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ABSTRACT 

This dissertation presents a comprehensive methodology of dual monitoring for the 

multivariate autocorrelated cascade processes using principal component analysis and 

regression. Principle Components Analysis is used to alleviate the multicollinearity among 

input process variables and reduce the dimension of the variables. An integrated principal 

components selection rule is proposed to reduce the number of input variables.  An 

autoregressive time series model is used and imposed on the time correlated output variable 

which depends on many multicorrelated process input variables.  A generalized least squares 

principal component regression is used to describe the relationship between product and 

process variables under the autoregressive regression error model.  The combined residual 

based EWMA control chart, applied to the product characteristics, and the MEWMA control 

charts applied to the multivariate autocorrelated cascade process characteristics, are proposed.  

 The dual EWMA and MEWMA control chart has advantage and capability over the 

conventional residual type control chart applied to the residuals of the principal component 

regression by monitoring both product and the process characteristics simultaneously. The 

EWMA control chart is used to increase the detection performance, especially in the case of 

small mean shifts.  The MEWMA is applied to the selected set of variables from the first 

principal component with the aim of increasing the sensitivity in detecting process failures.  

The dual implementation control chart for product and process characteristics enhances both 

the detection and the prediction performance of the monitoring system of the multivariate 

autocorrelated cascade processes.  The proposed methodology is demonstrated through an 

example of the sugar-beet pulp drying process. A general guideline for controlling multivariate 

autocorrelated processes is also developed. 
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CHAPTER 1. INTRODUCTION 

1.1. Background 

 Recent technical advancements in production industry make it possible to collect 

several process measurements at the same time. The need to simultaneously monitor several 

quality characteristics in order to capture the multivariate nature of production processes is 

gaining importance for improving such processes (Bersimis et al., 2007; Jackson, 1985; 

Woodall and Montgomery, 2012). Multivariate statistical process control involves 

simultaneously monitoring processes with two or more quality characteristics that interact with 

one another. In multivariate processes, change in one quality characteristic can affect other 

quality characteristics. Therefore, multivariate control chart procedures have to take correlation 

of the quality characteristics into consideration. Observations from such processes are assumed 

to be independent over time. 

 Standard multivariate process control procedures are not effective when the data is 

serially correlated. This type of process is called “multivariate autocorrelated processes” and 

is especially common in chemical and agricultural industries.  The higher false alarm rate due 

to autocorrelation effect encountered when monitoring such processes has been discussed 

extensively (Lowry and Montgomery, 1995; Mason and Young, 2007). Holgersson (2004) 

discussed several techniques to determine the time dependency of the multivariate processes. 

The cause of autocorrelation effect can vary according to the data collection system and the 

nature of the process. For example, in the chemical industry, the process data is usually 

autocorrelated due to the process inertia. Because of the complexity of monitoring multivariate 

autocorrelated processes, development of simple, robust, effective procedures is crucial and 

has gained interest of researchers in statistical process control. 
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1.2. Significance of the Problem 

 The challenge of monitoring multivariate and autocorrelated processes can be seen in 

the pulp drying process in the sugar factory, the pulp drying process produces the dry pulp 

which is the by-product of sugar beet processing. The dry pulp is sold as a cattle food to the 

farmers. The moisture content of the dry pulp is one important quality variable that needs to be 

monitored constantly. If the moisture content of dry pulp does not meet the target value, it 

affects the price and quality of the dry pulp plus the cost of the transportation to the buyers.  

The pulp drying process consists of a large number of input variables which are correlated over 

time with cross-correlation among variables. These time series input variables are combination 

of both controllable and uncontrollable variables. Process operators monitor the moisture 

content of the dry pulp and when needed adjust controllable input variables to achieve the target 

value. The simple pulp drying process monitoring is neither effective, nor accurate as it does 

not take into account the autocorrelated and multicollinear nature of the input variables. These 

input variables directly affect the quality of the dry pulp which is also serially correlated over 

time according to process inertia. This type of process is sometimes referred to as cascade or 

model-fixed process in the literature (Hawkins, 1993; Loredo et al., 2002). Such processes are 

common in other types of production industries. A crucial assumption of traditional 

multivariate process control procedures is that the data is independent and identically 

distributed with constant mean vectors X  and covariance matrix X . Autocorrelated 

observations violate this assumption and generate far more false alarms in multivariate process 

control (Mastrangelo and Forrest, 2002; Noorossana and Vaghefi, 2006).  Therefore, traditional 

multivariate control charts are not effective in monitoring multivariate autocorrelated 

processes.  

 Furthermore, in some cases, it is useful to use the relationship between input variables 

and the output variable in monitoring processes (Woodall et al. 2004). Normally, the simple 
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linear regression method can be applied to identify the relationship of the process, but not in a 

multivariate framework. The multivariate process control typically exhibits multicollinearity 

due to large number of variables in the process. Multicollinearity has an effect on the least-

square estimation of the regression coefficients. Thus, direct linear regression analysis is not 

applicable and generates more false alarms on the control chart. Another major concern is 

monitoring a high dimensional system. As more variables are involved in multivariate 

processes, the use of traditional multivariate control chart schemes are not practical to any 

further extent (Bersimis et al. 2007). Both the multivariate and autocorrelated nature should be 

tackled at the same time for effective monitoring method such process. 

1.3. Problem Statement 

 This dissertation addresses the problem of monitoring and controlling multivariate 

autocorrelated cascade processes. The traditional multivariate control chart is not able to handle 

the multivariate autocorrelated cascade processes due to autocorrelation effect, collinearity and 

high dimensionality of the system. Autocorrelation effect violates the assumption of 

independent observations in the traditional multivariate control chart. Multicollinearity is the 

situation where two or more variables in a multiple regression model are highly correlated, thus 

the simple linear regression is not capable of obtaining the correct model. Besides, the 

traditional multivariate control chart is not efficient in dealing with high dimension processes. 

In this dissertation, multivariate autocorrelated processes with multiple times series input 

variables and single time series output variable is modeled using the multiple regression 

method based on principal components. This model is used to the predict output variable, 

affected by several input variables, and is also used to develop a multivariate control chart for 

process monitoring.  

 The Principal Components Analysis (PCA) is applied to alleviate the multicollinearity 

problem among input variables and reduce the dimension of the input variables before fitting 
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the multiple regression model. The parameters of the multiple regression model with selected 

principal components are estimated based on the both ordinary least squares (OLS) method and 

generalized least squares (GLS) method. An integrated selection rule is developed to select 

important principal components. The residuals of the multiple regression model on the time 

series structure data are usually in time series structure violating the independent errors 

assumption. Thus the autoregressive error correction model is used to address the issue of 

dependent residuals. The interpretation of out-of-control signals of the process output on the 

control chart is also discussed. Additionally, this dissertation studied the performance of two 

types of control charts utilized in the proposed method: (1) Exponential Weighted Moving 

Average (EWMA) control chart in monitoring the residuals of the regression model; (2) 

Multivariate Weighted Moving Average (MEWMA) control chart on significant variables from 

the first Principal Component (PC). A simulation study based on average run length (ARL) for 

various sizes of mean  and covariance vector shifts along with the change in regression 

parameters is carried out to investigate the effectiveness of the proposed method.  

1.4. Overview of the Dissertation 

 This dissertation developed an overall approach to monitor multivariate autocorrelated 

cascade processes. The work in this presentation was presented in a number of conferences and 

papers: 

1) Bilen, C., Chen, X., Khan, A. and Yadav, O.P. (2007) ‘Multiple regression control  

chart integrated with principal component analysis’, Proceedings of the Industrial 

Engineering Research Conference, 19–23 May, Nashville, Tennessee.  

2) Bilen, C., Khan, A. and Yadav, O.P. (2009) ‘Multivariate autocorrelated process 

monitoring with multiple regression and principal components’, Proceedings of the 

Industrial Engineering Research Conference, 30 May–3 June, Miami, Florida. 
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3) Bilen, C., Khan, A., and Yadav, O. P. (2010) ‘Principal components regression control 

for multivariate autocorrelated cascade processes’, International Journal of Quality 

Engineering and Technology, Vol. 1, No. 3, pp.301-315. 

4) Dual SPC schemes for multivariate autocorrelated cascade processes with combined 

residual-based EWMA and MEWMA. (Under reviewed) 

 This dissertation is divided into five chapters. After this introduction, Chapter 2 gives 

an extensive literature review of multivariate statistical process control framework this 

dissertation. Chapter 3 presents an overall complete methodology for monitoring the 

multivariate autocorrelated process using Shewhart-type residual-based control chart in 

conjunctions with the principal component regression. Dual EWMA and MEWMA control 

chart performance based on proposed model are displayed and discussed in Chapter 4 along 

with simulation studies based on average run length (ARL) for various sizes of mean vector 

shifts for input variables are investigated. The sugar beet pulp drying process is used as an 

example for the proposed method application. The conclusion and recommendations of future 

research is provided in the last Chapter 5. 
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CHAPTER 2. LITERATURE REVIEW 

2.1. Multivariate Process Monitoring and Control 

2.1.1. Shewhart-type control chart 

 Multivariate quality control method was originally introduced by Hotelling (1947). The 

method was developed by using the generalized Student ratio T under the assumption of 

multivariate normal distribution and was applied to the air testing of sample bombsights 

problem. The Hotelling T2 multivariate Shewhart control chart is used for unknown mean 

vector and unknown variance-covariance matrix and X2 control chart is use in the case of 

known parameters. Aparis (1996) proposed using Hotelling T2 control chart with adaptive 

sample sizes to improve its performance in detecting small process shifts. Average run lengths 

(ARL) were calculated to compare the power of T2 control chart with fixed sample size and 

adaptive sample size for different sizes of process mean shift. The result showed that the T2 

control chart with adaptive sample size works well when the shift in the mean is small. In the 

case of individual observation, T2 control chart is not effective in detecting the mean shift 

because the sample covariance matrix is used to estimate the covariance matrix (Sullivan and 

Woodall, 1996). They compared the control chart using several techniques for estimating the 

covariance matrix when there are step and trend shifts in the mean vector. The T2 control chart 

with the estimation of covariance matrix from the vector differences between successive 

observations is more effective than standard T2 control chart in detecting step and trend shifts.  

 Nedumaran and Pignatiello (2000) investigated the problem of T2 control chart during 

Phase I retrospective testing and described the exact method of constructing T2 control chart 

limits to control overall probability of a false alarm at a specified value. Mason et al. (2001) 

applied Hotelling T2 control chart with some adaptations to monitor the mean vector of the 

batch processes in both Phase I and Phase II stages. They emphasized the importance of outlier 

removal, parameter estimation and the location of significant batch mean differences in 



7 
 

implementing Hotelling T2 control chart for batch processes. See Nomikos and MacGregor 

(1995) for more details on batch processes. Kim et al. (2003) proposed the quality control chart 

method to monitor a linear function process or product. The linear function process or product 

described by a relationship between two or more variables instead of the distribution of single 

quality characteristic. They recommended the use of bivariate T2 control chart in conjunction 

with a univariate Shewhart control chart for Phase I and the use of three univariate control 

charts in Phase II for a linear function process.  

2.1.2. Cumulative sum control chart (CUSUM) 

Cumulative sum (CUSUM) control chart was developed to overcome the issue of 

Shewhart-type control chart in detecting small and moderate shifts of the mean vector. Woodall 

and Ncube (1985) introduced a multiple univariate cumulative sum which is known as 

MCUSUM to use in the multivariate case. They explored the MCUSUM in the situations where 

the quality characteristics are independent and dependent to each other. It was shown that the 

MCUSUM is favored over Hotelling T2 control chart in the bivariate case as the correlation 

among quality characteristics does not affect the performance of MCUSUM as much as  

Hotelling T2 control chart. Healy (1987) described the procedure of detecting the mean shift in 

univariate CUSUM as sequential probability ratio tests to extend to the multivariate case. He 

also applied the concept of CUSUM in detecting the shifts of mean vector and covariance 

matrix for multivariate normal distribution. Hawkins (1991) proposed the CUSUM for 

monitoring the residual vector from regression-adjusted variables because Hotelling T2 does 

not function well when there are structure mean shifts and is not easily interpretable.  Later, he 

also recommended using the same CUSUM procedure for cascade process control by 

monitoring individual residual from linear regression of any variables on the rest of other 

variables (Hawkins, 1993). These charts of individual residual directly identify the variable 

that causes the out-of-control signal. According to many proposed MCUSUM methods, Runger 
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and Testik (2004) discussed pros and cons of several CUSUM extension methods for the 

multivariate case and evaluated their performances. He classified each method in term of their 

geometric shapes and the names were given to the method based on these geometric 

characteristics.  

2.1.3. Exponentially weighted moving average based control charts (EWMA) 

 The Exponentially weighted moving average (EWMA) control chart is developed for 

the same purpose as the Cumulative Sum (CUSUM) control chart. The multivariate extension 

of EWMA control chart (MEWMA) along with guidelines for designing multivariate process 

control chart was presented by Lowry et al. (1992). The ARL was used to compare the 

performance evaluation of the MEWMA control chart with Hotelling T2 and MCUSUM charts. 

The ARL simulation results indicated that MEWMA performs better than MCUSUM when the 

shift happens before the application of the chart. When the shift occurs after the process is in 

control, the MCUSUM and MEWMA performs equally well. In order to assist in MEWMA 

control chart implementation, a program for estimating the in-control ARL for the MEWMA 

control chart was developed by Bodden and Rigdon (1999). In addition, Molnau et al. (2001) 

built an ARL calculation program for MEWMA control chart when the shift size, control limits 

and the smoothing parameter are known. Prahu and Runger (1997) provided suggestions for 

selecting parameters for MEWMA control chart based on the ARL and distribution of the run 

length acquired from Markov chain analysis. Their simulation study indicates that MEWMA 

smoothing parameter values between 0.1 and 0.5 are best in general.  

Runger et al. (1999) proposed the U-transformation scheme to convert the original 

variables to lower dimensional subspace to improve the performance of MEWMA in detecting 

shifts in mean as the number of variables increase. The U-transformation is comparable to 

principle components excluding its ability to define the specific subspace for monitoring. The 

effect of non-normality on the MEWMA control chart performance in monitoring individual 
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observations was investigated by Stoumbos and Sullivan (2002). They verified that the 

Hotelling X2 control chart is very sensitive to non-normality and the MEWMA is more robust 

than Hotelling X2 control chart. Also, the extension of EWMA to subgroups of any size is 

possible. This extension can detect any shift size and direction effectively and robust to non-

normality as well. Khoo (2003) suggested the exact covariance matrix calculation of MEWMA 

instead of asymptotic form to enhance the sensitivity of the chart in detecting small shifts. The 

asymptotic form covariance matrix was used in general when constructing the EWMA control 

chart, but this form takes time to initiate the control scheme during the start-up period and 

results in late detection of an out-of-control condition. Furthermore, Hawkins et al. (2007) 

proposed the full smoothing matrix of MEWMA control chart instead of using traditional 

diagonal matrix to improve the sensitivity of the chart at the start-up stage. The MEWMA 

control chart outperforms traditional EWMA in detecting the mean vector shifts. 

2.1.4. Multivariate control using principal components analysis (PCA) 

 The principal components analysis (PCA) is a method for reducing the dimensionality 

of quality characteristics in multivariate processes to a new set of variables called principal 

components (Jolliffe, 2002). Each principal component is a linear combination of all original 

variables. The first principal component has the highest variance of all coefficient vectors of 

unit length. The second principal component has less variance and is orthogonal to the first 

principal component. The rest of principal components are listed in the same manner and the 

last principal component has the least variation. Schall and Chandra (1987) developed a method 

of monitoring manufacturing processes by using principal components with multivariate 

regression analysis. This process involves input and output variables when the number of input 

variables is larger than the number of output variables. The quality of the output variables 

depends on the quality of the input variables. Therefore the relationship between input and 

output variables is established by multiple regression analysis while the principal components 
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analysis is used to reduce the number of input and output variables. The control limits were 

calculated based on the Shewhart control chart for monitoring each principal component 

separately.  

 Runger (1996) applied the principal components analysis for designing a multivariate 

control chart that is sensitive to certain assignable cause and model-fixed assignable causes. 

The U2 control chart is developed based on chi-square chart of U which is the vector of the first 

set of principal component with the most variance explained from original set of variables. The 

U2 control chart is studied and discovered to be better, in detecting the mean vector shift, than 

X2 control chart. Wikstrom et al. (1998) analyzed the electrolysis process using multivariate 

statistical process control. The principal components analysis was utilized to get principal 

components and residuals from the linear combination model. The principal components and 

residuals were charted on traditional multivariate control charts to create a simultaneous 

principal components monitoring and residual tracking control chart (SMART). The SMART 

chart is appeared to be more sensitive to mean vector shift than the traditional multivariate 

control charts. 

2.1.5. Alternative methods 

 Sullivan and Woodall (2000) proposed the retrospective phase I multivariate control 

chart to detect mean vector shift or covariance matrix shift for individual observations data. 

The chart is based on the likelihood ratio test of the mean vector and covariance matrix shift. 

In retrospective stage, the parameters are estimated and this estimation is poor when multiple 

outliers exist. The control chart is more effective in detecting shift than Hotelling T2 control 

chart. Feltz and Shiau (2001) used an empirical Bayesian approach to build the multivariate 

control chart. In this chart, the multivariate normal distribution with mean is derived from the 

posterior distribution of the Bayesian theory and the process parameters are estimated to apply 
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to multivariate processes structure. Vargus (2003) presented the Hotelling T2 control chart for 

retrospective phase I based on minimum volume ellipsoid (MVE) estimators of process mean 

vector and covariance matrix. The method is proved to be more robust than the standard 

technique to estimate mean vector and covariance matrix for Hotelling T2 control chart. Aparisi 

et al. (2004) invented the supplementary run rules to accompany X2 control chart to enhance 

the performance in detecting small or moderate mean vector shifts. The X2 control chart with 

run rules has better performance than X2 control chart without run rules with respect to ARL 

performance for various shift sizes. The performance of X2 control chart with run rules are 

further improved by Koutras et al. (2006) by incorporating two run rules into the modification 

of X2 control chart. 

2.2. Multivariate Autocorrelated Process Monitoring and Control 

2.2.1. Vector autoregressive (VAR) and support vector regression (SVR) Model 

 The vector autoregressive (VAR) model for multivariate autocorrelated data is 

analogous to univariate autocorrelated data. The data can be modeled as a time series and the 

residuals of the model can be monitored on the traditional multivariate control chart. Kalgonda 

and Kulkarni (2004) monitored the mean vector of autocorrelated process by fitting the first-

order vector autoregressive model VAR(1) and proposed the Z-chart based on the single step 

finite intersection test. The proposed control chart has the ability to identify the variable causing 

the out-of-control signal. In addition, Noorossana and Vaghefi (2006) investigated the 

performance of MCUSUM chart when data exhibits autocorrelation using ARL as an 

assessment for various mean shifts. They showed that the method of multivariate time series 

model improves the performance of MCUSUM in detecting the mean vector shifts.  

The VAR control chart was proposed by Jarrett and Pan (2007) for monitoring 

Hotelling T2 statistics. The VAR chart is the integration of univariate residuals control chart 
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with multivariate Hotelling T2 control chart. The effect of parameter shifts which consist of 

mean shift, covariance shift and autocorrelation structure of the model shift are also examined. 

The mean shift effect depends on the shift size and the estimation of VAR parameter matrices. 

The covariance matrix shift and autocorrelated structure of the model shift also gives an out-

of-control signal on the VAR control chart. Issam and Mohamed (2008) applied support vector 

regression (SVR) method to get residuals and monitored on MCUSUM control chart. SVR is 

an extension of support vector machine (SVM) algorithm with linear regression technique 

(Scholkopf and Smola, 1998). The SVR-based control chart is discovered to be sensitive to 

small shifts in the mean vector.  

2.2.2. Multivariate autocorrelated using principal components analysis  

 Ku et al. (1995) proposed a dynamic principal components analysis (DPCA) model for 

monitoring multivariate processes when variables are correlated in time. The number of time 

lag in the variables and principal components need to be identified before applying the DPCA 

method. The data matrix is formed based on the time lag information and the principal 

components are determined for establishing the dynamic linear relationship. Then, the T2 

statistics with control limits are calculated for process monitoring. Mastrangelo et al. (1996) 

reviewed several multivariate process monitoring methods and demonstrated the effectiveness 

of principal component analysis when the data has serial correlation over time. They applied 

the principal components analysis to the process with different time series models of seven 

variables. Once the optimal number of principal components is determined, the values of the 

original variables are substituted back into the linear combination equations to obtain the z-

scores. The z-scores are plotted on the chart for monitoring the process shifts. Runger (1996) 

also explored the principal component analysis method for autocorrelated and cross-correlated 

process. The uncorrelated residuals vectors based on principal components are computed and 

are monitored on traditional multivariate control chart.   
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 Wikstrom et al. (1998) applied multivariate time series analysis and principal 

components analysis to electrolysis process. The original eight variables in the electrolysis 

process are represented by two uncorrelated principal components. These two components are 

investigated using autoregressive integrated moving average (ARIMA) model and the model 

coefficients are estimated by using the partial least square regression. The univariate control 

chart for monitoring are chosen based on the category of multivariate time series model. Tsung 

(1999) developed the adaptive principal component monitoring (APCM) for the automatic-

controlled process. The principal components extracted from the process input-output matrix 

are combined with the knowledge of control actions to design statistical process control. The 

input-output combination and the residuals are monitored simultaneously on different charts 

for process change detection. Later, Kano et al. (2001) applied principal component analysis 

to on-line process monitoring by moving the time-window. This approach is referred to as 

moving principal component analysis (MPCA). The directions of principal components are 

used to monitor a change in the correlation structure of process variables. Both dynamic 

principal components developed by Tsung (1999) and Kano et al.  (2001) are more effective 

for monitoring dynamic processes than the static principal components.  

2.2.3. Multivariate autocorrelated using partial least square regression  

 Partial least square regression was introduced by Horst (1961) to find the highest 

possible correlation between two sets of variables. Then the second highest pair of correlation 

is retrieved and it is orthogonal to the first pair. This procedure is continued until only a pair 

from one set of variables left. Kresta et al. (1991) and Macgregor et al. (1994) presented the 

basic partial least square methodology in monitoring continuous processes. Kourti et al. (1996) 

and Martin et al. (1999) showed the practical application of partial least square technique for 

continuous industrial process monitoring. The process fault detection and diagnosis are also 

discussed for controlling product quality. The performance of multivariate process monitoring 
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based on partial least square was demonstrated by Simouglou et al. (2000). The partial least 

square performance is quite comparable to canonical variate analysis in their ability to predict 

quality variables. Wang et al. (2003) proposed the recursive partial least square algorithm to 

monitor the non-stationary and time varying processes. This application of recursive partial 

least square algorithm reduces the false alarm better than traditional multivariate statistical 

process control framework. Kourti (2005) gave the outline application of partial least square in 

monitoring different multivariate process situations such as continuous process and missing 

process data.  

2.2.4. State-space model and neural networks model 

 Triantafyllopoulos (2006) proposed the Bayesian state space model to form a one-step 

forecast distribution and obtained Bayes’ factor of the process. The Bayes’ factor which is the 

distance between the one-step forecast mean and target mean vector are monitored using the 

modified univariate EWMA control chart. In addition to being robust to non-normality, this 

approach and can control mean vector and covariance matrix at the same time. Arkat et al. 

(2007) designed residuals control chart based on the artificial neural network-based model for 

AR(1) process. The residuals from the model were plotted on MCUSUM for process 

monitoring. The proposed scheme performance outperforms standard MCUSUM control chart 

and is more sensitive to small shifts than the time series-based control chart. Another state 

space model based control chart is developed by Vargas et al. (2009) for the case of strong 

cross correlation among variables. The state space model is used to estimate covariance matrix 

and the Hotelling T2 control chart with control limits is built on this estimation of covariance 

matrix. This method uses fewer number of parameters estimations and is able to get 

independent residuals by eliminating the cross-correlation effect. Hwarng and Wang (2010) 

proposed a neural network based identifier (NNI) control chart with additional capability of 

identifying the variable responsible for the out-of control signal.  The NNI control chart does 
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not require model fitting or parameter estimation and the performance is superior to Hotelling 

T2 control chart, EWMA chart and Z-chart for detecting small to moderate shifts. 

2.2.5. Other methods 

 Chan and Li (1994) proposed the M-chart which is an extension of multivariate 

Shewhart control charts for monitoring linear trends of the time series process using dimension 

reduction approach. The dimension reduction approach is developed by using projection 

pursuit technique which is similar to principal component analysis except the original data 

structure information is still maintained after the projection of the data to lower dimension. 

Loredo et al. (2002) extended the regression adjustment method of Hawkins (1993) for 

autocorrelated data. The residuals from the multiple regression model are monitored on the 

univariate traditional Shewhart, CUSUM and EWMA. The residual-based control chart 

performance is compared with original observation-based control chart by using ARL when 

the variables are autocorrelated. The residual-based control chart is more sensitive to mean 

shift than the original observation-based control chart under the assumption of correct model.  

 Badcock et al. (2004) proposed two methods based on transforming original time series 

variables into a linear combination of new set of uncorrelated components. This method focuses 

on developing the components with specific correlation properties, unlike the principal 

components analysis that obtains the components according to their maximum variance. The 

first method from Badcock et al. (2004) modified the signal-noise decomposition method in 

image analysis to get different autocorrelation structure of components to describe the behavior 

of multivariate process. The second method applied the concept of principal components 

analysis to find the temporally uncorrelated components for all time lags. Jiang (2004) 

proposed multivariate autocorrelated process control chart by using a generalized likelihood 

ratio test (GLRT). The paper also compared the performance of T2 control chart, observational 
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GLRT control chart and residuals GLRT control chart in monitoring multivariate vector from 

univariate autocorrelated process transformation.  
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CHAPTER 3. PAPER 1 PRINCIPAL COMPONENTS REGRESSION CONTROL 

FOR MULTIVARIATE AUTOCORRELATED CASCADE PROCESSES1 

3.1. Introduction 

 Most of the research work in statistical process control is widely concentrated on 

monitoring the output variables of the process constantly on the control chart. If an out-

of-control signal is detected, the root cause of the signal is identified and resolved. Moreover, 

in some cases, the quality of process is described by a relationship between the response variable 

and predictor variables. If there is any change or interruption in predictor variables, the 

response variable is directly affected and results in out-of-control signals on the control chart. 

This type of process is sometimes referred to as a cascade process (Hawkins, 1993). Such a 

process often involves several related input variables and output variables resulting in 

multicollinearity. Further, in some industries, these variables are often time series data, and 

autocorrelation exists in both input and output variables. Besides, as a result of increased 

sampling frequency capabilities in monitoring processes, process data are typically 

autocorrelated. The traditional multivariate control chart assumes that process observations 

are statistically independent and, therefore, does not capture the relationship between input 

variables and the output variable. 

 Furthermore, the investigation of the root cause of the out-of-control signal for the 

traditional multivariate control chart is complicated. As a result, a traditional multivariate 

control chart is not a very effective approach for monitoring high dimensional, multicollinear 

and autocorrelated systems. What is really needed is the development of a comprehensive 

approach for monitoring multivariate processes with both multicollinearity and 

                                                           
1 Content in this chapter was previously published in International Journal of Quality Engineering and 

Technology, 1(3), 301-316 and was written by Canan Bilen-Green, Anakaorn Khan and Om Prakash Yadav. 

Anakaorn Khan was responsible in writing the draft of the paper and analyzing data. 
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autocorrelation, which can simultaneously capture the relationship between input variables 

and the output variable, so the root causes of out-of-control signals can also be identified. 

Some researchers have proposed the multivariate control chart for monitoring process output 

without taking the input variables  into  account (Jarrett and Pan, 2007; Jiang, 2004; Kalgonda 

and Kulkarni, 2004). The complexity of the multivariate autocorrelated problem is a 

challenging issue in statistical process control due to difficulties in identification of not only 

location but also root cause of out-of-control signals (Bersimis et al., 2007; Lowry and 

Montgomery, 1995; Woodall and Montgomery, 1999). 

 Approaches for monitoring multivariate autocorrelated processes when quality 

characteristics are directly affected by input variables can be divided into two categories. The 

first approach, initially developed by DiPaola (1945), is based on the regression control 

chart concept. The regression control chart is an integration of linear regression and control 

charting to monitor a quality characteristic of interest. Mandel (1969) combined the regression 

analysis and control chart to monitor man hours in the post office department. The regression 

line is established for the relationship between the man hours used and the volume of mail 

handled, and also served as the centreline with a standard error of estimate for upper and 

lower limits. This regression control chart is used as performance measurement and control 

tool in detecting assignable causes for process improvement. Hawkins (1991) used the idea 

of regression adjustment in the multivariate case by maximizing the relationship of related 

variables in order to increase the sensitivity of process monitoring. He proposed monitoring 

the process with Shewhart and CUSUM control charts based on the vector scaled residuals 

from the regression of each variable on all others. Hawkins (1993) extended the regression 

adjustment method for monitoring cascade processes. Loredo et al. (2002) developed an 

extension of regression adjustment method for multivariate quality control for autoregressive 

and correlated processes, especially for cascade processes with autocorrelated variables. 
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 The second approach to monitoring autocorrelated processes is based on principal 

component analysis (PCA) introduced by Jackson (1980). Jolliffe (1972, 1973) illustrated 

numerous considerations and compared several principal components selection rules for real 

and artificial data. Bisgaard and Kulahci (2005) demonstrated the application of PCA for 

multivariate process monitoring. Schall and Chandra (1987) recommended using PCA for 

multivariate processes, when the number of input variables is less than the number of output 

variables, for handling the multicollinearity effect and simultaneously reducing the number of 

variables. A review of methodologies for multivariate autocorrelated process monitoring and 

the effectiveness of principal components can be found in Mastrangelo et al. (1996). Runger 

(1996) presented a model based on PCA for multivariate statistical process control where 

autocorrelation exists. 

 Multicollinearity in a process affects the least-square estimation of the regression 

coefficients. As a result, direct linear regression analysis is not valid and generates more false 

alarms on the control chart. Furthermore, the use of the regression control chart for processes 

in high dimensional systems is not practical. The traditional multivariate control chart 

performance deteriorates by the autocorrelation effect (Noorossana and Vaghefi, 2006). 

PCA has been used to reduce the size of variables, autocorrelation effect and multicollinearity 

problem for multivariate autocorrelated processes. However, a multiple regression model 

based on principal components has not been extended to monitoring the cascade process 

with input variables that significantly affect the quality of the output variables and exhibit 

both autocorrelation and multicollinearity effects. Additionally, the principal components 

selection rule and principal components interpretation are seldom discussed in quality control 

applications. 

 In this paper, a multiple regression model based on principal components is 

developed for monitoring multivariate autocorrelated processes to not only monitor process 
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output affected by many input variables but to also identify root causes of out-of control 

signals. We use the Principle Components Analysis to alleviate the multicollinearity problem 

among input variables and decrease the dimension of the variables. A multiple regression 

model with estimated parameters based on a selected number of principal components, 

determined through an integrated selection rule, is developed. The autoregressive error 

correction model is used to address the issue of dependent residuals from the multiple 

regression model. Further, interpretation of out-of-control signals based on the principal 

components in process monitoring is discussed. 

 The remainder of the paper is organized as follows: section 3.2 presents the proposed 

methodology in detail, followed by an actual industry implementation in section 3.3. Finally, 

a discussion and future work are given in section 3.4. 

3.2. Principal Components Autoregressive Multiple Regression 

 The proposed methodology for multivariate autocorrelated process control uses a 

multiple regression control chart in conjunction with PCA. PCA is used to decrease the 

dimension of the variables in the process and reduce the multicollinearity effect (Jolliffe, 

2002). The principal component selection rule is used to identify significant independent 

principal components with the linear combination of all variables. The response variable is 

regressed on all of the significant independent principal components by using the multiple 

regressions with autoregressive error correction model. Then, white noise series generated by 

the autoregressive error correction model is used to construct a control chart for future process 

monitoring. Components of the methodology are discussed in detail in the following 

subsections. 
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3.2.1. Multiple regression and autoregressive error correction model 

 Regression analysis is a statistical technique for examining and developing the 

relationship between response (output) and predictor (input) variables. When there is more 

than one predictor variable in the process, the multiple regression model is employed to 

capture the input and output relationship. Suppose a process of interest involves k 

independent variables, then the multiple regression model is given as follows: 

0 1 1 2 2 , ( 1, 2,..., )i i i k ki iy x x x i n                                      (3.1)

where iy  is the ith observation of the response variable, k  is the regression coefficient and 

The key
2

. . . (0, )
i

i i d N   assumption of the multiple regression model is that any one value of 

y is statistically independent of any other value of y. Therefore, checking the validity of the 

independence assumption is an essential step before further analysis of the data. The multiple 

regression model in (3.1) can be written in matrix notation as: 

Y XB E                                                                           (3.2) 

where     1 2
... nY y y y  ,  1 2

... nE     ,   0 1 2
... kB      and 

11 21 1

12 22 2

1 2 ( 1)

...

...

...

k

k

n n kn n k

x x x

x x x
X

x x x


 
 
 
 
 
 

The regression coefficient estimates are given by  
1ˆ X X X Y


  variance-covariance matrix 

of the estimated regression coefficients can be represented as    
12ˆVar X X 


 . The main 

assumption of ordinary regression analysis is that the errors should have mean of zero with 

constant variance and should be independent of each other. However, with time series 

process data, ordinary regression residuals are usually correlated over time. It is not desirable 



 

22 
 

to use ordinary regression analysis for time series process data. Therefore, we build a multiple 

regression model with an autoregressive series for the random error, accounting for the 

autocorrelation of the errors. Instead of the usual regression model, we use the following 

autoregressive error model: 

t ty XB    

1 1 2 2 ...t t t m t m t                                                      (3.3) 

2
. . . (0, )

i
i i d N   

where ty  is the response variable, t  is the error term at time period t, and m  is autocorrelation 

parameter m < 1. When the predictors in the process of interest have different units, 

standardization is necessary. 

 Consider equation (3.1), the independent variables are transformed as  s

ji ji jx x x s   

where ji
x  is the standardized version of the ith observation for the jth variable j

x and

   
2

1

1
n

j ji j

i

s x x n


   . Thus, equation (3.1) can be rewritten in standardized version as: 

1 1 1 1 ...
0 1 1

1 1

x x x x x x
s s s si i ki ky

i k is s s
k

    
      
         
    

     

            (3.4) 

If we separate the first column from the X matrix, then: 

0

s s s
Y I X B E                                                           (3.5) 

where I is a vector of ones. It is noted that X X is proportional to the correlation matrix for 

the predictor variables. 

3.2.2. Principal components and selection rule 

 PCA is a method for alleviating the multicollinearity effect by reducing the 

dimensionality of the variables in the process (Jolliffe, 2002). In PCA, the original process 
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variables are transformed into a new set of orthogonal or uncorrelated variables called 

principal components. The PCA transformation ranks the new orthogonal variables in order of 

their importance. A number of principal components are selected to explain the most of the 

variability in the process, while others are eliminated to reduce the dimensionality of the 

variables.  Let  A  be  k  ×  k  matrix  which  consists  of  the  normalized  eigenvector  such  

that A A I  . Therefore, equation (3.5) can be written as: 

0 0

s s s s
Y I X AA B E I Z E                                             (3.6) 

where sZ X A is an n k matrix of the principal components and 
s

A B  is 1k   vector of 

new coefficients. The principal components are orthogonal to each other since: 

  1 2( ) ( ) ( ... )
s s s s

kZ Z X A X A A X X A diag                              (3.7) 

where 1 2 ... k   are the eigenvalues of the matrix  
s s

X X , furthermore 
1

m

j

j

k


 . Then, 

jth principal component can be computed as: 

1 1 2 2 ...
s s s

j j j kj kz a x a x a x                                                     (3.8) 

where 1 2
,  ,   ,  j j kja a a   is the eigenvector associated with the eigenvalue j

 , and j
z accounts 

for j
 of the total variance. The least squares estimator for regression coefficient of the vector 

is given by 
1ˆ Z Y

      and the variance for the estimated coefficients for ̂  can be 

computed as: 

  2 1 2 1 2

1 2
ˆ ˆ ˆ( ) , , ...,

k

kVar diag                                     (3.9) 

The principal components are ranked according to the size of their eigenvalues. The 

highest eigenvalue is selected to be the first principal component, next highest eigenvalue is 

selected to be the second principal component, and so on. In PCA, it is critical to find the 

optimal number of principal components to be included in the multiple regression model 

without major loss of information. There are many rules for selecting principal components. 



 

24 
 

Each rule has different criteria which lead to a different number of principal components 

retained. Therefore, it is difficult for practitioners to determine the optimal number of principal 

components. For this reason, we propose a principal component selection rule derived from the 

integration of two standard principal component selection rules, found in the literature, to 

enhance principal component selection and to increase confidence in choosing the number of 

principal components. Both rules are based on variation in the principal components and work 

well in practice (Jolliffe, 2002). The first rule is based on the cumulative percentage of total 

variation of selected principal components, mt , less than a predetermined cut-off point, t*. 

However, this rule does not address the issue of determining the best cut-off point, t*. The 

second rule is based on the size of variances of principal components, j
 , and principal 

components with variance less than 0.7 are discarded as they contain less information than the 

original variables. Unlike the first rule, the second rule takes into account the sampling 

variation. 

 The selection rule we propose integrates these two rules while modifying the cut-off 

point used in the first rule. We use the range of cumulative percentage of total variation of 70% 

to 90%, instead of the exact cumulative percentage of total variation, to keep the potential 

number of principal components as much as possible without loss of major information of the 

process data. Principal components selected will simultaneously satisfy both rules. The 

proposed selection rule is given as: 

1

100 m

m j

j

t
k




  , 70% 90%mt  , and 0.7
j

                              (3.10) 

where k is the original number of principal components, m is the number of principal 

components to be retained and tm is cumulative percentage of total variation of selected 

principal components. For example, if the first three to six principal components variation is 

combined and it is in the range of 70% to 90%, then three to six principal components can be 
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retained. Furthermore, if the first four principal components have variances or eigenvalues 

larger than 0.7, then the final number to be retained are the first four principal components. 

3.2.3. Interpretation of principal components 

 The correlation of the variables with the principal component is necessary for 

interpreting the importance of the kth variable to the jth principal component. The correlation 

coefficient between principal component j
z  and variable kx  can be calculated as: 

,j kz x jk j kke                                                              (3.11) 

where jk
e  is the eigenvector, j

  is eigenvalue and kk is standard deviation. However, this 

correlation coefficient does not measure the importance of an individual kx  to a response 

variable (y) in the presence of other independent variables. It is recommended in the PCA 

literature that only the eigenvector jk
e  in absolute value should be used to interpret the 

components (Jolliffe, 2002). The correlation of the variables with principal component are 

simplified in the format of –1, +1, (–1) and (+1). The variable with maximum absolute 

correlation coefficient value for each individual principal component is identified, and this 

value is used as a comparable point for other variables. The correlation coefficient of other 

variables in absolute value greater than half of the absolute maximum correlation coefficient 

variables are indicated as –1 and +1, depending on their signs. The correlation coefficient of 

other variables in absolute value between a quarter and a half of the absolute maximum 

correlation coefficient variables are indicated as (–1) and (+1). 

The following steps describe the implementation procedure of the proposed approach. 

Step 1: Verify that the process is stationary with multicollinearity and autocorrelated 

effects. 
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Step 2: Let be 1 2, ,...,i i nix x x  standardized n correlated input variables. Use principal 

component analysis to transform these input variables into n uncorrelated 

variables 1 2, ,..., nz z z . These variables are called the principal components and can 

be denoted as 1 2, ,..., kPC PC PC where k = n. Apply the integrated principal 

component selection rule to reduce k principal components to m principal 

components. The new set of principal component is 1 2, ,..., mPC PC PC , where 

m k . 

Step 3: Let ty be the standardized autocorrelated output variables. Regress on  

1 2, ,..., mPC PC PC , with the autoregressive error correction model to get the prediction ty of  

which can be written as ty  . The regression model is given by: 

0 1 1 2 2t k k ty PC PC PC            

1 1 2 2 ...t t t p t p t               

Step 4: Generate and plot the white noise residuals i t ty y y   Shewhart control chart. The 

mean of the residuals is calculated with the upper and lower control limits of the 

control chart as follows: 

3y   
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Figure 3.1. Flow chart for analyzing multivariate autocorrelated processes 
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 A comprehensive guideline for multivariate autocorrelated processes analysis, 

monitoring and control is illustrated in Figure 3.1. In statistical process control, the process is 

assumed to be stationary, which means that statistical characteristics remain same as time 

changes. If the process is nonstationary, differentiation of the process is needed before 

further analysis is carried out. Makridakis et al. (1983) provide more details on how to handle 

non-stationary processes by differentiation. If the process is not a high dimensional system 

with multicollinearities, vector autoregressive control charts and modified traditional control 

charts are the options for monitoring the process. The method of monitoring the residuals 

from the vector autoregressive model is developed based on the technique that the residuals 

from fitting a time series model are independent and can be used to construct control charts 

(Jarrett and Pan, 2007; Jiang, 2004). The modified traditional multivariate control chart is 

developed from an extension of the multivariate Shewhart control chart for the autocorrelated 

and multicollinear process (Chan and Li, 1994; Charnes, 1995). Jiang (2004) proposed an 

extension of the Hotelling 2T control chart for multivariate autocorrelated processes based 

on the generalized likelihood ratio test. In cases where the process of interest is a high 

dimensional system with multicollinearities, the PCA is necessary because variables with 

different units need to be standardized into identical units before further analysis is carried out 

(Jolliffe, 2002). 

3.3. Application in Sugar Beets Pulp Drying Process 

 In this section, the application of the proposed approach is demonstrated by considering 

a real life example of the sugar beet pulp drying process discussed in Bilen et al. (2007, 

2009). The general form of the sugar beet pulp drying process is shown in Figure 3.2. 

Sugar beet processing is the production of sugar (sucrose) from sugar beets. The major 

byproducts of sugar beet processing are pulp and molasses. Most of the molasses produced is 

processed further to remove the remaining sucrose. The pulp is dried, and sold as livestock 



 

29 
 

feed. If the moisture content of dry pulp is too high or low, it directly affects the quality of 

livestock feed and the transportation cost, as it weighs more with higher moisture content. 

Thus, it is important to monitor the moisture content of the dry pulp (y) that is affected by 

12 measurable input variables as shown in Figure 3.3. The implementation procedure is 

divided into four steps as follows: 

1) Check the process for stationarity multicollinearity and autocorrelation. 

2) If the variables have different units, standardize the variables and use PCA to get 

independent predictor variables. 

3) Construct a regression model to get a set of white noise residuals. 

4) Build control charts on the white noise residuals for investigating the out-of-control 

signals and monitoring future process. 

 

Figure 3.2. Pulp drying process in general 

Figure 3.3. Pulp drying process according to time 
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A detailed discussion of dry pulp quality monitoring at each step of the analysis is 

given next. 

Step 1: The sugar beet pulp drying process is shown in Figure 3. Historical data for a period 

of two months of production, 24 hours a day, are used in the analysis. Twelve 

predictor variables are adjusted according to time at t, t + 0.5 and t + 1. The 

observed pulp process data are somewhat messy and have a few missing points. 

Therefore, in order to construct the stationary control chart, 228 consistent 

observations, showing no obvious outliers, collected in the middle of the process 

are selected from a total 1,349 observations. Time series plots of all variables 

indicate a stationary process. The ACF and PACF plots indicate that all process 

variables are autocorrelated. The multicollinearity among input variables is 

identified from prior process knowledge. 

Step 2: Due to different units of predictor variables, variables are standardized, as 

discussed in subsection 3.2.1.The SAS statistical analysis software is used to 

conduct PCA of the standardized variables. The eigenvalues for each principal 

component and correlation between principal components and standardized 

variables (correlation matrix) are provided in Table 3.1. Based on the integrated 

principal component selection rule, only the first four principal components are 

selected for further analysis. These principal components are used to explain the 

process without much loss of information contained in the 12 variables. Obviously, 

this reduction in the dimension of input variables reduces the complexity of the 

problem. 

It is informative to determine the correlations of the predictor variables with the 

principal components in order to interpret the importance of the each variable to 

each principal component. The correlation coefficient between principal 
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component zi, i = 1,2,3,4 and variable xk, where k = PPM, FAF, TT, FR, FA, AAF, 

DDA, DPD, IFS, ET, IA and IFD can be computed using equation (3.11). The first 

four eigenvectors associated with eigenvalues are presented in Table 3.2. Notable 

observations are that variable AAF receives the greatest weight in principal 

component 1; FAF, TT and FR are almost equally important to principal component 

2; IFD and DPD contribute almost the same to principal component 3; and the most 

important variable to principal component 4 is DDA. 

Step 3: Since the response variable (dry pulp moisture) is autocorrelated, it violates the 

independence assumption. Therefore, it is important to remove autocorrelation 

before the model is built by regressing four significant principal components. The 

method often used to deal with autocorrelation is to fit an ARIMA model for the 

input series so that it is sufficient to reduce the residuals to white noise (Chatfield, 

2000). However, there are no ARIMA models that reasonably fit well for the 

response data since the residuals produced from the ARIMA model to build 

regression model will give an R-square value of almost zero. Therefore, we use the 

autoregressive error model. Again with the help of SAS, the following model 

coefficients are estimated by the maximum likelihood method: 

 

1 2 3 4

1 2 3

2

9.6302 0.3199 0.1652 0.8376 0.4932

1.1188 0.5804 0.3945

. . . (0, )

t t

t t t t t

t

y PC PC PC PC

i i d N



    

 

  

     

          (3.12) 

The Durbin-Watson test for autocorrelation in residuals confirms that the residuals 

are white noise. And the intercept, components 1 to 4 and the coefficients for AR1, 

AR2 and AR3 are all significant, indicating that the variables associated with these 

coefficients are important and meaningful to the model. The R-square is 0.6137, 

which is not as high as desired. However, various factors, such as instrumentation, 
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gauging accuracy, process interruption by operators, and data recording errors 

affect data collection and the production process. Therefore, even a model with a 

moderate R-square is informative about the process and the relative importance of 

numerous variables to the process. 

Step 4: From the analysis results, the mean of the process is –.0016 and the standard 

deviation is 0.6933. So the control limits for the Shewhart chart are computed as: 

 0.0016 3(0.6933) ( 2.0815,2.0783)                                                           (3.13) 

Table 3.1. Eigenvalues of the correlation matrix 

PC Eigenvalue Proportion Cumulative 

1 4.6290 0.3858 0.3858 

2 2.6333 0.2194 0.6052 

3 1.6352 0.1363 0.7415 

4 0.9960 0.0830 0.8245 

5 0.6784 0.0565 0.8810 

6 0.4533 0.0378 0.9188 

7 0.3803 0.0317 0.9505 

8 0.2762 0.0230 0.9735 

9 0.1783 0.0149 0.9883 

10 0.0694 0.0058 0.9941 

11 0.0511 0.0043 0.9984 

12 0.0195 0.0016 1.0000 

 

 The Shewhart Individuals control chart of dry pulp residuals is generated in Figure 3.4. 

The correlation matrix provides some information regarding the weight of the variables in the 

principal component. From Table 3.2, a simplified version of the correlation matrix is created 
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to interpret significant variables as shown in Table 3.3. For principal component 1 (PC1), eight 

variables, PPM, FA, IFS, ET, IA, IFD, AAF and DPD, are considered to be important based on 

their weights with maximum weight variables. Three variables, FAF, TT and FR, are significant 

in principal component 2 (PC2), even though their importance is minor compared to principal 

component 1. Principal component 3 (PC3) shows five variables, FA, IA, IFD, DPD, and DDA, 

as important, and only DDA is significant in principal component 4 (PC4). Since four principal 

components are regressed on the dry pulp, the weight of the variables changes according to 

equation (3.12). Table 3.4 shows the adjusted weight of each variable in each principal 

component and the overall weight of each variable in the model. When detecting an out-of-

control signal, the sequence for checking process variables according to their priority should 

be: IFD, FA, DPD, IA, IFS, FR, TT, DDA, FAF, ET, PPM and AAF.  

Table 3.2. Correlation between principal components and standardized variables 

x PC1 PC2 PC3 PC4 

PPM -.333218 0.146091 0.194914 0.118675 

FAF -.166576 -.539317 0.000217 -.024384 

TT 0.202653 0.505909 0.056680 -.115743 

FR 0.111124 0.512892 0.147625 -.057863 

FA 0.293420 -.248280 0.414488 -.282509 

IFS 0.380466 -.148433 0.119992 0.213348 

ET -.341491 0.231609 0.072179 -.090648 

IA -.225141 -.119583 0.395806 0.254624 

IFD 0.338596 0.000655 0.466796 -.275830 

AAF -.439290 0.088861 0.107443 -.094088 

DDA 0.067763 0.085509 0.353278 0.772074 

DPD 0.312140 0.044331 -.484442 0.298605 
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Table 3.3. Simplified correlation between principal components and standardized variables 

z PC1 PC2 PC3 PC4 

PPM - (+) (+)   

FAF (-) -     

TT (+) +     

FR (+) + (+)   

FA + (-) + (-) 

IFS + (-)   (+) 

ET - (+)     

IA -   + (+) 

IFD +   + (-) 

AAF -       

DDA     + + 

DPD +   - (+) 

 

There are several out-of-control signals in the Shewhart control chart given in Figure 

3.4. It is difficult to identify a single source for each of the out-of-control signals since most 

variables are correlated with each other and the principal component is a linear combination 

of all other variables. A physical interpretation of the results is informative; for example, the 

aspiration air flow (AAF) is the air that is affected by the pressure difference between 

temperature at the beginning and at the end of the drum. If there is high pressure in the drum, 

then the pulp will have less moisture content, and vice versa. The throat temp (TT), the 

temperature at the beginning of the drum, behaves the same way as the exit temperature (ET), 

the temperature at the end point of the drum. If the exit temperature is higher, then the moisture 

in the pulp will decrease. 
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Table 3.4. Adjusted weight of each variable (X) standardized variables for each principal 

component and overall weight of each variable (X) to response variables (Y) 

 

 -0.3199*PC1 0.1652*PC2 -0.3876*PC3 0.4932*PC4 y 

PPM 0.10660 0.02413 -0.16326 0.05853 0.02600 

FAF 0.05329 -0.08910 -0.00018 -0.01203 -0.04802 

TT -0.06483 0.08358 -0.04748 -0.05708 -0.08581 

FR -0.03555 0.08473 -0.12365 -0.02854 -0.10301 

FA -0.09387 -0.04102 -0.34718 -0.13933 -0.62139 

IFS -0.12171 -0.02452 -0.10051 0.10522 -0.14151 

ET 0.10924 0.03826 -0.06046 -0.04471 0.04234 

IA 0.07202 -0.01976 -0.33153 0.12558 -0.15368 

IFD -0.10832 0.00011 -0.39099 -0.13604 -0.63524 

AAF 0.14053 0.01468 -0.08999 -0.04640 0.01881 

DDA -0.02168 0.01413 -0.29591 0.38079 0.07733 

DPD -0.09985 0.00732 0.40577 0.14727 0.46051 

 

 Furthermore, the feed rate (FR) and force draft air flow (FAF) will affect the duration 

of the pulp inside the drum; if the feed rate and force draft air flow are increased, the pulp 

will have less time inside the drum which directly leads to high moisture content in the pulp. 

The variables IFD, FA, DPD, IA, IFS, FR, TT, DDA, FAF, ET, PPM and AAF should be 

investigated as a sequence according to their importance once the out-of-control signal is 

detected. It is useful to construct an additional residual control chart of suspicious predictor 

variables to be able to identify the root cause and physical interpretation of the out-of-control 

signal. These signals needs to be investigated further based on the prior process knowledge. 
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Figure 3.4. Shewhart control chart for dry pulp moisture residuals 

3.4. Discussion 

 This paper developed a comprehensive framework for analyzing multivariate 

autocorrelated cascade processes. A guideline for handling autocorrelated and 

multicollinearity effects with a high dimensional system is also presented. The PCA reduces 

the number of input variables and removes the multicollinearity effect. The autoregressive 

error correction model along with multiple regression is applied to determine the relationship 

between output variables and the PCA of the original input variables. Independent residuals 

are generated based on the model. These white noise residuals can then be monitored using 

the Shewhart control chart. The application of the proposed framework has been 

demonstrated using a real life industry example. The cumulative sum and exponential 

weighted moving average can be used instead of the Shewhart control chart if the detection 

of small process shifts is desired. The proposed methodology can be expanded to monitor 

two or more response variables in multivariate cascade processes. Further, the model 
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developed to describe the relationship between input and output variables can also be used 

for process optimization as well as in-line, real-time control of the process. 
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CHAPTER 4. PAPER 2 DUAL MONITORING SCHEME FOR MULTIVARIATE 

AUTOCORRELATED CASCADE PROCESSES WITH EWMA AND MEWMA 

CONTROL CHARTS2 

4.1. Introduction 

Implementation of statistical process control (SPC) methods for monitoring 

multivariate autocorrelated cascade processes has been receiving increased attention in recent 

years.  Traditionally, SPC is used to chart and monitor important process output variables.  

However quality in multivariate cascade processes can be described by the relationship 

between process input and output variables (Hawkins, 1993).  For such processes, the latent 

relationship between process output and input variables can be used to predict the process 

output from input process variables.  In fact, monitoring the process output can be more 

effective if the relationship between product and process variables can be used and incorporated 

(Mandel, 1969). By accounting for process input values, one can determine the expected value 

of process output and monitor the process through the white noise. 

One such process, from the sugar beet industry as described by Bilen et al. (2010), is 

the pulp drying process (Figure 4.1).  The major byproducts of sugar beet processing are pulp 

and molasses where the pulp is dried and used as livestock feed.  Quality of the livestock feed 

depends on the moisture content of the dry pulp. The moisture content of the dry pulp (Y) is 

affected by measurable process characteristics or input variables, Xs, as shown in Figure 4.2. 

 
Figure 4.1. Pulp drying process in general 

                                                           
2 Content in this chapter has been submitted for publication to Quality Engineering on April 28, 2014 
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 To enhance the monitoring system, information on the process input variables can be 

used to successively determine and forecast the expected value of the process output so that 

the control limits for the output can be determined.  Typically if predictor (process input) 

variables change, the response (the output variable) is directly affected.  Basically, process 

output variable, Y, can be monitored by comparing its actual value with the expected range 

based on its relationship with the Xs, i.e., using regression.  Regression technique can be used 

as a tool to obtain those predicted value and the predefined range (Mandel, 1969). Under the 

controlled condition, the process input variables are at in-control state where joint means and 

covariances are at in-control values.  

 

Figure 4.2. Pulp drying process according to time 

For example, in the pulp drying process when the process is in-control state with no 

change in the relationship between process inputs and output, the moisture content of the dry 

pulp can be predicted based on input variable values.  The actual moisture content can then be 

compared and charted against an expected/predicted value within a predefined range.  The 

moisture content of the dry pulp Y is autocorrelated and, in this paper, we are interested in 

developing a method to control this autocorrelated process output, Y.  For overall control of 

the multivariate cascade process, a monitoring scheme for the autocorrelated process output 
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which takes into account process input variables is necessary. In addition to the autocorrelation 

in the process output, for chemical processes such as the sugar beet pulp drying process, 

typically there is multicollinearity among key process input variables, Xs.  For such cascade 

processes the multivariate regression control chart cannot be used to monitor the process 

output.  

While multivariate control charts for monitoring process output variable without any 

consideration of input variables were proposed by several researchers (Jarrett and Pan, 2007; 

Jiang, 2004; Kalgonda and Kulkarni, 2004), there are also numerous examples and theoretical 

basis for monitoring the multicorrelated and autocorrelated processes based on Principal 

Components Analysis (Bisgaard and Kulahci, 2005; Jackson, 1980; Jolliffe, 1972 and 1973; 

Mastrangelo et al., 1996; Runger, 1996; Schall and Chandra, 1987).  Principal Components 

Analysis effectively reduces the dimension of process input variables while retaining most of 

the process information.  Detecting the out-of-control signal and finding the root cause of the 

process failure is complicated in multivariate autocorrelated statistical process control 

(Bersimis et al., 2007; Lowry and Montgomery, 1995; Woodall and Montgomery, 1999).  

Several types of multivariate control charts for monitoring process output variable without 

taking  input variables into consideration have been proposed by a number of researchers 

(Jarrett and Pan, 2007; Jiang, 2004; Kalgonda and Kulkarni, 2004).  The detection of the out-

of-control signal can be even more difficult with the Principal Components Regression 

approach where information on the current process input values is used merely as regressor for 

Principal Components Regression.  In fact these key process inputs/characteristics can also 

provide valuable information on the existing process performance.  Further, multicollinearity 

in the process input variables Xs can affect the least squares estimation of parameters leading 

to incorrect control limits for the process output, Y.  Hence, the multicollinearity of the input 

variables should be accounted for when monitoring multivariate cascade processes.  



 

41 
 

Bilen et al. (2010) presented and used the Principal Components Analysis to reduce the 

size of process input variables; eliminate the multicollinearity problem among input variables; 

and construct the multiple Principal Component Regression model for autocorrelated output 

variable.  In this paper we extend the work of Bilen et al. (2010) by (i) improving the output 

monitoring scheme sensitivity using exponentially weighted moving average (EWMA) control 

scheme; (ii) using the Generalized Least Squares (GLS) approach on the Principal Components 

Regression in conjunction with the covariance structure of autoregressive error correction 

model on the residuals to obtain the best linear unbiased estimates of the autoregressive and 

the regression parameters; and (iii) applying the multivariate statistical process control scheme, 

namely MEWMA, to critical multicorrelated process inputs.  The EWMA and MEWMA 

control charts are shown to be robust to non-normality, autocorrelation and effective in 

detecting small process shifts (Apley and Lee, 2008; Borror et al., 2003; Carson and Yeh, 2008; 

Human et al., 2011; Kohehler et al., 2001; Midi and Shabbak, 2011; Nuebauer, 1997; Lu, 1999; 

Scranton et al., 1996; Stoubos and Sullivan, 2002; Testik et al., 2003).   

The proposed dual, simultaneous control of process inputs and output leads to better 

and thorough control of the process and faster identification of the out-of-control signal. This 

approach allows the process characteristics or input variables to be monitored and maintained 

at the in-control state which sequentially assists in maintaining the output characteristic at the 

desired level.  In addition, the expected output can be regularly predicted and updated based 

on the observed realization of the process inputs varying within acceptable ranges.  Then at 

each sampling interval, the expected output and its control limits can be updated based on the 

currently observed process input values.  At the same time, the observed realization of process 

inputs are monitored and charted in order to monitor the current process characteristics.  If the 

process inputs are not in-control state, one should not expect the output to be in-control state.  

Higher variations of the inputs lead to higher variation of the output.  Rest of the paper is 
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organized as follows.  Section 4.2. outlines the methodologies of principal components and 

principal components regression.  Parameter estimation for the generalized least square 

regression and autoregressive error correction model is presented in Section 4.3.  Section 4.4. 

illustrates the overall application of the dual control scheme and numerical results from  the 

dual EWMA and MEWMA control chart scheme using the sugar beet pulp drying process data 

are illustrated in Section 4.4.  The performance of the dual EWMA-MEWMA control scheme 

based on extensive numerical simulations is presented and discussed in Section 4.5.  Finally, 

summary and discussion are given in Section 4.6. 

4.2. Principal Component Regression Based on Generalized Least Squares under  

 Autoregressive Errors 

The proposed methodology for multivariate autocorrelated cascade process control uses 

a multiple principal components regression technique to reduce the dimension of the variables 

in the process and eliminate the multicollinearity effect among the predictors (Jolliffe, 2002).  

The principal components selection rule is used to identify significant principal components 

which are linear combinations of process input variables.  The response is regressed on selected 

significant independent principal components using the multiple Generalized Least Squares 

with autoregressive error correction model.  Subsequently, white noise residuals are extracted 

and used to construct a control chart for process monitoring.  Components of the proposed 

methodology are discussed in detail in the following subsections.  

4.2.1. Principal component regression  

 Principal Component Regression (PCR) is a regression analysis technique based on 

Principal Components Analysis (PCA).  In PCR, the response variable is linearly regressed on 

a select number of principal components (pc).  Principal components are generally obtained by 

transforming the original input variables into uncorrelated input variables.  The selected subset 

contains the pcs that explain most variability (80%) in the process inputs.  Remaining pcs are 



 

43 
 

discarded with minimal loss of information while reducing the dimension of the pcs. As pcs 

are uncorrelated there is no multicollinearity effect and hence multiple PCR based on 

Generalized Least Squares (GLS) can be used.  In addition to reducing the dimension of 

regressor variables, PCR also provides accurate prediction of the response variable through 

appropriate selection of the pcs used in the regression model. 

Let a sample of n collected single observation vectors of the process inputs be denoted by 

1x ,…, tx ,..., nx  where  1,...,
T

t t tkx x x  is an kx1 column vector of a single observation of the 

process inputs sampled at time t.  In the dry pulp process, there are 12 process inputs, so k = 

12.  Let  1... kX x x  denotes an n k  matrix of the sampled process inputs where 

1
( ,..., )

T

i i ni
x xx  represents the 1n  column vector the ith input collected from the sample of 

size n.  Let their associated n values of the process output be represented by an 1n  column 

vector  1,...
T

nY YY .  Note that in this paper, both Y and Xs are standardized to accommodate 

for difference in variation as well as units.  The conventional multiple regression equation can 

be formulated and written in matrix form as: 

Y = Xβ+e                   (4.1) 

where β  is 1k   vector regression parameters, e  is 1n  column vector of the error terms.  

Under independence assumption of the error terms, the estimated regression coefficients using 

ordinary least squares (OLS) estimator are given by 
1ˆ T T

β (X X) X Y .  The variance-

covariance matrix of the estimated regression coefficient is 
2 1ˆ( )

T

eVar  
β (X X) .   

To perform PCA and PCR, first an n k  matrix of pcs  1 1... ...m m kZ z z z z  must be 

obtained. Note that iz  is an 1n  vector of the ith pcs.  For unknown covariance matrix of X ,  

the principal component matrix is given by Z XA , where D  and A  are the eigenvalues and 
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eigenvectors of the sample variance-covariance matrix  1
T

n S XX , respectively.  Then, 

Y  is regressed on the principal components and can be represented as:  

Y = Zγ +e             (4.2) 

where γ  is 1k  vector of PCR coefficients which can be estimated using OLS as 

1ˆ T T

OLS


γ = (Ζ Ζ) Z Y .  Covariances of the estimated coefficients of γ̂  can be computed as 

2 1ˆ( )
T

OLS e
Var


 γ (Ζ Ζ) .  For known values of β and γ , the predicted response with respect to 

a single observation vector at time t,  1,...,
T

t t tkx x x can be obtained as 
T T

t t
x xβ β  or 

T T

t t
z zγ γ  where 

T

t t
z x A   1 1,..., , ,...,

T

t t tm tm tkz z z z z .  Also, the relationship between the 

known regression coefficients can be represented as 
T

γ A β  or β Aγ .  The regression 

coefficients vector γ  can be theoretically transformed back to the original regression 

coefficient vector, β .  Based on observations from the pulp drying process, Bilen et al. (2010) 

showed that only four of 12 pcs should be statistically used to explain and represent the 12 

process inputs, Xs.  This is a great reduction in dimension of regressor variables.  Hence, only 

those selected significant pcs should retained in Equation based on integration selection rule 

explained in the next subsection.  Multiple PCR is then applied using selected pcs. 

4.2.2. Selecting significant principal components 

PCA is a method of transforming correlated set of original variables into uncorrelated 

new set of variables called pcs (Jolliffe, 2002).  The eigenvalues of the pcs are ordered from 

largest to smallest. The first pc is selected based on the largest eigenvalue, the second pc is 

selected based on the second largest eigenvalue and so on.  Selection of the optimal number of 

pcs to include in the multiple regression model is crucial for reducing the number of the 

variables while still being able to explain the majority of process input data information.  The 

number of pcs is always less than or equal to the number of original variables.  Given k 
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correlated variables of interest, PCA transforms k correlated variables into k uncorrelated pcs.  

The general selection rule by Jolliffe (2002) can be used to select the most significant number 

of m pcs, where m k . 

Bilen et al. (2010) developed an integrated selection rule to select m pcs whose variance 

is at least 0.7 and the cumulative percentage of total variation of the principal components is 

greater than or equal to a threshold ( mt ) value: 

1

100 m

m j

j

t
k




   and 70% mt and 0.7
j

                   (4.3) 

where k and m are the original and the selected number of pcs, respectively.  The variance the 

jth principal component is given by j
 .  Selected number of pcs must satisfy both conditions: 

selected pcs must have cumulative percentage at least 70% of total variation and magnitude of 

pcs variance must be at least 0.7.  Bilen et al. (2010) showed that this integrated selection rule 

is effective in reducing the number of pcs while retaining maximum information on the 

variances of the process for pulp drying process data.  In this paper we use this same rule to (i) 

select the n m  matrix of pcs from the matrix Z , and (ii) obtain the estimates of the PCR 

parameters γ  in equation 4.2 based on selected m principal components.  Without loss of 

generality, the principal component regresssors are expressed as mx1 column vector of 

 1,...,
T

t t tmz z z and  1... mZ z z .  For the pulp dryer process data, m=4. 

4.2.3. Multiple generalized least squares regression on significant principal components  

 under autoregressive error correction model 

 Under the autoregressive error correction model, Multiple PCR is carried based on the 

GLS method.  Assuming that an autoregressive (AR) error correction model provides the best 

fit to the actual data, the regression model at time t can be expressed as: 

T

t t t
y x  β                 (4.4) 
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1 1 2 2 ...t t t P t P t               

where ty is the response variable; t  is the correlated residuals at time period t; P  is 

autocorrelation coefficient of lag p and 1P  ; and white noise 𝜈𝑡~𝑖𝑖𝑑 𝑁(0, 𝜎2).  If OLS is 

applied to time series process output, the OLS residuals will remain correlated over time 

resulting in three significant shortcomings: 1) incorrect statistical tests of significance of the 

parameters and the confidence limit for predicted value ŷ , 2) inefficient estimates of regression 

coefficient, and 3) lack of improvement in predicting the future value since ordinary regression 

residuals are not independent.  Under the AR model, in this paper we use multiple GLS to 

obtain an unbiased estimates of: regression parameter, γ ; autoregressive parameter, i ; and the 

variance of the white noise, 
2

e
 .  This multiple GLS is a better approach for estimating of these 

parameters.  When GLS is employed in equation [1], the regression coefficient estimates are 

given by 
1 1 1ˆ T T

GLS

  
β (X V X) X V Y  where V  is the covariance matrix of t .  The variance-

covariance matrix of the estimated regression coefficient is represented by 

1 1ˆ( )
T

GLSVar
 

β (X V X) .  For m=4,   the regression model at time t can be expressed as: 

T

t t t
y z  β                 (4.5) 

1 1 2 2 ...t t t P t P t               

where  1 4,...,
T

t t tz z z .  Replacing X  with the matrix of the selected pcs,Ζ , the estimated 

regression coefficient of β  can be calculated as: 

1 1 1ˆ T T

GLS

  
β (Z V Z) Z V Y               (4.6) 

and the variance-covariance matrix of ˆ
GLSβ  can be computed as 

1 1ˆ( )
T

GLSVar
 

β (Z V Z) .  

With unknown autoregressive error model parameters q
  and 

2

e
 , the parameter estimates of 

ˆ
GLSβ  and V̂  must be obtained: 
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1. Obtain ˆ
GLSβ  by assuming 

2

e nxnV I  and compute residuals ˆ
t . 

2. Fit residuals ˆ
t  with AR(p) model estimates 1̂ ,…, ˆ

p
  and 

2ˆ
e

  from this model: 

    1 1 2 2
ˆ ˆ ˆ ˆ ˆ...t t t P t p t               

3. Estimate V̂  with respect to AR(p) model based on estimates 1̂ ,…, ˆ
p

 ,
2ˆ
e

 . 

4. Re-compute 1 1 1ˆ ˆ ˆT T

GLS

  
β (Z V Z) Z V Y  and re-compute residuals ˆ

t . 

5. Re-fit residuals ˆ
t  from step 4 with AR(p) model, re-estimate the 1̂ ,…, ˆ

p
  and 

2ˆ
e

  

6. Repeat steps 2 to 5 until estimates for ̂  and 
2ˆ
e

  converge.  

A flow chart showing the sequence of steps, for determining the GLS regression coefficients, 

autocorrelation parameters and the white noise variance, is also provided in Figure 4.3. 

Once GLS converges, the estimate of white noise residuals series ˆ
t  is determined and 

used to monitor the process using the EWMA control chart.  Without structural changes in the 

relationship between the process input and output variables, 
2ˆ ˆ. (0, )

tt e
iid N  .  Then the 

EWMA control chart applied on ˆ
t  can be calculated as:  

1
ˆ (1- )t t tU v U     for 1,2,...,t n             (4.7) 

with 0 0U  and 0 1   is a smoothing parameter of the EWMA control chart. The 

appropriate value of   is provided by Lucas and Saccucci (1990).  The variance of control 

statistic is computed as: 

 
22 2ˆ1 1

2

i

U e


  



         
             (4.8) 

The upper and lower control limits, UCL and LCL, of the EWMA are given as: 

UCL

LCL

U U

U U

L

L





 

 
              (4.9) 
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where ( , )L  are chosen with respect to a desired false alarm rate.  In this paper, the parameters 

( , )L  are selected with respect to false alarm rate of 500. 

4.2.4. Multivariate exponential weighted moving average (MEWMA) control charts on  

 process inputs 

In this paper we propose using the MEWMA control chart to monitor key process 

inputs.  We assume that under normal operating conditions, the process input characteristics 

Xs are normally non-constant but subject to an in-control state.  Under the in-control state, 

process adjustment or feedback control is not required or implemented.  However, the process 

output characteristic, may fluctuate within controlled range of variation as a result of random 

but controllable nature of the process inputs Xs.  Given a known relationship between process 

output and inputs, the EWMA statistic monitors shifts in the structure of the relationship 

between process output and inputs.  Since the shifts in process inputs can directly affect the 

output, in this paper we also use the MEWMA to help monitor process inputs.  By adding 

multivariate SPC scheme onto input Xs, both the process and product characteristics can be 

monitored.  Monitoring process characteristics will help prevent any significant changes in the 

process output.  Similar to EWMA, the MEWMA control chart has been shown to be robust to 

non-normality (Lowry et al., 1992).  So in this paper we apply MEWMA to the critical 

multicorrelated input Xs in order to help identify whether process inputs are in-control.  This 

concept of dual monitoring of both process inputs Xs and output Y simultaneously is more 

effective and extends the work of Bilen et al. (2010). 

Similar to the U2 chart that monitors the subset of variables where the mean shifts are 

likely to occur in a subspace, in this paper we focus on key process input characteristics Xs.  

Key process variables are those with maximum weights in the first principal components.  

Based on our process knowledge, these variables are actually the critical inputs to the pulp 

drying process.  These variables are monitored using the MEWMA chart.  While the MEWMA 
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chart can also be used to monitor principal components as suggested by Mastrangelo et al. 

(1996), to avoid the unnecessary difficulty in identifying the source of an out-of-control signal 

based on principal components, in this paper the MEWMA chart is applied directly to identified 

key process inputs. 

Let iX  denote a single observation column vector of X = (X1, …, Xm) sampled at time 

i .  Recall that all the Xs are standardized with zero means and unit variances.  Without loss of 

generality, the mean of X  is zero vector and the covariance matrix is Σ .  The iX  is assumed 

to be independent over time.  If r1 = r2 = … = rm = 4, then the MEWMA is given as follows: 

1(1 )i i ir r   U X U             (4.10) 

where 0 0U  and 0 1r  .  The MEWMA control chart will show the out-of-control signal, 

when: 

2 1

4t

T

t t tT h


 
u

U Σ U             (4.11) 

where 
4 0h   for m = 4 is chosen in the aim of achieving predetermined in control ARL  

(Montgomery, 2012).  Lowry et al. (1992) presented the 4h  value for different number of 

variables of interest and various values of in-control ARL.  The covariance matrix can be 

calculated as: 

 
2

1 1
2i

ir
r

r

         
U

Σ Σ             (4.12) 

Prabhu and Runger (1997) recommended using 0.2r   for in-control ARL of 500 with 4k 

In this paper we also choose 0.2r   and 
4h  for an in-control ARL of 500. 
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Figure 4.3. Autoregressive error correction parameters estimation procedure 
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Figure 4.4. The general configuration of dual EWMA and MEWMA control chart scheme 
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4.3. Dual EWMA and MEWMA Control Chart Diagram  

Dual EWMA and MEWMA control chart scheme is developed to monitor both process 

input variables, Xs, and product or output variable, Y, simultaneously.  The predicted Y is 

based on PCR from first selected pcs.  The residual-based EWMA is used to monitor structural 

changes in the relationships between process inputs and output.  With no change in the structure 

the residuals, i.e. the difference between observed Y and the predicted Y, under GLS will be 

independent and normally distributed with mean zero and constant variance.  When there is a 

change in the PCR model, the white noise residuals will no longer center around zero.  So the 

EWMA statistic will signal a change in the relationship between process inputs and output as 

well as changes among the process input variables.  When mean or covariance of X changes to 

an out-of-control state, the structure of PCR will also change.  This will result in changes in the 

mean of the residuals and white noises since the pc regressor is determined based on the in-

control state of covariance of X.  Therefore, the EWMA can capture not only changes in 

structural relationship but also changes in the key process input parameters.  In contrast, the 

MEWMA is used to directly monitor the shift in the mean of key process variables, Xs.  The 

MEWMA can signal changes in the covariance of X as well.  Therefore our dual monitoring 

scheme can capture changes in (i) the mean, (ii) the covariance, and (iii) the structure for Y and 

Xs.  Hence this dual control is more effective in identifying changes in both process inputs and 

output. The construction and use of our dual schemes is divided into two phases: the dual 

control chart construction (Phase I) and implementation (Phase II). 

During Phase I, a sample of single observations  1 12, ,...,
T

i i i iy x x x  i=1,..,n are 

collected from an in-control state.  Once the matrices of (Y, X) are constructed, PCA is 

conducted and the matrix of significant pcs, Z, is obtained.  Next the multiple PCR based on 

GLS is performed to obtain the parameter estimates of regression coefficients ˆ
GLSβ and 
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parameters of the autoregressive error model, 1̂ ,…, ˆ
p

 ,
2ˆ
e

 .  These estimates are used for 

prediction and calculation of the residuals and white noise during Phase II. 

During the implementation stage (Phase II), a single observation  1 12, ,...,
T

t t t ty x x x  

at time t is sampled.  The first m significant pcs,  1 4,...,
T

t t tz z z , are calculated and used to 

predict the  process output with respect to those currently values of tx  through tz   using the 

ˆ
GLSβ , 1̂ ,…, ˆ

p
 ,

2ˆ
e

  estimated from phase I.  Next the predicted ˆ
ty , ˆ

t , ˆ
t  are determined so that 

the residual-based EWMA statistic can be charted.  At the same time, key process inputs,

 1 4,...,
T

t t tx x x , are monitored with the MEWMA chart.  When the EWMA or MEWMA 

statistic gives an out-of-control signal, the process is stopped to search for assignable causes.  

For out-of-control signals on the MEWMA chart, key process inputs are investigated.  A 

conventional decomposition can be applied to identify potential process input variables 

responsible for the out-of-control signal (Montgomery, 2012).  For signals on the EWMA chart, 

the controlling condition of the process output is deemed to be out-of-control and an assignable 

cause is searched.  Figure 4.4 gives an overall configuration of the implementation of the dual 

EWMA and MEWMA control chart scheme. 

4.4. Implementation of the Dual Control Scheme 

We use historical data, for a period of two months of production, from the pulp drying 

process shown in Figure 4.2 to illustrate the steps of the dual control scheme.  The observed 

process pulp process data are somewhat messy and have a few missing points.  Therefore, in 

order to construct the stationary control chart, 228 consistent (and continuous) observations, 

showing no obvious outliers, were identified and used from a total 1,349 observations during 

phase I construction.  Time series plots of process variables indicate a stationary process.  

Figure 4.5 shows the time series plot of process output, dry pulp moisture content. The ACF 

and PACF plots indicate that all process variables are autocorrelated. multicollinearity among 
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input variables is identified and also affirmed by prior knowledge of the process.  PCA is used 

to alleviate the multicollinearity problem among process variables yet maximally maintaining 

the relationship structure between process inputs and output, and at the same time reducing the 

dimension of the charting variables.  Then the model-based white noise are extracted from the 

PCR under GLS and charted for monitoring the product/output. 

 Principal components of the multivariate process input variables of the sugar beet 

processing is selected using the Bilen et al. (2010) integrated selection rule.  The autoregressive 

model is used to represent the autocorrelated moisture content of the dry pulp.  The PCR is 

performed by regressing the autocorrelated moisture content on the significant principal 

components.  This is carried as the autoregressive error correction model is applied to the time 

dependent residuals from the multiple PCR model so that the stationary white noise can be 

obtained and charted on the univariate Shewhart type control chart. 

The results of the eigenvectors and their associated eigenvalues are presented in Table 

4.1. The linear combination coefficients of the original process input variables are shown in 

Table 4.2. Note that according to the selection rule in equation (4.3), key pcs are chosen for 

constructing the relationship between the moisture content, Y, and Xs through the principal 

component, Z.  

 Through principal components analysis and knowledge of the process, four key process 

input variables are identified and monitored: aspiration air flow (AAF), induced draft fan speed 

(IFS), exit temperature (ET) and induced draft fan differential pressure (IFD).  These four 

variables received maximum weights in the first principal components out of the four 

significant principal components.  To increase detection power, EWMA control chart is applied 

on the white noise.  On the process inputs side, MEWMA is used to monitor identified key 

multivariate process input variables.  These key process inputs are not only the main 

contributing factor of the PCR but are also vital characteristics to the product output, moisture 
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content of the dry pulp.  For the construction of the EWMA control chart, the parameter 

parameters ( , )L  are selected to be (0.2, 2.962) for false alarm rate, 0ARL , of 500.  Similarly, 

MEWMA control chart parameters 4( , )r h  are selected to be (0.2, 16) for false alarm rate, 

0ARL , of 500.  These parameters were empirically justified using simulation.  So the statistics 

of the dual control scheme are  

1
ˆ0.2 0.8t t tEWMA v EWMA                (4.13) 

CL 2.962
t tEWMA EWMA

   

2 2 21
1 0.8 0.6933

9t

t

EWMA
 

     
 

 

The MEWMA statistic for 1 4( ,..., )X XX  is 

10.2 0.8t t tMEWMA MEWMA  X           (4.14) 

2 1

t

T

t t MEWMA tT MEWMA MEWMA


 Σ  

21 ˆ1 0.8
9t

t

EWMA

 
     

 
Σ Σ , 

4 16h  . 

At each time interval, process inputs and output are automatically recorded by the pulp drying 

process sensors.  The EWMA-MEWMA statistics are then computed and updated at each 

sampling interval.  The computed statistics are then charted and compared against their control 

limits.  The application of this dual scheme results in higher performance of the overall process 

control.   

By adding multivariate SPC scheme onto process input variables, Xs, both the process 

and product characteristics are monitored.  The extracted residuals conditioned on the current 

process input values provide reference information on changes in the structural relationship 

between the product and the process. Monitoring of the process characteristics help identify 

any developing change in the process output, moisture content of dry pulp, well in advance.  
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Therefore multivariate control charting, of key multicorrelated process input variables, Xs, 

helps identify whether the process inputs are in-control.  This approach yields better 

understanding and more effective control for multivariate cascade processes. The performance 

of the proposed dual EWMA-MEWMA control scheme has also been studied using numerical 

simulation. The results of the numerical study are discussed in the next section.  

Table 4.1. Eigenvalues of the correlation matrix 

PC Eigenvalue Proportion Cumulative 

1 4.6290 0.3858 0.3858 

2 2.6333 0.2194 0.6052 

3 1.6352 0.1363 0.7415 

4 0.9960 0.0830 0.8245 

5 0.6784 0.0565 0.8810 

6 0.4533 0.0378 0.9188 

7 0.3803 0.0317 0.9505 

8 0.2762 0.0230 0.9735 

9 0.1783 0.0149 0.9883 

10 0.0694 0.0058 0.9941 

11 0.0511 0.0043 0.9984 

12 0.0195 0.0016 1.0000 
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Table 4.2. Correlation between principal components and standardized variables 

x PC1 PC2 PC3 PC4 

PPM -.333218 0.146091 0.194914 0.118675 

FAF -.166576 -.539317 0.000217 -.024384 

TT 0.202653 0.505909 0.056680 -.115743 

FR 0.111124 0.512892 0.147625 -.057863 

FA 0.293420 -.248280 0.414488 -.282509 

IFS 0.380466 -.148433 0.119992 0.213348 

ET -.341491 0.231609 0.072179 -.090648 

IA -.225141 -.119583 0.395806 0.254624 

IFD 0.338596 0.000655 0.466796 -.275830 

AAF -.439290 0.088861 0.107443 -.094088 

DDA 0.067763 0.085509 0.353278 0.772074 

DPD 0.312140 0.044331 -.484442 0.298605 

 

Figure 4.5. Time series plot of moisture content (output) for the pulp drying process 
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4.5. Performance of the Proposed Dual Scheme 

We evaluated the performance of the proposed dual control scheme using simulated 

data similar to the observed data from the pulp drying process. The simulation study conducted 

to investigate the performance of the dual EWMA and MEWMA control scheme was based on 

100,000 replications.  The data were generated based on the same structure of actual pulp 

drying process.  Performance of the dual control scheme was examined for changes in the 

mean, covariance, and structural relationship (Table 4.3).  We evaluated performance in terms 

of out-of-control average run length (ARL1), the number of points that must be plotted before 

an out-of-control signal is detected, for each chart as well as the joint ARL1, the minimum 

average run length for the dual monitoring scheme.  In general, ARL1 should be small when 

there are changes in the process corresponding to higher power of detection.  The minimum 

ARL1 and the probability that the out-of-control condition will be detected first by the 

MEWMA control chart provide information on which chart will yield an out-of-control signal.  

The EWMA chart is sensitive to structural and variance changes in all process inputs whereas 

the MEWMA is more sensitive to changes in the mean and possibly variance changes in X1, 

X2, X3, X4. 

For Scenario 1, the mean vector of the key process input variables being monitored by 

the MEWMA were simultaneously shifted by 
1 4
,...,

X X
  μ with  = 0.25, 0.50, 1.00, 

1.50, 2.00 and 3.00 (Table 4.3).  This scenario is used to assess the performance of the 

MEWMA chart directly.  As expected unlike the EWMA chart,  the MEWMA detects changes 

in the means 
1 4
,...,

X X
  μ .  The minimum ARL1 represents the ARL based on joint 

control which will always be smaller than the individual ARL.  Under in-control state, the joint 

ARL would represent the more frequent false alarm.  The last column shows the proportion 

that the signal is almost certainly given by the MEWMA. 
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Table 4.3. Scenarios for studying the dual control scheme performances 

 Process Input Variables Structural Relationship 

1 4( ,..., ) β   
1 4( ,..., )X XX  5 12( ,..., )X XX  

 Changes in μ  Changes in Σ  Changes in μ  Changes in  ’s 

Scenario 1     

Scenario 2     

Scenario 3     

Scenario 4     

Scenario 5     

Scenario 6     

Scenario 7     

 

For scenario 2, while the mean vector of the key process input variables remain same, 

other variables shift by
5 12
, ...,X X  μ where  = 0.25, 0.50, 1.00, 1.50, 2.00, and 3.00.  

Changes in the means of Xs will cause the predicted moisture content to drift out of in-control 

state.  So one would expect the signal to be given in the EWMA chart rather than the MEWMA.  

However, since the prediction is based on the same structural relationship, one would expect 

the predicted moisture content to be adjusted or accounted for by the current values of all Xs.  

With no changes in structural relationship or 1 4( ,..., ) β , changes in Xs leads to changes in 

the actual moisture content as well as the predicted value.  The white noise extracted from the 

difference between the actual and the predicted moisture content still represents the pure white 

noise with the same mean at zero.  The EWMA statistic is still a function of the pure white 

noise.  Therefore we would expect both charts not to signal any structural changes or key 

process input variable changes.  Table 4.5 summarizes the performance of the dual control 

scheme under scenario 2.  As expected, none of the charts signal changes either in structural or 
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in key process input variables.  The ARLs are simply the ARL0.  Note that the joint ARL1 

becomes joint ARL0 showing more frequent false alarm as a consequence of using joint control 

charts.  Since none of the charts detect a change, the proportion or probability that a signal is 

detected by MEWMA or EWMA is 50%.  The last column affirms that a false alarm is equally 

likely to be detected by either chart. 

Table 4.4. Performances of the dual scheme under scenario 1 (standard deviation of the ARL1 

are in parenthesis) 

 

  

ARL1  

of MEWMA 

ARL1  

of EWMA 

Minimum ARL1  

Probability of 

First Detecting by 

MEWMA 

0.25 19.0603 

(15.4784) 

494.1302 

(427.7206) 

18.3549 

(15.0822) 

0.9565 

(0.2040) 

0.50 3.5773 

(1.7748) 

489.1419 

(422.1123) 

3.5517 

(1.7632) 

0.9888 

(0.1052) 

1.00 1.0285 

(0.1667) 

491.4255 

(426.1608) 

1.0285 

(0.1666) 

1.0000 

(0.0032) 

1.50 1.0000 493.1678 

(426.8112) 

1.0000 1.0000 

2.00 1.0000 493.1123 

(426.5532) 

1.0000 1.0000 

3.00 1.0000 491.0701 

(426.1637) 

1.0000 1.0000 

 

For scenario 3, the mean of all Xs has shifted by 
1 12
,...,X X  μ where  = 0.25, 

0.50, 1.00, 1.50, 2.00, and 3.00.  One would expect the signal to be given by both the MEWMA 

chart rather than the EWMA.  Changes in the means of Xs will likely cause the actual moisture 
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content to drift out of the in-control state.  As long as there is no change in structural 

relationship, the computed white noise still represents the pure white noise and no signal is 

given from the EWMA chart.  In contrast, key process input variable changes will be noticed 

by the MEWMA.  as shown in Table 4.6.  In fact the results for scenario 1 and 3 are theoretically 

same. The last column shows that the MEWMA will detect the out-of-control signal. 

Table 4.5. Performances of the dual scheme under scenario 2 (standard deviation of the ARL1 

are in parenthesis) 

 

  

ARL1 

of MEWMA 

ARL1 

of EWMA 

Minimum 

ARL1 

Probability of First 

Detecting by 

MEWMA 

0.25 500.6007 

(494.8401) 

490.1605 

(425.0081) 

260.3702 

(242.5750) 

0.5128 

(0.4998) 

0.50 501.5634 

(495.6951) 

492.4464 

(426.1649) 

260.3858 

(241.9645) 

0.5131 

(0.4998) 

1.00 499.3547 

(494.1531) 

492.0592 

(427.2602) 

259.5897 

(241.5918) 

0.5152 

(0.4998) 

1.50 498.3966 

(494.2622) 

490.7534 

(241.4834) 

259.5816 

(241.4834) 

0.5167 

(0.4997) 

2.00 499.6636 

(495.6035) 

492.4494 

(426.5958) 

259.0994 

(241.4450) 

0.5146 

(0.4998) 

3.00 496.7262 

(493.2899) 

493.0368 

(426.6435) 

259.5923 

(242.2439) 

0.5186 

(0.4997) 
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Table 4.6. Performances of the dual scheme under scenario 3 (standard deviation of the ARL1 

are in parenthesis) 

 

  

ARL1  

of MEWMA 

ARL1  

of EWMA 

Minimum ARL1 

Probability of 

First Detecting 

by MEWMA 

0.25 19.0120 

(15.3732) 

490.2401 

(423.7091) 

18.2816 

(14.9554) 

0.9552 

(0.2068) 

0.50 3.5803 

(1.7748) 

493.5123 

(426.5843) 

3.5559 

(1.7622) 

0.9896 

(0.1015) 

1.00 1.0296 

(0.1699) 

492.8393 

(428.1624) 

1.0296 

(0.1699) 

1.0000 

1.50 1.0000 487.1425 

(422.6859) 

1.0000 1.0000 

2.00 1.0000 491.8194 

(425.1505) 

1.0000 1.0000 

3.00 1.0000 491.5078 

(425.3678) 

1.0000 1.0000 

 

In scenario 4, the variances of the key process input variables have been simultaneously 

changed to 
1 4

2 2
,...,X X  where  = 0.25, 0.50, 1.00, 1.50, 2.00 and 3.00.  This scenario 

represents changes in the covariance structure of key process inputs.  Changes in the covariance 

will change the principal component structure.  Since the moisture content is related to latent 

variables through principal components, actual moisture content will deviate from the in-

control state.  With covariance changed, the computed principal components based on the 

estimated eigenvector from phase I will no longer represent the actual principal component.  

The predicted moisture content based on the principal component coefficient parameters from 
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phase I will differ from the actual one.  Hence, the computed white noises will have different 

mean from the in-control state value of zero.  The signal should be detected by the EWMA 

chart.  However, changes in the covariance matrix will also impact the performance of the 

MEWMA.  Table 4.7 shows the performance of the dual control scheme for scenario 4.  As 

expected, the EWMA chart detects changes very fast compared to the MEWMA chart which 

is also affected by changes in both mean and covariance. The EWMA chart is significantly 

likely to detect small changes.  As the magnitude of variance change gets larger, the MEWMA 

is more sensitive to the covariance changes.  This can be seen from the ARL1 and the 

probability that a signal is first detected by the MEWMA tends to increase as   increases. 

Table 4.7. Performances of the dual scheme under scenario 4 (standard deviation of the ARL1 

are in parenthesis) 

 

  

ARL1  

of MEWMA 

ARL1  

of EWMA 

Minimum ARL1 

Probability of 

First Detecting 

by MEWMA 

0.25 38.6669 

(34.7900) 

2.9396 

(3.7926) 

2.8099 

(3.4471) 

0.0312 

(0.1737) 

0.50 15.8032 

(12.8817) 

2.7015 

(3.3700) 

2.4329 

(2.6837) 

0.0744 

(0.2625) 

1.00 7.3309 

(5.3682) 

2.3583 

(2.7606) 

1.9546 

(1.7755) 

0.1523 

(0.3594) 

1.50 4.9617 

(3.4567) 

2.1045 

(2.3039) 

1.6862 

(1.3195) 

0.2212 

(0.4151) 

2.00 3.8669 

(2.6337) 

2.0356 

(2.1801) 

1.5549 

(1.1058) 

0.2966 

(0.4568) 

3.00 2.7847 

(1.8436) 

4.4892 

(6.2645) 

1.7303 

(1.2590) 

0.5637 

(0.4959) 
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Table 4.8. Performances of the dual scheme under scenario 5 (standard deviation of the ARL1 

are in parenthesis) 

 

  
ARL1  

of MEWMA 

ARL1  

of EWMA 

Minimum ARL1 

Probability of 

First Detecting by 

MEWMA 

0.50 501.2508 

(492.7092) 

85.4207 

(96.1684) 

72.5400 

(80.9204) 

0.1377 

(0.3446) 

0.75 501.3622 

(497.8904) 

297.4333 

(310.1911) 

185.2244 

(190.9700) 

0.3634 

(0.4810) 

0.90 500.2131 

(493.7417) 

474.7670 

(426.0455) 

250.6095 

(246.0354) 

0.4954 

(0.5000) 

1.10 501.3524 

(496.5488) 

472.6846 

(424.8884) 

249.8301 

(244.9613) 

0.4929 

(0.5000) 

1.25 500.9720 

(498.4079) 

297.1395 

(310.4359) 

184.4976 

(190.4891) 

0.3638 

(0.4811) 

1.5 500.6268 

(492.5258) 

85.6666 

(96.6659) 

72.8204 

(81.1120) 

0.1350 

(0.3417) 

 

Scenario 5 represents the change in the structural relationship between the moisture 

content and the latent variables.  The regression of parameter 1 2 3 4, , , and     were changed 

to 1 2 3 4, , ,     where = 0.5, 0.75, 0.9, 1.1, 1.25, and1.5.  We would expect only the 

EWMA chart to respond to these changes.  The results in Table 4.8 agree with our analysis.  

As   gets smaller or larger, the changes in 1 2 3 4, , , and     are prominent enough to cause the 

predicted moisture content based on the in-control 1 4,...,   to be significantly different from 

the actual moisture content driven by the out-of-control  s.  EWMA and MEWMA are equally 
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likely to detect an out of control signal for  = 0.9- 1.1.  However, MEWMA is less likely to 

detect small or large shifts compared to EWMA.      

Scenario 6 represents the case where both covariance of key process inputs 

1 4

2 2
,...,X X   and the structural relationship ( 1 2 3 4, , ,    ) are simultaneously changed.  

This concurrent change in covariance and regression parameters   should cause a significant 

change in the structural relationship.  Hence the EWMA chart should be sensitive and give an 

out-of-control signal in the structural change faster than the MEWMA chart.  This has been 

confirmed with the results shown in Table 4.9. 

Table 4.9. Performances of the dual scheme under scenario 6 (standard deviation of the ARL1 

are in parenthesis) 

 

 

  

 

 

  

ARL of 

MEWMA 

ARL of EWMA Minimum ARL1 

Probability of 

First Detecting 

by MEWMA 

0.25 0.50 38.5370 

(34.9076) 

5.2215 

(7.4383) 

4.6157 

(6.1379) 

0.0755 

(0.2642) 

0.50 0.75 15.7900 

(12.8968) 

3.4805 

(4.6861) 

2.9416 

(3.4250) 

0.1076 

(0.3099) 

1.00 0.90 7.3189 

(5.3478) 

2.5568 

(3.1088) 

2.0564 

(1.9231) 

0.1661 

(0.3722) 

1.50 1.10 4.9581 

(3.4553) 

1.9833 

(2.0776) 

1.6305 

(1.2439) 

0.2081 

(0.4059) 

2.00 1.25 3.8681 

(2.6340) 

1.7792 

(1.6907) 

1.4626 

(0.9669) 

0.2677 

(0.4428) 

3.00 1.5 2.7939 

(1.8494) 

2.2944 

(2.6555) 

1.4724 

(0.9551) 

0.4539 

(0.4539) 
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For the last scenario, there are changes in the means, variances of X1, X2, X3, X4 as 

well as changes in regression parameters,  s.  This change should be detected by both charts 

as such a change will affect structure of the model.  While both MEWMA and EWMA are able 

detect the change, MEWMA is more sensitive to detecting changes as shown in Table 4.10.  

As illustrated by our performance study, the dual EWMA-MEWMA scheme provides double 

safeguard against changes from in-control to out-of-control conditions for the entire 

multivariate cascade process.  The proposed dual scheme of monitoring both the product and 

the process characteristics is more effective than the conventional approach of only monitoring 

the product. 

Table 4.10. Performances of the dual scheme under scenario 7 (standard deviation of the 

ARL1 are in parenthesis) 

 

 

  

 

 

  

ARL1  

of MEWMA 

ARL1  

of EWMA 

Minimum ARL1 

Probability of 

First Detecting by 

MEWMA 

0.25 0.50 10.9540 

(8.6405) 

5.2383 

(7.4395) 

3.4526 

(3.8515) 

0.2259 

(0.4182) 

0.50 0.75 3.2609 

(2.1214) 

3.4542 

(4.6413) 

1.7695 

(1.2758) 

0.4251 

(0.4944) 

1.00 0.90 1.1680 

(0.4465) 

2.5285 

(3.0409) 

1.0666 

(0.2784) 

0.9132 

(0.2815) 

1.50 1.10 1.0043 

(0.0681) 

1.9577 

(1.9844) 

1.0015 

(0.0397) 

0.9973 

(0.0518) 

2.00 1.25 1.0001 

(0.0084) 

1.7618 

(1.6416) 

1.0000 

(0.0055) 

1.0000 

(0.0063) 

3.00 1.5 1.0000 

0 

2.2501 

(2.5005) 

1.0000 

0 

1.0000 

0 
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4.6. Summary and Discussion 

In this paper we developed a dual statistical process monitoring scheme for multivariate 

autocorrelated cascade processes where both process output and inputs are jointly controlled 

using a combination of residual-based EWMA and MEWMA control charts.  The proposed 

methodology acquires information on the process inputs, evaluates whether the inputs are in-

control state by control charting the correlated process inputs with the MEWMA control chart.  

In the meantime, process input information is used to predict and compare the output 

characteristic to the actual output.  The difference between the actual and the predicted output 

indicates whether the operating behavior of the process is expected, accepted or in-control state.  

The difference is corrected for time-series autoregressive model and charted on the EWMA 

control chart derived from GLS PCR and AR parameters. This dual control scheme has 

improved performance in detecting out-of-control conditions either from the inputs of the 

process or from the process dynamic itself. 

The dual EWMA-MEWMA control chart scheme provides the capability of monitoring 

the inputs, assessing and then controlling the output.  The dual control scheme has advantages 

over conventional control chart schemes that rely only on the process output, e.g., residual-

based control chart or principal component regression chart.  The EWMA statistic is designed 

to signal either structural changes or changes in the dispersion and covariance of the process 

input variables.  Whereas the MEWMA is designed to detect changes in the mean of the process 

inputs.  Under seven different scenarios, the dual EWMA-MEWMA monitoring scheme has 

shown superior performance in detecting changes in the process.  A comprehensive 

performance analysis used simulated data drawn from the characteristics of the sugar beet pulp 

drying process. 

An advantage of the proposed dual scheme is its ability to monitor and maintain in-

control process characteristics or input variables and hence maintain the output characteristic 
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at the desired level.  In addition, the expected output can be regularly predicted and updated 

based on the observed realization of the process input values varying within suitable ranges.  

High variation in the inputs leads to high variation in the output.  Monitoring and controlling 

the process inputs are necessary for effective control of the process.  Therefore the 

simultaneous monitoring schemes of both process inputs and output presented in this paper 

leads to better control of both process and product characteristics. 

In this paper we used PCA to alleviate the multicollinearity problem in the process input 

variables.  The GLS PCR based on selected significant components were applied to establish 

the relationship model between process input variables and product characteristics.  The PCR 

technique is a well-accepted tool for establishing the relationship between input and output 

variables for multivariate cascade processes.  However, the conventional PCR is based on the 

assumption that the response is independently distributed.  In this paper, we devised the PCR 

based on GLS that captures the autocorrelated cascade nature of the multivariate process.  To 

implement this concept, two concurrent estimation stages must be performed; one for the 

regression and one for the autoregressive error.  This approach has been employed extensively 

in time series model estimation.  Our application of the GLS-based PCR for multivariate 

autocorrelated cascade processes is an intuitive and efficient methodology for monitoring the 

whole process.  

The dual control scheme combined with exponential weight moving average control 

chart is robust and sensitive to small to medium shifts in the process. The dual monitoring 

scheme presented in this paper can be extended to monitor multivariate cascade processes 

where the relationship between the process inputs and output are nonlinear. Similarly, the 

sensitivity of the dual monitoring scheme to detect small process shifts can be enhanced by 

using the MCUSUM control chart.  However, the residual-based control chart can always be 

employed once a process-product relationship is established.  Overall, the dual EWMA-
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MEWMA control chart is an effective scheme for monitoring and controlling multivariate 

cascade process. 
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CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH 

5.1. Conclusion 

This dissertation developed a dual statistical process monitoring scheme for the 

multivariate autocorrelated cascade processes where both process output and inputs are jointly 

controlled using a combination of the residual-based EWMA and MEWMA control chart. In 

general one can enhance monitoring of both output and inputs by incorporating the information 

on the process input variables to successively forecast the expected value of the output so that 

the control limits for the output can be determined and updated.  Typically if predictor (the 

process variables) are altered or changed, the response (the output variable) will be directly 

affected.  Under the controlled condition, the process input variables are at the in-control state 

where the joint mean and covariance are both at in-control values.  When the process is in-

control state with no change in the relationship between Y and Xs, process output can be 

predicted corresponding to the actual current input variable values.  The actual process output 

can then compared and charted against predicted value within a predefined range.   

Therefore this dissertation devised a comprehensive methodology to control the overall 

process by acquiring information on the process inputs and evaluating whether process inputs 

are in-control state by control charting the correlated process inputs with the MEWMA control 

chart.  In the meantime, the process input information is used to project the output characteristic 

so that the actual output can be monitored. The difference between actual and predicted output 

provides information for assessing evidence whether the operating behavior of the process is 

the same or being different from the expected, accepted or in-control state.  This difference is 

corrected for time series autoregressive model and charted on the EWMA control chart derived 

from generalized least square, principal component regression and autoregressive parameters.  

This dual control scheme has improved performance in detecting the out-of-control condition 

either from the inputs of the process or from the process dynamic itself. 
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The dual EWMA-MEWMA control chart scheme provides the capability of monitoring 

the inputs, assessing and then controlling the output.  This dual control provides the advantages 

over conventional control chart schemes that focus only on the output side, e.g., residual-based 

control chart or principal component regression chart.  The EWMA statistic is designated to 

signal any changes in either the structural change or the changes in the dispersions and 

covariance of the process input variables whereas the MEWMA is responsible for detecting 

mainly the change in the mean of the process inputs.  Under seven different scenarios, the dual 

EWMA-MEWMA control scheme has shown superior performance in detecting changes and 

shifts in the process.  The performance analysis has been conducted based on simulated data 

drawn from the sugar beet dry pulping process.  The simulation study affirms that the desired 

performance of the dual control scheme is achieved as expected. 

This research concept leads to several advantages in that first the process characteristics 

or input variables can be monitored and maintained at the in-control state which will 

sequentially assist in maintaining the output characteristic at the desired level.  In addition, the 

expected output can be regularly predicted and updated based on the observed realization of 

the process input values varying within suitable ranges.  Higher variations of the inputs lead to 

higher variation of the output.  Monitoring and controlling the inputs are necessary for effective 

quality control.  Therefore the simultaneous monitoring scheme of both inputs and output 

presented in this paper is intuitive and leads to better control of both the process and the product 

characteristics. 

5.2. Discussion and Future Research Direction 

 This research proposed using the generalized least squares and principal component 

regression technique to measure the relationship between process inputs and outputs based on 

selected significant principal components. This research used the principal component analysis 

to alleviate the multicollinearity problem among process input variables. This approached 
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established the relationship model between the product characteristic and the process variables. 

The principal component analysis technique is a well-accepted tool for establishing the 

relationship between process input and output variables of a multivariate cascade process.  

Hence the main mechanism of this proposed methodology can be validated.  However, the 

conventional principal component analysis will rely on the assumption that the response is 

independently distributed.  In this research, we devised the principal component analysis based 

on generalized least squares that can capture the relationship structure of autocorrelated cascade 

process.  To implement this concept, two concurrent estimation stages must be performed; one 

for the regression and one for the autoregressive error.  This has been employed extensively in 

time series model estimation.  Our application of the generalized least squares based principal 

component regression for multivariate autocorrelated cascade process is a well constructive 

and efficient methodology for monitoring the whole process.  However another technique such 

as multivariate partial least squares might also be used to derive the relationship by accounting 

for the multicollinearity of the input variables.  In our future work, we will devise our 

methodology around the partial least squares and compare with the current generalized least 

squares based principal component regression to see difference which one is more superior to 

the multivariate cascade process. 

This research increases the detection power of the dual control chart by using 

exponential weight moving averages that are robust and sensitive to small to medium shifts.  In 

our future research, different schemes such as MCUSUM might also be studied and compared 

with the MEWMA.  Lastly if there are nonlinear relationships between process inputs and 

output, then different types of regression should be adopted.  However the residual-based 

control chart can always be employed once the relationship is established.  Therefore the dual 

EWMA-MEWMA control chart is an overall effective scheme to monitor and control the 

multivariate cascade process.  Therefore one could adopt and compare our results with another 
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sensitive control chart such as CUSUM and MCUSUM.  So our future work will study with 

the method to enhance the effectiveness of the dual control scheme.  

  



 

74 
 

REFERENCES 

 

 

Aparisi, F. (1996) ‘Hotelling’s T2 control chart with adaptive sample sizes’, International 

Journal of Production Research, Vol.34, Issue.10, pp.2853–2862. 

 

Aparisi, F., Champ, C.W. and Garcia, Diaz J.C. (2004) ‘A performance Hotelling’s T2 control 

chart with supplementary run rules’, Quality Engineering, Vol.16, Issue.3, pp.359–368. 

 

Apley, D. W. and Lee, H. C. (2008) ‘Robustness Comparison of Exponential weighted moving-

average charts on autocorrelated data and on residuals’ Journal of Quality Technology, 

Vol. 40, No. 4, pp.428–447. 

 

Arkat, J.,Niaki, S.T.A. and Abbasi, B. (2007) ‘Artificial neural networks in applying 

MCUSUM residuals charts for AR(1) processes’, Applied Mathematics and 

Computation, Vol.189, Issue.2, pp.1889-1901. 

 

Badcock, J., Bailey, T.C., Jonathan, P. and Krzanowski, W.J. (2004) ‘Two projection methods 

for use in the analysis of multivariate process data with an illustration in petrochemical 

production’, Technometrics, Vol.46, Issue.4, pp.392–403. 

 

Bersimis, S., Psarakis S., and Panaretos, J. (2007) ‘Multivariate statistical process control chart: 

An overview’, Quality and Reliability Engineering International, Vol.23, Issue.5, 

pp.517-543. 

 

Bilen, C., Chen, X., Khan, A. and Yadav, O.P. (2007) ‘Multiple regression control chart 

integrated with principal component analysis’, Proceedings of the Industrial 

Engineering Research Conference, 19–23 May, Nashville, Tennessee. 

 

Bilen, C., Khan, A. and Yadav, O.P. (2009) ‘Multivariate autocorrelated process monitoring 

with multiple regression and principal components’, Proceedings of the Industrial 

Engineering Research Conference, 30 May–3 June, Miami, Florida. 

 

Bilen, C., Khan, A., and Yadav, O. P. (2010) ‘Principal components regression control for 

multivariate autocorrelated cascade processes’, International Journal of Quality 

Engineering and Technology, Vol. 1, No. 3, pp.301-315. 

 

Bisgaard, S. and Kulahci, M. (2005) ‘Quality quandaries: the application of principal 

component analysis for process monitoring’, Quality Engineering, Vol. 18, No. 1, 

pp.95–103. 

. 

Bodden, K.M. and Rigdon, S.E. (1999) ‘A program for approximating the in-control ARL for 

the MEWMA chart’, Journal of Quality Technology, Vol.31, No.1, pp.120–123. 

 

Borror, C. M., Montgomery D. C. and Runger, G. C. and (2003) ‘Robustness of the EWMA 

control chart to non-normality’ Journal of Quality Technology, Vol. 31, No. 3, pp.309–

316. 

 



 

75 
 

Carson, P. K. and Yeh, A. B. (2008) ‘Exponential weighted moving average (EWMA) control 

charts for monitoring analytical process’ Industrial and Engineering Chemistry 

Research, Vol. 47, No. 2, pp.405–411. 

 

Chan, L.K. and Li, G.Y.  (1994)  ‘A  multivariate  control  chart  for  detecting  linear  

trends’,Communications in Statistics-Simulation and Computation, Vol. 23, No. 4, 

pp.997–1012. 

 

Charnes, J.M. (1995) ‘Tests for special causes with multivariate autocorrelated data’, 

Computers and Operational Research, Vol. 22, No. 4, pp.443–453. 

 

Chatfield, C. (2000) The Analysis of Time Series: An Introduction, 5th ed., Chapman and 

Hall/CRC, Florida. 

 

DiPaola, P.P. (1945) ‘Use of correlation in quality control’, Industrial Quality Control, Vol. 

2, No. 1, pp.10–14. 

 

Feltz, C.J. and Shiau, J.J.H. (2001) ‘Statistical process monitoring using an empirical Bayes 

multivariate process control chart’, Quality and Reliability Engineering International, 

Vol.17, Issue.2, pp.119–124. 

 

Hawkins, D.M.  (1991)  ‘Multivariate quality control based on regression-adjusted variables’, 

Technometrics, Vol. 33, Issue. 1, pp.61-75. 

 

Hawkins, D.M.  (1993)  ‘Regression adjustment for variables in multivariate quality control’, 

Journal of Quality Technology, Vol. 25, No. 3, pp.170–182. 

 

Hawkins, D.M., Choi, S.C. and Lee, S. (2007) ‘A general multivariate exponential weighted 

moving-average control chart’, Journal of Quality Technology, Vol.39, No.2, pp.118-

125. 

 

Healy, J.D. (1987) ‘A note on multivariate CUSUM procedures’, Technometrics, Vol.29, 

Issue.4, pp. 409-412. 

 

Holgersson, H.E.T. (2004) ‘Testing for multivariate autocorrelation’, Journal of Applied 

Statistics, Vol.31, No.4, pp.379-395. 

 

Horst, P. (1961) ‘Relations among m sets of measures’, Psychometrika, Vol. 26, No. 2, pp. 

129-149. 

 

Hotelling, H. (1947) ‘Multivariate quality control-illustrated by the air testing of sample 

bombsights’. In: Eisenhart, C., Hastay, M.W., and Wallis, W.A. (eds), Techniques of 

Statistical Analysis (pp. 111-184) New York: Mcgraw Hill. 

 

Human, S. W., Kritzinger, P. and Chakraborti, S. (2011) ‘Robustness of EWMA control chart 

for individual observations’ Journal of Applied Statistics, Vol. 38, No. 10, pp.2071–

2087. 

 



 

76 
 

Hwarng, H.B. and Wang, H. (2010) ‘Shift detection and source identification in multivariate 

autocorrelated processes’, International Journal of Production Research, Vol.48, 

Issue.3, pp.835–859. 

 

Issam, B.K. and Mohamed, L. (2008) ‘Support vector regression based residual MCUSUM 

control chart for autocorrelated process’, Applied Mathematics and Computation, 

Vol.201, Issue.1-2, pp.565-574. 

 

Jackson, J.E. (1980) ‘Principal components and factor analysis: Part I – principal 

components’, Journal of Quality Technology, Vol. 12, No. 4, pp.201–213. 

 

Jackson, J.E. (1985) ‘Multivariate quality control’, Communications in Statistics-Theory and 

Methods, Vol.14, Issue.11, pp.2657-2688. 

 

Jarrett, J.E. and Pan X. (2007) ‘The quality control chart for monitoring multivariate 

autocorrelated processes’, Computational Statistics and Data Analysis, Vol. 51, No. 8, 

pp.3862–3870. 

 

Jiang, W. (2004) ‘Multivariate control charts for monitoring autocorrelated processes’, Journal 

of Quality Technology, Vol.36, No.4, pp.367–379. 

 

Jolliffe, I.T. (1972) ‘Discarding variables in a principal component analysis. I: artificial 

data’, Applied Statistics, Vol. 21, No. 2, pp.160–173. 

 

Jolliffe, I.T. (1973) ‘Discarding variables in a principal component analysis. II: real data’, 

Applied Statistics, Vol. 22, No. 1, pp.21–31. 

 

Jolliffe, I.T. (2002) Principal Component Analysis, 2nd ed., Springer, New York. 

 

Kalgonda, A.A. and Kulkarni, S.R. (2004) ‘Multivariate quality control chart for autocorrelated 

processes’, Journal of Applied Statistics, Vol. 31, No. 3, pp.203-215. 

 

Kano, M., Hasebe, S., Hashimoto, I. and Ohno, H. (2001) ‘A new multivariate statistical 

monitoring method using principal component analysis’, Computers and Chemical 

Engineering, Vol.25, Issue.7-8, pp.1103–1113. 

 

Khoo, M. (2003) ‘Increasing the sensitivity of multivariate EWMA control chart’, Quality 

Engineering, Vol.16, Issue.1, pp.75-85. 

 

Kim, K., Mahmoud, M.A. and Woodall, W.H. (2003) ‘On the monitoring of linear profiles’, 

Journal of Quality Technology, Vol.35, No.3, pp.317–328. 

 

Kohehler, A. B., Mark, N. B. and O’Connell R. T. (2001) ‘EWMA control charts for 

autoregressive processes’ Journal of the Operation Research Society, Vol. 52, No. 6, 

pp.699–707. 

 



 

77 
 

Kourti, T. (2005) ‘Application of latent variable methods to process control and multivariate 

statistical process control in industry’, International Journal of Adaptive Control and 

Signal Processing, Vol. 19, No. 4, pp. 213-246. 

 

Kourti, T. and MacGregor, J.F. (1996) ‘Multivariate SPC methods for process and product 

monitoring’, Journal of Quality Technology, Vol. 28, No. 4, pp. 409-428. 

 

Kourti, T., Lee, J. and MacGregor, J.F. (1996) ‘Experience with industrial application of 

projection methods for multivariate statistical process control’, Computers and 

Chemical Engineering, Vol. 20, Supplement 1, pp. S745-S750. 

 

Koutras, M.V., Bersimis, S. and Antzoulakos, D.L. (2006) ‘Improving the performance of the 

chi-square control chart via runs rules’, Methodology and Computing in Applied 

Probability, Vol.8, Issue.3, pp.409–426. 

 

Kresta, J.V., MacGregor, J.F. and Marlin, T.E. (1991) ‘Multivariate statistical monitoring of 

process operating performance’, The Canadian Journal of Chemical Engineering, Vol. 

69, No. 1, pp. 35-47. 

 

Ku, W., Storer, R.H. and Georgakis, C. (1995) ‘Disturbance detection and isolation by dynamic 

principal component analysis’, Chemometrics and Intelligent Laboratory Systems, 

Vol.30, Issue.1, pp.179–196. 

 

Loredo, E.N., Jearkpaporn, D. and Borror, C.M. (2002) ‘Model-based control chart for 

autoregressive and correlated data’, Quality and Reliability Engineering International, 

Vol. 18, No. 6, pp.489–496. 

 

Lowry, C.A. and Montgomery, D.C. (1995) ‘A review of multivariate control charts’, IIE 

Transactions, Vol.27, Issue.6, pp.800–810. 

 

Lowry, C.A., Woodall, W. H., Champ, C. W. and Rigdon, S. E. (1992) ‘A multivariate 

exponential weighted moving average control chart’, Technometrics, Vol. 34, No. , 

pp.46–53. 

 

Lu, C. W. (1999) ‘EWMA control charts for monitoring the mean of autocorrelated processes’ 

Journal of Quality Technology, Vol. 31, No. 2, pp.166–188. 

 

MacGregor, J.F. and Kourti, T. (1995) ‘Statistical process control of multivariate processes’, 

Control Engineering Practice, Vol. 3, No. 3, pp. 403-414. 

 

Macgregor, J.F., Jaeckle, C., Kiparissides, C. and Koutoudi, M. (1994) ‘Process monitoring 

and daiganosis by multiblock PLS methods’, American Institute Chemical Engineers 

Journal, Vol. 40, No.5, pp. 826-838. 

 

Makridakis, S., Wheelwright, S.C. and McGee, V.E. (1983 Forecasting Methods and 

Applications, 2nd ed., Wiley, New York. 

 

Mandel, B.J. (1969) ‘The regression control chart’, Journal of Quality Technology, Vol. 1, 

No. 1, pp.1–9. 



 

78 
 

 

Martin, E.B., Morris, A.J. and Kiparissides, C. (1999) ‘Manufacturing performance 

enhancement through multivariate statistical process control’, Annual Reviews in 

Control, Vol. 23, pp. 35-44. 

 

Mason, R.L. and Young, J.C. (2007) ‘Detecting dependent observations in multivariate 

statistical process control’, Quality Progress, Vol.40, No.9, pp.56-58. 

 

Mason, R.L., Chou, Y-M., and Young, J.C. (2001) ‘Applying Hotelling’s T2 statistic to batch 

processes’, Journal of Quality Technology, Vol.33, No.4, pp.466–479. 

 

Mastrangelo, C.M., Runger, G.C. and Montgomery, D.C. (1996) ‘Statistical process 

monitoring with principle components’, Quality and Reliability Engineering 

International, Vol. 12, No. 3, pp.203–210. 

 

Midi, H. and Shabbak, A. (2011) ‘Robust multivariate control charts to detect small shifts in 

mean’ Mathematical Problems in Engineering, Vol. 2011, Hindawi Publishing 

Corporation, pp.1-19. 

 

Molnau, W.E., Runger, G.C., Montgomery, D.C., Skinner, K.R., Loredo, E.N. and Prabhu, S.S. 

(2001) ‘A program for ARL calculation for multivariate EWMA charts’, Journal of 

Quality Technology Vol.33, No.4, pp.515–521. 
 

Montgomery, D. C. (2012) Introduction to Statistical Quality Control, 7th Edition, John Wiley 

and Sons. 

 

Nedumaran, G. and Pignatiello, J.J. (2000) ‘On constructing T2 control charts for retrospective 

examination’, Communications in Statistics—Simulation and Computation, Vol.29, 

Issue.2, pp.621–632. 

 

Neubauer, A. S. (1997) ‘The EWMA control chart: properties and comparison with other 

quality-control procedures by computer simulation’ Clinical Chemistry, Vol. 43, No. 4, 

pp.594–601. 

 

Nomikos, P. and MacGregor, J.F. (1995) ‘Multivariate SPC Charts for Monitoring batch 

processes’, Technometrics, Vol.37, No.1, pp.41-59. 

 

Noorossana, R. and Vaghefi S.J.M. (2006) ‘Effect of autocorrelation on performance of the 

MCUSUM control chart’, Quality and Reliability Engineering International, Vol. 22, 

No. 2, pp.191–197. 

 

Prabhu, S. S. and Runger, G.C. (1997) ‘Designing a multivariate EWMA control chart’ Journal 

of Quality Technology, Vol. 29, No. 1, pp.8–15. 

 

Runger, G.C. (1996) ‘Multivariate statistical process control for autocorrelated processes’, 

International Journal of Production Research, Vol.34, Issue.6, pp.715–1724. 

 

Runger, G.C. (1996) ‘Projections and the U2 multivariate control chart’, Journal of Quality 

Technology, Vol.28, No.3, pp.313–319. 



 

79 
 

 

Runger, G.C. and Testik, M.C. (2004) ‘Multivariate extensions to cumulative sum control 

charts’, Quality and Reliability Engineering International, Vol. 20, Issue. 6, pp. 587-

606. 

 

Runger, G.C., Keats, J.B., Montgomery, D.C. and Scranton, R.D. (1999) ‘Improving the 

performance of a multivariate EWMA control chart’, Quality and Reliability 

Engineering International, Vol.15, Issue.3, pp.161–166. 

 

Schall, S. and Chandra, J. (1987) ‘Multivariate quality control using principal components’, 

International Journal of Production Research, Vol.25, Issue.4, pp.571-588. 

 

Scholkopf, B. and Smola, A (1998) ‘A tutorial on support vector regression’, NeuroCOLT 

Technical Report TR 1998-030, Royal Holloway College. 

 

Scranton, R., Runger, G. C., Keats, J. B. and Montgomery, D. C. (1996) ‘Efficient shift 

detection using multivariate exponential-weighted moving average control charts and 

principal components’, Quality and Reliability Engineering International, Vol. 12, No. 

3, pp.165–171. 

 

Simoglou, A., Martin, E.B. and Morris, A.J. (2000) ‘Multivariate statistical process control of 

an industrial fluidized-bed reactor’, Control Engineering Practice, Vol. 8, No. 8, pp. 

893-909. 

 

Stoumbos, Z. and Sullivan, J.H. (2002) ‘Robustness to non-normality of the multivariate 

EWMA control chart’, Journal of Quality Technology, Vo.34, No.3, pp.260-276. 

 

Sullivan, J.H. and Woodall, W.H. (1996) ‘A comparison of multivariate control charts for 

individual observations’, Journal of Quality Technology, Vol.28, No.4, pp.398–408. 

 

Sullivan, J.H. and Woodall, W.H. (2000) ‘Change-point detection of mean vector or covariance 

matrix shifts using multivariate individual observations’,  IIE Transactions, Vol.32, 

Issue.6, pp.537–549. Technometrics, Vol. 33, No. 1, pp.61–75. 

 

Testik, M. C., Runger, G. C. and Borror, C. M. (2003) ‘Robustness properties of multivariate 

EWMA control charts’ Quality and Reliability Engineering International, Vol. 19, No. 

1, pp.31–38. 

 

Triantafyllopoulos, K. (2006) ‘Multivariate control charts based on Bayesian state space 

models’, Quality and Reliability Engineering International, Vol.22, Issue.6, pp.693-

707. 

 

Tsung, F. (1999) ‘Improving automatic-controlled process quality using adaptive principal 

component monitoring’, Quality and Reliability Engineering International, Vol.15, 

Issue.2, pp.135–142. 

 

Vargas, J.A. (2003) ‘Robust estimation in multivariate control charts for individual 

observations’, Journal of Quality Technology, Vol.35, No.4, pp.367–376. 

 



 

80 
 

Vargas, M., Alfaro, J.L. and Mondejar, J. (2009) ‘On the run length of a state-space control 

chart for multivariate autocorrelated data’, Communications in Statistics-Simulation 

and Computation, Vol.38, Issue.9, pp.1823-1833 

 

Wang, X., Kruger, U. and Lennox, B. (2003) ‘Recursive partial least squares algorithms for 

monitoring complex industrial processes’, Control Engineering Practice, Vol. 11, No. 

6, pp. 613-632. 

 

Wikstrom. C., Albano, C., Eriksson, L., Friden, H., Johansson, E., Nordahl, A., Rannar, S., 

Sandberg, M., Kettaneh-Wold, N. and Wold, S. (1998) ‘Multivariate process and 

quality monitoring applied to an electrolysis process: Part I. Process supervision with 

multivariate control charts’, Chemometrics and Intelligent Laboratory Systems, Vol.42, 

Issue.1-2, pp.233–240. 

 

Woodall, W.H. and Montgomery, D.C. (1999) ‘Research issues and ideas in statistical process 

control’, Journal of Quality Technology, Vol. 31, No. 4, pp.376–386. 

 

Woodall, W.H. and Ncube, M.M. (1985) ‘Multivariate CUSUM quality control procedures’, 

Technometrics, Vol.27, Issue.3, pp. 285-292. 

 

Woodall, W.H., Spitzner, D.J., Montgomery, D.C. and Gupta, S. (2004) ‘Using control charts 

to monitor process and product quality profiles’, Journal of Quality Technology, Vol. 

36, No.3, pp.309–320. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

81 
 

APPENDIX A. DRY PULP PROCESS DATA 

 

Data PPM FAF TT FR FA IFS ET IA IFD AAF DDA DPD DPM 

1 73.95 0.046 715.33 21.008 16.82 620.41 105.25 111.25 5.004 1.04 23.523 0.332 11.75 

2 73.6 0.047 710.99 21.82 16.835 620.41 105.15 112.71 5.019 1.038 23.014 0.331 11.15 

3 73.05 0.056 687.97 21.776 16.849 620.41 105.24 112.57 5.034 1.036 24.862 0.33 11.1 

4 72.5 0.076 652.03 21.329 16.864 620.41 105.33 112.15 5.05 1.034 25.376 0.329 11.45 

5 71.9 0.06 691.46 20.721 16.878 620.41 105.42 111.72 5.065 1.033 23.535 0.328 11.75 

6 71.3 0.058 676.46 22.176 16.892 620.41 105.52 111.3 5.081 1.031 23.643 0.327 12.4 

7 71.45 0.069 664.19 21.726 16.907 620.41 105.61 110.87 5.096 1.029 22.77 0.326 11.9 

8 71.6 0.08 670.21 21.935 16.921 620.42 105.7 110.45 5.111 1.027 24.377 0.325 10.6 

9 72.4 0.054 707.22 21.818 16.935 620.42 105.8 110.03 5.127 1.026 25.502 0.324 10.6 

10 73.2 0.051 699.77 21.759 16.95 620.42 105.89 109.6 5.142 1.024 24.346 0.323 11.35 

11 72.5 0.08 664.38 22.155 16.964 620.42 105.98 109.75 5.157 1.022 24.842 0.322 11.25 

12 71.8 0.057 712.99 22.56 16.978 620.42 106.12 110.28 5.173 1.02 24.224 0.321 11.1 

13 72.05 0.072 690.63 21.21 16.993 620.42 105.73 110.57 5.188 1.018 23.135 0.32 10.15 

14 72.3 0.042 771.04 23.667 17.007 620.42 106.5 110.43 5.204 1.017 24.441 0.319 9.9 

15 72.15 0.044 748.01 23.495 17.022 620.42 106.45 110.3 5.219 1.015 23.749 0.318 10.1 

16 72 0.046 763.74 21.789 17.036 620.42 106.41 110.16 5.234 1.013 25.021 0.317 9.6 

17 72.15 0.042 729.84 22.601 17.05 620.42 106.37 110.03 5.25 1.011 26.343 0.316 10.5 

18 72.3 0.064 679.85 22.826 17.065 620.42 106.33 109.89 5.265 1.01 23.987 0.315 10.4 

19 72.45 0.051 725.65 22.86 17.079 620.42 106.28 109.76 5.28 1.008 23.657 0.314 9.25 

20 72.6 0.052 728.09 22.999 17.093 620.43 106.24 109.62 5.296 1.006 24.073 0.313 9.3 

21 72.1 0.045 716.57 22.971 17.108 620.43 106.2 109.49 5.311 1.004 23.508 0.312 10.05 

22 71.6 0.051 722.18 22.909 17.122 620.43 106.16 109.35 5.326 1.002 23.822 0.311 10.5 

23 72.1 0.044 735.2 22.956 17.136 620.43 106.11 109.22 5.342 1.001 24.655 0.31 10.8 

24 72.6 0.044 758.32 22.935 17.151 620.43 106.07 109.08 5.357 0.999 25.582 0.309 10.5 

25 72.4 0.018 819.64 23.042 17.165 620.43 106.03 108.95 5.373 0.997 24.236 0.308 10.05 

26 72.2 0.047 746.52 22.405 17.18 620.43 105.99 108.81 5.388 0.995 23.319 0.307 9.5 

27 72.45 0.047 732.13 21.858 17.194 620.43 105.94 108.68 5.403 0.994 23.572 0.306 9.9 

28 72.7 0.051 730.33 22.526 17.208 620.43 105.9 108.54 5.419 0.992 22.742 0.305 10.3 

29 72.45 0.057 713.32 22.789 17.223 620.43 105.86 108.4 5.434 0.99 24.51 0.304 10.55 

30 72.2 0.054 729.92 22.386 17.237 620.43 105.81 108.27 5.449 0.988 24.695 0.303 10.55 

31 72.1 0.045 748.6 22.049 17.251 620.43 105.77 108.13 5.465 0.987 23.31 0.302 9 

32 72 0.059 708.11 22.817 17.266 620.44 105.73 108 5.48 0.985 24.011 0.301 10.05 

33 72 0.057 711.57 22.603 17.28 620.44 105.69 107.8 5.496 0.983 24.361 0.3 11.3 
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Data PPM FAF TT FR FA IFS ET IA IFD AAF DDA DPD DPM 

34 72 0.058 713.52 23.007 17.294 620.44 105.64 107.36 5.511 0.981 22.931 0.299 10.9 

35 71.35 0.042 761.13 22.49 17.309 620.44 105.6 106.93 5.526 0.979 21.702 0.298 9.3 

36 70.7 0.037 765.3 22.436 17.323 620.44 105.56 106.5 5.542 0.978 21.654 0.297 8.6 

37 70.55 0.067 689.41 22.781 17.338 620.44 106.5 106.06 5.557 0.976 22.849 0.296 10.05 

38 70.4 0.059 712.94 22.576 17.352 620.44 105.73 105.63 5.572 0.974 24.228 0.295 10.5 

39 70.15 0.059 706.76 22.514 17.366 620.44 107.35 105.2 5.588 0.972 23.499 0.294 10.95 

40 69.9 0.063 703.41 21.507 17.381 620.44 106.69 104.94 5.603 0.971 21.958 0.293 10.8 

41 70.2 0.074 719.98 22.445 17.395 620.44 105.53 105.13 5.619 0.969 21.934 0.292 8.95 

42 70.5 0.027 801.69 23.053 17.409 620.44 108.23 105.33 5.634 0.967 22.917 0.291 8.05 

43 70.15 0.071 705.41 22.661 17.424 620.44 107.89 105.52 5.649 0.965 24.284 0.29 8.2 

44 69.8 0.056 743.11 23.047 17.438 620.45 105.77 105.72 5.665 0.964 25.049 0.289 7.8 

45 69.75 0.051 761.48 23.248 17.452 620.45 106.34 105.92 5.68 0.962 23.798 0.288 8.05 

46 69.7 0.024 804.24 23.014 17.467 620.45 105.57 106.11 5.695 0.96 24.093 0.287 8.75 

47 69.85 0.047 768.99 22.848 17.481 620.45 104.79 106.31 5.711 0.958 23.162 0.286 8.45 

48 70 0.08 685.38 22.995 17.496 620.45 104.59 106.5 5.726 0.956 22.071 0.285 10 

49 71.2 0.06 714.41 22.729 17.51 620.45 104.51 106.7 5.742 0.955 23.636 0.284 10.9 

50 72.4 0.051 757.38 23.296 17.524 620.45 104.42 106.9 5.757 0.953 23.708 0.283 8.7 

51 71.45 0.061 730.97 23.197 17.539 620.45 104.34 107.09 5.772 0.951 23.347 0.282 8.5 

52 70.5 0.027 803.46 23.467 17.553 620.45 104.26 107.29 5.788 0.949 23.355 0.281 8.25 

53 70.25 0.034 782.71 23.609 17.567 620.45 104.17 107.48 5.803 0.948 24.167 0.28 8.8 

54 70 0.048 765.9 22.837 17.582 620.45 104.09 107.68 5.818 0.946 23.551 0.279 9.15 

55 70.7 0.042 766.58 22.638 17.596 620.45 104.01 107.87 5.834 0.944 22.714 0.278 9 

56 71.4 0.043 743.33 23.397 17.61 620.46 103.92 108.07 5.849 0.942 24.181 0.277 9.25 

57 72.1 0.055 713.38 23.382 17.625 620.46 103.84 108.27 5.865 0.941 25.394 0.276 10.05 

58 72.8 0.067 700.31 23.343 17.639 620.46 103.76 108.46 5.88 0.939 23.883 0.275 9.9 

59 72.4 0.046 793.52 23.843 17.654 620.46 103.66 108.66 5.895 0.937 22.001 0.274 7.85 

60 72 0.008 838.79 23.361 17.668 620.46 103.41 108.85 5.911 0.935 22.833 0.273 8.7 

61 71.05 0.026 777.09 22.549 17.682 620.46 103.16 109.05 5.926 0.933 24.128 0.272 9 

62 70.1 0.072 697.51 20.543 17.697 620.46 102.91 109.25 5.941 0.932 22.773 0.274 9.85 

63 70.5 0.104 600.64 16.917 17.711 620.46 90.878 113 5.463 0.93 20.921 0.28 11.6 

64 70.9 0.207 484.78 13.869 18.46 620.46 104.68 109.61 5.007 0.928 23.099 0.287 8.6 

65 70.65 0.115 602.14 19.83 17.268 620.46 104.41 109.26 5.012 0.926 23.029 0.294 9.1 

66 70.4 0.099 605.58 19.412 17.201 620.46 104.15 108.9 5.018 0.925 22.343 0.301 9.25 

67 69.85 0.067 654.31 20.741 17.444 620.46 103.89 108.5 5.023 0.923 23.78 0.307 8.25 

68 69.3 0.113 583.24 17.979 17.686 620.47 103.61 108 5.029 0.921 22.781 0.314 8 
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Data PPM FAF TT FR FA IFS ET IA IFD AAF DDA DPD DPM 

69 69.3 0.093 658.45 18.092 17.575 620.47 103.28 107.49 5.035 0.919 22.176 0.321 8.65 

70 69.3 0.059 695.78 21.923 16.878 620.47 102.95 106.98 5.04 0.917 21.903 0.327 8.5 

71 70.9 0.058 696.32 21.737 16.884 620.47 102.73 106.47 5.046 0.916 22.224 0.334 9 

72 72.5 0.055 691.69 22.54 16.889 620.47 102.84 105.96 5.052 0.914 22.592 0.341 11.55 

73 72.15 0.045 731.97 22.142 16.895 620.47 102.95 105.45 5.057 0.912 22.567 0.347 10.7 

74 71.8 0.054 720.54 21.908 16.9 620.47 103.06 104.95 5.063 0.91 23.992 0.354 9.25 

75 71.65 0.055 727.41 22.261 16.906 620.47 103.17 104.44 5.069 0.909 24.166 0.361 9.9 

76 71.5 0.055 692.42 21.964 16.911 620.47 103.27 104.21 5.074 0.907 23.508 0.367 10.2 

77 72 0.054 716.06 21.721 16.917 620.47 103.38 104.26 5.08 0.905 23.73 0.374 11 

78 72.5 0.042 743.77 22.139 16.922 620.47 103.49 104.31 5.086 0.903 23.269 0.381 11.8 

79 72 0.047 735.82 21.988 16.928 620.47 103.6 104.36 5.091 0.902 21.35 0.387 11.75 

80 71.5 0.05 729.38 21.634 16.934 620.48 103.71 104.41 5.097 0.9 20.411 0.394 10.85 

81 72.05 0.05 728.4 22.193 16.939 620.48 103.82 104.47 5.103 0.898 22.356 0.401 10.25 

82 72.6 0.043 743.43 21.815 16.945 620.48 103.93 104.52 5.108 0.896 23.857 0.407 9.7 

83 71.7 0.048 713.78 22.01 16.95 620.48 104.05 104.57 5.114 0.894 24.155 0.414 9.25 

84 70.8 0.039 754.15 21.534 16.956 620.48 104.16 104.62 5.12 0.893 24.388 0.421 9.7 

85 70.8 0.042 742.39 21.705 16.961 620.48 104.27 104.67 5.125 0.891 23.686 0.427 10 

86 70.8 0.048 720.49 21.912 16.967 620.48 104.38 104.72 5.131 0.889 23.45 0.434 8.95 

87 70.75 0.049 755.34 22.074 16.972 620.48 104.49 104.78 5.137 0.887 23.276 0.441 8.45 

88 70.7 0.047 733.14 22.353 16.978 620.48 104.6 104.83 5.142 0.886 24.278 0.447 8.7 

89 71.3 0.049 736.62 21.711 16.983 620.48 103.82 104.88 5.148 0.884 24.448 0.45 8.35 

90 71.9 0.051 705.64 21.617 16.989 620.48 104.09 104.93 5.154 0.882 22.166 0.45 7.75 

91 71.15 0.059 700.41 22.05 16.995 620.49 103.77 104.98 5.159 0.88 21.092 0.45 8.15 

92 70.4 0.051 727.5 22.063 17 620.49 103.82 105.03 5.165 0.879 21.556 0.45 8.1 

93 70.15 0.049 718.58 21.931 17.006 620.49 103.88 105.09 5.171 0.877 22.069 0.45 7.5 

94 69.9 0.046 753.95 22.276 17.011 620.49 103.93 105.14 5.176 0.875 22.831 0.45 7.4 

95 69.85 0.046 756.94 22.546 17.017 620.49 103.99 105.19 5.182 0.873 23.778 0.449 7.9 

96 69.8 0.052 727.17 22.263 17.022 620.49 104.04 105.24 5.187 0.871 23.053 0.449 8.65 

97 70.05 0.052 702.15 21.792 17.028 620.49 104.09 105.29 5.193 0.87 22.354 0.449 9.05 

98 70.3 0.05 736.84 21.897 17.033 620.49 104.15 105.34 5.199 0.868 22.571 0.449 8.75 

99 70.35 0.047 753.67 21.987 17.039 620.49 104.2 105.4 5.204 0.866 22.645 0.449 8.3 

100 70.4 0.062 707.28 22.168 17.045 620.49 104.26 105.45 5.21 0.864 22.181 0.448 8.3 

101 70.7 0.044 746.16 23.474 17.05 620.49 104.31 105.5 5.216 0.863 23.273 0.448 8.3 

102 71 0.051 752.26 23.153 17.056 620.49 104.36 105.55 5.221 0.861 23.419 0.448 8.5 

103 70.55 0.042 767.26 23.388 17.061 620.5 104.42 105.6 5.227 0.859 22.683 0.448 8.65 
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Data PPM FAF TT FR FA IFS ET IA IFD AAF DDA DPD DPM 

104 70.1 0.036 767.86 22.774 17.067 620.5 104.47 105.65 5.233 0.857 22.712 0.448 8.85 

105 70.3 0.032 769.85 22.435 17.072 620.5 104.53 105.71 5.238 0.856 22.425 0.448 8.85 

106 70.5 0.043 754.43 22.848 17.078 620.5 104.58 105.76 5.244 0.854 22.914 0.447 8.9 

107 70.9 0.034 780.73 22.745 17.083 620.5 104.63 105.81 5.25 0.852 24.568 0.447 9.25 

108 71.3 0.032 783.94 23.17 17.089 620.5 104.69 105.86 5.255 0.85 23.958 0.447 8.35 

109 71 0.031 788.68 22.849 17.094 620.5 103.79 105.91 5.261 0.848 22.535 0.447 7.6 

110 70.7 0.037 746.38 23.031 17.1 620.5 103.65 105.96 5.267 0.847 26.786 0.447 8.95 

111 70.7 0.041 755.81 22.949 17.106 620.5 103.57 106.02 5.272 0.845 27.536 0.447 9.5 

112 70.7 0.043 748.95 23.113 17.111 620.5 103.5 106.07 5.278 0.843 24.343 0.446 8.75 

113 70.95 0.043 758.68 22.582 17.117 620.5 103.42 106.12 5.284 0.841 23.256 0.446 8.85 

114 71.2 0.046 759.91 23.115 17.122 620.5 103.35 106.17 5.289 0.84 22.137 0.446 9.6 

115 70.65 0.035 785.27 22.937 17.128 620.51 103.27 106.22 5.295 0.838 22.402 0.446 9.4 

116 70.1 0.039 781.52 23.016 17.133 620.51 103.2 106.27 5.301 0.836 24.207 0.446 8.85 

117 70.2 0.036 775.23 21.74 17.139 620.51 103.12 106.33 5.306 0.834 24.884 0.445 10.2 

118 70.3 0.046 746.44 21.967 17.144 620.51 103.05 106.38 5.312 0.832 23.111 0.445 9.75 

119 69.95 0.044 750 22.325 17.15 620.51 102.97 106.43 5.318 0.831 21.861 0.445 8.8 

120 69.6 0.042 755.57 22.417 17.155 620.51 102.9 106.48 5.323 0.829 23.48 0.445 9 

121 70 0.044 757.89 21.668 17.161 620.51 102.83 106.53 5.329 0.827 25.019 0.445 8.25 

122 70.4 0.045 734.02 22.2 17.167 620.51 102.75 106.58 5.335 0.825 23.952 0.445 8.25 

123 69.9 0.036 759.25 22.452 17.172 620.51 102.81 106.64 5.34 0.824 23.102 0.444 8.15 

124 69.4 0.045 728.3 22.558 17.178 620.51 102.87 106.69 5.346 0.822 21.814 0.444 8.2 

125 69.45 0.054 733.42 22.705 17.183 620.51 102.93 106.74 5.351 0.82 21.778 0.444 8.55 

126 69.5 0.04 750.82 22.64 17.189 620.51 102.99 106.79 5.357 0.818 22.936 0.444 8.2 

127 69.25 0.044 731.88 22.365 17.194 620.52 103.06 106.84 5.363 0.817 24.039 0.444 8.25 

128 69 0.047 732.04 22.633 17.2 620.52 103.12 106.89 5.368 0.815 23.921 0.443 8.1 

129 69.25 0.046 738.12 22.957 17.205 620.52 103.18 106.95 5.374 0.813 22.988 0.443 8.15 

130 69.5 0.043 739.26 22.517 17.211 620.52 103.24 107 5.38 0.811 22.077 0.443 9.35 

131 69.95 0.044 755.81 23.285 17.217 620.52 103.3 107.05 5.385 0.809 21.423 0.443 10.55 

132 70.4 0.049 731.26 22.343 17.222 620.52 103.36 107.1 5.391 0.808 21.527 0.443 9 

133 70.2 0.043 761.93 22.496 17.228 620.52 103.42 107.15 5.397 0.806 21.495 0.443 6.9 

134 70 0.047 751.76 22.012 17.233 620.52 103.48 107.2 5.402 0.804 23.822 0.442 7.8 

135 70 0.035 764.57 21.569 17.239 620.52 103.54 107.26 5.408 0.802 24.461 0.442 9.35 

136 70 0.051 731.74 22.371 17.244 620.52 103.6 107.31 5.414 0.801 23.132 0.442 9.85 

137 70 0.049 740.85 22.702 17.25 620.52 103.66 107.36 5.419 0.799 21.456 0.442 8.7 

138 70 0.052 741.84 22.688 17.255 620.52 103.72 107.41 5.425 0.797 20.278 0.442 8.55 
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Data PPM FAF TT FR FA IFS ET IA IFD AAF DDA DPD DPM 

139 69.8 0.052 739.26 22.212 17.261 620.53 102.91 107.46 5.431 0.795 21.072 0.442 8.65 

140 69.6 0.013 843.68 21.961 17.266 620.53 103.44 107.51 5.436 0.794 23.712 0.441 7.9 

141 69.7 0.045 730.71 22.986 17.272 620.53 102.5 107.56 5.442 0.792 24.511 0.441 8.25 

142 69.8 0.046 746.16 22.101 17.278 630.4 102.06 107.62 5.448 0.79 24.007 0.441 8.6 

143 69.35 0.057 722.9 22.953 17.283 630.4 101.87 107.67 5.453 0.788 26.342 0.441 9.1 

144 68.9 0.041 750.53 22.914 17.289 630.4 101.95 107.72 5.459 0.786 26.221 0.441 9.6 

145 69.5 0.051 741.84 22.618 17.294 630.4 102.03 107.77 5.465 0.785 23.605 0.44 9.2 

146 70.1 0.042 746.69 22.691 17.3 630.41 102.11 107.82 5.47 0.783 22.755 0.44 9.05 

147 69.7 0.055 726.37 21.84 17.305 630.41 102.18 107.79 5.476 0.781 23.867 0.44 9.3 

148 69.3 0.046 736.94 22.657 17.311 630.41 102.26 107.7 5.482 0.779 24.634 0.44 9 

149 69.4 0.045 724.34 22.545 17.316 630.41 102.34 107.61 5.487 0.778 25.106 0.44 9 

150 69.5 0.057 698.35 22.141 17.322 630.42 102.42 107.51 5.493 0.776 25.031 0.44 9.4 

151 70 0.045 727.07 22.568 17.327 630.42 102.5 107.42 5.498 0.774 23.834 0.439 10.1 

152 70.5 0.03 765.9 23.042 17.333 630.42 102.58 107.33 5.504 0.772 23.993 0.439 10.25 

153 70.2 0.051 754.82 22.297 17.339 630.42 102.65 107.24 5.51 0.771 23.579 0.439 9.1 

154 69.9 0.049 730.09 22.085 17.344 630.42 102.73 107.15 5.515 0.769 22.269 0.439 8.25 

155 69.45 0.05 723.04 22.769 17.35 630.43 102.81 107.05 5.521 0.767 22.796 0.439 9.05 

156 69 0.041 740.64 22.343 17.355 630.43 102.75 106.96 5.527 0.765 23.683 0.438 8.6 

157 69.5 0.037 769.7 21.444 17.361 630.43 102.66 106.87 5.532 0.763 23.691 0.438 8.85 

158 70 0.061 698.05 22.755 17.366 630.43 102.56 106.78 5.538 0.762 23.831 0.438 9.7 

159 69.75 0.052 734.25 22.419 17.372 630.43 102.46 106.69 5.544 0.76 24.637 0.438 9.85 

160 69.5 0.046 739.64 22.477 17.377 630.44 102.36 106.59 5.549 0.758 23.99 0.438 8.75 

161 69.5 0.044 733.2 21.648 17.383 630.44 102.26 106.5 5.555 0.756 24.081 0.438 7.85 

162 69.5 0.047 737.24 22.349 17.389 630.44 102.17 106.41 5.561 0.755 24.538 0.437 8.9 

163 69.55 0.052 740.64 22.398 17.394 630.44 102.07 106.32 5.566 0.753 23.109 0.437 8.4 

164 69.6 0.041 768.22 22.731 17.4 630.44 101.97 106.23 5.572 0.751 23.878 0.437 8.15 

165 69.8 0.049 723.28 21.762 17.405 630.45 101.87 106.13 5.578 0.749 24.182 0.437 8.35 

166 70 0.059 705.42 22.072 17.411 630.45 101.69 106.04 5.583 0.747 23.421 0.437 8.45 

167 70.05 0.052 729.01 22.006 17.416 630.45 101.5 105.95 5.589 0.746 23.002 0.437 8.75 

168 70.1 0.073 687.04 21.917 17.422 630.45 101.31 105.86 5.595 0.744 24.754 0.436 9.5 

169 70.2 0.07 697.01 22.106 17.427 630.45 101.12 105.77 5.6 0.742 24.218 0.436 9 

170 70.3 0.063 700.09 21.763 17.433 630.46 100.92 105.68 5.606 0.74 22.003 0.436 8.05 

171 70.05 0.062 683.93 22.433 17.438 630.46 100.98 105.58 5.612 0.739 22.453 0.436 8.6 

172 69.8 0.061 698.24 21.564 17.444 630.46 101.06 105.49 5.617 0.737 23.252 0.436 8.9 

173 69.5 0.056 731.52 21.691 17.45 630.46 101.15 105.4 5.623 0.735 25.129 0.435 8.85 
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Data PPM FAF TT FR FA IFS ET IA IFD AAF DDA DPD DPM 

174 69.2 0.061 714 21.912 17.455 630.47 101.23 105.31 5.629 0.733 25.162 0.435 9.2 

175 69.35 0.057 721.18 21.773 17.461 630.47 101.32 105.22 5.634 0.732 24 0.435 9.55 

176 69.5 0.054 730.17 22.036 17.466 630.47 101.4 105.12 5.64 0.73 23.07 0.435 9.7 

177 69.4 0.069 703.12 21.692 17.472 630.47 101.48 105.03 5.646 0.728 22.916 0.435 10.2 

178 69.3 0.055 722.74 21.707 17.477 630.47 101.57 104.94 5.651 0.726 24.226 0.435 10.75 

179 69.8 0.051 748.51 22.623 17.483 630.48 101.65 104.85 5.657 0.724 23.512 0.434 11.65 

180 70.3 0.05 752.89 22.049 17.488 630.48 101.74 104.76 5.662 0.723 22.067 0.434 12.05 

181 70.3 0.033 775.73 22.673 17.494 630.48 101.82 104.66 5.668 0.721 22.681 0.434 12.2 

182 70.3 0.054 750.5 22.352 17.499 630.48 101.99 104.57 5.674 0.719 23.374 0.434 12.85 

183 70.95 0.057 723.12 22.033 17.505 630.48 102.47 104.48 5.679 0.717 23.598 0.434 12.05 

184 71.6 0.035 776.04 22.265 17.511 630.49 102.79 104.39 5.685 0.716 25.044 0.433 9.6 

185 71.15 0.053 741.11 22.928 17.516 630.49 102.53 104.3 5.691 0.714 24.504 0.433 8 

186 70.7 0.05 759.8 22.482 17.522 630.49 102.28 105.56 5.696 0.712 24.022 0.433 8.05 

187 70.55 0.03 795.14 22.013 17.527 630.49 102.02 107.45 5.702 0.71 23.922 0.433 9.25 

188 70.4 0.055 729.2 22.144 17.533 640.25 101.75 108.74 5.708 0.709 22.406 0.433 9.2 

189 70.15 0.044 784.16 22.184 17.538 640.28 101.45 108.56 5.713 0.707 22.395 0.433 8.45 

190 69.9 0.053 747.76 22.061 17.544 635.39 101.15 108.38 5.719 0.705 22.464 0.432 8.7 

191 69.75 0.047 751.65 22.118 17.549 630.47 100.9 108.2 5.725 0.703 22.296 0.432 8.55 

192 69.6 0.051 739.67 21.481 17.555 630.45 100.94 108.02 5.73 0.701 22.655 0.432 8.85 

193 70.05 0.051 743.18 21.26 17.561 630.43 100.98 107.84 5.736 0.7 24.275 0.432 9.6 

194 70.5 0.061 708.56 22.011 17.566 630.41 101.02 107.66 5.742 0.698 24.735 0.432 9.7 

195 70.6 0.057 733.39 21.755 17.572 630.39 101.05 107.48 5.747 0.696 24.058 0.432 9.45 

196 70.7 0.059 738.44 22.15 17.577 630.37 101.09 107.31 5.753 0.694 24.858 0.431 9.75 

197 70.25 0.045 750.01 22.811 17.583 630.35 101.13 107.13 5.759 0.693 26.626 0.431 9.7 

198 69.8 0.046 729.99 22.635 17.588 630.33 101.16 106.95 5.764 0.691 26.205 0.431 9.25 

199 69.75 0.053 739.66 23.074 17.594 630.31 101.2 106.94 5.77 0.689 23.476 0.431 8.75 

200 69.7 0.065 715.13 22.839 17.599 630.29 101.24 106.94 5.776 0.687 22.026 0.431 8.9 

201 69.65 0.044 719.23 22.724 17.605 630.27 101.28 106.93 5.781 0.686 23.654 0.43 9.25 

202 69.6 0.05 731.15 22.547 17.61 630.25 101.31 106.93 5.787 0.684 26.179 0.43 8.9 

203 69.6 0.043 769.61 23.158 17.616 630.23 101.35 106.92 5.793 0.682 25.83 0.43 9.95 

204 69.6 0.037 765.73 22.559 17.622 630.21 101.39 106.92 5.798 0.68 24.206 0.43 10.7 

205 69.95 0.044 741.81 22.294 17.627 630.19 101.42 106.92 5.804 0.678 24.177 0.43 9.95 

206 70.3 0.041 738.45 23.487 17.633 630.17 101.46 106.91 5.81 0.677 24.066 0.43 8.55 

207 70.3 0.039 760.92 22.388 17.638 630.15 101.5 106.91 5.815 0.675 24.93 0.429 8.65 

208 70.3 0.051 750.41 22.944 17.644 630.13 101.54 106.91 5.821 0.673 24.212 0.429 9.3 
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Data PPM FAF TT FR FA IFS ET IA IFD AAF DDA DPD DPM 

209 69.9 0.042 761.36 22.823 17.649 630.11 101.57 106.9 5.826 0.671 23.703 0.429 9.1 

210 69.5 0.04 767.11 23.393 17.655 630.09 101.61 106.9 5.832 0.67 24.392 0.429 9.15 

211 69.75 0.049 745.6 22.714 17.66 630.07 101.65 106.9 5.838 0.668 22.871 0.429 8.85 

212 70 0.058 736.4 23.193 17.666 630.05 101.68 106.89 5.843 0.666 23.697 0.428 9.25 

213 69.9 0.039 771.85 22.563 17.671 630.03 101.72 106.89 5.849 0.664 25.617 0.428 9.4 

214 69.8 0.031 763.27 22.054 17.677 630.02 101.76 106.24 5.855 0.663 26.437 0.428 9.45 

215 70 0.043 736.31 21.381 17.683 630 101.8 106.01 5.86 0.661 25.179 0.428 9.75 

216 70.2 0.045 747.09 22.063 17.688 629.98 101.83 105.78 5.866 0.659 23.397 0.428 10.65 

217 70.3 0.049 738.43 22.53 17.694 629.96 101.87 105.56 5.872 0.657 24.174 0.428 10.1 

218 70.4 0.024 793.34 22.053 17.699 629.94 101.63 105.33 5.877 0.655 23.091 0.427 9.2 

219 70.05 0.041 768.42 22.315 17.705 629.92 101.34 105.1 5.883 0.654 21.886 0.427 9.15 

220 69.7 0.033 755.53 22.551 17.71 629.9 101.05 104.87 5.889 0.652 24.003 0.427 8.75 

221 69.65 0.046 746.1 22.477 17.716 629.88 100.83 104.64 5.894 0.65 24.258 0.427 9.45 

222 69.6 0.033 760.75 23.265 17.721 629.86 100.69 104.41 5.9 0.648 24.095 0.427 10.55 

223 69.9 0.028 791.82 22.373 17.727 629.84 100.55 104.18 5.906 0.647 24.778 0.427 9.15 

224 70.2 0.044 742.27 22.511 17.733 629.82 100.41 103.95 5.911 0.645 23.308 0.426 8.55 

225 69.9 0.044 739 22.431 17.738 629.8 100.27 104.22 5.917 0.643 23.161 0.426 9.4 

226 69.6 0.044 749.07 22.653 17.744 629.78 100.13 106.23 5.923 0.641 24.139 0.426 8.8 

227 69.95 0.045 738.74 22.508 17.749 629.76 99.991 108.25 5.928 0.639 25.28 0.426 8.6 

228 70.3 0.046 733.64 22.798 17.755 620.52 111.79 105.74 5.019 0.638 23.698 0.426 13.6 
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APPENDIX B. SIMULATION PROGRAM (MATLAB PROGRAM) 

B.1. Main Simulation 

clear all ,close all ,clc  

% Parameter Estimated from Bilen e. a. 2010 %% 
load standardized_data 

  
X_matrix=[data(:,1:12)]; 
Y_data=data(:,14);  var(Y_data); 

  
% Define number of Xs 
p=12;    

 

% In control parameter 
mean_X_0=mean(X_matrix); 
mean_X_1=mean(X_matrix); 

  
phi1_0  =  1.1188; 
phi2_0  = -0.5804; 
phi3_0  =  0.3945; 
var_Z_0 =  0.6933^2; 

  
phi1_1  =  1.1188; 
phi2_1  = -0.5804; 
phi3_1  =  0.3945; 
var_Z_1 =  0.6933^2; 

  
X_4_MEWMA=[X_matrix(:,6:7) X_matrix(:,9:10)]; 
Cov_X_4_MEWMA=cov(X_4_MEWMA); 

  
R=chol(cov(X_matrix)); 
[Eigen_Vector_Matrix,latent,explained] = pcacov(cov(X_matrix)); 
 Eigen_Value_Matrix=diag(latent(1:4)); 
 pc=4;    

 
 P_Matrix=Eigen_Vector_Matrix(:,1:pc); 

  
 beta_0= [9.6094;   -0.3165;   -0.1608 ;   0.8057;    0.4770]; 
 beta_1= beta_0; 

  
 H_Y=2.98; lambda_Y=0.2; 
 H_X=16.15;    lambda_X=0.2; 

  
 simulation=100000;  %subgroup_size=1; 

  
% Define the number of simulation 
   Time_Series_NOISE=generate_AR3(50000,phi1_1,phi2_1,phi3_1,var_Z_1);         

 

% Generate the time series noise 

  
%Mean(Time_Series_NOISE),var(Time_Series_NOISE),plot(1:10000,Time_Series_ 
NOISE(1:10000)) 

 
% In Control Stage 
      mean_X_1 = mean(X_matrix) ; 
      beta_1= beta_0; 
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      R_out_of_control=R; 
      P_Matrix_out_of_control=P_Matrix; 

        
      counter_X_Y=ARL_EWMA_Y_X(simulation,p, pc, R, R_out_of_control, 

P_Matrix, P_Matrix_out_of_control, Eigen_Value_Matrix, Cov_X_4_MEWMA , 

mean_X_0, mean_X_1, beta_0, beta_1, H_Y, lambda_Y, H_X, lambda_X, 

Time_Series_NOISE,phi1_0,phi2_0,phi3_0,var_Z_0,phi1_1,phi2_1,phi3_1, 

var_Z_1); 

   
     data_case_0=cell(1,3); 
     data_case_0{1,1}=counter_X_Y ; 
     data_case_0{1,2}=mean(counter_X_Y); 
     data_case_0{1,3}=std(counter_X_Y); 

     
      save  data_case_0  data_case_0 
      load  data_case_0 
     disp(' The following is the mean of ARL of X, Y, minMRL, prop.of 

detected by MEWA of X') 
      disp(data_case_0{1,2}) 
     disp(' The following is the STD of ARL of X, Y, minMRL, prop.of 

detected by MEWA of X') 
      disp(data_case_0{1,3})  

  

  
% Out of Control Stage 
% Changes in Mean of X only 
% Case 1  mean_X6 7 9 10 is out of control 
  clear i counter_X_Y Eigen_Vector_Matrix1 latent1 explained1 
  delta=[ 0.25 0.5 1 1.5 2 3];  
  beta_1= beta_0; 
  data_case_1=cell(length(delta),3); 
  for i=1:length(delta) 
      mean_X_1 = mean(X_matrix) + delta(i).*[0 0 0 0 0 1 1 0 1 1 0 0];  
      R_out_of_control=R; 
      P_Matrix_out_of_control=P_Matrix; 

        
          counter_X_Y=ARL_EWMA_Y_X(simulation,p, pc, R, R_out_of_control, 

P_Matrix, P_Matrix_out_of_control, Eigen_Value_Matrix, Cov_X_4_MEWMA , 

mean_X_0, mean_X_1, beta_0, beta_1, H_Y, lambda_Y, H_X, lambda_X, 

Time_Series_NOISE,phi1_0,phi2_0,phi3_0,var_Z_0,phi1_1,phi2_1,phi3_1, 

var_Z_1); 

     
     data_case_1{i,1}=counter_X_Y ; 
     data_case_1{i,2}=mean(counter_X_Y); 
     data_case_1{i,3}=std(counter_X_Y); 
  end 

   
  save  data_case_1  data_case_1 
  load  data_case_1 
   disp(' The following is the mean of ARL of X, Y, minMRL, prop.of 

detected by MEWA of X') 
   data_case_1{:,2}   
   disp(' The following is the STD of ARL of X, Y, minMRL, prop.of detected 

by MEWA of X') 
   data_case_1{:,3}     
% Case 2  mean_X6 7 9 10 is in control but the others are out of control 
  clear i counter_X_Y Eigen_Vector_Matrix1 latent1 explained1 
  delta=[ 0.25 0.5 1 1.5 2 3];  
  beta_1= beta_0; 
  data_case_2=cell(length(delta),3); 
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  for i=1:length(delta) 
      mean_X_1 = mean(X_matrix) + delta(i).*[1 1 1 1 1 0 0 1 0 0 1 1]; 
      R_out_of_control=R; 
      P_Matrix_out_of_control=P_Matrix; 
          counter_X_Y=ARL_EWMA_Y_X(simulation,p, pc, R, R_out_of_control, 

P_Matrix, P_Matrix_out_of_control, Eigen_Value_Matrix, Cov_X_4_MEWMA , 

mean_X_0, mean_X_1, beta_0, beta_1, H_Y, lambda_Y, H_X, lambda_X, 

Time_Series_NOISE,phi1_0,phi2_0,phi3_0,var_Z_0,phi1_1,phi2_1,phi3_1, 

var_Z_1); 

     
     data_case_2{i,1}=counter_X_Y ; 
     data_case_2{i,2}=mean(counter_X_Y); 
     data_case_2{i,3}=std(counter_X_Y); 
  end 

   
  save  data_case_2  data_case_2 
  load  data_case_2 
   disp(' The following is the mean of ARL of X, Y, minMRL, prop.of 

detected by MEWA of X') 
   data_case_2{:,2},   
   disp(' The following is the STD of ARL of X, Y, minMRL, prop.of detected 

by MEWA of X') 
   data_case_2{:,3}    

   
% Case 3  All mean_X are out of control 
  clear i counter_X_Y Eigen_Vector_Matrix1 latent1 explained1 
  delta=[0.25 0.5 1 1.5 2 3]; 
  beta_1= beta_0; 
  data_case_3=cell(length(delta),3); 
  for i=1:length(delta) 
      mean_X_1 = mean(X_matrix) + delta(i).*[1 1 1 1 1 1 1 1 1 1 1 1]; 
      R_out_of_control=R; 
      P_Matrix_out_of_control=P_Matrix; 
          counter_X_Y=ARL_EWMA_Y_X(simulation,p, pc, R, R_out_of_control, 

P_Matrix, P_Matrix_out_of_control, Eigen_Value_Matrix, Cov_X_4_MEWMA , 

mean_X_0, mean_X_1, beta_0, beta_1, H_Y, lambda_Y, H_X, lambda_X, 

Time_Series_NOISE,phi1_0,phi2_0,phi3_0,var_Z_0,phi1_1,phi2_1,phi3_1, 

var_Z_1); 

     
     data_case_3{i,1}=counter_X_Y ; 
     data_case_3{i,2}=mean(counter_X_Y); 
     data_case_3{i,3}=std(counter_X_Y); 
  end 

   
  save  data_case_3  data_case_3 
  load  data_case_3 
   disp(' The following is the mean of ARL of X, Y, minMRL, prop.of 

detected by MEWA of X') 
   data_case_3{:,2},   
   disp(' The following is the STD of ARL of X, Y, minMRL, prop.of detected 

by MEWA of X') 
   data_case_3{:,3}       

 
% Case 4  Cov_X (X6,X7,X9,X10)is out of control 
   clear i counter_X_Y Eigen_Vector_Matrix1 latent1 explained1 
   delta=[0.25 0.5 1 1.5 2 3];  
   beta_1= beta_0; 
   data_case_4=cell(length(delta),3); 
  for i=1:length(delta) 
      mean_X_1 = mean_X_0 ; 
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      R_out_of_control=chol(cov(X_matrix)+delta(i).*diag([0 0 0 0 0 1 1 0 1 

1 0 0] )); 

       
       [Eigen_Vector_Matrix1,latent1,explained1] = pcacov( 

cov(X_matrix)+delta(i).*diag([0 0 0 0 0 1 1 0 1 1 0 0] )); 
       Eigen_Value_Matrix1=diag(latent1(1:4)); 
       pc=4;    
       P_Matrix_out_of_control=Eigen_Vector_Matrix1(:,1:pc); 

       
             counter_X_Y=ARL_EWMA_Y_X(simulation,p, pc, R, 

R_out_of_control, P_Matrix, P_Matrix_out_of_control, Eigen_Value_Matrix, 

Cov_X_4_MEWMA , mean_X_0, mean_X_1, beta_0, beta_1, H_Y, lambda_Y, H_X, 

lambda_X, 

Time_Series_NOISE,phi1_0,phi2_0,phi3_0,var_Z_0,phi1_1,phi2_1,phi3_1, 

var_Z_1); 

     
     data_case_4{i,1}=counter_X_Y ; 
     data_case_4{i,2}=mean(counter_X_Y); 
     data_case_4{i,3}=std(counter_X_Y); 
  end 

   
  save  data_case_4  data_case_4 
  load  data_case_4 
   disp(' The following is the mean of ARL of X, Y, minMRL, prop.of 

detected by MEWA of X') 
   data_case_4{:,2},   
   disp(' The following is the STD of ARL of X, Y, minMRL, prop.of detected 

by MEWA of X') 
   data_case_4{:,3}      

   

   
% Case 5  Regression parameter BETA (B1,B2, B3, B4) are changed 
   clear i counter_X_Y Eigen_Vector_Matrix1 latent1 explained1 

   
   beta_change=[0.5 0.75  0.9 1.1 1.25 1.5];  
   data_case_5=cell(length(beta_change),3); 

    
   for i=1:length(beta_change) 
      mean_X_1 = mean_X_0 ; 
      R_out_of_control=R; 
      P_Matrix_out_of_control=P_Matrix; 
      beta_1= [9.6094;   -0.3165*beta_change(i);   -0.1608*beta_change(i);   

0.8057*beta_change(i);    0.4770*beta_change(i)]; 

         
           counter_X_Y=ARL_EWMA_Y_X(simulation,p, pc, R, R_out_of_control, 

P_Matrix, P_Matrix_out_of_control, Eigen_Value_Matrix, Cov_X_4_MEWMA , 

mean_X_0, mean_X_1, beta_0, beta_1, H_Y, lambda_Y, H_X, lambda_X, 

Time_Series_NOISE,phi1_0,phi2_0,phi3_0,var_Z_0,phi1_1,phi2_1,phi3_1, 

var_Z_1); 

     
     data_case_5{i,1}=counter_X_Y ; 
     data_case_5{i,2}=mean(counter_X_Y); 
     data_case_5{i,3}=std(counter_X_Y); 
  end 

   
  save  data_case_5  data_case_5 
  load  data_case_5 



 

92 
 

   disp(' The following is the mean of ARL of X, Y, minMRL, prop.of 

detected by MEWA of X') 
   data_case_5{:,2},   
   disp(' The following is the STD of ARL of X, Y, minMRL, prop.of detected 

by MEWA of X') 
   data_case_5{:,3}    
 

% Case 6  Cov_X (X6,X7,X9,X10) is out of control AND Regression parameter 

BETA (B1,B2, B3, B4) are changed 
   clear i counter_X_Y Eigen_Vector_Matrix1 latent1 explained1 

    
    delta=[ 0.25 0.5 1 1.5 2 3];  
    beta_change=[0.5 0.75  0.9 1.1 1.25 1.5];  
    data_case_6=cell(length(delta),3); 

     
  for i=1:length(delta) 
      mean_X_1 = mean_X_0 ; 
      beta_1= [9.6094;   -0.3165*beta_change(i);   -0.1608*beta_change(i);   

0.8057*beta_change(i);    0.4770*beta_change(i)]; 
      R_out_of_control=chol(cov(X_matrix)+delta(i).*diag([0 0 0 0 0 1 1 0 1 

1 0 0] )); 

       
       [Eigen_Vector_Matrix1,latent1,explained1] = pcacov( 

cov(X_matrix)+delta(i).*diag([0 0 0 0 0 1 1 0 1 1 0 0] )); 
       Eigen_Value_Matrix1=diag(latent1(1:4)); 
       pc=4;   % the significant number of the PC is 4 
       P_Matrix_out_of_control=Eigen_Vector_Matrix1(:,1:pc); 

        
           counter_X_Y=ARL_EWMA_Y_X(simulation,p, pc, R, R_out_of_control, 

P_Matrix, P_Matrix_out_of_control, Eigen_Value_Matrix, Cov_X_4_MEWMA , 

mean_X_0, mean_X_1, beta_0, beta_1, H_Y, lambda_Y, H_X, lambda_X, 

Time_Series_NOISE,phi1_0,phi2_0,phi3_0,var_Z_0,phi1_1,phi2_1,phi3_1, 

var_Z_1); 

     
     data_case_6{i,1}=counter_X_Y ; 
     data_case_6{i,2}=mean(counter_X_Y); 
     data_case_6{i,3}=std(counter_X_Y); 
  end 

   
  save  data_case_6  data_case_6 
  load  data_case_6 
   disp(' The following is the mean of ARL of X, Y, minMRL, prop.of 

detected by MEWA of X') 
   data_case_6{:,2},   
   disp(' The following is the STD of ARL of X, Y, minMRL, prop.of detected 

by MEWA of X') 
   data_case_6{:,3}      

   
% Case 7  Cov_X and Mean(X6,X7,X9,X10) are out of control and Regression 

parameter BETA (B1,B2, B3, B4) are changed 
  clear i counter_X_Y Eigen_Vector_Matrix1 latent1 explained1 
  delta=[0.25 0.5 1 1.5 2 3];  
  beta_change=[0.5 0.75  0.9 1.1 1.25 1.5]; ;   
  data_case_7=cell(length(delta),3); 

   
  for i=1:length(delta) 
      mean_X_1 = mean(X_matrix) + delta(i).*[0 0 0 0 0 1 1 0 1 1 0 0]; 
      beta_1= [9.6094;   -0.3165*beta_change(i);   -0.1608*beta_change(i);   

0.8057*beta_change(i);    0.4770*beta_change(i)]; 
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      R_out_of_control=chol(cov(X_matrix)+delta(i).*diag([0 0 0 0 0 1 1 0 1 

1 0 0] )); 

        
      [Eigen_Vector_Matrix1,latent1,explained1] = pcacov( 

cov(X_matrix)+delta(i).*diag([0 0 0 0 0 1 1 0 1 1 0 0] )); 
       Eigen_Value_Matrix1=diag(latent1(1:4)); 
       pc=4;    
       P_Matrix_out_of_control=Eigen_Vector_Matrix1(:,1:pc); 

             
            counter_X_Y=ARL_EWMA_Y_X(simulation,p, pc, R, R_out_of_control, 

P_Matrix, P_Matrix_out_of_control, Eigen_Value_Matrix, Cov_X_4_MEWMA , 

mean_X_0, mean_X_1, beta_0, beta_1, H_Y, lambda_Y, H_X, lambda_X, 

Time_Series_NOISE,phi1_0,phi2_0,phi3_0,var_Z_0,phi1_1,phi2_1,phi3_1, 

var_Z_1); 

     
     data_case_7{i,1}=counter_X_Y ; 
     data_case_7{i,2}=mean(counter_X_Y); 
     data_case_7{i,3}=std(counter_X_Y); 
  end 

   
  save  data_case_7  data_case_7 
  load  data_case_7 
   disp(' The following is the mean of ARL of X, Y, minMRL, prop.of 

detected by MEWA of X') 
   data_case_7{:,2},   
   disp(' The following is the STD of ARL of X, Y, minMRL, prop.of detected 

by MEWA of X') 
   data_case_7{:,3}    
    

 

B.2. Average Run Length (ARL) of EWMA and MEWMA 

 
function   counter_X_Y=ARL_EWMA_Y_X(simulation,p, pc, R, R_out_of_control, 

P_Matrix, P_Matrix_out_of_control, Eigen_Value_Matrix, Cov_X_4_MEWMA , 

mean_X_0, mean_X_1, beta_0, beta_1, H_Y, lambda_Y, H_X, lambda_X, 

Time_Series_NOISE,phi1_0,phi2_0,phi3_0,var_Z_0,phi1_1,phi2_1,phi3_1, 

var_Z_1); 

  
 counter_X_Y=[]; 
 for sim=1:simulation 
%% Note that the first 3 observations will not be tested, just to get the 

warming of the residual process  
   clear X_Generated  T_Generated    meanY_Generated   Y_Generated  

Subset_Time_Series_NOISE a0 a1 a2 a3  
     s = 0;             

% s=sample_counter -->that will be used to count the no. of sample   
     a0=find(abs(Time_Series_NOISE)<0.01); 
     a1=length(a0); 
     a2=ceil(rand*a1/2);   

% define the random seed to pick the subset of the time series noise 
     a3=a0(a2); 
     Subset_Time_Series_NOISE=Time_Series_NOISE(a3:50000,:);    

% random chosen part of the time series noise 

    

      
     counter_for_X=[];     counter_for_Y=[]; 
     out_of_control_id_X=0; out_of_control_id_Y=0; 

     
        while out_of_control_id_X==0 |  out_of_control_id_Y==0; 
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             s = s + 1 ; 

              
%% Each single sample will be generated from 
%% X --> T score--> Mean(Y)--> Y 

                
               X_Generated(s,:)     =  ( R_out_of_control'*normrnd(0,1,p,1) 

)' + mean_X_1;    

% Generate X from out-of-control 
               T_Generated(s,:)     =  

X_Generated(s,:)*P_Matrix_out_of_control; 
               meanY_Generated(s,:) =  [1 T_Generated(s,:)]*beta_1;           

% But regress using the in-control beta 
               Y_Generated(s,:)     =  meanY_Generated(s,:)+  

Subset_Time_Series_NOISE(s); 
               X_4_MEWMA            =  [ X_Generated(s,6:7)  

X_Generated(s,9:10)]; 

                       
%% MEWMA for X 
%% 1.Compute the MEWMA for statistics of the X6 X7 X9 X10  
% since we start from s=4,.... not from 1 
                               if s==1, 

MEWMA_Statistic_X(s,:)=lambda_X*X_4_MEWMA'+(1-lambda_X)*zeros(4,1);   
                               else     

MEWMA_Statistic_X(s,:)=lambda_X*X_4_MEWMA'+(1-

lambda_X)*MEWMA_Statistic_X(s-1,:)'; 
                               end 

                                
%% 2.compute the control chart statistics 
%% This is to get the plotted statistics as if the process is in control 
                               if s<=6, T2_Statistic_X(s)=0; 
                               else     T2_Statistic_X(s)=( 1/ 

(lambda_X/(2-lambda_X)) * ( 1 - ((1-lambda_X)^(2*(s-6))) ) 

)*MEWMA_Statistic_X(s,:)*inv(Cov_X_4_MEWMA )*MEWMA_Statistic_X(s,:)';  
                               end 

  

                                
%% 3. Define the control limit for MEWMA 
                               if s>=7, MEWMA_X_CL=H_X; 
                               else     MEWMA_X_CL=1000;  
                               end 
%% 4. Check if the MEWMA is in control 
                               if  abs(T2_Statistic_X(s))>MEWMA_X_CL,  
                                   out_of_control_id_X = 1 ;    
                                   counter_for_X=[counter_for_X  max(0,s-

6)];    

%keep the ARL for MEWMA  
                               end 

                             
%%  EWMA for White Noise generated from the Residual 

               
%% 1. Get the residual as if the process is in control 
%if s<=3, residual(s)=0; wn(s)=0; 

                 
                       residual(s)=Y_Generated(s,:)- [ 1 

X_Generated(s,:)*P_Matrix]*beta_0; 
                       if s<=3,     wn(s)=0; 
                       else         wn(s)=residual(s)-phi1_0*residual(s-1)-

phi2_0*residual(s-2)-phi3_0*residual(s-3); 
                       end 
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%% Compute the EWMA 
                       if s<=1, EWMA_Y(s)=lambda_Y*wn(s)+(1-lambda_Y)*0; 
                       else     EWMA_Y(s)=lambda_Y*wn(s)+(1-

lambda_Y)*EWMA_Y(s-1); 
                       end 

                        
%% Define the control limit for EWMA     
                       if s>=4, EWMA_Y_CL(s)=H_Y* sqrt( var_Z_0 * 

(lambda_Y/(2-lambda_Y))* ( 1 - ((1-lambda_Y)^(2*(s-3))) )     );      
                            

% we need at least 3 sample to get the estimates of Y1, Y2, Y3 and  
% another 3 to get estimates of wn(1) wn(2) wn(3) 
                       else    EWMA_Y_CL(s)=1000;   
                       end 

                        
%%Check if the EWMA is in control 
                       if  abs(EWMA_Y(s))>EWMA_Y_CL(s), 
                           out_of_control_id_Y =1 ;  
                           counter_for_Y=[counter_for_Y  max(0,s-3)];   % 

keep the ARL for MEWMA 
                       end 

  
                       if mod(s,100)==0, s; end 

                        
           end    

 

%of while out_of_control_id = 0; 

    
       if mod(sim,1000)==0, sim, end 
       ARL_X=min(counter_for_X); 
       ARL_Y=min(counter_for_Y); 
       counter_X_Y(sim,:) = [ARL_X  ARL_Y  min(ARL_X,ARL_Y)  

min(ARL_X,ARL_Y)==ARL_X]; 
 end  

 

%for sim=1:simulation 

  

 

B.3. Theoretical Covariance of Y 

 
function 

[Estimated_var_Y,Theory_COV_Y]=Compute_Theory_COV_Y_AR3(t,phi1,phi2,phi3,va

r_Z) 

  
% Find Theoretical Covariance for GLS regression  

  
rho=zeros(t,1); 
for i=1:t 
   if i==1,     rho(i) =  (phi1 + phi2*phi3) / ( 1-phi2 - (phi1+phi3)*phi3)  

; 
   elseif i==2, rho(i) =  (phi1+phi3)*rho(i-1) +phi2; 
   elseif i==3, rho(i) = phi1*rho(i-1) + phi2*rho(i-2) +phi3; 
   else         rho(i) = phi1*rho(i-1) + phi2*rho(i-2) +phi3*rho(i-3); 
   end 
end 
var_Z 
Estimated_var_Y = var_Z/(1-phi1*rho(1)-phi2*rho(2)-phi3*rho(3)) 
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Theory_COV_Y=eye(t); 
   for i=1:t,  
       for j=1:t 
           if i==j, Theory_COV_Y(i,j)=Estimated_var_Y;  
           else     Theory_COV_Y(i,j)=Estimated_var_Y*rho(abs(j-i)); end 
        end 
   end 

  
%rho(1:3) 

 

B.4. Generate AR(3) 

 
function y=generate_AR3(t,phi1,phi2,phi3,var_Z) 
 

%head start of 100 
m=t+100;     
y=zeros(m,1); 
for i=1:m 
    if i==1,     y(i)= normrnd(0,sqrt(var_Z));                  
    elseif i==2  y(i)= normrnd(0,sqrt(var_Z));                  
    elseif i==3  y(i)=  normrnd(0,sqrt(var_Z));                 
    else          y(i)=phi1*y(i-1)+phi2*y(i-2)+phi3*y(i-3) + 

normrnd(0,sqrt(var_Z)); 
    end 
end 

  
y=y(m-t+1:m); 
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APPENDIX C. MULTIPLE REGRESSION CONTROL CHART INTEGRATED 

WITH PRINCIPAL COMPONENT ANALYSIS3 

C.1. Introduction 

Most industrial processes involve many variables that significantly affect quality of the 

output characteristics. Moreover, when predictor variables are related to each other, 

multicollinearity among them is said to exist.  In the multicollinearity case, direct analysis 

resulting from procedures such as linear regression is not reliable. In this paper, Principle 

Components Analysis (PCA) is used to alleviate the problem of multicollinearity and control 

chart is built through multiple regression modeling. 

The earliest paper on regression control chart in the quality control literature is by 

DiPaola [1].  Mandel [2] uses the regression control chart in an example of post office 

department.  Jackson [3] illustrates the use of principal components analysis in detail. 

Numerous considerations and rules on principal components are discussed by Jolliffe [4].  

Mastrangelo et al. [6] review methodologies for multivariate process monitoring and show the 

effectiveness of principal components.  Hawkins [5] discusses the case when there is a 

distributional change in each variable by using different regression adjusted scales.  Since the 

regression model is rarely known in practice, Shu et al. [7] study the run length performance 

of regression control charts with estimated parameters for Shewhart and exponentially 

weighted moving average (EWMA) control charts. 

C.2. Methodology 

The proposed methodology for multivariate autocorrelated process control uses 

multiple regression control chart in conjunction with principal component analysis.  First, 

                                                           
Content in this appendix was previously published in Proceeding of the Industrial Engineering Research 

Conference, May 19-23, 2007, Nashville, Tennessee and was written by Canan Bilen-Green, Xianzhe Chen, 

Anakaorn Khan and Om Prakash Yadav. Anakaorn Khan was responsible in writing the draft of the paper and 

analyzing data. 
3  
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Principal Component Analysis (PCA) is used to identify significant independent process 

variables. Then, white noise series generated by autoregressive error correction model is used 

to construct a control chart for future process monitoring.  

C.2.1. Multiple regression model 

Suppose a process of interest involves k independent variables, x1, x2, …, xk, then the 

multiple regression model is given as follows: 

ikikiii
xxxy   

22110
, ),,2,1( ni               (1) 

where y is the response variable εi ~ N(0, σ2).  One key assumption of multiple regression model 

is that any one value of y is statistically independent of any other value of y. Therefore, checking 

the validity of the independence assumption is an essential step before further analysis of the 

data. The multiple regression model in (1) can be written in matrix notation as  
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Regression coefficient estimates are given by   YXXX 
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  and the variance-covariance matrix 

of the estimated regression coefficients are represented by     12 
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C.2.2. Standardizing 

Since the predictors in the process often have different units, we should standardize 

them before further analysis. Consider equation (1), the independent variables are transformed 

as ,/)(
jji

s

ji
sxxx   where jix  is the ith observation for the jth variable (xj) and .)1/()(

1

2
 



nxxs
n

i

jjij
  

Hence, equation (1) can be rewritten as 

    
i

k

kkis

k

isiss

i
s

xx

s

xx

s

xx
y  







 








 








 
 

2

22

2

1

11

10
         (3) 

If we separate the first column from matrix X, then we will have 
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    EBXIY
sss
 0          (4) 

where I is a vector of ones. It is noted that X’X is proportional to the correlation matrix for the 

predictor variables. 

C.2.3. Principal components analysis  

Principal Components Analysis (PCA) is a method for overcoming multicollinearity, 

which occurs when predictor variables are related to each other.  Under multicollinearity, the 

analytic results from many procedures such as linear regression are not useful as they can be 

misleading. While PCA can be used to transform correlated variables into uncorrelated 

variables by using certain selection rules, in the meantime the dimension of a dataset can be 

reduced while explaining most of the variability in a process. Let A be kk   matrix which 

consists of the normalized eigenvector such that AA´=I.  Therefore, equation (4) can be written 

as 

    EZIEBAAXIY
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         (5) 

where Z = XsA is a n×k matrix of principal components and γ = A´Bs is a k×1 vector of new 

coefficients. The principal components are orthogonal to each other since  
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where [a1j, a2j, … , akj ] is eigenvector associated with eigenvalues λj and zj accounts for λj of 

the total variance. The least squares estimator for regression coefficients of vector λ is given 

by   YZZZ
'1' 


  and the variance covariance for the estimated coefficients of 


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A comprehensive guideline for multivariate process analysis, monitoring, and control using the 

developed methodology is illustrated in Figure C.2. 

C.3. Application  

The sugar beet pulp drying process is shown in Figure C.1. The historical data for a 

period of two months for 24 hours a day are used in the analysis.  Twelve input variables are 

adjusted according to time at t, t+1/2 and t+1.  

The basic steps of the process data analysis are as follows: 1) use PCA to get 

independent predictor variables; 2) construct a regression model to get a set of white noise 

residuals; 3) build control charts on the white noise residuals for monitoring future process. 

Step 1: The observed pulp process data are somewhat messy with a few missing points.  

Therefore, in order to construct the stationary control chart, 228 consistent 

observations, showing no obvious outliers, collected in the middle of the process 

are selected from a total 1,349 observations.  As the independent variables were 

in different units, these variables are standardized according to the procedure 

described above in the methodology section. Then SAS statistical analysis 

software is used to conduct PCA of the standardized data. The eigenvalues are 

given in Table C.1.  

 

Figure C.1. Pulp drying process according to time 
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If a significant proportion of the total variance can be attributed to the first few 

variables, then these components can be used to explain the process without much 

loss of information. There are several rules for selecting principal components.  

According to [4], one popular rule is to choose the set of largest r components 

which first sums up to 85% or 85.0/
1




k
r

j

j
 ,  another widely used rule states that 

the proportion of one component should be larger than the inverse of the number 

of variables, or 083.012/1/1 k .  We selected the principal components according 

to both rules so that for the pulp drying process the first four largest principal 

components are selected for further analysis.  

It is informative to determine the correlations of the variables with the principal 

components in order to interpret the importance of the kth variable to the ith 

principal component. The correlation coefficient between component zi and 

variable xk can be computed as ./
,


iikxz

e
ki

   However, this correlation coefficient 

does not measure the importance of an individual xk to a component y in the 

presence of other independent variables.  It is recommended in the PCA literature 

that only the coefficients eik (in absolute value) should be used to interpret the 

components.  

The first four eigenvectors associated with eigenvalues are presented in Table C.2.  

Notable observations are that variable z_aaf receives the greatest weight in 

principal component 1; z_faf, z_tt and z_fr are almost equally important to 

principal component 2; z_ifd and z_dpd contribute almost the same to principal 

component 3; the most important variable to principal component 4 is z_dda.  

Step 2: Since the response variable (dried pulp moisture) is recorded every one hour and 

it shows that autocorrelation exists, it violates the independence assumption. It is 
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important to remove autocorrelation before the model is built.  The method often 

used to deal with autocorrelation is to fit an ARIMA model for the input series so 

that it is sufficient to reduce the residuals to white noise.  However, there are no 

ARIMA models that reasonably fit well for the response data since the residuals 

produced from the ARIMA model to build regression model will give an R-square 

value of almost zero.  Therefore, we use the autoregressive error model.  

One key assumption of ordinary regression analysis is that the errors are 

independent of each other.  However, with time series data, the ordinary 

regression residuals are usually correlated over time.  Hence, it is not desirable to 

use ordinary regression analysis for time series data.  Therefore, we build a 

regression model with an autoregressive series for the random error, accounting 

for the autocorrelation of the errors.  Instead of the usual regression model, the 

following autoregressive error model is used: 
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This kind of regression analysis is called autoregressive error correction or serial 

correlation correction.  Again with SAS, the following model coefficients are 

estimated by the maximum likelihood method:  
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The Durbin-Watson test for autocorrelation in residuals confirms that the 

residuals are white noise.  And the intercept, components 1 to 4 and the 

coefficients for AR1, AR2 and AR3 are all significant indicating that the variables 

associated with these coefficients are important and meaningful to the model.  The 

R-square is 0.6137, which is not as high as desired. However, various factors, 
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such as instrumentation, gauge accuracy, process interruption by operators, and 

data recording errors affect data collection and the production process.   

Therefore, even a model with a moderate R-square is informative about the 

process and the relative importance of numerous variables to the process.  

Table C.1. Eigenvalues of the correlation matrix 

PC Eigenvalue Proportion Cumulative 

1 4.6290 0.3858 0.3858 

2 2.6333 0.2194 0.6052 

3 1.6352 0.1363 0.7415 

4 0.9960 0.0830 0.8245 

5 0.6784 0.0565 0.8810 

6 0.4533 0.0378 0.9188 

7 0.3803 0.0317 0.9505 

8 0.2762 0.0230 0.9735 

9 0.1783 0.0149 0.9883 

10 0.0694 0.0058 0.9941 

11 0.0511 0.0043 0.9984 

12 0.0195 0.0016 1.0000 

 

Step 3: From the analysis results, the mean of the process is -.0016 and the standard 

deviation is 0.6933. So the control limits for Shewhart chart is computed as:  

    )0783.2,0815.2(6933.0*30016.0           (11) 

According to the analysis in step 1, when detecting an out of control signal, the 

sequence for checking process variables according to their priority should be: 1) 

AAF; 2) FAF, TT, and FR; 3) IFD and DPD; 4) DDA.  
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It is informative to interpret the results from the physical prospective of the process. 

For example, the aspiration air flow (AAF) is the air that causes different pressure between 

high temperature at the beginning and low temperature at the end of the drum. If there is high 

pressure in the drum, then the pulp will have less moisture content and vice versa.  Thus, AAF 

contributes the majority of variation in the process.  The second priority can be thought of as 

input factors affecting the variation of the process.  Furthermore, the feed rate (FR) and FD air 

flow (FAF) affect the duration of the pulp inside the drum.  If the feed rate and FD air flow are 

increased, the pulp will have less time inside the drum which directly leads to high moisture 

content in the pulp.  Overall, these are the four important variables identified, out of the initial 

twelve, which should be included in the analysis. 

Table C.2. Correlation between principal components and variables 

Variable Prin1 Prin2 Prin3 Prin4 

z_ppm -.333218 0.146091 0.194914 0.118675 

 z_faf -.166576 -.539317 0.000217 -.024384 

z_tt 0.202653 0.505909 0.056680 -.115743 

z_fr 0.111124 0.512892 0.147625 -.057863 

z_fa 0.293420 -.248280 0.414488 -.282509 

z_ifs 0.380466 -.148433 0.119992 0.213348 

z_et -.341491 0.231609 0.072179 -.090648 

z_ia -.225141 -.119583 0.395806 0.254624 

z_ifd 0.338596 0.000655 0.466796 -.275830 

z_aaf -.439290 0.088861 0.107443 -.094088 

z_dda 0.067763 0.085509 0.353278 0.772074 

z_dpd 0.312140 0.044331 -.484442 0.298605 
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C.4. Conclusion 

This paper develops a framework for analyzing multivariate processes.  Use of different 

rules for principal component determination will lead to different choices of components.  It is 

important to construct control charts for stationary processes.  Therefore, the process first 

should be checked to determine if it is stationary before further analysis. 
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Figure C.2. Flow chart for analyzing multivariate processes 
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APPENDIX D. MULTIVARIATE AUTOCORRELATED PROCESS MONITORING 

WITH MULTIPLE REGRESSION AND PRINCIPAL COMPONENTS4 

D.1. Introduction 

In most chemical and process industries, there are often many variables involved in 

process monitoring, and these variables are frequently related to each other which creates a 

multicollinearity problem.  Besides, the capability of increasing sampling frequency has been 

developed tremendously in recent decades which causes the sampling data from the process 

inherit autocorrelation effect. Therefore, the traditional control charts and direct method in 

establishing the relationship between inputs and outputs are no longer effective in process 

monitoring. In general, the quality of the process output is directly affected by many 

uncontrollable input variables.  Mandel [9] attempted to monitor the process output and capture 

the relationship between inputs and outputs by combining linear regression analysis with 

control charts. This regression control chart is applied as performance measurement and control 

tool in detecting assignable causes for process improvement by using a regression line to 

establish the relationship between a single output and single input.  However, in most cases, 

many process variables need to be monitored at the same time with a separate control chart for 

each variable.  The difficulty in monitoring many process variables can be remedied with the 

regression adjustment control chart, especially for cascade process [2, 3]. The performance of 

the regression adjustment control chart has been explored in terms of detecting an out-of-

control signal for various shift sizes of each variable. The difficulty arises when some input 

variables are related to each other. The multicollinearity is said to exist among them which fails 

the assumption of independent regressors in regression analysis. This impacts the response 

variables and estimation of the regression parameter. Montgomery et al. [11] solved this issue 

                                                           
4 Content in this appendix was previously published in Proceeding of the Industrial Engineering Research 

Conference, May 19- June 3, 2009, Miami, Florida and was written by Canan Bilen-Green, Anakaorn Khan and 

Om Prakash Yadav. Anakaorn Khan was responsible in writing the draft of the paper and analyzing data. 
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by a simulation study and provides some guidelines of unbiased estimation method for the 

regression parameter. Schall et al. [13] recommended using principal component analysis in 

handling the multicolinearity effect for the case where the number of input variables is less 

than the number of output variables and simultaneously reducing the number of both input and 

output variables in multivariate processes.  

The traditional control chart performance is also affected by the autocorrelation effect. 

This issue has been studied extensively due to its effect in reducing the performance of 

traditional control charts. Some researchers have suggested extensions of traditional 

multivariate control chart for monitoring autocorrelated processes [5, 7]. Loredo et al. [8] 

developed the extension of reference [2, 3] by suggesting a model-based control chart for 

monitoring multivariate autocorrelated processes. The application of principal component 

analysis can also be used in monitoring multiple variables, when the process is autocorrelated. 

Runger [12] presented multivariate control statistic based on principal component 

decomposition. Mastrangelo et al. [10] explored the application of principal components in 

multivariate autocorrelated process by plotting principal components on multivariate control 

chart for process monitoring. The integration of principal component analysis (PCA) and 

multiple regression is seldom explored in establishing the relationship between input and 

output that exhibits both multicollinearity and autocorrelation effects. Besides, selection rules 

for determining the number of principal components for quality monitoring and principal 

components interpretation are often not discussed. Bilen et al. [1] presented a general 

framework for monitoring multivariate autocorrelated processed by combining PCA in 

conjunction with multiple regression.   

In this paper, the integration of PCA and multiple regression is done by using PCA to 

relieve the multicollinearity effect and to satisfy independent regressors assumption for 

multiple regression.  PCA also assists in reducing the number of input variables to fewer 
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significant principal components and regressed to get residuals.  Because multiple regression 

residuals are not white noise due to the autocorrelation in the output variable, the autoregressive 

error correction model is applied to get white noise residuals so that traditional control charts 

can be used for process monitoring. This paper is an extension of the multivariate 

autocorrelated monitoring framework to identify significant principal components by 

integrating three standard variation-based selection rules. Each rule has a different criterion for 

selecting the number of principal components to be retained. By combining these criteria, 

significant principal components can be properly identified to ensure development of an 

accurate multiple regression model. The interpretation of out-of-control signals is also 

discussed. The proposed methodology is applied to sugar beet pulp drying process that involves 

a large number of inputs and a single output, where the variables exhibit both autocorrelation 

and multicollinearity. The general form of the pulp drying sugar process is shown in Figure 

D.1. The goal is to monitor the output that is affected by many input variables and to investigate 

the root cause of the out-of control signal.  

Process

Autocorrelated 

and Multicolinear 

Inputs

 X1,X2,…,Xn

Autocorrelated 

Output

Y

 

Figure D.1. Process description 

D.2. Description of the Method 

 The methodology for multivariate autocorrelated processes monitoring consists of 

using multiple regression in conjunction with principal component analysis. Principal 

component analysis (PCA) with proposed selection rule is used to reduce the number of 

variables involved in the process.  Subsequently, significant principal components are 

regressed, and the autoregressive error correction model is applied to the multiple regression 
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equation to generate white noise residual series for process monitoring.  The overall 

methodology consists of four phases which are discussed next.  

Phase I. Process Assessment 

 Individual time series plots are used to determine whether each process variable is 

stationary. When the joint distribution of any variable, ),(.,),........1( ntxtx  is the same as the 

joint distribution of )(.,),........1(   ntxtx  for all ,,........,1 ntt the process is said to be stationary.  

For non-stationary process variables, differentiation of the data series is needed before 

further analysis.  The multicollinearity effect is assessed through scatter plots, and 

autocorrelation is examined through the autocorrelation function (ACF) and partial 

autocorrelation function (PACF). If multicollinearity among process variables and 

autocorrelation within variables do not exist, simple multiple regression can be applied 

directly if the number of variables in the process is not large. 

Phase II. Principal Component Analysis and Selection Rule 

 Principal component analysis is a method for eliminating multicollinearity and gives 

better results than the ordinary least squares regression when used successfully. In PCA, 

the original process variables are transformed into a new set of orthogonal or uncorrelated 

variables called principal components.  The PCA transformation ranks the new orthogonal 

variables in the order of their importance.  A number of principal components are selected 

to explain the major variability of the process, while others are eliminated to reduce the 

dimension of the variables.  

 All variables in PCA are ensured to be in the same unit by standardization. The variables 

are standardized by ,/)( jsxjixs
jix   where jix  is the ith observation for the jth variable jx  and

)1/(
1

2
)( 


 n

n

i
jxjixjs . The principal component is given by 

    s

jkj

s

j

s

jj xaxaxaz  2211
         (1) 
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where [a1j, a2j, … , akj ] is the eigenvector associated with eigenvalues λj and zj accounts for 

λj of the total variance. The least squares estimator for regression coefficients of vector λ is 

given by   YZZZ
'1' 


  and the variance covariance of the estimated coefficients of 


 is given 

by  

      ),,,()(
11

2

1

1

21'2 
 kdiagZZVar  
          (2) 

 The principal components (PCs) are ranked according to their eigenvalues. The highest 

eigenvalue is assigned to be the first PC and the remainder of eigenvalues is listed in 

descending order with the increasing rank of PC. In principal component analysis, it is 

critical to find the optimal number of PCs to be included in the multiple regression model 

without major loss of information. There are many rules for selecting PCs. Each rule has 

different criteria which leads to different number of PCs retained. Therefore, it is difficult 

for practitioner to pinpoint the optimal number of PCs. For this reason, we use a PC 

selection rule derived from the integration of two standard PC selection rules, found in the 

literature, to increase confidence in choosing the number of PCs. These two rules work well 

in practice [6]. The first rule is based on the cumulative percentage of total variation of 

selected PCs, mt , less than a predetermine cut-off point, t*. The first rule leaves the unsolved 

issue of deciding the best cut-off point, t*. The second rule is based on the size of variances 

of PCs, j , PC with variance less than 0.7 contains less information than the original 

variables, thus it is discarded. The sampling variation is already taken into account by the 

second rule which is not included by the first rule.  

 The proposed selection rule is integration between modified first rule and second rule. 

The modification of the first rule is on the cut-off point. The range of cumulative percentage 

of total variation of 70% to 90% instead of using the exact percentage of cumulative 

percentage of total variation is used to keep the potential number of PCs as much as possible 

without loss of major information of the data. Therefore, the number of PCs retained is in 
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range as well. The range of PCs is simultaneously satisfied with the second rule which is 

already taken sampling variation into account, so the final number of PCs retained by using 

the combination of both rules is more accurate without much loss of information. The 

proposed selection rule is shown.  





m

j
j

k
mt

1

100
 ,     %90%70  mt and 7.0j  (3) 

where k is the original number of PCs, m is the number of PCs to be retained and mt  is 

cumulative percentage of total variation of selected PCs. For example, if the first 3-6 PCs 

variation is combined and it is in the range of 70% to 90%, then 3-6 PCs can be retained. 

Furthermore, if the first four PCs have variances or eigenvalues larger than 0.7, then the 

final number to be retained are only the first four PCs. 

Phase III. Multiple Regression and Autoregressive Error Correction Model 

 A regression model is applied to get a set of white noise residuals. Suppose a process 

of interest involves k independent variables, x1, x2, …, xk, then the multiple regression model 

is given by 

ikikiii xxxy   22110 , ),,2,1( ni   (4) 

where y is the response variable and εi ~ i.i.d. N(0, σ2). In multiple regression, errors are 

assumed to be independent of each other, but multiple regression on time series data usually 

results in correlated residuals. The autoregressive error correction is applied to the multiple 

regression model and accounted for the autocorrelated errors. The autoregressive error 

correction model is given by 

tkikiit xxxy   22110  (5) 

tmtmttt   .......2211  (6) 

where ty  is the response variable, 11   and  t ~ i.i.d. N(0, 2 ). 

Phase IV. Control Charting and Correlation Matrix 
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 Traditional control charts on the white noise residuals are constructed to investigate the 

out-of-control signals and to monitor future process. The correlation of the variables with 

the principal component is necessary for interpreting the importance of the kth variable to 

the ith principal component [4]. The correlation between component zi and variable xk is 

calculated as 

    
k

iik
e

k
xiz 


 /,           

(7) 

where ike is the coefficient, 
j is eigenvalue and k is standard deviation. The correlation of 

the variables with principal components (correlation matrix) are simplified to -1, +1, (-1) 

and (+1) according to the weight of each variable with respect to the maximum weight 

variable in each principal component. If the weight of variables in absolute value is greater 

than half the maximum weight variable, they are indicated as -1 and +1 depending on their 

signs. If the weight of variables in absolute value is in between a quarter and a half the 

maximum weight variable, they are indicated as (-1) and (+1). 

D.3. Example  

 In this section, the methodology is used to monitor the sugar beet pulp drying process 

discussed in Bilen et al. [1].  In the sugar beet pulp drying process, it is critical to monitor the 

moisture content of the dried pulp that is affected by 12 measurable input variables, pressed 

pulp moisture (ppm), forced draft amps (fa), induced draft fan speed (ifs),  exit temperature 

(et), induced draft amps (ia), induced draft fan differential pressure (ifd), aspiration air flow 

(aaf), drum pressure drop (dpd), force draft air flow (faf), throat temperature (tt), feed rate (fr), 

and dryer drum amps (dda). A detailed discussion of dried pulp quality monitoring at each 

phase of the methodology is given next.    

Phase I: Time series plots of all variables indicate a stationary process. The ACF and 

PACF plots show that all process variables are autocorrelated.  The multicolinearity among 

input variables is observed from the scatter plots. 
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Phase II: Due to different units of predictor variables, variables are standardized. SAS 

statistical analysis software is used to conduct PCA of the standardized data. The eigenvalues 

for each principal component and correlation between principal components and standardized 

variables (correlation matrix) are generated [1]. Based on the proposed selection rule, only first 

four principal components are selected for further analysis.  These principal components are 

used to explain the process without much loss of information of all 12 variables.  Obviously, 

this reduction in the dimension of input variables reduces the complexity of the problem.  

Phase III: Since the response variable (dried pulp moisture) is autocorrelated, it violates 

the independence assumption. So it is important to remove autocorrelation before the model is 

built by regressing four significant principal components. One key assumption of ordinary 

regression analysis is that the errors are independent of each other. However, with time series 

data, the ordinary regression residuals are usually correlated over time.  Hence, it is not 

desirable to use ordinary regression analysis for time series data. Therefore, we build a 

regression model with an autoregressive series for the random error, accounting for the 

autocorrelation of the errors.  

Phase IV: From the analysis results, the mean of the process is -.0016 and the standard 

deviation is 0.6933. The control limits for the Shewhart chart are computed as (-2.0815, 

2.0783). The Shewhart individual control chart of dried pulp residuals is shown in Figure 2. 

The correlation matrix gives some information regarding the weight of the variables in the 

principal component, but further interpretation is still needed for understanding the process 

nature and importance of each variable. A simplified version of the correlation matrix is created 

to interpret significant variables as shown in Table D.1. From principal component 1 (PC1), 

eight variables, ppm, fa, ifs, et, ia, ifd, aaf, and dpd, are considered to be important based on 

their weights with maximum weight variables. Three variables, faf, tt, and fr, are significant in 

principal component 2 (PC2), even though their importance is minor compared to principal 
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component 1. Principal component 3 (PC3) shows five variables, fa, ia, ifd, dpd , and dda, as 

important, and only dda is significant in principal component 4 (PC4). Since all four principal 

components are orthogonal to each other, the combination of these variables, aaf, ifs, et, ifd, 

ppm, dpd, fa, ia, faf, fr, tt,  and dda, according to their degree of significance, should be 

investigated further. 

Table D.1. Simplified correlation between principal components and standardized variables 

z PC1 PC2 PC3 PC4 

ppm - (+) (+)   

faf (-) -     

tt (+) +     

fr (+) + (+)   

fa + (-) + (-) 

ifs + (-)   (+) 

et - (+)     

ia -   + (+) 

ifd +   + (-) 

aaf -       

dda     + + 

dpd +   - (+) 

 

There are several out-of -control signals in the Shewhart control chart given in Figure D.2: 

1) Points 64 and 228 are beyond control limits. The out-of-control signal at point 64 might 

be due to process variables fa, fr, faf and tt. At point 228, et and ifd might be the cause 

of the out-of-control signal. 
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2) At points 181 and 182, nine points consecutively are on the same side of the center line. 

This out-of-control signal may be due to variables ifs, dpd, and fa. 

3) There is an out-of-control signal at point 67 as four out of five points are more than one 

standard deviation away from the center line (on one side of CL). The signal causes 

might be due to variables ia, faf, fr, and tt. 

4) At points104, 105, 106, 107, 178, and 202, 15 points in a row are within one standard 

deviation of center line (above and below CL), possibly due to variables aaf, ifs, et, ifd, 

dpd, fa, and ia. 
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Figure D.2. Shewhart control chart for dry pulp moisture residuals 

It is difficult to pinpoint a single source for each of the out-of-control signals since most 

variables are correlated to each other.  A physical interpretation of the results is informative; 

for example, the aspiration air flow (aaf), is the air that is affected by the pressure difference 

between temperature at the beginning and temperature at the end of the drum. If there is high 

pressure in the drum, then the pulp will have less moisture content, and vice versa. Exit 

temperature (et), is the temperature at the end point of the drum.  If the exit temperature is 
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higher, then the moisture in the pulp will be decreased and throat temp (tt), is the temperature 

at the beginning of the drum which behaves the same way as exit temperature. Furthermore, 

the feed rate (fr) and force draft air flow (faf) will affect the duration of the pulp inside the 

drum, if the feed rate and force draft air flow are increased, the pulp will have less time inside 

the drum which directly lead to high moisture content in the pulp.  

D.4. Conclusion 

This paper presented a framework for monitoring multivariate autocorrelated processes 

with guidelines in handling multicollinearity and autocorrelation effect. The PCA reduced the 

number of input variables and combated the multicollinearity effect. The autoregressive error 

correction model along with the multiple regression is applied to get the relationship between 

output variables and the principal components of original input variables and generate the 

independent residuals in monitoring the quality characteristic of interest. A real industrial 

example is considered to demonstrate the applicability of the framework. Use of different rules 

for principal component determination will lead to different choices of components. 

Additionally, interpretation of out-of-control signals is a challenge as each principal component 

is a linear combination of other principal components, and due to the fact that principal 

components have no direct physical meaning. Comprehensive interpretation of principal 

components requires prior knowledge of the process which is difficult to obtain in practice. 

Further study of simulated data is necessary to validate the method and the usage of the 

calculated control limits for monitoring future process data. Analysis of the effect of the 

number of components selected and comprehensive physical interpretation of principal 

components selected are interesting areas for adopting.  
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