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ABSTRACT

Wireless networks exhibit diversity, ranging fronostly disconnected delay tolerant
networks and partially connected mobile ad hoc néts; to mostly connected cellular
networks. Besides having useful applications, idicig, vehicular communications, emergency
response networks, battlefield networks, and wedinonitoring, wireless networks face
numerous challenges, such as unreliable connggtbhandwidth restrictions, interference,
frequent disruptions and delays, power outagessagesloss, and malicious attacks. Moreover,
when nodes are mobile, communication may be discufsequently for longer time periods.
Designing protocols to tolerate such disruptionshigllenging because of the extreme
uncertainty in mobile wireless environments. Mdsthe existing approaches either require
exact knowledge about future connectivity schedueperform message flooding in an attempt
to improve message delivery rate. However, mesiageing results in an increased overhead
and loss of messages in resource constrained envénats. Moreover, it is almost impossible to
acquire precise future contact schedules in réaktienarios.

The goal of this dissertation is to architect rdkprstocols that overcome disruptions and
enable applications in diverse wireless networks.pbpose a suite of protocols for wireless
environments where nodes transfer messages dyspatanistic contacts. To conserve
resources, the protocols control flooding by autnoosly adapting to the changing network
conditions, to find optimal temporal routes betwsenrce and destination nodes. Moreover, the
dissertation presents novel approaches that utilize-series forecasting on nodes’ contact
patterns. Such routing schemes learn from nodegaeal contacts and mobility patterns, and
forecasts the future contact opportunities amoegitides. By making precise predictions about

future contacts, messages are forwarded to onBethodes that increase the message delivery



likelihood. Simulation results proved that the pyegd routing framework can be efficiently
utilized in many real-life applications to dissemti® delay tolerant data, such as electronic
newspapers, weather forecasts, movie trailers,gagney information, and travel routes
information in various parts of a city. The disaéidn also proposes a novel application for
mobile social networks that generates real-timemanendation of venues for a group of mobile
users. The proposed framework utilizes Ant coldigp@thm, social filtering, and hub and

authority scores on the users’ contextual infororato produce optimal recommendations.
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1. INTRODUCTION

1.1. Oveview

The computer networks in today’s era exhibit sigaifit diversity in underlying
communication mechanisms. A top level categoriratibsuch mechanisms includes wired
networks (such as local area networks) and wirelessorks (such as cellular networks).
Though wired networks have achieved significantaadement in technology, numerous
challenges, such as long distance cabling costst@mance, and security issues limit the large-
scale deployment of wired networks. For many yearsless networks have seen significant
evolution in the communication technologies becaideeing economical, flexible, and
ubiquitous in nature. Unlike wired networks, widenetworks do not require cables and can be
easily deployed in an ad hoc manner enabling theseorks to have a number of applications.

A hierarchy and examples of wireless networks ésented in Fig.1.1.

[ Wireless Networks ]
]

| |

Infrastructured Infrastructureless
(Cellular) (Ad hoc)

|

Static Mobile
(Sensor Networks) (Smartphones /Vehicular)
] ]

Opportunistic Networks /
Delay Tolerant Networks (DTNSs)

Fig. 1.1. Top level hierarchy of wireless networks.

Recent years have seen a prolific increase in mktemabled mobile devices. According

to a market research report [1.1], in year 20089l total of 144 million mobile phones were



shipped with Wi-Fi capability and it is further iesated that such smart-phones may reach 66%
of the total shipments till 2015 [1.2]. Multiple monunication technologies in smart phones have
enabled the users to easily communicate with drowit the support of infrastructuf®.3]. In

some environments, it may not be possible to dejpliogistructure-based networks (such as
cellular or access points) because of the highogepént costs, security issues, and difficult
terrains. Therefore, mobile devices may be requezbmmunicate directly with each other
without using the infrastructure, and together famthe-fly networks, also known as Mobile

Ad hoc NETworks (MANETSs]1.4] and Opportunistic Mobile Network$.5].

1.2. Motivation

The standard TCP/IP Internet is based on the agsumtpat a continuous bidirectional
connection is available between source and destined support end-to-end communication
[1.6], [1.7]. The nodes in the Internet are comeeéaenost of the time, so the Internet protocols
can easily estimate the links’ costs between amyrtades, and packets are routed on least cost
path. In case, the least cost path is disruptedalternate path is selected for message routing.
However, designing protocols that can overcomeugigons in mobile environments is
challenging because of the following reasqayuncertain network conditions afil) diversity
in networks [1.3]]1.8].

Uncertainty in network conditions occurs mainly doenobility of nodes, fluctuating
channel conditions, short battery life, and bandwrestrictions that may result in frequent
topology changes/disconnections, unreliable comrigtand transmission delays. Therefore,
protocols for mobile environments need to makeingutiecisions based on partial knowledge
about the network.

Mobile users require network access in diverserenments that range from fully

disconnected to partially connected, and fully carted networks. Interconnecting these diverse
2



networks poses several challenges due to heternbgeh@odes and communication
technologies. Designers need to first uncover badlenges specific to the network, and then
design protocols that can address the challenges.

Due to the above mentioned issues, the traditiamalng protocols (such as TCP/IP)
designed for Internet are inapplicable for mobigionments, as end-to-end communication
paths cannot be maintained among nodes. Althowggle #xist a few routing protocols, such as
AODV and DSDV[1.6] that create routing paths in dynamic environmesush protocols fail to
work when the network is sparse and have frequenbdnections due to nodes’ mobility. To
improve the routing performance, several proposaish a$1.9]-[1.17] have been presented
that mainly addressed the routing/forwarding meddmas for frequently disrupting mobile
wireless networks. However, there is no consensushoch approach best suits a given scenario
or application1.3]. A few routing schemes perform message floodingpénnetwork [1.11],
[1.14], [1.15], [1.17]. Flooding increases the naggsdelivery probability, but at the expense of
network resources. On the contrary, the routing@sws that minimize the flooding, such as
[1.10], [1.12], [1.13], [1.16], consume less resmms, but at the expense of longer delays and
decrease in message delivery probability.

In the light of above discussion, there is stiirassing need to develop resource
conserving routing solutions for the mobile envirants that must exhibit better message
delivery rates with reduced network overhead. Tmsertation addresses the critical area of
resource efficiency in mobile routing, and explaits nodes’ mobility patterns to control
message replicas within the network.

1.3. Contributions
The objective of our research is to architect rolansl resource efficient protocols that

can overcome disruptions, and enable applicatiosverse communication networks.
3



Specifically, we address the issues and challepggaining to seamless message delivery in
mobile networks that are prone to intermittent aantivity. We design a suite of protocols that
allow the mobile users to opportunistically internect with or without the support of
infrastructure to enable various real-life appli@as, such as dissemination of electronic
newspapers, weather forecasts, movie trailers, gagney information, and travel routes
information in various parts of a city with the peaf mobile nodes. Mobility of nodes results in
time evolving topology and frequent variation irtwerk conditions. Therefore, the proposed
routing protocols are designed to easily adapteécchanging network conditions, making the
protocols resilient to network uncertainties.

Several of the previous studies reveal that hurf@lmsv repetitive schedule of meetings
at similar places and times, and that the humanilityols predictable and follows a power-law
distribution[1.18]. The aforementioned fact is further endorsed by Sxrad. that the human
mobility is 93% predictable [1.19]. To obtain beitebf repetitive mobility, we utilize time-
series forecasting on nodes’ contact pattgrrX0]. Therefore, our proposed protocols learn from
the nodes’ temporal contacts and mobility patteans, forecast the future contact opportunities
among the nodes. In this way, the protocols alstirobmessage flooding by forwarding the
messages to only those nodes that increase thegeedslivery likelihood.

1.4. Network Types Considered

The types of networks considered in this dissenadire:(a) mostly disconnectedb)
intermittently connected, ar{d) mostly connectefll.3], [1.8]. The networks are categorized on
the basis of time durations of nodes’ connectiorsdisconnection in a particular network.
Moreover, we define a network infrastructure abea cellular tower and/or access point (AP).

Most disconnected networkse also known as Delay Tolerant Networks (DTNS)],

[1.21]. In such networks, infrastructure is difficultdeploy or is sparsely available, and nodes
4



have infrequent connectivity. Nodes make contacbfef durations, for an interval of a few
seconds to a few minutes, and stay disconnectddriger time durations for about hours or
even days. The DTNs were initially designed to émaiier-planetary communication.
Nowadays, such networks are also deployed in nwmsdssrestrial applications, such as wild
life tracking, military networks, disaster relieftworks, and vehicular ad hoc networks. In this
dissertation, at first we present an empirical bemarking of ten popular routing protocols for
DTNSs. As a next step, we propose three new prasdooIDTNs based on the enhancements in
the existing routing schemes. Our simulation ressfiowed improved performance of the
proposed techniques.

Intermittently connected networkave smaller durations of disconnections as coetpar
to DTNs[1.3]. For instance, a mobile node making a connectiitim an AP installed at a bus
station, the node will be disconnected when it nsowat of range of the AP, and may be
connected again after a while with an AP installed coffee shop. Though the disconnection
durations are shorter than DTNSs, the network Ibrstt well connected. As a contribution in this
dissertation, we proposed three routing schemestemittently connected networks. We
utilize time-series forecasting on nodes’ contattgyn to predict future contacts of nodes. Our
results with real connection tradds22] as well as synthetic mobility indicated the better
performance of the proposed schemes.

Mostly connected networkse assumed to have contemporaneous end-to-end
communication paths among source and destinatidasadAn example of such networks is the
cellular networks and WiMAX, where mobile usersystannected to at least one cellular tower
in range. One of the popular application areasilby tonnected networks is mobile social
networks[1.23]. The mobile social networks combine concepts ftemseparate disciplines:

social network and mobile networks. The social mekwdefines the structure of relationships
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and ties among mobile users. A novel applicati@a af mobile social networks is the

recommender systenfSuch systems track the user activities, mohil#tterns, and utilize the

user’s contextual information to provide recommeitaig on a variety of items. In this
dissertation, we build a novel cloud-based framétomperform real-time recommendations of
venues to the mobile subscribers. The proposedefnamk recommends new venues to a user
based on the contextual information and similagitéinterest with the friends in the user’s
social network.
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1.6. Dissertation Outline
The dissertation is organized as follows. In Chapteve present the background and
related literature. Chapter 3 presents an empibeathmarking of ten DTN routing protocols.
Moreover, we propose three new routing schemeBTdds in Chapter 3. A routing scheme
based on time-series forecasting is proposed termittently connected opportunistic mobile
networks in Chapter 4. In Chapter 5, we proposeegkpoint-based message routing approach
for DTNs. Chapter 6 presents a data replicatioeisehfor mobile networks. A routing protocol
based on time-series forecasting for DTNs is predas Chapter 7. In Chapter 8, we present a
venue recommendation system for mobile social nedsy@nd conclusions with future research
directions are presented in Chapter 9.
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2. BACKGROUND AND RELATED WORK

This chapter presents the background as well agénature survey on recent works
related to the topics investigated throughout digsertation. We perform categorization of the
existing message dissemination schemes proposedrious types of mobile networks.

2.1. Background

Wireless radio range variations, limited energyoueses, sparsity of mobile nodes,
continuous mobility, and noise, to name a few, theereasons due to which mobile networks
suffer from frequent disconnections. This phenomersundesirable when mobile hosts are
accessing data from each other. As it is not ptessio control randomly occurring network
disconnections, an alternative solution to thipem is to replicate multiple copies of data onto
various mobile hosts so that when disconnectiossigtions occur, mobile hosts can still access
data [2.1], [2.2]. Replication process distribugéeklitional copies of primary data items into the
network in order to increase accessibility and €ase communication costs. In the past few
years, data replication has been studied exteysif@ both the MANETs and DTNs
environments [2.1], [2.3], [2.4]2.10]. Fig. 2.1(a) and Fig. 2.1(b) illustrate theplication

scenario in MANETS.
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Fig. 2.1. Replication example in MANETSs: (a) netwalivision and data access, and
effective data replication for continued data asces
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Fig. 2.2. Replication example in DTNs. Data is mgited from node to node duri
opportunistic contacts at time slots T1, T2, andwighout any global knowledge of netvkor
topolog).

If the central link between nodé€sandE fails, then the set of mobile hodsF, andD
will not be able to access the data itetn Similarly, the data iteri, will be inaccessible by the
nodesA, B, andC. To cope with the problem of data inaccessibilite do network division, one
possible solution is to create replicas of origim@&ssageM; andM, and place these replicas at
the opposite sides of the ad hoc network. In thay,vevery mobile host can access both data
items even after the network division, as indicate#ig. 2.1(b)Due to the existence of end-to-
end communication paths, the aforementioned meshmamwif proactively placing replicas on
nodes before the link failures is possible onlytie case of MANETs. However, replica
placement exhibits more complexity when the netwask sparse with no end-to-end
communication paths among nodes, as in the caS&ds.

Fig. 2.2 illustrates an example scenario of repatiacation in DTNs. For the sake of
simplicity, we consider allocation of a single magsM; from nodeA to nodeD. At a reference
time T;, nodeA is not in the communication range of nddeOn making contact with nodés

andC, suppose the nodg is not sure which of the two nodBsandC will make contact with

nodeD in future. Therefore, nod& places a replica df1; on both the mobile nodds andC.
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During timeT,, only the nodé€C makes contact with another node, and replicstesen nodeF.
Finally, nodeF transfers replica on nod2on making contact at time sl®$.

It is evident from the given example that replidcacement in DTNs is dependent on the
occurrence of opportunistic contacts among mololges. Therefore, the main difference in data
replication between MANETs and DTNs is the abseofcany centralized mechanism and/or
global knowledge of network for DTNs. Moreover, amy of MANET/DTN network, the
decision of where to place replica must trade b tost of accessing data that is reduced by
additional copies with the cost of storing and updpthe replicas [2.1], [2.4]. These costs have
severe implications in ad hoc network environméisause mobile hosts have limited resources
(energy, storage, and processing power). Thereédfiejent and effective replication schemes
strongly depend on how many replicas to be placdda system, and to what nodes [2.1].

2.2. Message Dissemination Schemesfor MANETS

Khanet al.in their celebrated work have rigorously addressedsage dissemination
problem in distributed systems [2:[3.3], [2.11], [2.12]. Specifically, in [2.1], [22] Khanet al
pioneered in applying game theory to ad hoc netwepkica allocation problem (ADRP). In
[2.1], the authors proposed a novel scheme th&sdeestrategically balance energy, bandwidth,
and storage space through a cooperative game-thpprgach for replication in a mobile
environment. In the presented work [2.1], the argh@) derived a mathematical problem
formulation for ADRP(b) proposed an optimization technique that alloceg¢pBcas so as to
minimize the network traffic under storage consitswith “read from the nearest” and “push
based update through the primary mobile servertiad, andc) used a strict consistency model
as opposed to an opportunistic consistency modhel.alithors addressed selfish behavior of
mobile servers in the proposed solution. In adetevorks, resources may belong to different

self-interested servers. These servers may mangpthia resource (replica) allocation
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mechanism for their own benefit by misrepresentiregr preferences, which may result in
severe performance degradation. The proposed tpalhimvolved players (mobile hosts) that
compete through bids in a non-cooperative envirarirttereplicate data objects that are
beneficial to themselves and the system as a whagealways possible that in order to satisfy
local queries, the players replicate data objéwsdre not beneficial to the system as a whole in
terms of saving communication cost (although it rnayproductive from the players’ point of
view). To counter such negative notions, a refgrindy was introduced (termed as the
mechanism). The aim of the mechanism was to dihectompetition in such a fashion that a
global optimal was achieved even though the agaetsompeting against one another.
Moreover, the basic objective of the proposed weak to make the system robust against
incorrect dissemination of information by the plesyel'o cater for the possibility of collusive
behavior of the players, the scheme used/ibkreypayment protocol that leaves the players
with no option other than to bid in such a fashioat is beneficial to the system as a whole. The
goal of a player is to maximize its profit, whichpayment minus cost. The goal of the
mechanism is to minimize the total data item transbst in the network due to the read and
update accesses. In Mosaic-Net [2.1], the authsed gide payments to encourage players to tell
the truth. The authors [2.1] proved that the ADR&bfem in general is NP-complete and also
identified some useful properties of the proposgteme and the necessary conditions of
optimality.

Hirschet al.[2.4] proposed a game-theory based model for AD®Rre all nodes were
assumed to be cooperative. The authors applied fd@aVolunteer’s dilemmg2.13] in area of
game theory. Under the Volunteer’s dilemma apprpactode volunteers to store replicas that
will incur some cost to the node in terms of itsa@rces, but in return will benefit the resource

conservation and lifespan of the whole network. ptaposed approach performed volunteer
15



nodes’ selection for replica assignment in suchaamar that a global utility function defining
the network cost is optimized. In the proposed idligm, named as Cooperative Altruistic Data
Replication (CADR), the net global benefit (NGB)alculated for each node on the return path
of requested replica, where NGB depends on twonpaters:(a) global savings (GS) an(®)
global cost (GC). The GS is the global network sgsiwhen the node makes a local replica of
data item to minimize traffic through read reques$tse GC is the cost incurred when data item
is updated, or displaced from primary node to otfuete when primary node is low on resources.
The CADR algorithm proceeds as illustrated in thiofving. On return path of a requested
replicak, each nodé calculates NGB a¥GBY = GSF — GCF, and stored/GBY into a matrix
appended in the header of response replica. Wipdicaes received by the requesting nade
the node compute¥GB}*. Then, ifNGB) > NGB¥, vi, then the node stores a copy of data
item in its buffer. Otherwise, replica is placedaonode on the request/response path, such that
NGBf > NGB}, Vj.

It is important to observe from the above descriteetiniques addressing ADRP that
most of the approaches utilize a common assumpfiawailability of global network
knowledge. Such global network knowledge constitite following information{a) number of
replicas of original data item@)) the identifiers of nodes having original and cspé data
items,(c) frequency of access of each replica, and (d) #rqu of contacts among various
nodes. However, it is formally proved by Khatnal.[2.1] that despite the availability of global
information, the varying dynamics of network topgyan MANETs make replica allocation
problem NP hard. The things get further complicateDTNs, due to lack of global network

state information, as well as scarcity of end-td-eammunication paths. In the following
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section we address the replica allocation challemg®TNs and propose our solution to the
problem.
2.3.  Message Dissemination Schemesfor DTNs

DTNs are resource-constrained networks in termsrasfsfer bandwidth, energy, and
storage. Recently, several works, such as [2.9],[R2.9], [2.14], [2.15] have been presented on
the routing/forwarding mechanisms for the OMNSs. ldwer, there is no consensus on which
approach best suits a given scenario or applicafiamong all the routing strategies, the single-
copy forwarding schemes are considered to be thet m@source conservative, as such
approaches are designed to forward only a singlg obthe message within the network [2.15].
However, such approaches suffer from delay andcestimessage delivery, as single message
copy may have to wait longer. In some cases, thesage may never reach the destination. The
flooding-based approaches spread multiple repbé@message within the network [2.5], [2.8],
[2.10]. A higher number of message replicas impsoWe message delivery probability, but at
an increased expense of network resources. Therauih [2.16] set a limit on the number of
replicas per message that lowered the overheadntratased the message delay. Lindgreal.
[2.9] proposed a probabilistic message replicaipproach, named as tR&RoPHET where a
node replicates a message to a neighbouring nicaied ionly if, the neighbouring node has more
frequently encountered with the destination. Howetlee PROPHETprotocol is not mobility-
cognizant and sets no limit on the number of messaglicas. To address network overhead, the
techniques proposed in [2.8] and [2.14] restrictessage replica from entering a node’s buffer
for a certain period of time. However, such a restm results in increased delay as messages
are restrained from quickly spreading within theargek.

For many years human mobility has been an actiea af research in DTNSs. It has been

shown through various experiments that human ptipafollow repeated mobility patterns.
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Different methods have been applied to collectinman mobility traces. For example Rlete
al. [2.17] studied the urban human mobility throughSXracesCacciapuotet al [2.18]used
the signaling information in cell phones througb &irSage (www.airsage.com) technology to
gather the mobility traces. All the previous stgdieveal that humans tend to follow a repetitive
schedule of meetings at same places and timeghartdiman mobility is predictable following
a power law distribution. The aforementioned fadurrther endorsed Ifyonget al [2.19]that
human mobility is 93% predictable. Therefore, GBdul approach presented in Chapter 5 is
inspired by the same fact that humans tend tovioiohedule of meetings with higher
interaction probabilities at commonly visited plaseich as bus stops/stations and shopping
malls where the CPs may be deployed.
24. Mobile Social Networks

In this section, we discuss some of the recentppsed (2009-2013) techniques for
venue recommendation systems in mobile social mé&svd he existing approaches can be
categorized as [2.20(a) trajectory basedp) explicit rating based, an@) check-in based
approaches. Trajectory based approaches utilivenmaftion about a user’s visit sequence to
various locations, the paths selected, and theidaraf stays. Doytshest al.[2.21] proposed a
trajectory-based graphical model that keeps tréd¢tequently traveled routes by users and
recommend best route to a new user. The auth¢2s2@] mine GPS trajectories data to extract
most popular locations based on users’ travel sempse Although the aforementioned
approaches suggests locations based on usersigjastories, they are unable to distinguish the
places in terms of their categories, which we penéd in our propose@mniSuggesramework
in Chapter 8. Moreover, such approaches suffer ftata sparseness problems, as usually a

person does not frequently visit on multiple places
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Many online social services, such as Yelp (yelp.cand Yellow pages
(yellowpages.com) allow users to rate the visitezhtions. Rating-based recommendation
systems utilize the existing ratings’ data to reocmnd people with most popular venues or
travel routes in a cityThe authors in [2.23] proposed models based oalwaiative filtering that
take into account users’ existing ratings to getegparsonalized venue recommendations. The
aforementioned approaches may closely capture’yseferences, but are not scalable enough
to simultaneously process huge volumes of real-tiata. Moreover, they also suffer from data
sparseness issues due to limited number of emtitbs the user-rating matrix.

Most of the above mentioned approaches have deligh®n (memory based) CF
models, which enables these approaches to deps#ras future preferences based on his/her
past entries. However, these approaches suffer $oatability issues due to large number of
similarity computations on user-venue matrix duramiine recommendation process. Moreover,
such approaches also suffer from data sparsendsokhstart problems, as there are very few
users who have visited large number of venueshEurtore, these approaches do not provide a
solution to the group recommendation problem a$ agetlo not take into account the effect of
real-word time-varying conditions on recommendagiofo address these limitations, our
proposed cloud based recommendation framew@nkniSuggesipresents a solution for
scalability, data sparseness, and group recommiendsdtallenges. The proposed approach also
takes into account the real-world conditions wiygmerating recommendations that results in a
set of venues that satisfies all of the group membe
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3. BENCHMARKING AND MODELING OF ROUTING PROTOCOLSFOR

DELAY TOLERANT NETWORKS

This paper is submitted to the journaliture Generation Computer Syste(R&CS).
The authors of this paper are Osman Khalid, Muhath&waleh, Rao Naveed Bin Rais, Khizar
Hayat, Sajjad A. Madani, Joanna Kolodziej, Fan Zh&ajiv Ranjan, Nasir Ghani, Dan Chen,
Lizhe Wang, Samee U. Khan, and Albert Y. Zomaya.
3.1. Overview

Delay Tolerant Networks (DTNSs) are characterizedhgyr intermittent connectivity,
frequent partitioning, long message delays, ankldend-to-end communication paths. In the
year 2002, the Internet Research Task Force (IRI6E)mented a DTN architecture
specification for interplanetary communication [|3[B.2]. Later on, in addition to the space
communication, the focus of DTN research also stifowards establishing communications in
the challenging terrestrial network environmentghsas sparsely distributed mobile ad-hoc

networks and wireless sensor networks. Fig. 3.4gnts a few application areas of DTNs.
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Fig. 3.1. Examples of DTNs where devices have mit#ent connectivity.
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3.1.1. Maotivation

Wireless radio range variations, limited energyteses, sparsity of mobile nodes, and
noise, to name a few, are the reasons due to wghici networks suffer from frequent disruption
and delay in the process of message transfer.ratigional mobile ad hoc network (MANET)
routing protocols, such as OLSR [3.24], AODV [3.25d DSR [3.26] are not suitable for
network environments with frequent disruptionssash protocols require the existence of end-
to-end communication paths among sources and déstimodes. The inherent uncertainty
about network conditions makes message routingliN®a daunting task. In the absence of
end-to-end routing paths, nodes have to rely omdppistic contacts to exchange messages.
There is no guarantee that a message eventuatliygedhe destination, as the message may be
dropped due to network congestion, or life timeigxyielding a best effort delivery service.
Therefore, it is quite difficult for a DTN routingrotocol to achieve a 100% message delivery.

The typical performance metrics for DTN routing:ge) message delivery ratif))
message latency, aid) message overhead. Delivery ratio is the percerdbgessages
delivered successfully. A message’s latency iddha time spent between message creation and
delivery to the destination. Overhead indicateslvaber of extra transmissions for each
delivered message. Primary objective of a DTN prokés to improve message delivery ratio
with minimum latency and overhead, in a networkhimited resources. Therefore, DTN
protocols adopt various strategies and heuristigsiprove the routing performance, and are
generally categorized as [3.8%) deterministic(b) enforced, andc) opportunistic. Among the
aforementioned categories, opportunistic routingpésmost challenging, as it is applied to
networks where nodes’ mobility information is noiokvn beforehand, and nodes have to rely on
random contacts for message transfer. Moreoveratsfer data to potential intermediate relay

nodes, opportunistic routing utilizes various hsties to find the suitability and fitness of a
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relay, such a&) relay affiliation with community(b) contact duration(c) available bandwidth,
(d) available storage at relay nodés,message expiration time, a(fjl message priority [3.3],
[3.4]. An ever increasing number of protocols agdieg “opportunistic’ DTN scenarios have
been proposed in the past. However, still it ismath clear how existing solutions can be
applied to a variety of DTN applications, givenithrequirements and underlying network
characteristics. Moreover, to this date, therenispecific study that performs large scale
comparison of different routing schemes and giveslia argument against or in favor of a
specific protocol in a particular scenario and utyileg network characteristics.
3.1.2. Contributions

In recent years, numerous comparative studies bese conducted for DTN protocols,
under various parameters, simulation platforms,raotility scenarios [3.3], [3.5]-[3.7]. All
such studies to some extent presented useful casoparfor DTN protocols. However, most of
the evaluations were limited in terms ¢d) number of protocols comparg) simulation
parameters, an@) DTN scenarios. We address this very problem i ¢hapter by presenting a
thorough empirical comparison of ten carefully adro$opportunistic” routing protocols. These
ten protocols were selected because they seentednmst appropriate in addressing the routing
challenges for diverse DTN environments [3.8], [3Moreover, the protocols cover a broad
range of routing scenarios, such as, single-copydaling, replication/flooding, probabilistic
routing, greedy, and nature inspired content digsatmon techniques. The protocols are
evaluated with Opportunistic Network Environmemhsglator (ONE) [3.10] by using both real-
world traces [3.11] and synthetic mobility scenariBloreover, evaluations are done for
performance metrics, such @ delivery ratio,(b) latency, andc) overhead, so as to fully

understand the strengths and weaknesses of thassgrtechniques. To the best of our
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knowledge, this is the first study that presentexensive benchmarking of DTN protocols

under diverse network conditions and parameters.

In addition to the benchmarking, we go one stefh&rby proposing three DTN routing
protocols, namely, Enhanced Epidemic Scheme (E&&)ptive Multi-Copy Spray (AMS), and
Adaptive Source Token Multi-Copy Spray (ASTMS),improving the models of the existing
routing schemes. The presented techniques effigiatilize the available network information
to control message replication frequency, by auttmgsly adapting to the varying network
conditions, and find optimal spatiotemporal roftesnessages. The controlled distribution of
message copies helps the efficient utilizationedfvork resources, resulting in the improved
delivery ratio and overhead performance. In sumpauy contributions in this chapter are as
follows:

(1) We present the basic building blocks of DTN routamgl discuss the various critical
components that must be considered in designiraq @ffficient DTN protocol.

(2)  We perform the empirical benchmarking of ten cdhgfselected DTN routing schemes
to evaluate their performance under the similarffgien and scenarios. This provides a
good and useful comparative study of routing prol terms of their strengths and
weaknesses.

(3)  The routing protocols are evaluated by varyingedéht parameters, such &: number
of nodes(b) message creation rate) buffer size(d) message size, aifg) bandwidth.
The evaluation results are generated by using thetlsynthetic mobility models and the
real mobility traces.

(4)  We propose three new DTN routing protocols by entmgnthe models of the existing
schemes. By introducing adaptability features engloposed schemes, the protocols are

able to control message replication frequency ligreamously adapting to the time
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varying network conditions. Our results indicatgnsiicant improvement in performance

of the proposed schemes in terms of delivery i@tid overhead.

The rest of the chapter is organized as followstiGe 3.2 demonstrates DTN routing
problem and discusses the important factors that breicarefully considered in modeling of a
DTN protocol. In Section 3.3, we present a compaganalysis of the ten selected DTN routing
protocols with an emphasis on the strengths andnesses of each the protocol. The simulation
and benchmarking of the protocols under real-wtvddes and synthetic mobility is performed
in Section 3.4. In Section 3.5, we present the rfsoolethe three new routing schemes and
analyze their performance in comparison with exgsgchemes.

3.2. DTN Routing Insights

The routing problem in DTNs can be expressed\Which messages to transfer during
an opportunistic contact, such that, they contréotat overall improvement of network
performance parameters, such as communication eaekhdelivery ratio, and delay?t is
quite challenging to find a precise answer to tjusstion as the routing performance is affected
by many factors, such a&) message siz¢h) message rat€g) message life-timgd) buffer
size,(e) bandwidth(f) transmission rangég) interference(h) node speedj) node energy(j)
mobility pattern(k) node’s sleep intervals, afid network size. The numerous combinations
and values of the aforementioned factors constiheealifferent DTN scenarios. The
applicability of a DTN protocol for various scer@idepends on the number of aforementioned
factors considered while designing a protocol hia following subsections, we define the basic
building blocks of DTN routing and discuss variautical factors that affect the performance of

a DTN protocol.

27



3.2.1. Forwarding versus Replication

Message transfer in DTN routing is achieved throeigierforwarding or replication
[3.12]. When a messagefwardedto a neighbor, the sending node deletes the lagai of
message from the buffer. This way, only a singleyoaf message stays in the network [3.12].
Alternatively, when the messageré&plicated,both the sending and receiving nodes carry a
separate copy of the same message. Forwarding yreldmum overhead and consumes less
buffer space as there are lesser number of messathesnetwork. However, the decrease in
message replicas also decreases the probabilita th@ssage will be delivered to the
destination. Therefore, forwarding is mostly apgtie fordeterministicDTN environments,
where nodes’ mobility patterns are known beforehamchan be precisely predicted. Message
replication frequency may l®ntrolled[3.13] oruncontrolled[3.14]. The controlled replication
scheme replicates a message only when a certafitioonis satisfied. For example, the
neighbor node is more likely to encounter with dlestination node as compared to the node
carrying the message. The uncontrolled replicasanflooding based technique in which
maximum copies of the same message are floatechditicmally in the network. Increase in
message copies also increases probability of aagesgaching the destination, but at the cost of
higher overhead and buffer consumption. Therefameased replication rate may also increase
the message drop due to buffer overflows, which reduce the overall delivery ratio.
3.2.2. Metadata Exchange

The routing protocols differ in the way they utdithe amount of information or
metadatao perform message transfer decisions [3.3]. Inyy@otocols, nodes maintain a
record of their contacts with other nodes in thenfof a listL{i, t. , t; , b} having parameters:
(a) node identification, (b) contact timet., contact duratiom,;, and(c) bytes transferred,

respectively [3.6], [3.15]. Based on the metadatapde computes optimal routes for each
28



message. Thencontrolled replication-basemuting schemes do not utilize metadata [3.12],
[3.14] as compared to tlwentrolled replication-basedbuting schemes [3.6], [3.15], which
utilize metadata to improve performance at the obstcreased complexity and computational
requirements. When two nodes make a contact, tiessshare and update their respective
metadata. This enables the information symmetigutinout the network.
3.2.3. Buffer Management

Routing schemes also differ in the way they emploffer management policies. The
buffer management typically includgs) message queue sorting )l message deletion.
Message queue sorting is performed by assignimgifies to the messages, and a message of
least priority may be deleted. One factor thatiefices the buffer management is available
contact time windoywvhich is the time duration between initializat@md termination of
connection between any two nodes. Suppose, aineds locatiorn.; and has a transmission
ranger;. The nodé needs to transfer messages of 3itg/tes to the neighbor nogevhich is at
the location id,; and have the transmission rarijeLet the bandwidth available for this
communication bé& bytes/s Then, the total time required for the transfeKdifytes messages
equalsT” = X/Y. When the two nodes communicate, they are in etwr’s effective range,
which is mathematically represented as:

IL; — Lj| <min(R;, R;). (3.1)
Let v; andv, be velocities of both nodes, respectively. Thet@cirduration window

between the two nodes can be calculated as follows:

2 xmin(R;, R;) X cos 0
Ty = L , (3.2)
|171 - 17]'
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whereé is the angle between the relative veIo¢Tf,y— ﬂ and the straight line (distance vector)
between the two nodes. batandn be the number of messages that both the nioaledj need
to transfer, respectively, then there must be cefiit time available for transfers, specified by:

m n

ZTi+ZTj<TCW—ﬁ. (3.3)

i=1 j=1

In above equation, the paramegeis scaling factor that depends on time spent in
metadata exchange (control signaling) and linkydelAn important question arises here, and
can be stated asiGiven a limited contact duration, which messagesikhbe given priority
over others?In [3.7] the messages are prioritized on the daséitheir size, such that the
messages that can fit in the real-time contact aundre transferred first, whereas in [3.15]
messages with low hop counts are given prioritygigicker dissemination in the network.
Lindgrenet al.[3.13] gives priority to those messages whosearm#sins are most encountered
by the neighboring relay node, whereas author8.8] pssign priorities to messages whose
utility contributes to improvement of routing performaroghe next section, we briefly define
the ten selected routing protocols and discussigrés and demerits of each.
3.3. DTN Routing Protocols
For evaluation, we selected the following ten nogprotocols(a) Direct Transmission

[3.16], (b) First Contact[3.12], (c) Epidemic[3.14], (d) Wave[3.17], (e) Life [3.17], (f) Spray
and Wait[3.18], (g) Spray and Focuf3.19], (h) PRoPHET[3.13], (i) MaxProp[3.15], and(j)
Rapid[3.6]. The aforementioned protocols cover a bn@adje of scenarios and DTN
applications. For instance, tMaxProp[3.15] andRapid[3.6] protocols were designed
specifically to target a bus-based DTN scenarigremodes as buses follow mobility at fixed
schedules. The protocols, suchEgsdemic[3.14], Wave[3.17], Life [3.17], Spray and Wait

[3.18], andSpray and Focuf3.19] in general address the scenarios whereshwaestly follow
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random mobility patterns. Alternatively, tBgrect Transmissiofi3.16], First Contact[3.12],
andPROPHET][3.13] protocols are designed to target the séesarhere the meeting schedules
of nodes can be predicted. Because of diverse girepethe selected set of protocols provide a
thorough investigation of the various insights aldotliN routing schemes. We begin with the
simplest routing protocol of the abovementionet] &ad gradually proceed towards more
complex models. The discussion gives us an insighthow an increase in complexity of
protocols improves the performance for one metrtbea cost of another.
3.3.1. Direct Transmission

Spyropoulot al.[3.16] presented the simplest of DTN routing pootls. As the name
suggests, the source node directly transmits tresage to the destination node without any
intermediate relaying. Therefore, at any time, ankingle copy of message is present in the
network. The benefit dDirect Transmissiorscheme is that it causes minimum overhead due to
reduction in messages’ copies. However, the saurdes may have to wait for longer periods or
indefinitely to make direct contacts with the megsa destinations. Therefor@ijrect
Transmissiommay experience maximum latency as well as the mimirmessage delivery ratio.
TheDirect Transmissiorscheme may be useful for DTN scenarios where noagsility
pattern can be precisely predicted. One such aiit can be bus networks where buses

followed fixed schedules for various routes.

3.3.2. First Contact

TheFirst Contactscheme [3.12] allows a node to forward a messagartls a randomly
selected neighbor. After the message is succeg$tulvarded, the sender node deletes local
copy of message. The message may be relayed thsewghal hops before reaching the

destination. This makes tl@rst Contacta single-copy multi-hop forwarding scheme. A
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message maintains a list of hops traversed to awsitihg the same hops again. THiest
Contactprotocol does not exhibit optimal performanceamts of message delivery ratio. This
is because the randomly selected neighbor mayppstaa to be a best candidate to forward
message towards destination. Therefore, deliveiy ofFirst Contactdoes not significantly
improve, when compared @irect TransmissionMoreover, theFirst Contactscheme
experiences higher overhead due to extra transmisgier message.
3.3.3. Epidemic

The Epidemicprotocol [3.14] is amncontrolled replication-baseauting scheme that
functions analogous to the way a disease spreaded@ having a message copy is said to be
infected. When this node makes contact with anatbde, the infection is transferred to the
other node such that at the end of communicatidin bodes are having same the infection
(similar copies of a message). TBgidemicscheme spreads greater number of message copies
in the network to improve message delivery proligbiHowever, increasing message copies
may cause greater overhead, higher utilizatiorudfiebs, and increased network congestion.
Therefore, th&pidemicprotocolis ideal for scenarios that have higher bandwidth greater
buffer storage available. The scenarios where nbdes limited buffer capacity, tHgpidemic
protocol may result in packet drop due to buffeerdows.
3.34. Life

TheLife protocol [3.17] is based on the theoryGinway’s Game of Lifg8.20]. This
theory simulates life of eell depending on the number of live cells in the negghbod. The
cell represents a node in the network having the megssgdica. Th&ame of Lifeheory is
applied in theLife protocol to control the message flooding. A nodgy/meplicate, delete, or
keep a message copy depending on the miniamoimaximum number of neighbors that have

the copy of same message. As the protocol contressage replication by frequently deleting
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the extra message replicas in the neighborhoodyufier utilization is reduced. This strategy
also improves the message delivery ratio as fevessages are dropped due to buffer overflows.
TheLife protocol is designed keeping in view the mobipattern followed by people on sea
beaches.
3.35. Wave

The Waveprotocol [3.17] utilizegracking liststo track messages that were recently
relayed by a node. The idea is to prevent a nama feceiving the same message replica again
in short time duration. When a node receives a agesshe message entry (such as, message
identifier and receiving time) is maintained in thecking list. During message exchange, the
sender node transfers the message to the neighliatpes not remove the message entry from
thetracking list. This prevents the node from receiving the same agessgeplica within a short
time span. Such reductions in message replicationsnize the overall overhead. However,
decrease in the message replicas also decreasess$bage delivery probability of th'éave
protocol, as compared to thée protocol.
3.3.6. Spray and Wait

The Spray and Waiprotocol(Binary version)3.18] sets a limit on a message’s
maximum number of replicas in the network to redilmaeding. Every new message is assigned
anL number ofreplication tokenswhich represents the maximum number of replicaessage
can have at any time in the network. During 3pgayphase, a node replicates the message by
setting[L/2] tokens on the message copy the has in bufferassigngL /2| to the message
copy sent to the neighbor. A node having a mesaéheaoken value equal to one enters the
Wait phasdor only that particular message. In &t phase, the node no longer relays the
message, and waits to make a contact only witlhnibesage’s destination. TBpray and Wait

protocol experiences minimum overhead due to deergaper message copiésalso exhibits
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minimum latency and indicates higher message dglnatio. This is because, the controlled
replication reduces message drop that resultsickgudissemination of messages. Moreover,
the reduction in message copies prevents messapge due to shortage of buffer space.
3.3.7. Spray and Focus

The Spray and Focuprotocol [3.19] utilizes the concept afility function The utility
function quantifies the quality of a node to becarrelay for a message. A node with greater
and recent interactions with a message’s destim&ioonsidered to have higheility value for
that particular message, and will be more suitablelidate to carry the message. Wit
phasein theSpray and Waiprotocol is replaced byocusphase in th&pray and Focus
protocol. In thé=ocus phasea node forwards the message to the neighbangibaly if the
neighbor has highettility value for that message. As compared toSpey and Waitthe Spray
and Focugprotocol experiences lesser latency as the messkageot have to wait in the buffers
for indefinite periods to be transferred to thetoh@dions. However, the increase in message
transmissions also increases overhead.
3.3.8. PROPHET

TheP PRoPHETprotocol [3.13] calculates thaelivery predictabilityfor every node in the
system. Thelelivery predictabilityvalue is quantified by the number of recent intgeens of a
node with other nodes in the network. Nodes perfitrertransitive updates delivery
predictabilitiesby sharing routing tables during contacts. A najdicates a message to the
neighbor, if and only if theelivery predictabilityof the neighbor is greater than the sender node.
This way thePRoPHETprotocol attempts to reduce the overhead. Howevieen the network
size is large, such as a city-wide DTN networknay take significant time in building up of

delivery predictabilitiesTherefore, in such casBRoPHETmay experience increase in
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overhead due to higher number of replications. GWerhead also results in the increased buffer
shortages, which may lead to the reduced messéagerglgatio forPROPHET
3.3.9. MaxProp

The MaxPropprotocol [3.15] implements the message queue mamagfeby splitting
the queue into two portions. In the first portitmpse messages are prioritized that traversed
least number of hops. In the second portion, thesages having the least cost paths towards
destinations are given priority. The least coshpaire calculated by using a modified version of
Dijkstra’s algorithm. TheMaxPropprotocol prevents a message from repeatedly misttie
same hop by implementing hop-lists within a messapes significantly reduces the message
overhead. The use of acknowledgements deletegduadant message copies from the nodes’
buffers, as a consequence, substantially redubmgiessage drops due to buffer overflows, and
improving overall message delivery ratio.
3.3.10. Rapid

TheRapidprotocol [3.6] employs the concept of messatigy. Messagautility is
calculated on the basis of a node’s past intenagtiath a message’s destination and the amount
of data exchanged during the interactions [3.6néssage’sitility is higher, if and only if, the
message’s replication causes improvement in atlyeofollowing routing metrics defined by the
authorsia) average delayp) worst-case delay, ar{d) number of packets delivered before
deadline [3.6]. During a transfer opportunity, Rapidprotocol calculatemarginal utility of all
the messages in the routing queue. Marginal utilitgntifies the marginal increase in utility of
the message, when the said message is replicdtedn@&ssages are sorted in the buffer such that
the first message to be replicated has the highasginal utility. If network size is large, such as

a city-wide network, then thiRapidprotocol may indicate lower performance. Thisesduse of
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the time required for building-up of message ugiit Therefore, the large number of replications
during such a period may lead to increased overhead
34. Empirical Setups, Results, and Discussion

This section presents the comparisons of the tectse protocols. The simulations were
performed with ONE simulator [3.10] that has rielatures for simulating DTNs with a variety
of parameters and scenarios.
3.4.1. Performance Metrics

The protocols are evaluated for three performanetics: (a) message delivery rati¢h)
latency, andc) overhead. The following subsections illustratesthmetrics.
34.1.1. Message Delivery Ratio

Message delivery ratio is the percentage of messagjevered successfully. The
increased message delivery ratio is the major gioahy DTN routing protocol. Message

delivery ratio is calculated as:

M
1
Message Delivery Ratio = MZ Ry, (3.4)
k=1

where M is total messages created Bpd= 1 if messagen,, is delivered, otherwisg, = 0.
3.4.1.2. Message Latency

Message latency is the total time spent betweesagescreation and delivery to the
destination. The average latencies of messagestmaetto the overall latency measure of
protocol. A protocol must minimize latency but vatlt compromising message delivery ratio.

The latency (in seconds) is given by:

N

1
Latency average = Nz Receive Time;, — Creation Time, , (3.5)
k=1

where N is the total number of messages received.
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3.4.1.3. Overhead
Overhead is the approximate measure of the consampit bandwidth, energy, and
storage by a protocol due to message transmissibiesoverhead is calculated as the relative

estimate of number of message transmissions:

Overhead = Total relayed — Total delivered (3.6)
verheaad = Total delivered ' '

The overhead ratio indicates extra transmissionsdoh delivered message.
3.4.2. Mobility Scenarios

The key performance factor for a DTN protocol isvharecisely the design assumptions
match various mobility patterns. To closely matathweal-life scenarios, we selected a city
based synthetic mobility model discussed in [3.10this model, the mobile nodes follow
various paths on a city’s street map given to thrikstor as input. We imported the map of City
of Fargo, ND, USA from th®penStreetMap AHB.21]. Using the GIS tool OPENJUMP [3.22],
the map was post-processed and marked with valegasions such as shops, homes, offices,
meeting points, universities, and bus stations. iMaindes are divided into several groups and
assigned various locations on the map. In addibahe map based scenario, the protocols are
also evaluated on real-world connectivity traceailable at an online repository [3.11]. The
simulations under real-traces were performed iattgmpt to get better insight into the
suitability of a protocol for human mobility sceie:.
3.4.3. Simulation Parameters

The simulation parameters are indicated in Taldlehe parameter values are selected
keeping in view the real-world scenarios wheredfanopportunities and resources are often

limited. A few of the DTN protocols utilize additial simulation parameters indicated in Table
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3.2. The values of such parameters are selectepssed by the authors in their respective
literatures.

Table 3.1. Commonly used simulation parameters.

Parameter Value(s)
World size 4250, 3900 m
Simulation time per run 12 h
Radio Interface Speed:.250kbps (2Mbps)
Range: 20 m
Size: 500KB-1MB
Message : )
Interval: 1 per min
TTL: 500min
, 10-100MB (maximum buffer size that a node is
Buffer size . S
willing to allocate for message distribution)
Buses: 8
Cars: 20
Nodes Pedestrians: 72
Total: 100 (any node can be source as well as
destination)
Buses: 10-35 km/h
Node average Speed Cars: 10-50 km/h
Pedestrians: 0-5 km/h
Mobility City environment, Real connectivity traces

Table 3.2. Protocol specific parameters.

Protocol Ref Parameters
Spray and Wait [3.18]| L =10 to 15%
Uy, = 10 to 90

Spray and Focus [3.19 L =5to10% of nodes

Pinit = 0.75 ,8 = 0.25
y =098, T, =30

PROPHET [3.13]
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3.4.4. Comparative Analysis
In this subsection, we present the simulative caoiepas of the selected DTN protocols by

varying the following:(a) buffer capacity(b) message creation rafe) number of nodes, and
(d) message size. A few of the protocols exhibitedlaiities in average performance for the
selected routing metrics. Therefore, based onithiesities in the empirical results, we divide
the protocols into following group&roupl (a. MaxProp,b. Spray and Wait;. Spray and
Focus,andd. Rapid, Group2 (a. PROPHET). Life, c. Waveandd. Epidemi¢, andGroup3 (a.
Direct Transmissioandb. First Contact) It is also noteworthy to mention that the simiolat
results generated in this subsection depend oselleeted parameter values for the evaluation.
As DTN routing is greatly affected by the netwodaditions, we may observe different results
in scenarios with dissimilar simulation settings.
3.4.4.1. Impact of Changein the Number of Nodes

Simulations are performed to observe the scalglafieach protocol and results are
obtained for average values of latency, delivetiprand overhead. As reflected in Fig. 3.2(a),
the MaxPropprotocol shows the best performance among the ptieéocols ofGroupl The
MaxPropprotocol’'s message acknowledgement mechanism resribeeedundant packets from
the buffers to allow enough space for new pacKéis prevents message drop due to lack of
buffer space. Moreover, the delivery ratioMéxPropremains approximately constant. This is
because the increase in network load due to thig ehhew node is balanced with the
establishment of new least-cost paths in the nétwarrthermoreMaxPropgives priority to the
messages with low hop counts which allows the agripkopagation of newer messages,
reducing the latency as depicted in Fig. 3.2(be ®herhead foMaxPropas indicated in Fig.
3.2(c) is comparatively lower as the message ragptic is reduced with the increased network

connectivity.
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The message delivery ratio of t8pray and WaiandSpray and Focuprotocols is
roughly the same and constant, as both the prasabla limit on the maximum number of
message copies in the network to control messagdifig. The latency of thepray and Focus
protocol is less than thigpray and Waiprotocol as the former employs the utility based
forwarding, whereas the latter waits with the tagty of message to make contact with the
message’s destination. However, the overhead @pihay and Focuprotocol is higher due to
greater message transmissions as compared 8pthg and Waiprotocol. Performance of the
Rapidprotocol decreases as the number of nodes incréasRapidprotocol gives priority to
messages with greater utilities. If the networlagiand size) is large, as we considered in this
simulation, nodes will take longer to generate eateuutility values for messages. This will
cause uncontrolled message replication initialllgicl will also result in greater buffer usage.
Therefore, the increase in message drop due laouftdr space will result in lower delivery
ratio for theRapidprotocol.

It can be further observed from Fig. 3.2 that th&ting protocols ofsroup2experience
low performance for almost all the three routingmas. This is due to the flooding strategies
utilized by theGroup2protocols. The increased flooding results in thertage of buffer spaces
in the network. Therefore, nodes drop messages frexyeently to accommodate new messages.
The PRoPHETprotocol slightly performs better due to the coldd message replications. The
delivery ratio performance dife is better thawWaveandEpidemicas thelife protocol deletes
the redundant message copies, which are proportidndhe number of replicas in the
neighborhood. Th&roup3protocols show the worst performance. AmongGineup3
protocols, thd=irst Contactprotocolforwards the single copy of message on a randoaiécted
connection. This may result in message loss ik#lected neighbor fails to transfer message

towards destination node. The same is the casetheirect Transmissiomrotocol that
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performs no forwarding unless the neighbor nodeeanessage destination. Theref@mect
Transmissiorexhibits the lowest message delivery ratio. Froga &2(c), it is also evident that

all protocols follow the similar behavior in termboverhead, as the increase in number of nodes
also increases the number of transmissions peragesklowever, this is not the case Rorect
Transmissiorwhich has zero overhead becauseDhect Transmissiomprotocol performs no
replications. Thé&pray and Waiprotocol indicates best overhead performance altieet limited

number of message transmissions.

Ogr—r——— 12000 +————— 700 - ]
0sle——e—"——7 11000} so0l
p . 10000
500
9000
006
© 5400- x
0.5 £
9 0]
= 3300t
004}
200} 4
0.3} V.
0.2} 100 ¢ / ' 7
V- e G \

0 3000 0% P+
50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300
Number of nodes Number of nodes Number of nodes

(a) (b) (c)
—+—— DirectTransmission —<— FirstContact ~——— Epidemic —8— Wave —%&— Life
—&—— SprayAndWait ——7— SprayAndFocus —¥%—— PROPHET —&— MaxProp —+— Rapid
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3.4.4.2. Impact of Change in Message Creation Rate

The protocols are evaluated by increasing the méttvaffic. The message creation rate
is varied from one message after ten seconds ton@ssage after 180 seconds (three minutes).
As reflected in Fig. 3.3, th@rouploutperformed the other groups in all the routingnis.

This is because, t@rouplprotocols perform least flooding. When the messaigation rate is
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higher, then the nodes soon exhaust their bufi@cespresulting into the increased message drop
rate. The decrease in the message creation ratesfagch protocol in terms of message delivery
ratio and latency. Among th@&roup2protocols, th&Vaveprotocolexhibits better performance
due to the utilization of the tracking lists to ¢ah flooding [3.17]. TheGroup3protocols
experience degradation in message delivery raticeahibit increased average packet delay.
This is due to the fact that single copy routimatgtgy implemented by these protocols is less
efficient for delivering messages. The overhead.(Bi3(c)) appears to be increasing for the
protocols with the decrease in message creatienIratially, the message creation rate is higher
due to which large numbers of messages are drogipedut being relayed, and as a result the
overhead is smaller. As the message rate is dectenere is also an increase in message
relaying, which results in an increased overheaatoordance to (3.6). Ttgpray and Wait
protocol indicates best performance in terms ofload due to the fixed number of

transmissions per message.
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3.4.4.3. Impact of Changein Buffer Capacity

In this experiment, the simulations are perfornedriderstand how protocols behave by
varying buffer sizes. As Fig. 3.4(a) indicates, dedivery ratios ofcroupl, Group2,andGroup3
protocols initially increase and then achieve algemnstant value as the buffer size is
increased. The reason for such behavior is thiligithere is an increased message drop rate
due to low buffers, resulting in the low valuedefivery ratio. As the buffer size is increased,
delivery ratio also improves due to decrease insags drops. However, as reflected from Fig.
3.4(a), raising buffer capacity beyond a certaueleloes not further contribute to the delivery
ratio, as the other factors, such as mobility pagebuffer management policies, and contact
durations, also affect the communications in DTINsreasing buffer space favdRapidand
MaxPropin terms of reduced latency (Fig. 3.4(b)), as lmdtthese protocols require memory

space to store metadata information, which isagtilito calculate shortest paths to the
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destinations. Th&pidemicprotocol does not indicate significant improvemiaendelivery ratio
and latency, despite increase in buffer capacitg main reasons for such behavior éagthe
buffer management policy &pidemi¢ which isFirst-In-First-Out (FIFO) and(b) limited
contact durations among mobile nodes. As long asdintact duration between two nodes is
greater than the expected number of messagessitiralFO is a reasonable policy. However,
if the available contact durations are limited tiglato the number of messages, then only a
subset of almost similar messages will be transfeon each contact. This will cause the
messages at the end of queue to be flushed froferlulife to their life time expiry, resulting in
overall decrease in delivery ratio.

The latency of th®RoPHETprotocol is lesser than other group members as the
PRoPHETprotocol utilizes contacts’ history informationrelay messages to more appropriate
neighbors that have higher delivery predictabiidythe messages’ destinations. Increasing
buffer space has interesting impact on overheaal (fig. 3.4(c)). This behavior is in
accordance with the (3.6).When the buffer sizenalk then fewer messages are delivered as
more messages are dropped due to buffer overflohesefore, (3.6) will produce a higher
overhead value. With increase in buffer capacitg,niumber of messages delivered also
increases, which leads to a decrease in overheaGrBup3protocols, the improvement in
buffer capacity does not have any significant eftecthe delivery ratio. Therefore, the overhead

ratio of these protocols remains unchanged.
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3.4.4.4. Impact of Changein Message Size

Message size is an important factor for measungmg performance in DTN
environments. As reflected in Fig. 3.5, the inceemsmessage size is almost inversely
proportional to the message delivery ratio fotladl groups. This is mainly due to the following
reasons(a) increase in message size decreases the numbessages exchanged during the
limited contact opportunities of mobile nodes, andsequently, most of the messages are
dropped as their life-time expires before reachimggdestinations, ant) larger messages
occupy more buffer space resulting in the buffertdge for new messages. Therefore,
messages are frequently dropped to make room femmessages. The aforementioned point (a)
also causes the latency to increase as depicted.i8.5(b). TheGrouplprotocols experience
gradual degradation of routing performance fonal ratio and latency. This is due to the fact

that theGrouplprotocols adopt various measures to control fleggdiesulting in lesser message
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drops due to buffers’ overflow. In contrast, tBeoup2protocols exhibit a sudden decrease in
performance due to their inherent flooding natuhelike all the other protocols, the delivery

ratio of Group3'sFirst Contactprotocol (Fig. 3.5(a)) appears to be increasingriessage sizes
between 100 KB to 500KB. The reason for such arease is that thieirst Contactprotocol
deletes the local copy of message after the mességevarded to the neighbor. Therefore,
space is conserved to accommodate more messagdeB,ledds to the decrease in message drop
rate. Alternatively, th®irect Transmissiomprotocol experiences higher message drops as the
nodes’ less frequently encounter with the actuatidations of messages. Therefore, the

messages are frequently dropped due to life-tinpargx
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Fig. 3.5. Effect of changing message size on sopads (a) delivery ratio, (b) latency, and
overhead.

As depicted in Fig. 3.5 (c), the overhead initialigreases, and then starts to decline.
Initially, message size is smaller and nodes aletalperform more message transmissions,

which results in an increase in the overhead. Hewdlie overhead starts decreasing after the
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message size crosses approximately 100KB. Thisadathe decrease in message transfers, as
the nodes cannot exchange enough messages ifirtiid contact opportunities, when the
nodes are mobile and messages are of larger sizes.

3.4.4.5. Performance Comparisonswith Real Trace Data

In this subsection, the simulations are performét veal-world connectivity traces. The
trace datasets were collected undaggle projectduring Infocom conference and are available
at an online repository [3.11]. The parameters dsedimulation are: bandwidth: 250Kbps
(2Mbps), message size: 500KB-1MB, packet-lifetiB@0 min, number of nodes: 98, and buffer
size: 10-100MB.

It can be observed from Fig. 3.6 tlé&touploutperforms the remaining groups in terms
of message delivery ratio. TaxPropprotocol takes maximum advantage of repetitive
mobility patterns of the nodes in calculating leasit paths. As opposed to the synthetic
mobility scenario, the delivery ratio of tipray and Focuprotocolis greater than th8pray
and Waitprotocolfor simulations performed under real-traces. A oeasr such behavior is that
theSpray and Focuprotocol keeps on forwarding the packets to thé hitgity nodes. In this
way, the packets are given chance to ultimatelghréaeir destinations in scenarios where
transfer opportunities are rare (due to greater iobntact times of nodes). TRapidprotocol
does not present any significant change in perfooador real-trace dataset. TRapidprotocol
is based on link state routing and it might be leimgjing to precisely predict the optimal paths
between source and destination nodes. Especialbganarios when the nodes do not encounter
frequently, such as when participants are sittmdifferent conference sessions for longer
durations. Therefore, tHeapidprotocol experiences greater packet drops duéettrhe expiry.
The latency of th&pray and Focuprotocol is lesser than tigpray and Waiprotocol.

Moreover, theMaxPropprotocol exhibits minimum latency among Beouplprotocols as the
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MaxPropprotocol more efficiently exploits the repeatedhility patterns in the calculation of

least-cost paths.
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Fig. 3.6. Performance comparison with real conmggtitraces for (a) delivery ratio, (
latency, and (c) overhead.

Among theGroup2protocols, the?RoPHETprotocoloutperforms the other schemes in
terms of delivery ratio. This is primarily due (@) presence of stationary nodes that are most
visited and aid the routing as their delivery pegahility improves with time an¢b) nodes with
repetitive mobility act as message relays amonguarmparticipant groups. However, as it may
take longer to encounter a node of higher deliyeegictability (such as a stationary node).
Therefore, th& RoPHETprotocol has highest latency among @®up2protocols. The.ife
protocol performs better than thiéaveandEpidemicprotocolsin the conference scenario with
low mobility. This is due to the very nature of thiée protocolthat quickly deletes the message
copies and re-gain messages, which helps low baffeupancy and message circulation.
However, good performance of thée protocol comes at the expense of increased overhea
(Fig. 3.6(b)). Not surprisingly, theirst Contactprotocol has better message delivery

performance than theirect Transmissiomrotocol that has the highest latency among all
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protocols. The overhead of théaveprotocol is greatest among tGeoup2protocols. This is
because th&/aveprotocol does not accept a message, if the messagey is already present in
the tracking list [3.17]. This may cause the nawesccasionally miss the opportunities of
becoming message relays. Consequently, there evglight increase in message drop rate due to
life time expiry as messages have to wait longéureebeing relayed. Therefore, the decrease in
“total delivered” parameter of (3.6), will resutt ihe increase of overhead ratio for Wave
protocol. TheRapidprotocol transfers more messages before it caotafédy build the
metadata, resulting in increased overhead amon@ihplprotocols. The overhead Group3
protocols is least as they are single copy messgging schemes, which perform minimum
message transmissions.
3.4.5. Summary of Resultsand Discussions

Based on the simulation results, it can be condubat performance @&roupl
protocols remained consistent in all the simulatoenarios, where tidaxPropprotocol
outperformed the rest of the protocols. The printapson for good performance of Beoupl
protocols is the way these protocols control mes$lagding. Flooding causes buffer overflows
that result in increased message drop rate. MorethaMaxPropandRapidprotocolsutilize
additional information in the form of metadata itadfthe shortest paths among sources and
destinations, and to delete the messages thatreagked the destinations. Alternatively, the
Spray and WaitandSpray and Focuprotocolscontrol flooding by setting a limit on maximum
number of message copies in the network. Among@stioeip2protocols, thd®RoPHETprotocol
manages to deliver more packets with lesser ovdras@ompared to thefe, Wave and
Epidemicprotocols. This is because tRRoPHETprotocol controls flooding by replicating a
message to the peer, if and only if delivery pretidity of peer is higher than the sender.

Alternatively, thelife, Wave andEpidemicprotocols rely on maximized flooding that
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eventually results in higher message drop rate.pEm®rmance oGroup3protocols is lowest as

they implemented single copy forwarding, which alsaimizes the message delivery chances

when nodes’ have longer inter-contact times. Tleegfbased on the results, we can make

following observations:

Effect of number of nodes: Increase in number of nodes facilitates the meskagearding

in DTN environments as more nodes are availabgetee as relays and to carry message
between source and destination. However, suchitédmh is at the expense of increased
overhead caused by the new nodes. Therefore, th@oges joining the network do not play
a vital role in the improvement of message delivatjo, as reflected in Fig. 3.2.

Effect of message creation rate: Fig. 3.3 depicts that decrease in the messagaameate
improves the delivery ratio due to reduction in sage drop rate. However, when the
message rate is decreased enough (e.g., one messagvery 120 seconds), the delivery
ratio for most of the protocols attains a constetie. This constant behavior is due to the
other factors involved in message drop, suclf@dsnessage queue sorting policies gmd
mobility patterns of nodes. Reduction in messagatan rate will reduce latency if and only
if the nodes’ contact frequency is optimal enoughta cause the messages to wait longer
into buffers.

Effect of increasing the buffer space: Increase in buffer capacity of nodes improves
message delivery ratio for all the protocols, esdlcfor the Group2protocols that utilize
flooding based techniques. However, as indicatdeddn3.4, even the large sized buffers
may not produce 100% message delivery ratio. Bhikie to the fact that messages may be
dropped with the expiry of messages’ life timehéite are long gaps in nodes’ meetings.
Another reason is the queue management policigshwiay repeatedly favor only a subset

of messages during message transfer. For exarhpleRoPHETprotocolgives priority to
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messages whose delivery predictability is highek theEpidemicprotocol sorts the queue
on FIFO basis. This may cause other messages tdongiin buffers and subsequently be
dropped due to life-time expiry. Therefore, in @ntrscenario, Fig. 3.4 presents an estimate
of upper bound in delivery ratio when the buffepaeity is assumed to be infinite.

= Effect of changein message size: When message size is smaller and buffer spaceigyén
to accommodate new messages, the nodes are axXeh@ange more messages during a
limited contact interval, resulting in an increasidivery ratio. As message size is increased,
nodes have to wait longer for the occurrence ofaxia of greater durations. This causes the
message drop due to life-time expiry and incretisesatency as indicated in Fig. 3.5.

» Effect of changein bandwidth: We also performed simulations by varying the bawithvi
Results indicated that if the bandwidth is highleen there is an increase in message drop
rate due to buffer overflows, but decrease in ngsslaop due to message life time expiry.
Alternatively, if bandwidth is less, then fewer reages are exchanged among nodes.
Therefore, there is less message drop due to bafeaflow, but higher message drop due to
message life time expiry. Therefore, in both theesave achieved roughly the same results
for message delivery ratio.

Based on our findings, we are now in a positiorattk protocols depending upon their
performance consistency under the parameters sélémt simulation. Table 3.3 presents the
numerical ranking of the protocols for messageveeyi ratio. The overview of results and our

recommendations on the usage of protocol for aqudait scenario is summarized in Table 3.4.
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Table 3.3. Protocols ranking based on messageetigliatio. The protocol with lowest score is
given top ranking.

Message Delivery Ratio
Protocol Network | Buffer Message ) Overall score Rankings
) . Message size
size impact rate

Direct Transmission 10 10 10 9 39 10

First Contact 9 9 10 10 38 9

Epidemic 7 6 8 8 29 8

Wave 8 8 6 6 28 7

Life 6 5 7 7 25 6

Spray and Wait 2 2 3 2 9 2

Spray and Focus 3 3 2 3 11 3

PROPHET 5 7 5 5 22 5

MaxProp 1 1 1 1 4 1

Rapid 4 4 4 4 16 4

Table 3.4. Overview of results.
Protocol Delivery Ratio Bu_f_fer . Energy Efficiency | Complexity Suggested Scenario
Utilization

Direct o Very low Very low Low-medium Very low Determlnlstlc mobility

Transmission scenarios

FirstContact Very low Very low Low Low ;?andom mobility .
emergency scenario

Epidemic Low Very high Very low Low ;?andom mobility .
emergency scenario

Wave Medium Medium Medium Medium I_Da_rt|a| mobility / .
limited area scenario

Life Medium Medium Medium Low-medium I_Da_rt|a| mobility / .
limited area scenario

Spray and Wait| High Low High Low-medium Hetero_geneous
scenarios

Spray and High Low-medium | High Medium-high | Heterogeneous

Focus scenarios

PROPHET Medium Medium-high Medium High Com_mumty bas<_e<_:1 /
predictable mobility

. . . . Heterogeneous
MaxProp Very high High Very high Very high Scenarios
. . . . . . . Limited vehicular
Rapid Medium-high High Medium-high Very high mobility scenarios
3.5. Proposed Routing Models

In this section, we propose three routing modetetan enhancements in the replication
strategies of the following three protocdla) Epidemic[3.14], (b) Spray and Waif3.18], and
(c) PROPHET[3.13]. The reason for selection of only these three paitois that these protocols
are most cited in the DTN literature for evaluasipsuch as [3.3], [3.5]-[3.9], [3.15], [3.17], as

the aforementioned protocols are known to exhitmiststent performances in many different
52



type of DTN scenarios. Alternatively, tivaxPropandRapidprotocols were specifically
designed for bus-based DTN scenarios, andtheeandLife protocols were developed for
scenarios where the nodes were mostly static. ((d/aat consider single copy routing schemes
in our evaluations because of their low performanteerefore, to test the performance of our
proposed enhanced schemes, we designed the seathatialosely matched with the original
scenarios in which the abovementioned protocolewealuated. Moreover, to favor the
EpidemicandSpray and Waiprotocols, we introduced random mobility nodesun defined
scenario. Similarly to accommodate ®i@oPHETprotocol, our scenario also contains grid-
based communities. The message replication inritygoged schemes is made adaptive to the
varying network conditions. The source code offifegosed protocols is made available on this
link [3.23]. In the following subsections we illuate the proposed schemes.
3.5.1. Enhanced Epidemic Scheme

TheEpidemicprotocol performs large scale flooding to increamssages’ delivery
probability. However, flooding cause network congesand buffer shortage, resulting in an
increased message drop and overhead. In realist@gos, the nodes’ densities at various
network regions do not stay uniform as the netwopology varies with time. Therefore,
message replication should be adjusted dependioig amode’s frequency of interactions with
specific destinations. The same concept is appiezd in the proposed enhancement of the
Epidemicprotocol.

The new technique-Epidemiattempts to decrease message flooding in cases whe
specific set of destinations are repeatedly en@vadt Ine-Epidemi¢c when a nodé comes into
contact with a neighbor noggboth the nodes exchange metadata information abeutrecent

interactions with other network nodes. This infotima is quantified as:
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B = o X z ca(k). for k €N (3.7)
Cc i k

In above equatiory, C{ (k) represents interaction history of nadeith the message’s
destinatiord, the parametef, is the current time, ariff* is the last interaction time between the
nodei and the nodd. The last interaction times are maintained adl fieeers at the nodes, as
was performed in [3.19]. Equation (3.7) states ¢habde will “forward” a message to a

neighbor nodg, if and only if, the nod¢'s interaction rateL(]-d) with destinatiord is higher and

more recent than nod&s interaction rate£"). Otherwise, nodéwill simply “replicate” the
messageThis behavior is different from the originepidemicprotocol where a message is
always replicated, and as a result Bpmdemicprotocol exhibits low performance in scenarios
with limited buffer size. Fig. 3.7 reflects the flemance improvement achieved &Epidemic
for delivery ratio and overhead. The decreased mumbcopies per message reduces the
number of transmissions per message, which rasulte reduction of overhead. However,
decreased number of copies per message also iesrg@soverall latency (Fig. 3.7(b)). This is
because of the increased hop count per messageleliery ratio is also further improved by
introducing passive message acknowledgementsriEadi} delivered messages. The
acknowledgements help in clearing up buffers fredundant message copies. Therefore, there
will be less message drop due to lack of buffecepa
3.5.2. Adaptive Multi-Copy Spray (AMYS)

The Spray and Waiprotocol controls flooding by setting a limit oretinaximum
number of message copies in the network. When aagess created, it is assigned a specific
number of “forwarding tokens”. When the messagejiicated, the sender node splits the

tokens into half, keeping half for itself and gigithe other half to the neighbor node.
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Although splitting the message tokens into haltuess$ the overhead, a more optimal
splitting based on varying network conditions maad to further reduction in overhead and
improved delivery ratio. Therefore, we propose anamcement in th8pray and Waiprotocol
such that the token splitting is made adaptiveeddmg on a node’s interaction frequency with
other nodes in the network. The proposed technigdaptive Mutli-Copy Spray (AMS8jilizes

the following equation to calculate a node’s intéin history:

T;
Eld = (Z ClT(k) + a X zl Cld(l)> X T—Tid’ (38)

whereE? is the interaction rate. In (3.8), the parameter ¥, C(m) / ¥, CI (n) is the
adaptive weight factor representing the fractiom obde’s interactions with a destinatibnand

is added to the total interactiofig C! (k) of the node. The ternf./(2T, — T#) on the right
hand side of (3.8) ensures that higher weightagaldtbe given to more recent contacts. A
newly created message, at node is initially assigned. forwarding tokens, which is the same
number of forwarding tokens used by the originakians of theSpray and WaiandSpray and

Focusprotocols [ = 10 — 15% of the total number of nodes). From Fig. 3.8, Wweeavve that
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the AMSprotocol achieves higher delivery ratio at rougtdyne value df, with a network size

of hundred nodes.
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Fig. 3.8. The max delivery ratio in AMS, Spray awhit, and Spray and Focus
achieved with L=10-15.

Let EZ andEjd be the interaction histories of nodandj, respectively, with a message’s
destinatiord. Suppose, a messagg haslL, forwarding tokens. When noddransfersn;, to

nodej, the token splitting is performed, such that nbeepsL:, tokens and givelsf( tokens to

nodej according to the following equations:

. E}
Node i tokens le = <Lk X m) ) (3.9
l J

Node j tokens Lj, =

Li (3.10)

Ef
X — 7| -
The above two equations indicate that a node wikdr number of interactions with a
message’s destination will receive greater numbeskens and vice versa. The proposed
approach is intended to improve the message dglitieough those nodes which have less
frequently interacted with the destinatidnby increasing the per message replications

performed by such nodes.
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The simulation results in Fig. 3.9 indicate tha groposedMSscheme performs better
thanSpray and WaiandSpray and Focus terms of delivery ratio and overhead becaudaef

adaptability in the message replication.
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Fig. 3.9. Performance comparison of AMS with Spaiagl Wait, and Spray and Focus.

However, reduced overhead is at the expense oéhlgtency. This is because the greater
numbers of messages are replicated through nodeeds frequently interacted with messages’
destinations. The message drop rate due to buftetagye is controlled by introducing passive
message acknowledgements that further improvesdleedy ratio performance.

3.5.3. Adaptive Source Token Multi-Copy Spray (ASTMYS)

As illustrated in théAMSprotocol, a message’s initial token value is stdlly assigned
(Section 5.2). In the propos@&ETMSscheme, the initial token assignment is made acda a
node’s varying interaction history in the netwofke idea presented here is mathematically
formulated as follows:

=10 -EHxL], (3.11)
where the parameté, is the token value generated for the messagat the nodeé. The

interaction ratéE? is given by:
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In above equation, the interaction r&te depends on the fraction of recent contacts
between nodé and destinatiod, wherea<! is the total interaction rate éfin the whole
network. The parametéris similar to the one used in the previous suliseetnd is considered
as an upper bound to the maximum value of forwarttsken. Equation (3.11) indicates that if
the node more frequently interacts with the destinatibrthen smaller token valug, will be
generated for the messagg at node. Therefore, the initial token value is dependantio
node’s interaction frequency with a specific destiion set. Based on the proposed approach, we
introduce adaptive token assignment mechanismeiRRoPHETprotocol. ThePROPHET
protocol performs message replication if and ohtié delivery predictability of the current
message is comparatively higher at the neighboe nddwever, th€ RoPHETprotocol sets no
limit to the maximum number of message replicass Tty cause an increased overhead and
message drop rate in the resource constrained rleemwgironments. The aforementioned
problem is addressed in the propos&TMSscheme in the following waya) by introducing
adaptability in initial token assignmelib) by setting a limit on maximum number of message
replicas, andc) by introducing adaptability in token splitting duy message replication. All
such enhancements depend on a source node’s tidarhistory with the message’s destination.
Algorithm 3.1 presents the pseudo-code forABd MSscheme. A message created by an
application (App) is assigned the initial tokenueabnd stored in the message queue at the node
i (Line 1). A message with token value greater twa@ will be replicated, if and only if the
interaction history of neighboring node is gredkem the current node (Line 3 and Line 4). The
token splitting is performed in Line 5, such treatjode with more frequent interactions with the

message destination will get higher number of tskdnmessage with token value equal to one

58



will be forwarded towards a neighbor with highegeraction valu&g? (Line 9 and Line 10).

The same process will be repeated for other messagee queue.

Algorithm 3.1.  Pseudo-code for ASTMS scheme

1. my < App; lk = [(1 — Eid) X L]; M; = M; U {m}
2. for each m;, € M; do
3: if L, > 1then

4: if Ef > Ef then
. j _ djrpd d
5: L, =Ly xEj/(El- +Ej)
6: end if
7 Replicatem, to |
8: ese
9: Find a neighbok with highestt?
10: Forwardmy, to |
11: endif
12:end for
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Fig. 3.10. Performance comparison of ASTMS withh BROPHET protocc

Fig. 3.10 indicates the improved performance oppsed scheme in comparison to the
PRoPHETprotocol. The reduction in message replicationsddting a limit on maximum
number of message copies results in less utilizatfdouffer space as well as decreases the

message drop rate. Therefore, message deliveoyisaignificantly improved. Moreover, the
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decrease in message copies improves the overtepdr mmessage transmissions are also

minimized. However, the reduced overhead is ae’pense of increased latency. This is

because, with the decrease in message replicatimgsjessages may have to wait longer to be
delivered to the destinations.

3.6. References

[3.1] Delay-Tolerant Networking Research Group (DTNR®hljne]
http://www.dtnrg.org/wiki, accessed July, 2014.

[3.2] S. Burleigh, A. Hooke, L. Torgerson, K. Fall, V.i§a. Durst, K. Scott, and H. Weiss.
Delay-Tolerant Networking: “An Approach to Interpktary Internet,1IEEE
Communication Magazingpl.41, no.6, pp.128-136, 2003.

[3.3] T. Spyropoulos, R. N. B. Rais, T. Turletti, K. Obz&a, and A. Vasilakos, “Routing for
disruption tolerant networks: taxonomy and desig@GCM Journal Wireless Networks,
vol.16, no.8, pp.2349-2370, 2010.

[3.4] T. Spyropoulos, T. Turletti, and K. Obrazcka, “Ragtin Delay Tolerant Networks
Comprising Heterogeneous Populations of Nod€$’E Transaction on Mobile
Computing vol. 8, no. 8, pp. 1132-1147, Aug. 2009.

[3.5] O.Khalid, S. U. Khan, J. Kolodziej, L. Zhang, J, K. Hayat, S. A. Madani, L. Wang ,
and D. Chen, “A checkpoint based message forwargapgoach for opportunistic
communication,’European Conference of Modeling and Simulatii1,2.

[3.6] A. Balasubramanian, B. Levine, and A. Venkatarapf&eplication Routing in DTNs: A
Resource Allocation ApproachlEEE/ACM Transactions on Networkinggl.18, no.2,
pp.596-609, 2010.

[3.7] G. Sandulescu and S. Nadjm-Tehrani, “OpportunBii& routing with window-aware

adaptive replication,” ifProc. 4th Asian Conf. on Internet EngR008, pp.103-112.
60



[3.8] Y.Cao and Z. Sun, “Routing in Delay/Disruption 8i@nt Networks: A Taxonomy,
Survey and ChallengedEEE Communications Surveys and Tutori&lsl. 15, no. 2,
pp.654-677, 2013.

[3.9] A. G.\yiatzis, “A Survey of Delay- and Disruptidiolerant Networking Applications,”
Journal of Internet Engineeringpl. 5, no. 1, pp.1-331, 2012.

[3.10] A. Kerénen, J. Ott, and T. Karkk&inen, “The ONE dawor for DTN protocol
evaluation,” inProc. of 2nd International Conference on Simulafi@ols and
Techniques2009, doi.10.4108.

[3.11] InfocomOQ6 connectivity traces on CRAWDAD websit@n[ine]
http://crawdad.cs.dartmouth.edu/meta.php?name=ddgadnaggle#N100C4, 2013.

[3.12] S. Jain, K. Fall, and R. Patra, “Routing in a detggrant network,” irProc. of
Conference on applications, technologies, architexst, and protocols for computer
communications2004, pp.145-158.

[3.13] A. Lindgren, A. Doria, and O. Schelén, “Probabitisbuting in intermittently connected
networks,” inSIGMOBILE Mobile Computing and Communications Rewel.7, no.3,
pp.19-20, 2003.

[3.14] A. Vahdat and D. Becker, “Epidemic routing for palfy connected ad hoc networks,”
Technical Report CS-200006, Duke Universi00.

[3.15] J. Burgess, B. Gallagher, D. Jensen, and B. Neihneg “MaxProp: Routing for Vehicle-
Based Disruption-Tolerant Networks,” Rroc. of IEEE InfocomApril, 2006, pp.1-11.

[3.16] T. Spyropoulos, K. Psounis, and C. S. Raghavefi8magle-copy routing in
intermittently connected mobile networks Rroc. of Sensor and Ad Hoc

Communications and Network&004, pp.235-244.

61



[3.17] J. Ott, A. Kerédnen, and E. Hyytid, “BeachNet: Pggiegon-based Information Sharing in
Mostly Static Networks,” irProc. of ACM ExtremeCqgr2011.

[3.18] T. Spyropoulos, K. Psounis, and C. S. Raghavefi8may and Wait: An Efficient
Routing Scheme for Intermittently Connected Mobiketworks,” inProc. of ACM
WDTN 2005, pp.252-259.

[3.19] T. Spyropoulos, K. Psounis, and C. S. Raghavefi8may and Focus: Efficient
Mobility-Assisted Routing for Heterogeneous andr€ated Mobility,” inProc. of the
Fifth IEEE International Conference on Pervasiven@uting and Communications
Workshop 2007, pp. 79-85.

[3.20] M. Gardner, “The fantastic combinations of John @Wayis new solitaire game life,”
Scientific Americanpp.120-123, 1970.

[3.21] OpenStreetMap (OSM) APl websi2®12. http://www.openstreetmap.org/.

[3.22] OPENJUMP GIS Softwarggnline] http://www.openjump.org/, accessed on JRGA3.

[3.23] O. Khalid, Source code http://www.ndsu.edu/pubweklhalid, 2013.

[3.24] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laocaitd A. Qayyum, “Optimized Link State
Routing Protocol (OLSR),” RFC 3626, IETF Network ikimg Group, October 2003.

[3.25] C. Perkins, E. Belding-Royer, and S. Das, “Ad hee@mand Distance Vector (AODV)
Routing,” RFC 3561, IETF Network Working Group, Yy@003.

[3.26] D. B. Johnson and D. A. Maltz, “Dynamic Source Ragiin Ad Hoc Wireless

Networks,” Imielinski and Korth, Eds., Mobile Contmg, Vol. 353, 1996.

62



4. FORECAST AND RELAY: A MESSAGE ROUTING SCHEME FOR

OPPORTUNISTIC MOBILE NETWORKS

This paper is submitted teEE Communication Letter§he authors of this paper are
Osman Khalid, Rao Naveed Bin Rais, Nasir Ghani,3aee U. Khan.
41. Overview

The increasing integration of communication techga@s in mobile devices, such as
Bluetooth and 802.11/WiFi has made it possibletiermobile nodes to opportunistically
connect and form on-the-fly ad hoc networks, kn@as@pportunistic Mobile Network€OMNS)
[4.1]. The OMNSs are usually deployed to establismmunications in challenging environments,
where nodes suffer from frequent disconnectionsamadot supported by any fixed
infrastructure. A few applications of OMNSs inclug@e?2]: (i) battle-field networks, (ii) wild-life
monitoring, (iii) emergency response systems,\{@hicular transportation bus networks, and (v)
mobile social networks [4.1]. The network in sucbkrsarios frequently changes topology, and in
certain extreme cases, there may not be an endetpath available between a source and a
destination. Therefore, the traditional mobile ad hetwork routing protocols, such as AODV
[4.3] are inapplicable in such scenarios. Messagéng in the OMNS is difficult, as the nodes
have little information pertaining to the statetloé network that has a time evolving topology.
The nodes must rely on opportunistic contactsdcestarry-forward messages towards the
destination. The messages may be delivered or dibgpe to message life-time expiry (TTL) or
network congestion, yielding a best-effort delivegyvice.
4.1.1. Motivation

During an opportunistic contact, a node must degidether or not to forward the data to

the encountered node. The message forwarding desigiithin the OMNs are typically guided
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by the desire to reduce the number of messageasphithin the network that consequently
conserves buffer space and the bandwidth. However{o the temporal variations within the
topology, identifying multiple end-to-end disjoipdiths for messages is often very difficult.

Several works, such as [4.4]-[4.8] have been ptedeon the routing/forwarding
mechanisms for the OMNs. However, there is no amsiseon which approach best suits a given
scenario or application. Among all the routing ®tgges, the single-copy forwarding schemes are
considered to be the most resource conservativaj@sapproaches are designed to forward
only a single copy of the message within the netj#i6]. However, such approaches suffer
from delay and reduced message delivery, as singsage copy may have to wait longer. In
some cases, the message may never reach the tlestiiae flooding-based approaches spread
multiple replicas of a message within the netwdrk-[4.9]. A higher number of message
replicas improves the message delivery probabbity,at an increased expense of network
resources. The authors in [4.10] set a limit onrthaber of replicas per message that lowered
the overhead, but increased the message delaygrienet al.[4.5] proposed a probabilistic
message replication approach, named aPR@PHET where a node replicates a message to a
neighbouring node, if and only if, the neighbourimagle has more frequently encountered with
the destination. However, tiRRoPHETprotocol is not mobility-cognizant and sets no tiom
the number of message replicas. To address netwerkead, the techniques proposed in [4]
and [4.7] restrict a message replica from entegimgde’s buffer for a certain period of time.
However, such a restriction results in increasddydas messages are restrained from quickly
spreading within the network.
4.1.2. Contributions

In light of the above discussion, there is stiirassing need to develop resource

conserving routing solutions for the OMNSs that medhibit better message delivery rates with
64



reduced overhead. This chapter addresses thetatea of resource efficiency in the OMN
routing, and exploits the nodes’ mobility pattetosontrol message replicas within the network.
Several of the previous studies reveal that hurf@lmsv repetitive schedule of meetings at
similar places and times, and that the human nigldipredictable and follows a power-law
distribution [4.11]. The aforementioned fact isthar endorsed by Sorgj al. that the human
mobility is 93% predictable [4.12]. Therefore, quoposed Forecast and Relay (FAR) scheme
learns from the nodes’ temporal contacts and niglghtterns, and forecasts the future contact
opportunities among the nodes. The proposed schneontrols message flooding by
forwarding the messages to only those nodes thet¢ase the message delivery likelihood.

TheFAR protocol can be efficiently applied in real-lifpmications, such as the transfer
of delay-tolerant data among various parts ofya 8imulation results with real mobility traces
and synthetic mobility indicate that tRAR protocol exhibits better performance in terms of
delivery rate and overhead compared to the othemses, such @RoPHET[4.5], Epidemic
[4.8], Randon{4.8], andWave[4.7]. To the best of our knowledge, this is thstfeffort on
utilizing time-series forecasting in the OMNSs tordp efficient route prediction.

The rest of the chapter is organized as follow® f&twork model and assumptions are
discussed in Section 4.2. In Section 4.3, we ptabefrAR protocol design, and simulation
results are discussed in Section 4.4,

4.2. Network Model and Assumptions

We consider a hybrid network environment consistihgmobile nodes and fixed wireless
Access Points (AP) as shown in Fig. 4.1. Two natesable to transfer messages only when
they are in each other’s transmission range. Duaingessage transfer, a sender node may or
may not replicate the message on the neighboridg.nss there are no end-to-end connectivity

paths among mobile nodes, a mobile host can diihestly deliver the message to the
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destination, or through the intermediate relaysréduer, the mobile nodes have limited storage
and transfer bandwidth. We further assume that sufitiee nodes, such as buses, follow
schedules in the mobility. Fig. 4.1 depicts a neatld scenario where people visit bus stops on a
daily basis to reach their work place, and busesgetron predefined routes with specific route
timings. Such repetition in the mobility pattermsde useful for opportunistic message relaying

in different parts of a region. Table 4.1 lists thest frequent notations used in this chapter.

A [T B

Fig. 4.1. Mobile carries are exchanging messagesaking opportunistic contacts.

Table 4.1. Notations and their definitions.

Notation Definitions
N Set of nodes
s Source node
d Destination node
r Relay node
t Current time interval
Ci;(t) Meeting quality between nodésind; at timet
F;;(t) Forecasted meeting quality betwaéemndd at timet
¢ Time series smoothing constant
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4.3. FAR Protocol Design

We consider an OMN, witN number of nodes. When a nadmeets with another nogle
at time intervat, both of the nodes record the quality of the nmegtiepresented hg;;(t). In
theFAR protocol, the duration of the contact between ayrodes quantifies the meeting
quality. Therefore, the greater the contact duraietween two nodes, the greater the message
exchange probability and higher the meeting quaWtith the passage of time, a nadeill be
cumulating a bivariate time-series data consisbing contact time and contact duration for
every other network node. Suppose that a sourcesioas a messaga to be delivered to a
destination nodéd. If s makes a direct contact withthen the message will be transferred to the
destination without any intermediate relaying. @thse,s decides whether or not to replicate
the message on a relay nadéat comes in range. Such a decision is perfoioyexin the basis
of the following:

Fa(t+1) = - Csq(t) + (1 — ¢) - Fq(2). (4.1)

In the above equation, the paramelex ¢ < 1 is the time-series smoothing constant,
Csq(t) is the meeting quality afwith d until timet, Fy;(t) is the current forecast, aig}; (t +
1) is the future forecast of meeting the qualitys @fith d. Equation (4.1) implies that the
messagen will be replicated by onr if and only ifr has a better forecast of meeting quality
with d. We represent such a phenomenorhyt + 1) > Fy;(t + 1). As mobile devices are
limited in memory and processing, it is impossildiethe mobile nodes to store unlimited time-
series data of the past interactions. Thereforeset@ limit on the maximum number of entries
stored per node in the form of a sliding time wiwda < t < w, where the entry at= w
represents the latest meeting. More recent enttiaen the range 1, w] must be given higher
weightage than the other entries to ensure infaomdteshness and accuracy. Therefore, we

assign progressively decreasing weights to ther @diies. Substituting the value &f; (t) =
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[ Coq(t —1) + (1 —¢) - Fsq(t —1)] in (4.1) we obtain:
Fsd(t + 1) = ¢ ' Csd(t) + (1 - ¢) : [¢ ’ Csd(t - 1) + (1 - ¢) 'Fsd(t - 1)] . (4-2)
Re-substituting the value &f,(t — 1), and solving recursively, we get:

Fsd(t+1) :¢'Csd(t)+¢’(1_¢)’Csd(t_1)+¢(1_¢)2'Fsd(t_z)‘l'"'

(4.3)
+ (1 —¢)® - Fsq(0).
The above equation can also be written as:
Fsd(t + 1) = (1 - ¢)w ' Fsd(o) + Z ¢ : (1 - ¢)w—k : Csd(k)- (4-4)
k=1

In the above equation, each entry for the meetiraity C,;(t) is assigned a weight,
such that as the entry becomes older, it contriblates to the overall forecasting. The base case

value of recursion i8,,(0), given as:

Csd(t) - Csd (t - 1)
o .

1 w
Faa(0) = =) Ca(®) = Frat = 1) + (45)
t=1

The above equation represents the moving averate giast meeting qualities of nosle
with d within interval [, w].
44. Simulation and Results

Simulations were performed using the Opportunisgtwork Environment (ONE)
simulator [4.13] by using synthetic mobility modeld real connection traces [4.14]. For
synthetic mobility, a large-scale DTN scenariorsated using the map-based mobility model of
the ONE simulator. A map of area 4,500m x 3,900masked with places, such as shops,
homes, offices, meeting points, and bus stops pedent groups of mobile nodes follow
various routes on the roadmap. Table 4.2 preskatsibst common simulation settings.
Moreover, some of the test runs indicate that tlop@sed~AR protocol exhibits the best

performance for the values ¢f= 0.6 andw = 50.
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Table 4.2. Simulation parameters.

Parameter Value(s)

World size 4,500m x 4,000m
Simulation time per 12 hours

run

Speed:250Kbps (2Mbps),
Range: 20 meters
Size: 500KByte-1MByte,

Radio Interface

Message Interval: 1 per minute,
TTL: 500 minutes
. 10-100MB (maximum buffer size that a node is wglio
Buffer size Y
allocate for message distribution)
Buses: 8,
Nodes Cars: 20,

Pedestrians: 72

Total: 100 (any node can be source as well asrdesin)
Buses: 10-35 Km/h,

Node average Speed | Cars: 10-50 Km/h,

Pedestrians: 0-5 Km/h

Mobility City environment, Real connectivity traces

Furthermore, the following performance metrics wads® considered.
1 M
Message Delivery Ratio = Mz Ry . (4.6)

In (4.6), the variabl®/ is the total number of messages created Rand 1, if messagen,, is

delivered; otherwise®, = 0.

M

1
Latency average = ﬁZ(Receive Timey, — Creation Timey, ), 4.7)
k=1

where, M is the total number of messages received.

Total msgs relayed — Total msgs delivered

) | 4.8
Overhead Total msgs delivered 9

To evaluate performance, tRAR protocol is compared with four state-of-the-artnog

schemes namely: (ARoOPHET[4.5], (ii) Epidemic[4.8], (iii) Randon{4.8], and (iv)Wave[4.7].
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Simulation results with synthetic mobility modele aeported in Fig. 4.2(a)-Fig. 4.2(f) and Fig.
4.2(g)-Fig. 4.2(i) present the results with reaHd@onnectivity traces.

Fig. 4.2(a)-Fig. 4.2(c) present the scalabilityfpenance of th&AR protocol, as the
number of the nodes are increased within the sydtare, the=AR protocol outperforms all of
the other routing schemes in terms of the delivatip, latency, and overhead. This is because
the proposed scheme accurately forecasts the fatutact durations by performing the online
analysis of time-series data of previous contacatitns. On the contrary, tiRROPHET
protocol performs the future contact estimatiortf@basis of number of contacts without
considering the duration of each of the contadhéfcontact duration is not considered, then a
message may be forwarded to a node that staysitactavith the destination for a very brief
duration that is not enough of time to transfer sages.

The Epidemicprotocol maximizes flooding to improve the messdeglvery, such that a
node sends a message to all of the connected megytHowever, higher flooding causes
increased overhead. Flooding also increases theageslirop rate in the networks with limited
buffer spaces. Alternatively, tH6AR protocol performs selective message replicatian tbsults
in a decreased overhead (Fig. 4.2(c)) and highared ratios (Fig. 4.2(a)). ThRandom
protocol forwards a single message copy to anyartygselected neighbor. On the other hand,
theWaveprotocol maintains tracking lists to control flang, such that a message relayed by a
node a few moments earlier will not be relayedh®/same node for a specific interval of time.
Despite that, both theandomand the/Naveprotocols are resource conservative, and exhibit
lower performance than théAR protocol, as shown in Fig. 4.2. This is due toft that both
of the protocols do not utilize the past meetintigras of the nodes to perform message route

estimations.
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Simulations are also performed by increasing thesimission range of the nodes from
20m to 100m. By increasing the transmission ratigenodes have more time to stay connected
and exchange messages. However, even with theagentdransmission range, none of the
algorithms outperform thEAR protocol (because of the accuracy of the predidmction
utilized).
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The simulation results with real connectivity tracedicate that thEAR protocol
performs better in terms of delivery ratios andrbeads, as reported in Fig. 4.2(g)-Fig. 4.2(i).
The overhead of thRandonyprotocol is the minimum, as tiandonprotocol is a single-
message copy forwarding scheme that has fewemtiasi®ns per message. TIRAR protocol
takes advantage of the repetitive mobility patterithe conference participants to achieve good
performance. The latency metric of tBpidemi¢c RandomandWaveprotocols is better than the
FAR protocol (see Fig. 4.2(h)). However, the aforenoeed phenomenon is at the expense of a
low delivery ratio. Moreover, thEAR protocol exhibits the minimum overhead, as comgwe
the PRoPHETandEpidemicprotocols despite that thEAR protocol is a multiple copy
replication scheme.
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5. A CHECKPOINT BASED MESSAGE FORWARDING SCHEME FOR
OPPORTUNISTIC COMMUNICATION

This paper was presented26th European Conference on Modeling and Simulation
(ECMS),Koblenz, Germany, May 2012. The authors of thiggpas Osman Khalid, Samee U.
Khan, Joanna Kolodziej, Limin Zhang, Juan Li, Khiegyat, Sajjad A. Madani, Lizhe Wang,
and Dan Chen.
51. Contributions

This chapter presents a concept of Checkpoint (@B¢d message forwarding in
opportunistic mobile network$.1], [5.2] The CPs are autonomous high-end wireless devices
with large buffer storage, and are responsibledomporarily storing the messages to be
forwarded. Apart from having own memory and processapabilities, each CP is a node that
represents a specific region on the city map andtaias the information of geographic
locations of all the other CPs. The CPs are depleyerarious places within the city parameter
that are covered by bus routes and where humarnngdetquencies are higher. In contrast to
the existing work, the CPs are not communicatigreddent on any fixed backbone network,
and can be easily relocated. For the simulativéyaisaa synthetic human mobility model in
ONE simulator is designed for the city of Fargo,,NIBA. The model is tested over various
opportunistic routing protocols and the resultgdate that using CP overlay over the existing
opportunistic communication significantly decreasesssage delivery time as well as buffer
usage.

The rest of the chapter is organized as followisst Felated work is described with a
comparison to the CP approach. Next, the CP anthreis discussed along with simulation

scenario. Finally, the simulation results are dised with conclusion and future work.
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5.2.  Checkpoint Architecture

The major components of the CP architecture inchidgc CP nodes, mobile wireless
nodes, buses, and additional components (e.gnktteonnected Access Points) that may be
integrated with CP architecture.
5.2.1. CP Nodes

A CP is a wireless node that can be any low castbon design hardware. The basic
components of a CP node are but not limited togssar, memory, solar powered batteries,
multiple interfaces (Standard Ethernet, 802.11b/@laetooth), GPS, and storage. Each CP may
optionally have the record of GPS coordinates béoCPs in the area. The coordinates are
relayed through mobile nodes to the neighboring &&sg with normal data packets. Moreover,
we assume that the CPs can be reconfigured witbusaopportunistic communications’ routing
protocols. For example, if routing protocol usedd® is thdPRoPHETprotocol [5.3], then the
CP maintains a database of recent encounters vathlemodes for certain amount of tire
after which the old data is overwritten to makecgpfor new records. In addition to message
routing, other tasks that may be assigned to Cledeacontent distribution at specific intervals,
such as travel information, promos, news and in&diom caching. The main fields maintained in

the database of ea€heckpointare indicated in Table 5.1.
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Table 5.1. Database fields foCaeckpoint

Node ID The identification of a mobile nolik

Number of contacts| The number of contacts a nodteméth Checkpoint

CP with which the node made contacts. Here mulgpkeies are

CPID possible, as a node may make contacts with moreaha CP.
The GPS coordinates of a CP last contacted by e.Adds helps
Coordinates in synchronization of location information of CPsdughout the

region.

Last Contact Time Time of last contact wiflneckpoint

Expected Contact

Time This time is predicted based on the node’s histbigontacts.

5.2.2. Mobile Nodes

The mobile nodes are pedestrians, cars, and budesach node carrying 802.11b/g/n
enabled wireless sets. This assumption makes seest® a market research report [5.4]
according to whichn year 2009 alone, a total of 144 million molpleones were shipped with
Wi-Fi capability and it is further estimated thath phones may reach 66% of the total
shipments till 201%5.5]. In the CP approach, whenever a mobile node interaith a CP, the
mobile node shares database with the CP by seadiggt-weight summary vector and then the
CP updates own database with new information ath@utode. Any two mobile nodes on
encounter, exchange messages for storing, cargmbforwarding, as well as the metadata of
each node’s visits to particular CPs. The minindata structure required at each mobile node is

reflected in Table 5.2.
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Table 5.2. Database fields foMmbileNode

CPs The IDs and coordinates of every CP a node hatedligi past.
Number of Contacts| The number of contacts a node has made with @aelskpoint
Last Contact Time Time of last contact wiheckpoint

5.2.3. BusesNodes

Buses are the message carriers or relay nodes arcBRecture. Each bus follows a fixed
route and schedule and may pass through more tia@B (bus stop) on predefined timings.
Moreover, after every scheduled round, every buusme to a central bus station. The buses may
be installed with any custom made wireless hardWaxéng communication and storage ability
to store the received messages to be deliverdgbtddstination CPs.
5.3. Message Format

The minimum fields a message may have are soudress] destination address,
destination CP address, and payload. To find tsérggion CP address, an online Google based
custom map for CPs may be consulted that indicdatespecific CPs deployed near a particular
geographic location. The aforementioned map cacohstructed temporally with the passage of
time if the CPs relay their GPS coordinates alortp the actual message.
54. Message Routing

The message forwarding in the presented approgmmnds on the opportunistic routing
protocol the CP is configured with. If a CP utiszencounter based routing, then source node
uses mobility pattern and schedules of buses,rwaia the packet to a CP that is located closer
to the destination. As shown in Fig. 5.1, therefate regions A, B, C, and X, each covered by a
CP. Buses relay messages between any two regidnsagh bus also visits a central bus station

denoted by X. The time of arrival and departurbuses is predefined. If a source node is within
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the communication range of CP, the node forwarsiagle copy of message to CP, to be relayed

by bus nodes.

Fig. 5.1. CP ardtecture with CPs connected through bus nodes.

However, if the source node is outside the comnatitio range of CP, then the source
node opportunistically forwards the packets tortbghboring nodes in an attempt to allow at
least one copy of message to reach the nearest tORhe final destination. The aforementioned
message forwarding can be accomplished by utiliamgresource efficient replication based
opportunistic/DTN protocol (e.gpray and Waif5.6]). The message copy is stored in a CP until
the message is relayed to the next mobile node asuipledestrian, car, or bus. As the CPs are
deployed on places where human mobility is higties,increases the chance of message
delivery to the destination. However, if CPs agpldyed randomly (e.g. in case of post disaster
scenario), then the GPS coordinates may be utilizélae calculation of minimum length routes
among the source and destination CPs. There metitdocase that a packet’s destination
information is not present in a CPs database.dhdase, the destination is searched on the other

CPs until the message TTL expires or all the CEsaarched.

78



55.  Simulation

The simulation tool selected for the evaluatiothaf proposed CP model is Opportunistic
Network Environment (ONE) simulator [5.7] that hiach features available for simulating
opportunistic networks with numerous mobility malé@lhe map of Fargo city is exported from
www.openstreetmap.org. Using open source GIS t&ERIUMP [5.8], the map is post-
processed and marked with various locations sush@ss, homes, offices, meeting points,
NDSU, and GTC bus station. Mobile nodes are dividéa several groups and assigned to
various locations on the map.
55.1. Scenario

For simulation, an area of 4 x 3 Kdfithe City of Fargo, ND, USA is selected as
indicated in Fig. 5.2. The buses are tagged witleraumbers and follow various schedules
available on the Metro Area Transit website [SE§ch bus route has stops at various locations.
At some of the stops the CPs are deployed, eadiifidd with an ID and representing a
geographic location within 100 meters radid®5is located in the central bus station where
each route bus arrives or departs from. Two manpgimg locations (West Acres and Walmart)
are covered bZP9andCP10through which route 15 bus runs. Moreov@pk,1, CP2andCP3
are installed at junctions that are not coveredmybus route and the messages are relayed
among the CPs with the help of public automobilée human mobile nodes are Wi-
Fi/Bluetooth devices that are distributed througrtbe simulation area. As an example of the
current scenario, iEP4receives a message to be relay&@d4 stores the message and waits for
route 13 bus to arrive. On arrival, bus 13 reldngsrhessage to the central bus station where the
message is received BP5 CP5checks the message destination in database at&d the

message to the final destination’s CP. If no suthyds found, the message is routed to all the
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CPs after setting a TTL, on expiry of which, thessage is deleted if not delivered (depending

on the routing protocol).
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Fig. 5.2. Checkpoint based simulation model in OMi&h circles representing the deplo
CPs.

55.2. Simulation Parameters
For the simulation, various combinations of parargewith range of values are selected.

The simulation world is Fargo city map. Table J8icates the selected simulation parameters.
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Table 5.3. Simulation parameters used in ONE.

Parameter Value

World size 4250 x 3900 m
Simulation time per run 43200s == 12h
Bluetooth Interface transmit rate 250kbps

Bluetooth interface transmit range 10 m

High speed interface type Broadcast Interface
High speed interface transmit speed 10Mbps

High speed interface range 100 m

Total number of node groups in the scenario 21

Nodes mobility model

Map based movement

Car / pedestrians nodes buffer size

250Mb

Car / pedestrians wait times 0,120s

Car / pedestrians speed range 0.5to 1.5 m/s
Car / pedestrian node interface Bluetooth
Message TTL 300 min

Bus nodes buffer size 500Mb

Bus nodes wait time 10,30 s

Bus nodes speed 7,10 m/s

Bus nodes interfaces Bluetooth and High speed
Cars nodes speed range 2.7,13.9m/s
Total Checkpoints 11

Checkpoints buffer size 500Mb

Checkpoints interfaces

Bluetooth and High speed

Events interval

45,55s

Message size range 500KB — 1MB
Total message generating nodes 78
Warm up period 1000 s

56. Results

To perform model evaluation, a series of simulaibave been performed in ONE
Simulator. A single simulation time is 12 hoursZ88s). The warm-up period is 1000s that is
required for each CP and mobile node to have seffiacnformation in database. The CP

architecture is evaluated fqa) message delivery rati¢h) buffer utilization, andc) average

message delay. The number of messages, CPs, @bty pattern, nodes speed, transmission
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range, number of messages, and buffer sizes aredliih each simulation run to analyze the
effect on average message delivery ratio, buffiézation, and delivery delay.
5.6.1. Effect of CP Deployment on Average Delay and Message Delivery Ratio

One of the most important and challenging taskésselection of ideal places for the
deployment of CPs. Several factors influence thecien of an ideal location [5.10], [5.11] and
the most important is the human meetings frequanheyparticular place. To examine the effect
of CPs deploymenCP1, CP7, andCP11are deployed at locations where meeting frequsencie
are lesser, as comparedd®4, CP5, CP6, CP&ndCP10that are located at shopping malls,
bus stations, and North Dakota State University GUID The simulation is run multiple times to
observe the effect of CP deployment on messageetgliatio. The results in Fig. 5.3 indicate
that forCP1, CP7, andCP11the message delivery ratio is lesser as comparé®s, CP6 and
CP9that are deployed considering the higher prokigmli meetings at these places. Therefore,

the CPs would have more desirable outcomes if hum@hility and meeting schedules are

exploited before deployment.
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Fig. 5.3. Effect of CP deployment on message dsfivatio.
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5.6.2. Effectsof the Number of CPson Message Delivery Ratio and Average Delay
The effect of the number of CPs is observed on agesdelivery ratio and average delay
in Fig. 5.4. The test is run by increasing numieCBs while keeping number of buses and

mobile nodes constant.
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Fig. 5.4. Effect of CPs on (a) message delivernyp ratd (b) packet latency.
From Fig. 5.4(a) we can see that message delie¢iyimproves by increasing number
of checkpoints in the area. In Fig. 5.4(b) we chseove that there is no significant decrease in
packet latency until CP 5 is deployed. When CPdeoyed on bus station, there is remarkable
decrease in packet latency as all the buses k&sitcammon place. Therefore, due to the increase

in human meetings at a common point, the packendgtalso decreases.
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5.6.3. CP Modd Evaluation with Human Mobility Pattern

A place, where human meeting frequency is highdrrapetitive, will be having higher
message delivery probability. In such case DTNinguprotocol such aBRoPHETwould be
more effective, as compared to the other routirggeols (e.gSpray and Waif5.6] and
Epidemic[5.12]) that do not consider the node encountetteipain making routing decisions.
To evaluate the effect of human mobility on DTNting, we identified some areas on the map
as meeting points, where people tend to visit mieguently, and deployed a few checkpoints
on these locations. Examples of such areas arg@stgpmalls and main bus station GTC. We
compared the performance of the three aforemerdiom&ing protocols in terms of message
delivery ratio and packet latency to investigate effect of human mobility on these protocols.
The simulation is run with same number of nodesafbthree protocols and the results are

indicated in Table 5.4.

Table 5.4. Performance of DTN protocols for humanbitity.

PROPHET Spray and Wait Epidemic
Delivery Ratio % 71.90 62.39 73.51
Overhead ratio 27.64 7.52 34.77
Latency Avg. (s) 5964.51 5609.17 6163.54
Buffer time Avg. (s) 10249.51 16347.72 10225.18

In Table 5.4, latency avg. is average message @ielaycreation to delivery, overhead
ratio is assessment of bandwidth efficiency, anifebtime avg. is average time the messages
stayed in the buffer at each node. It can be obsktivatEpidemicrouting has slightly higher
delivery ratio as compared RRoPHET This is due to the fact that Epidemicrouting, the
network is flooded with message copies such thet eade replicates the message received and

forwards to the next node. Therefore, the chanmeséssage to reach the final destination also
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increase. However, from Table 5.4 we can see tleasage flooding increases bandwidth
overhead ratio, and latencyHpidemicrouting as compared RoPHETandSpray and Wait
routing protocols. The buffer utilization time BRoPHETIs little higher tharEpidemicas the
message has to wait on a checkpoint before beiingeded to the next mobile node (e.g. bus and
car) towards the destination. The message deliaiy is minimum forfSpray and Waitouting
due to the limit on number of message copies im#teork and that leads to lower bandwidth
overhead. Therefore, from Table 5.4 we can condldeif human meeting schedules are
exploited in message forwarding, trefRoPHETrouting protocol surpasses the other two
protocols in better performance.
5.6.4. CP Modd Evaluation with RWP M obility Pattern

To further examine the effect of mobility on DTNutang protocols, simulation is
performed with a non-restricted Random Way Poitw/f mobility pattern. Such mobility
pattern may be observed in post disaster scenariese people are moving from one relief
camp to another and then back to disaster location®llowing a specific mobility pattern. The
evaluation of the three DTN protocols is perfornbgdandomly placing 11 CPs with fixed
number of mobile nodes having various speeds. Sithoul is run to study the effect of random
mobility on message latency, buffer utilizationgdanessage delivery ratio. Table 5.5 shows the

effect of random waypoint mobility.

Table 5.5. Performance of DTN protocols for RWP iikyb

PRoOPHET Spray and Wait Epidemic
Delivery Ratio % 6.53 6.19 7.51
Overhead Ratio 37.42 22.05 44.68
Latency Avg. (s) 8705.82 8426.67 8661.85
Buffer time Avg. (s) 11451.37 14184.71 13090.77
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From Table 5.5, we can observe that in random wiaypaobility, the message delivery
ratio is significantly dropped. This is due to taet that in random way point mobility, the
frequency of nodes travel is higher towards theeresf the map as compared to the map
boundaries. The aforementioned fact can be fuxéefied by looking at Fig. 5.5, which
indicates that the message delivery ratio is high€P6 and C8, in all three protocols. Because,
both the checkpoints (CP6 and CP8) are placed otosed towards the center of the map.

It can be further observed from Table 5.5 thatehemo significant difference in the
performance of the three protocols, asRR®PHETcannot make use of human mobility pattern

to forward messages towards the frequently vigtadts.
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6. OPPORTUNISTIC DATABANK: A CONTEXT AWARE ON-THE-FLY DATA

CENTER FOR MOBILE NETWORKS

This chapter is published in “Handbook on Data €entS. U. Khan and A. Y. Zomaya,
Eds., Springer-Verlag, New York, USA”. The authofghis paper are Osman Khalid, Samee U.
Khan, Sajjad A. Madani, Khizar Hayat, Lizhe WangrDChan, and Rajiv Ranjan,

6.1. Contributions

In this chapter, our primary focus is to addregsdéata replication problem in mobile
networks. In wireless environments, nodes are @bbgportunistically share their buffer storage
[6.1]. Such sharing of storage resources allowd$dhmation of on-the-fly data centers [6.2]. A
widely recognized way of balancing the demanddmfge space with bandwidth and battery
life is through data replication [6.3], [6.4]. Teatease communication cost, and increase data
accessibility, replication distributes additionapees of primary data items within the network.
Despite various natures of mobile networks, suamastly disconnected delay tolerant networks
(DTNs), and partially connected mobile ad hoc neksMANETS), the data replication
strategies in both the types of networks share smomemonalities. However, data replication is
more challenging in DTNs because of the abseneaafo-end connectivity paths between
source and destination nodes. In Chapter 2, wepted a brief overview of some of the well-
known strategies for replica placement in MANETH &TNs.

We present a cost effective data replication schibiaterelies on the collaboration of the
nodes within the network to make replica placendegisions. The proposed scheme intends to
perform replica placement in a way that not onbtniets the number of replicas in the network,
but also improves the average delivery probabilye compare our scheme with the selected

replica placement approaches in DTNs, and testrily@osed model on real-world and as well as
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synthetic trace datasets. The rest of the chaptnganized as follows. Section 6.2 presents the
network model. Our proposed replica distributionesoe is presented in Section 6.3, and finally
Section 6.4 presents empirical setup and results.

6.2. Network Model

We consider a DTN of a set Nfmobile nodes. As indicated in Fig. 6.1, we divilde
network nodes (represented by filled circles) ihi@e types(a) producers(b) consumers, and
(c) relays. Producers hold the original data item,clwimay be a measurement from a sensor
network, or any piece of information generated pde, such as emergency information, and
weather information. Consumers are the informatemjuesters that are the nodes that act as sink
for the information item. A relay node holds repboof data items on behalf of other nodes. The
nodes are able to change their roles in our padaticietwork scenario. Moreover, when two
nodes make contact, both nodes make use of indxartbl signaling to exchange their locally
maintained network state information. In the foliog; we elaborate few assumptions we make
for the proposed model.

Each mobile node has a unique network identifiee producer nodes generate the data
items, with each data item having a unique idenfitgdata item can have many replicas in the
network. For simplicity, we assume the same meaoingessage’ and ‘replica’. A producer
can directly serve the consumer node on makingoaortunistic contact, or the replica can be
relayed through relay nodes towards consumers. Whemodes make contact, the sender node
may retain the replica, or delete it from localfeufafter transferring the replica to the neighbor
Such decision is based on probability measuresatbaliustrated in our model. Few relay nodes,
such as buses, may follow scheduled mobility pastewhile others, such as pedestrians may
follow scheduled, as well as random mobility mod&lse nodes share only a portion of their

buffer capacity for the opportunistic data stordgereover, during the opportunistic contacts,
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the mobility of nodes restricts the amount of desasferred due to limited contact duration.
Therefore, we formally state the replication probi@ DTNs as'Given a limited duration
opportunistic contact between two nodes, what caplmust be selected for exchange between
the nodes, so that they contribute in the globainogation of network overhead and message

delivery percentage?The most frequent notations used in the chapeeslaown in Table 6.1.
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Fig. 6.1. An example of heterogeneous DTN network.

Table 6.1. Notations and their meanings.

Notation Meaning
mk Messagek
Tk Life time of kth
Tk Time thekth message spent waiting in buffers
Tk Message transmission time

Random variable indicating the additional time thidt

k
X message might wait before delivery
T Time when a node makes contact with another node.
j Mean inter-contact time between nadendj computed at
Z; (™) timet
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As discussed earlier, in DTNs, nodes cannot mairgkbal network state. Therefore, we

assume that nodes exchange network informatiomgltine opportunistic contacts. We denote
the contact durations and inter-contact times betvaany two nodesand; asCl.j andlij,
respectively. Each node is maintaining a 2-tuptestseries information given asCl.j [t],

Il.j [t] >, wheret = 1, 2,3, ... w. The parametan is the index of last entry in the time-series data
6.3. Hybrid Schemefor Message Replication (HSM) for DTN Environments

In this section, we present our scheme for messagieation in DTNs. We call the
scheme as hybrid, as we are also considering tesmmnal presence of MANET like
environments in our network, when for example,fgbdestrians stay closer to each other for
longer durations, or the nodes are communicatirily miad side base stations.

Suppose a nodiehas a message*that is requested by node At a time instant, the
nodei makes contact with a relay nogeAt this occasion, the nodéhas to decide whether or
not to replicaten® on nodg in a hope that nodemight carry forward replica to node The
nodei will replicatem”on nodgj, if and only if, nodg’s utility value is greater than nods
utility value for the replican®. The aforementioned utility value depends @ythe probability
that a node will deliver message to destinatiomteethe life time expiry of message, ghdithe
probability that the node will stay in contact wdhmessage’s destination for a duration greater
than time required to transfer the message. If ficddnibits greater values of (a) and (b) as
compared to the nodethe replica will be transferred to nofjeand subsequently nodevill
delete the replica from local buffer. Otherwisaeaftransferring replica to nogethe node will
retain local copy of replica. The motivation behswth approach is to remove the excessive
replicas from the network to conserve storage bgipf replicas on nodes that appear to be

more central in the network.
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Let TX be the time the messagé has spent waiting in buffers since creation, Bhde
the life time of messaga”. We denotel* to be a random variable representing the additiona
time thatm®*might wait before reaching destination. Then, wingemessage'’s utility as the
probability that the message will be deliveredh® destinatiorl before the life time expiry
[6.5], given ad/* = P[Tk + X* < T}]. This can also be represented as:

Uk = P[X* < TF — TE]. (6.1)

In (6.1), we need to find the probability that dotdial wait time of replica is less than
remaining life time. As the message is transfeamgt during an opportunistic contact, the
probability in (6.1) is same as the probabilitytttitee node will make a contact with nodg,
before the expiry of message. We call such proltlais utility value of nodé for the current
message:

Uk, = P28 (1) < T} - T]. (6.2)

In the above equatio (r) is mean inter-contact time between nodaadd at timer.
The network nodes are cumulating their inter-cdrtiate information in the form of bounded
time-series data. Moreover, a few nodes (such ssf)ware following partially scheduled
mobility patterns. Therefore, we can apply expoiasmoothing to forecast the value of inter-

contact time between the nodend nodel, as given below:

-1

Z8(t) =1 —-a)~'-s[0] + Z a-(1—a)~ "1 1%k] (6.3)

k=0
In the above equation, the paramétet a < 1 is time-series smoothing constakft[k]
is inter-contact time of nodewith d at time instank, s[t] is the base value of recursion, and
Z2(7) is the forecasted inter-contact time néaith d. As the mobile devices are limited in

memory and processing, we cannot store unlimited-8eries data of the past meetings.
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Therefore, we set a limit on the maximum numbegrdfies stored per node in the form of a
sliding time windowl < t < w, where the entry at = w represents the latest meeting. The
more recent entries within the randed] must be given higher weightage than the others to
ensure information freshness. Therefore, we agsiggressively decreasing weights to the older
entries, such that, as the entry becomes oldenitibutes less to the overall forecasting. The

base case value of recursigm] computed at time instamtis given as:
It - j] (6.4)

The above equation is the simple moving averadates$tn entries of the inter-contact
timesI? between andd. Let T/ be the time required to transfer a messa§javhen two nodes
make contact. Assuming that neighbour node hagift buffer space, the message will be
successfully transferred to neighbour if and ohthé contact duration of sender and receiving
neighbour is greater than the required messagsféraiimeT*. Therefore, we compute the
utility Vif‘d = P[T} < ¢%(r)], indicating the probability that the message éltransferred
between nodé andd in contact duratio?. To compute the aforementioned probability, we
need to find the estimated value of contact dunatioetween nodésandd. By replacingC)
with I? in (6.3) and (6.4), we get the forecasted valueooitact duratio€? (t). Fig. 6.2
illustrates the flow of our replica placement scleé#i$M

As reflected from Fig. 6.2, the procedure attenbpt®move the redundant copies of
messages from nodes’ buffers, and attempts toaéaeplicas on more appropriate nodes in

terms of contact durations and inter-contact timilk the destinations.
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Fig. 6.2. Flowchart of proposed replication scheme.

6.4. Empirical Setupsand Results

In this section we present the performance anabfdise presented replication scheme
HRM. Simulations are performed with the Opportunibtetwork Environment (ONE) simulator
[6.6] by using synthetic mobility model as wellraal connection traces of participants of the
Infocom 2005 conference [6.7]. The synthetic mbpithodel consists of several independent
groups of mobile nodes including pedestrians, huses, and access points. Some mobile
nodes, such as pedestrians, follow random molpétyerns, whereas buses follow scheduled
mobility patterns. The car nodes follow paths repreing roads on map. The parameters
considered for simulations at@) nodes’ range 50-10Qh) world size 4250x3900n(¢) time
per simulation run 12Hd) transmission range 201f€) message size 500KB-1MHE) message

time to live (TTL) 500min, andg) buffer size 10-100MB. The world size is taken &aempough
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to ensure that nodes are far enough to reprede@miNaenvironment. Th&lRM scheme gives
best performance for values@f= 0.6, w = 50, and n=10 determined empirically under
numerous simulation runs. In the following subsattve discuss the performance metrics
considered for evaluation.
6.4.1. Performance Metrics
To evaluate the performance of the presented scheeneonsider the following three
performance metricga) message delivery ratif)) latency, andc) overhead.
" M essage delivery ratio is the percentage of messages deliverecessfidly. The
maximization of message delivery ratio is the mgjoal of any DTN replication scheme.

Message delivery ratio is calculated as

M
1
Message Delivery Ratio = MZ Ry . (6.5)
k=1

In above equatiorR, = 1 if and only if message is delivered, otherwige= 0.

. M essage latency is the total time spent between message creatiomelivery to the
destination. The average latencies of messageshaetto the overall latency measure
of replication scheme. A scheme must minimize leydsut without compromising

message delivery ratio. The latency (in secondgivisn by

N
1
Latency average = Nz Receive Time),, — Creation Timey, . (6.6)
k=1
. Overhead is the approximate measure of the consumptioranéitvidth, energy, and

storage by a replication scheme due to messagatissions. We calculate overhead as

relative estimate of number of message transmission
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Total msgs relayed — Total msgs delivered
Overhead = - . (6.7)
Total msgs delivered

The overhead ratio indicates extra transmissionsdoh delivered message.
6.4.2. Related DTN Replication Schemes

To perform comparisons, we selected the followrlgted replication schemes for
DTNs: (a) PROPHET]6.8], (b) Epidemic[6.9], (c) Randon(6.5], and(d) Wave[6.10]. These
schemes utilize various strategies and heurigticglicate messages in the network. As the data
routing in DTN is based on data replication duopgortunistic contacts, the aforementioned
schemes can also be called as the routing schemB3 Ns.
6.4.3. Simulation Results

Simulation results with synthetic mobility modekandicated in Fig. 6.3(a)-Fig. 6.3(c),
whereas Fig. 6.3(d)-Fig. 6.3(f), present the sitnutaresults with real-world connectivity
traces. As reflected in Fig. 6.3(a)—Fig. 6.3(ck HEM scheme outperforms the rest of the
replication schemes in terms of delivery ratio amdrhead. This is becauskM accurately
forecasts future contacts by performing online gsialof limited sized time-series data of
previous contacts with varying qualities. On thetcary, thePRoPHETprotocol performs future
contact estimation on the basis of number of castathout considering the time varying

pattern of contact duration and inter-contact times
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The Epidemicscheme maximizes the flooding to improve messatjeaty. However,
higher flooding causes increased overhead and higassage drop rate in resource constrained
network scenarios. AlternativelldSM performs selective message replication resulting i
decreased overhead (Fig. 6.3(c)) and higher dglragio (Fig. 6.3(a)). Th®andonscheme
forwards single message copy to any randomly ssdantighbor, whereas tNéavescheme
performs replica flooding in a controlled manneespite that both the aforementioned schemes
are resource conservative; they exhibit low pertoroe thatHSMas reflected in Fig. 6.3. This
is because these schemes do not utilize the padinggatterns to perform a node’s utility
estimations.

The simulation results with real-world connectivitices indicated th&tSM performed
better for delivery ratio and overhead. As refldate Fig. 6.3(d)—Fig. 6.3(f), theSMscheme
precisely utilized the meeting patterns of confeeeparticipants to perform future contact
forecasts. The latency metric Bpidemi¢c RandomandWaveis better thamdSM (Fig. 6.3(e)).
However, this is at the expense of their low del@tio. MoreoverHSM exhibits minimum
overhead as comparedR&®oPHETandEpidemic despite being multiple copy replication
scheme.
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7. APS: AN ADAPTIVE PROGNOSTIC MESSAGE ROUTING SCHEME FOR
DELAY TOLERANT NETWORKS

This paper is submitted iIEEE Communication Letter$he authors of this paper are
Osman Khalid, Nasir Ghani, and Samee U. Khan.
7.1. Overview

DTNs are characterized by frequent disruption/dglapnd lack of end-to-end
communication paths [7.1]. Applications of DTNslimde disaster response systems, vehicular
networks, wild life monitoring, and inter-planetasgmmunication [7.2]. In such applications,
the network stays disconnected most of the time thare may not be contemporaneous end-to-
end paths available between source and destinaddes. Therefore, the conventional routing
protocols, such as AODV and DSDV [7.3] specificalsigned for mobile ad hoc networks
(MANETS) are inapplicable for DTN like scenariosed$éage routing in DTNs is challenging
due to the inherent uncertainty about network domas that vary with time [7.4]. To exchange
messages, nodes have to rely on opportunistic cisndaring which a node decides whether or
not to forward/replicate the message to the neighbde. Such decisions are typically guided by
the desire to control the number of message repiicthe network. There is no guarantee that a
message eventually reaches the destination, asd¢bgsage may be dropped due to network
congestion, or life time expiry, yielding a bedoef delivery service. Therefore, it is quite
difficult for a DTN protocol to achieve a 100% mags delivery.
7.1.1. Maotivation

Several works, such as [7.4], [7.5], [7.6], [7.7¢ &dased on message flooding where a
node carrying a message replicates the messageepnaher node encountered. Flooding
improves message delivery probability and reduatsty. However, with limited bandwidth

and buffer space, flooding may result in an incegascongestion and message drop. To control
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the message flooding, DTN protocols, such as [843]a limit on maximum number of replicas
per message. In such protocols, the message deflioo firstn encountered nodes, after timat
nodes can deliver the message only to the destmdiy doing so, the protocols [7.3], [7.8]
cause lesser overhead (number of extra transmsspEmmessage). However, reduction in
overhead is achieved at the expense of reducededgliate and increased latency. A few DTN
protocols perform conditional replications sucht thanessage is replicated on neighbor node
when several conditions are met [7.1], [7.5], [7F]r instance, Lindgreet al.[7.6] proposed a
probabilistic routing protocol that replicates assege on a neighbor node, if and only if, the
neighbor has more frequently encountered with thesage’s destination. However, the protocol
[7.6] imposes no limit on the maximum number oflicgs per message and is not mobility
cognizant. Single-copy forwarding schemes were @geg that relay a single copy of message
towards the destination without making replica®].7Single-copy routing schemes are resource
conservative as they utilize minimum buffer spacé bandwidth. However, such schemes may
also result in an increased delay and message asdpe node having original message may
never reach the destination.
7.1.2. Contributions

In light of the above discussion, there is stfirassing need to develop resource efficient
routing protocols for DTNs that must also exhilsttbr message delivery rates. This chapter
addresses the critical area of resource efficieam@&TNs and proposes a routing scheiis
that effectively restricts number of message reglin the network to reduce the overhead. For
many years, human mobility has been a focus of Ed@¢arch, and it is proven through
numerous experiments that humans tend to followtitage schedule of meetings at similar
places and times, and that the human mobilityeslistable following a power law distribution

[7.2], [7.10]. Songet al.[7.11] have shown through their experiments thahéw mobility is
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93% predictable. Therefore, our proposed routifgeseAPSlearns from nodes’ mobility
patterns and temporal contacts to make preciseqigts about future contacts. TA®S

protocol reduces the number of message replictkeinetwork by relaying messages to only
those nodes that are more likely to make contatt messages’ destinations. The proposed
scheme utilizes time-series forecasting on nodastact patterns to determine optimal
spatiotemporal routes for messages in a time vgngipology. TheAPSprotocol can be
efficiently utilized in real-life applications tagseminate delay tolerant data, such as electronic
newspapers, weather forecasts, movie trailerstrandl routes information in various parts of a
city. Simulations conducted with two city-scale riibyppscenarios indicated that t#PS

protocol shows better performance in terms of nggssialivery and overhead.

The rest of the chapter is organized as follow® f&twork model and assumptions are
discussed in Section 7.2. In Section 7.3, we ptabe®\PSprotocol design. The simulations and
results are discussed in Section 7.4. Finally,i8eat.5 presents the conclusions.

7.2. Network Model and Assumptions

The network model we considered is a hybrid DTNststimg of mobile and static nodes
[7.3]. Messages can only be transferred betweemtwies when they are in each other’s
transmission range. During an opportunistic consender node may or may not replicate a
message on a neighbour. A message may be direttieked if the destination node is
encountered, or relayed through intermediate nddedes have limited storage and message
transfer opportunities. Moreover, a few of the nmbiodes, such as buses, follow schedules in
mobility.

7.3.  APSProtocol Design
We consider a DTN witilN number of mobile nodes. When a nadeakes a contact with

a nodg at timet, the node records the contact details that are stored irichme of a finite time-
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series. Each data item of the time-series represeadntact quality denoted $ig(t). TheAPS
protocol quantifies the contact quality with tadalration of contact, such that, the contacts of
greater durations are assigned higher qualitiesci$pally, greater the contact quality between
any two nodes, the higher will be the message exggharobability. With the passage of time,
each nodé cumulates a bivariate time-series data consistirggntact time and contact quality
for every other node in the network. To predictifetcontacts, thAPSprotocolutilizes the

Auto Regressive Integrated Moving Average (ARIMAQdel [7.12] on the time-series data
stored by a node. The ARIMA model is widely appliedforecasting purposes and is generally
represented as ARIMA(d,q). The three argumengs d,andq provide the order of the three
components of the model name(g) autoregressivep) integrated, an@c) moving average

component. The ARIMA model is represented as:

p q
1- ) ¢ B")-Yi-(t) =c+ (1 + )0 Bk)-s(t), (7.1)

whereY;;(t) = (1 — B)%S;;(t), and the paramet&is the lag operator that shifts back the time-
series datd;;(t) by one period, given a- S;;(t) = S;;(t — 1). The parametek;;(t) applies
differencing of orded on the time-series to make the data stationargredsp, andé, are the
parameters of autoregressive and moving average paspectively. The parametdt) are
error terms assumed to have zero mearcas@ constant.

The left hand side of (7.1) represents the autoessgon model of order, denoted as
AR(p). The auto-regression model forecasts the timesegariableS using a linear combination

of past values of the variabfe given as:

Sij®) =c+ ¢y St =1 + ¢y - St —2) + -+ Py - Si(t —p) + (D).
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The right hand side of (7.1) represents the moaweyage part of the ARIMA model,
denoted as MA{). The moving average part utilizes past forecastre to predict the time-series
variable, represented as:

Sij®)=c+e®)+6,-e(t—1)+0,-e(t—2)++6,-e(t—q).

In the following subsections, we describe the wssiphases involved in forecasting the
future contacts of nodes using ARIMA model.
7.3.1. Data Stationarity Tests

The ARIMA model requires that the time-series datest be stationary. A stationary
time-series has statistical properties that dovaog over time. More precisely, the series must
not be exhibiting any trends or seasonality, andtrhave constant mean and variance over time.
If the time-series is not stationary, then thegnag¢ed tern(1 — B)¢ is introduced to applgith
order differencing on the data to make it statignashere thelstorder differencing is given by:

Siit(®) = S;j(6) = Syt — 1) = S;;(0) — B~ S;5(8) = (1 — B)* - S;; ().

To examine whether or not the nodes’ temporal aista real DTN scenarios exhibit
stationary behaviour, we performed analysis ongeahectivity trace of UMass DieselNet that
is an experimental bus based DTN [7.13]. The datasesists of a series of contacts among
buses at various time intervals. We randomly setenobde pairs from the trace and utilized R
statistical tool [7.14] to perform the data anadyJio check data stationaritynit roottests are
conducted on the time-series data of nodes’ contaalities. For that purpose, we utilized
Augmented Dickey-Fuller (ADF) test available in R&s forecastpackage [7.14]. If thp-value
of the ADF test is greater than 0.05, then thesstis not stationary and differencing is
required. The-valuewe obtained on applying ADF test is 0.01 thatcatks stationarity of the

dataset. Fig. 7.1 shows the plot of nodes’ corgaatities versus time.
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The unit root tests are also performed on real eotivity trace of Infocom 2005

conference [7.15], and results indicated that theet exhibits stationarity.
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Fig. 7.1. Mobile carries are exchanging messagesaking opportunistic contacts.

7.3.2. Computingp, d, and q

To compute the values pf d, andg we appliedauto.arimafunction [7.14] of R software
on the time-series data. Moreover, as shown inFR.autocorrelation function (ACF) and
partial autocorrelation functions (PACF) are alppleed on the dataset that produced the order
of model as ARIMA(2,0,2).
7.3.3. Forecasting

Suppose a source noslhas a message for a destination nidénodes makes a direct
contact with nodel, then the message is delivered to the destinadtrerwise, on making
contact with a relay nodeat timet, the nodes decides whether or not to replicate the message
on the relay on the basis of the following ARIMA model equation

Ssa(T+1) = 1 Ssq(T) + ¢ - Ssa(T = 1) + 6, - (T) + 6, - (T - 2). (7.2)
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The above equation is obtained by substituting/ieesp=2, d=0, =2, ¢c=0,t=T+1,
ande(T + 1) = 0in (7.1), wheres andd represent the nodéesindj, respectively. The values of
the parameterg, andf, are determined using maximum likelihood estimafiti?2].
According to (7.2), the nodereplicates the message on relayf and only if, the relay has a

better forecast of future contact with the destoratl that is represented 8s;(T + 1) >

S (T +1).
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Fig. 7.2. ACF and PCF plots of nodes’ contact danast

7.4. Simulation Results and Discussions

To evaluate the performance, thBSprotocol is implemented in Java. Two large-scale
DTN scenarios are developed in the ONE simulatdr§]7 The Scenario-1 consists of a map of
area 4,500 m x 4,000 m, whereas Scenario-2 cotestitumap of dimensions of 8,200m x
7,000m. Both of the scenarios consist of indepengerups of mobile and static nodes, such as
buses, cars, pedestrians, and access points. Buses specific routes following their
respective schedules. Table 7.1 presents some @bthmon simulation settings used by the
DTN scenarios. The simulation parameters are szldotclosely depict the real-world

scenarios.
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Table 7.1. Simulation Settings.

Parameter Value(s)
World size Scenario 1: 4,500 meters x 4,000 meters, Scena8@@0 meters
x 7,000 meters
Slmulatlon 12 hours
time per run
Radio Speed:250Kbps (2Mbps),
Interface Range: 20 meters
Message Size: 500KB-1MB,
Interval: 1 per minute,
TTL: 500 minutes
Buffer size 10-100MB (maximum buffer size that a node is wdlto allocate
for message distribution)
Buses: 8,
Nodes Cars: 2(_),
Pedestrians: 72,
Total: 100 (any node can be source as well asrdasin)
ggg: daverage Buses: 10-35 km/hour, Cars: 10-50 km/hour, PedesriO-5 km/h
MOb'"tY City environment
Scenario

Based on several empirical tests, the optimal nurobentries per node for time-series
data is set as 50. The performance metrics comslder simulations ar@) message delivery

ratio, (b) latency average, ar{d) overhead.

1

Message delivery ratio = i Ry . (7.3)

s

Message delivery ratio is the percentage of messdgjevered successfully. In (7.3),

is total messages created, @d= 1 if messagen,, is delivered, otherwisg, = 0.

M

1
Latency average = ﬁz Receive Time, — Creation Time, . (7.4)
k=1

In the above equation, parameléris the total number of messages received. A

message’s latency is the total time spent betwezssage creation and delivery to the
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destination. Overhead indicates the number of @sdresmissions for each delivered message,
and is given as:

Total msgs relayed — Total msgs delivered

Overhead = (7.5)

Total msgs delivered

To evaluate the performance, thBSprotocol was compared with four state-of-the-art
routing schemes namelfa) PRoPHET[7.5], (b) Epidemic[7.4], (c). Randoni7.4], and(d)
Wave[7.6]. Simulation results with the Scenario-1 afected in Fig. 3(a)-Fig. 3(c), whereas
Fig. 3(d)-Fig. 3(f) present the simulation resoltScenario-2. As shown in Fig. 3(a)-Fig. 3(c)
the APSprotocol outperforms the rest of the routing sceemn terms of delivery ratio, latency,
and overhead. It is because &RSprotocol accurately forecasts future contactsdaygsming
online analysis of time-series data of previoust&ctis. On the contrary, tiRRoPHETprotocol
performs future contact estimation on the basisushber of contactsstead of duration of
contacts. Flooding in thiépidemicprotocol results in greater message drop due tebuf
overflows in resource constrained networks. In @stf theAPSprotocol performs selective
message replication and utilizes the least amdur@sources that results in improved delivery
ratio. TheRandonprotocol forwards single-message copy to any efréimdomly selected
neighbour, whereas, tMg#aveprotocolperforms controlled flooding. Although both of the
protocols are resource conserving, they show I@eeiormance thaAPS This is mainly
because the aforementioned protocols do not cangéd contact patterns to estimate message

routes.
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As shown in Fig. 3(d)-Fig. 3(f), even by increasihg map size, the performance of the

APSprotocol is better than rest of the schemes, pgpthat theAPSprotocol is scalable. The

latency metric of th&pidemicprotocol is better than thPSprotocol (Fig. 3(e)), but at the

expense of th&pidemicprotocol’s low delivery ratio. Moreover, tiPSprotocol exhibits

lower overhead as compared to BlROPHET, WaveandEpidemicprotocols. Fig. 7.4 indicates

that despite being multiple-copy replication schetheAPSprotocol has lower hop-count

average than the rest of the routing schemes.
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8. OMNISUGGEST: A UBIQUITOUS CLOUD BASED CONTEXT AWARE

RECOMMENDATION SYSTEM FOR MOBILE SOCIAL NETWORKS

This paper is published IEEE Transactions on Services Computifhge authors
of this paper are Osman Khalid, Muhammad Usmani8hétan, Samee U. Khan, and
Albert Zomaya.
8.1  Overview

The advancement in communication infrastructureesasy access of e-commerce and
mobile social network applications, such as AmaEatebook, Twitter, Foursquare, Instagram,
and Path, have shifted the main problem of infoiomatetrieval to the filtering of pertinent
information [8.1]. The increase in the sheer volwhdata with ever-growing networking of
devices and Web services has made it quite difffoulusers in general to find and access
relevant personalized information [8.1].

Recommendation systemsre developed in 90s to address the challengastomatic
and personalized selection of data from diversecsedoaded sources of information [8.1].
These systems apply numerous knowledge discovehyigues on users’ historical and
contextual data to suggest information, produgctd, services that best match the user’s
preferences. A good example of recommendation ysfer e-commerce applications is
Amazon.com, where customers receive personalizeamamendations on a variety of products.
8.1.1. Maotivation

In the past few years, several social networkingiegtions, such aSoursquare
Gowalla,andGoogle Latitudevere developed for mobile devices. These applinatalow
users to perform a “check-in” at venues that ugesisto share experiences in the form of a

feedback otip [8.2], [8.3]. Moreover, these services collect &iotd huge volumes of users’
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geospatial check-in data [8.2]. Based on the data&ed by the mobile social networking
applications, several location-based recommendaiistems were developed in the recent years
[8.1], [8.2], [8.3], [8.4], which recommend venuesusers closely related to their preferences. A
major research challenge for such systems is tergénreal-time venue recommendations for a
given individual from a massively diverse datadeisers’ historical check-ins [8.1], [8.3], [8.4].
To generate an optimal recommendation for an iddisi, the system must simultaneously
consider the following factor¢a) personal preference) past check-ingc) current context,
such as time and location, aftt) collaborative social opinions (other individugiséferences).
The objective of this chapter is to efficiently doypthe above mentioned factors to
achieve real-time, optimal recommendations for esntiowever, there are several barriers that
negatively affect the performance of real-time rao@endation process primarily driven by the
complexity and cost of processing the large-scata dets [8.1], [8.2]. To scale efficiently, the
recommendation system requires large-scale congughtand storage resources. This chapter
describes an approach that leverages cloud inficiate and service-based interfaces to process,
mine, compare, and manage large-scale datasetsaleiime recommendations in a scalable
architecture.
8.1.2. Research Problem
Several works [8.1], [8.2], [8.3], [8.5], [8.6] haapplied collaborative filtering (CF) to
the venue recommendation problem. These CF-basegtwvecommendation systems work by
matching a given user’s venue check-in record thighother users stored in a user-venue check-
in matrix. The objective is to find a subsetsahilar userswho share similar tastes and patterns
on the basis of visited venues compared to a gigen These similar users share their

judgments and opinions on venues, and in retuensystem provides useful personalized
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recommendations for a given user. However, thedotg unsolved problems of the previous

work affect the performance of current venue recemaer systems:

. Data sparsenes# user may have visited only a limited number efwes, and as a
result there would be a sparse user-venue cheglainx. The data sparseness causes
poor calculations of the nearest neighbor set efsusased on similarity with current
user, which results in the loss of accuracy of neo@ndations. Moreover, sparseness of
matrix results into the suboptimal performance ahgexisting venue recommendation
systems [8.3] that directly apply collaborativediing based models on user-venue
matrix. Apart from venue recommendation systenmsdidita sparseness also negatively
affects item recommendation systems, such as Ameaon where active users may
have purchased below 1% of the items [8.1], [8.2].

. Cold start.The cold start problem in many existing CF recomadagion systems [8.3],
[8.7] usually occurs when recommendations are tgdmeerated for a user that is new to
the system. This is because the system does netsudficient record available for new
user to perform similarity measures. Insufficiestards results in the zero values of
similarity computations, which degrades recommedondajuality.

. Scalability. The memory-based CF recommender systems useatisgy data to apply
simplistic approaches of computing similarity bedweisers or items (such as
neighborhood based CF [8.7], [8.8], [8.9]). Howewerch systems also suffer from
scalability issues, as they need to parse thous#ngsers at real-time in user-venue
matrix that is neither efficient nor scalable. Tweess the scalability issues, a few
proposals applied model based CF. The model-bagwdaches apply data mining and
machine learning algorithms to find patterns basethe training data to reduce the size

of the user-item rating matrix [8.1], [8.2]. Howeythere is an inherent tradeoff between
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reduced dataset size and recommendation qualdyd#taset is reduced for fast online

processing, then it may result in the loss of rem@mdation quality.

The immediate repercussion of the above listecessithe suboptimal performance in
CF-based recommendation models. Therefore, it roape feasible to solely use memory-based
CF model for venue recommendations.

8.1.3. Contributions

We propose a novel hybrid cloud based venue recomation framework,
OmniSuggestyhich combines memory-based and model-based agmesa¢ CF on a cloud
framework to generate optimal recommendations.diivess the problems of data sparseness
and cold start, our framework utilizes a model-bladgperlink-Induced Topic Search (HITS)
[8.10] approach to selepbpular venuefor each category (e.g., Food) under multiple Is\wé|
hierarchies (e.g., Asian Foed Chinese Food). Such a methodology enables ouopeabcloud
basedOmniSuggedramework to generate recommendation for a newthseugh the
collaborative opinion oéxperienced users (hub®) computing (memory-based) similarities in
preferences of new user and the experienced hubs.

Apart from recommendations for an individual use, propose a method to generate
venue recommendations for a group of usefsi@ndssharing a common interest. As an
example, a group of friends may require the recontragon for “Chinese Food”, and they want
to attend dinner together. Moreover, unlike thestxg systems [8.4], [8.5], [8.6], [8.7], [8.11],
[8.12] when generating recommendation for a whobeig, our system also considers the real-
time effect of various parameters, such as distaheach group member from a set of top
venues, the road traffic conditions, and otheraties that may be encountered in reaching a
venue. To reduce the computational cost duringtmeed processing, and ensure its 24x7

omnipresence, the cloud bagethniSuggedramework follows Software as a Servi&aaS)
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approach through a modular service based archie=ag@ne of the major advantages of this

approach is that th@mniSuggedramework can scale on demand as additional \irzhines

are created and deployed. In summary, the conioisiof our work are:

. A recommendation framework is presented that cossisocial computing, and
recommendation modules, on cloud infrastructureemgsure scalability in terms of
processing, storage, and parallelization. We comtiie model-based and memory-based
CF algorithms into a hybrid approach that signifitg improves the recommendation
accuracy compared to previous venue recommendaligonithms.

. To resolve the issues associated with data spaseamed cold start, the proposed
framework models the users’ data by utilizing HIM&thod to extract experienced users
and popular venues for multiple categories. A var@ Ant colony algorithm is applied
to generate a set of venues for a user.

. The cloud base@®@mniSuggesframework performs group recommendations by using
combination of collaborative filtering and grouptistaction principle. The group
satisfaction mechanism is implemented as to depiService Level Agreement (SLA)
between th@©mniSuggestramework and the end users. The SLA ensures ringspon
of on time, high quality recommendations, propordite to the real-time changes (such
as, traffic conditions) that occur when group mermsbmove towards recommended
venue.

. We have carried out experiments on our internalrtiioeloud setup running on 96 core
Supermicro SuperServer SYS-7047GR-TRF systemseXperiments are conducted on
real-world dataset frorRoursquare
The remainder of this chapter is organized asvalorhe system architecture is

described in Section 8.2. In Section 8.3, we pretenmodel for individual and group
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recommendations. Section 8.4 presents the expeaat@emresults. Related work is discussed in
Section 8.5, and Section 8.6 concludes the chaptiera summary and a description of the
future work.
8.2.  System Architecture

Most of the existing recommender systems are baseentralized architectures [8.1],
[8.2], [8.3], [8.8], [8.9], [8.12]. Such systemsearot scalable enough to handle large volumes of
geographically distributed data. The increasing Inemnof subscribers in mobile social networks
puts forth new challenges for centralized systé3ngh systems must simultaneously consider a
user’s preference, social context, and past actidren generating online recommendations.
Therefore, to address the scalability issues, Wigaia decentralized cloud based approach.
8.21. Major Components

The following are the major components of the psgubcloud based framework:
User profiles.TheOmniSuggestramework maintains users’ profiles that contaformation
about the venues visited by users. Venues arearaed into various types based on the dataset
analysis of location-based services, suck@assquareandGowalla For example, in Fig. 8.1,
the parent category “Food” has two sub-categotiésval-1:A (e.g., Asian Food) ard (e.g.,
American Food). Catego# is further having three sub-categories at levélse.g., Chinese
Food) A; (e.g., Thai Food)andA; (e.g., Indian Food). The categories at Level-1 laawkl-2
are associated with venues. The arrows from usdrsate the number of check-ins performed
by users at various venues.

The cloud base®@mniSuggesramework (Fig. 8.2) maintains the categoriesawo
levels to ensure the finer granularity of informati Moreover, each check-in record has the
following fields: (a) user identification(b) venue name and identificatiofc) venue location

(GPS location, city, and countryj) time at which user performed check-in at a veaue(e)
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parent and sub-categories a venue is associatedwger profiles are geographically distributed
on the basis of cities. As depicted in Fig. 8.1,gach geographic region, the framework

maintains a record of the sets of venues checkég-irsers under each category in the

hierarchy.

Level 1
Categories

Level 2
Categories
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Fig. 8.1. Venues are linked with various categoaemultiple levels. The lower half indica
users who have performed check-ins at venues. Aevamay be linked with multiple categories.
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Fig. 8.2. A top level architecture of the Cloud-®a®©mniSuggest framework.

Top-K Users and Venueshe proposed framework employs HITS method [8.X0user
profiles to generate experienced users and popdaues for multi-level categories
under each parent category. The HITS approach @iggr popularity ranking to a user
if (s)he visits a set of venues that are most feedjy visited. Similarly, a venue is ranked
higher, if it is most frequently visited by expereed users. As an example, the
framework maintains user-venue popularity setsciiegories: “Chinese Food”, “Asian
Food”, or just “Food”. The framework also computssnilarity graphs among
experienced users in various categories’ hieraschide similarity graphs computed
during offline phase are later utilized during aelirecommendation phase. The HITS-
ranking for users’ and venues’ is stored in thenaork’s geographically distributed
databases. Such a methodology further helps disivib and parallel execution of

processing tasks on cloud framework as each plasdolsal sets of users and venues.
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Recommendation Modul&@he recommendation module performs parallel exeonutif
venue recommendation requests generated tacewe useror agroup of friends. The
recommendation request query consists of curremd,tGPS location, and category for
which the active user requires tbpvenue recommendations. For a given category type,
the recommendation framework pulls out similaritamgh of topE experienced users,
whereE is the number of experienced users. A modifiegiear of Ant colony algorithm
and collaborative filtering is then applied to geate an optimal solution in the form of
venues that best match an active user’s prefereMdle generating the ranking of
venues for the group, the recommendation framewatsik takes into account the effect of
real-time factors (speed, distance, and road-trafinditions). Therefore, to ensure the

SLA is properly abided by th@®mniSuggestramework, the venue at top of the ranked

list will be the one that satisfies all of the gpomembers.

TheOmniSuggedramework runs HITS method and computation of elgpeed users’
similarity graph as periodic batch processing jobsisers’ profiles. These jobs are meant to
refine data through preprocessing and prune thgnifisant entries. Moreover, such jobs can be
scheduled to run during off-peak load hours inaasigeographical regions to reduce
unnecessary computational burden on the cloud nodes
8.2.2. Cloud Services M apping

As reflected in Fig. 8.3, OmniSuggest frameworkdwk a SaaS approach through a
modular service based architecture. The SaaS ftiven®p layer of the cloud stack, offering
real-time personalized recommendations to a usgraups of users, while abstracting
underlying implementation details [8.13]-[8.15].dds access the service using thin clients, such
as mobile devices, and are typically unaware opthesical locale of the hosted service. The

framework ensures that the SLA is maintained byegaing real-time context-aware
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recommendations that increase the global satisfadti group members on the recommended
venues. Moreover, the configuration allows the #amork to scale on demand as additional
virtual machines are created and deployed to hahdlsporadic requests from the users.

Single User Group

8 888 OmniSuggest Framework
7

N
Context-Aware Real-time
Recommendations

Social
ReFa"‘t””'d Filtering/ Ant
actors Colony based
Top Hubs and Users
Authorities Profiles
- J

Cloud

Fig. 8.3. OmniSuggest framework’s cloud serviceppirag.
8.3.  Proposed Recommendation Framework

In this section, we discuss in detail the propadedd based venue recommendation
framework,OmniSuggestn terms of functionalityDmniSuggedramework has two main
modulesi(a) an offline processing module ati) an online recommendation module. The
offline processing module runs periodic jobs to-precess the check-in data. Data pre-
processing involves two phaséa) popularity ranking of users and venues, @vjcksimilarity
graph creation among popular users. The onlinemetandation module is responsible for
generating the recommendations for an individual as a group of friends. The detailed
functionality of the above mentioned modules i€dssed in the following subsections. We use
the following notations in rest of the chapt@g:(hubs similarity graph for categocy, N
(number of venues recommendéd)set of all venues)/ (set of all users), ang, (number of

check-ins of a usero a venu&), andv; (total number of check-ins of usgr
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8.3.1. Offline Preprocessing
8.3.1.1. User Venue Popularity Ranking
This subsection presents the methodology of asgygmopularity ranking to users and
venues for various category hierarchies in a ggabgedocation. The HITS [8.10] mechanism is
utilized to perform the ranking for producing a séexperienced users and popular venues. In
Fig. 8.1, suppose we want to calculate the hubaanigority scores for categoAyunder the
parent categorffood First, we need to create a user-venue matrixdtegoryA. Let the matrix
be represented &¢,, havingU rows andv columns. Le{h,] and[a,] represent the hub and
authority score matrices, respectively for a catgdo The following formulas compute the hub
and authority scores [8.10].
ay = MI X hy. (8.1)
hy = My X ay. (8.2)
If we usea;™ andh;™ to represent the hub and authority scoreghaiteration, then
following are the equations for generating the kot authority scores.

a;™ = (MY x My) X a;" 1>, (8.3)

h§™> = (M, x M§) x hgm™1>, (8.4)

The insight into using the HITS method is to geteeeasubset of users, who have higher
experience of visiting popular venues, and a sutifse¢nues, that are being frequently visited by
the experienced users. We call such subsets asgp@uthorities and experienced hubs. The hub
and authority scores are computed as batch procggdis separately for each of the individual
category. Therefore, the scores, and the iterafignsary from category to category. The
following are the number of iterations requirecctmverge the scores for the sample categories

presented here, as an example: American Food: iGti6ese Food: n=51, and Thai Food:
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n=945. We do not store users/venues with very [dWScores in the database of experienced
users and popular venues. This helps in avoidimgcessary computations during the online
recommendation.
8.3.1.2. Hubs Similarity Graph Creation

This phase creates similarity graphs among expegtensers (hubs) under the various
predefined categories. The idea is to generatéveonie of like-minded people who share the
similar preferences for various venues they visd igeographical region. The graphs constructed
in current phase will be made available for onlleeommendation process that utilizes a variant
of Ant colony algorithm to find an optimal path tve graph. Such a path carries a collective
opinion about venues by experienced users wholswar@st similar to an active user.

The similarity computation between two users inlthbe similarity graph is performed by
applying the Pearson Correlation Coefficient (P@Q). The value of PCC ranges between -1
and +1. Positive values indicate that the simyagitists between two users, with highest
similarity at 1, whereas negative PCC values mé#amshoices of the two users does not match.
PCC is computed by using the following formula.

Sxes, Wix = ) (Vjx — 5)

= _ _\2
\/Exesij(vix - vl)z ersij(vjx - v])

)

sim(i, j)

(8.5)
where

Sij = {x6V|vix 0NV, # O}.
In (8.5), the similarity between two usérand;j is computed only for venues that are
visited by both of the users. Moreover, an edgeeaated between the two users in the graph, if
their PCC value is positive. Considering only tlesifve PCC values may result into a very

sparse similarity graph among the experienced pgdran the user-venue check-in matrix is
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already very sparse. To address the sparsenessassaugment similarity computation with the
conditional probability. The conditional probabjiltomputes the likeliness that a venue will be
visited by both usersandj. Moreover, it depicts the amount of interest (@nfadence) showed
by both users in venues commonly visited by thelhe fbllowing equation is defined to
calculate the weight of an edge between two users.

( sim(i, j) if sim(i,j) >0

wi; = otherwise (8.6)

P[Ul' N U]] % 1
P[vj] 1+ ZxEV]- |vix - ijl

whereV; is the set of venues checked-in by ysém (8.6), positive values of similarity are given
preference over conditional probability. Moreowdnominator value of the conditional
probability postulates the edge between two usebe ta directed edge. The additional sum
factor in denominator is to decrease the valuenafitional probability to keep it lower than
similarity. The region-wise similarity graphs amahg experienced hubs for various categories
are stored in the database for the online recomat@mdprocess.
8.3.2. Online Recommendation for Single User

In this subsection, we present the online recomaigonl framework that applies a
variant of the Ant colony approach on a graph gfezienced users (hubs) to generate a set of the
most popular venues not previously visited by divaaiser. Most of the popular collaborative
filtering techniques, such as the ones we usedvaluations, are greedy based [8.1], [8.2], [8.4],
[8.5], [8.9], [8.16]. Intuitively, the greedy bashkduristics are very efficient, but they may not be
very effective. The main limitations of such apprioas are that they provide recommendations
solely based on the opinion of the users who argt similar to the current active user. However,

a user who is most similar to the active user natyhave necessarily visited most of the new
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venues that we want to recommend to the active Gisexddress such limitation, we used a
meta-heuristic that had the capability of backtimagkFor that purpose, we chose the Ant colony
approach, where we applied a pheromone updategyrttiat iteratively updates pheromone
values of the graph edges. As the iterations pahdbe pheromone concentration increases on
the edges that lead towards the nodes that a@nhothe most similar nodes to the active user,
but also provide maximum contribution of the ventres needs to be recommended to the

active user. Algorithm 8.1 illustrates the procedatf the online recommendations.
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Algorithm 8.1. Ant Colony based Venue Selection

Input: Active user:s, category, region:R
Output: A setlV’’ of topV venues visited by experienced hubs similar tovaaiser.

Definitions: t = Current lteration, hax = maximum iterations, jdneighbor set of node
(i, j)=sim(i,j) if 6;;=1 A i = s, otherwisez(i,j) = w;; (from (8.6)), where5;; = edge cour
between i and j(i,j) = 1/4;; and,Z;= number of required venues found at a node j.

t<0;a«s;6«1; level, « 0; edges, « @
G, < getHubSimGraph(C, R)
N, « {x:G.|sim(a,x) > 0}
k < |N,| number of ants
tet+1
tabu, < a
SortN, in terms of f(a, j) X n(s,j)],j € N, (descending)
for eache € N, do
S« Vv & V)
10: M < M.append(e,S)
11: tabuy « tabu, U {e}
12: edges) « edges; U {t(a,e)}
13:end for
14:if venueCount(M) = N then
15: goto Line 25
16:else

17: Vj € N,, selecta « j, such that we haverg max [T(a,j) xn(s,j) X %] AN; # QA
Vg € N;j| g & tabuy
18: if No any such node found in Step 17 then

19: go to Line 25

20: dse

21: 6 « 6+ 1; level,.append(a)
22: goto Line 7

23: endif

24:end if

25:evaporate_deposit_Pheromone()
26:if t < t;q, then

27 Resetabuy,level,, M, and set « 1
28: gotolLine4

29:else

30: V' =aggregate(M)

3l:end if

32:return V'
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1.

Initializations (Line Line 3):

o

The algorithm takes as input the following paramei@) identification of the
active user(b) the category for which the active user wants reoendations,
and(c) geographical region where the user is currentigtied. For example, an
active user §” is interested in “Chinese Food” and located ia lew York City.
In Line 1, various data structures used by therdlguo are initialized. The graph
of experienced hubs for the specified categorygaafraphic region is retrieved
from the database in the Line 2. In Line 3, th&diof the active user are created

with the subset of graph nodé4;l based on the similarity formula (8.5).

Iterative solution construction (Line-#ine 29):

o

The algorithm increments the iteration counteafter creating the ants, and
inserts the entry of the active user in the tabtudf antk (Line 4—Line 6)

The neighbor node$\f) are traversed in the descending order basedeon th
existing pheromone quantity on the links, multiglley the edge count between
the active user and neighboring node (Line 7—Line 8

On the traversal, only those venues are collectad the neighboring nodes that
were not previously visited by the active user €.8).

The collected venues are appended in a ma#)xI(ine 10). The visited
neighbor, as well as, the pheromone on the edg@iied in the respective lists
(Line 11-Line 12).

The Line 14 checks whether or not the required rermobvenues have been
collected. Two cases may ariga) venue count has reachidand(b) required

venue count has not been achieved.
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(a) If the venue count is achieved, then the contradgmthe Line 25, where
the pheromone is updated on the graph edges (destgsibsequently). After that,
it is checked whether or not, the maximum numbeteoétions has been reached
(Line 26). In the case when the current iteratioant ¢) is less than the
maximum allowed iterationd,(s,), then the data structures will be reset (Line 27)
and the control jumps to Line 4. Otherwise, if tst condition at Line 26 is
false, then this means that the maximum numbell@fed iterations is
completed, and the venues are ranked using thegafgwn function (discussed
later subsequently).
(b) If the required venue count is not achieved, timencontrol jumps to Line
17, where a node is selected amongst the neigleb@d3. The criterion for the
node selection is that the maximum pheromone mausteposited on the link
towards selected node, and the selected node dasatkimum number of venues
available for the active user. If no such nodeist, then this means that the ant
has reached the terminal node of the graph. Subs#guthe control will jump to
Line 25. Otherwise, the selected node will be sed aew temporary active user
(a) and appended in the list (Line 21). Moreover,dgblge count will also be
incremented by one in Line 21. From Line 22, thetad will jump back to Line
7, and the procedure will be repeated iterativelyl the maximum number of
iteration limit is reached.

Pheromone Update (Line 25):

o] The pheromone is updated in two stgp¥evaporation an¢b) deposition.
Evaporation is performed equally on all the edddb® graph. However, only the

edges leading to the nodes that provide the redjyeaues are deposited with the
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pheromone. The pheromone deposit depend&pthe existing quantity of
pheromone between the ngdend active uses; (b) number of venues returned
by the nodg, (c) the hop distance between the npded the uses, and(d)
average check-ins of noglat venues retrieved in current iteration.

o] For the iteration, the pheromone is evaporated on each edge at, @irzta by
(1 -p) x7;5(t — 1), wherep is a constant that represents the evaporation rate

The amount of pheromone deposited on an edge e @is:

8

Hr=]1 Tr,r+1(t - 1) Zj Yixes' Vjx

P T N S s
sj u Zaxes’ Vux

wherel’[fsz"1 7, r+1(t — 1) represents the product of pheromone depositeeadges

between nods and nodg that ared; units aparts’ = {V;\V;}, andu € tabu,. The

paramete% indicates the ratio of the number of venues cbated by a nodg to the total

number of the required venudd)(The right most term in multiplication indicatiée
average number of check-ins performed by the jugear iteration) at venues not visited by
an active uses. For every iteration, the values of the pheromatntame(t — 1), and the
nodes that were selected as temporarily active(ayat each level of the grapére stored
in the data structuredgeg andlevel. The aforementioned data structures provide the
necessary values required to update the pheromahe icurrent iteration. Therefore, the
aggregate quantity of pheromone updated at theeierationt is given by:

735(8) = (1 — p) X 75(t — 1) + AD;(t) (8.7)

4. Aggregate venues provided by the best nodes @an
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o] On completion oftyax iterations, the venues are ranked and sorted én th
descending order to generate tdpenues to be recommended to the active user.

The following equation is used to rank the venues.

_ D Tsu (£) X Uy
Ranky = =5 2@ 88)

In (8.8),xis the venue to be ranked, the paramegteithe active user node, ang, is the
number of check-ins performed by useat venuex. The parameter,, (t) represents the
guantity of pheromone between naignd useu afterty,axiterations.

It is noteworthy to mention that by using (8.8), @& observe that the quantity of
pheromone accumulated on the edges after multgriations has a significant effect on the
ranking of the venues.
8.3.2.1. An lllustrative Example

Suppose that by using Algorithm 8.1, we have tomsmend ten venues to an active user
s under a specific category. The venues to be remrded are the ones not previously visited
by the active user. As a first step, the graphxpeeienced users under a given category will be
retrieved from the database as depicted in Figag.Zhe similarity of the active user will be
computed with all of the nodes in the graph. Newdiwill be created between the active user

and only those graph nodes for which the similastgreater than zero.
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Fig. 8.4. (a) Hubs similarity graph retrieved fralaabase, and (b) connectivity of active 1
with hub similarity graph.

By setting the active ussras the root node, the Breadth First Search (BR®)egdure

will be applied to place the immediate neighborghefactive user (for which similarity is

greater than zero) at a distance of afy¢ € 1), as depicted in Fig. 8.4(b). At a distance of two

(6sj = 2) the neighbors of the friends of the active uséirbe placed, and the process continues

until the whole of the graph is traversed. As iadka in Fig. 8.4(b), each edge has a weight, and

the edges connecting the nodes at the same letlet distance are intentionally labeled blank

due to the fact that they are not traversed duhegxecution of Algorithm 8.1. Suppose that the

ten venues that we want to recommend to the agsee are shown as column labels in Table

8.1. The entries in each of the columns reflectnilmaber of check-ins performed by the hub
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users at the visited venues. The last column ineficte total number of venues visited by each
of the hub user out of the required ten venuesth®rexecution of Line 8-Line 13 in Algorithm
8.1, the ant collects the venues from the neighbbtise active user. The number of venues
collected from each of the neighbor at€1), e,(3), ande, (2). (Despite the fact that, is the

most similar to the active user, the nedevas able to produce only a single venue.) The
execution jumps to Line 17, where the best of tisgad neighbor nodes is selected based on the
pheromone value, and the number of venues condddoy the neighbor node. Consequently, we
get the following values for each neighbeyf0.9x1x(1/10) = 0.09]e,[0.7x1x(3/10) = 0.21],
ande,;[0.3x1x%(2/10) = 0.06]. Here, will be selected as the new roa) fode because of

having highest the value. Line 8—Line 13 will beeettted again and the venues collected from
the neighbors are,(2) ande;(3). On the execution of Line 17, the following valss

obtained for each of the neighbeg]0.8x(1/2)x(2/10) = 0.08] ane;[0.5%(1/2)%(3/10) = 0.075].
Thereforeg, will be selected as a new root nodg After Line 8—Line 13 are executed, the
venues collected from the neighbors &r€3). The nodes; does not have any further neighbors
(Line 17).

Table 8.1. Number of times required venues ar¢éeddry each hub user and total check-
ins at the venues.

V1 |V3| V4| V7| V11 |V12| V22| V25| Vg4 |Vss5
e; |4]-]-] - - - - - 7 -

e | - |-1-1-"-1-1-1-1"-1-*
es | - |29012[47] - | - | - - | - |-

I\JOOI\)I—‘OOOOOI\)\N

132



Table 8.2. Pheromone update on edges.

(- 2): i (1t -1 fFr’c?rt\:r: 533“2%\/?3 nijf”“(t -1| Z/N % AD;(6) 7;()
0:-909_92 ‘;(SOZI): 0297 s—e, 0.3 2/10 11/245 0.3%(2/10)x(11/245)=0.0026 0.2996
0=.9o9'9>(<) rx(s0 e74)= 0.603 s—e, 0.7 3/10 43/245 0.7x(3/10)%(43/245)=0.0368 0.7298
0:.90?92 rx(s0 gs): wso1 s — e 0.9 1/10 6/245 0.9%(1/10)%(6/245)=0.0022 0.8932
0='909.9><<) Tx(eol.fi) 0.396 o0
0='909.9><<) Tx(%l.l%:) 0.099 0.0
0=-90?9>; 1>—<(e(‘)4.’8 esz) 0792 S —es—eg 0.7x0.8=0.56 2/10 33/245 | (0.56/2)x(2/10)x(33/245)=0.0075|  0.7995
0=-909'9>; 1;((6(‘)45 ‘33:) 0405 | S—e—es 0.7x0.5=0.35 3/10 88/245 | (0.35/2)x(3/10)x(88/245)=0.0188|  0.5139
0='909.9><<) Tx(i)s.'zes:) 0.198 o198
0='909.9>(<9 T><((§JZ.'767=) 0.693 000
009 % Tx(gf'ze;) 0108 | S~ ei—es—e; |0.7x0.8x02=0112 3/10 | 64245 | (0.11213)x(3/10)x(64/245)=0.002 02009
1'9035 (:36.837)= 0.297 0297
0='90.>;; (:36231 0.396 0208

Therefore, the condition of Line 18 will becomedrand the control will jump to Line
25, where the pheromone values on the edges wilpbdated. The process will be restarted from
the actual root nodes); and will be repeated fdi.x iterations. Table 8.2 shows the update of the
pheromone values after the first iteration. It barobserved that after the first iteration is
completed, the pheromone on the edges; has been decreased; whereas, the pheromone value
is increased on the edge-e;. Therefore, after several iterations(s), the current pate—e,—
es—e; will be replaced by new patlsse,—es—e; ands—es—e;—es, which will also increase the
number of venues collected for the active user.
8.3.3. Group Recommendation

The existing work on venue recommendation systgerserally, focuses on
recommending venues to individual users based mopal preferences [8.1], [8.2]. However,
the process becomes quite challenging when theraysiust provide recommendations to a

group of friends [8.11], [8.17]. To achieve an ol level of satisfaction for the whole group,
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the recommendation system must be able to conghim#re consent of all of the group
members [8.23]. However, it is not a simple taskrimduce recommendations that satisfy every
group member, as an individual’s context (e.g.edpdistance, and road traffic conditions) may
vary with time [8.11].

To address the above mentioned issues, we proposeeaefficient and effective
approach for group recommendations. The proposeaidasedDmniSuggesramework also
takes into consideration the effect of various-weatld time-varying factors, such as speed,
distance, and traffic conditions, on the group ree@ndations. In the following subsection, we
present a motivational example that highlightspgrablems faced by a “traditional” venue
recommendation system which generates recommendatiithout considering the
aforementioned real-world factors (e.g., speedadt®, and road traffic conditions). Later, we
present a technique to circumvent the anomaliexcaed with the traditional venue
recommendation systems.
8.3.3.1. A Motivational Scenario

Suppose, a group of five friends are at differeartgpof a city and they decide to get
together for dinner. They plan to meet at a Chimestaurant. One member of the group, known
asgroup leaderjnitiates a group query that consists @j: deadline by which they must arrive at
the venue, anfb) identifications of group members. The recommeintiaglystem recommends a
venue for the category “Chinese Food” based omdipeilarity ranking calculated for the venue
(Section 8.3.1.1) within the geographical regiori1$, [8.23]. Out of the five, two group
members are located far away from the recommeneedey and are unwilling to undertake a
long journey. One member is stuck in a traffic jamthe road leading to the venue and is unable
to reach before the deadline. Only the remainingtvembers will be able to reach the venue

before the deadline. However, they also drop thiain on finding out that the other members are
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not coming. Despite that recommended venue is pastlar the system still could not satisfy
the whole group as each member had time-varyingegbthat subsequently developed into
constraints.

The above scenario depicts our motivation behintsickering real-world parameters
(e.g., speed, distance, and road traffic condijionthe venue recommendation process. When
generating recommendations, our proposed framenairknly considers the highly ranked
venue (using HITS method) for a specific categbuy,also takes into account the current
context of each of the group member. In this fashgovenue is reported on top of a list by
considering the popularity and the mutual consétii@group members. In the following text,

we present our group recommendation approach.

Algorithm 8.2 Group Recommendation
Input: Group querya,, threshold time”, categoryC, regionR

Output: Recommended venue for the group.
1: Q < Retrieve group members from G,
2: V'« getTopVenues(C,R)
3: for each membemn € Q do

4: for each venue € V' do

5 va —T_ |Locy,—Locy|
1+Speedy XRoad Condyy
Ty X Uy X Ay, if Ty, >0
6: va:{mv mv w mv.
[m]lv] 0, otherwise
7 end for
8: end for

9: Rank[v] « aggregate(P)

10: return max (Rank)
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Fig. 8.5. A ste-wise procedure for group recommendations.

8.3.3.2. Proposed Group Recommendation Approach
Formally, we state the group recommendation prolasrfGiven a list of venues V in a
geographic region R, and a given category C, recentdra venue to a group, such that, it
maximizes the group’s satisfaction, under each neemimdividual context.”Algorithm 8.2
presents our proposed approach that is furthestifited using Fig. 8.5
1. Initializations (Line 1 and Line 2)The algorithm takes as input the group query bgnt
the group leader, which includes the list of groo@mbers, deadline by which members
must reach the venue of a given category, andebgrgphical region (Fig. 8.5, Step 1).
Line 2 of the algorithm retrieves a set of top vehbased on their pre-calculated HITS
score from the database. The top venues retrievedfa the given category and

geographic region (Fig. 8.5, Step 2 and Step 3).

136



Real-time processing for each member (LirkiBe 8).In this step, the recommendation
framework collects each group member’s context,hsas higher current location,
distance, and road condition leading to the topuesnin the next step, for each member,
the approximate time in reaching the top venuesalsulated (Line 3-Line 5). This
approximate time is subtracted from the deadlifje &nd then multiplied with number of
check-ins of a memben at a venuey, and authority scorg,, of the venues (Line 5 and
Line 6). The multiplication result is stored in thmatrix [P],,x». If the parametef,,,, at
Line 5 turns out to be lesser than 0, then the wsémot be able to reach the venue
within the deadline period, and that venue is deapp

Venue recommendation based on group satisfactiomegL9-Line 10).In this step,
venues are ranked by aggregating the values of ixmdf],,,. The following
aggregation functions are utilized [11Average Least Misery Most Pleasure and
Approval Voting(see Step 6, Fig. 8.5). At time intervala venue gets a top ranking, if it
satisfies every group member. For example, if fmeaue most of the group members
have higher ratings in the matfi®],,«,, and we utilize theAverage aggregation
function,then the venue would be recommended as the besbj@genue.

A venue that is placed on top of the recommendgdtitimel, may not stay at the same

position at time intervall{ + At), whereAt is the increment in the initial tim&). Therefore, to

ensure that the SLA is maintained, GmniSuggesramework generates a second

recommendation only in adverse conditions, wheswagroup members are unable to reach the

recommended venue before the deadline. Such adwansigions may arise due to road blocks

and/or severe weathers. In this way, the frameworkbines venues’ popularity, group

members’ individual preference to a venue, reaktoonditions, and mutual consent of all of the

group members to generate the venue recommendations
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8.3.4. Time Complexity

In this section, we present time complexity anaygiOmniSuggedramework. We
compute the time complexity of offline pre-processiasks, as well as online recommendation
modules of Algorithm 8.1 and Algorithm 8.2.
8.3.4.1. Offline Time Complexity of HITS Method

The OmniSuggedramework utilizes the HITS approach to rank tbeylar venues and
experienced users for each category in a geograpieigion. The time complexity of HITS
method isO(m x (h'? + v?)), where the parametet is the number of iterations required by the
HITS method to convergé, represent the total number of users in a regiodpds the number
of venues in a category. For a total @ftegories, the time complexity@§l x m x (h'? +
v?%)). Moreover, the computations of similarity graphsoag experienced useksfor each
category, take® (I x h?). Therefore, the total time complexity for offlinesgprocessing is
O(l x ((m x (h'? + v?)) + h?)). Here, as we havi > h, so we compute the complexity as
O(l xm x (h'? + v?)).
8.3.4.2. Time Complexity Analysis of Algorithm 8.1

The Line 3 of Algorithm 8.1 computes the activerisssimilarity with a set of
experienced users. The complexity of the simildrityction forv venues i9(v). Therefore,
total time complexity of Line 3 i®(h X v). The worst-case scenario is that an active user’s
similarity evaluates to be greater than zero foha@xperts. The creation &fants (Line 4)
takesO (k). The Line 25 updates pheromone trail with compe®i(h). The Line 7 takes a time
complexity ofO(h x log h) to sort theh experts (neighbors) with respect to their pheroason
trails. In the worst case, Line 8-Line 13, numbateyations ish, and the Line 7—-Line 24 are

also iterated foh times, unless the stopping criterion is met (LiB¢ Zime complexity for both
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the pheromone update phase (Line 25) and aggregation (Line 30) i (h). We

conglomerate the overall time complexity of Alghrt 8.1 to be a8 (h X (v + h X log h)).

The number of ants generated at Line 4 equalsstodimber of neighbors. Therefore, we use

k = h in calculating time complexity. The complexity s#quential execution of Algorithm 8.1,
without considering the parallel execution of aiggjiven asO(h X v + 3h? + h? x logh +

2h) =0(hxv+ h?xlogh) = 0(hx (v + h xlogh)). By executing the ants in parallel, the
time complexity of the Algorithm 8.1 is further rgzkd to0 (h X (v + log h)).

8.3.4.3. Time Complexity Analysis of Algorithm 8.2

The time complexity of Line 3 - Line 8 &(g X v), where the parametgris the number
of group members, andis the number of venues. The complexity of Lingige 10 isO(v).
The overall complexity of Algorithm 8.2 in the sexptial case i® (g X v). In parallel case, the
complexity of Algorithm 8.2 is reduced &(v).

From the above analysis, we can deduce that stgnifispeed up is achieved by the
underlying cloud infrastructure that facilitateastic parallel executions. Therefore, when the
user volume is high, greater number of cloud naa@esbe deployed to scale-up the performance,
and conversely, scale-down.

8.4.  Performance Evaluation

In this section, we perform the experimental eviaueof the proposed cloud based
OmniSuggedramework. For the comparison purposes, we saldbefollowing existing
recommendation techniques (defined in the nextesilos):(a) Popularity based ranking [8.9],
(b) Social-based ranking [8.9F) User-based collaborative filtering (UBCF) [8.13,2], and(d)

SVD matrix factorization [8.2].
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8.4.1.

Related Recommendation Techniques
Popularity based rankingpproachassigns popularity to venues depending on the
number of heck-ins. The rarfkfor a venue is computed s= Y.;cy vy, Wherev;, is

number of visits of a usérto a venue.

Social-based Rankingpmputes the venue popularity ranking by utilizeogial network
profiles of users. For a given user, the populasftg particular venue depends on the
number of check-ins performed by friends [8.9].

User-based Collaborative FilterindJBCF) methods, such dsNearest Neighbotk{

NN) [8.2] measure the similarity within the usgusdfiles to find the extent to which
users visit the same venues. Based on the sinegitNN set of a given user is
computed. The nearest neighbor set is utilizeceteetate rating for a venue by using the

Yxeu Stm(a,x)(Vyj— Tp)

Yxeu sim(a,x)

following relationshipf, ; = 7, + , wherer;, is the mean number of

check-ins by a usex.

Singular Value Decomposition (SVDtrix factorization method [8.2], maps users and
venues to a joint latent factor space of dimenditynh A useru is associated to a row
vector represented ky, € R/, and a venue is associated with a column vector given
by g, € R'. A user’s estimated rank for a venuis represented &, = ¢, X p,. To

estimate the values qf, andp,,, the regularized- squared-error is minimized m th

, 2 :
system given b¥ = min Yo »ex(fuw - @5pu) + A(qul? + Ip,|2) wherer, , is the
rating of useu for venuev andA controls the regularization extent, and is deteediby

cross validation.
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8.4.2. Aggregation Strategies

We selected the following aggregation strategiesqmted in [8.11] for the group
recommendationga) Least Misery(b) Most Pleasure(c) Average Satisfactiomnd(d)
Approval Voting Theleast miserystrategy selects the rating of a user who hamthenum
ratings for venu& within the group. The group ratirt&R,, of venuev is calculated a6R,, =
min(ru_v). Themost pleasurstrategy selects the rating of a user who hastie@mum ratings
for venuev within the group. The group ratir@R,, of venuev undermost pleasurés
represented aGR,, = max(rulv). Theaverage satisfactiostrategy computes the group rating

GR, of venuev by taking the average of the ratingg,{ of the group members. The formula for
group average satisfaction is givenGdy, = % X Zﬁﬂ(ruﬂ,). Theapproval votingrates a venue

based on counting the group members who have satibgve a certain threshold. For example,
counting the number of group members that can raa@nue before the deadline

The aggregation strategies are applied with selextbemes, such &/D POPULAR
and theOmniSuggedrameworkto aggregate the rankings of venues for the gréig 8.6(d),
(e), and (f)). The venue selected for recommenddtia group in any of the above mentioned
aggregation strategies is the maximum valuéR)f among all the available venues, given as
GR = max(GR,).
8.4.3. Results

In this section, we present the evaluation resiltee proposed cloud based
OmniSuggedramework. As th@©mniSuggedtramework takes into account the real-world time
varying parameters, the traditional evaluation naactms, such as Min-Cut and Map-Reduce
cannot be applied to measure the performance. fidnerenstead of finding out the convergence

times of the proposed algorithms, we emphasizdeffiact that the suitability of SLA is more
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critical than other intrinsic issues that are intaot in supercomputing, high performance
computing, and data intensive computing environsighf 8]. In theOmniSuggedramework,

we have based the SLA on the satisfaction of usihsthe recommended venues, instead of the
response time as in traditional frameworks. Itageworthy to mention that because
OmniSuggestust respond to real-time traffic information, iésponse time would be superior

to other systems, due to the parallelization inpiteeesses. However, to quantify such a measure
is not meaningful for the problem at hand.

We have carried out experiments on our internalrtilogloud setup running on 96 core
Supermicro SuperServer SYS-7047GR-TRF systemsdatseflow process between the end
users and cloud is depicted in Fig. 8.5. To perftrenevaluations we used tReursquare
dataset [8.4] that consists of 425,680 tips pravioe 49,027 users for 206,416 venues in New
York and 327,431 tips given by 38,134 users inAngeles. The users’ check-in history is split
into two portions(a) training set (80% of the records) afid testing set (20% of the records).
In the following subsections, we discuss the evadnaesults for single user case and group
recommendations.
8.4.3.1. Evaluation of Single User Recommendation

The Algorithm 8.1 reports the best performancepfer 0.01 andt,,,, = 100 that are
determined empirically through numerous runs oryimardatasets. The valug,,, = 100 is
large enough as data is already refined in therpoessing phase. To evaluate the single user
recommendation effectiveness, we use the folloykrgormance metrics [8.1{a) Precision,

(b) Recall, andc) F-measure. Precision is defined as the ratio mecorecommendations (true
positives {p)) to the total number of recommendatiotps+ false positivesff)). The correct
recommendations count is computed as follows. Fpven user, the ratings of randomly

selected venues are set blank. Thereafter, thenreemdation framework generates tdp-
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venues for the user. The correct recommendatientharnumber of venues appearing as the
intersection of the aforementioned tNprenues, and the venues that were set blank for
evaluation. Precision gives the average qualityhefindividual recommendations, and can be
represented as:

tp
tp+ fp’

Precision = (8.10)

Recall is defined as a ratio of hit set size totthal size of test set, and is the measure of
the recommendation coverage by a recommendatidarsygiven as:

tp
tp + fn’

Recall = (8.11)

F-measure is the harmonic mean of precision arallrec

F B 2 X Precision X Recall (8.12)
“measure = Precision + Recall '

As reflected in Fig. 8.6(a) and Fig. 8.6(b), ®mniSuggedrameworkachieves the best
performance in terms of precision and recall, comegp@o the rest of the schemes (each of the
plot shows the average of 100 random runs). THietause th®mniSuggedramework
provides a more effective solution towards the datsity problem by augmenting similarity
computations with conditional probabilities andubdating the check-ins data into sub-
categories. The reduction in data sparsenessseaswh increased recommendation precision.
The well-known collaborative filtering techniqueich asSVDandUBCF [8.1], [8.2], indicated
low performance in terms of precision and reca# thuhigher data sparseness. Moreou&CF
is not shown in plots as it failed to produce aesuits on the highly sparse dataset of
Foursquareconsidered in our experiments. The popularity-baggatoaches, such 8©CIAL

andPOPULARperformed better than the collaborative filterieghtniques. The reason is that
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popularity-based approaches do not utilize simijfavomputations in their models. Therefore,
these approaches are not significantly affecteddts sparsity problems. The recall of
OmniSuggedramework is the highest féd=20. This indicates that the framework provides a
greater coverage in terms of recommendations. Heky@wrease in coverage comes at the cost
of lower precision values. The tradeoff betweercigien and recall is depicted in Fig. 6c.
Compared to other schemes, the cloud b&sadiSuggesramework indicates better
performance in terms of the F-measure. The imprévatkasure performance is due to the
higher values of precision and recalNst10. The performance ®RANDOMremains low for all
the aforementioned metrics. This is becaBENDOMsimply shuffles the candidate set of
unvisited locations for each user, without perfargnsimilarity computations.
8.4.3.2. Evaluation of Group Recommendation

The group recommendation is evaluated by emplofirdollowing aggregation
strategies, as elaborated in [8.1(&). Average(b) Least Misery(c) Most Pleasureand(d)
Approval Voting To imitate the real-world physical factors, wengeated a random set of
parameters for speed, distance, and road condiffensnsure fairness in results, all of the
recommendation models are evaluated with the satnef sandom parameters. (Each of the plot
shows the average of 100 runs.) The traditiondbpsiance metrics, such as precision and
recall, cannot be utilized for group based reconaagans. This is because, the groups are
created on the fly and groups may have differembyer of users, which makes it impossible to
store the group specific history in a databaserdfbee, we utilized a performance metgiobal
satisfaction (gs[8.17] to evaluate the group recommendations:

gs(G) =S — o (8.13)

whereG represents the group,< gs(G) < 1 is the global satisfaction for all of the group

membersS is the mean, and, represents the standard deviation of satisfactiba.global
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satisfactiongs provides a measure of similarity within the dattion level of all of the group
members. An individual's satisfaction lev&ln the group is defined by the following formula
[8.17]:

1.0,if esl(GR, list,) < 03;
0.9,if esl(GR, list,) < 04;
0.8,if esl(GR, list,) < 06;
S(u,G) =1 0.6,if esl(GR, list,) < 08; (8.14)
0.4,if esl(GR, list,) < 10;
0.2,if esl(GR, list,) < 12;
L0.0, if esl(GR, list,) > 12.

In above equation, the parame@R represents the recommendation generated for the
whole group, andist,, is the recommendation list for each of the indiniduser. The Expected
Search Lengtheil) function maps the satisfaction level of an indial to the recommendation
generated for the whole group. The function ass&ggssale within rangg 1] to the index of a
group recommended venugR) in an individual member’s venues’ lidigt, ). The greater value
returned byes! function means a group recommended venue is apgeanongst the preferred

venues' list of a given member.
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Fig. 8.6. Performance evaluation results: (a) greni (b) recall, (c) Faeasure, (d) grot
consensus effects, (e) group size effects, andff@ct of recurrent recommendations
global satisfaction.

Fig. 8.6(d) depicts global satisfaction resultsdaroup of five members. The improved
performance of proposed framework for all aggregasitrategies is because of the measures

taken by th@®mniSuggedramework to handle the data sparseness SMi@scheme being
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sensitive to data sparseness, does not exhibdramily in the personal opinions of group
members. Therefore, the increased standard daviatioie decreases the overall satisfaction
score forSVDin all of the aggregation strategies. The perforteasfOmniSuggesand
POPULARIs almost similar foAverage Least MiseryandMost Pleasureaggregation
strategies. This is due to the fact that thesersebare less sensitive to data sparseness, and
indicate uniformity in the satisfaction level of gtfoup members.

Fig. 8.6(e) reflects the global satisfaction byywag the group size. For all of the
recommendation approaches, feragefunction is selected as an aggregation stratdgy. T
increase in group size resulted into a decreag®bal satisfaction for the three recommendation
approaches. Moreover, increase in the number afpgneembers also increases the deviation in
the satisfaction of individual members, which résul overall decrease of global satisfaction in
(13).

The system generates new recommendations only sigeificant change in group
members’ context occurs (such as road blocksarthe observed from Fig. 6f that a recurrent
recommendation has an insignificant effect on bbea satisfaction. The reason is that on all
occasions, the recommended venue is the one tbapsumates the users’ mutual consent based
on their current context. However, it is notewortbymention that the change in the
recommendation may cause a negative effect on tiuel rof the group members, as they have
already travelled some distance towards the prelyaecommended venue. Therefore, every
new recommendation generated by the system magatexthe overall satisfaction by a factor,
given as below.

Si(u,G) =6 xS, (u,6), (8.15)
whereS, (u, G) represents a user’s satisfaction for a new veecemnmended by the system, and

57 is scaling factor that depicts the decay in satisén over a period of time. The paraméter
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indicates the number of times recurrent recommeémuaare made. As depicted in Fig.,8.7

greater the value ¢f lower the satisfaction level for the group in &k trecommendation

approaches.
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Fig. 8.7. Global satisfactionwith the mood impact on recurr
recommendation.

To summarize the results, it is evident that oaudlbase®®mniSuggedtramework
demonstrated an overall better performance, aprdposed framework has more efficient
mechanism of handling data sparsity problem. Mosean the case of the group
recommendation, the cloud bas@dhnisuggestramework provides a higher level of satisfaction
in terms of recommended venues to the group members
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9. CONCLUSION AND FUTURE WORK

This dissertation contributes to the developmera nbvel suite of protocols for resource
efficient message dissemination in diverse mol#lsvorks. We proposed six routing protocols
for network environments that span from mostly diseected DTNs and partially connected
opportunistic mobile ad hoc networks, to mostlyreeeted cellular networks. Moreover, we also
present a novel application to generate optimamenendations for a group of mobile users in a
fully connected environment of mobile social netkgorDesigning protocols for wireless
networks with high mobility and frequent disruptsois challenging because of the uncertainties
involved in topology, connectivity, and channel ditions. By efficiently exploiting the
connection opportunities among mobile nodes, tbpgsed schemes achieved better
performance in terms of message delivery ratioauathead. The proposed research and
simulation results are presented in six separaptebhs, and a brief summary of contributions is
provided in the following subsection.

9.1. Summary of Contributions

In Chapter 3, we presented a detailed simulatiahaanalysis of ten popular DTN routing
protocols. Selecting the best protocol to be usealgiven environment remains a difficult task,
as comparisons are often clouded by different dlymers assumptions in the original design of a
protocol. The main purpose of this chapter wagudysand benchmark protocols on a unified
platform with varying network parameters so asultyfunderstand capabilities and limitations
of the protocols. The protocols were thoroughlyleated using synthetic mobility environment
as well as real-world connectivity traces by udimg following parameters: (a) network size, (b)
buffer size, (c) message rate, (d) message sidgeabandwidth. The results indicated that the

protocols that utilized additional network infornmat to route messages show better
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performance than the protocols that mostly reliedl@oding based techniques. However,
increasing the size of metadata and protocol caoxitglalso increases computational cost and
buffer requirements. It is further observed that performance of DTN routing protocols is
greatly affected by mobility pattern of nodes anessage queue management policies. As an
additional contribution, we proposed three rout&ghniques by introducing adaptability in the
replication strategies of the three most cited D'dMing protocols. When compared with
existing protocols, the proposed schemes indicsiggdficantly improved performance. In
future, we intend to expand the functionality obposed techniques to make them a workable
solution for providing opportunistic message trangf a real DTN network environment
consisting of heterogeneous nodes.

Chapter 4 presented a message routing protocot&strand Relay (FAR) for
challenging environments of the OMNSs. The noveftthe scheme lies in exploiting the
forecasting techniques on the temporal data ofpasting qualities to perform future contact
predictions. When compared with existing messagjeatyg schemes, such &RoPHET
Epidemi¢c Random andWavethe proposeg@rotocol showed significant performance
improvement. Moreover, the evaluation results wédl-world connectivity traces and large-
scale synthetic mobility suggest that &R protocol to be an ideal content delivery schermme fo
diverse opportunistic and delay-tolerant applicasoenarios.

Chapter 5 exploits the human mobility behavior ¢velop a Check Point (CP) based
architecture, in which the CPs are deployed ontioea where human meetings are more
frequent and each CP is covering a specific gedugdpcation in the city of Fargo, ND, USA.
The messages are relayed among CPs through blisesrfg fixed schedules. The simulation

results indicate that by installing the CPs onfimces with higher human interactions increase
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the predictability of finding the message destmatiTherefore, the CP based approach improves
message delivery ratio, decreases buffer utilipationodes and message delivery time.

In Chapter 6ywe examined various challenges faced by the netwbdn nodes are
willing to participate in opportunistic data shayiand storage applications, to form on-the-fly
data centers. We addressed replica placement asf time major challenges in ad hoc based data
storage. In these networks, the decision of whereplicate data must trade off the cost of
accessing data. The data access cost can be rdojogglications of data items, but with
additional cost of storing and updating the re@licEhese costs have severe implications in ad
hoc networks because mobile hosts have limitecuress (energy, storage, and processing
power). Therefore, efficient and effective replioatschemes strongly depend on how many
replicas to be placed in the system, and more itaptly where. We performed a comparative
study of some of the well-known data replicatiohesoes for MANETS, and discussed various
pros and cons of the studied schemes. We obsdmaeddta replication is quite challenging in
DTN like environments due to the non-existenceraf-®-end communication paths. Unlike
MANETS, the lack of end-to-end connectivity in DTNievents the global network information
propagation. We formulated the data replicatiorbfmm in DTNs and proposed a utility based
replication scheme. The aforementioned utility eakas based on two things: (a) probability
that the node will be able to deliver message ledite time expiry, and (b) probability that node
will stay in contact with message’s destinationg@mough to compensate message transfer
time. Our results from synthetic mobility as wedlr@al-world traces indicated that the proposed
scheme produced the minimum network cost, and maximelivery ratio. As a future work, we
intend to explore numerous opportunistic messagagt and sharing applications for bus-based

DTNs and vehicular ad hoc networks (VANETS).
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Chapter 7 presented a message routing protocolt&daprognostic Scheme (APS) for
challenging DTN environments. The novelty of thegwsed protocol lies in exploiting Auto
Regressive Integrated Moving Average (ARIMA) model temporal data of past contacts to
perform optimal message routing. When compared thighexisting message delivery services,
the APS protocol showed improved performance. Moreover, ¢haluation results with two
large-scale city based DTN scenarios suggest t@®\PS protocol appears to be an ideal
content delivery scheme for numerous DTN applicetio

In Chapter 8, we presented a multifold contributigrdevising cloud based solutions for
the venue recommendation problem in mobile so@akarks for a single user and/or a group of
friends. The novelty and significance of this warés the integration of knowledge engineering
techniques, such as HITS method, Ant colony optitiin, and collaborative filtering on a cloud
infrastructure to generate optimal set of recomma&ods. Different from the previous works,
the propose®mniSuggesiramework not only took into account the colleetiopinions of the
experienced users, but also considers the effedyradmic real-world physical factors, such as a
person’s distance from venues, speed, weather toamsliand travel conditions. The scalability
issues were addressed by proposing a cloud-baskiteature that allocated data and
computational load on geographically distributesld nodes. Data sparseness issues were
resolved by augmenting similarity computations vatimditional probabilities and further
refining the data storage by bifurcating data midtiple levels of predefined categories. In this
way, theOmniSuggedramework always had a precompiled set of expeadrusers for any
category and was able to recommend best venuasriew user at finer granularity. The
evaluation results with real-workbursquaredataset indicated the improved performance of the

proposedomniSuggedtramework than many of the existing schemes. Qudysrevealed that
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real-world physical conditions have a significafieet on the final recommendations, when
combined with users’ context.
9.2. FutureWork

In this section, we highlight some of the resealicbctions that we intend to explore in
future. First of all, we will devise message tramsfichemes for the data in bulk. An example of
such application is sensor networks deployed a¢mx@ntal sites to extract environmental data.
The massive volumes of data extracted by sensedsre be transferred towards the
laboratories situated in cities at far distances.Wdnt to exploit the passing-by vehicles to
voluntarily receive data from sensor sites, andvdelo the destinations. As the vehicular nodes
are mobile, the contact durations are very limismldata transfer must be made optimal by
transferring maximum data during the limited cohfzeriod. We intend to utilize various
network coding schemes, such as erasure codingpaddm coding to improve the throughput
of bulk data transferred. We will also explore ruasting in mobile networks that transfer data
to only a selected set of nodes, so that overhaadbe further reduced. Moreover, we will like to
focus on the trust and security issues in routingessages in diverse mobile network
environments as by nature, such networks are vagy to different attacks and the routing of
messages can easily fail due to these attackexf®md our work on mobile social networks, we
plan to further combine approaches from multipkeglines, such as artificial neural networks,
Bayesian networks, and machine learning technitpudsvise solutions that efficiently handle
the data sparseness, cold start, and scalabgigss Moreover, we intend to integrate the
recommendation module with early disaster warnyggesns, such as information about
tornados, landslides, tsunamis, and floods, whichla/help in generating recommendations

closely depicting real-world scenarios.
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