systems with resilience technique to all types of failure

mechanisms. Both vulnerability analysis methods discussed above provide system designers with

valuable information about the reliability critical sub-blocks and transistors. It can help them to

36

concentrate their design efforts on the critical sub-blocks, thereby saving area and power

resources.

(a)

(b)

Figure 2.12. Percentage of transistors with MTTF value lower than selected threshold for a)

TDDB and b) NBTI cases.

37

2.7. Conclusion

We proposed and implemented a new circuit level divide and conquer based reliability

evaluation methodology, which enjoys the benefits of transistor level accuracy and of block level

efficiency. At the core of the lifetime estimation engine lies a Monte Carlo algorithm which

works with failure times modeled as Weibull and lognormal distributions. Using the proposed

reliability evaluation methodology we developed a lifetime aware floorplanning strategy. We

consider the proposed strategy an important step towards reliability oriented design in general

with the potential of improvement via floorplanning. The new floorplanning approach was able

to find floorplans with up to 15% difference in the lifetime of a Network-on-Chip router design

example. In addition, we applied the proposed reliability evaluation methodology to the router

design and identified the routing computation and virtual channel allocation units as the most

vulnerable sub-blocks.

2.8. References

[2.1] S. Borkar, “Designing reliable systems from unreliable components: The challenges of

transistor variability and degradation,” IEEE Micro, vol. 25, no. 6, pp. 10–16, Nov./Dec. 2005.

[2.2] V. Raghunathan, M. B. Srivastava, and R. K. Gupta, “A survey of techniques for energy

efficient on-chip communication,” in Proc. ACM/IEEE DAC, 2003, pp. 900–905.

[2.3] A. DeHon, H. M. Quinn, and N. P. Carter, “Vision for cross-layer optimization to address

the dual challenges of energy and reliability,” inProc. ACM/IEEE DATE, 2010, pp. 1017–1022.

[2.4] S. Mitra, K. Brelsford, and P. N. Sanda, “Cross-layer resilience challenges: Metrics and

optimization,” in Proc. ACM/IEEE DATE, 2010, pp. 1029–1034.

38

[2.5] M. White and J. B. Bernstein, “Microelectronics reliability: Physics-of failure based

modeling and lifetime evaluation,” Jet Propulsion Lab., California Inst. Technol., Pasadena, CA,

Feb. 2008.

[2.6] J. H. Stathis, “Reliability limits for the gate insulator in CMOS technology,” IBM J. Res.

Develop., vol. 46, no. 2/3, pp. 265–286, Mar. 2002.

[2.7] D. K. Schroder and J. A. Babcock, “Negative bias temperature instability: Road to cross in

deep submicron silicon semiconductor manufacturing,” J. Appl. Phys., vol. 94, no. 1, pp. 1–18,

Jul. 2003.

[2.8] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “A finite oxide thickness based analytical

model for negative temperature bias instability,” IEEE Trans. Device Mater. Rel., vol. 9, no. 4,

pp. 537–556, Dec. 2009.

[2.9] W. Wang, S. Yang, S. Bhardwaj, R. Vattikonda, S. Vrudhula, F. Liu, and Y. Cao, “The

impact of NBTI effect on combinational circuit: Modeling, simulation, and analysis,” IEEE

Trans. Very Large Scale Integr. (VLSI) Syst., vol. 18, no. 2, pp. 173–183, Feb. 2010.

[2.10] S. M. Alam, C. L. Gan, D. E. Troxel, and C. V. Thompson, “Circuitlevel reliability

analysis of Cu interconnects,” in Proc. ISQED, 2004, pp. 238–243.

[2.11] Z. Lu, J. Lach, M. R. Stan, and K. Skadron, “Temperature-aware modeling and banking of

IC lifetime reliability,” IEEE Micro, vol. 25, no. 6, pp. 40–49, Nov./Dec. 2005.

[2.12] JEDEC, “Failure mechanisms and models for semiconductor devices,” JEDEC

Publication JEP122E, 2009.

[2.13] P. S. Ho and T. Kwok, “Electromigration in metals,” Rep. Prog. Phys., vol. 52, no. 3, pp.

301–348, Mar. 1989.

39

[2.14] J. Srinivasan, S. V. Adve, P. Bose, J. A. Rivers, and C. K. Hu, “RAMP: A model for

reliability aware microprocessor design,” IBM, Armonk, NY, IBM Res. Rep. RC23048, Dec.

2003.

[2.15] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The case for lifetime reliability-

aware microprocessors,” in Proc. IEEE Int. Symp. Comput. Architecture, Jun. 2004, pp. 276–

287.

[2.16] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “Lifetime reliability: Toward an

architectural solution,” IEEE Micro, vol. 25, no. 3, pp. 70–80, May 2005.

[2.17] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “Exploiting structural duplication for

lifetime reliability enhancement,” in Proc. IEEE ISCA, 2005, pp. 520–531.

[2.18] A. K. Coskun, T. S. Rosing, K. Mihic, G. D. Micheli, and Y. Leblebici, “Analysis and

optimization of MPSoC reliability,” J. Low Power Electron., vol. 2, no. 1, pp. 56–69, Apr. 2006.

[2.19] Z. Gu, C. Zhu, L. Shang, and R. P. Dick, “Application-specific MPSoC reliability

optimization,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 16, no. 5, pp. 603–608,

May 2008.

[2.20] J. Fang and S. S. Sapatnekar, “Scalable methods for analyzing the circuit failure

probability due to gate oxide breakdown,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,

vol. 20, no. 11, pp. 1960–1973, Nov. 2012.

[2.21] M. R. Choudhury, V. Chandra, K. Mohanram, and R. Aitken, “Analytical model for

TDDB-based performance degradation in combinational logic,” in Proc. ACM/IEEE DATE,

2010, pp. 423–428.

40

[2.22] K. Kang, K. Kim, A. E. Islam, M. A. Alam, and K. Roy, “Characterization and estimation

of circuit reliability degradation under NBTI using on-line IDDQ measurement,” in Proc.

ACM/IEEE DAC, 2007, pp. 358–363.

[2.23] E. Maricau and G. Gielen, “Efficient reliability simulation of analog ICs including

variability and time-varying stress,” inProc. ACM/IEEE DATE, 2009, pp. 1238–1241.

[2.24] M. Bashir and L. Milor, “Towards a chip level reliability simulator for copper/low-k

backend processes,” in Proc. ACM/IEEE DATE, 2010, pp. 279–282.

[2.25] J. B. Bernstein, M. Gurfinkel, X. Li, J. Walters, Y. Shapira, and M. Talmor, “Electronic

circuit reliability modeling,” Microelectron. Rel., vol. 46, no. 12, pp. 1957–1979, Feb. 2006.

[2.26] P. Ramachandran, S. V. Adve, P. Bose, J. A. Rivers, and J. Srinivasan, “Metrics for

architecture-level lifetime reliability analysis,” inProc. IEEE ISPASS, 2008, pp. 202–212.

[2.27] X. Li, B. Huang, J. Qin, X. Zhang, M. Talmor, Z. Gur, and J. B. Bernstein, “Deep

submicron CMOS integrated circuit reliability simulation with SPICE,” in Proc. IEEE ISQED,

2005, pp. 382–389.

[2.28] S. Zafar, “Statistical mechanics based model for negative bias temperature instability

induced degradation,” J. Appl. Phys., vol. 97, no. 10, pp. 103 709-1–103 709-9, May 2005.

[2.29] X. Li, J. Qin, B. Huang, X. Zhang, and J. B. Bernstein, “SRAM circuit failure modeling

and reliability simulation with SPICE,” IEEE Trans. Device Mater. Rel., vol. 6, no. 2, pp. 235–

246, Jun. 2006.

[2.30] X. Li, J. Qin, B. Huang, X. Zhang, and J. B. Bernstein, “A new SPICE reliability

simulation method for deep submicrometer CMOS VLSI circuits,” IEEE Trans. Device Mater.

Rel., vol. 6, no. 2, pp. 247–257, Jun. 2006.

41

[2.31] A. Ghetti, “Gate oxide reliability: Physical and computational models,” Springer Ser.

Mater. Sci., vol. 72, pp. 201–258, 2004.

[2.32] X. Li, J. Qin, and J. B. Bernstein, “Compact modeling of MOSFET wearout mechanisms

for circuit-reliability simulation,” IEEE Trans. Device Mater. Rel., vol. 8, no. 1, pp. 98–121,

Mar. 2008.

[2.33] Y. Han and I. Koren, “Simulated annealing based temperature aware floorplanning,” J.

Low Power Electron., vol. 3, no. 2, pp. 141–155, Aug. 2007.

[2.34] C. C. Ta, X. Zhang, L. He, and T. T. Jing, “Temperature aware microprocessor

floorplanning considering application dependent power load,” in Proc. ACM/IEEE ICCAD,

2007, pp. 586–589.

[2.35] W. L. Hung, Y. Xie, N. Vijaykrishnan, C. A. Quaye, T. Theocharides, and M. J. Irwin,

“Thermal-aware floorplanning using genetic algorithms,” in Proc. ISQED, 2005, pp. 634–639.

[2.36] K. Sankaranarayanan, S. Velusamy, M. R. Stan, and K. Skadron, “A case for thermal-

aware floorplanning at the microarchitectural level,” J. Instruct.-Level Parall., vol. 8, pp. 1–16,

Oct. 2005.

[2.37] J. Kung, I. Han, S. Sapatnekar, and Y. Shin, “Thermal signature: A simple yet accurate

thermal index for floorplan optimization,” in Proc. ACM/IEEE DAC, 2011, pp. 108–113.

[2.38] V. Nookala, D. J. Lilja, and S. S. Sapatnekar, “Temperature-aware floorplanning of

microarchitecture blocks with IPC-power dependence modeling and transient analysis,” in Proc.

ISLPED, 2006, pp. 298–303.

[2.39] H. D. Mogal and K. Bazargan, “Thermal-aware floorplanning for task migration enabled

active sub-threshold leakage reduction,” in Proc. ACM/IEEE ICCAD, 2008, pp. 302–305.

42

[2.40] S. Yang, W. Wolf, N. Vijaykrishnan, and Y. Xie, “Reliability-aware SOC voltage islands

partition and floorplan,” in Proc. IEEE Symp. Emerging VLSI Technol. Architectures, 2006, pp.

343–348.

[2.41] J. Minz, E. Wong, and S. K. Lim, “Reliability-aware floorplanning for 3D circuits,” in

Proc. IEEE Int. SOC Conf., 2005, pp. 81–82.

[2.42] A. Gupta, A. Djahromi, A. Eltawil, N. Dutt, and F. Kurdahi, “Managing leakage power

and reliability in hot chips using system floorplanning and SRAM design,” in Proc. IEEE Int.

Workshop THERMINIC, 2008, pp. 37–42.

[2.43] J. Shin, V. Zyuban, Z. Hu, J. Rivers, and P. Bose, “A framework for architecture-level

lifetime reliability modeling,” in Proc. IEEE/IFIP Int. Conf. DSN, 2007, pp. 534–543.

[2.44] Available: www.cadence.com

[2.45] Available: http://lava.cs.virginia.edu/HotSpot

[2.46] Available: http://www.mathworks.com/products/matlab

[2.47] J. Kim, D. Park, C. Nicopoulos, N. Vijaykrishnan, and C. R. Das, “Design and analysis of

an NoC architecture from performance, reliability and energy perspective,” in Proc. ACM Symp.

ANCS, 2005, pp. 173–182.

[2.48] A. DeOrio, D. Fick, V. Bertacco, D. Sylvester, D. Blaauw, J. Hu, and G. Chen, “A reliable

routing architecture and algorithm for NoCs,” IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 31, no. 5, pp. 726–739, May 2012.

[2.49] T.-C. Chen and Y.-W. Chang, “Modern floorplanning based on B*-trees and fast

simulated annealing,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 25, no. 4,

pp. 637–650, Apr. 2006.

43

[2.50] W. J. Dally and B. Towles, Principles and Practices of Interconnection Networks. San

Mateo, CA: Morgan Kaufmann, 2004.

[2.51] Available: http://www.si2.org

44

CHAPTER 3. IMPROVING FAULT TOLERANCE OF NETWORK-ON-CHIP LINKS

VIA MINIMAL REDUNDANCY AND RECONFIGURATION

This paper was presented in International Conference on Reconfigurable Computing and

FPGAs, 2011. The authors of the paper are Hamed Sajjadi Kia and Cristinel Ababei.

3.1. Abstract

We propose to partition links in a network-on-chip into multiple segments and use spare

wires at the level of each segment to address permanent errors due to manufacturing or wearout

defects. Because different segments of the spare wires address different errors from different

segments, the proposed reconfigurable link structure can tolerate a larger number of errors with a

reduced number of spare wires. The proposed self-repairing segmented link structure is

implemented and simulated in Verilog and verified on a Virtex 5 FPGA. Experimental results on

area, power consumption, delay, and reliability show that the optimal link is achieved when the

link is partitioned into two segments.

3.2. Introduction

Advances in integrated circuit fabrication technology enables the integration of tens and

hundreds of cores on the same system-on-chip (SoC). To address the demand for increased

communication and concurrency between cores, network-on-chip (NoC) has emerged as a new

communication design paradigm [3.1]. An NoC is constructed by connecting a set of routers via

bidirectional links. Cores are connected to routers through network interfaces and communicate

via messages organized as packets. For example, a typical 2D regular mesh NoC topology is

shown in Fig.1.

However, advances in fabrication technology that can make this integration possible may

also make the underlying hardware less reliable due to an increasing number of defects and

45

wearout or aging mechanisms. Errors due to these faults may occur in both the computation

(cores) and communication (network) components of the SoC. Because it is critical to deal with

these faults and address them with cost-effective solutions, one of the major problems facing the

design of network-on-chip based systems-on-chip is reliability.

In this paper, we focus on the communication component and address permanent faults

which can occur in NoC links during fabrication or due to wearout mechanisms. More

specifically, we improve the fault tolerance of NoCs by using redundant or spare wires within the

context of segmented links. We do not focus on the computation component, which has been

studied more extensively [3.2], [3.3]. The remainder of this paper is organized as follows. In the

next section, we discuss previous work and then outline our main contribution. Then, we

describe the proposed self-repairing link and introduce a simple technique to detect faults. Later,

we report experimental results. Finally, we conclude by summarizing our main contribution.

Figure 3.1. Example of typical 2D regular mesh NoC topology.

3.3. Previous work

There are basically two methods to address permanent faults in NoC links. The most

popular method is based on the use of adaptive or dynamic routing strategies. The idea is that

Processing

element

PE PE

PE PE PE

PE PE PE

Router Link

PE

46

after faulty links are detected and located, specialized routing algorithms compute new routing

paths through the network such that these broken links are avoided. Examples of recently

proposed adaptive routing algorithms for NoCs include [3.4]–[3.9]. While this method is

straightforward, it has the disadvantage of affecting the network performance (average flit

latency) due to typically longer routing paths. Also, it must deal with the issue of deadlock and

livelock.

The second method to address permanent faults is based on the concept of adding

redundant or spare elements and on the use of reconfiguration [3.10]–[3.14]. In the case of NoC

links, several redundant wires are added to each link. When faults occur, reconfiguration is used

to replace the faulty wires with spare healthy wires. For example, the authors of [3.15] have used

redundant spare wires to repair broken links. The use of redundant wires to replace faulty wires

without interruption of the data flow is presented in [3.16]. The authors use a periodic inline test

method to detect faulty wires. The authors in [3.17] demonstrate link structures, which can

tolerate transient, intermittent, and permanent faults. They use Hamming coding to address

transient errors and retransmission as the recovery technique. They have also introduced two

techniques to address intermittent and permanent faults. The first technique is based on spare

wires and reconfiguration while the second technique uses time redundancy. This method has the

disadvantage of addressing a rather small number of faults in a given link, which is limited by

the additional area occupied by the multiplexers and demultiplexers utilized to reconfigure the

link.

The use of spare wires to repair faulty interconnects has the disadvantage of addressing a

rather small number of faults in a given link, which is limited by the additional area occupied by

spare wires, and the multiplexers and demultiplexers utilized to reconfigure the link.

47

3.4. Contributions

In this paper, we focus on permanent faults which can occur in NoC links during

fabrication or due to wearout mechanisms. Our goal is to design a self-repairing NoC link, using

spare wires and reconfiguration, which offers the best trade off between the overhead in area,

power consumption, delay and reliability. Our main contribution lies in: 1) We propose to

partition NoC links into multiple segments and use spare wires at the level of each segment.

Because different segments of the spare wires address different faults from different segments,

the proposed reconfigurable link structure can tolerate a larger number of errors with a reduced

number of spare wires. 2) We implement and simulate the proposed self-repairing link structure

in Verilog using Cadence tools and verify it on a Virtex 5 FPGA. Experimental results on area,

power consumption, delay, and reliability show that the optimal link is achieved when the link is

partitioned into two segments.

3.5. Proposed self-repairing link structure

In this section, we introduce the proposed segmented self-repairing link structure.

However, first we present the traditional non-segmented link structure, which we will use to

build our discussion and for comparison purposes.

3.5.1. Non-segmented link structure

The block diagram of the traditional reconfigurable link is shown in Fig. 2.a. The main

link connecting two routers of the NoC is essentially an n-bit bus formed of n primary wires. In

addition, the link contains k spare wires. These spare wires are redundant and are normally not

used. The error detection logic is responsible with the detection of permanent faults, which

initially are assumed to occur only in the n primary wires. This is a reasonable assumption

because the spare wires are not normally used and therefore they are not affected by wearout

48

mechanisms. The error detection logic is designed to test all n + k wires because once a spare

wire is used to reconfigure the link, it will also be affected by wearout mechanisms. Once a fault

is detected by the error detection logic, the link is reconfigured to replace the faulty wire with

one of the healthy k redundant wires. The reconfiguration is realized with two sets of

configurable switches (multiplexers and demultiplexers) controlled by signals generated by

controllers, which reside in the downstream and upstream routers.

While the link structure in Fig. 2.a is simple, it suffers from poor scalability. Obviously,

as the number of redundant bits k increases the reliability of the whole link increases too.

However, the link structure must use n x 1 - to - (k + 1) demultiplexers in the upstream router

and n x (k+1) –to – 1 multiplexers in the downstream router. In addition, the complexity and

hence area of the two controllers also increases with the increase of k. Therefore, in order to keep

the area overhead within reasonable limits, in practice k must be limited to a small number. The

block diagram in Fig. 2.b shows implementation details. In this case the number of redundant

bits is k = 4 and therefore the link can only handle up to 4 faults. Once the number of faults

increases to more than 4, the controllers enable a failure signal to inform the routers that the link

is broken and cannot be used anymore at the initial bandwidth. This information can then be

utilized by adaptive routing algorithms, which will find new routing paths such that the broken

link is avoided.

The reliability of the link structure from Fig. 2.a can be computed using an approach

similar to the study in [3.18]. For simplicity, we assume that faults can only occur in the main

link and that the redundant bits are fault free. The link structure in Fig. 2.a can be seen as a

parallel system. Assuming that all n wires of the main link are identical and that the probability

of success of any of the n bits is p (that is the probability of the wire to be functional), then the

49

probability of exactly (n - k) bits working correctly out of n bits is given by the binomial

distribution:

 (

)

(3.1)

where q = 1 - p represents the probability of the wire to be non-functional.

(a)

(b)

Figure 3.2. (a) Simplified block diagram of an n-bit reconfigurable link structure with k

redundant bits. (b) Details of the reconfiguration logic for an example with k = 4.

D
o

w
n
st

re
am

 r
o

u
te

r
Controller

In
p
u
t d

ata

n

(n+4)
Error detection

n

U
p
st

re
am

 r
o

u
te

r

O
u
tp

u
t d

ata

Controller

Error detection
(n+4)

n

n

4-bits

Redundant link
n-bits

Original/Main link

Failure Failure

50

The link structure is said to work successfully as long as at least (n - k) bits of the main

link remain functional. Therefore, the reliability of the link structure can be defined as the

probability obtained by summing-up the probabilities of all possible successful configurations:

 ∑ (

)

(3.2)

3.5.2. Proposed segmented link structure

To improve its fault tolerance, we propose to partition the link into multiple segments and

use spare wires at the level of each segment. Because different segments of the spare wires

address different errors from different segments, the proposed reconfigurable link structure can

tolerate a larger number of errors with a reduced number of spare wires. Fig. 3 illustrates the

main idea behind the proposed segmented link structure. In this figure, the link with only one

redundant wire is divided into 3 segments. Faults, represented as ’x’, can occur anywhere along

the length of the link. The ’x’ on the first wire in the first segment of the link illustrates the

occurrence of a fault. The link structure from Fig. 2 would replace this faulty wire with the only

available redundant wire. However, in this example there are two remaining faults, which can

not be addressed by the link structure from Fig. 2. In the proposed segmented link structure, we

use only the first segment of the redundant wire to replace the faulty wire from the first link

segment. The second and third faults denoted with ’x’ in Fig. 3 can be handled using the second

and third segments of the redundant wire. Next, we discuss the main limitation of the proposed

segmented link structure and present an elegant solution to address it.

51

Figure 3.3. Illustration of proposed segmented link structure.

The proposed segmented link has better fault tolerance (hence better reliability)

compared to traditional nonsegmented link structure. However, it also suffers from the scalability

problem as the link structure from Fig. 2. In fact, the proposed link structure would utilize larger

area overheads due to the segmentation, which requires multiple sets of multiplexers and

demultiplexers, error detection circuits, and more sophisticated controllers.

To solve the scalability problem and to reduce the hardware overhead, the main and

redundant wires are divided into L groups or subsets. Each of the groups of main wires has ni bits

and each of the groups of redundant wires has ki bits, where i = 1, 2,…, L. Each of the groups of

main wires has designated a group of redundant wires. Faulty wires from a given main group can

be replaced only by wires from the designated group of redundant wires. This solution

effectively reduces the size of the programmable switches (that is multiplexers and

demultiplexers) yet enabling the improvement in fault tolerance. In this case, we only need to use

L x ni x 1 - to - (ki + 1) demultiplexers and L x ni x (ki+1)-to-1 multiplexers. The proposed

solution is illustrated in the block diagram from Fig. 4.

To derive an expression for reliability, we again assume that faults can only occur in the

main wires and that the redundant wires are fault free. Our derivation is based on the block

Redundant wire

Original/Main wires

x
x

x

U
p

st
re

am
 r

o
u

te
r

D
o

w
n
st

re
am

 r
o

u
te

r

1th segment 2th segment 3th segment

52

diagram shown in Fig. 5. In this figure Rb represents the reliability of a block composed of a

group of main wires together with its designated group of redundant wires. Notice that since we

divided the link into m segments, the probability of failure of a bit of the main link in any

segment is now (

 .q, and hence the probability of success is (p + (

).q). Similar to the

discussion from the previous section, we assume that all wires of the main link are identical.

Then, the probability of exactly (ni - ki) bits working correctly out of ni bits is given by the

binomial distribution:

 (

) (

) (

)

(3.3)

Therefore the reliability of one block of a segment (formed by a group of main wires and

its designated group of redundant wires) can be computed as:

 ∑ (

) (

) (

)

(3.4)

Because failure of any block of a segment results in system failure, the segment must be

modeled as a system of a series of blocks as illustrated in Fig. 5. Therefore, the overall reliability

of a segment can be computed as:

 (3.5)

Finally, the whole segmented link is modeled as a series system, for which the total

reliability of the system can be computed as:

 (3.6)

53

Figure 3.4. Block diagram of the proposed segmented self-repairing link. In each segment, the

link is divided into groups of main wires and redundant wires.

Figure 3.5. System level diagram utilized for reliability computation.

P
ro

g
ram

m
ab

le sw
itch

es

P
ro

g
ram

m
ab

le sw
itch

es

n
1

n
2

n
L

k
1

k
2

k
L

P
ro

g
ram

m
ab

le sw
itch

es

n
1

n
2

n
L

k
1

k
2

k
L

P
ro

g
ram

m
ab

le sw
itch

es

P
ro

g
ram

m
ab

le sw
itch

es

n
1

n
2

n
L

k
1

k
2

k
L

Controller Controller Controller

Error detection

1th segment 2th segment mth segment

Input data Output data

Failure Failure Failure

Original/Main link

n
1
+n

2
+...+n

L
=n

Redundant link

k
1
+k

2
+...+k

L
=k

U
p
st

re
am

 r
o

u
te

r

D
o

w
n
st

re
am

 r
o

u
te

r

R
b

R
b

R
b

2

1

R
b

R
b

R
b

1

2

R
b

R
b

R
b

1

2

L

1th segment 2th segment mth segment

L L

n
L

k
L

R
b

R
b

R
b

1 2 n
L

series connection for reliability analysis

54

3.6. Fault detection

The operation of both non-segmented and segmented reconfigurable links depends on the

ability to detect faulty wires. To detect faulty wires, we propose an effective FSM-based fault

detection circuit. We assume that the NoC based system enters a test mode periodically. Fig. 6

shows the design of the fault detection circuit for one bit of the link. In this circuit, during normal

operation, the test mode enable signal is 0, hence the link carries regular packets from the

upstream router. When the system enters the test mode (test mode enable signal becomes 1) the

link carries the test signal. Testing is done by sending over the link a pre-defined pulse test

signal, which exercises each wire of the link with both low and high logic levels (to address

stuck at low or high faults). At the receiving downstream router side, initially the error signal is

set to 0 by the reset signal. As long as the test mode enable signal is 0 the error signal holds its

value in state S0. When the system enters the test mode, the receiving downstream router expects

to receive a 0 first and then a 1. This causes a transition from S0 to S1 and then a transition back

to S0 while the error signal remains 0 indicating that the wire is healthy. However, any different

signal received during the test mode, generates an error signal, which is set to 1. Once the system

leaves the test mode (test mode enable = 0) the fault detection circuit holds the value of the final

error signal. This error signal will be used by controllers during normal operation to decide if a

wire needs to be replaced by a healthy redundant wire or not.

3.7. Simulation and experimental results

In this section we compare the proposed segmented link structure against the non-

segmented link structure. Both link structures, shown in Fig.2.b and Fig.4, are coded in Verilog-

HDL. The Verilog-HDL implementations are synthesized and simulated using Cadence tools

[3.19] while the hardware validation is done using Xilinx ISE tools [3.20]. We use an controllers

55

reconfigure the link to replace the faulty wire with the healthy redundant wire, thereby

facilitating self-repairing. FPGA development board with a Virtex 5 FPGA. Numerical

simulations to estimate reliability is done using Matlab [3.21].

Figure 3.6. Block diagram of the error detection circuit for one bit of the link. Each wire of the

link is equipped with an error detection circuit.

Our experiments reveal that in order to keep the area overheads within reasonable limits,

the number of redundant wires k should be limited to only a few. For the same reason, the

number of segments m for the segmented link should be a small number. In our implementation

n = 64 main bits and k = 4 redundant bits. For the segmented link, the main link is divided into L

= 4 groups (each group has ni = 16 bits) with a single redundant bit, ki = 1, designated to each

group. We have implemented three different variants of the segmented link structure with m = 2,

3, 4.

Fig.7 shows a snap-shot of our simulation of the segmented link for m = 3. In this

simulation, we inject a fault on the second segment of the last bit (bit index 63) of the main link.

As can be seen, once the fault is detected, the error signal is set to logic high permanently. The

S
0

S
1

10/0

10/1

11/0

00/error

01/error

01/error

00/error

11/1

Test mode

enable
Test

signal

Error

signal

Error detector

U
p

st
re

am
 r

o
u

te
r

Test mode enable

Test signal

Error signal D
o
w

n
st

re
am

 r
o
u

te
r

Reset

56

controllers reconfigure the link to replace the faulty wire with the healthy redundant wire,

thereby facilitating self-repairing.

Figure 3.7. Simulation result that illustrates how a segmented link recovers a faulty bit of the

link. A fault is injected on 63th bit of the main link.

3.7.1. Reliability

Numerical results based on the expressions of reliability derived in Section 3.5 show that

the proposed segmented link non-segmented link. Fig.8 shows the percentage of increase in

reliability for different values of the probability of wire failure. This result is intuitive and

confirms that the more segments the link has, the higher its reliability (or fault tolerance) will be.

However, as we will see shortly, the increase in the number of segments results also into an

increase in area overhead, power consumption, and link delay.

Redundant link designated to the last group of the main link

Last bit of the Original/Main link belonging to last group

U
p

st
re

am
 r

o
u

te
r

D
o
w

n
st

re
am

 r
o
u

te
r

1th segment 2th segment 3th segment

Input signal to

1th segment

Input signal

to 1th segment

Output signal

of 1th segment

Output signal

of 2th segment

Final output

signal

Output signal

of 1th segment

Error signal of

2th segment

Test mode enable

Output signal

of 2th segment

Final output

signal

Redundant link

of the 2th segment

0ns 20ns 40ns 60ns 80ns 100ns 120ns 140ns

Error injected

57

3.7.2. Area

Fig.9 shows the percentage of increase in area occupied by the proposed segmented link

structure compared to the nonsegmented link. Notably, the area occupied by the 2-segmented

link structure is only 3.71% larger than area of the nonsegmented link. This is due to the

considerable reduction in size of the programmable switches achieved via the proposed grouping

of the main and redundant wires. Nevertheless, it can be seen that as the number of segments

increases, the area overhead increases significantly compared to non-segmented link.

Figure 3.8. Percentage of increase in reliability achieved with the proposed segmented link

compared to the non-segmented link.

Figure 3.9. Percentage of increase in area occupied by the proposed segmented link compared to

non-segmented link.

P
er

ce
n

ta
g
e

o
f

im
p

ro
v
em

en
t

in
 r

el
ia

b
il

it
y

co
m

p
ar

ed
 t

o
 n

o
n

-s
eg

m
en

te
d

 r
ec

o
n

fi
g
u

ra
b

le
 l

in
k

Probability of link failure

-5

0

5

10

15

20

25

30

0 0.02 0.04 0.06 0.08 0.1

35

P
er

ce
n

ta
g
e

o
f

in
cr

ea
se

 i
n

 o
cc

u
p

ie
d

ar

ea
 c

o
m

p
ar

ed
 t

o
 n

o
n

-s
eg

m
en

te
d

re

co
n

fi
g
u

ra
b

le
 l

in
k

2-se
gm

en
ted

 li
nk

3-se
gm

en
ted

 li
nk

4-se
gm

en
ted

 li
nk

3.71

55.55

107.40

20

0

40

60

80

100

120

58

3.7.3. Power consumption

Fig.10 shows the comparison in terms of power consumption, estimated using Cadence

tools. The power consumption of the 2-segmented link is 23.19% higher than that of the non-

segmented link. It can be seen that as the number of segments increases, the amount of power

consumption increases considerably too.

Figure 3.10. Percentage of increase in power consumption of the segmented link compared to

non-segmented link.

3.7.4. Delay

Fig.11 shows the comparison in terms of link delay, as reported by Xilinx ISE tools. The

increase in delay of the 2-segmented link is 16.41% compared to the non-segmented link. Similar

to the cases of area and power comparisons, as the number of segments increases, the

performance penalty increase considerably.

P
er

ce
n

ta
g
e

o
f

in
cr

ea
se

 i
n

 n
et

 p
o
w

er

co
n

su
m

p
ti

o
n

 c
o
m

p
ar

ed
 t

o

n
o
n

-s
eg

m
en

te
d

 r
ec

o
n

fi
g
u

ra
b

le
 l

in
k

2-se
gm

en
ted

 li
nk

3-se
gm

en
ted

 li
nk

4-se
gm

en
ted

 li
nk

23.19

80.13

147.48

20

0

40

60

80

100

120

140

160

59

Figure 3.11. Percentage of increase in link delay of the segmented link compared to non-

segmented link.

3.7.5. Discussion

It is clear that the best trade off between reliability improvement and penalty in area

overhead, power consumption, and link delay is offered by the 2-segmented link structure. It is

interesting to note that the concept of link segmentation for further improvement in fault

tolerance can also be applied on top of the reconfigurable link designs presented in [3.6]–[3.8].

3.8. Conclusion

We proposed link segmentation and wire grouping as a novel technique to improve the

fault tolerance against permanent faults of NoC links. Because different segments of the spare

wires address different errors from different segments, the proposed reconfigurable link structure

can tolerate a larger number of errors with a reduced number of spare wires. Cost effective fault

detection circuits and segment level multiplexers and demultiplexers enable link

reconfigurability, thereby self-repairing capability. Experimental results reveal that the 2-

segmented link structure offers the best tradeoff between reliability improvement and penalty in

area overhead, power consumption, and link delay.

P
er

ce
n

ta
g
e

o
f

in
cr

ea
se

 i
n

 d
el

ay
 c

o
m

p
ar

ed

to
 n

o
n

-s
eg

m
en

te
d

 r
ec

o
n

fi
g
u

ra
b

le
 l

in
k

2-se
gm

en
ted

 li
nk

3-se
gm

en
ted

 li
nk

4-se
gm

en
ted

 li
nk

16.41

61.83

88.15

20

0

40

60

80

100

60

3.9. References

[3.1] L. Benini and G. De Micheli, “Networks on chips: technology and tools,” Morgan

Kaufmann, 2006.

[3.2] F.A. Bower, S. Ozev, and D.J. Sorin,“Automatic microprocessor execution via self-

repairing arrays,” IEEE Trans. on Dependable and Secure Computing, vol. 2, no. 4, pp. 297-310,

2005.

[3.3] Z. Vasicek, L. Capka, and L. Sekanina, “Analysis of reconfiguration option for a

reconfigurable polymorphic circuit,” NASA/ESA Conference on Adaptive Hardware and

Systems, 2008.

[3.4] S. D. Mediratta and J. Draper, “Characterization of a fault-tolerant NoC router,” IEEE Int.

Symposium on Circuits and Systems (ISCAS), 2007.

[3.5] D. Fick, A. DeOrio, J. Hu, V. Bertacco, D. Blaauw, and D. Sylvester, “Vicis: a reliable

network for unreliable silicon,” ACM/IEEE Design Automation Conference (DAC), 2009.

[3.6] D. Fick, A. Deorio, G. Chen, D. Sylvester, and D. Blaauw, “A highly resilient routing

algorithm for fault tolerant NoCs,” ACM/IEEE Design Automation and Test in Europe

Conference (DATE), 2009.

[3.7] C. Feng, Z. Lu, A. Jantsch, J. Li, and M. Zhang, “A reconfigurable fault tolerant deflection

routing algorithm based on reinforcement learning for network-on-chip,” Int. Workshop on

Network-on-Chip Architectures (NocArc), 2010.

[3.8] H.S. Kia and C. Ababei, “A new fault-tolerant and congestion aware adaptive routing

algorithm for regular Networks-on-Chip,” IEEE Congress on Evolutionary Computation (CEC),

2011.

61

[3.9] S. Pasricha and Y. Zou, “A low overhead fault tolerant routing scheme for 3D Networks-

on-Chip,” IEEE Int. Symposium on Quality Electronic Design (ISQED 2011), 2011.

[3.10] D. Kim, K. Lee, S.J. Lee, and H.J. Yoo, “A reconfigurable crossbar switch with adaptive

bandwidth control for Networks-on-Chip,” IEEE Int. Symposium on Circuits and Systems, 2005.

[3.11] B. Ahmad, A. T. Erdogan, and S. Khawam, “Architecture of a dynamically reconfigurable

NoC for adaptive reconfigurable MPSoC,” NASA/ESA Conference on Adaptive Hardware and

Systems, 2006.

[3.12] M. Palesi, S.i Kumar, R. Holsmark, and V. Catania, “Exploiting communication

concurrency for efficient deadlock free routing in reconfigurable NoC platforms,” IEEE Int.

Symposium on Parallel and Distributed Processing, 2007.

[3.13] R. Dafali, J. Ph. Diguet, and M. Sevaux, “Key research issues for reconfigurable Network-

on-Chip,” Int. Conference on Reconfigurable Computing and FPGAs, 2008.

[3.14] M. B. Stensgaard and J. Sparso, “ReNoC: a Network-on-Chip architecture with

reconfigurable topology,” ACM/IEEE Int. Symposium on Networks-on-Chip (NOCS), 2008.

[3.15] Q. Yu and P. Ampadu, “Transient and permanent error co-management method for

reliable Networks-on-Chip,” ACM/IEEE Int. Symposium on Networks-on-Chip (NOCS), 2010.

[3.16] T. Lehtonen, D. Wolpert, P. Liljeberg, J. Plosila, and P. Ampadu, “Self-adaptive system

for addressing permanent errors in on-chip interconnects,” IEEE Trans. on Very Large Scale

Integration (VLSI) Systems, vol. 18, no. 4, 2010.

[3.17] T. Lehtonen, P. Liljeberg, and J. Plosila, “Online reconfigurable self-timed links for fault

tolerant NoC,” VLSI Design, 2007.

[3.18] C. Ortega and A. Tyrrell, “Reliability analysis in self-repairing embryonic systems,”

NASA/DoD Workshop on Evolvable Hardware, 1999.

62

[3.19] http://www.cadence.com.

[3.20] Xilinx ISE Tools, http://www.xilinx.com.

[3.21] http://www.mathworks.com/products/matlab.

63

CHAPTER 4. FAULT-TOLERANT AND CONGESTION-AWARE ADAPTIVE

ROUTING ALGORITHM FOR REGULAR NETWORKS-On-Chip

This paper was presented in IEEE Congress on Evolutionary Computation (CEC), 2011.

The authors of the paper are Hamed Sajjadi Kia and Cristinel Ababei.

4.1. Abstract

In this paper, we propose a new fault-tolerant and congestion-aware adaptive routing

algorithm for Networks-on-Chip (NoCs). The proposed algorithm is based on the ball-and-string

model and employs a distributed approach based on partitioning of the regular NoC architecture

into regions controlled by local monitoring units. Each local monitoring unit runs a shortest path

computation procedure to identify the best routing path so that highly congested routers and

faulty links are avoided while latency is improved. To dynamically react to continuously

changing traffic conditions, the shortest path computation procedure is invoked periodically.

Because this procedure is based on the ball-and-string model, the hardware overhead and

computational times are minimal. Experimental results based on an actual Verilog

implementation demonstrate that the proposed adaptive routing algorithm improves significantly

the network throughput compared to traditional XY routing and DyXY adaptive algorithms.

4.2. Introduction

The Network-on-Chip (NoC) concept replaces design specific global on-chip wires with

a generic on-chip interconnection network realized by specialized routers that connect generic

processing elements (PE). It represents a paradigm change from computation to communication

centric design for Systems-on-Chip (SoCs) [4.1], [4.2]. The benefits of the NoC based SoC

design include scalability, predictability, and higher bandwidth with support for concurrent

communications.

64

Data are transferred between PEs organized as packets along paths computed by the

routing algorithm. There are two types of routing strategies: deterministic and adaptive routing.

In deterministic routing, the routing path is completely determined by the source and destination

addresses. Its advantages include the simplicity of the router architecture and the deadlock free

property. Due to the simpler hardware logic, deterministic routing offers lower flit latency when

the NoC is not congested. However, as the packet injection rate increases and some of the links

and routers become congested, deterministic routing is likely to suffer from throughput

degradation as it cannot dynamically respond to network congestion [4.3]. In addition,

permanent link failures may render the NoC inoperable. In contrast, adaptive routing takes into

consideration the traffic variations in the network and computes dynamically alternative paths to

route data via less congested regions. Moreover, if the NoC architecture is equipped with link

failure detection mechanisms, adaptive routing can address these failures and thereby facilitate

fault tolerance [4.4], [4.5]. However, due to the hardware overhead to implement the detection

mechanisms and to compute good routing paths, adaptive routing has a higher latency at low

levels of network congestion. Also, dynamic routing has to be designed so that it ensures

deadlock free property.

4.3. Related work and contribution

Adaptive routing has attracted a lot of attention recently. The DyAD routing algorithm

proposed in [4.6] is a hybrid approach, which switches between deterministic routing at low

packet injection rates and dynamic routing when the network congestion increases. An adaptive

routing architecture based on a dynamic programming (DP) network to provide optimal path

planning is proposed in [4.7]. It has introduced a scalable k-step look ahead routing strategy to

reduce routing tables storage and to maintain a high quality of adaptation. The routing method in

65

[4.8] utilizes information from all routers in the source-target path to perform traffic routing. The

source units use the information on network conditions to adjust the parameters that configure

the path to the target router. A dynamic routing algorithm based on monitoring the congestion

status of the neighboring routers is studied in [4.3]. In [4.9] the objective is to route packets to

their destination using a path that is as free as possible of congested nodes. The algorithm tries to

use the situations of indecision occurring when the routing function returns several admissible

output channels. In [4.10] a centralized monitoring system is used to locate congested links and

detour them. However the proposed method is not scalable to the hundreds of cores that may

soon be integrated on a SoC. Authors in [4.11] have proposed an adaptive routing scheme where

intermediate routers make decisions locally depending on the available bandwidth in each

direction to the neighboring routers and on the distance between current and the destination

routers. A congestion aware routing algorithm, which sends congestion monitoring values in

parts of the network beyond adjacent routers, is proposed in [4.12].

Several papers focusing on fault tolerant routing algorithms have recently been published.

Reconfigurable architectures have been employed in several papers to address faults. The Vicis

NoC architecture proposed in [4.13] can tolerate the loss of routers and links due to wearout

induced hard faults. Network level reconfiguration is implemented by rewriting the routing

tables based on the information from the built-in-self-test (BIST) units in each router. A

reconfigurable fault-tolerant deflection routing algorithm based on reinforcement learning for

NoC has been proposed in [4.14]. The algorithm reconfigures the routing tables through

reinforcement learning based on 2-hop fault information. In [4.15] a routing algorithm that

boosts the robustness of interconnect networks by reconfiguration to avoid faulty components

while maintaining connectivity and correct operation has been proposed. A lightweight fault

66

tolerant mechanism based on the notion of default backup paths (DBPs) has been proposed in

[4.16]. It uses nominal redundancy to maintain network connectivity of healthy NoC routers and

on-chip PEs in the presence of hard failures. Most previous works on adaptive routing report

simulation results achieved with simulators developed in a programming language (e.g., C++,

SystemC). Therefore, they typically do not report actual area overheads due to the lack of actual

hardware implementation details. In addition, they address either congestion issues or errors

(e.g., transient, intermittent, permanent failures).

In this paper, we develop a new distributed adaptive algorithm designed to address both

congestion and link failures. Our main contribution is as follows: (i) We develop a new NoC

architecture which partitions the regular NoC architecture into regions controlled by local

monitoring units. Each local monitoring unit runs a shortest path computation procedure to

identify the best routing path so that highly congested routers or failed links are avoided, (ii) We

propose the use of a ball-and-string model based shortest path computation method, which

together with the decentralized region based routing approach leads to minimal hardware

overhead, and (iii) The proposed NoC architecture and routing strategy are implemented in

Verilog with Virtex 5 as the target FPGA fabric. The experimental results on multimedia

benchmarks demonstrate the ability of the proposed routing algorithm to significantly improve

the network throughput.

4.4. Proposed adaptive routing

 In this section we describe the proposed dynamic routing algorithm based on the ball-

and-string model for regular mesh NoC topologies.

67

4.4.1. General NoC topology description

For simplicity, we assume a regular mesh NoC topology to describe and apply the

proposed dynamic routing algorithm. However, the proposed routing algorithm can also be

extended to irregular NoCs. Regular mesh NoCs are 2D arrays of routers. Adjacent routers are

connected via bi-directional links or channels. An example of a 3x3 mesh NoC is shown in Fig.

4.1.a. The router has a pipelined architecture where routing computation (RC), virtual channel

allocation (VA) and switch allocation (SA), and switch traversal (ST) are the main pipeline

stages. The block diagram of the router is shown in Fig. 4.1.b. To minimize the required

buffering space, in this paper we assume wormhole switching. The router architecture will be

modified to add support for the adaptive routing - this will be described in a later section.

(a)

(b)

Figure 4.1. (a) Example of 2D regular mesh. (b) Typical router architecture.

Processing

element

PE PE

PE PE PE

PE PE PE

Router Link

PE

Credit in

0

Crossbar switch

VC 1

VC 2

VC n
Input buffer

From

upstream

node

VC 1

VC 2

VC n
Input buffer

4

0

To

downstream

node

4

Output buffer

Output buffer

VC allocator (VA)

Switch allocator (SA)

Routing computation (RC)

68

4.4.2. Ball-and-string model based shortest path computation procedure

The main idea of shortest paths computation is (1) to associate a directed graph G(V,E)

with the NoC topology, (2) to assign edge weights proportionally to congestion, and (3) to

develop a procedure to find the shortest paths in this graph for any given source node. To

compute edge weights we propose to use buffer occupancies, which are readily available in a

typical NoC. More specifically, the weight is computed as the summation of the numbers of

memory slots used in the output buffers of the upstream router and of memory slots used in the

input buffers of the downstream router. For example, Fig. 4.2.a illustrates the computation of the

edge weight of an individual link. Fig. 4.2.b shows the edge weights for a graph associated with

a 3x2 NoC. Formally, for the purpose of computing the shortest paths the edge weights wij, i =

1,…,|V|, j = 1,…,|V| are computed as follows:

 {
 ()

(4.1)

Each time the shortest path procedure is invoked, the shortest path for each source-

destination communication pair will be computed so that the path cost is minimized:

 ∑∑

(4.2)

where yij is a binary variable, which indicates if the link (vi, vj) ε E is used or not as a part of the

path. The procedure for the shortest path computation is based on the parallel shortest path

searching algorithm proposed in [4.17], which is similar to the ball-and-string model studied in

[4.18], [4.19]. The shortest path procedure will identify the best paths for packets to travel to

their destinations under the congestion conditions that exist at the time of edge weights

computation. To account for the changes in these conditions (due to the changes in network

69

traffic) the procedure will be called periodically multiple times. Therefore, it is important for the

implementation of such a procedure to be fast and to require minimal hardware resources. Our

custom implementation of this algorithm utilizes the adjacency matrix [A]nxn of the network

graph - referred to as the network matrix because each entry stores the corresponding edge

weight (i.e., aij = wij). In addition, it utilizes a specialized array - referred to as the parent-array -

which stores the IDs of predecessor node (or the parent node) of each node along the shortest

path. For example, the network matrix and the parent array initialized to zero of the network

graph from Fig. 4.2.b are shown in Fig. 4.2.c.

(a)

(b)

(c)

Figure 4.2. (a) Computation of edge weight. (b) Edge weights for a network graph associated

with a 3x2 NoC. (c) The network matrix A and the parent-array of the network graph.

Upstream router

v
1

LinkOutput

buffers

Used memory

slots = 1

Input

buffers

Used memory

slots = 3

Downstream router

w
12

 = 1 + 3 = 4
v

2

v
1

4 3

1 2

2 3

3 1

1 2 4 1 1 4

v
2

v
3

v
4

v
5

v
6

70

(a)

(b)

(c)

Figure 4.3. Applying the algorithm to network matrix.

To illustrate how the algorithm works, we use the example from Fig. 4.2.b. Let us assume

node v1 as the source. In the first step of the algorithm, all entries in the first column of the

network matrix are set to infinity. Also, the minimum value in the first row is found and then

subtracted from each entry of the first row (see Fig. 4.3.a). Because a14 = 0, the shortest path to

v4 is already determined and v1 is recorded in the fourth column of the parent-array. Then, all

71

entries in the fourth column of the network matrix are also set to infinity as shown in Fig. 4.3.a.

In the next step of the algorithm, the minimum value among the entries of the first and fourth

rows is identified and subtracted from the entries of these rows as shown in Fig. 3.b. Because a12

= 0 and a45 = 0, the shortest paths to v2 and v5 are also determined at this time and these two

nodes are recorded in the second and fifth columns of the parent-array. Also, all entries in the

second and fourth columns are set to infinity. This process is repeated until all entries in the

network matrix are set to infinity. At this time, all entries in the parent-array store the

predecessors of each node, which can be back traced to construct the shortest path from the

source v1 to any node in the graph. Fig. 4.4 illustrates how the network matrix and the parent

array are implemented. To minimize the memory usage for storing and manipulating matrices, in

our actual hardware implementation (described in detail in a later section) we use registers to

store only the entries that are initially non-infinity in the network matrix. In other words, for

example in Fig. 4.2 we know that a16 and a61 will remain equal to infinity throughout the shortest

paths computation process - due to the regular mesh NoC topology which tells us that there is no

direct connection between nodes v1,v6. Therefore, there is no need to allocate and manipulate

memory for these entries of the network matrix. However, we need to use two additional

registers shown as “Fixed” and “Flag” in Fig. 4.4. Each time when the entries of a given column

must be set to infinity only the corresponding entry of the “Fixed” register is set to 1. This

eliminates the need for the infinity value, which is difficult to define in a simple hardware

implementation. The “Flag” register is used to mark the rows which are processed currently. For

example, once it is known that the first and fourth rows are to be processed next, their

corresponding entries in the “Flag” register are set to 1. In our hardware implementation, even

72

though the design time was slightly longer this custom implementation of the network matrix

reduced significantly the memory usage.

Using the additional registers, the pseudocode of the shortest path algorithm is presented

in Algorithm 1.

Figure 4.4. The pseudocode of the shortest path computation procedure.

4.4.3. Adaptive routing

To minimize the required extra hardware we propose a distributed (or decentralized)

scheme for the implementation of the adaptive routing. The NoC is partitioned into several

partitions (or regions) and each partition is managed by a local monitoring unit (LMU). LMUs

represent the controllers responsible with routing packets that enter their partitions. For example,

the 4x4 NoC from Fig. 4.6 is partitioned into four equal regions controlled by four LMUs. Even

though in this example the partitions have equal size, they may have different sizes too.

73

Figure 4.5. NoC partitioned into four partitions controlled by four LMUs.

Each LMU is in charge with routing data to routers within its own partition and to the

first-order neighboring routers adjacent to its own partition. To compute edge weights for links

that connect routers from different partitions, adjacent LMUs are interconnected to be able to

share information. For example in Fig. 4.6, LMU1 is responsible for routing packets injected

within the partition formed by the routers {1, 2, 5, 6} and the packets that arrive from adjacent

routers {3, 7, 9, 10}. This LMU will implement the shortest path computation procedure

described in the previous section, which will utilize the network matrix of the sub-graph

corresponding to routers {1, 2, 3, 5, 6, 7, 9, 10} and all edges between these routers except the

two edges corresponding to the links between routers {3, 7} and {9, 10}.

As an example consider a situation when a packet arrives to router 2 in partition 1 via the

boundary-crossing link between routers {3, 2} (shown in thicker line in Fig. 4.6). In this case, the

source node in the shortest path procedure will correspond to router 2. LMU1 will extract the

destination address from the header flit. If the destination router is located inside partition 1 or is

one of the adjacent routers {9, 10}, then LMU1, which has already computed the shortest paths,

Partition 1

PE

LMU
1

PE

PE

PE

PE

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Partition 2

Partition 3 Partition 4

LMU
2

LMU
3

LMU
4

74

will update the header flit (Fig. 4.9) with the shortest path routing information. If the destination

is in partition 3, then the header flit will be updated with the routing information toward one of

the routers {9, 10} - to the one with the shortest path - and packets will be routed accordingly.

Then, LMU3 will be responsible with routing to the final destination inside partition 3.

As another example, let us consider the source-destination pair v1, v16. Because the

destination is in partition 4, the algorithm will first find the shortest path to either of the routers

{3, 7, 9, 10} in partitions 2 and 3. Assuming that the shortest path is to router 7, the packets may

be routed as shown in Fig. 4.6. Then, LMU2 will be responsible with routing packets toward

partition 4. This will be done by utilizing the shortest path from the source 7 to either of the

routers {11, 12}. If this path is to the router 11 as shown in Fig. 4.6, then LMU4 will be

responsible with routing along the shortest path from the local source 11 to the final destination

16.

4.4.4. Addressing link failures

As CMOS fabrication technologies move to nano-scale feature sizes, integrated circuits

become more susceptible to manufacturing faults, transient faults, and aging mechanisms that

can lead to permanent faults. In NoC architectures without fault tolerance mechanisms,

permanent link failures can render the NoC inoperable. The adaptive algorithm proposed in this

paper, can easily address link failures and thereby facilitate fault tolerance. When a link failure is

detected inside a given partition, the corresponding LMU can remove that link from the

adjacency matrix. Hence, the shortest path computation procedure will compute thereafter paths

formed by the remaining healthy links only.

75

4.4.5. Deadlock

Deadlock occurs when packets are unable to move forward because they are waiting on

one another to release resources (i.e., there is a cyclic dependency between packets). This is

undesirable because it can paralyze the operation of the network. Therefore, routing algorithms

must be designed so that deadlock is avoided [4.1]. While the proposed routing algorithm is not

designed to directly guarantee the deadlock free property, it indirectly minimizes the likelihood

of deadlock occurrence. If a deadlock situation occurs, the affected links (which do not see

activity for long periods of time) can be interpreted as if they were congested or broken.

Because, the proposed adaptive algorithm is called periodically, the new computed routing paths

will avoid the affected links, thereby most likely eliminating the deadlock situation. In other

words, in the event that a packet dependency occurs, it will be eliminated during the next call of

the shortest path computation procedure, which will find a different path (using other links)

along which packets can move forward.

4.5. Hardware implementation

The implementation of the adaptive routing requires changes in the NoC architecture.

First, we added the local monitoring units and their connections as discussed in the previous

section and as illustrated in Fig. 4.7. Second, we designed a new router architecture to provide

support for the mechanics of the proposed routing algorithm as described below.

4.5.1. Modified router architecture

Because we use input and output buffers occupancies to compute edge weights, we

modify the input and output buffers by adding local input and output control units as shown in

Fig. 4.8. To minimize the router area, all buffers are implemented using registers instead of

SDRAM structures. Input and output ports use 2 virtual channels. Messages are divided into

76

packets, which are further divided into 3 flits (header, body, and tail). The header flit contains the

routing information and destination address. Fig. 4.9 shows the format of the header flit. Once a

header flit arrives to the input port of a given router, the routing information (i.e., the output port

ID to which the flit should be forwarded to) is provided by the local monitoring unit. When the

header flit is received the routing bits are shifted as shown in Fig. 4.9. Routers use the routing

data bits to determine the output port. In this way the usage of routing tables is avoided. After

gaining access to the output port and before the transfer to the output buffer is started, the input

control unit (ICU) saves the destination port ID in the port ID control bits (see Fig. 4.8.a) where

it will be stored until after the tail flit of the same packet will traverse this router. The ICU also

sets the “Port request” bit whenever a flit requests access to any output port.

Figure 4.6. Block diagram of the communication between two adjacent routers.

Upstream router

Link

Modified
output buffer

Downstream router

Avail. slots

“Full”

Local
monitoring

unit
Avail. slots Avail. slots

VC 1

VC 2

Modified
input buffer

VC 1

VC 2

77

(a)

(b)

Figure 4.7. (a) Block diagram of the input buffer. (b) Block diagram of the output buffer.

Figure 4.8. Header flit description.

At each positive edge of the clock the ICU computes the number of occupied slots in the

input buffer. This information is sent to LMU, upstream router and arbiter. The “Full” bit (see

Fig. 4.8.a) is set to 1 when there is at least an empty slot available and this information is

communicated to the upstream router. Whenever there is an empty slot in the output buffers, the

output control unit (OCU) sets the “Full” bit in Fig. 4.8.b and sends this info to the arbiter, which

78

continuously monitors the output buffers. If an empty slot is available in the output buffer the

arbiter will check if it is reserved or not. When both virtual channels of an output port are

available the arbiter will select and grant access first the one with more empty slots. When the

output buffer receives a header flit the arbiter will set the reserved bit to logic 1, which will be

kept until after the tail flit will be received. The OCU also computes the number of used buffer

slots (i.e., the output buffer occupancy), which is sent to the local monitoring unit, arbiter, and

output interface unit. In addition, OCU also sets the “Request port” bit whenever a flit requests

access to physical link. This bit is continuously monitored by the output interface unit. At each

positive edge of the clock the ICU computes the number of occupied slots in the input buffer.

This information is sent to LMU, upstream router and arbiter. The “Full” bit (see Fig. 4.8.a) is set

to 1 when there is at least an empty slot available and this information is communicated to the

upstream router. Whenever there is an empty slot in the output buffers, the output control unit

(OCU) sets the “Full” bit in Fig. 4.8.b and sends this info to the arbiter, which continuously

monitors the output buffers. If an empty slot is available in the output buffer the arbiter will

check if it is reserved or not. When both virtual channels of an output port are available the

arbiter will select and grant access first the one with more empty slots. When the output buffer

receives a header flit the arbiter will set the reserved bit to logic 1, which will be kept until after

the tail flit will be received. The OCU also computes the number of used buffer slots (i.e., the

output buffer occupancy), which is sent to the local monitoring unit, arbiter, and output interface

unit. In addition, OCU also sets the “Request port” bit whenever a flit requests access to physical

link. This bit is continuously monitored by the output interface unit.

The output interface unit shown in Fig. 4.8.b functions as an arbiter. A packet in the

output buffer will be sent to a virtual channel with more empty slots in the input port of the

79

downstream router. When both output virtual channels compete over the physical link, the output

interface unit will select and grant access first to the VC that has the least available memory.

When the input buffer of the downstream router receives a header flit it will be marked as being

reserved.

The shortest path computation requires eight clock cycles. Therefore, every other eight

clock cycles the LMUs update the shortest paths. This period is small enough to ensure rapid

response to changes in traffic as observed in our experiments.

4.6. Experimental results

To validate and test the proposed adaptive algorithm, we have coded in Verilog a 4x4

NoC prototype with an architecture similar to that shown in Fig. 4.6. The NoC design is

synthesized using the Xilinx ISE compiler [4.22] and the RTL implementation is verified via

dynamic simulation. The target hardware platform is a Virtex 5 FPGA. The ISE tool is utilized to

estimate total area. The static timing analysis feature of the ISE tool is used to measure and

compute the average flit latency.

4.6.1. Adaptive routing to address

In the first set of experiments, we compare the proposed adaptive routing algorithm

against the traditional XY routing. We also compare the proposed routing algorithm against

DyXY adaptive algorithm [4.3] due to its popularity and ease of implementation. Even though

DyXY was studied only based on simulations, we have implemented it in Verilog using our own

adapted router architecture. The hardware implementation of other previously proposed adaptive

routing algorithms is not available. Moreover, because of the complexity of these adaptive

algorithms, their Verilog implementation is very challenging. Therefore, we restrict our

experiments to comparisons against XY and DyXY algorithms. We report our results for two

80

multimedia benchmarks. The communication task graph (CTG) and optimized mapping of the

first benchmark are from [4.23] and are shown in Fig. 4.10. The injected traffic at all sources of

the CTG is generated by local generators. The average number of injected packets at each source

is proportional to the communication volume of each source-destination pair shown in Fig.

4.10.a. The average latency is computed under the assumption that packets are consumed

immediately upon arrival to their destinations. Fig. 4.11 presents the average latencies achieved

using the proposed adaptive routing algorithm, the traditional XY routing algorithm, and DyXY

algorithm respectively. It can be observed that the proposed adaptive routing improves the

network throughput at high packet injection rates. However, at low packet injection rates latency

is slightly degraded compared to XY routing due to the delay penalty incurred in the hardware

for adaptive routing support.

The communication task graph (CTG) and optimized mapping of the second benchmark

are from [4.24] and are shown in Fig. 4.12. Again the proposed adaptive routing improves the

network throughput at high packet injection rates (Fig. 4.13). The improvement in throughput

and the extra hardware needed to implement the proposed algorithm is shown in Table 4.1.

Throughput is defined at the point where the latency is twice as the low packet injection rate

latency. The extra hardware to implement the proposed algorithm is around 17%, which is less

than 42% of [4.13]. The area penalty is slightly higher than the area penalty for the DyXY

routing algorithm. However, note that DyXY routing algorithm is designed to address only

congestion, while the proposed routing algorithm addresses both congestion and link failures for

fault tolerance.

81

(a)

(b)

Figure 4.9. CTG and optimized mapping of the first multimedia benchmark.

Figure 4.10. Comparison of the average latency achieved by the proposed adaptive routing, the

traditional XY routing algorithm and DyXY algorithm for the first benchmark.

v
16

v
2

v
4

v
15

v
11

v
6

v
3

v
9

v
10

v
14

v
12

v
1

v
8

v
7

v
13

v
5

Packet injection rate (packet/cycle)

70

90

110

130

0.2

A
v
er

ag
e

la
te

n
cy

 (
cy

cl
e)

0.3 0.4 0.5 0.6 0.7

DyXY algorithm

Proposed algorithm

XY routing algorithm

82

(a)

(b)

Figure 4.11. CTG and optimized mapping of the second multimedia benchmark.

Figure 4.12. Comparison of the average latency achieved by the proposed adaptive routing and

the traditional XY routing algorithms for the second benchmark.

v
1

v
2

v
4

v
5

v
6

v
7

v
8

v
9

v
10

v
13

v
15

v
16

v
12

v
11

v
14

v
3

Packet injection rate (packet/cycle)

70

90

110

130

0.2

A
v
er

ag
e

la
te

n
cy

 (
cy

cl
e)

0.3 0.4 0.5 0.6 0.7

DyXY algorithm
Proposed algorithm

XY routing algorithm

83

4.6.2. Adaptive routing to address link failures

In this section we investigate the performance of the proposed adaptive routing algorithm

in the presence of link failures. We investigate the fault tolerance of the proposed routing

algorithm for a number of injected link failures varied between and 4. For each of these numbers,

we randomly inject link failures several times and then we compute the average throughput. To

keep the CPU computational runtimes of ISE tool within reasonable limits we study a simpler

testcase whose mapping is shown in Fig. 4.14. Each of the injected set of faults are handled by

the proposed algorithm as described in Section 4.3.5. The network throughput degradation as a

function of the number of injected faults is shown in Fig. 4.15. It can be noted that the network

throughput degrades gracefully, which demonstrates the ability of the proposed routing algorithm

to address link failures.

Table 4.1. Comparison against XY routing

Routing algorithm Extra hardware Test Case Throughput improvement

Proposed algorithm 17 % Test case 1 21%

Test case 2 20%

DyXY algorithm 12 % Test case 1 11%

Test case 2 10%

4.7. Conclusion

We proposed a new fault-tolerant and congestion-aware adaptive routing algorithm for

NoCs. To implement the proposed algorithm the NoC architecture is partitioned into regions

controlled by local monitoring units. Each local monitoring unit runs a shortest path computation

procedure to identify the best routing path so that highly congested routers are avoided. To

dynamically react to continuously changing traffic conditions the procedure is invoked

84

periodically. Because the procedure is based on the ball-and-string model, the hardware overhead

and computational times are minimal. Experimental results based on an actual Verilog

implementation demonstrate that the proposed adaptive routing algorithm improves significantly

the network throughput compared to traditional XY routing and DyXY adaptive algorithms.

Figure 4.13. The mapping of the third benchmark.

Figure 4.14. Throughput depredation for different amount of fault injection.

4.8. References

[4.1] W. J. Dally, and B. Towles, Principles and Practices of Interconnection Networks, Morgan

Kaufmann, 2004.

[4.2] G.D. Micheli, and L. Benini, Networks on Chips: Technology and Tools, Morgan

Kaufmann, 2006.

v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
8

v
9

Number of faults injected

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4

T
h

ro
u

g
h

p
u

t

85

[4.3] M. Li, Q.A. Zeng, and W.B. Jone, “DyXY: a proximity congestion aware deadlock-free

dynamic routing method for network on chip,” ACM/IEEE Design Automation Conference

(DAC), 2006.

[4.4] R. Marculescu, “Networks-on-chip: the quest for on-chip fault-tolerant communication,”

IEEE Computer Society Annual Symposium on VLSI, 2003.

[4.5] M. Yang, T. Li, Y. Jiang, and Y. Yang, “Fault tolerant routing schemes in RDT(2,2,1)/a-

based interconnection for networks on chip designs,” Int. Symposium on Parallel Architectures,

Algorithms and Networks, 2005.

[4.6] J. Hu and R. Marculescu, “DyAD: smart routing for networks-on-chip,” ACM/IEEE

Design Automation Conference (DAC), 2004.

[4.7] T. Mak, P.Y.K. Cheung, W. Luk, and K.P. Lam, “A DP-network for optimal dynamic

routing in Network-on-Chip,” ACM/IEEE Int. Conference on Hardware Software Codesign,

2009.

[4.8] L. Tedesco, F. Clermidy, and F. Moraes, “A path-load based adaptive routing algorithm for

Networks-on-Chip,” ACM Annual Symposium on Integrated Circuits and System Design, 2009.

[4.9] G. Ascia, V. Catania, M. Palesi, and D. Patti, “Implementation and analysis of a new

selection strategy for adaptive routing in networks on chip,” IEEE Trans. on Computers, vol. 57,

no. 6, pp. 809-820, 2008.

[4.10] F. Ge, N. Wu, and Y. Wan, “A network monitor based dynamic routing scheme for

network on chip,” IEEE Asia Pacific Conference on Microelectronics and Electronics, 2009.

[4.11] M.A. Al Faruque, T. Ebi, and J. Henkel, “Run-time adaptive on chip communication

scheme,” ACM/IEEE Int. Conference on Computer Aided-Design (ICCAD), 2007.

86

[4.12] P. Gratz, B. Grot, and S.W. Keckler, “Regional congestion awareness for load balance in

networks-on-chip,” IEEE Int. Symposium on High Performance Computer Architecture, 2008.

[4.13] D. Fick, A. DeOrio, J. Hu, V. Bertacco, D. Blaauw, and D. Sylvester, “Vicis: a reliable

network for unreliable silicon,” ACM/IEEE Design Automation Conference (DAC), 2009.

[4.14] C. Feng, Z. Lu, A. Jantsch, J. Li, and M. Zhang, “A reconfigurable fault tolerant

deflection routing algorithm based on reinforcement learning for network-on-chip,” Int.

Workshop on Network on Chip Architectures (NocArc), 2010.

[4.15] D. Fick, A. Deorio, G. Chen, D. Sylvester, and D. Blaauw, “A highly resilient routing

algorithm for fault tolerant NoCs,” ACM/IEEE Design Automation and Test in Europe Conf.

(DATE), 2009.

[4.16] M. Koibuchi, H. Matsutani, H. Amano, and T.M. Pinkston, “A lightweight fault tolerant

mechanism for Network-on-Chip,” ACM/IEEE Int. Symposium on Networks-on-Chip (NoCS),

2008.

[4.17] H. Ishikawa, S. Shimizu, Y. Arakawa, N. Yamanaka, and K. Shiba, “New parallel shortest

path searching algorithm based on dynamically reconfigurable processor DAPDNA-2,” IEEE

Int. Conference on Communications, 2007.

[4.18] P. Narvaez, K.Y. Siu, and H.Y. Tzeng, “New dynamic SPT algorithm based on a ball-and-

string model,” ACM/IEEE Trans. on Networking (TON), vol. 9, no. 6, pp. 706-718, 2001.

[4.19] T. Shi and J.J. Lee, “An O(L) parallel shortest path algorithm,” Int. Conference on

Computer Design (CDES), pp. 119-124, 2009.

[4.20] A.D. Choudhury, G. Palermo, C. Silvano, and V. Zaccaria, “Yield enhancement by robust

application-specific mapping on Network-on-Chips,” Int. Workshop on Network on Chip

Architectures (NocArc), 2009.

87

[4.21] C. Seiculescu, S. Murali, L. Benini, G. De Micheli, “A method to remove deadlocks in

Networks-on-Chips with wormhole flow control,” ACM/IEEE Design Automation and Test in

Europe Conf. (DATE), pp.1625-1628, 2010.

[4.22] Xilinx ISE Tools, http://www.xilinx.com

[4.23] M. Lai, L. Gao, N. Xiao, and Z. Wang, “An accurate and efficient performance analysis

approach based on queuing model for Network on Chip,” ACM/IEEE Int. Conference on

Computer-Aided Design (ICCAD), 2009.

[4.24] E.B. van der Tol, E.G.T. Jaspers, “Mapping of MPEG-4 decoding on a flexible

architecture platform,” SPIE, Media Processors, pp. 1-13, 2002.

88

CHAPTER 5. FAULT-TOLERANCE ORIENTED MULTI-LAYERED DESIGN

METHODOLOGY FOR NETWORKS-ON-CHIP

This paper is submitted to IET The Journal of Engineering. The authors of the paper are

Hamed Sajjadi Kia, Cristinel Ababei, and Sudarshan Srinivasan.

5.1. Abstract

We introduce a new fault-tolerance oriented design methodology for regular networks-

on-chip (NoCs). The proposed methodology combines several design optimization techniques

that cater to improving reliability at the CAD tool, NoC architecture, and network-routing levels.

At the CAD tool level, we utilize a reliability aware mapping algorithm to assign application

tasks to an NoC-based target architecture such that network reliability is improved. At the

architecture and network-routing levels, we develop an NoC architecture that uses reconfigurable

self-repairable links with spare wires and a distributed routing algorithm to dynamically detect

permanent failures in unrepairable links and to recalculate routing paths using healthy links. It is

the combination of these techniques that sets the proposed methodology apart and helps to

provide a better tradeoff point between the improvement in fault tolerance and performance

penalty due to the required redundancy and extra logic. A NoC prototype is implemented in

Verilog-HDL and simulated to show the correct operation of the self-repairable links and of the

adaptive routing.

5.2. Introduction

Network-on-Chip (NoC) has become a popular communication infrastructure in

multiprocessor Systems-on-Chip (MPSoCs) [5.1, 5.2]. Borrowing a lot from the computer

networks domain, on-chip networks consist of specialized routers connected via communication

links in different topologies. These network topologies provide a communication medium for the

89

processing elements (PE) connected to the network routers. Messages are organized as packets

and transfered between PEs along paths established by the routing algorithm. The benefits of

NoCs compared to the traditional buses include scalability, predictability, and higher bandwidth

with support for concurrent communications.

Continuous shrinking of the feature size in deep submicron domains has resulted into

increasingly adverse effects of process variations and aging mechanisms. These adverse effects

translate into reliability issues (e.g., delay variations, transient and permanent faults, etc.) in both

components of today's MPSoCs: processing cores and network-on-chip. Reliability has become a

first class design concern aside from the traditional objectives that include performance, power

dissipation, and area/cost [5.3]. To deal with the reliability challenge, previous research has

mostly focused on the processing elements of MPSoCs. However, the NoC as the

communication unit, represents a significant portion of MPSoCs and only recently, reliability of

NoC started to be addressed; however, it is still largely an ongoing problem. A holistic design

approach should address reliability of the whole system as a combination of both the

computation (i.e., processing cores) and the communications (i.e., NoC) units.

Towards that goal, in this paper, we propose a new multi layered fault-tolerance oriented

design methodology for NoCs as a hybrid solution composed of several reliability and fault

tolerance design techniques applied at the CAD tool, NoC architecture, and network-routing

levels. To the best of our knowledge this is one of the first fault-tolerance oriented design

methods for NoCs that addresses hard failures across three different levels of abstraction. It is

this layered approach, which combines the benefits of the proposed techniques at different levels

that enables improved NoC resilience - it takes a very large number of hard faults to render the

system inoperable. What makes the proposed method even more powerful is that it is very cost

90

effective in terms of area and power overheads. In this paper, we combine improved versions of

our previously studied techniques and propose a new fault tolerant adaptive routing algorithm to

arrive to a comprehensive fault tolerant NoC solution. The proposed new adaptive routing

algorithm utilizes a decentralized routing approach. The new routing strategy (compared to

previous works [5.51, 5.34]) explores a larger solution space of possible routing scenarios. This

improvement comes with an increase in the complexity of the routing algorithm. One of the main

contributions of our new routing algorithm is the way we address this complexity. As an

additional difference compared to previous works, the need to run the routing algorithm each

time the system enters test mode is now eliminated. This helps to reduce the amount of time

required for test mode and the power consumed during the process of updating the routing tables.

The rest of this paper is organized as follows: In Section 5.2, we discuss previous works

related to reliability and fault tolerance in NoCs. In Section 5.3, we introduce the main idea

behind our proposed methodology. In Section 5.4, we introduce briefly the reliability aware

mapping for NoC, which represents one of the design techniques in our framework. Details about

the reconfigurable link architecture are presented in Section 5.5. In Section 5.6 we present a new

distributed adaptive routing algorithm. In Section 5.7, we evaluate the proposed ideas and

present our experiments. Finally, some conclusions are drawn in Section 5.8.

5.3. Previous work related to fault tolerance and adaptive routing

5.3.1. Fault tolerance for NoCs

As mentioned earlier, previous work has focused mainly on processing elements as the

computation units of MPSoCs. They addressed reliability by employing fault tolerant techniques

based on error detection [5.4], failure prediction [5.5], and error masking [5.6]. While in the field

91

of computer networks there has been a lot of work done on reliability, there have been only few

recent attempts to estimate and indirectly optimize NoC reliability. At the physical layer, wires

may be subject to delay variations [5.7], while routers may be impacted by single event upsets

(SEUs) [5.8]. The data-link layer can provide the functional and procedural means to detect and

possibly correct errors that may occur in the physical layer of NoC, by employing error

correcting codes (ECCs) [5.9], data encoding [5.10], and redundancy based reconfiguration

[5.11]. At the network layer, reliability of the routing algorithms can be enhanced by routing

multiple copies of the same packet via multiple paths [5.12, 5.13] or by adaptive re-routing

[5.14]. The reliability of custom switch architectures is analyzed in [5.15] while of various NoC

topologies are analyzed in [5.16]. Several recent studies have investigated NoC architectures and

techniques for fault tolerance [5.17, 5.18, 5.19, 5.20, 5.21, 5.22, 5.23, 5.24].

5.3.2. Adaptive routing for NoCs

Adaptive routing has been investigated as a primary mechanism to mitigate congestion

and improve network performance. Many of these algorithms borrow ideas from routing in

computer networks. For example, DyAD [5.25] is a combination of a static algorithm called oe-

fix and an adaptive algorithm based on the turn-even model while [5.26] is based on deflection

routing. Other previous adaptive routing algorithms include region-based routing (RBR) [5.27],

dynamic XY (DyXY) [28] and enhanced versions of it [5.29, 5.30, 5.31], segment-routing (SR)

[5.32], default backup path (DBP) [5.33], Vicis architecture [5.24, 5.34], reconfigurable fault-

tolerant [5.35], and others [5.36, 5.51]. To deal with transient and permanent link failures,

stochastic communication has been proposed [5.37]. However, it is not efficient in terms of

power dissipation and average it latency. EDXY algorithm [5.30] increases the tolerance against

single link failure compared to DyXY.

92

Generally, routing algorithms can be classified as truly distributed or centralized

distributed. Centralized algorithms utilize a central manager (typically one of the existing on-

chip processing elements or an on-chip processing unit) that collects information on the status of

the links and routers. The manager computes region boundaries, new routing paths, various setup

control signals, etc. to reflect changes in network traffic. The advantage of this approach is that

the manager always has a global view of the network. However, additional global control signals

are required for collecting information about the network status and to update routing tables.

Examples include [5.38, 5.40]. Truly distributed algorithms, on the other hand, do not use a

central manager [5.28]. Routing decisions are made by local routing controllers (located inside

each router) based typically on congestion or stress information about the neighboring routers.

Routing can be implemented as source routing or distributed routing. In source routing,

the source node computes the path and stores it in the packet header. Because the header itself is

transmitted, this approach consumes network bandwidth. In distributed routing, each router

computes the next link that will be used by the packets traveling across the network. The packet

header contains only the destination address or ID. Distributed routing can be implemented in

different ways. Hence, another classification of routing algorithms is based on whether routing

tables are used or not. The main advantage of table-based routing algorithms [5.34, 5.41] is that

they can support any network topology and any routing technique. However, because tables are

implemented as memories, they do not scale well with network size in terms of area,

performance and power. Even though this problem can be alleviated by table compression [5.42]

or minimization [5.43], logic-based adaptive routing algorithms have been proposed recently

[5.31, 5.38, 5.40, 5.44, 5.45].

93

Another categorization of adaptive routing algorithms is based on whether they are static

or truly dynamic. Algorithms especially designed to achieve permanent fault tolerance rather

than adaptiveness are static [5.44] in that they employ static fault models. They require shutdown

or change of mode of operation for diagnosis purposes (e.g., enter testing mode to detect

permanent link failures using BIST techniques). Also, routing paths recalculation and

reconfiguration must be done before the faults can be tolerated. Examples include [5.31, 5.40,

5.44]. On the other hand, algorithms designed to achieve adaptiveness for congestion

optimization or transient fault tolerance can be truly dynamic. In this case, the operation of the

network need not be interrupted. Transient faults can be detected and corrected dynamically in

real time by specialized data coding and error correcting techniques.

Finally, adaptive routing algorithms can use minimal paths or not. Minimal routing

always uses shortest paths (assuming that at least one is available or is healthy) [5.38]. However,

when source and destination nodes are located on the same row or column, one must change

direction and route along non-shortest paths to tolerate link and router failures on the direct

shortest path. This technique can also be employed when none of the shortest paths is healthy.

However, the implementation of this approach is more complex. For a detailed review of

adaptive routing algorithms please refer to [5.39].

Most previous works on adaptive routing report simulation results achieved with

simulators developed in a high-level programming language (e.g., C++, Java, SystemC, etc.).

Therefore, they typically do not report actual area overheads due to the lack of actual hardware

implementation details.

94

5.4. Proposed fault tolerance oriented design methodology for NoCs

The majority of previous fault tolerance design techniques for NoCs are concentrated on

individual levels of the system stack. A different approach is to design solutions that span

multiple abstraction layers. This is the key idea of our fault tolerance oriented design

methodology, which is a collaborative approach of reliability aware mapping (design tool level),

reconfigurable links, and distributed adaptive routing (architecture and network layer). This is

illustrated in the block diagram shown in Fig. 5.1.

Figure 5.1. Modified Y Chart diagram of the proposed fault tolerance design methodology for

NoCs.

At the CAD tool level, we employ a multi-objective mapping algorithm, which achieves

mapping solutions with improved reliability. At the architecture level, we propose to utilize

special self-healing links. Finally, we introduce a distributed adaptive routing algorithm to

identify new routing paths and therefore to continue to maintain network operation when

individual link repair is not possible due to the unavailability of spare resources. It is the

combination of these three elements that makes our methodology powerful and distinguishes it

from previous works. In the next sections we describe each of these three elements.

95

5.5. Energy and reliability aware mapping for regular NoCs

In this section we present the multi-objective mapping algorithm that we utilize in the

proposed design methodology. Because we reported preliminary results of this algorithm in a

conference paper [46], we present here only an overview discussion of it for the sake of

completeness of the current presentation. Definitive details can be found in the aforementioned

paper.

Figure 5.2. Illustration of the problem of mapping for regular mesh NoCs. Assigning application

tasks t5, t6 as shown in the solution to the left, leads a higher minimal length path diversity which

translates into better network reliability.

The problem of energy consumption and reliability aware application mapping is

formulated for regular mesh NoC architectures. An application is given as an application

characterization graph (APCG) G(C,A), which is a directed graph, where each vertex ci ε C

represents an IP core, and each directed arc aij ε A represents the communication between source

core ci and destination core cj. Each aij can be tagged with application specific information (such

as communication volume in bits v(aij) or communication rate) and specific design constraints

(such as communication bandwidth, latency requirements, etc.). An APCG is derived from an

application communication task graph (CTG) whose concurrent tasks have been already assigned

and scheduled onto a list of selected IP cores. The mapping problem then is to decide how to

96

topologically place the selected set of IP cores onto the PEs (or tiles) of the NoC array such that

the metrics of interest are optimized (see Fig. 5.2).

The main idea of our reliability aware mapping algorithm relies on the following key

observation: when network reliability is defined based on the concept of path diversity, then, a

placement of source and destination nodes (of a given APCG) that forms a bounding box whose

shape is as close as possible to a square should be preferred to for example a placement in a

straight line (both tasks on the same row or column of the NoC). For the example in Fig. 5.2, the

mapping of the tasks t5 and t6 as shown in the mapping solution to the left offers a better network

reliability because the path diversity is better. In the second mapping solution shown in Fig. 5.2,

if any link along the straight path is permanently damaged, then only non-minimal length routing

paths could reconnect the two tasks. Note that this discussion is valid only under the assumption

that the NoC architecture is designed to provide support for adaptive routing to directly benefit

from such path diversity. We will discuss our adaptive routing algorithm designed for such

purposes in Section 5.6.

We solve the energy consumption and reliability aware mapping problem with a novel

branch-and-bound based algorithm. The reliability of a given mapping solution is estimated by

an efficient Monte Carlo algorithm based on the so called destruction spectrum of the network.

To model energy consumption, we utilize the so called bit energy metric model [5.56]:

 ∑ ()
 () ∑

[()] (5.1)

where ERbit and ELbit represent the energy consumed when one bit of data is transported through

one router and one physical link between two neighboring routers of the network. v(aij) is the

communication volume between two cores of the application communication graph (APCG).

97

dist(ti, tj) represents the Manhattan distance between tiles ti and tj . This energy cost is directly

utilized inside the cost function of the branch-and-bound mapping algorithms. Detailed

presentations of both the algorithms and the network reliability estimation technique can be

found in [5.46], where we have found that network reliability can be improved with minimal

penalty in energy consumption compared to the case when the mapping problem would have

energy consumption as the only objective.

5.6. Reconfigurable NoC links with spare wires

A popular technique to improve fault tolerance of communication links is to add spare

wires and additional logic that can detect hardware faults and repair the link by replacing broken

wires with spare ones. These techniques have been utilized in the past by several previous studies

[5.11, 5.23, 5.47]. Although the described self-healing link has a simple structure, it is not

scalable. To reduce the area overhead and thereby improve the scalability of such a fault

tolerance technique, we propose to split a given link into two segments and assign spare wires on

a subgroup basis to the wires from the main link. This is illustrated in the block diagram in Fig.

5.3.

Figure 5.3. Block diagram of a reconfigurable link structure with spare wires and two segments.

98

We have shown in our preliminary report [5.48] of this technique that splitting the link

into two segments offers the best compromise between how much the link reliability can be

improved and the area penalty to support the additional spare wires, fault detection logic,

controllers, and programmable switches (implemented with multiplexers and demultiplexers). In

this case the area overhead for the link connecting the upstream and down-stream routers shown

in Fig. 5.3 compared to a fault tolerant link implemented with only one segment is 3.71%, the

power consumption is 23.19% higher, and the link delay (i.e., latency) increases 16.41%.

However, link reliability is improved up to 20% for a link failure probability of 0.1%.

This tradeoff between improvement in link reliability and area penalty is better than any

previously reported result. A detailed investigation of this tradeoff can be found in [5.48]. Table

5.1 shows a comparison between the area and power overhead of the proposed link and the

available fault tolerant links [5.49] applied in the context of NoC.

Table 5.1. Area and power overhead of different fault tolerant links.

Link fault tolerant methods Area overhead Power overhead

Proposed link 12.8% 9.7%

Partially faulty link recovery mechanism 19.8% 6.15%

Simple flit quad splitting 16.9% 11.87%

Sectioned serialization method [5.49] 28.8% 15.39%

5.7. Proposed distributed adaptive routing

When the technique presented in the previous section runs out of spare wires for a given

link, then in order to maintain the overall NoC operational we propose to use an adaptive routing

algorithm. The proposed adaptive algorithm is a distributed routing approach to improve its

scalability and therefore serves two purposes: 1) We utilize it as a primary technique to improve

fault tolerance. It is triggered only when at least a link cannot self-repair through the fault

99

tolerance technique described in the previous section. 2) It provides architectural support for

cost-effective adaptive routing, which is necessary to enable the benefits of the network

reliability aware mapping solutions achieved with the mapping algorithm discussed in Section

5.4. Only with an NoC architecture that supports adaptive routing we can take advantage of the

improved path diversity made available to us by the reliability aware mapping solutions.

Again, fault tolerance via adaptive routing comes at the expense of an increase in area

and power consumption required by the additional hardware. To minimize this penalty, we

design our adaptive algorithm as a distributed (i.e., decentralized) routing approach. We partition

the NoC architecture into several regions or partitions. Each region has an associated local

control unit (LCU), which is responsible with the routing activities of all packets that enter any

router contained within the region. The NoC example in Fig. 5.4 is partitioned into 9 equally

sized regions. However, these regions do not need to be of equal area. The proposed adaptive

routing can be deployed to NoCs partitioned asymmetrically. We will present our discussion

however in the situation when all partitions are equal for convenience and ease of explanations.

 Each LCU is responsible with the routing of data to routers in its designated region and to

the first-order neighboring routers adjacent to its designated region. For example in Fig. 5.4,

LCU5 is responsible for routing packets that enter the region formed by the routers {14, 15, 20,

21}. The origin of the packets can be either the PEs connected to these routers or the routers in

the neighboring adjacent regions.

Once a packet is injected into a router at one of its input ports, its corresponding output

port is determined by simply reading from the routing table also located inside the router. When

links suffer from permanent faults that cannot be addressed via link reconfiguration anymore,

100

routing paths are recalculated and routing tables are updated with new routing paths information.

The updates are done by the routing controllers located inside each router. The routing paths

recalculation is performed by LCUs. This is done by switching the whole system periodically to

a testing mode state or on demand by the detection of a new hardware fault. Initially, when the

network is hardware fault free, all routing tables implement a traditional static XY routing

algorithm. As the system ages and hardware faults occur, the reconfigurable links address a first

set of the faults. The size of this set depends on the number of available spare wires in each link.

Once the system runs out of available spare wires, the adaptive routing algorithm is triggered and

new routing paths are recalculated. Note, that this new routing paths may still have links, which

if affected by hardware faults may still be repairable via link reconfiguration. When such

reconfiguration cannot be done because the systems again runs out of available spare wires, the

adaptive routing algorithm is triggered again and so on.

5.7.1. Description of the local control unit (LCU)

Once the system enters the test mode, the status of each link is determined by an error

detection mechanism integrated with each link and the results are reported to LCUs. Each LCU

uses the acquired data about the status of the 16 links in its designated region to determine the

output port for the packets that enter the routers in its region. In our design, a given LCU does

not need to know the status of the links that enter its designated region from neighboring regions;

hence, the total number of links an LCU has to monitor is 16.

To easier describe how an LCU and the adaptive routing algorithm work, let us focus our

discussion on router14, which is part of the partition controlled by LCU5 of the NoC illustrated in

Fig. 5.4. Fig. 5.5 describes the routing algorithm to determine the output port for the packets

injected to router14 from either PE14 or any of the neighboring routers based on their destinations

101

and the status of the links in the region. Note that similar algorithms are run at the level of

routers 15, 20, and 21. Also note that even though there are 16 links in each region, we only need

the information about the status of 9 of them to determine the output port for the packets injected

to each router in each region. These 9 links for router14 are shown (numbered from 0 to 8) in Fig.

5.6. The number of links used is dependent on the shape and size of the region. As we will

explain shortly, the number of these links has a direct relation with the hardware redundancy

required to implement the adaptive routing algorithm. Therefore, we want to use the minimum

number of links in our algorithm. In the case of router14, the routing algorithm requires

knowledge only about the status of the nine links depicted in Fig. 5.6. In other words, the

algorithm would not be able to execute if the information about the status of any of these links is

missing. On the other hand, the information about the status of other links is redundant. For

example, the links that enter router14 from south and east in this figure can bring data to it but

because we are interested in routing data out of router14 their status is not considered in the

routing algorithm of router14.

While easy to understand (as it will be described shortly), the algorithm from Fig. 5.5 is

rather complex from the point of view of required area and power overheads if implemented in

hardware. Therefore, to address this issue, we propose to run the algorithm offline and save the

results in a look up table (implemented as a memory array). This look up table will then be later

utilized on-line directly by LCU5 to update (during test mode) the routing tables located inside

the routers that it monitors.

102

Figure 5.4. Illustration of partitioning of a given NoC architecture into regions. Each region is

managed by a local control unit (LCU).

We developed the proposed routing algorithm based on a few assumptions. First, once

the number of hard failures in a given link becomes larger than the number of available spare

wires to repair it, a failure signal will be set to indicate a link failure. We refer to this signal as

errori. For example, an assertion of the error1 signal means that link 1 is broken. These error

signals indicate the status of all links in the network and are used by the routing algorithm in

deciding the output ports in a given router where packets can be forwarded. They are also used as

the address bits to indicate the location inside the look up table where to save/store the results of

running offline the algorithm from Fig. 5.5. When the number of failures and their location is

such that LCUs cannot route packets toward their destinations, a special system failure signal is

asserted to signal that the system cannot be utilized anymore.

103

Figure 5.5. Block diagram of the proposed adaptive routing algorithm for router14.

Second, each routing path should satisfy the following condition: packets should always

be routed toward their destination in either X or Y direction. Packets are routed first in the X

104

direction, unless that is not possible due to failed links or the packets are at a router that has

already the same Y coordinate as the destination - cases in which packets are attempted to be

routed in the Y direction. If routing in the Y direction is not possible, again due to possibly failed

links, the LCU sets the system failure signal.

Third, based on the (X, Y) location of the destination, all possible destinations (of the

packets injected in any given router) are divided into 9 groups (see Fig. 5.5). For example, group

1 includes all routers that are in the same row or column as router14 (have the same X or Y

coordinates). There is only one routing path to these routers. Group 2 includes the routers whose

X coordinate is smaller than the X coordinate of router14 and their Y coordinate is larger than the

Y coordinate of router14 (routers {0, 1, 6, 7} in Fig. 5.4).

Figure 5.6. The 9 links used for routing data entered router14.

 The algorithm from Fig. 5.5 has primarily two for loops. It starts with the first destination

j = 0 (router0) under the assumption that all 9 links (Fig. 5.6) are functional i = 0, and repeats the

process for all destinations (j = 0 … (N - 1)). Once the loop is completed, the results are saved in

the first row of the look up table in the following order: first 3 bits of the first row of the look up

table hold the output port id for the packets that enter router14 and their destination is router0

105

(under the assumption that all 9 links are functional). The fourth bit indicates if the system can

identify a routing path for these packets or not. In this case, because all of the 9 links are

functional it is set to 0. The routing information for the remaining destinations is saved in the

same order in the first row of the look up table - as shown in Fig. 5.5. Next, the above process is

repeated under the assumption that only link 0 is broken (i = 1 or i[0] = 1) and save the routing

information in the second row of the look up table. This process is repeated until we generate and

save the routing information for all possible destinations under all link failure situations.

The operation of the routing algorithm is further described in the following scenario

examples. Consider a situation where a packet arrives to router14 and its destination is router17.

router17 is in the first destination group. Based on the assumption that packets should always

move toward their destination either in X or Y direction, we see that there is only one path to

destination. The algorithm checks the status of link 2 (Fig. 5.6) if it is healthy, the packet will be

routed to the east output port (to router15). At this stage, the algorithm will not check the status of

link 5. Once the packet enters router15, the algorithm for router15 will check the status of link 5

and if it is broken it will set the system failure. This example illustrates the reliability issue

discussed earlier in Fig. 5.2. Because source and destination have the same X or Y coordinates,

there is only one routing path between them and therefore the communication pair has lower

reliability. As another example, let us consider the s - d pair, router14 and router5 in Fig. 5.4.

router5 is located in group 4 (Xrouter5 > (Xrouter14 + 1) and Yrouter5 > Yrouter14 (Fig. 5.5)). Because

the destination is in region 3, the LCU5 should send the packets to one of the routers {8, 9, 16} in

regions 2 and 6. The routing algorithm first tries the X direction. If link 2 and one of the links 4

or 5 (Fig. 5.6) are healthy, the packets will be routed to the east output port (this is because once

the packets enter router15 there will be at least one path open to send the packets toward region

106

3), otherwise the algorithm will check the status of link 1 - if it is healthy, packets will be routed

to the north output port. If link 1 is also broken, the system failure signal will be asserted.

As mentioned earlier, the routing algorithm is run offline for all destinations under all

possible link failure scenarios and the results are recorded in a look up table (as is illustrated in

Fig. 5.5). Note that the algorithm is run once offline for all possible failure scenarios and the

results are stored in a look up table. The algorithm will not be invoked during the operation of

the NoC. As already described, the error bits are utilized to address different locations in the look

up table. This technique effectively allows the LCUs to get pre-computed routing information

easily under different link failure situations. Fig. 5.7 illustrates the process of updating the

routing tables by the routing controllers integrated inside the routers using the look up tables in

LCUs that contain the results of running the adaptive routing algorithm offline.

Figure 5.7. Illustration of the process of updating the routing tables.

107

5.8. Experimental results

5.8.1. Simulations of the mapping algorithm

In the first set of experiments, we follow the block diagram from Fig. 5.1. We apply the

proposed mapping algorithm to several testcases whose characteristics are shown in Table 5.2.

The implementation, as a C++ computer program, of our mapping algorithm from Section 5.4 is

publicly available at [5.57].

The results of our simulations are shown in Table 5.3 where we investigate how much the

proposed mapping algorithm can improve network reliability. Refer to our conference paper

[5.46] for details on the models utilized for the energy and reliability estimations. It can be

observed that the overall network reliability of the mapped application is improved when

reliability is also included into the cost function of the mapping algorithm. However, the

improvement in reliability is at the expense of increasing the energy consumption. Because, here

we refer to the energy consumption of the NoC (which accounts for only up to 28% of the

overall energy consumption of a multiprocessor SoC [5.52]), the energy consumption overhead

is still within reasonable limits. The tradeoff between reliability and energy consumption can be

controlled via a user-set parameter, which weights the importance of the reliability cost

component in the multi-objective cost function of the mapping algorithm.

In our simulation experiments, we found that network reliability decreases as the

connectivity of the APCG increases (for example testcases ami25 and ami49 have almost all

cores communicating with each other). This can be explained in part by the fact that each link is

utilized by more routing paths. Thus, a link failure has a bigger impact on the state of the

network. Another factor which affects the overall network reliability is the probability of link

failure q. The results from Tables 3 were achieved for a q = 0.01. If this is increased, then the

108

improvement in reliability achieved with the reliability aware mapping algorithm becomes

larger.

Table 5.2. Testcases and their characteristics used for mapping simulations.

Testcase Num. of cores APCG connectivity Min/max comm. vol.

mpeg4 9 low 1/942

telecom 16 medium 11/71

ami25 25 high 1/4

ami49 49 high 1/14

Even though it may seem that reliability improvement of only a few percentages is not

much, this improvement cannot be directly compared as a percentage against the percentage of

energy or performance overhead. Instead, the significance of such an improvement of reliability

lies in its economic potential (what is the cost savings when for example 3% out of the total

population of systems do not fail - i.e., when yield is improved by 3%), consequences (which can

be severe in critical applications), and user satisfaction.

5.8.2. Cost estimations

Next, we estimate the extra hardware cost to implement the reconfigurable links as well

as the proposed adaptive algorithm described in Fig. 5.5.

We developed a complete regular mesh NoC with reconfigurable links that utilize 4 spare

wires in addition to the 16 wires that form the regular links. We compare this custom NoC

against a traditional NoC implementation that has simple regular links and no support for

adaptive routing. Both these NoC architectures are coded in Verilog-HDL, synthesized and

simulated with Xilinx ISE WebPack [5.60]. We find that the proposed custom NoC requires

17.94% more area compared to the traditional NoC, it consumes on average 16.81% more power,

and it can operate at a maximum operation frequency that is 20.84% smaller. It is worth

109

mentioning that the cost of 17.94% in area increase is actually not too much given that the

custom NoC implementation has all its links as reconfigurable links with spare wires.

Table 5.4 depicts a comparison of the area and power overheads between the proposed

fault tolerant algorithm and some of the previously proposed fault tolerant routing algorithms. As

an additional experiment, we have also implemented the proposed routing algorithm with regular

rather than reconfigurable links. In this case, the maximum achievable operation frequency is

with only 3.86% (rather than 20.84%) lower compared to the traditional XY routing algorithm.

Table 5.3. Simulations results achieved with the energy and reliability aware mapping algorithm.

Testcase

CPU

runtime (s)

Objective: energy Objective: energy & reliability

Energy

(J)

Reliability

(%)

Energy

(J)

Reliability

(%)

mpeg4 0.23 5.73 97.96 5.74 98.953

telecom 2.1 13.969 95.163 14.794 98.064

ami25 7.25 6.907 96.91 7.185 97.932

ami49 124.1 15.402 91.378 15.942 94.111

Table 5.4. Area and power overhead of different fault tolerant routing algorithms for NoC.

Fault tolerant routing algorithm

Area overhead (compared to

XY algorithm)

Power overhead (compared to

XY algorithm)

Proposed adaptive routing algorithm

with reconfigurable links

17.94% 16.81%

Proposed adaptive routing algorithm

without reconfigurable links

5.1% 7.1%

DyRS-NM [5.55] 5.64% NA

DSPIN [5.35] 8% NA

FT XY3 [5.54] 6.1% 5.2%

Negative first [5.53] 33.2% NA

5.9. Conclusion

We proposed a hybrid fault tolerance oriented design methodology for regular networks-

on-chip. The key contribution is the combination of three design optimization techniques to

improve reliability at three different levels: 1) CAD tool - via network reliability oriented

110

mapping, 2) NoC architecture - via redundancy based self-repairable communication links, and

3) network-routing - via cost-effective distributed adaptive routing. It is the combination of these

techniques that distinguishes the proposed methodology from previous work and helps to provide

improved fault tolerance and graceful performance degradation in the face of increasingly

adverse hardware faults due to aging mechanisms.

5.10. References

[5.1] W.J. Dally and B.P. Towles, Principles and Practices of Interconnection Networks, Morgan

Kaufmann, 2004.

[5.2] G. De Micheli and L. Benini, Networks on Chip, Morgan Kaufmann, 2006.

[5.3] J.D. Owens, W.J. Dally, R. Ho, D.N. Jayasimha, S.W. Keckler, and L.S. Peh, Research

challenges for on-chip interconnection networks, IEEE Micro, vol. 27, no. 5, pp. 96-108, 2007.

[5.4] S. Feng, S. Gupta, A. Ansari, and S. Mahlke, Shoestring: probabilistic soft error reliability

on the cheap, International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), 2010.

[5.5] Y. Li, Y.M. Kim, E. Mintarno, D.S. Gardner, and S. Mitra, Overcoming early-life failure

and aging for robust systems, IEEE Design & Test of Computers, vol. 26, no. 6, pp. 28-39, 2009.

[5.6] M. Choudhury, V. Chandra, K. Mohanram, and R. Aitken, TIMBER: time borrowing and

error relaying for online timing error resilience, Proceedings of Design Automation and Test in

Europe Conference (DATE), 2010.

[5.7] C. Hernandez, F. Silla, and J. Duato, A methodology for the characterization of process

variation in NoC links, Proceedings of Design Automation and Test in Europe Conference

(DATE), 2010.

111

[5.8] A. Ejlali, B.M. Al-Hashimi, P. Rosinger, and S.G. Miremadi, Joint consideration of fault-

tolerance, energy-efficiency and performance in on-chip network, Proceeding of Design

Automation and Test in Europe Conference (DATE), 2007.

[5.9] S.R. Sridhara and N.R. Shanbhag, Coding for system-on-chip networks: a united

framework, IEEE Trans. on Very Large Scale Integration Systems (TVLSI), vol. 13, no. 6, pp.

655-667, 2005.

[5.10] D. Bertozzi, L. Benini, and G. De Micheli, Error control schemes for on-chip

communication links: the energy-reliability tradeoff, IEEE Trans. on Computer-Aided Design of

Integrated Circuits and Systems (TCAD), vol. 24, no. 6, pp. 818-831, 2005.

[5.11] T. Lehtonen, D. Wolpert, P. Liljeberg, J. Plosila, and P. Ampadu, Self-adaptive system for

addressing permanent errors in on-chip interconnects, IEEE Trans. on Very Large Scale

Integration Systems (TVLSI), vol. 18, no. 4, pp. 527-540, 2010.

[5.12] S. Murali, D. Atienza, L. Benini, G. De Micheli, A multi-path routing strategy with

guaranteed in order packet delivery and fault-tolerance for networks on chip, Design Automation

and Test in Europe Conference (DATE), 2006.

[5.13] A. Patooghy and S.G. Miremadi, Complement routing: a methodology to design reliable

routing algorithm for network on chips, Microprocessors and Microsystems, vol. 34, no. 6, pp.

163-173, 2010.

[5.14] A.D. Choudhury, G. Palermo, C. Silvano, and V. Zaccaria, Yield enhancement by robust

application specific mapping on Network-on-Chips, International Workshop on Network on

Chip Architectures (NocArc), 2009.

[5.15] A. Dalirsani, M. Hosseinabady, and Z. Navabi, An analytical model for reliability

evaluation of NoC architectures, International On-Line Testing Symposium (IOLTS), 2007.

112

[5.16] T. Lehtonen, P. Liljeberg, and J. Plosila, Fault tolerance analysis of NoC architectures,

International Symposium on Circuits and Systems (ISCAS), 2007.

[5.17] J. Kim, D. Park, C. Nicopoulos, N. Vijaykrishnan, and C.R. Das, Design and analysis of

an NoC architecture from performance, reliability and energy perspective, Symposium on

Architecture for Networking and Communications Systems (ANCS), 2005.

[5.18] D. Park, C.A. Nicopoulos, J. Kim, N. Vijaykrishnan, and C.R. Das, Exploring fault-

tolerant Network-on-Chip architectures, International Conference on Dependable Systems and

Networks (DSN), 2006.

[5.19] F. Worm, P. Thiran, G. de Micheli, and P. Ienne, Self-calibrating Networks-On-Chip,

International Symposium on Circuits and Systems (ISCAS), 2005, pp. 2361-2364.

[5.20] S. Shamshiri and K.T. Cheng, Yield and cost analysis of a reliable NoC, VLSI Test Sym-

posium, 2009.

[5.21] H. Elmiligi, A.A. Morgan, M.W. El-Kharashi, and F. Gebali, A reliability-aware design

methodology for Networks-on-Chip applications, International Conference on Design and

Technology of Integrated Systems in Nanoscale Era, 2009.

[5.22] A. Patooghy, S.G. Miremadi, and M. Fazeli, A low-overhead and reliable switch

architecture for Network-on-Chips, Integration, the VLSI Journal, vol. 43, no. 3, pp. 268-278,

2010.

[5.23] Q. Yu and P. Ampadu, Transient and permanent error co-management method for reliable

Networks-on-Chip, International Symposium on Networks-on-Chip (NOCS), 2010.

[5.24] A. DeOrio, D. Fick, V. Bertacco, D. Sylvester, D. Blaauw, J. Hu, and G. Chen, A Reliable

routing architecture and algorithm for NoCs, IEEE Trans. on Computer-Aided Design (TCAD),

vol. 31, no. 5, pp. 726-739, 2012.

113

[5.25] J. Hu and R. Marculescu, DyAD - smart routing for Networks-on-Chip, Design

Automation Conference (DAC), 2004.

[5.26] A. Kohler and M. Radetzki, Fault-tolerant architecture and detection routing for

degradable NoC switches, International Symposium on Networks-on-Chip (NOCS), 2009.

[5.27] J. Flich, A. Mejia, P. Lopez, and J. Duato, Region Based Routing: An efficient routing

mechanism to tackle unreliable hardware in network on chip, International Symposium on

Networks-on-Chip (NOCS), 2007.

[5.28] M. Li, Q.-A. Zeng, and W.B. Jone, DyXY - a proximity congestion-aware deadlock free

dynamic routing method for Network-on-Chip, Design Automation Conference (DAC), 2006.

[5.29] P. Gratz, B. Grot, and S.W. Keckler, Regional congestion awareness of load balance in

Network-on-Chips, International Symposium on High Performance Computer Architecture,

2008.

[5.30] P. Lot-Kamran, A.M. Rahmani, M. Daneshtalab, A. Afzali-Kusha, and Z. Navabi, EDXY-

A low cost congestion-aware routing algorithm for network-on-chips, Journal of Systems

Architecture, vol. 56, no. 7, pp. 256-264, 2010.

[5.31] M. Valinataj, S. Mohammadi, J. Plosila, P. Liljeberg, and H. Tenhunen, A reconfigurable

and adaptive routing method for fault-tolerant mesh-based networks-on-chip, International

Journal of Electronics and Communications, vol. 65, no. 7, pp. 630-640, 2011.

[5.32] A. Mejia, J. Flich, J. Duato, S.A. Reinemo, and T. Skeie, segment-based routing: An

efficient fault-tolerant routing algorithm for meshes and Tori, International Parallel &

Distributed Processing Symposium (IPDPS), 2006.

[5.33] M. Koibuchi, H. Matsutani, H. Amano, and T. Pinkston, A lightweight fault-tolerant

mechanism for network-on-chip, International Symposium on Networks-on-Chip (NOCS), 2008.

114

[5.34] D. Fick, A. DeOrio, G. Chen, V. Bertacco, D. Sylvester, and D. Blaauw, A highly resilient

routing algorithm for fault-tolerant NoCs, Design Automation and Test in Europe Conference

(DATE), 2009.

[5.35] Z. Zhang, A. Greiner, and S. Taktak, A reconfigurable routing algorithm for a fault-

tolerant 2D-mesh network-on-chip, Design Automation Conference (DAC), 2008.

[5.36] A. Hosseini, T. Ragheb , and Y. Massoud, A fault-aware dynamic routing algorithm for

on-chip networks, International Symposium on Circuits and Systems (ISCAS), 2008.

[5.37] T. Dumitras and R. Marculescu, On-chip stochastic communication, Design Automation

and Test in Europe (DATE), 2003.

[5.38] J. Flich, S. Rodrigo, and J. Duato, An Efficient Implementation of Distributed Routing

Algorithms for NoCs, International Symposium on Networks-on-Chip (NOCS), 2008.

[5.39] J. Flich, T. Skeie, A. Mejia, O. Lysne, P. Lpez, A. Robles, J. Duato, M. Koibuchi, T.

Rokicki, J.C. Sancho, A Survey and Evaluation of Topology agnostic deterministic routing

algorithms, IEEE Transaction on Parallel and Distributed Systems, vol. 23, no. 3, pp. 405–425,

2012.

[5.40] T. Skeie, F.O.S. Jacobsen, S. Rodrigo, J. Flich, D.Bertozzi, and S. Medardoni, Flexible

DOR routing for virtualization of multicore chips, International Symposium on System-on-

Chip, 2009.

[5.41] T. Schonwald, J. Zimmermann, O. Bringmann, W. Rosenstiel, Fully adaptive fault-

tolerant routing algorithm for Network-on-Chip architectures, Euromicro Conference on Digital

System Design Architectures, Method sand Tools (DSD), 2007.

115

[5.42] M. Palesi, S. Kumar, and R. Holsmark, A method for router table compression for

application specific routing in mesh topology NoC architectures, embedded computer systems:

architectures, modeling, and simulation, vol. 4017, pp. 373-384, 2006.

[5.43] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, Routing Table Minimization for

Irregular Mesh NoCs, Design Automation and Test in Europe (DATE), 2007.

[5.44] S. Rodrigo, J. Flich, A. Roca, S. Medardoni, D. Bertozzi, J. Camacho, F. Silla, and J.

Duato, Addressing Manufacturing Challenges with Cost-Efficient Fault Tolerant Routing,

International Symposium on Networks-on-Chip (NOCS), 2010.

[5.45] F.O.S. Jacobsen, S. Rodrigo, and T. Skeie, iFDOR: dynamic rerouting on-chip,

International Workshop on Interconnection Network Architecture: On-Chip, Multi-Chip (INA-

OCMC), 2011.

[5.46] C. Ababei, H.S. Kia, O.P. Yadav, and J. Hu, Energy and reliability oriented mapping for

regular Networks-on-Chip, International Symposium on Networks-on-Chip (NOCS), 2011.

[5.47] T. Lehtonen, P. Liljeberg, and J. Plosila, Online reconfigurable self-timed links for fault

tolerant NoC, VLSI Design, 2007.

[5.48] H.S. Kia and C. Ababei, Improving fault tolerance of Network-on-Chip links via minimal

redundancy and reconfiguration, International Conference on Reconfigurable Computing and

FPGAs, 2011.

[5.49] C. Chen, Y. Lu, and S.D. Cotofana, A novel it serialization strategy to utilize partially

faulty links in networks-on-chip, Proceeding of International Symposium on Networks-on-Chip

(NOCS), 2012.

116

[5.50] T. Lehtonen, D. Wolpert, P. Liljeberg, J. Plosila, and P. Ampadu, Self-adaptive system for

addressing permanent errors in on-chip interconnects, IEEE Trans. on VLSI Systems, vol. 18,

no. 4, pp. 527-540, 2010.

[5.51] H.S. Kia and C. Ababei, A new fault-tolerant and congestion aware adaptive routing

algorithm for regular Networks-on-Chi, Proceeding of Congress on Evolutionary Computation

(CEC), 2011.

[5.52] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, A 5-GHz mesh interconnect

for a teraflops processor, IEEE Micro, vol. 27, no. 5, pp. 51-61, 2007.

[5.53] H. Zhu, P.P. Pande, and C. Grecu, Performance evaluation of adaptive routing algorithms

for achieving fault tolerance in NoC fabrics, International Conference on Application Specific

Systems, Architectures and Processors, pp. 42-47, 2007.

[5.54] M. Valinataj, S. Mohammadi, and S. Safari, fault-aware and reconfigurable routing

algorithms for networks-on-chip, IETE Journal of Research, vol. 57, no. 3, pp. 215-224, 2011.

[5.55] F. Ge, N. Wu, and Y. Wan, A Network Monitor based Dynamic Routing Scheme for

Network on Chip, Proceeding of Asia Pacific Conference on Postgraduate Research in

Microelectronics and Electronics, pp. 133-136, 2009.

[5.56] T.T. Ye, L. Benini, and G. De Micheli, Analysis of power consumption on switch fabrics

in network routers," ACM/IEEE Design Automation Conference (DAC), 2002.

[5.57] ReliableNoC tool, http://venus.ece.ndsu.nodak.edu/cris/software.html

[5.58] E.B. van der Tol and E.G.T. Jaspers, Mapping of MPEG-4 decoding on a flexible

architecture platform, SPIE Media Processors, 2002.

[5.59] MCNC Benchmarks, http://vlsicad.eecs.umich.edu/BK/MCNCbench

[5.60] ISE Design Suite, Xilinx, http://www.xilinx.com/tools/webpack.htm

117

CHAPTER 6. CONCLUSION

Recent advances in development and fabrication of integrated circuit technology has

made integration of tens of processing elements (PE) in one chip possible. While this trend is

improving their performance, it is facing some challenges that may limit these improvements.

One of the main facing challenges is the increase in the probability of transistor failure and fault

occurrence [6.1], [6.2]. This is due to the increase in the adverse effects of processing faults

which make chips susceptible to manufacturing faults (that have become unavoidable in current

submicron CMOS technology [6.3], [6.4]) and also to the aging mechanisms that reduce the life

time reliability of integrated circuits [6.5], [6.6]. Therefore reliability alongside area and power

consumption has become an important design objective [6.7]. Although fault tolerance (the

ability of the system to continue its operation despite the failure of some of its components [6.8])

has been one of the popular research areas [6.9], [6.10], the increase in failure probability of

transistors in submicron CMOS technology has highlighted its importance more than ever. Fault

tolerance can improve reliability by employing design techniques that can compensate for the

failure of system components [6.11], [6.12]. Different fault tolerant design techniques and

architectures have been developed over the time to work around the facing reliability challenge.

One reason for this is that systems are affected with different failure types which require

different techniques to deal with them [6.13], [6.14]. The purpose of this research was to

maintain the downscaling benefits of integrated circuits by addressing the challenges we are

facing in design of sub-micron integrated circuits. To achieve this goal we focused on

developing design techniques to proactively improve the lifetime reliability of system on chips

(SoC).

118

One of the main difficulties in reliability aware system design is the estimation of

reliability. This is due to the fact that reliability is affected by numerous factors including aging

mechanisms (e.g., time-dependent dielectric breakdown (TDDB), negative bias temperature

instability (NBTI), electromigration (EM), thermal cycling (TC), and stress migration (SM)),

process variations, dynamic power and thermal management, workload, and system architecture

and configuration. Typically, resilience techniques to harden a system against different failure

mechanisms require some form of redundancy. Such redundancy comes with area, power, and

design time overheads. Therefore it is not practical to develop systems with resilience technique

to all types of failure mechanisms. However if we identify reliability critical subblocks and

transistors, we can concentrate our design efforts on the critical subblocks and save area and

power resources. To achieve this goal we developed a circuit-level vulnerability and reliability

evaluation methodology that is capable of identifying the vulnerable subblocks of the system. In

the core of the algorithm we employ a Monte Carlo algorithm, which works with failure times

modeled realistically as Weibull and lognormal distributions for five different aging failure

mechanisms: TDDB, NBTI, EM, TC, and SM. Hence, our results are more accurate and realistic

compared to previous works that are based on the assumption that lifetime distributions are

exponential. We also utilized the proposed reliability evaluation methodology to develop a new

lifetime aware floorplanning strategy that is capable of identifying the most reliable floorplan for

a given design. We consider this an essential step toward a design approach where reliability is a

primary objective.

The shrinking size of transistors and wires and the possibility of integrating millions of

transistors in one chip has also raised the need for new and more efficient communication system

for multiprocessor systems on chip (MPSoCs). Traditional MPSoCs used bus based systems as

119

their communication medium. However buses are not scalable and do not support concurrent

communication which is required by most of modern MPSoCs [6.15], [6.16]. Networks on Chip

(NoC) has been introduced as a new communication structure for MPSoCs as a solution to this

challenge [6.17], [6.18]. NoC is scalable, predictable, have higher bandwidth (compared to bus

based system), and support concurrent communications. While NoC forms an efficient

communication infrastructure for SoC, it is no exception to the effects of failure mechanisms.

We proposed a new multi layered fault-tolerance oriented design methodology for NoCs as a

hybrid solution composed of several reliability and fault tolerance design techniques applied at

the software, architecture, and network-routing levels. The proposed structure for NoCs can

address hard failures across 3 different levels of abstraction. At the software level, we utilize a

reliability aware mapping algorithm to assign application tasks to an NoC based target

architecture such that network reliability is improved. At the architecture and network-routing

levels, we developed an NoC architecture that uses reconfigurable self-repairable links with

spare wires and a distributed routing algorithm to dynamically detect permanent failures in

unrepairable links and to recalculate routing paths using healthy links. It is the combination of

these techniques and the layered approach that sets the proposed methodology apart and helps to

provide a better tradeoff point between the improvement in fault tolerance and performance

penalty due to the required redundancy and extra logic.

6.1. Future work

 Our proposed reliability evaluation algorithm focuses on aging mechanisms that lead to

hard failures. This algorithm can be extended to include early life failures which are caused

during the manufacturing process. Similar techniques can also be developed to consider the

effect of soft failures on the system.

120

Dynamic reliability management (DRM) and dynamic thermal management (DTM)

design techniques are also interesting research topics that require further research and

investigation. For example most of the currently available techniques like proactive temperature

balancing (PTB) methods are not scalable to complex MPSoCs.

6.2. References

[6.1] D. Park, C. Nicopoulos, J. Kim, N. Vijaykrishnan, and C.R. Das, “Exploring fault-tolerant

network-on-chip architectures,” Int. Conference on Dependable Systems and Networks, 2006

[6.2] J.H. Collet, A. Louri, V.T. Bhat, and P. Poluri, “ROBUST: A new self-healing fault-

tolerant NoC router,” Int. Workshop on Network on Chip Architectures, 2011.

[6.3] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De, “Parameter

variations and impact on circuits and microarchitecture,” ACM/IEEE Design Automation

Conference (DAC), 2003.

[6.4] C. Visweswariah, ”Death, taxes and failing chips,” ACM/IEEE Design Automation

Conference (DAC), 2003.

[6.5] M. White and J.B. Bernstein, “Microelectronics reliability: physics of failure based

modeling and lifetime evaluation,” Jet Propulsion Laboratory, California Institute of

Technology, Pasadena, CA, JPL publication, Feb. 2008.

[6.6] J.H. Stathis, “Reliability limits for the gate insulator in CMOS technology,” IBM Journal of

Research and Development, vol. 46, no. 2/3, pp. 265, 2002.

[6.7] J.D. Owens, W.J. Dally, R. Ho, D.N. Jayasimha, S.W. Keckler, and L.S. Peh, “Research

challenges for on-chip interconnection networks,” IEEE Micro, vol. 27, no. 5, pp. 96-108, 2007.

[6.8] J. Duato, S. Yalamanchili, and L. Ni, “Interconnection networks: An Engineering

approach,” Published by Morgan Kaufmann, 2003.

121

[6.9] J. von Neumann, “Probabilistic logic and the synthesis of reliable organisms from

unreliable components,” Automata Studies, C.E. Shannon and J. McCarthy Eds., Princeton Univ.

Press, 1956.

[6.10] E. Moore and C.E. Shannon, “Reliable circuits using less reliable relays,” Journal of the

Franklin Institute, vol. 262, no. 3, pp. 191-208, 1956.

[6.11] S. Feng, S. Gupta, A. Ansari, and S. Mahlke, “Shoestring: probabilistic soft error

reliability on the cheap,” Int. Conf. on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), March 2010.

[6.12] J.P.G. Sterbenz, D. Hutchison, E. Cetinkaya, A. Jabbar, J.P. Rohrer, M. Scholler, and P.

Smith, “Resilience and survivability in communication networks: strategies, principles, and

survey of disciplines,” Computer Networks, vol. 54, no. 8, 2010.

[6.13] C. Constantinescu, “Trends and challenges in VLSI circuit reliability,” IEEE Micro, vol.

23, no. 4, pp. 1419, 2003.

[6.14] K. Latif, A.M. Rahmani, K.R. Vaddina, T. Seceleanu, P. Liljeberg, and H. Tenhunen,

“Enhancing performance sustainability of fault tolerant routing algorithms in NoC-based

architectures,” Euromicro Conference on Digital System Design, 2011.

[6.15] M. Agarwal, R. Dubey, N. Jain, and D. Raghuvanshi, “Comparative analysis of different

topologies based on Network-on-Chip architectures,” International Journal of Electronics and

Communication Engineering, vol. 6, no. 1, pp. 29-40, 2013.

[6.16] R. Ho, K.W. Mai, and M.A. Horowitz, “The future of wires,” Proceedings of the IEEE,

vol. 89, no. 4, pp. 490-504, 2001.

[6.17] W.J. Dally and B.P. Towles, “Principles and Practices of Interconnection Networks,”

Morgan Kaufmann, 2004.

122

[6.18] G. De Micheli and L. Benini, “Networks on Chip,” Morgan Kaufmann, 2006.

