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ABSTRACT 

The main objective of this research is to characterize bone inhomogeneous elastic, yield, 

and post-yield behaviors, using a computational-experimental approach. The current study uses 

the force-displacement results of one hundred four cadaveric femora that were previously tested 

to fracture in a fall on the hip loading configuration. Recorded force-displacement data are used 

to determine stiffness, yield force, and femoral strength values. Finite element (FE) models of 

the femora are developed from the quantitative computed tomography scans captured before the 

fracture tests. A power law, or a sigmoid function, is used to determine the elastic modulus from 

the ash densities for each case modeled. The models are used for FE simulations that mimic the 

experiments. Inverse finite element analysis is employed to identify the unknown coefficients in 

the bone density-elasticity relationships. Optimization algorithms are used to minimize the error 

function between the experimental and FE estimated results in a large subset of female femora. 

The results of the obtained relationships show a good agreement with the experimental data. This 

contributes to a coefficient of determination of 70%, which is higher than those of previously 

proposed density-elasticity relationships on the same set of femora. The parts of the bones with 

the densities up to 0.5 g/cm
3
, play an important role in the deformation of the neck and the head 

of the femur. While power law and sigmoid function show similar correlation in the prediction of 

stiffness, distribution of stresses and strains are notably different, showing different response in 

the yield and post-yield behavior. 

To simulate the material damage, a power density-yield strain relationship is used as the 

failure criterion in FE models, assuming a ductile and a brittle material behavior for the bone. 

The unknown coefficients in the density-yield strain relationship are identified for the ductile and 

brittle material models. The ductile material model shows a more realistic post-yield behavior 
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than the brittle model, but it is computationally expensive and may face convergence issues due 

to nonlinearities. The brittle material model, on the other hand, estimates the bone strength fairly 

and, due to its simplicity, it seems more applicable for clinical use. 
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CHAPTER 1. INTRODUCTON AND BACKGROUND 

Bones are the main component of the skeletal system in the human body. The general 

health situation of a person is significantly affected by the health condition of his/her bones. The 

structural integrity of the human skeleton system is continuously challenged by mechanical 

environmental loads. In younger age ranges, bones usually fracture only when they are exposed 

to loads considerably greater than those in normal daily activities. Falls from heights, motor 

vehicle accidents, and sports-related traumas are the main causes of bone fractures in young 

individuals. Attempts to prevent or moderate bone fractures caused by these kinds of activities 

mostly focus on designing safer protective environments and equipment in order to decrease the 

applied loads to levels below bone strength. In contrast, bone fractures in older people usually 

result from incidents which significantly expose lower energies to the bones, such as lifting 

weights or falling from a standing height. The primary reasons for these types of fractures are 

increased bone fragility and reduced bone strength due to osteoporosis. The main interventions to 

reduce osteoporotic fractures are treatment of osteoporosis, fall prevention, and use of protective 

mechanisms such as energy absorbing floors and hip padding to decrease the energy level 

transmitted to the skeletal system  [1]. 

Bone fracture is a focal public health problem in the elderly population due to its 

morbidity and mortality side effects [2]. In the last few decades, a huge amount of research has 

been forwarded toward understanding the mechanisms and risk predictors of bone fractures [3-

11]. Traditionally, reduction in bone mineral density (BMD) and deterioration of bone 

microarchitecture has been considered as the main predictor of fracture risk [4, 12]. In addition 

to low BMD, however, other factors such as age, sex, low body weight, height, etc. affect bone 

fracture [9, 13-15]. BMD alone, therefore, cannot predict bone fracture risk [16-19].  
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This chapter describes a general mechanistic understanding of human bone functions, 

composition, and structure required to recognize the mechanisms of bone fracture and to develop 

new methods to predict bone fracture risk.   

1.1. Bone Functions in the Skeletal System 

As a vital component of the skeletal system, bones execute a variety of functions in the 

body. Their multi-functions can be categorized into three main classes:  

I. Mechanical functions [20]: 

 Protection: bones act to support and protect delicate and important organs at different 

locations inside the body. For instance, the skull protects the brain, or the ribcage 

supports the heart. 

 Shape: due to their stiff nature, bones deliver a rigid framework around which the body 

is formed. 

  Movement: bones collaborate with other skeletal components such as joints, ligaments, 

tendons, and muscles to comprise the moving mechanism of the body.  

II. Metabolic functions [21, 22]: 

 Mineral Storage: bones store vital minerals such as phosphorus and calcium. 

 Fat storage: bones accumulate fats in the yellow bone marrow of long bones. 

 Preservation of pH balance in blood: bones regulate the pH in blood by releasing or 

absorbing alkaline salts. 

 Detoxification: bones detoxify the body by removing heavy metals and other foreign 

elements from the blood and storing them to decrease their effects on other organs. 
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III. Synthetic function [23]:   

 Production of blood cells: one of the main functions of the bone marrow, which is 

located inside the long bones, is to produce red and white blood cells in a process called 

hematopoiesis.  

1.2. Composition and Hierarchical Structure of the Bone 

Bone is a natural composite material with unique structure and material properties. It has 

three main constituents: 1) an organic matrix (primarily type-I collagen), 2) an inorganic ceramic 

reinforcement (predominantly hydroxyapatite), and 3) water. By weight, bone is composed of 

60% hydroxyapatite, 30% collagen, and 10% water [24]. Bone can be examined on a hierarchical 

structure with, at least, five scale levels (Figure 1.1): 1) macro-scale, 2) micro-scale (from 10 to 

500 µm), 3) sub-micro-scale (1–10 µm), 4) nano-scale (from a few hundred nanometers to 1 

µm), and 5) sub-nano-scale (below a few hundred nanometers) [25].  

At macro-scale, there are two types of bone material: 1) cortical (compact) and 2) 

trabecular (cancellous or spongy) bone. Cortical bone, with a porosity of 5-30%, is the denser 

bone which forms the outer cortex, or the shell, of bones. It is stiffer, harder, and stronger than 

trabecular bone. By weight, about 80% of a human skeleton consists of cortical bone [26, 27]. 

Trabecular bone is a porous structure (30-90% porosity) surrounded by the cortical tissue. Due to 

its lower density, trabecular bone has a greater surface area to mass compared to cortical bone, 

leading to a weaker, more flexible, and softer structure [28]. At micro-scale level, the primary 

anatomical units of cortical and trabecular bones are osteons and trabeculae (trabecular packets), 

respectively [29]. Osteons are made up of organized cylindrical lamellae with central haversian 

(vascular) canals, while trabeculae are composed of beam, strut, or rod-like lamellae. At the sub-

http://en.wikipedia.org/wiki/Red_blood_cell
http://en.wikipedia.org/wiki/White_blood_cell
http://en.wikipedia.org/wiki/Hematopoiesis


 

4 
 

micro-scale level, lamellae consist of collagen fibers of ~ 100 nm in diameter. Depending on the 

location in the bone, they can be cylindrical or parallel plate lamellae. 

 

Figure 1.1. Hierarchical structure of bone with five scale levels scales: macro-scale, micro-scale 

(from 10 to 500 µm), sub-micro-scale (1–10 µm), nano-scale (from a few hundred nanometers to 

1 µm), and sub-nano-scale (below a few hundred nanometers). (Modified from [25]). 

 

At nano-scale, collagen fibrils lump together to create collagen fibers. The mineralized 

collagen fibrils organize themselves into several structures: circumferential, twisted, or parallel 

(Figure 1.2). At sub-nano-scale level, the smallest hierarchical scale level, tropocollagen chains 

assemble together to form collagen fibrils. Hydroxyapatite minerals (5 nm thickness, ~50-100 

nm lateral dimension) disperse between the gap regions and around collagen to create 

mineralized collagen fibrils (Figure 1.3). Three helixes of -collagen molecular chains, made up 

of amino acids, bundle together to form tropocollagen (300 nm length, 1.5 nm diameter), the 

primary unit of the bone. 
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Figure 1.2. Fibril array patterns; mineralized collagen fibrils are organized in circumferential, 

twisted, or parallel structures at different bone locations. (Modified from [24]). 

 

1.3. Osteoporosis and Hip Fracture 

Osteoporosis is a progressive skeletal disorder characterized by microstructural 

degradation of bone tissue and low bone mass [30]. Figure 1.4 shows the cross sections of a 

normal bone and an osteoporotic bone. As illustrated, the anatomical structures are thinner in the 

osteoporotic bone. This leads to an increase in porosity and reduction in bone mass. Bones are 

alive and change continually throughout life. Bone cells die and dissolve in a process called bone 

resorption [31], and new bone cells grow back in a process named ossification [32]. The whole 

process of bone turnover is called bone remodeling. This process controls the healing or 

reshaping of bones after fractures and allows bones to adapt themselves against mechanical 

loadings [33]. Each year around 10% of an adult skeleton is remodeled, thus the entire skeleton 

is renewed completely every 10 years [34]. After reaching the peak bone mass at age of 30, bone 

density decreases naturally for everyone, and around age of 35 bones gradually become weaker. 

In osteoporotic bones, metabolic processes destroy the balance between the creation of new bone 

tissue and removal of the old bone tissue, thus bone mass reduction happens faster than in 

normal bones. Consequently, bones become weak, brittle, and susceptible to fracture [35]. 

http://en.wikipedia.org/wiki/Bone_resorption
http://en.wikipedia.org/wiki/Bone_resorption
http://en.wikipedia.org/wiki/Ossification
http://en.wikipedia.org/wiki/Bone_fracture
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Figure 1.3. Tropocollagen, the smallest hierarchical level of the bone; three helixes of -collagen 

molecular chains of amino acids form collagen molecules. Hydroxyapatite minerals are scattered 

between the gap regions and around collagen molecules to reinforce the collagen fibrils. 

(Modified from [2, 25]). 

 

According to a report released recently by National Osteoporosis Foundation (NOF), 

osteoporosis or low bone mass affects around 54 million Americans, which exposes them to a 

high risk for bone fracture. In 2010, 27.5 million people were estimated to have osteoporosis in 

the European Union (EU). Scientists estimate this number will increase by 23% and reach to 

33.9 million by 2025 [36]. 



 

7 
 

 
Figure 1.4. Cross-section of normal and osteoporotic bones; due to the deterioration of bone 

microarchitecture and substantial loss of bone mineral density, osteoporotic bones are weaker 

and more fragile, making them more susceptible to fracture. (© 2014 WebMD, LLC. All rights 

reserved). 

 

Women are three times more likely than men to become osteoporotic. This is partly due 

to the biological changes, such as estrogen deficiency, happening in women at menopause; partly 

due to the lower age for peak bone mass in women; and partly because of the longer life of 

women compared to men, which leads to greater reductions in females bone mass [30]. 

Osteoporosis is usually specified as a silent disorder because it does not have any symptoms, and 

patients do not feel their bones getting weaker and more fragile. A bone fracture is frequently the 

first sign of osteoporosis [30].  

Osteoporosis is a leading public health concern in the elderly population, due to its 

association with increased risk of bone fracture [37]. Statistics show that osteoporosis will cause 

a bone fracture in almost 50% of women and up to 25% of men age 50 and older [30]. There 

were about nine million osteoporosis-related fractures worldwide in 2000. In that year, 

osteoporotic fractures cost around €30 billion in the EU and $20 billion in the United States (US) 

http://en.wikipedia.org/wiki/Estrogen
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[38]. In 2010, approximately 3.5 million new bone fractures occurred in the EU. This number is 

expected to increase by 28% and reach 4.5 million in 2025 [39]. The NOF estimates that the 

occurrence of osteoporotic fractures in the US will reach three million, by 2025, with a $25.3 

billion annual cost.  

Hip fracture, occurring in the proximal part of the femur (Figure 1.5), is the most 

catastrophic type of bone fracture, due to its association with morbidity and mortality [9, 40, 41]. 

Around 1.6 million hip fractures occur around the world each year, and by 2050 this number is 

predicted to reach 6.3 million [42]. Hip fractures are among the most expensive medical 

treatments. In 2011, US hospitals treated 316,000 hip fractures with an aggregated cost of around 

$4.9 billion [43]. A hip fracture can cost a patient more than $81,000 during their lifetime. Hip 

fractures lead to increased risk of death, mainly due to diseases caused by the immobility after a 

hip fracture [44]. Approximately 25% of patients with a hip fracture die within a year of their 

fracture injury [9, 40]. Falling is one of the main risk factors for hip fractures, with falls from 

standing height, especially sideways falls, being the main cause of more than 90% of hip 

fractures [45-47]. Women sustain 75% of all hip fractures [48]. 

1.4. Assessment of Bone Fracture Risk 

The current golden standard to diagnose osteoporosis and to assess bone fracture risk is to 

measure the areal bone mineral density (aBMD, g/cm
2
) by Dual-energy X-Ray Absorptiometry 

(DEXA) [49]. The best location to measure aBMD is the neck or the whole proximal part of the 

femur (Figure 1.6A). The measured aBMD for an individual is compared to the average aBMD 

of healthy young adults whose aBMD has an approximately Gaussian normal distribution, 

regardless of the measurement method. 
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Figure 1.5. A hip fracture occurring in the proximal part of the femur, near the hip. (© 2014 

WebMD, LLC. All rights reserved). 

 

The difference between the measured aBMD and the reference value (the mean value of 

the aBMD distribution of a young healthy population), in terms of standard deviation (SD) units, 

is determined as a standard T score value (Figure 1.6B).  Based on the T score value, bone 

condition is classified into one of the following categories (Figure 1.6C) which have been 

established by the World Health Organization (WHO) [50, 51]: 

A. Normal: the bone has an aBMD equal to, or greater than, 1 SD below the reference value 

(T score ≥ -1) 

B. Osteopenia: the measured aBMD is less than 1 SD below the reference value, but greater 

than 2.5 SD below this value (-2.5 < T score < -1) 

C. Osteoporosis: the measured aBMD is equal to, or less than, 2.5 SD below the reference 

value (T score ≤ -2.5). 

 

Hip fracture 
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Figure 1.6. Measuring the aBMD by DEXA to quantify bone condition and to measure bone 

fracture risk: A) femoral neck and the whole proximal femur are the best locations to measure 

aBMD; B) bone condition based on T score compared to the reference aBMD value; and C) 

assessment of the bone health condition based on the measured T score. 

 

1.5. Motivation of the Research 

Although the current clinical benchmark for estimating bone osteoporosis, aBMD, has 

been used widely as a strong and effective predictor of risk for bone fracture [52, 53], it has a 

number of limitations: 

 Areal bone mineral density has only a moderate correlation to bone fracture [17]. 

Numerous femur fractures have been reported to occur in people without osteoporosis, 

i.e. with a T-score greater than -2.5. The view is growing that intervention should not, 

therefore, be based solely on aBMD [16-19]. 

A                                                                   B 

C                                                                     
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 It does not take into account bone shape, geometry, and microarchitecture, even though 

these are among the major factors that affect bone strength [54, 55]. 

 It cannot discern cortical bone from trabecular structure, while both contribute 

considerably to bone strength [54].  

 It only measures bone density in a small two-dimensional (2D) area of the bone, while 

the three-dimensional (3D) distribution and varied material properties in the whole bone 

significantly affect bone strength [56]. 

 It does not account for various loading scenarios, while the mechanical behavior of the 

bone, like with other mechanical structures, differs considerably by the way it is loaded. 

Quantitative computed tomography based finite element analysis (QCT/FEA) is a non-

invasive method which can predict the mechanical behavior of bones against different loadings, 

and thus it has the potential to improve the assessment of bone fracture risk in patients beyond 

aBMD [57-61]. Evaluation of spatial distribution of material properties throughout the bone, 

which affects the FE simulation results significantly [62], has been a major challenge for bone 

researches for the last two decades [63]. Despite the huge amount of valuable research that has 

been conducted on  the characterization of inhomogeneous material properties of the bone [64-

66], there is still controversy regarding a robust material model to predict the bone behavior, 

especially under a complex loading scenario [67, 68]. Moreover, there is no material model 

specifically for female bones, while the prevalence of osteoporosis and hip fractures is greater 

for women [39, 48]. 

1.6. Research Objectives and Scope 

The objectives of this research were to evaluate bone elastic, plastic, and damage material 

models in order to achieve accurate estimations of the overall femoral stiffness, ultimate 
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strength, and post-yield behavior in a fall on the hip. Three approaches were combined to 

achieve the goals of the research. First, the results of 104 human cadaveric proximal femora 

being previously tested to fracture, simulating sideways fall on the hip events, were utilized. The 

results included bone stiffness, yield point, ultimate strength point, and final fracture point which 

previously determined from recorded force-displacement graphs of each femur [69]. Secondly, 

the femoral fracture experiments were simulated in the finite element method (FEM) for seventy 

of these femora belonging to females. To this end, 3D geometric models of the femora were 

previously reconstructed from the QCT scans captured before the fracture tests. The models were 

meshed into finite elements (FEs). Boundary conditions (BCs), mimicking the experimental 

setup, were then applied on the models [54].  

In the current study, density-dependent material properties were assigned to the elements, 

and the models were run in FE software to simulate the experiments. Estimated force-

displacement graphs were derived from the FE simulations. Stiffness, yield point, ultimate 

strength point, and final fracture point were then determined from these graphs in the same way 

that they were determined from the experimental results. Finally, optimization algorithms were 

employed to evaluate the inhomogeneous elastic property of the female bone by minimizing 

error functions between the experimental and FE estimated results. To this end, the 70 female 

femora were randomly divided into two groups of 35 femora. The first group, called the training 

set, was used to evaluate the material models, and the second group, named the validation set, 

was used to cross-validate the obtained material models.  

Furthermore, a ductile and a brittle material model were used separately for the bone 

tissue in the FE modeling of a set of nine female femora, selected from the fractured specimens, 

to investigate the yield and damage behavior of femoral bones under a complex loading scenario. 
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Optimization algorithms integrated with an inverse computational-experimental study were 

employed to find the unknown coefficients in the yield and post-yield material models by 

matching the FE estimated results to their experimental counterparts. Finally, the performance of 

the ductile and brittle material models for using in the subject-specific modeling of femora was 

cross-validated on another set of nine female femora. 
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CHAPTER 2. CADAVERIC FEMORAL FRACTURE TESTS AND 

QUANTITATIVE COMPUTED TOMOGRAPHY-BASED FINITE ELEMENT 

ANALYSIS METHOD 

2.1. Introduction 

It is necessary to fully understand the biomechanical processes involved in bone fractures 

in order to understand the mechanical behavior of the skeletal system, to recognize the 

mechanisms of bone fractures, and to develop novel methods for fracture risk assessment. 

Biomechanical experiments such as, ex-vivo strength testing of human cadaveric bones, can 

provide important insights to these processes [70, 71]. Cadaveric femoral strength testing in a fall 

on the hip configuration is very effective in determining the relationship between femoral 

strength and factors affecting the structural capacity of the femur [53].  

Courtney et al. [70, 72] mechanically  tested a number of cadaveric femora under loading 

rates of 2 mm/s and also of 100 mm/s and showed that the fracture load increased significantly 

with  a high rate. However, energy absorption did not increase with an increased loading rate. 

They found that femoral fracture risk increased with aging. Eckstein et al. [73] performed 

fracture tests on human cadaveric femora to investigate the correlation between femoral strength 

(fracture load) and aBMD. They determined the differences between the strength of the left and 

right femora and used those calculations to evaluate the precision error of mechanical tests in a 

sideways fall configuration. Pinilla et al. [74] studied the effect of loading direction on the 

femoral fracture load. They concluded that the influence of loading direction on the fracture load 

was as significant as the effect of aging. Roberts et al. [75] performed a set of femoral cadaveric 

fracture tests to develop a new biomechanical femoral fracture risk assessment, named the factor 

of risk, which was equal to the ratio of applied load to bone strength. They concluded that their 
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newly developed factor of risk might predict patients femoral fracture risk more precisely than 

BMD. Pulkkinen et al. [76] conducted mechanical fracture tests on human cadaveric femora in a 

sideways fall configuration and showed that bone geometry and trabecular structure could 

estimate femoral fracture loads with the same accuracy as DEXA. 

The objectives of the current chapter were to achieve the following goals: 

I. To study the effects of aBMD, age, sex, and femoral geometric parameters on femoral 

strength (fracture load), 

II. To characterize the sequence of events leading to femoral fracture during sideways falls by 

employing high speed video recordings, 

III. To investigate femoral fracture locations and patterns by using 3D models reconstructed from 

high-resolution QCT scans of the femora after fracture tests, 

IV. To produce a set of benchmark data for developing a QCT/FEA method to assess bone 

fracture risk and for characterizing bone material’s elastic, yield, plastic, and damage 

properties, using inverse computational-experimental approaches. 

2.2. Mechanical Fracture Tests
1
  

One hundred four fresh-frozen human cadaveric femora (100 unpaired and four paired, 

50 left and 54 right side) had been tested previously, at Mayo Clinic, to fracture in a sideways 

fall on the hip loading configuration. The procedure of sample preparation, fracture tests, and the 

experimental data analysis to extract the force-displacement data had been formerly reported [54, 

67]. The characteristics of the bones used in the experimental fracture tests are presented in 

Table 2.1. Figure 2.1 shows the experimental setup.  

                                                        
1 This is a part of a manuscript entitled “Experimental proximal femur fractures of osteoporotic, osteopenic, and normal 

femora in a fall on the hip configuration”, Dan Dragomir-Daescu, Samad Javid, Tim Rossman, Susheil Uthamaraj, Sean 
McEligot, Michael Yaszemski, Philip Araoz (in preparation); used with permission of Mayo Foundation for Medical Education 
and Research, all rights reserved. 
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Table 2.1 Characteristics of the femora specimens. (Used with permission of Mayo Foundation 

for Medical Education and Research, all rights reserved). 

 Female Male All 

Age (year)              

mean ± SD, range 

71 ± 14,            

[37-99] 

67 ± 164,       

[34-91] 

70 ± 15,          

[34-99] 

Neck aBMD (g/cm²) 

mean ± SD, range 

0.725 ± 0.191,  

[0.374-1.363] 

0897 ± 0.199,  

[0.469-1.424] 

0.781 ± 0.209,  

[0.374-1.424] 

Total hip aBMD (g/cm²) 

mean ± SD, range 0.785 ± 0.216,  

[0.394-1.394] 

0.992 ± 0.187,  

[0.560-1.414] 

0.853 ± 0.228,  

[0.394-1.414] 

Condition based on  

neck aBMD (no.) 

Normal: 11 

Osteopenic: 24 

Osteoporotic: 35 

Normal: 18 

Osteopenic: 13 

Osteoporotic: 3 

Normal: 29 

Osteopenic: 37 

Osteoporotic: 38 

 

 

Figure 2.1 Photograph of the fracture experimental setup; the femoral shaft distal end, cured in 

an acrylic container with dental cement, was clinched in a fixture. The bone shaft was initially 

positioned at an angle of 10º compared to the horizon and was free to rotate around an x-axis 

passing through the knee rotation point. The MTS hydraulic ram moved down with a constant 

velocity of 100 mm/s [69]. 

 

Figure 2.2 demonstrates a schematic graph of experimental force-displacement data of a 

femur. As illustrated, the slope of the linear elastic part indicated the stiffness (K, N/mm) of the 

bone. The yield point of the bone was identified upon horizontal deviation of 2% from the linear 

elastic part which was almost equivalent to 0.2% in stress-strain curve of the femur. The femur 
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then underwent plastic deformation up to femoral strength which was the maximum force (Fs, 

N). Afterward, the force started declining to the fracture point (Ff, N).  

 
Figure 2.2. A schematic trochanteric force versus head displacement graph for a fractured femur; 

the slope of the linear elastic part was considered as the femoral stiffness (K, N/mm).  The onset 

of the yield was the first point on the graph which had a horizontal distance (D) equal or greater 

than 2% from the regression line of the elastic region. The maximum force was bone strength 

(Fs, N) and the force at the final fracture point was called fracture load (Ff, N).  

 

2.3. Classification of Fracture Types
2
 

Fractures in long bones may be categorized based on location, type, severity, and bone 

dislocation. One of the widely used classification systems of bone fractures, defined  in terms of 

fracture location and severity, is Müller AO Classification of Fractures-Long Bones [77]. Based 

on this method, proximal femur (hip) fractures can be classified into four groups: 1) subcapital, 

2) transcervical, 3) intertrochanteric, and 4) pertrochanteric (Figure 2.3). In consultation with an 

orthopedic expert and using post-fracture 3D geometric models and high-speed videos, fractures 

in broken femora were classified [69].  

                                                        
2 This section is a part of a manuscript entitled “Experimental proximal femur fractures of osteoporotic, osteopenic, and 

normal femora in a fall on the hip configuration”, Dan Dragomir-Daescu, Samad Javid, Tim Rossman, Susheil Uthamaraj, Sean 
McEligot, Michael Yaszemski, Philip Araoz (in preparation); used with permission of Mayo Foundation for Medical Education 
and Research, all rights reserved.  

T
ro

ch
an

te
ri

c 
fo

rc
e 

(N
) 

Head displacement (mm) 

F
s
 

F
y
 F

f
 

D

  

Slope = K (N/mm) 



 

18 
 

 

Figure 2.3. Classification of femoral fractures based on Müller AO Classification of Fractures-

Long Bones. (Used with permission of Mayo Foundation for Medical Education and Research, 

all rights reserved). 

 

2.4. QCT/FEA Method 

QCT/FEA is a new method that aims to improve the assessment of femoral fracture risk 

in patients [18, 19, 54, 55, 78-80] beyond what is currently available using DEXA [81]. 

QCT/FEA better accounts for the spatial distribution of bone geometry and bone material 

properties [54, 82] and can estimate local stress and strain distributions [83-85] throughout the 

femur under different loading conditions [57, 63, 86-88]. Figure 2.4 illustrates the steps 

employed in the QCT/FEA procedure to simulate a femoral fracture event in a fall on the hip 

configuration [54]. First, QCT scans of multiple slices of each specimen were captured. A 3D 

geometric model was then developed from the QCT scans of each femur and subsequently was 

meshed into finite elements. Inhomogeneous material properties were applied to the finite 

elements. A boundary condition (BC) type mimicking a fall on the hip configuration was 
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enforced. The FE model was run to simulate the mechanical behavior of the specimen under a 

sideways fall loading impact [54]. 

 

Figure 2.4. Steps of the QCT/FEA procedure to simulate the mechanical behavior of a femur in 

a sideways fall configuration; a 3D geometric model was reconstructed from the QCT scans of 

the femur. An FE model was developed from the 3D geometry of the specimen. The model was 

then run in the FE method to simulate the femoral fracture in a fall on the hip event. The steps 

of the FE modeling included discretizing the model into finite elements, assigning material 

properties to the elements, applying BCs representing a sideways fall on the hip loading 

configuration, and simulating the fracture event [54]. 

 

The QCT/FEA models of the 104 experimentally fractured femora were developed from 

the QCT data captured before the fracture tests. Using the QCT/FEA procedure developed 

previously, a simulated trochanteric force versus head displacement graph was prepared for each 

femur; and stiffness (K, N/mm), strength (Fs, N), and fracture load (Ff, N) were determined from 

this graph. 

2.5. Results 

The stiffness, yield force, femoral strength, and fracture force were measured from the 

force-displacement data of the femora, and their correlations with bone conditions, aBMD, age, 

and sex were investigated. High speed video recordings and 3D models, reconstructed from the 

QCT data, were employed to classify the fracture location and type. 
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2.5.1. Results in normal, osteopenic and osteoporotic femora 

Table 2.2 represents the mean, SD, and range for femoral stiffness, yield force, strength, 

and final fracture load for the 104 fractured femora. The force-displacement curve of a typical 

experiment showed a linear elastic region followed by post-yielding associated with sinking of 

the superior neck region into the greater trochanter (74 of the tested femora). Fatal crack initiated 

in tension on the inferior region of the neck or medial shaft (Figure 2.5) [69]. 

Table 2.2. Femoral stiffness, yield load, strength, and final fracture load for 104 femora (mean ± 

SD, range). (Used with permission of Mayo Foundation for Medical Education and Research, all 

rights reserved). 

 

 

One-way analysis of variance (ANOVA) with Tukey-Kramer post hoc analysis showed 

that stiffness, yield load, strength, and fracture load were significantly lower for osteoporotic 

femora compared to normal and osteopenic femora (p < 0.0001) , as well as for osteopenic 

femora compared to normal specimens (p < 0.0001) (Figure 2.6). 

 

 

 

 

 

 

  

Description Normal Osteopenic Osteoporotic All 

Stiffness (N/mm) 2259 ± 504,  

[1269-3197] 

1653 ± 437,         

[973-2611] 

1107 ± 281,         

[502-1751] 

1622 ± 613,         

[502-3197] 

Strength (N) 6367 ± 1581,  

[3604-10013] 

3850 ± 974,         

[2021-5771] 

2180 ± 639,         

[927-3485] 

3942 ± 1990,         

[927-10013] 

Yield load (N) 3552 ± 991,  

[1887-6004] 

2321 ± 671,         

[1022-3960] 

1258 ± 544,         

[256-2582] 

2276 ± 1172,         

[256-6004] 

Fracture load (N) 5284 ± 1709,  

[2522-9668] 

2835 ± 854,         

[1528-4354] 

1574 ± 472,         

[729-2754] 

3057 ± 1832,         

[729-9668] 
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Figure 2.5. Force-displacement curve of a typical experiment; the graph showed a linear elastic 

region followed by post-yielding associated with sinking of the superior neck region into greater 

trochanter. Fatal crack initiated in tension on the inferior region of the neck or medial shaft. 

(Used with permission of Mayo Foundation for Medical Education and Research, all rights 

reserved). 

sinking  

t=0 ms t=84 ms 
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fatal  crack 
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Figure 2.6. One-way ANOVA revealed that the femoral stiffness (A), yield load (B), strength 

(C), and fracture load (D) were significantly smaller for osteoporotic femora compared to normal 

and osteopenic femora, as well as for osteopenic specimens compared to normal femora. (Used 

with permission of Mayo Foundation for Medical Education and Research, all rights reserved). 

 

2.5.2. Correlation with aBMD, Sex, and Age  

Two sample t-tests showed that male femora had significantly higher neck aBMD, 

stiffness, and strength compared to female femora (aBMD: 0.897 ± 0.199 g/cm
2
 versus 0.725 ± 

0.191 g/cm
2
, stiffness: 1996  ± 590 N/mm versus 1440  ± 543 N/mm, strength: 5394  ± 1819 N 

versus 3252  ± 1683 N) (p < 0.0001). Regression analysis showed strong correlations between 

femoral strength and neck aBMD with R
2
 = 0.79, but the correlation between femoral stiffness 
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and neck aBMD was moderate with R
2
 = 0.57 (p < 0.0001).  Figure 2.7 shows the distribution of 

strength and stiffness versus neck aBMD, comparing male, female, and all femora. As illustrated, 

at the same aBMD value, the female femora tended to have smaller stiffness and strength values 

compared to the male ones. Femoral strength and stiffness values showed weak correlation to 

age with R
2
 = 0.4 and R

2
 = 0.49, respectively. 

2.5.3. Correlation with geometric parameters 

A 3D geometric model was reconstructed for each femur from the QCT scans captured 

before the fracture tests. Geometric parameters of the proximal femur, which involved the 

femoral neck axis length (L, mm), mean femoral neck diameter (D, mm), and neck/shaft angle 

(

), were measured for each femur from their 3D model (Figure 2.8). The results are presented 

in Table 2.3. Regression analysis showed very weak correlations between femoral strength and 

geometric parameters with R
2
 = 0.12 for femoral neck axis length, R

2
 = 0.16 for femoral neck 

diameter, and R
2 
= 0.01 for neck/shaft angle. 

2.5.4. Fracture types 

Table 2.4 shows the fracture types and their associated aBMD and fracture loads. One-

way ANOVA showed that femora with introcanteric fracture had significantly lower neck aBMD 

than femora with pertrochanteric (p = 0.023) and transcervical fractures (p = 0.0072). Pursuant to 

this observation, femora with pertrochanteric and transcervical fractures had significantly higher 

fracture forces compared with those with introchanteric fractures with p-values of 0.023 and 

0.0072, respectively [69]. 
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Figure 2.7. Distribution of (A) strength and (B) stiffness vs. neck aBMD for male, female, and all 

femora; at the same aBMD value, the female femora had smaller stiffness and strength values 

compared to the male ones. (Used with permission of Mayo Foundation for Medical Education 

and Research, all rights reserved). 
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Figure 2.8. Geometric parameters of the proximal femur, including femoral neck axis length (L, 

mm), femoral neck diameter (D, mm), and neck/shaft angle (
◦
), measured from the 3D 

geometric model of each femur [69]. 
 

Table 2.3. Geometric parameters (mean ± SD, range) of the proximal femora. (Used with 

permission of Mayo Foundation for Medical Education and Research, all rights reserved). 

Gender L (mm) D (mm)  
o
 

Female 96 ± 6,                  

[81-111] 

30 ± 2,           

[25-37] 

134 ± 5,          

[124-147] 

Male 107 ± 7,              

[93-124] 

35 ± 2,            

[31-40] 

133 ± 4,          

[126-143] 

All 100 ± 8,            

[81-124] 

32 ± 3,           

[25-40] 

134 ± 5,             

[124-147] 
 

Table 2.4. Fracture types and their associated aBMD and fracture loads (mean ± SD, range). 

(Used with permission of Mayo Foundation for Medical Education and Research, all rights 

reserved). 

Description Subcapital Transcervical Introchanteric Pertrochanteric 

Number 14 44 27 19 

aBMD  (g/cm
2
) 0.72 ± 0.21,  

[0.37-1.02] 

0.83 ± 0.23,         

[0.42-1.42] 

0.706 ± 0.209,         

[0.46-1.36] 

0.81 ± 0.15,         

[0.56-1.14] 

Fracture load (N) 3662 ± 1712,  

[1097-7066] 

4430 ± 2166,         

[1117-9553] 

2931 ± 1933,          

[882-8539] 

4373 ± 1452,        

[2299-7394] 

 

2.6. Conclusion 

The objective of this chapter was to investigate the biomechanics of femoral fractures in a 

fall on the hip loading configuration. Femoral strength showed strong correlation with aBMD, 

but stiffness had a moderate correlation with aBMD. At the same aBMD, female femora showed 

lower stiffness and strength results than male femora. The reason could be the smaller geometry 
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of female femora compared to those of males or discrepancies in material properties of female 

and male bones. While previous studies [74] showed a strong correlation between age and bone 

fracture risk, in the current study, age  showed a weak impact on the strength and stiffness 

results. A reason could be the selection of the specimens mostly from elderly people. 

Unexpectedly, strength and stiffness results showed very weak correlation with geometric 

parameters. Video recordings helped to accurately describe the properties of sinking, damage, 

crack initiation and propagation, as well as final separation in bone fractures. The current study 

showed that a combination of load, moments, high speed video recordings, and 3D geometric 

models, developed from QCT scans of the fractured femora, allowed for a precise 

characterization of femoral fractures in a fall on the hip configuration. The experimental results 

would be used in the next chapters as a benchmark for the QCT/FEA estimated results and for 

characterization of mechanical properties of the bone.  
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CHAPTER 3. MESH SENSITIVITY ANALYSIS AND SEGMENTATION 

REPRODUCIBILITY IN QCT/FEA MODELS OF THE PROXIMAL FEMUR
3
 

3.1. Introduction 

The QCT/FEA method uses QCT scans to obtain the femoral geometry and bone mineral 

distribution for FE modeling [82, 89]. The resulting models are solved using BCs that mimic 

loading scenarios ranging from normal physiological to impact due to falls [90]. In order to 

develop patient specific models, a number of assumptions are made in the QCT/FEA technique. 

Therefore, before clinical application, the sensitivity of the parameters used for estimating bone 

strength and fracture properties needs to be examined. Researchers have focused on many 

potential sources of errors in QCT/FEA models such as the BCs [91], the constitutive material 

models [84, 92, 93], and the mesh [54, 94]. 

The accuracy of the results and the computational efficiency of the QCT/FEA technique 

depend significantly on the size of the FE meshes used in the FEA models of bones. Bessho et al. 

[94] investigated the effect of the mesh size on the results of the QCT/FEA models of proximal 

femora in a stance-like loading configuration. Employing linear tetrahedral elements, they 

showed that mesh size of 4 mm could lead to a reduction of 9% in total strain energy compared 

to a mesh of 2 mm, while a mesh size of 3 mm reduced the total strain energy by only 2%. 

However, they did not explore the influence of the mesh size on the QCT/FEA estimated results. 

Dragomir-Daescu et al. [54] studied the effect of the element size on the accuracy of the results 

and the computational efficiency of QCT/FEA models of cadaveric femora in a sideways fall on 

the hip configuration. Employing quadratic tetrahedral elements, it was shown that using a 

coarse mesh strategy with an element size of 5 mm may lead to 35% error in stiffness results 

                                                        
3 The main part of ‘reproducibility in QCT/FEA models of the proximal femur’ in this chapter belongs to a manuscript entitled 
“Segmentation reproducibility in QCT/FEA models of the proximal femur”, Samad Javid, Tim Rossman, Dan Dragomir-Daescu, 
(Submitting); used with permission of Mayo Foundation for Medical Education and Research, all rights reserved. 
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compared to a fine mesh strategy with an element size of 2 mm. They proposed a smart mesh 

strategy with various element sizes at different parts of the femoral model to reduce the 

computational time while enhancing the accuracy of the results. A limitation of this study, 

however, was the small sample size. In the current study, a relatively large sample size of 24 

proximal femora was employed to determine a robust and computationally efficient mesh size 

for the QCT/FEA modeling of proximal femora in a fall on the hip loading configuration. 

Another source of error, not yet studied in detail, is variability introduced by the user 

during the segmentation of CT scans to reconstruct the femoral 3D geometry. Accurate 3D femur 

geometry is an important input to the QCT/FEA method and the variation from the segmentation 

process could lead to significant errors in QCT/FEA predictions. During segmentation, different 

tools are used to obtain a precise outer contour of the bone in each slice of the CT scans. 

Variation in selecting the femoral cortical boundary can arise based on the user’s ability to 

delineate bone tissue from soft tissue, the user’s experience level with the software, and simple 

errors that can occur when repetitively interpreting potentially hundreds of CT slices. Since the 

QCT/FEA method used here is based on continuum solid mechanics, errors in the geometric 

representation can directly contribute to errors in the prediction of forces and stresses. 

Segmentation can also affect the mechanical properties of the elements near the surface 

of the bone. The mechanical properties, such as Young’s modulus and yield strain, are functions 

of the averaged Hounsfield Unit (HU) values of the voxels enclosed by the finite element  [67]. 

If the elements on the surface of the bone erroneously include external neighbor voxels with 

lower HU values, these elements will be affected by partial volume effects. Thus the mechanical 

properties of the cortical bone in these elements will be reduced. 
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In general, the user induced variation in a measurement system might be broken down to 

two categories: 1)repeatability and 2)reproducibility. Repeatability is the variation in 

measurements taken by one user on the same or replicate specimens, while reproducibility is the 

variation induced by different users measuring the same or replicate items [95]. Luo et al. [96] 

investigated the repeatability and reproducibility of the results of a DXA-based patient-specific 

FE procedure developed for assessing hip fracture risk. They found that inconsistent positioning 

of the femora during scanning and manual segmentation of the projected femur contour caused 

significant variability in the estimated fracture risk. Lee et al. [97] studied the repeatability and 

reproducibility of the results of a volumetric bone mineral density (vBMD) measurement method 

developed to determine local distribution and quality of bone mineral in the proximal humerus. 

They showed that their method could measure vBMD in a reproducible manner with a less than 

2% reproducibility and repeatability error. 

However, the user induced variation in the results of the QCT/FEA estimated femoral 

strength and stiffness due to segmentation was not yet quantified. The current study aimed to 

assess the quality and accuracy of QCT/FEA, in terms of reproducibility analysis, which is of 

interest in clinical applications. To the best of the author’s knowledge, such an extensive study, 

with a large sample size, had not been investigated and published in the literature. 

3.2. Mesh Sensitivity Analysis 

The 3D models of 24 human cadaveric proximal femora (eight male and 18 female 

donors; age: 71 ± 15 yr; eight normal, eight osteopenic and eight osteoporotic based on neck 

aBMD) were obtained by segmenting QCT images of the femora. Each model was meshed with 

quadratic tetrahedral elements having different element sizes for a total of four mesh 

refinements. The maximum edge lengths of elements at different areas of the femoral models 
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(Figure 3.1) are reported in Table 3.1. The size of the elements was increased by a factor of 1.2 

from the surface of the models toward their centers [54]. 

 

Figure 3.1. A femoral model meshed with tetrahedrons with different element edge length at 

head and neck region, subtrochanteric region, and shaft region. (Used with permission of Mayo 

Foundation for Medical Education and Research, all rights reserved). 

 

Table 3.1. Maximum element edge length (mm) in different models. (Used with permission of 

Mayo Foundation for Medical Education and Research, all rights reserved). 

 

 

The BCs mimicking a fall on the hip configuration were applied to all the support areas in 

the models (Figure 3.2). First, a rotation point was connected to the distal end using stiff beam 

elements. The model was made free to rotate around a horizontal x-axis passing through the 

rotation point. Secondly, a node group on the surface of the greater trochanter was constrained in 

the vertical translation degree of freedom.  Finally, a force BC was applied in 100 N increments 

Model 

No. 

Femoral head and 

neck region 

Subtrochanteric 

region 

Femoral 

shaft region 

1 2 3 5 

2 1.5 2.5 4 

3 1 2 3 

4 0.5 1 2 

Head and neck region 

 

Subtrochanteric 

region 

Shaft region 
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distributed over a set of nodes located in a small area of the femoral head surface in the vertical 

direction (z-axis) [54, 67]. 

 

Figure 3.2. Simulation of the BCs applied at the support areas of a femoral model in a fall on the 

hip loading configuration. (Used with permission of Mayo Foundation for Medical Education 

and Research, all rights reserved). 
 

After applying density-based material properties to the elements, ANSYS (ANSYS Inc., 

Canonsburg, PA, USA) was used to simulate a fall on the hip. For each model, vertical 

trochanteric reaction force and vertical head displacement were obtained on the BC application 

areas. The force-displacement graph was processed to calculate the femoral stiffness from the 

slope of the linear regression line passing through six force-displacement points at 0.1 mm 

increments. The predicted stiffness results converged for each femur. The model with the 

smallest element size (model 4) was used as a baseline and its stiffness was compared with the 

stiffness of the other three coarser meshes (models 1, 2, and 3). Errors of less than 5% were 

assumed acceptable. 

At the tissue level, mechanical responses, such as strain and stress distributions, in 

models 1, 2, and 3 were compared to those of model 4 for each femur. In the current study, von 

Mises strain and stress were employed but the term von Mises was omitted for simplicity. The 

strain and stress values of all elements were recorded at the end of each loading step. Then, 

volume-averaged (VA) strain and stress values in the proximal part of the model (head and neck 

Beam elements 

Force loading 

y

. 
x

. z 

Rotation 

point 
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region in Figure 3.1), experiencing the majority of deformation under loading, were determined 

using the following equations [98]: 

                                                                            𝜀𝑉𝐴 =
∫ 𝜀𝑑𝑉

∫ 𝑑𝑉

                                                                            𝜎𝑉𝐴 =
∫ 𝜎𝑑𝑉

∫ 𝑑𝑉

                                                                      (1) 

The distribution and the maximum values of strain and stress were also used to explore the effect 

of the mesh size on the local tissue level response of models, while the VA values were 

employed to determine the effect of the mesh size on the global tissue level response. 

3.2.1. Results and discussions of mesh sensitivity analysis 

The average number of elements, the average elapsed time to complete the simulations, 

and the stiffness errors in models with different mesh sizes are reported in Table 3.2. The 

average number of elements in model 2 was around 586000, almost double that of model 1. 

Model 3 had an average number of elements of 1.2 million, almost a quarter of the number of 

elements in model 4. The maximum stiffness errors in models 1, 2 and 3 compared to model 4 

was 6% (for three femora), 4% (for five femora) and 3% (for eight femora), respectively. The 

average stiffness error was 2% for models 1 and 2, and 1% for model 3. On the average, it took 3 

hours to run a simulation using model 4 for six displacement load step of 0.1 mm by employing 

10 cores of 2.67 GHz on a high speed high performance computing (HPC) cluster. In the same 

scenario, the elapsed time for models 3, 2, and 1 was: 55, 38, and 15 minutes, respectively. 
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Table 3.2. Number of elements, elapsed time to complete the simulations, and stiffness errors 

compared to target models (model 4). (Used with permission of Mayo Foundation for Medical 

Education and Research, all rights reserved). 
 Model No. 

 1 2 3 4 

Average number of elements 273179 586060 1173813 4797395 

Average CPU time (min.) 15 38 55 179 

Stiffness error (%)   

mean ± SD, range 
2 ± 2, [0-6] 2 ± 1, [0-4] 1 ± 1, [0-3] 

 

 

At the tissue level, Figure 3.3 shows the strain and stress contour plots for models 1, 2, 3, 

and 4 of a typical femur at head displacement of 0.6 mm. For this femur, the stiffness error in 

models 1, 2, and 3, compared to the model 4, was 6%, 4%, and 2%, respectively. While all the 

meshes led to the same VA strain of 0.003, the VA stress was 0.86, 0.88, 0.9, and 0.91 MPa for 

meshes 1, 2, 3, and 4, respectively. The VA stress errors in models 1, 2, and 3, compared to 

model 4, was 5%, 3%, and 1%, respectively. This correlated well with the stiffness errors in the 

corresponding models. However, the maximum local stress and strain values varied considerably 

on different models, showing no similar pattern with the global responses. Comparing the VA to 

maximum stress values, one could conclude that local responses were not a good predictor to 

find the optimal mesh size. For this purpose, global responses at tissue and apparent levels 

should be employed. 

Based on the global responses, model 2 satisfied the acceptable error level and showed 

that there was no need for reduction in the mesh size. Model 2 was also computationally efficient 

taking, on the average, about 38 minutes to compute the stiffness results. The current study 

highlighted the effect of the mesh size on the results and computational efficiency of the 

QCT/FEA model of the proximal femur. Too few elements could lead to erroneous predictions, 
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while too many elements would lead to an expensive computational effort. Thus an optimal mesh 

distribution needs to be used, especially if such methods are used in the clinic. 

3.3. Segmentation Reproducibility in QCT/FEA Modeling  

Five trained users
4
 were instructed to produce 3D models from QCT scans and run FEA 

simulations to estimate femoral strength and stiffness. Each user followed a set of internally-

developed standard operation procedures (SOPs) to reconstruct the 3D models from QCT scans 

of 45 fresh-frozen human cadaveric femora. The characteristics of the femoral set are shown in 

Table 3.3. Each set of 45 models segmented by a user is called a test series thereafter. The 

femoral models were then meshed with quadratic tetrahedral finite elements using smart mesh 

strategy as explained in the study of Dragomir-Daescu et al. [54]. To assign material properties, 

the geometry was divided into 42 equal material groups based on the density range. 

The following empirical equation was employed to calculate the isotropic elastic modulus 

(E, MPa) of material groups as a function of their ash density (ash, g/cm
3
) (Morgan et al. [66]).  

                                                                 𝐸 = 14664𝜌𝑎𝑠ℎ
1.49                                                           (2) 

This relationship was also used previously in QCT/FEA models of the proximal femur by 

Verhulp et al. [99]. To simulate bone damage due to loading, the following equation was 

employed to calculate the yield strain (𝜀𝑦) in each material group [54]. 

                                                           𝜀𝑦 = 8.1 × 10−3𝜌𝑎𝑠ℎ
−1.42                                                       (3) 

A constant Poisson ratio of 0.3 was assigned to all material groups. After applying the BCs 

(Figure 3.2), the models were solved in ANSYS APDL software (ANSYS, Canonsburg, PA). 

 

 

                                                        
4 Rachel C. Entwistle, Christina Salas, Viorel Hodis, Ian Gerstel, and Vishwas Mathur 
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Figure 3.3. Strain () and stress (, MPa) contour plots in a typical femoral model with different mesh size; the maximum (max) and 

the volume averaged (VA) quantities are shown for each model. (Used with permission of Mayo Foundation for Medical Education 

and Research, all rights reserved). 
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Table 3.3. Characteristics of the 45 cadaveric femora used in the current study. (Used with 

permission of Mayo Foundation for Medical Education and Research, all rights reserved). 

 Females Males All 

Number (n) 27 18 45 

Age (year)              

mean ± SD, range 

66 ± 13,         

[37-97] 

68 ± 16,         

[34-91] 

67 ± 14,         

[34-97] 

Neck aBMD (g/cm
2
) 

mean ± SD, range 

0.751 ± 0.186, 

[0.374-1.154] 

0.885 ± 0.225, 

[0.469-1.424] 

0.804 ± 0.210, 

[0.374-1.424] 

Bone condition based 

on neck aBMD (n) 

normal:5 

osteopenic: 10  

osteoporotic: 12 

normal: 10 

osteopenic: 5 

osteoporotic: 3 

normal: 15 

osteopenic: 15 

osteoporotic: 15 

 

Using in-house APDL scripts, at the end of each load step, the Young’s moduli of 

elements with the von Mises strain (𝜀𝑉𝑀) greater than their corresponding yield strain (𝜀𝑦), 

calculated from Eq. 3, were automatically reduced to the insignificant value of 0.01 MPa, to 

account for material damage. The simulation continued until the head displacement in the 

vertical direction reached 3.4 mm, which was the average vertical displacement of the femoral 

head at the onset of fracture as measured during the mechanical fracture testing. The force on the 

trochanter at the simulated fracture point was defined as the femoral strength (FS, N). The 

stiffness of each femoral model (K, N/mm) was calculated as the slope of the initial linear portion 

of the trochanteric force versus displacement curve. All the steps in the FEA simulation, from 

pre-processing to post processing, were implemented automatically in ANSYS APDL scripts to 

eliminate user variability. 

For each femur, the model with the largest volume was compared to the model with the 

smallest volume using 3-matic (Materialise, Leuven, Belgium), and the mean distance between 

the two reconstructed femoral surfaces was computed. The mean distance from each analysis, for 

all 45 femora, were then imported into MATLAB (MathWorks, Natick, MA, USA) to compute 

the mean and the SD of the mean distances. Finally, the distribution of the mean distances was 

compared to the average QCT voxel size (~0.5 mm).  In addition, because the differences 

http://en.wikipedia.org/wiki/USA
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between the points on the surface of two user models could be positive or negative, the root 

mean square (RMS) values were calculated as a measure of the average model surface 

differences. 

The two users whose QCT/FEA strength and stiffness estimations had the largest 

difference with each other were selected. Linear regression analysis was used to correlate the 

strength and stiffness estimations by one of these two users with the results of the other one, 

respectively. The 95% confidence interval was determined for the regression lines between the 

QCT/FEA estimations of these two users. Moreover, Bland-Altman mean-difference plots were 

used to investigate the difference between the estimations of these two users. 

For each femur, the SD and the mean value were calculated for five strength and stiffness 

values. The coefficient of variation (CV) was then determined for strength and stiffness results of 

each femur as the ratio of the SD to the mean value. The CV was used as a representative metric 

to measure the dispersion of the QCT/FEA results. The similarity among the strength and 

stiffness values obtained using models in five test series was tested by employing a multi-rater 

concordance correlation analysis (M-CCA) [100, 101].  

3.4. Results of Segmentation Reproducibility Study  

3.4.1. Geometry comparison 

The mean and the range of the mean, the SD, and the root mean square (RMS) error of 

the distances for the largest and the smallest model segmentation volumes, for the entire cohort 

of 45 femora, are presented in Table 3.4. The mean distance was less than or equal to the size of 

the voxel for all femora. The largest RMS error was only slightly greater than the voxel size at 

about 0.53 mm. Figure 3.4 shows the histogram of the RMS error of the distances for all 45 

femoral geometry comparisons. As depicted, the RMS error was slightly larger than a voxel size 
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for only three femora. This, confirmed that the geometry of the two largest and smallest 

segmented models of each femur were very similar. 

Table 3.4. The mean and range of the mean, the SD, and the RMS error of distances (mm) from 

geometry comparison of the two extreme models of each femur in the set of 45 femora. (Used 

with permission of Mayo Foundation for Medical Education and Research, all rights reserved). 

 

 

 

 

Figure 3.4. The distribution of the RMS error of the distances from the geometry comparison 

between two extreme models of each femur in the set of 45 femora. (Used with permission of 

Mayo Foundation for Medical Education and Research, all rights reserved). 

 

3.4.2. Strength and stiffness comparison 

Figure 3.5 shows the graphs of the QCT/FEA strength and stiffness estimations for test 

series one and three whose QCT/FEA predictions had the largest difference with each other 

compared to the others. The correlation equations between the strength (S, KN) and stiffness (K, 

KN/mm) results of these two test series were as follows: 

                                                           𝑆3 = 1.021𝑆1 − 0.018                                                       (4) 
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                                                           𝐾3 = 1.041𝐾1 − 0.044                                                      (5) 

with the coefficient of determination (R
2
) 0.995 and 0.996 for the strength and stiffness 

regressions, respectively. 

  

Figure 3.5. The QCT strength (A) and stiffness (B) estimations for the 45 femora models in test 

series one and three whose QCT/FEA estimations had the largest difference to each other. (Used 

with permission of Mayo Foundation for Medical Education and Research, all rights reserved). 

 

In the aforementioned strength and stiffness correlation equations (Eq. 4 and 5), the slope 

is statistically significant (p < 0.001 paired t-test), while the intercept is not significant (p = 0.676 

for strength and p = 0.189 for stiffness). For the strength correlation equation, the 95% 

confidence interval for the slope was 0.998-1.043 and for the intercept was -0.504 to 0.069, 

while the first and the second intervals included the expected value of 1.0 for the slope and 0.0 

for the intercept, respectively. Similarly, for the stiffness correlation equation, the 95% 

confidence interval for the slope was 0.999-1.021 and for the intercept was -0.095 to 0.005, the 

first and the second intervals including the expected value of 1.0 for the slope and 0.0 for the 

intercept, respectively. 

Figure 3.6 shows the Bland-Altman mean-difference plots for the strength and stiffness 

estimations for test series one and three. As depicted, the 95% confidence interval of the mean-
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difference values for both strength and stiffness included zero. Figure 3.7 shows the graphs of 

the CV versus the mean value of the QCT/FEA strength and stiffness estimations for each of the 

45 femora. 

  

Figure 3.6 Bland-Altman mean-difference plots for strength (A) and stiffness (B) estimations for 

the 45 femoral models in test series one and three; the dash lines show the mean values and the 

solid lines show the confidence intervals. (Used with permission of Mayo Foundation for 

Medical Education and Research, all rights reserved). 

 

  

Figure 3.7. The CV (%) versus the mean value for the QCT/FEA strength (A) and stiffness (B) 

estimations for the 45 femora. (Used with permission of Mayo Foundation for Medical 

Education and Research, all rights reserved). 
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Figure 3.8 shows the histogram of the CV of the QCT/FEA strength and stiffness 

estimations for all 45 femora. As depicted, the vast majority of femora had a CV of less than 2% 

for both strength (40 femora) and stiffness (36 femora) estimations. Finally, using the M-CCA, a 

concordance correlation coefficient (CCC) value of 0.995 was obtained for the strength results. 

This value was greater than 0.99, a level
 
that indicates almost complete agreement [102]. A 

similar level of agreement was obtained for the stiffness estimations where the multi-observer 

CCC was 0.998. 

 

Figure 3.8. Histogram of the CV of the QCT/FEA strength and stiffness estimations for the 45 

femora. (Used with permission of Mayo Foundation for Medical Education and Research, all 

rights reserved). 
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FE models in five test series. Figure 3.9 shows the variation of FE estimated trochanteric force 

versus head displacement for five FE models of the femur. Among all, the five models of this 

femur had the largest variation in strength results. The largest and the smallest stiffness values 
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the least strength results were 4710 and 4330 N, respectively, leading to a difference of 8%. All 

five models of the femur had almost the same strain and stress distributions in both elastic and 

post-yield regions. 

 

 

Figure 3.9. FE trochanteric force versus head displacement for five models of a femur; the 

largest and the smallest stiffness (K) values had a variation of 6%. The highest and the least 

strength (Fs) results contributed to a difference of 8%. (Used with permission of Mayo 

Foundation for Medical Education and Research, all rights reserved).  

 

Typical strain and stress contour plots of the femur in the elastic region (displacement of 

0.6 mm) and at the onset of fracture (displacement 3.4 mm) are presented in Figure 3.10.  
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Figure 3.10. (A) Strain and (B) stress (MPa) contour plots in the elastic region (displacement 0.6 

mm) and at the onset of fracture (displacement 3.4 mm) along the femoral model. (Used with 

permission of Mayo Foundation for Medical Education and Research, all rights reserved).  

 

The VA and the maximum local strain and stress values for the FE models of the femur 

in its elastic region are presented in Table 3.5. The ratio of the VA stress to the VA strain, called 

VA modulus, was determined for each model and presented in this Table. The models 3 and 4 

had, respectively, the largest and the smallest VA moduli, correlating well with stiffness values 

of these models. However, similar trend was not observed for the local maximum strain and 

stress values. 
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Table 3.5. Different mechanical parameters of the femoral models in the elastic region 

(displacement 0.6 mm). (Used with permission of Mayo Foundation for Medical Education and 

Research, all rights reserved). 

 

 

 

 

 

 

Table 3.6 shows the VA and the maximum strain and stress results of the femur at the 

onset of fracture for the five models. All the models had almost the same VA strain value. This, 

confirmed that they underwent the same deformation up to fracture, as expected. Models 1 and 4 

had the greatest and the smallest VA stress values, being in agreement with the strength values of 

these models.  

Table 3.6. VA, and maximum local strain and stress values of the five models of the femur at the 

onset of fracture (displacement 3.4 mm). (Used with permission of Mayo Foundation for Medical 

Education and Research, all rights reserved). 

 

 

 

 

 

 

3.5. Discussions and Conclusion 

The geometry comparison between the largest and smallest models of each femur showed 

very small differences between the models segmented by different users. The mean, SD, and 

RMS values for all 45 femora were less than or around the QCT scan’s voxel size which is an 

acceptable error for segmentation. The results from the current study also showed small 

 Model 1 Model 2 Model 3 Model 4 Model 5 

VA strain 0.0025 0.0023 0.0023 0.0028 0.0025 

VA stress (MPa) 2.3 2.21 2.2 2.44 2.43 

VA modulus (MPa) 920 961 974 871 972 

Local maximum strain 0.0783 0.1822 0.0661 0.0622 0.5120 

Local maximum stress 

(MPa) 
63 85 90 72 282 

 Model 1 Model 2 Model 3 Model 4 Model 5 

VA strain 0.012 0.012 0.012 0.013 0.012 

VA stress (MPa) 7.61 7.53 7.48 7.39 7.50 

Local maximum strain 3.302 3.703 3.051 3.781 3.005 

Local maximum stress 

(MPa) 
417 413 409 368 461 
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variability in QCT/FEA predictions of femoral strength and stiffness attributed to users. The 

strength and stiffness estimations for the two test series whose QCT/FEA predictions had the 

largest difference with each other showed very strong correlations, with the coefficient of 

determinations greater than 0.994 for both strength and stiffness results. In both correlation 

equations, the slope was significant and very close to one and the intercept was insignificant and 

very close to zero. For the strength and stiffness estimations of these two test series, the 95% 

confidence interval of the Bland-Altman mean-difference plots involved zero difference. These 

analyses showed that the QCT/FEA estimations for these two test series were not statistically 

different. 

The CV was used as a standard measure to investigate the discrepancy between the 

QCT/FEA estimations of the five test series. For none of the femora, the CV was higher than 5% 

for strength and stiffness results.  The vast majority of the femora had a CV of less than 2% for 

both strength (40 femora) and stiffness (36 femora) estimations. Only one femur had a CV of 5% 

for strength and two femora had a CV of 5% for stiffness. This confirmed very small differences 

between the results of different test series. These relatively small differences were observed for a 

large femoral sample with a wide range of ages and aBMD which was representative of both 

sexes. Moreover, the multi-observer CCC obtained for the five test series was greater than 0.99 

for both strength and stiffness estimations, a level
 
that indicates almost complete agreement 

[102]. 

The current study has several limitations. First, it did not attempt to extend the user 

reconstructions to clinical scans.  Such scans include surrounding soft tissues that make it more 

difficult to segment the bone.  Different users may be more prone to interpret the boundary of the 

bone differently and produce more variability in the resulting 3D reconstruction.  Secondly, the 
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current study did not investigate user repeatability due to the significant effort that would have 

been required for each user to repeatedly segment the set of 45 femora and run the FE analyses. 

Such a process took approximately 12 hours to complete for each bone per user and was not 

attainable due to resource availability. However, with the consistency observed from the 

independent results obtained for the five test series, one can conclude that this is a minor 

limitation of the current study. Finally, the current study was limited to one loading condition 

and failure criteria. More investigation needs to be done to extend the findings of the current 

study to other bone modeling methods including other loading conditions, failure criteria, etc.     

In conclusion, the results of the current study showed that the QCT/FEA method was 

reproducible for the set of 45 femora which is a large enough sample size to claim that the 

method can be clinically employed  for assessing bone fracture risk, provided the procedures are 

carefully followed by trained users for the whole process. The promising results of the current 

study also implied that the repeatability of the process can be likely guaranteed as the errors 

producing from one user, in the repetition of the QCT/FEA method, is lower compared to the 

ones from different users.  
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CHAPTER 4. OPTIMIZED EVALUATION OF INHOMOGENIOUS ELASTIC 

PROPERTIES OF FEMALE FEMORA USING INVERSE FINITE ELEMENT 

ANALYSIS 

4.1. Introduction 

Finite element analysis has been employed in orthopedic biomechanics for understanding 

the bone’s interaction with implants [102-105], for assessing bone fracture healing [106], and for 

evaluating bone fracture risk [63, 107, 108]. A major challenge in subject-specific FEA of 

human bones is the evaluation of heterogeneous material properties in bone models [63] as the 

materials have vital impacts on the simulation results [62, 83, 84]. The elastic material properties 

are usually estimated from the CT scans using empirical equations from bone density [89, 109].  

The majority of the bone density-elasticity relations have been derived from 

biomechanical tests on bone coupons from different anatomical sites [64-66, 93, 110]. Three of 

these relationships have been widely used in subject-specific FEA of human bones to estimate 

the mechanical characteristics of bones under different loading scenarios [54, 99, 111, 112]. 

Keller [64] conducted compression tests on cubic cortical and trabecular specimens from human 

vertebrae and femora and showed good correlation for both linear and power models between 

compressive elastic modulus and bone density.  

Keyak et al. [65] performed compression tests on trabecular coupons acquired from 

cadaveric proximal tibiae and found power relationships between orthogonal elastic moduli and 

bone ash density. Morgan et al. [66] measured the compressive elastic moduli and apparent 

densities of trabecular coupons extracted from human vertebra, proximal tibia, and femur. Due to 

the very complex and inhomogeneous structure of bones, small coupons separated from the 

whole bone cannot represent the global response of intact bones [67]. Mechanical properties of 
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bones are also location dependent and different from one to the others [66], so that the coupon 

tests may erroneously predict the actual structural responses of bones. Furthermore, 

biomechanical tests for extracting bone density-elasticity relationships have usually been 

conducted under simple uniaxial loadings, while the majority of bone fractures, such as those 

resulted from a fall on the hip, happen under complex loadings involving a combination of 

tensile, compression, shear, bending and torsional loadings. Materially, the complex structure of 

bones cannot be characterized using simple uniaxial monotonic ramps [113, 114]. 

Performing experiments on the whole femur, on the other hand, provides better insight of 

what bones structurally respond to different loading conditions. This type of characterization, 

however, requires computational efforts as well. Several studies have tried to determine the bone 

density-elastic modulus relationships using inverse computational-experimental methods [67, 68, 

115]. Huang et al. [115] performed an inverse computational study to estimate the elastic 

modulus of cortical bone specimens directly from the CT number. The obtained results are, 

however, only applicable to the CT machine they employed, because each CT scanner model has 

its own standard HU values. Cong et al. [67] (DOE, Mayo Clinic) identified the coefficients of 

the bone density-elastic modulus relationships by minimizing an error function between the FEA 

estimated and experimental stiffness of proximal femora in a fall on the hip configuration. They 

used a power law and a sigmoid function to express the relationship between the density and the 

elastic modulus of the bone. However, they used simplified BCs in bone FE models. Their study 

was also limited to a small sample size. Eberle et al. [68] used an inverse numerical-experimental 

study on cadaveric femora in a stance-like configuration to determine the coefficients of a power 

law between bone density and elastic modulus. They showed that subject-specific density-elastic 

modulus relationships lead to more accurate FE models of human femora compared to cohort-
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specific relations. However, they did not cross-validate their proposed density-elasticity relation 

on another set of femora. Another limitation of this study was the small sample size. Moreover, 

their study was limited to a stance-like loading configuration, and they did not validate their 

findings against other loading scenarios, such as a sideways fall configuration as the most 

common loading pattern in hip fractures. 

Despite great efforts in the material characterization of bones, reported density-elasticity 

relationships are significantly different from each other [67, 93], and there is still a need for an 

accurate and robust relation to determine the distribution of the elastic properties through the 

bone FE models. The previously proposed bone density-elasticity relationships have also been 

aimed at the mechanical properties of the whole population regardless of their sex, while female 

bones are more vulnerable to osteoporosis and hip fractures [116]. The overall objective of the 

current study was to identify the density-elastic modulus relationships of female bones under a 

complex load scenario. To this end, the mechanical behavior of female femora in a sideways fall 

was measured by mechanical experiments and was simulated by FE modeling (chapter 2). 

4.2. Proposed Elastic Constitutive Equations for Bones 

Unlike engineered materials and some of biological tissues, bone has a complex, 

inhomogeneous elastic property distribution. Carter and Hayes [110] performed mechanical tests 

on bone specimens and proposed a power law that relates the elastic modulus of the bone to its 

density as follows:  

                                                                      𝐸 = 𝑎𝜌𝑎𝑠ℎ
𝑏                                                                (1) 

where a and b are material constant values. This mathematical relationship has been employed 

widely in the literature of bone FE modeling. Helgason et al. [93] summarized the majority of 

available bone density-elasticity relationships (Table 4.1). Additionally, Cong et al. [67]  
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introduced a new relationship in the form of a sigmoid function between the bone density and its 

elastic modulus as follows:  

                                                                  𝐸 = 𝑐𝑒𝑑𝑒𝑓𝜌𝑎𝑠ℎ                                                              (2) 

where c, d and f are material constant values. In the current study both the power law and the 

sigmoid function were used separately in femoral FE models to map bone ash density (ρash, 

g/cm
3
) to its elastic modulus (E, MPa). The material constants were identified using an inverse 

computational-experimental approach and their performances on the bone response were 

investigated. 

4.3. Inverse Finite Element Analysis 

Characterization of mechanical properties of materials has been as a challenging problem 

in engineering. In cases where material specimens have simple standard geometries, derivation 

of specimen characteristics is easy; different mechanical test methods can be implemented and 

the responses of the samples are simply compared with well-suited mathematical equations to 

obtain the constants of the equations. However, in many complex engineering problems 

characterization of mechanical properties of different materials is not straight forward to fit only 

a mathematical equation on the experimental data. 
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Table 4.1. Bone density-elasticity relationships extracted from mechanical tests. (Revised from [93]). 
Study Site Type of bone Densitometric 

Measure 

ρ-range 

(g/cm
3
) 

E (GPa) 

Carter & Hayes [110] Pooled Cortical and trabecular ρapp 0.07–2.0 𝐸 = 3.79𝜀̇0.06𝜌𝑎𝑝𝑝
3  

Lotz et al. [118] Human femoral neck Trabecular ρapp 0.18–0.95RFG 𝐸 = 1.31𝜌𝑎𝑝𝑝
1.40 

Lotz et al. [119] Human femoral metaphysis Cortical ρapp 1.20–1.85RFG 𝐸 = −13.43 + 14.261𝜌𝑎𝑝𝑝 

Snyder & Schneider [120] Human tibial diaphysis Cortical ρapp 1.748–1.952 𝐸 = 3.891𝜌𝑎𝑝𝑝
2.39 

Hodgskinson & Currey [121] Pooled Trabecular Ρdry 0.094–1.111 𝐸 = 3.98𝜌𝑑𝑟𝑦
1.78 

Linde et al. [122]b Human proximal tibia Trabecular ρapp 0.273c 𝐸 = 4.778𝜌𝑎𝑝𝑝
1.99 

Anderson et al. [123] Human proximal tibia Trabecular Ρdry 0.14–0.48RFG 𝐸 = 3.890𝜌𝑑𝑟𝑦
2.0  

Dalstra et al. [124] Human pelvis Trabecular ρapp 0.109–0.959 𝐸 = 2.0173𝜌𝑎𝑝𝑝
2.46 

Keller [64] Human spine Trabecular ρash 0.028–0.182 𝐸 = 1.89𝜌𝑎𝑠ℎ
1.92 

Keller [64] Human femur Cortical and trabecular ρash 0.092–1.221 𝐸 = 10.5𝜌𝑎𝑠ℎ
2.29 

Keller [64] Pooled Cortical and trabecular ρash 0.028–1.221 𝐸 = 10.5𝜌𝑎𝑠ℎ
2.57 

Keyak et al. [65] Human proximal tibia Trabecular ρash 0.06–0.27 𝐸 = 33.9𝜌𝑎𝑠ℎ
2.20 

Goulet et al. [125] Pooled Trabecular BV/TV 0.06–0.36 
𝐸 = 6.310(

𝐵𝑉

𝑇𝑉
)2.10 

Keaveny et al. [126] Human lumbar spine Trabecular ρapp 0.09–0.28 𝐸 = −0.058 + 1.540𝜌𝑎𝑝𝑝 

Li & Aspden [127] Human femoral head Trabecular ρapp 0.14–1.4 𝐸 = −0.0094 + 0.573𝜌𝑎𝑝𝑝 

Ouyang et al. [128] Human vertebra Trabecular ρapp 0.46–0.71 𝐸 = 2.3828𝜀̇0.07𝜌𝑎𝑝𝑝
1.88 

Kopperdahl & Keaveny [129] Human vertebra Trabecular ρapp 0.11–0.27 𝐸 = −0.08 + 2.1𝜌𝑎𝑝𝑝 

Ciarelli et al. [130] Human proximal femur Trabecular BV/TV 0.15–0.40RFG 
𝐸 = 7.541 (

𝐵𝑉

𝑇𝑉
) − 0.637 

Morgan et al. [66] Human vertebrae Trabecular ρapp 0.11–0. 35 𝐸 = 4.730𝜌𝑎𝑝𝑝
1.56 

Morgan et al. [66] Human proximal tibia Trabecular ρapp 0.09–0. 41 𝐸 = 15.52𝜌𝑎𝑝𝑝
1.93 

Morgan et al. [66] Greater trochanter Trabecular ρapp 0.14–0. 28 𝐸 = 15.01𝜌𝑎𝑝𝑝
2.18 

Morgan et al. [66] Human femoral neck Trabecular ρapp 0.26–0. 75 𝐸 = 6.850𝜌𝑎𝑝𝑝
1.49 

Morgan et al. [66] Pooled Trabecular ρapp 0.09–0. 75 𝐸 = 8.920𝜌𝑎𝑝𝑝
1.83 

Kaneko et al. [131] Human distal femur Trabecular ρash 0.102–0.331 𝐸 = 10.88𝜌𝑎𝑠ℎ
1.61 

a Pearson correlation coefficient as reported in the original work. 
b Reported results are for cylindrical specimens with diameter of 7.5 mm and a height of 7.5 mm. 
c Average value. Range not reported, RGF = read from graph.
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Complex geometries, as well as a variety of loading scenarios, make it more complex to 

determine the constant parameters of the materials. The situation is even worse for biological 

tissues; due to time dependency and inhomogeneity in material properties across the tissue. For 

example, femoral bone material characterization is a challenge due to a complicated anatomical 

structure and material anisotropy. Inverse finite element method (IFEM) is a very effective tool 

that makes use of numerical methods to derive mechanical properties of such materials [117]. 

In an IFEM, the optimization algorithms are coupled with an FE code while the material 

properties are unknown. The initial values of the material properties are passed to the FE 

procedure and the results are compared with the experiments as reference data. Then, 

optimization procedures search for new sets of material properties to obtain the best possible fit. 

This process is repeated several times to minimize the error function between the FE estimated 

and the experimental results, and to eventually find the optimal values of parameters of interest.  

Generally, the process of IFEM is computationally expensive, as it usually involves many 

iterations, and similar to different numerical techniques it may face convergence issues. The 

accuracy of the results is also dictated by the assumptions in the FE formulations and 

optimization algorithms. Although many strategies are implemented in the optimization 

algorithms to find the global optimal response of the problem, if the objective function is 

complex, including several local extrema, it will be difficult to find the global optimum of 

respective values. Therefore, the number of unknowns should be reduced to be as small as 

possible, and meaningful initial values should be chosen that relate to the physics of the problem. 

Another useful strategy is limiting the optimization space by applying constraints on the 

solutions. Without this, the process may converge to unreasonable solutions from a physical 

standpoint.  
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In the IFEM employed in the current study, the optimization algorithms were 

implemented through MATLAB (MathWorks, MA, USA) codes, the FE simulations were 

performed in ANSYS (ANSYS Inc., Canonsburg, PA, USA) through in-house ANSYS APDL 

codes and Tool Command Language (TCL), an interpreted scripting language, scripts. These 

tools were developed at Mayo Clinic. 

4.4. Material Optimization Procedures 

Seventy cadaveric female femora were previously tested to fracture in a fall on the hip 

loading configuration, and apparent stiffness values were determined from the force-

displacement data. The FE models of the femora, developed from their QCT scans captured 

before the experiments, were used to simulate the fracture experiments (chapter 2). Apparent 

stiffness estimations were also computed from the subsequent simulated force-displacement data. 

The experimental and simulation stiffness results were then used integrated into optimization 

procedures to identify the unknown constants in the bone density-elasticity relationships. To this 

end, an objective function in the form of the RMS was defined between the experimental (Ki) 

and the FE predicted stiffness (K̂i) values as an average error metric [67]:  

                                                                   𝐽 = √
1

𝑛
∑ (1 −

𝐾̂𝑖

𝐾𝑖
)

2𝑛

𝑖=1

                                                              (3) 

Where n is the number of femora used in the optimization process. Optimization algorithms were 

employed to minimize the objective function by changing the constants in the elastic modulus 

relationships used in the FE models in an iterative process. Consequently, the FE estimated 

stiffness values were compared to the experimental ones. When the change in the objective 

function for two consecutive iterations was less than an acceptable tolerance of 10
-5

, the 

optimization process was stopped and the last set of material coefficients was reported as the 
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optimal constants. Figure 4.1 shows a detailed flowchart of the numerical implementation of the 

optimization process used in the current study. 

 

Figure 4.1.
 5

 Flowchart of the optimization procedure used to identify the unknown coefficients 

in the bone density-elasticity relationships; an objective function was formed between the 

experimental (K) and FE estimated stiffness (K̂) results. Optimization algorithms were used to 

find the optimal coefficients in the density-elasticity relationships in FE models by minimizing 

the objective function J. When the change in the objective function J between two consecutive 

iterations was less than the acceptable tolerance10
-5

, the optimization procedure stopped and the 

last set of constants was reported as the optimal coefficients. (Used with permission of Mayo 

Foundation for Medical Education and Research, all rights reserved). 

 

                                                        
5 Revised from a figure prepared by Dan Dragomir-Daescu, Sean McEligot, Alex Cong, Jorn op den Buijs 
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The femora were randomly divided into two groups of 35 individuals. The first group, 

considered as training set, was used to identify the unknown coefficients in the density-elasticity 

relationships. The optimal elastic modulus relationships were then cross validated over the 

femora in the second group, called validation set.   

The Downhill simplex method (Nelder-Mead simplex optimization algorithm) [132] was 

used for identifying the two unknown coefficients a and b in the power density-elastic modulus 

relationship (Eq. 1). The initial values of 8050 and 1.16 were selected for a and b, respectively, 

from a previous study [67].  

4.4.1. Simplex search algorithm 

Simplex search algorithm (SSA) is a well-known optimization method for finding a local 

minimum of multi-variable unconstrained functions. It is a direct search process which does not 

use any analytical or numerical gradient, making it suitable for problems with discrete, 

discontinuous, or even non-smooth functions. The method is simple to apply and is, therefore, 

used widely in many fields of technology and science such as medicine and chemistry. 

If n is the length of the variables vector of an objective function, a simplex characterized 

by n+1 vertices (each vertex has a length of n) in n-dimensional space is used to minimize the 

function [133]. For example, in 2D space, the simplex is a triangle; and in 3D space, it is a 

tetrahedron. A new point is generated at each step of the search. The function value at the new 

generated point is compared to the values of the function at the current vertices of the simplex, 

and the worst vertex, where the function is largest, is replaced with the new point. The process is 

continued and the function values at the vertices of the simplex become smaller and smaller. The 

size of the simplex is reduced until the desired variables are found [134]. The steps of the most 

common version of the algorithm are as follows [135]: 
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I. Reflection: calculating reflection point xr as follows: 

              𝑥𝑟 = 𝑥𝑚 + 𝜌(𝑥𝑚 − 𝑥𝑛+1) 

 Forming a new simplex by replacing the worst point xn+1 with the reflected point xr and 

going to step II, if 𝑓(𝑥1) ≤ 𝑓(𝑥𝑟) < 𝑓(𝑥𝑛). 

II. Expansion: computing the expansion point xe as follows, if the reflected point is even better 

than the best point, i.e.  f(xr) < 𝑓(x1): 

                𝑥𝑒 = 𝑥𝑚 + 𝜒(𝑥𝑚 − 𝑥𝑛+1) 

 Forming a new simplex by replacing the worst point xn+1 with the  expanded point xe and 

going to step II, If 𝑓(𝑥𝑒) < 𝑓(𝑥𝑟), otherwise replacing the worst point xn+1 with the 

reflecting point xr and going to step II. 

 Going to the next step, if 𝑓(𝑥𝑟) ≥ 𝑓(𝑥𝑛). 

III. Contraction: calculating the contraction point xc as follows: 

𝑥𝑐 = 𝑥𝑚 + 𝛾(𝑥𝑚 − 𝑥𝑛+1) 

 Generating a new simplex by substituting the worst point xn+1 with the contracted point 

xc and going to step II, if 𝑓(𝑥𝑐) < 𝑓(𝑥𝑛+1), otherwise going to the next step. 

IV. Shrinkage: replacing all the points except the best point with the following points and going  

to step II: 

𝑥𝑖 = 𝑥1 + 𝜎(𝑥𝑖 − 𝑥1)       𝑖 = 2, 3, ⋯ , 𝑛 + 1 

where 𝜌, 𝜒, 𝛾, and 𝜎 are the reflection, expansion, contraction, and shrinkage coefficients, 

respectively, with the following default values: 

     𝜌 = 1, 𝜒 = 2 , 𝛾 = −0.5, 𝜎 = 0.5 

Figure 4.2 illustrates the steps of the algorithm for a 2D problem. 
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Figure 4.2. Main steps in the Nelder-Mead simplex optimization algorithm for a 2D problem. 

(Revised from http://capsis.cirad.fr/capsis/documentation/optimisation).  
 

4.4.2.  Genetic algorithm 

Genetic algorithm (GA) was employed to find the three unknown coefficients c, d and f 

in the sigmoid density-elasticity relationship (Eq. 2). This is a search method for solving both 

constrained and unconstrained optimization problems by employing a selection procedure which 

simulates the biological evolution [136]. A population of candidate solutions (called creatures, or 

individuals) to the optimization problem is evolved continuously toward optimal solutions. At 

each iteration, the GA chooses individuals randomly from the recent population and employs 

them as parents to create the offspring for the following generation. The optimization process is 

http://en.wikipedia.org/wiki/Population
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terminated when either the change in the objective function is less than the acceptable error for 

two consecutive iterations, or a maximum number of generations had been exceeded [137]. 

The main steps of GA to find the solutions of a problem are as follows [138]: 

I. Creating a random initial population of individuals 

II. Evaluating the fitness score of each individual in the population 

III. Generating a new population using the individuals of the current population; the following 

sub-steps are repeatedly performed until the new population is generated: 

 Selection: selecting individuals, called parents, according to their fitness scores 

(individuals with greater fitness scores have a higher chance to be selected) 

 Crossover: creating population of children (offspring) by combining two parents 

 Mutation: generating population of children by making random changes to a single 

parent 

 Replacement: Substituting the recent population with the children population 

IV. Termination: stopping the procedure if the termination criterion is satisfied. 

Figure 4.3 depicts the steps employed in the GA procedure to identify the unknown 

coefficients. The termination criterion and the maximum optimization iterations were set to 10
-5

 

and 200, respectively. The coefficients d and f in the sigmoid density-elasticity relationship 

should be negative. The GA was, therefore, used to allow for putting some constraints on these 

coefficients. The following constraints, selected from a previous study [67], were used to limit 

the search domain for accelerating the identification process:  

[𝑐]: {𝑥𝜖𝑅|10000 ≤ 𝑐 ≤ 25000} 

                                                   [𝑑]: {𝑥𝜖𝑅|0 < 𝑑 ≤ −10}                                                          (4) 

                                                    [𝑓]: {𝑥𝜖𝑅|0 < 𝑓 ≤ −5} 
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Figure 4.3. Steps used in GA procedure to search for the optimal parameters in the sigmoid 

function. (Used with permission of Mayo Foundation for Medical Education and Research, all 

rights reserved).  

 

The performance of the optimal bone density-elasticity relationships obtained in the 

current study was evaluated compared to some of the commonly used bone density-elasticity 

relationships. To this end, five previously reported relationships [64-68] were applied to the FE 

models of the training and the validation femora, and the simulations were repeated under the 

same displacement loading of 0.6 mm. Two metrics were measured for each material model to 
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evaluate its performance: 1) the slope of the regression line between the FE estimated and the 

experimental stiffness values, and 2) their coefficient of determination R
2
 compared to desired 

line Y = X, where Y denotes the estimated stiffness by FEA, and X denotes the measured stiffness 

by experiments. 

4.5. Statistical Analysis 

Several statistical analyses were used to compare different data sets. Regression analysis 

was used to examine the correlation between the FE estimated and experimental stiffness values 

for the training and validation femoral sets. Repeated measure analysis of variance (RM-

ANOVA) checked the difference between the FE predicted stiffness resulted from the optimal 

density-elasticity relationships obtained in the current study and some of the previously proposed 

relationships. All of the statistical analyses were performed in MINITAB 16 (Minitab Inc., PA, 

USA). The statistical significance value () was set to 0.05 for all of the statistical analyses. 

4.6. Results of Inverse Finite Element Analysis 

Table 4.2 shows the characteristics and the experimental stiffness values of the femora in 

the training and in the validation sets.  

Table 4.2. Characteristics and experimental stiffness values of training and validation femora. 

(Used with permission of Mayo Foundation for Medical Education and Research, all rights 

reserved). 

 Training femora Validation femora 

 Mean ± SD Range Mean ± SD Range 

Age (year) 72 ± 12 54-94 71 ± 16 37-99 

aBMD (g/cm
2
) 0.72 ± 0.18 0.42-1.10 0.73 ± 0.21 0.37-1.36 

Exp. Stiffness (kN/mm) 1.4 ± 0.5 0.6-2.7 1.4 ± 0.6 0.5-3.0 

 

The Nelder-Mead optimization algorithm for identifying the power density-elasticity 

relationship converged after 83 iterations, with the major decrease in the objective function from 
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0.318 to 0.255 within the first 10 iterations (Figure 4.4). The objective function at iteration 83 

was 0.247, with a change less than the convergence criterion, 10
-5

, compared to the previous 

iteration. The optimization process, therefore, terminated. The optimal values of the power law 

coefficients a and b were 11644 and 1.31, respectively. To assure that the obtained coefficients 

were the results of the global minimum of the objective function, the optimization process was 

repeated using another set of initial values (a = 4000 and b = 4) far from the first initial value set. 

The new initial values led to the same results as the previous ones. This showed that the obtained 

coefficients were the results corresponding to the global minimum of the objective function. 

 

Figure 4.4. Variation of the objective function versus the optimization iteration during the 

parameter identification process for the power elastic-density relationship; after 83 iterations, the 

change in the objective function was less than the convergence criterion, 10
-5

. (Used with 

permission of Mayo Foundation for Medical Education and Research, all rights reserved).  

 

The obtained density-elasticity relationship was then applied to FE models of the 

validation femora. Figure 4.5 shows the FE estimated stiffness versus experimental stiffness 

values for both training and validation femoral sets. The coefficient of determination R
2
 of the 
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estimated stiffness values compared to the desired line Y = X was 0.67 and 0.72 for the training 

and the validation femora, respectively. 

 

Figure 4.5. Variation of the FE estimated stiffness values versus experimental stiffness for the 

training and the validation femora using the optimal power density–elastic modulus relationship 

(𝐸 = 11663𝜌𝑎𝑠ℎ
1.31); the coefficient of determination R

2
 was determined compared to the desired 

line Y = X. (Used with permission of Mayo Foundation for Medical Education and Research, all 

rights reserved). 

 

Figure 4.6 depicts von Mises, shear, and maximum principal strain and stress contour 

plots throughout a typical femur under displacement loadings of 0.6 mm. As illustrated, the main 

deformation occurred in the proximal part of the femur composed of the head, neck, and greater 

trochanter. The shaft did not contribute significantly in the global deformation as it consisted of a 

thick cortex of stiff cortical bone. 
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Figure 4.6. Stress (MPa) and strain contour plots of a typical femur under displacement loading 

of 0.6 mm in z direction; A) von Mises strain throughout the femur, B) von Mises strain, C) von 

Mises stress, D) Shear strain yz, E) Shear stress yz, F) Maximum principal strain, and G) 

Maximum
 
principal stress in the proximal part. (Used with permission of Mayo Foundation for 

Medical Education and Research, all rights reserved). 

Strain Stress 
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For the sigmoid density-elastic modulus relationship, the GA optimization process 

converged after 109 iterations with the objective function value of 0.251. The optimal 

coefficients c, d, and f were 18838.0, -6.0, and -3.5, respectively. Figure 4.7 shows the variation 

of the objective function versus iterations in the GA optimization. 

 

Figure 4.7. Variation of the objective function versus the GA optimization iterations in the 

parameter identification process for the sigmoid elastic-density relationship; the optimization 

process converged after 109 iterations. (Used with permission of Mayo Foundation for Medical 

Education and Research, all rights reserved). 

 

Using the obtained sigmoid density-elastic modulus relationship, Figure 4.8 indicates the 

FE predicted stiffness versus the experimental stiffness for the training and the validation 

femora. The coefficient of determination compared to the line Y = X was 0.67 for the training set 

and was 0.74 for the validation femora. Figure 4.9 illustrates the variation of the FE estimated 

stiffness versus the experimental stiffness for the training femora using different material 

models. RM-ANOVA revealed that the stiffness values resulting from the relationships obtained 

in the current study were significantly different from the stiffness values obtained from all the 

previous relationships except for the relationship proposed by Morgan et al. [66]. 
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Figure 4.8. FE estimated stiffness versus experimental stiffness values for the training and the 

validation femora using the sigmoid density–elastic modulus relationship     

(𝐸 = 18838𝑒−6𝑒−3.5𝜌𝑎𝑠ℎ ); the coefficient of determination R
2
 compared to line Y = X was 0.67 

and 0.74 for the training and the validation femora, respectively. (Used with permission of Mayo 

Foundation for Medical Education and Research, all rights reserved). 

 

Table 4.3 shows the slope of the regression line between the FE estimated and the 

experimental stiffness values and their coefficient of determination with respect to the line Y = X 

for different density-elasticity relationships. The slope of the regression lines of the two models 

proposed in the current study were almost one, showing the accuracy of the prediction of these 

models. Figure 4.10 shows the variation of the bone elastic modulus (E, GPa) obtained from 

different relationships versus the bone ash density (, g/cm
3
). As depicted, the differences 

between all the proposed models were significant. Any conclusion about the accuracy of the 

relationships based on the illustration, however, is difficult. The two optimized material models 

of the current study showed the best fit to the experimental measurements both in the training 

and the validation sets, as anticipated.  
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A) Keller [64] & Keyak et al. [65]            

B) Morgan et al. [66]                                  

C) Power law (Cong et al. [67])                

D) Sigmoid function (Cong et al. [67])      

E) Eberle et al. [68] 

Figure 4.9. FE estimated stiffness versus experimental stiffness for the training femora using 

different material models; the red line is desired line Y = X. The black lines are regression lines 

with zero intercept to pass through the origin. (Used with permission of Mayo Foundation for 

Medical Education and Research, all rights reserved). 
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Table 4.3. Slope of the regression line between the FE estimated and the experimental stiffness 

values and their coefficient of determination in respect to line Y = X for different density-

elasticity relationships. (Used with permission of Mayo Foundation for Medical Education and 

Research, all rights reserved). 

Density-elasticity relation Reference 

Training femora Validation femora 

Slope R2
 Slope R2

 

𝐸 = 11644𝜌𝑎𝑠ℎ
1.31 Current study 0.99 0.67 1 0.72 

𝐸 = 18838𝑒−6𝑒−3.5𝜌𝑎𝑠ℎ
 Current study 1.01 0.67 1.04 0.74 

𝐸 = 33900𝜌𝑎𝑠ℎ
2.2               𝜌𝑎𝑠ℎ ≤ 0.27   

𝐸 = 10200𝜌𝑎𝑠ℎ
2.01             𝜌𝑎𝑠ℎ ≥ 0.6      

𝐸 = 5307𝜌𝑎𝑠ℎ + 469     𝑜𝑡ℎ𝑒𝑟 𝜌𝑎𝑠ℎ    

 
Keller  [64]& 

Keyak et al. [65] 

0.64 -0.43 0.69 0.06 

𝐸 = 6850𝜌𝑎𝑝𝑝
1.49 Morgan et al. [66] 1.07 0.64 1.1 0.7 

𝐸 = 8050𝜌𝑎𝑠ℎ
1.16 Cong et al. [67] 0.77 0.07 0.76 0.17 

𝐸 = 15000𝑒−4.9𝑒−3.6𝜌𝑎𝑠ℎ
 Cong et al. [67] 0.83 0.37 0.84 0.50 

𝐸 = 12486𝜌𝑞𝐶𝑇
1.16 Eberle et al. [68] 1.16 0.52 1.17 0.57 

 

Compared to the results of the power relationship in the current study, Morgan et al.’s 

relationship [66] seems stiffer through the whole range of density. A similar impression can be 

given in the comparison of the constants of the two power relationships; both constants of the 

power relationship obtained from the current study were lower than those in the study of Morgan 

et al. [66], implying that the later overestimated the moduli of the bone. However, the 

correlations of their relationship were 64% and 70% for the training and the validation sets, 

respectively, showing the closest agreement with the results of the current study.  

Figure 4.10B is a subset of Figure 4.10A in a smaller range of density up to 0.5 g/cm
3
. It 

brings about an interesting hypothesis in that for this range of densities, the model presented by 

Morgan et al. [66] shows the closest agreement with the power model presented in the current 

study. 
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Figure 4.10. Variation of the bone elastic modulus (GPa) obtained from different material 

models versus the bone ash density (g/cm
3
); for A) all densities, B) densities lower than 0.5 

g/cm
3
, and C) densities greater than 0.5 g/cm

3
.
 
(Used with permission of Mayo Foundation for 

Medical Education and Research, all rights reserved). 
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The two models predict the response of the trabecular bone accurately. Surprisingly 

enough, more than 85% of the bone volume belongs to the range of densities of up to 0.5 g/cm
3
. 

The contribution of this part in the stiffness is, however, dominant as compared with the rest of 

the bone with the densities ranging from 0.5 to 1.5 g/cm
3
. The second closest model to the 

experimental data, as well as the results of the current study, is the model presented by Eberle et 

al. [68] with the correlations of 52 and 57%, respectively, for the training and the validation 

femora. For the bone densities of up to 0.5 g/cm
3
, Eberle’s et al. model [66] showed a relatively 

larger discrepancy in elastic modulus to the power law model of the current study. For higher 

densities, however, the prediction was more accurate. Their experiments were on the whole 

femora in a stance-like configuration, while the current study accounted for a fall on the hip 

scenario. It may explain the over prediction of the bone response by their model. The sigmoid 

function presented by Cong et al. [67] showed weaker correlations of 37 and 50% for both 

femoral sets.  

Although a strain-based failure criterion was employed in the current study, investigating 

the stress values predicted by different material models could reveal useful information. At the 

tissue level in the elastic region, stress distributions were highly influenced by density in 

different models. Using different density-elasticity relationships, Figure 4.11 shows the von 

Mises stress (MPa) estimations at three different sites inside the neck with the densities of 0.24, 

0.7, and 1.21 g/cm
3
. As clearly depicted, the different models predicted different stresses for the 

same site of the bone. Figure 4.11A presents the stress values at the location with the density of 

0.24 g/cm
3
 which corresponds to the trabecular bone. The model of Eberle et al. [68] predicted 

the highest stress values while the results of the sigmoid function (current study) showed the 

lowest. While those local stresses may not affect the stiffness of the whole femur, post-yield 
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response of the bone can be dictated by such stress localization. Figures 4.11B and C, on the 

other hand, predicts the highest value of von Mises stresses for the sigmoid function of the 

current study and the model presented by Morgan et al. [66], respectively. As one of the aims of 

the QCT/FEA is to predict the fracture type and the area of fracture initiation, such different 

patterns in the distribution of stresses throughout the bone may contribute to predicting failure at 

undesirable sites of the bone. 

Figure 4.12 shows the variation of trochanteric force (N) versus head displacement (mm) 

for a typical femur using different material models. As illustrated, the power and the sigmoid 

relationships obtained in the current study and the Morgan et al.’s model [66] resulted in very 

similar elastic deformations as the experimental data. The other material models underestimated, 

or overestimated, the elastic deformation. 

4.7. Discussions and Conclusions 

Material properties of the bone dictate the accuracy of the QCT/FEA in prediction of the 

responses of the tissue from elastic to failure. In the current study, an inverse computational-

experimental approach was employed to a large sample size of female femora with a variety of 

ages and aBMD representative to identify the bone density-elasticity relationships. The 

experimental setup mimicked proximal femoral fractures in a fall on the hip. The obtained elastic 

modulus relationships were then cross-validated on another large and varied femoral set. 

The coefficient of correlation for the cross-validation femoral set was higher than the 

ones of the training femora for both obtained power and sigmoid density-elasticity relationships. 

This confirmed the robustness of the identified elastic modulus relationships because the 

validation set was an independent representative of the population. Statistical analyses did not 
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show any significant difference between the experimental and FE estimated stiffness values (p = 

0.65).  

 

  

 

 

1: Keller [64]& Keyak et al. [65]                                   

2: Morgan et al. [66]                                  

3: Power law (Cong et al [67])                                                       

4: Sigmoid function (Cong et al [67])                              

5: Eberle et al. [68]                                     

6: Power law (The current study)                          

7: Sigmoid function (The current study) 

 

Figure 4.11. von Mises stress predictions at a strain level of 0.6% using different material models 

at different location inside the femoral neck with the densities of A) 0.27, B) 0.7, and C) 1.2 

g/cm
3
. (Used with permission of Mayo Foundation for Medical Education and Research, all 

rights reserved).  
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Figure 4.12. Variation of trochanteric force (N) versus head displacement (mm) for a typical 

femur using different material models. (Used with permission of Mayo Foundation for Medical 

Education and Research, all rights reserved). 
 

In terms of stiffness, both power and sigmoid relationships of the current study resulted 

in acceptable agreement with the experimental data, having the correlation coefficient of more 

than 0.67. More importantly, the slope of the regression lines was almost one for both models 

(Table 4.3). It is noteworthy to mention that while the power as well as the sigmoid relationships 

showed very close performance to explain the global response of the bone in the elastic region, 

there were intrinsic differences between the two models at the tissue level. The sigmoid 

relationship assigned a different modulus pattern to the material bins defined in the FEA models; 

in the areas with small and high densities, the rate of change in the moduli of the materials were 

very small, while in the locations with the densities between about 0.3 and 0.7 g/cm
3
, the rate of 

change became the highest. This pattern created a large gap between the sigmoid and power 
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relationships to explain stress distribution throughout the bone. For instance, the elastic modulus 

of the locations with the density of 0.8 g/cm
3
 was calculated as 8.85 and 13.25 GPa based on 

power and sigmoid relationships, respectively. The prediction of the two models, in terms of 

mechanical parameters such as stresses and strains, in those specific locations led to 50% 

difference which was significant. This could be important in the post-yield behavior of the bone 

as well as in the prediction of ultimate strength.  

The current study also revealed the fact that during a fall on the hip, the local deformation 

of the femoral neck plays an important role in the global stiffness. The majority of this region is 

made of soft and trabecular tissues with the densities in the range of up to 0.5 g/cm
3
. In the 

characterization of density-elasticity relationships, they should, therefore, be treated carefully. 

The reason that the Morgan et al.’s [66] relationship resulted in stiffness estimations having a 

good correlation with the experimental data lies in to the fact that their coupon specimens were 

harvested from the neck region of the femora. 

Applying the results of the current ex-vivo study to in-vivo is limited as the bone   

surrounded in a complicated muscular and ligamentous system is different from the experimental 

setup used in the current study. Moreover, during a fall on the hip, the femur does not have direct 

contact with the ground, as a layer of soft tissue helps attenuate the level of transferred load to 

the bone. Therefore, the application of the obtained density-elasticity relationships should be 

carefully used in FE models of bones in-vivo. 
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CHAPTER 5. OPTIMIZED EVALUATION OF YIELD AND POST-YIELD 

PROPERTIES OF FEMALE FEMORA USING INVERSE FINITE ELEMENT 

ANALYSIS  

This chapter is about a computational-experimental study that was employed to investigate 

the failure and damage behavior of female femoral bones under a complex loading scenario. 

Both ductile and brittle material behaviors were assumed separately for the bone tissue in the FE 

modeling of a set of femora simulating a fall on the hip loading configuration. Genetic algorithm 

integrated with an IFEA was employed to find the unknown coefficients in the yield and post-

yield material models by matching the FE estimated results to their experimental counterparts. 

Finally, the performance of the ductile and brittle material models for use in the subject-specific 

modeling of femora was evaluated.  

5.1. Introduction 

The mechanical properties of the bone tissue can be classified into three main categories 

as elastic, plastic, and damaged. From biological and clinical points of view, the ability to predict 

damage in tissues is of great significance.  In this regard, accurate definition of yield and post-

yield behaviors in plastic regions of the tissue plays an important role in understanding the 

process of damage. Due to difficulties in performing experimental and computational studies, 

however, post-yield characterization of femoral bones has been a challenging issue for years. 

There has been a wealth of published data in the literature for several decades that addresses 

bone fracture. McElhaney [139] performed experimental studies on human and bovine bone 

coupons to measure the mechanical properties of the bone up to fracture with the emphasis on 

the effect of load speed. Carter and Hayes [110] conducted several destructive experiments on 

the bones of the same species as in the study of McElhaney [139] and measured the stiffness and 
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strength of the bone. Keller [64] carried out a large number of experiments on small human bone  

samples at different sites of the bone  showing that the compressive material properties of the 

bone can be best explained by ash density. 

The advent of computers helped researchers vastly employ numerical methods to gain 

additional insight into the mechanics of bone fracture by being able to perform subject-specific 

simulations and macro-to-nano analyses. Several models, from simplistic to complex, explain 

plastic deformation of the bone as well as its damage. von Mises yield stress criterion, and then 

plastic flow, was employed on cadaveric femora in a stance-like loading configuration using 

QCT/FEA showing that this method can  potentially be a good predictor of femoral fracture risk 

[86, 140, 141]. Despite utilizing simplistic nonlinear constitutive equations, the results showed a 

close agreement with the experiments. Keyak et al. [142] proposed von Mises stress to define the 

yield criterion. The plastic region was defined as a function of ash density. In the post-damage 

region, the moduli of the elements were degraded to a density-dependent constant stress value.  

Using high-resolution FEA, Niebur et al. [143] proposed a bilinear constitutive equation 

with asymmetric yield strain in tension and compression. They assumed similar yield strains for 

both cortical and trabecular bones, and used minimum and maximum principal strains as yield 

criteria under compression and tension, respectively. Imai et al. [144] combined a maximum 

principal strain failure criterion with a Drucker–Prager yield surface to estimate the mechanical 

behavior of the vertebral body. When the Drucker-Prager equivalent stress exceeded a specific 

value, the material yielded. The fracture was also expressed based on the minimum principal 

strain of 10,000 micro-strain. To define those thresholds, they employed a bilinear elastoplastic 

constitutive law with a tangential modulus of 5% of the elastic modulus. This model was later 

used by Bessho et al. [94] for femora in a stance-like loading configuration. Koivumaki et al. 
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[60] used similar Drucker-Prager equivalent stress as a yield criterion for femora in a sideways 

fall loading configuration. They considered maximum principal stress and minimum principal 

strain as fracture criteria in tension and compression, respectively. The advantage of using 

principal stresses and strains is the ability to include tensile/compressive asymmetry. 

Keaveny et al. [145] and Keaveny et al. [146] applied a cast iron material model to 

simulate the bone mechanical behavior, allowing distinction of yield properties in tension and 

compression. Dragomir-Daescu et al. [54] used a power law to characterize the yield strain of the 

bone based on von Mises strain. They concluded that using this failure criterion, the QCT/FEA 

method is potentially capable of predicting femoral stiffness, fracture load, and fracture pattern. 

Hambli et al. [112] used a maximum equivalent strain as a yield criterion and a quasi-brittle 

damage model for proximal femora in a stance-like loading configuration. These simple 

constitutive models led to a fair estimation of fracture loads and, to some extent, fracture 

patterns. 

The sophisticated bone material models, which mostly use an eccentric ellipsoid shape 

yield surface, describe the yield behavior of porous materials well [147, 148]. Zysset and Rincón 

[149] proposed a piece-wise Hill criterion for the bone tissue. Afterwards, Rincon and Zysset 

[150] fitted this model to experimental data. Wolfram et al. [151] used a fabric-dependent Tsai–

Wu yield surface for the bone and identified its material parameters. More recently, a crushable 

foam plasticity model, as a simplified approximation of the Tsai–Wu yield surface, was proposed 

by Kinzl et al. [78]. The sophisticated material models have the following disadvantages: 

I. Application of these models on QCT/FEA models is complicated. Most of these models 

are not available in commercial FE software, 
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II. There are usually several coefficients in these models which need to be identified. The 

identification of these unknown constants using experimental results is complicated, 

III. These material models are usually anisotropic. In order to find anisotropic directions for 

each element in a bone FE model, the model needs to be developed from micro-CT scans 

showing the material directions in the trabecular bone. The resulted FE models would 

have millions of elements which are not computationally affordable for clinical 

applications.   

Despite a great deal of valuable effort, the literature still lacks a robust, accurate, and at 

the same time, simple model to estimate the mechanical behavior of femora in a sideways fall 

impact. Further investigations are certainly required to address the post-yield response of the 

bone.  The current study investigated the response of femoral bones from the initiation of failure 

to complete fracture. Both assumptions of ductility as well as brittleness were considered and 

their yield and post-yield behaviors were determined accordingly by employing IFEM. The 

results of the QCT/FEA method were also compared with their experimental counterparts.   

5.2. Bone Ductility and Brittleness 

Accurate definition of the post-yield behavior of the bone lies in understanding the 

mechanism of fracture. There is no general agreement on how a bone undergoes failure. While 

one hypothesis explains plastic deformation as the main reason of fracture [4, 152], some 

researchers postulate that the bone is a quasi-brittle material in nature and fails abruptly after 

reaching up to the yield point [61]. 

In practice, the bone has an intricate anatomy, materially, and cannot be simply 

categorized into the brittle or ductile fracture behavior. Figure 5.1 demonstrates two different 

experimental data that can be described differently. Figure 5.1A depicts the bone that undergoes 
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no plasticity up to ultimate strength and then large displacement up to final damage. The yield 

point is not easily distinguishable and it fails abruptly when its linear region ends. This fracture 

can be considered as brittle. Figure 5.1B, on the other hand, illustrates a bone that experiences 

relatively high plastic deformation in its response and it undergoes a gradual failure. The 

ultimate strength occurs after the head displacement of around 9 mm, a large part of which is in 

plastic region. This bone acts as a ductile material. 

  

Figure 5.1. Experimental force-displacement data for two different bones showing (A) brittleness 

and (B) ductility in their responses. (Used with permission of Mayo Foundation for Medical 

Education and Research, all rights reserved). 

 

In the fracture experiments explained in chapter 2, there are several bones that can be 

categorized in between these two different failure types and are therefore difficult to be explicitly 

explained. Undoubtedly, one single model cannot be employed to address such different post-

yield phenomena. In the current research, both material behaviors were studied separately and 

the constants of interest were determined and compared (Figure 5.2). To consider the bone as a 

brittle material in which the damage occurs at the onset of yield point without plasticity, the 

following simple model, as illustrated in Figure 5.2A, can be implemented. As soon as an 

element in the FE simulations yields, it is deactivated with reducing its modulus to a very small 
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value (0.01 MPa). Deactivated elements cannot bear any stress while deforming, and all the 

stresses and strains are eliminated from its history. This model is computationally affordable and 

applicable for clinical purposes as the material model is linear. 

 

  

Figure 5.2. Schematic fracture models for the bones that considered as (A) brittle and (B) ductile 

materials. 

 

On the other hand, to model the material undergoing a considerable amount of plasticity a 

bilinear constitutive equation can be utilized [94, 144]. Yielding occurs at a specific strain or 

stress threshold level, and then as the deformation continues to the damage threshold, after which 

the material degrades. In the current study, a linear isotropic damage model was considered to 

represent the material degradation at the end of the plastic region [153]. During the material 

degradation phase, the elastic modulus of the material (E, MPa) decreased linearly by a damage 

coefficient of D [61]. In the damaging phase, the relationship between stress (𝜎, 𝑀𝑃𝑎) and strain 

(𝜀) is expressed by the following equation: 

                                                       𝜎 = 𝐸𝑑𝜀                                                                                  (1) 

Ed = (1 – D).E ,   0 ≤ D ≤ 1 
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where Ed (MPa) is the modulus of the material during the damaging phase, D = 0 represent the 

undamaged material, and D = 1 express the fully fractured material which cannot bear any load. 

Figure 5.2B shows a stress-strain curve, representing three distinct material models (elastic, 

plastic, and damage) for a typical material. Different assumptions have been made in prior 

studies to explain the post-yield behavior (from the onset of yield to fracture). Some have 

assumed that the post-yield strain (
p
- 

y
) is density dependent [65, 142] while many have shown 

that the post-yield strain is a constant parameter [94, 144]. In the current study, the post-yield 

strain and the damage coefficient were assumed as constant values of 0.0015 [94] and 0.99 [61], 

respectively. 

5.3. Yield Criterion Optimization Procedure Using IFEM 

A set of nine cadaveric female femora (age: 58 ± 10; neck aBMD: 0.82 ± 0.27; 3 of 

normal, 3 osteopenic, and 3 osteoporotic based on neck aBMD) was selected for the purpose of 

optimization. The experimental yield force was determined from the force-displacement data for 

each femur (chapter 2). An isotropic von Mises strain-based criterion was employed to represent 

the onset of yielding in FE models. The optimal density-elasticity relationships presented in the 

previous chapter were employed to assign elastic modulus to the FE models. The following 

power law was assumed to define the threshold of yield criterion as a function of bone ash 

density [54]: 

                                                                     𝜀𝑦 = 𝑓𝜌𝑎𝑠ℎ
𝑔

                                                               (2) 

where f and g are  unknown constant coefficients. Similar to the derivation of the elastic material 

constants explained in chapter 4, an IFEM integrated with a GA procedure was employed to 

identify the unknown coefficients in the yield criteria. Figure 5.3 demonstrates how the 

algorithm searches for the optimum values of interest, f and g. 
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At each iteration, the force of estimated yield point (𝐹̅) was compared with that of 

experimental results (F) to form the objective function.  

                                                                    𝐽 = √
1

𝑛
∑ (1 −

𝐹̅𝑖

𝐹𝑖
)

2𝑛

𝑖=1

                                                             (3) 

The large difference between the optimization of yield point with that of elastic modulus was the 

computational cost of the process as the number of FE steps was larger and, more importantly, 

nonlinearity was included. In addition to the time consumption, the nonlinearity in the bilinear 

model could have caused convergence issues. The obtained bone density-yield strain relationship 

was then cross-validated on another set of nine female femora. 

5.4. Results of Post-Yield Optimization 

5.4.1. Bone as a ductile material  

Using the ductile material model in the FE models, the GA procedure for identifying the 

density-yield strain criterion relationship (Eq. 2) converged after 66 iterations. The major 

decrease in the objective function occurred within the first 15 iterations from 0.335 to 0.275 

(Figure 5.4). The objective function at iteration 66 was 0.270, with a change less than the 

convergence criterion, 10
-5

, compared to the previous iteration. The optimization process was, 

therefore, terminated. The optimal values of the coefficients f and g in Eq. 2 were 0.008 and -0.7, 

respectively. Figure 5.5 depicts the FE estimated yield force versus the experimental yield force 

for both the training and validation femoral sets. The coefficient of determination R
2
 of the 

estimated yield forces compared to the desired line Y = X was 0.96 and 0.98 for the training and 

validation femora, respectively. 
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Figure 5.3. Flowchart of the optimization procedure used to identify the unknown coefficients in 

the bone density-yield strain relationship; GA was used to find the optimal coefficients in the 

yield strain relationship used in FE models by minimizing the objective function J between the 

experimental (F) and FE estimated yield forces (𝐹̅). (Used with permission of Mayo Foundation 

for Medical Education and Research, all rights reserved). 
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Figure 5.4. Variation of the objective function versus the optimization iterations in the parameter 

identification process for the density-yield strain relationship; the optimization process 

converged after 66 iterations. (Used with permission of Mayo Foundation for Medical Education 

and Research, all rights reserved). 
 

 

Figure 5.5. Variation of the FE estimated yield force versus experimental yield force for nine 

femora using the optimal density-yield strain relation (𝐸 = 0.008𝜌𝑎𝑠ℎ
−0.7); the coefficient of 

determination R
2
 with respect to desired line Y = X was 0.96 and 0.98 for training and validation 

femora, respectively. (Used with permission of Mayo Foundation for Medical Education and 

Research, all rights reserved). 
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In this chapter the term "yield" refers to the transition of material deformation from 

elastic to plastic, while the term "fracture" indicates the final rupture of the bone. Computational 

and experimental results of a typical femur, indicating the location of yielding initiation and 

growth through the neck, are shown in Figure 5.6. At the onset of yield (Figure 5.6A), about 700 

elements (3% of the neck volume) yielded resulting in 2% deviation of the force-displacement 

curve from the straight line. Surprisingly, about two thirds of the elements that initially yielded 

underwent fracture as a result of which they got inactivated by ANSYS. They had no 

contribution, therefore, to the stiffness of the structure afterward. As the deformation continued, 

more elements were yielding and then fractured (Figure 5.6C). At the instant of experimental 

fracture, more than 2100 elements (10% of the neck volume) underwent yielding of witch the 

majority fractured (more than 7% of the neck volume). As depicted, the fractured region was all 

around the neck which was under compression. The fractured region also belonged to the cortical 

part of the bone as the most dense and stiff area. This type of fracture led to sinking of the head 

and the superior neck region into the greater trochanter of the femur. Figure 5.6D also illustrates, 

experimentally, the sinking event that confirmed the prediction of the computational analysis. As 

depicted in Figure 5.6C, the fatal fracture occurred on top of the neck under tensile loading. At 

this stage, the whole neck was broken abruptly. 

Figure 5.7 shows different strain contours in the areas of interest. Yielding in elements 

occurred when the von Mises strain values exceeded the threshold defined by Eq. 2. After 

undergoing a constant value of strain, the yielded elements experienced fracture until the 

structure collapsed. The strain contours at the fracture displacement of 2.4 mm contained fewer 

elements with high strain values (shown in red color in Figure 5.7), because the software had 

already deactivated the elements fractured in previous simulation steps. In terms of von Mises, 
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first principal, and shear strains, similar patterns could be predicted in Figure 5.7. Likewise, the 

stress contours of the femur at the same displacements are illustrated (Figure 5.8). 

From the displacement of 1.3 to 1.5 mm, the areas with high stresses (shown by red color 

in the contour plots) became larger contributing to more elements yielding. Comparing the 

contours from the displacement of 1.5 to 2.4 mm, some of the high-stress areas fractured and 

were deactivated by the software, thus their stresses reduced to a very small value (blue color in 

Figure 5.7). 

5.4.2. Bone as a brittle material  

By implementing a similar procedure as used for the ductile material, the set of nine 

training femoral FE models were employed to determine the coefficients of yield criteria (Eq. 2) 

and to simulate the behavior of bones as brittle materials. In this algorithm, instead of yield 

forces, the estimated ultimate forces were used in the objective function. The obtained density-

yield strain relationship was then cross-validated on the validation femoral set. The coefficients 

of the relationship were as f = 0.01, and g = -0.5. Figure 5.9 shows the FE estimated ultimate 

forces versus experimental ultimate forces for both the training and the validation femoral sets. 

The coefficient of determination R
2
 of the estimated ultimate force compared to the desired line 

Y = X was 0.86 and 0.85 for the training and the validation femora, respectively. 
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Figure 5.6. Yielded elements in a typical femoral FE model using bilinear (ductile) material 

model at the onset of yielding and fracture and corresponding experimental illustrations; A, C) 

yielded elements predicted in FEA, B, D) their corresponding experiments, and E) the number of 

yielded and fractured elements versus displacement loading. (Used with permission of Mayo 

Foundation for Medical Education and Research, all rights reserved). 
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Figure 5.7. Strain contour plots in a typical femoral model using bilinear material model at the 

onset of yielding, strain hardening, and fracture; Rows A, B, and C correspond to von Mises  

(vm), maximum principal (max), and shear (yz) strains. (Used with permission of Mayo 

Foundation for Medical Education and Research, all rights reserved). 
 

 

 

y 

x

. 

z 

0                      0.001                    0.002                    0.003                  0.004                    0.005 



 

88 

 

 Column 1  
D=1.3 mm; yield point 

Column 2  
D=1.5 mm; strain hardening 

Column 3 
D=2.4 mm; fracture point 

Row 

A 

   

    

Row 

B 

   

    

Row 

C 

   

 

Figure 5.8. Stress contour plots in a typical femoral model using bilinear material model at the 

onset of yielding, strain hardening, and fracture; Rows A, B, and C correspond to von Mises 

(vm, MPa), maximum principal (max), and shear (yz) stresses. (Used with permission of Mayo 

Foundation for Medical Education and Research, all rights reserved). 
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Figure 5.9. Variation of the FE estimated ultimate force versus experimental ultimate force for 

training and validation femora using the optimal density-yield strain relation (𝜀𝑦 = 0.01𝜌𝑎𝑠ℎ
−0.5); 

the coefficient of determination R
2
, with respect to desired line Y = X, was 0.86 and 0.85 for 

training and validation femora, respectively. (Used with permission of Mayo Foundation for 

Medical Education and Research, all rights reserved). 
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for both material models. At the displacement 1 mm, the element began to fracture. As depicted, 

up to the displacement of 1.5 mm, for this specific femur, the number of fractured elements was 

very small. Thereafter, the number of fractured elements in the brittle material model was, 

however, exponentially increased. This was logical as the process of damaging in brittle 

materials occurred far faster than ductile materials. In the ductile model, however, the rate of 

elements damaging had almost a constant pattern up to the final fracture. 

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

1000 2000 3000 4000 5000

F
E

A
 u

lt
im

at
e 

fo
rc

e 
(N

) 

Experimental ultimate force (N)  

Training:    R2=0.86 

Validation: R2=0.85 

Y=X 



 

90 

 

 

Figure 5.10 Number of fractured elements in a femoral FE model using two material models. 

(Used with permission of Mayo Foundation for Medical Education and Research, all rights 

reserved). 

 

Figure 5.11 compares the performance of the ductile and the brittle models along with the 

experiment. Both the proposed material models reasonably predicted the fracture force. 

However, the ductile model showed a closer agreement in terms of displacement to fracture. The 

energy to fracture could also be more accurately determined with the ductile model. The bilinear 

model, which brought nonlinearity to the FEA, required smaller step size, however, and was also 

sensitive to the element type and size that needed to be carefully treated in the modeling process. 
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Figure 5.11. Experimental and FE estimated force-displacement data for a femur; optimal 

density-yield strain relationships for ductile and brittle material models were employed 

separately in the FE modeling. (Used with permission of Mayo Foundation for Medical 

Education and Research, all rights reserved). 

 

For this specific femoral data, the linear brittle model under-predicted the fracture 

displacement of the bone and, consequently, under-predicted the energy of the fracture load. In 

practice, however, it is more desirable to anticipate the fracture force than the displacement in a 

fall event because of the fact that this is the force that breaks the bone. Based on the fracture 

force, the two models showed similar predictive performance. However, the computational time 

of the two material models was quite different; it took about 7.5 hours to run a simulation using 

the ductile material model while the same FE model employing the linear brittle material model 

took about 3 hours to run for the same number of loading steps. This numerically affordable 

characteristic of the brittle model was of clinical interest. 
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5.5. Conclusion 

The objective of the current study was to characterize the yield and post-yield behavior of 

female femora in a fall on the hip loading configuration. Both ductile and brittle material models 

were applied separately on the FE models simulating the fracture experiments. A GA 

optimization process was used to identify the unknown coefficients in the power density-yield 

strain relationship by minimizing the error function between the FE estimated and experimental 

force results. Although both ductile and brittle material models predicted the fracture force 

properly, the ductile model showed a closer agreement in terms of displacement and energy to 

fracture. In terms of technical issues, such as computational time and convergence rate, the linear 

model was more efficient and applicable for clinical use. The rate of element deactivation to 

simulate material degradation was initially higher in the bilinear model. After the displacement 

of 1.5 mm (FE fracture force for brittle model), however, the rate of degradation in the linear 

model increased dramatically.  
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CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEACH 

6.1. Summary and Conclusions 

 A numerical-experimental study was conducted to characterize the inhomogeneous 

mechanical properties of female bones. One hundred-four fresh-frozen cadaveric femora were 

previously tested, at Mayo Clinic, to fracture in a fall on the hip loading configuration. The 

force-displacement data were recorded for each femur. FE models of the femora were developed 

from the QCT scans, captured before the experiments. A mesh sensitivity analysis was carried 

out to determine the optimal mesh size, considering the accuracy as well as the numerical cost of 

FE simulations which mimicked the fracture tests. The analysis was performed on a relatively 

large sample size of 24 femora. The optimum mesh sizes were found to be around 1.5 mm for the 

head and neck regions, 2.5 mm for the subtrochanteric area, and 4.0 mm for the shaft. 

 As the main core of the current study, mechanical properties of the bone were examined 

in chapter 5 and 6. The focus of the current study was the elastic behavior of the femoral bones 

as well as their yield and post yield behavior. A set of 35 female femora was randomly selected 

to obtain optimal elastic properties of such bones. Two different density-elasticity relationships 

were selected and separately implemented. A combination of several software programs was 

employed to integrate optimization tools used to identify the unknown coefficients of the 

density-elasticity relationships. The process was controlled by a sophisticated in-house code in 

TCL, developed at Mayo Clinic.  The performance of the optimal density-elasticity relationships 

on another set of 35 femora was as good as on the first set. This showed the robustness of the 

relationships. Interestingly enough, the softer materials of the bone with the densities up to 0.5 

g/cm
3
 played an important role in the global response of the femur, as more than 70 percent of 

the bone in the head and neck region belonged to this range of densities. Comparing the results 
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of the current study with those presented in the study by Morgan et al. [66] showed that coupon 

tests might be used to characterize the elasticity of femoral bones, provided the samples are 

excised from the neck region. Comparing the FE estimated results obtained from the density-

elasticity relationships proposed by Keller [64] and Keyak et al. [65] with the experimental 

results in the current study, showed that the mechanical properties of the bone are site-dependent. 

This finding was in agreement with the conclusion of the study conducted by Morgan et al. [66]. 

 In chapter 5, the suitability of a bilinear material model and a linear material model was 

tested. The bilinear material model was applied to a set of 9 femoral FE models to simulate the 

bone plasticity. This addressed the hypothesis that bones undergo plasticity before a final 

fracture. The linear material model was then applied to the set of 9 femoral models to show the 

brittleness in the bone response. In both material models, the elements at the onset of fracture 

were deactivated to have no further influence on the deformation. The same optimization 

procedure was employed to identify the unknown coefficients in the bone density-yield strain 

relationship using the FE estimated and experimental fracture forces. The results of both material 

models showed acceptable correlations with their experimental counterparts. The linear model 

showed better performance, however, for clinical purposes in terms of applicability and 

computational cost. 

6.2. Recommendations for Future Research 

The current study covered the characterization of mechanical properties of bones from 

the elastic to the damage regions, in order to address the application of FE analysis in fracture 

and failure mechanics of bones. There are several limitations that should be investigated in the 

future studies: 
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1. The main issue with the current study was the use of cadaveric femoral bones. The 

mechanical properties of bones from in-vivo to in-vitro can be degraded significantly.  

The results of mechanical characterization in the current study may not, therefore, be 

applicable to all situations. Additional research should be conducted on the transition 

from cadaveric mechanical properties to patients. 

2. Issues such as beam hardening arising from CT scanning if the bone is scanned 

without the surrounding soft tissues can affect the determination of bone density and, 

consequently, of material properties. Moreover, the difference of contrast in CT scans 

of an in-vivo bone compared to a cadaveric bone affects the segmentation process and 

consequently the geometry of the reconstructed bone model. Therefore, further 

investigation should be carried out to correlate in-vivo to in-vitro CT data. 

3. Using the proposed elastic properties, the FE estimations showed a good correlation 

of about 70% with experimental results. Some researchers believe that improvement 

in this area could be made if the bone material properties are considered anisotropic 

[68, 114] Further investigations are required in this regard. 

4.  Mechanical properties of the bone are strain-rate dependent. However, in the current 

study the bone was considered as a time-independent material due to difficulties in 

modeling the time-dependency of its material properties. Future studies should be 

focused on identifying a strain-rate dependent constitutive material equation for 

femoral bones to improve the accuracy of the QCT/FEA models. 

5. During a fall on the hip, the femur does not have direct contact with the ground, as a 

layer of soft tissue helps attenuate the level of transferred load to the bone. Future 
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studies should address the influence of soft tissue to more accurately estimate loading 

to the bone.  
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