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ABSTRACT 

Bone is the most important structural member of the human body. It has a unique 

hierarchical structure and its primary constituents, collagen molecules and hydroxyapatite, are 

arranged in a staggered pattern at nanometer scale. Osteogenesis imperfecta (OI) is an inheritable 

disease characterized by the fragility of bones and other tissues rich in the type I collagen. OI 

provides an interesting platform for investigating how alterations of collagen at the molecular 

level cause changes in the structure of bone. In this dissertation, multi-scale-, particularly 

nanometer and sub-micro scale-, behaviors of both normal and OI (putative type I) human bones 

have been evaluated experimentally. Since chemical treatment influences collagen or mineral 

structure, we have used ―undisturbed bone samples‖ that are not subjected to any chemicals as 

previously done in literature. Photoacoustic-Fourier transform infrared spectroscopy (PA-FTIR) 

experiments reveal orientational differences in stoichiometry of hydroxyapatite. FTIR, electron 

microscopy, scanning probe microscopy, and nanomechanical tests also show that the OI disease 

results in a distorted microstructure in bone and that the mineralization of hydroxyapatite in OI is 

also altered. Modulus mapping test displays the distribution of mineralized fibril and 

extrafibrillar mineral according to the spatial variation of elastic properties. Dynamic 

nanomechanical behaviors of OI bone and normal bone indicates that the viscoelasticity of intact 

bone is mostly determined by the mineral. Also investigated are molecular composition and 

nanomechanical properties of different anatomical positions in the diaphysis of an OI human 

tibia. Our study on OI bone describes unique differences in collagen as previously described but 

also elaborates on unique influence of the non-collagenous proteins on mineralization of bone in 

OI. The fundamental premise of this work is investigation of the molecular basis of this highly 

debilitating bone disease.   
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CHAPTER 1.  INTRODUCTION
1
 

Section 1.2 is adapted from a book chapter, Chapter 2: Biomimetics: Inspiration from the 

Structural Organization of Biological Systems, Kalpana S. Katti, Chunju Gu and Dinesh R. Katti, 

Natural Polymers: Volume 1: Composites, 2012, 1, 8-36. 

 

1.1. Bone  

The natural world provides us with a multitude of examples of materials that are perfectly 

adapted to fulfil a specific functional role with durability, strength, and mechanisms of 

programmed self-assembly and biodegradability. Bone is a representative of these materials. 

Bone can be regarded as a tissue or material with a particular capacity for growth, a distinctive 

chemical composition, and unique properties as a substance. Meanwhile, as an organ, with its 

distinctive structure and function, bone provides support and movement throughout a lifetime. 

All mammals share the same mechanisms for bone growth, repair, and nourishment as well as 

identical microscopic components of bone. The arrangement and shape of bones reflect the 

evolutionary heritage of organisms.  

Three types of bone cells are responsible for bone metabolism (1). One is osteoblasts, 

which secrete new bone, and one is osteoclasts, which break bone down. After osteoclast-

mediated resorption of the existing bone, osteoblasts lay down new bone matrix to be entrapped 

and become osteocytes inside. The cellular activities of bone modeling and remodeling 

determine the composition and structure of bone. Bone modeling refers to the deposition of new 

                                                 
1
 Section 1.2 in this chapter was co-authored by Chunju Gu, Kalpana Katti, and Dinesh Katti. 

Chunju Gu had primary responsibility for collecting references and drafting this section. Kalpana 

Katti and Dinesh Katti revised this section. 

http://pubs.rsc.org/en/content/chapter/bk9781849734028-00008/978-1-84973-402-8
http://pubs.rsc.org/en/content/chapter/bk9781849734028-00008/978-1-84973-402-8
http://pubs.rsc.org/en/content/ebook/978-1-84973-402-8
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bone, while bone remodeling refers to the resorption of old bone followed by the formation of 

new Haversian system. Bone remodeling usually occurs to maintain bone strength by removal of 

microdamage. After completion of growth, bone modeling continues in adulthood modestly to 

increase bone size further, whereas bone remodeling occurs lifelong to reshape the bone in 

response to functional demands. Osteocytes serve as a detector of microdamage, and their death 

by apoptosis may activate or signal osteoclasts to start the remodeling process (2). The metabolic 

balance regulated by the bone cells form the assembly of collagen molecules and mineral phase 

in a unique hierarchical structure, which impart both stiffness and toughness to bone. This rather 

unusual combination of material properties provides both rigidity and resistance against fracture 

(3). In this way, bone provides skeletal stability, support and protection of vital organs and also 

heals itself through remodeling process. The unique structure and mechanical properties of bone 

have drawn much attention.  

Bone refers to a family of materials having in common, mineralized collagen fibril, a 

basic building block; however, the structural organization of the fibril is different in different 

bone types. For example, dentin, cementum, and mineralized tendon are also included in the 

family of bone, and the composition and organization of their mineralized collagen fibrils are 

different (4). Each healthy adult possesses in total 206 pieces of bones with different shapes, 

including long bones, such as humerus, radius, ulna, femur, tibia, fibula, metacarpals and 

metatarsals, and flat bones, such as pelvis, scapula and skull (Curry 2002 p195). Disregarding the 

different shapes, bone is generally mechanically divided by compact bone and cancellous bone 

(5).  

The chemical analysis of bone shows that there are three chief components in bone: 

collagen, mineral, and water. Collagen accounts for nearly 1/3 and mineral accounts for nearly 
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2/3 of the dry weight of bone matrix (1). The water component is on average 10-12wt% of 

cortical bone and 20% of the bone matrix (6). The crystals of mineral secrete and grow in the 

triple helical collagen fibers, and replace some of the water while mineralization takes place. The 

typical composition of human cortical bone is listed in Table 1.1. 

Table 1.1. Composition of human cortical bone (7). 

Components Weight percentage (%) 

Hydroxyapatite (HAP) 60 

Type I collagen 20 

Water 9 

Ions and Non-collagenous proteins 11 

 

1.2. Structure of bone 

Research on the structure of bone dates back to the early 17th century when the 

compound microscope was invented. Clopton Havers is generally credited with the first 

description of the porous nature of bone in 1691, but due to the poor quality of the magnifying 

lenses, the initial descriptions dealt primarily with the canal system and the ―laminar‖ structure 

of bone without the presence of osteonal bone. In the 18th and 19th century, some observations 

were described and defined in detail such as the Haversian system of lamellae, and the 

orientation and disposition of lacunae and canaliculi (8). By utilizing polarized light microscopy, 

Schmidt found that the c crystallographic axis is well aligned with the collagen fibrils (9). The 

greater detailed work came after the invention of scanning electron microscopy (SEM) and 

transmission electron microscopy (TEM) in 1930, which gave people the ability to examine 

structures on the nanometer scale. With the help of these high resolution instruments and other 

techniques such as X-ray diffraction, polarized optical microscopy, sonic velocity, as well as 

mechanical tests, the hierarchical structure of bone was discovered and depicted. Atomic force 
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microscopy (AFM), which appeared in 1980, makes it possible to investigate the structure of 

bone in the ambient environment on the nanometer scale (10-12). Although the overall structure 

from nano to macro scales of bone has been extensively studied, it is still far from ending. 

Bone components are assembled in a unique hierarchical structure. Hierarchical materials 

contain structural elements which themselves have recognizable structure. At each level of the 

structural hierarchy, one may model the material as a continuum for the purpose of analysis (13). 

Bone has been described in terms of up to 6 or 7 hierarchical levels of organization from 

nanoscale collagen and mineral to macroscale femur bone (4, 14), as shown in Figure 1.1.  

 

Figure 1.1. Hierarchical organization of a human femur bone from macro- to nanoscale. (a) 

Macroscale organ level—human femur bone. (b) Macroscale tissue level—osteon. (c) 

Microscopic level—bone lamellae (adapted from (15, 16)). (d) Mesoscopic level—fiber bundle. 

(e) Nanoscale level—mineralized fibril. (f) Molecular level—collagen molecule and mineral 

particle (adapted from(14)). 
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1.2.1. Level 1: Collagen fibrils and minerals (molecular and nanometer scales) 

Collagen type I accounts for nearly 90% of its total organic content. Type I collagen 

molecules, also called triple helices (Figure 1.2a), are supercoiled assemblies of three 

polypeptide chains-- two identical α1- chains and one α2-chain, each with over 1000 amino acid 

residues. The main part of a collagen chain consists of Gly-X-Y repeats, in which X and Y can 

be any amino acid, but are frequently the amino acids proline and hydroxyproline. A triple-

helical molecule is cylindrically shaped, with an average diameter of about 1.5nm, and lengths of 

300nm. (Figure 1.2a) (15). Besides the main helical part, collagen triple helices are also 

comprised of short nonhelical end sequences called telopeptides with both N and C terminal 

ends. Telopeptides account for 2% of the molecule and are critical for fibril formation in the self-

assembly process (17) .    

During the formation of a fibril, the collagen spontaneously self-assembles into cross-

striated fibrils that occur in the extracellular matrix of connective tissues. The fibrils are 

stabilized by covalent cross-linking (Figure 1.2b), which is initiated by oxidative deamination of 

specific lysine and hydroxylysine residues in collagen by lysyl oxidase (17). The intermolecular 

cross-linking provides the fibrillar matrices with various mechanical properties such as tensile 

strength and viscoelasticity. Both high-performance liquid chromatography (HPLC) and Fourier 

Transform Infrared (FTIR) have been frequently adopted to cross-link analysis (18). 
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Figure 1.2. Collagen molecules and intermolecular cross-linking (a) Triple-helical structural 

motif of collagen molecules (adapted from (15)). (b) Lysyl oxidase cross-linking (adapted from 

(17)). 

 

Mineral primarily consists of poorly crystalline nonstoichiometric carbonated 

hydroxyapatite (dahllite) which has a plate-shaped hexagonal crystal structure. Bone crystallites 

are probably the smallest biogenic crystals. They are only 1.5-4 nm thick, 25 nm wide, and 50 

nm long on average (4), but we still know very little about the atomic structure. The size of the 

mineral crystallites is smaller than the ―Griffith length‖ necessary for cracks to spread (19). The 

c-axis of the unit cells of these crystallites in bone is usually aligned parallel with the long axis of 

the adjacent collagen fibers (20); but the main orientation changes a small angle to the long axis 

over a few micrometers (21). By AFM, many of these mineral plates appear to be aligned, 

forming larger aggregates (475–600 nm long × 75–90 nm thick) that also retain collagen 

periodicity along their exposed edges (12). The precision with which they can be laid down 

allows exquisite adaptations to the loads falling on the skeletons. The factors preventing crystal 

growth beyond the favorable thickness of 3 nm are suggested to be citrate ions that bound to the 

apatite surface (22).  

1.2.2. Level 2: Mineralized fibril (sub-micro scale)                   

The triple-helical collagen molecules assemble into the fibril in a staggered arrangement. 

Within the fibril there is a linear shift of ~67nm (D-period) between neighboring molecules. D-

period is divided by overlap and gap, where overlap is around 27nm and gap is 40nm (shown in 

(a) (b) 



 

7 

 

Figure1.2a). Robinson and Watson (20, 23) pioneered TEM study and reported the 68-nm 

banding pattern in collagen fibrils. The assembly of collagen molecules into fibrils is an entropy-

driven process, driven by the loss of solvent molecules from the surface of protein molecules, 

resulting in assemblies with a circular cross section, which minimizes the surface area/volume 

ratio of the final assembly (17).    

Mineralized fibrils are the basic building blocks of bone. As shown in the Figure 1.1f, 

minerals are intimately associated with the collagen framework in which they form, resulting in a 

highly complex but ordered mineral-organic composite material. Studies of crystal growth show 

that crystals are first formed in the gap, and then they continue to grow and penetrate into the 

overlap zone, thus pushing aside the triple-helical collagen molecules, and even breaking cross-

linking and other bonds (24). Because the density of crystals is higher in the gap region, a 

periodic mineral density profile with around 67nm spacing is easily observed by electron 

microscopy, as shown in Figure 1.3. Figure 1.3 also shows that the width of a mineralized fibril 

is about 100nm. 

 

Figure 1.3. SEM image of staggered arrangement of mineralized fibrils. 
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It is also important to mention that the spaces between mineralized collagen fibrils 

(extrafibrillar) are filled with noncollageneous macromolecules and minerals. The extrafibrillar 

volume is at least 60% of the total, while the fibrils are no more than 40%. More of the mineral 

appears to be extrafibrillar than within the fibrils, and cemented together by noncollagenous 

organic matter (25, 26). 

1.2.3. Level 3: Fibrillar arrays (micro- scale) 

The mineralized fibrils are self-organized into fiber bundles along their length and the 

bundles may fuse with neighboring bundles. How the mineralized fibrils are aligned is of great 

interest, which leads to a great difference of mechanical properties. As shown in Figure 1.4, two 

arrangements are suggested. One has an arrangement of mineralized collagen fibrils aligned both 

with respect to crystal layers and fibril axes. The other arrangement of mineralized collagen 

fibrils is with only the fibril axes aligned (4). Sonic velocity measurements in three orthogonal 

directions of macroscopic specimens show significant differences (27), implying that orthotropic 

order at the fibril level may well extend to millimeter distances.  

                                                 (a)                                          (b) 

 

 

 

Figure 1.4. Schematic illustration of the arrangement of mineralized collagen fibrils aligned both 

with respect to crystal layers and fibril axes. (a) Orthotropic symmetry arrangement. (b) 

Transversal isotropic arrangement (adapted from (4)). 
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1.2.4. Level 4: Fibrillar array pattens (micro-scale) 

The fibril bundles continue to be organized into layers or lamellae with a few microns 

thickness, and there in turn are arranged in a variety of ways into higher-order structures 

depending on the bone type. Four of the most common patterns are presented in Figure 1.5. In a 

parallel array pattern (Figure 1.5a), all the fibrils are parallel to each other. In a woven array 

pattern (Figure 1.5b), individual fibrils or fibril bundles are randomly organized. A radical fibril 

array (Figure 1.5d) is characteristic of the bulk of dentin, which also belongs to bone family (4). 

Plywood-like structures (Figure 1.5c) are common in nature, which is believed to have a 

structure-function relationship (15). SEM and TEM studies showed that lamellar bone is made 

up of alternating collagen-rich and collagen –poor layers, all having an interwoven arrangement 

of fibers (28). The successive layers in a thin/thick lamellar unit proceeded by an angle of 

roughly 30˚ from one layer to the next (29). 

  

 Figure 1.5. Four most common fibril array patterns with SEM images of fractured surfaces and 

schematic illustrations (not drawn to scale) of the basic organizational motifs. (a) Parallel fibrils 

array. (b) Woven fibrils array. (c) Plywood-like structure present in lamellar. (d ) Radial fibril 

arrays (adapted from (4)). 
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1.2.5. Level 5: Osteon (micro-scale) 

The osteon, as shown in Figure 1.6, also called Harversian system, is the fundamental 

structural unit of compact bone. Each osteon consists of concentric layers, or lamellae that 

surround a central canal, the Haversian canal. The Haversian canal, parallel to the long axis of 

the bone, contains the bone's nerve and blood supplies. Between adjoining osteons there are 

angular intervals that are occupied by interstitial lamellae. These lamellae are remnants of 

osteons, the greater parts of which have been destroyed (1). The osteon takes part in the 

remodeling process, whereby tunnels are eroded and then filled in again with cylinders of bone.   

 

Figure 1.6. SEM micrograph of an osteon. 

 

1.2.6. Level 6: Cortical (compact) and cancellous (spongy or trabecular) bone (meso-scale) 

Cortical bone, synonymous with compact bone, is solid, with the only porosity for 

canaliculi, osteocyte lacunae, blood channels and erosion cavities. Cancellous bone, synonymous 

with spongy or trabecular bone, has porosity that is easily visible to the naked eye, as shown in 

Figure 1.1 (a). Usually, the bone material that has a porosity of about 25% or more is considered 

to be cancellous, and if less is cortical (30). Bone serves a protective function by the construction 

Haversian canal 

Lamellae 

http://en.wikipedia.org/wiki/Lamella_(zoology)
http://en.wikipedia.org/wiki/Haversian_canal
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of two cortical plates separated by intervening cancellous bone. This construction is beneficial 

for the maximum absorption of energy with minimum trauma to bone itself. Microstructurally, 

there is no difference between normal cortical and cancellous bones (8).  

 

1.3. Bone mechanics 

The structure of bone is modulated by genetic, mechanical, nutritional, and hormonal 

patterning throughout a lifetime (31). According to Wolff’s law, bone adapts itself to be stronger 

in positions subjected to higher loads (32). Due to the remodeling process, bone is a highly 

mechanically anisotropic material at both the macroscopic (organ) and microscopic (material) 

level. The field of bone mechanics has been at a very sophisticated level where mechanical 

properties of various bone specimens are available for many anatomic sites. Bone properties are 

usually thought to be influenced by many factors, such as tissue composition, amount of 

secondary mineralization, collagen crosslinking, and the presence of microdamage (33). 

As mentioned earlier, bone consists of nano-sized mineral platelets and collagen proteins. 

These components have extremely different mechanical properties: the mineral is stiff and 

brittle, while the protein is softer but also tougher than the mineral. However, the composite 

combines the optimal properties of both components. This rather unusual combination of 

material properties provides both rigidity and resistance against fracture (3). In addition, the 

arrangement of the constituents leads to anisotropic property and heterogeneity of bone tissue as 

well. The mechanical properties of bone tissue varies from type to type. Although the cortical 

bone was reported having similar nanomechancial properties as trabecular bone (34), the 

nanostructure of bone tissue differ substantially among lamellar type, anatomical sites and 

individuals (35). As pointed out by Gao et al. (19), bone is much less sensitive to flaws because 
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of its hierarchical structure. The hierarchical design distributes stresses throughout the levels of 

structure, thereby minimizing dangerous stress concentrations that could precipitate failure and 

fracture. The hierarchical feature of bone controls the fracture properties, particularly the 

toughness (5). Because the collagen fibers in neighboring lamellae are oriented at an angle to 

each other, fracture surfaces show considerable roughness. The work of driving a crack across 

the interfaces consisting of the plates, sheets, and Haversian systems of bone is much greater 

than it would be if the material were homogeneous (36). Therefore, besides the hierarchical 

structure, the mechanical properties of bone at different length scales and their relationship with 

structure are of great interest. Although the study of bone mechanics advanced in the 1970s, it 

was not until the beginning of the 1980s that its study really started off and it has been driven by 

advances in techniques(30). In addition to experimental work, simulation has also been 

conducted through different length scales to investigate the bone mechanics. 

1.3.1. Macro-scale mechanical properties of bone 

There have been a great amount of studies on mechanical properties of bone in the last 50 

years (5). The early researches are focused on macro-scale mechanical properties of bone, where 

bulk bone pieces are applied to different load forms (Figure 1.7). The mechanical properties at 

the macro level are mainly: elastic properties (mainly Young’s modulus), strength (in tension, 

compression, shear, and torsion), fatigue, fracture mechanics as well as dynamic mechanical 

properties (creep and stress-relaxation).  
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Figure 1.7. Different types of loads that can be applied on bone. 

 

The elastic properties of bone can be measured by two main methods: (1) applying a load 

to a specimen and calculating the elastic properties from the resulting deformation (mechanical 

testing) and (2) measuring the velocity of sound waves in bone (ultrasonic testing). Mechanical 

testing is more straightforward and can investigate the effect of strain rate on mechanical 

properties. Ultrasonic testing is less straightforward and has some difficulties in testing wet 

specimens, but it is a nondestructive technique (37). Both mechanical testing and ultrasonic 

methods can conduct multiscale assessment of bone elastic properties. Ultrasound method has 

the scalability of the acoustic wavelength from 6mm at 500 kHz down to 0.5 µm at 2 GHz. The 

low frequency methods (500 kHz to 10 MHz) are widely used in clinical devices to assess bone 

quality at the macro-scale, while the higher frequency method (50 MHz to 2 GHz), scanning 

acoustic microscopy (SAM), is used to investigate bone microarchitechture (38). 

The elastic strength of human cortical bone is anisotropic because of its microstructure. 

Cortical bone is both stronger and stiffer when subjected to a load longitudinally along its long 

axis (Table 1.2) (39). This property results from its evolutionary adaptation to most efficiently 
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resist the largely uniaxial stresses. Human femoral cortical bone also shows both anisotropic and 

asymmetrical ultimate stresses that it is stronger in the longitudinal direction and also stiffer in 

compression than in tension (Table 1.3). In addition, it is weak in shear and loaded transversely 

in tension (Table 1.3).  

Table 1.2. Elastic properties of human femoral cortical bone (39). 

Modulus (GPa) 

Longitudinal  17.9 (3.9)* 

Transverse  10.1(2.4) 

Shear modulus  3.3 (0.4) 

Poisson’s ratio 
Longitudinal  0.4 (0.16) 

Transverse 0.62 (0.26) 

*Standard deviations are given in parentheses. 

 

Table 1.3. Ultimate stresses of human femoral cortical bone (39).  

Longitudinal stress (MPa) 
Tensiom 135 (15.6)* 

Compression 205 (17.3) 

Transverse stress (MPa) 
Tensiom 53 (10.7) 

Compression 131 (20.7) 

Shear stress (MPa) 65 (4.0) 

*Standard deviations are given in parentheses. 

 

Meanwhile, bone has extremely poor fatigue resistance. Fully reversed cyclic loading to 

one half of the yield strain causes fatigue fracture in 1000 cycles (40). Cyclic loading can induce 

modulus reductions accompanied by structural damage such as microcracks very early in the 

loading history (41). Bone specimens exhibit an almost immediate loss of stiffness and an 

increase in stress/strain hysteresis (40). Fracture mechanics has been applied to bone as a 

measure of the inherent resistance to crack initiation and propagation. Fracture toughness can be 
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evaluated from a precracked specimen, assuming linear elastic fracture mechanics, in terms of 

critical stress intensity factor, Kc, and critical strain energy release rate Gc (42). The fracture 

toughness is influenced by stain rate: the fracture toughness decreases by about 33% as the strain 

rate increases (by about four orders of magnitude) (43). The crack deflection at the osteonal 

interfaces adds an extrinsic toughness to bone at low strain rate (43). 

Bone is also considered as a viscoelastic material, though the effect of loading rate on 

modulus and strength is only moderate (44). The strain-rate sensitivity, creep and relaxation 

behavior, are usually investigated as its viscoelastic behavior (45). At macro-scale, this 

viscoelastic response is measured by some designed-systems (46-48) or a dynamic mechanical 

analyzer (DMA) (45, 49-53).  

1.3.2. Meso-scale mechanical properties of bone 

Currey JD (30) classified cancellous and cortical bones as meso-scale features of bone. 

However, there is no specific technique for this length scale. Turner CH et al.(34) used acoustic 

microscopy and nanoindentation methods and found that: the Young’s modulus of cortical bone 

in the longitudinal direction is about 40% greater than the Young’s modulus in the transverse 

direction; the Young’s modulus of cancellous bone tissue is slightly higher than the transverse 

Young’s modulus of cortical bone, but significantly lower than the longitudinal Young’s 

modulus of cortical bone. At the end of long bones, the cancellous bone distributes loads away 

from the joint and into the cortical bone, which has a much smaller cross-sectional area than the 

joint cartilage surfaces. Thus, the transitional cancellous bone protects the delicate cartilage from 

larger impact stresses from the cortical bone (30). 
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1.3.3. Micro-scale mechanical properties of bone 

The macro-scale mechanical properties are on average features for bulk bone tissue. It is 

often appropriate to assume average mechanical properties from cortical bone; however, in some 

cases it may be necessary to consider the heterogeneity that can arise from variations in 

microstructure. Microindentation hardness testing, more commonly called microhardness testing, 

is widely used to study fine scale changes in hardness of materials. Hardness values are generally 

calculated as the peak force divided by the area of contact (as shown in Equation 1.1), the 

contact area differs between the test techniques. 

Hardness = (Peak Force) / (Contact Area)                                              (1.1) 

The hardness values usually decrease as the peak force increases; therefore, the peak 

force is always mentioned in the test. With hardness values, modulus can be derived with the 

following equation (54):  

                                                 E
d
=0.58+0.36Hv                                                                         (1.2) 

The most commonly used indenter points are Vickers and Knoop. The Vickers indenter is 

a regular pyramid with equal diagonals, while the Knoop indenter has diagonals of two different 

lengths. Knoop indenter is more sensitive to elastic anisotropy than the Vickers, and Knoop 

indenter is also more applicable to very thin materials (55). The typical residual impression long 

diagonal of Knoop indenter can be about 200µm while that of Vickers is about 70µm (55). 

Microindentation has been extensively used to measure the micro-scale mechanical properties of 

different anatomical positions of bone tissue (56-60), and it has the ability to discriminate 

between damaged and intact human bone tissue (61). Recently, a reference point indentation 

(RPI) instrument, which can perform bone microindentation testing, has even been developed for 
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measuring bone tissue mechanical properties in vivo and is expected for clinical application (62-

64). This instrument can assess bone quality with little harm to the body. 

As mentioned earlier, SAM can be used to evaluate the elastic properties of bone at 

micro-scale level. Turner CH et al. (34) compared SAM (30-60 µm resolution) and 

nanoindentation (NI) (1-5 µm resolution) methods and obtained consistent results from these two 

methods (34). 

Experimental testing can give straight forward mechanical properties of bone specimens; 

however, in many instances, experimental testing on humans and cadavers is not always feasible. 

In comparison, different modeling and simulation methods provide alternatives for studying 

mechanical properties of bone. Among these methods, finite element analysis (FEA) has become 

a popular and powerful tool used by biomechanics and orthopedics researchers over the last 30 

years (65). Finite element analysis can mimic the bone system in CT or µCT datasets and 

integrates density and geometry information to predict the response of bone under a variety of 

loading conditions and estimate bone strength parameters (66-81). The work done by FEA 

combined with experimental work contributes to the studies of damage mechanism, fracture, 

bone disease, and bone mechanics.  

1.3.4. Sub-micro-scale mechanical properties of bone 

In recent years, considerable progress has been possible in the understanding of bone 

properties, mainly due to new methodology in micromechanics: nanoindentation (NI), in situ 

electron scanning microscopy (SEM) nanoindentation, and atomic force microscopy (AFM). It 

becomes possible that micro-scale and nano-scale stiffness and hardness of bone can be 

measured excluding the artifacts from higher levels of hierarchy (3). Nanoindentation usually 

probes materials into less than 1 micron to several microns, therefore, it is usually regarded as a 
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technique acquiring sub-micro-scale mechanical properties. The micro-scale measurements 

correspond to osteonal level of bone structure, while the sub-micro-scale measurements 

correspond to lamellar level. Nanoindentation and micro-hardness testing differ in a couple of 

ways, but the results are comparable when tip geometries used are similar so that similar strains 

are provided in the material when testing, such as the Vickers and Berkovich shaped tips (both 

are pyramidal-shaped).  

Nanoindentation emerged in the early 1980s from improving microindentation methods 

by enhancing force and depth sensing capabilities (82). Later, NI technique combined the AFM 

imaging so that it provides more accurate position selection on the sample. It was originally 

developed to investigate coatings, and it was over a decade before the first work on bone NI was 

published (83). In 1992, Oliver and Pharr established a comparatively mature method to 

determine hardness and elastic modulus from indentation load-displacement data of NI (84). The 

indentation load-displacement data are shown schematically in Figure 1.8, and then are analyzed 

according to the equation (1.3) 

 

where S =dP/dh is the experimentally measured stiffness of linear portion of the unloading data. 

P, h, Er, and A are force, displacement, reduced modulus, and the projected area of the elastic 

contact, respectively. A relates to h and the indenter geometry. Then, elastic modulus of the 

sample can be calculated according to the equation (1.4) 

 

                                                               

(1.3) 

(1.4) 
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where Ei and i are Young’s modulus and Poisson’s ratio for the nanoindenter and E and  are for 

the specimen. The hardness can be computed from its normal definition: 

 

where Pmax is the peak indentation load. 

 

 

Figure 1.8. A schematic representation of load versus indenter displacement data for an 

indentation experiment. The quantities shown are Pmax: the peak indentation load; hmax: the 

indenter displacement at peak load; hf: the final depth of the contact impression after unloading 

and S: the initial unloading stiffness.   

 

Nowadays, nanoindentation is probably the most important tool for the assessment of the 

elastic modulus and hardness of bone tissue (66, 85-91). Up to now, hundreds of papers have 

been published using nanoindentation to study bone mechanical properties. It enables an 

improved understanding of the mechanical properties correlation with microstructure of bone 

tissue. For example, significant modulus variations were found on opposing sides of the osteonal 

canal for the same lamella (88). However, there are variations in reported values for elastic 

modulus and hardness according to different sample conditions (wet or dry), different sample 

sources, and different experimental conditions, such as different tips and different loads are used. 

(1.5) 
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The variation can also arise from the heterogeneity of bone, resulting in local difference in 

composition and multiscale organization of the bone volume element tested. Hence, it is essential 

to carefully design the experimental protocol as well as being aware of the limitations of the 

technique during interpretation of acquired data (92).  

Besides traditional NI, in situ SEM nanoindentation also emerged to perform 

nanoindentation while capture high-resolution images simultaneously to watch the deformation 

behavior of materials closely. The use of in situ SEM nanoindentation will be introduced in 

Chapter 4 in detail. 

1.3.5. Nano-scale mechanical properties of bone 

Atomic force microscope (AFM) is well known for probing surface images of materials 

in ambient environment or even in buffered saline liquids that is very close to its physiological 

state. In addition, AFM can also be conducted to study the mechanical properties of materials at 

nano scale. Using contact mode, AFM cantilevers have been used for indentation experiments on 

isolated collagen fibrils in a dried state and reported values for the elastic modulus of 3.7 to 11.5 

GPa (93). Recently, AFM stiffness mapping has been developed for bone study (94, 95). 

Besides AFM, modulus mapping (MM) have also been proposed, combining a 

nanoindenter with an AFM x-y stage to map material properties over a surface. The introduction 

and experiments about MM will be discussed in Chapter 4 in detail. 

These techniques are sometimes utilized together to investigate the mechanical properties 

at different length scales: (1) the mineralized fibril level (~100 nm); (2) the lamellar level (~6 

µm); and (3) the osteon level (up to ~30µm). AFM, NI, and microindentation are applied as 

techniques to these three levels, respectively (96). The mechanical properties tested are also 

related to the conditions of the bone samples. The mechanical properties under dry conditions are 
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higher by 30-50% compared to wet conditions (96, 97). Table 1.4 and Table 1.5 list the 

mechanical properties of both wet and dry metacarpal horse bone specimens acquired using 

AFM, NI, and microindentation. 

Table 1.4. AFM mechanical measurement at mineralized fibril level of bone tissue (96). 

 Dry conditions Wet conditions 

Stiffness (N/m) 

Transverse plane 
534 ± 69 291 ± 124 

Stiffness (N/m) 

Longitudinal plane 
513 ± 86 334 ± 88 

p-Value (t-test between two planes) 0.01 0.04 

 

Besides experimental work, numerous modeling studies such as molecular dynamics 

have been performed on the deformation mechanisms of collagen fibril (98-106) and collagen-

HAP interactions in bone (103, 107, 108). Molecular dynamics studies addressed that: (1) the 

importance of crosslinks to the mechanical properties of collagen fibril (98, 100); (2) the shape 

of mineral crystals can be a strong determinant of the nanoscale strength of bone (109); and (3) 

the nanomechanics of collagen fibril has its own hierarchy (101, 102). These studies can help to 

understand bone mechanics at nano-scale and atomic-scale levels.  

 

1.4. Bone diseases and bone quality characterization 

The quality of bone refers to its ability to perform its functions. The quality contains 

important determinants such as intrinsic properties of bone matrix, bone architecture, turnover, 

and bone disease. Bone metabolic disease refers to the medical conditions that damage the 

skeleton and make bone weak and prone to fracture. Studies of bone diseases help to understand 

the relative importance of each constituent of the bone composition and its interactions with 
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other constituents as well as bone structure. Bone diseases can be caused by disorders of collagen 

(osteogenesis imperfecta and Paget’s disease of bone), mineral content, composition and 

distribution (fluorosis and osteomalacia); diseases of high remodeling (postmenopausal 

osteoporosis, hyperparathyroidism, and hyperthyroidism) and low remodeling (osteopetrosis, 

pycnodysotosis); and other reasons (idiopathic male osteoporosis, corticosteroid-induced 

osteoporosis) (110).  

Table 1.5. Nanoindentation measurements at lamellar level and micronanoindentation 

measurements at osteonal level (96). 

  Dry conditions Wet conditions 

E(GPa) H(GPa) E(GPa)  H(GPa) 

Nanoindentation Transverse plane 20.8 ± 2.1 0.61 ± 0.12 12.4 ± 2.5 0.28 ± 0.08 

Longitudinal plane 17.6 ± 2.1 0.54 ± 0.12 12.8 ± 1.9 0.35 ± 0.07 

p-Value (t-test 

between two planes 

6 × 10
-12 

0.004 0.4 2 × 10
-5 

Microindentation* Transverse plane 18.6 ± 1.7 50.5 ± 5 14.6 ± 1.2 39 ± 3 

Longitudinal plane 17.0 ± 1.4 46 ± 4 13.8 ± 1.2 37 ± 3 

p-Value (t-test 

between two planes 

 0.02  0.09 

* For microindentation, E is derived modulus (Ed=0.58+0.36Hv)(54) and H is Vickers hardness under 

10 gr loading (Hν10). 

 

The most common bone disease is osteoporosis, which is characterized by progressive 

loss of bone mass and by deterioration of bone microarchitecture and quality, resulting in a 

reduction in bone strength. This combination increases bone fragility, leading to a greater 

propensity for fracture. This bone disease is particularly endemic in postmenopausal osteoporotic 

women. The cause of this disease is the imbalance in the skeletal turnover that bone resorption 

exceeds bone formation (111). Bisphosphanate has been proven beneficial for improving bone 
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mineral density and decreasing incidence of new vertebral fractures by inhibiting bone resorption 

and lowering bone turnover (112, 113). Adequate calcium and vitamin D intake is also suggested 

to be crucial for developing optimal peak bone mass and preserving bone mass throughout life 

(114).  

Paget's disease of bone is a chronic disorder that can disrupt bone remodeling process and 

result in enlarged and misshapen bones. Paget's disease of bone most commonly occurs in the 

pelvis, skull, spine and legs. Typically, Paget’s disease is localized, affecting only one or a few 

bones, as opposed to osteoporosis, which usually affects all the bones in the body. The risk of 

Paget's disease of bone increases with age. The risk also increases if family members have the 

disorder. Complications of Paget's disease of bone can include broken bones, hearing loss and 

pinched nerves in the spine. Bisphosphonate is also the mainstay of treatment for this disease 

(115).  

1.4.1. Osteogenesis imperfecta 

Among all of the bone diseases, osteogenesis imperfect (OI) is our greatest interest since 

it is a disease with direct defects in collagen molecules and this disease provides an interesting 

platform for investigating how alterations of collagen at the molecular level cause changes in the 

structure of bone. Osteogenesis Imperfecta is a genetic disorder characterized by substantial bone 

fragility and osteopenia. It affects about 1:5000-10000 individuals and is a rare and potentially 

incapacitating disease (116). In 1979, Sillence classified OI into 4 types according to a system 

based on mode of inheritance, clinical picture, and information from X-rays: type I (mild OI with 

bone fragility and blue sclerae), type II (perinatal lethal), type III (progressive deforming), and 

type IV (normal sclerae and mild deformity) (117). These four types are entirely designated for 

mutations in COL1A1 or COL1A2, causing autosomal dominant OI (118, 119). Because of 
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specific clinical/radiological and/or histological features and the discovery of rare recessive 

genetic causes of OI, this classification was expanded into 7 by Rauch et al. in 2004 (120), and 

then it was further expanded into 11 by Forlino et al. in 2011, as shown in Table 1.6 (118).  

Table 1.6. OI Nosology (118). 

 OI type Inheritance* Phenotype Gene Defect 

Classical 

Sillence Types 

I AD Mild  Null COL1A1 allele 

II AD Lethal COL1A1/ COL1A2 

III AD Progressive Deforming COL1A1/ COL1A2 

IV AD Moderate COL1A1/ COL1A2 

Unknown 

Etiology 

V AD Distinctive Histology Unknown 

VI AR? Mineralization Defect Unknown 

3-Hydroxylation 

Defects 

VII AR Severe (Hypomorphic) 

Lethal (Null) 

CRTAP 

VIII AR Severe to Lethal LEPRE1 (P3H1) 

IX AR Moderate to Severe PPIB (CyPB) 

   

Defects 

X AR Severe to Lethal SERPINH1 (HSP47) 

XI AR Progressive Deforming 

Bruck Syndrome? 

FKBP10 (FKBP65) 

*Inheritance: AD- autosomal dominant; AR- autosomal recessive 

 

The detailed description of OI disease will be discussed in Chapter 3, while the diagnosis 

and treatment of this disease are briefly discussed here. The typical OI features can be identified 

using ultrasound clinically; however, if the clinical examination is not definitive, then laboratory 

tests for OI are appropriate. Laboratory diagnosis of OI relies on two approaches that cultured 

fibroblasts make either less or abnormal type I procollagen molecules or identification of a 

mutation in COL1A1 or COL1A2 (121). For primary OI cases, the tests are categorized as: (1) 

Collagen Biochemical Test, also referred to as a ―skin biopsy‖, examines collagen proteins made 
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by skin cells (fibroblasts); (2) Collagen Molecular Testing, also known as ―DNA analysis‖, 

examines the mutation in collagen by sequencing at the gene level. It requires a blood sample 

(116). Both tests can use a skin sample. The method of cultured dermal fibroblasts now has been 

supplanted by direct DNA sequence analysis which takes 10-30 days to complete (122). 

Collagen screening and DNA-based testing can be performed at the University of Washington 

(www.pathology.washington.edu/clinical/collagen) and National Institutes of Health, Bethesda, 

MD (http://www.oiprogram.nichd.nih.gov/), DNA-based testing is available at the Tulane 

University MatrixDNADiagnostic Lab, and Athena Diagnostics. 

The treatment of OI disease has been studied for many years. However, there is still no 

cure for this genetic disease. Bisphosphonate pamidronate is reported to have a beneficial effect 

in children and adolescents with severe OI (123, 124). The mechanism is suggested to be that in 

remodeling, bone resorption and formation are coupled and consequently both processes are 

inhibited by bisphosphonate pamidronate. However, during modeling of cortical bone, 

osteoclasts and osteoblasts are uncoupled, and continuing bone formation can increase cortical 

width, whereas the resorption is selectively targeted (125). Therefore, studies have also raised 

concerns about high cumulative doses impairing bone modelling and healing, decreasing bone 

material quality and mineralization heterogeneity and impairing bone cells (126-129). Recently, 

a study on OI mice found excessive activity of transforming growth factor beta (TGF), which is 

responsible for coordinating the shaping and reshaping of bone, is. They also found that using an 

antibody, which can block TGF, improves whole bone and tissue strength (130). In another 

study, a new class of agents targeting the receptor activator of nuclear factor-κB ligand 

(RANKL) was also evaluated to improve the density and some geometric and biomechanical 

properties of oim/oim bone (131). 

http://www.pathology.washington.edu/clinical/collagen
http://www.oiprogram.nichd.nih.gov/
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Besides bone diseases, aging also affects the composition and mechanical properties of 

bone. Aging increases the concentration of mature (pyridinium and deoxypyridinium) crosslinks. 

Bone mineral density (BMD) declines with age in both women and men. Tensile ultimate stress 

of human cortical bone decreases at a rate of about 2% per decade while tensile ultimate strain 

decreases at a rate of approximately 10% per decade (132, 133).   

1.4.2. Characterization methods of bone quality 

Bone quality includes microarchitecture, mineralization, and quality of organic matrix 

(maturity and cosslinking). Microradiography (MR) was the first technique to quantify the 

mineral content within cortices and trabeculae (134). MR is very fast, accurate, and simple. 

However, a disadvantage of MR is that it can only acquire two dimensional images. Then, 

Computerized tomography (CT), micro-computed tomography (µCT), and quantitative 

computed tomography (QCT) were developed permitting both 3D (and 2D) reconstructions and 

volumetric measurements. From clinical perspective, both QCT and Dual-energy X-ray 

absorptiometry (DXA) can measure bone mineral density. More advanced and sensitive 

techniques include quantitative backscattered electron imaging (qBEI) (135) and synchrotron 

radiation micro computed tomography (SRµCT) (136). Both qBEI and SRµCT methods require 

bone samples to be transiliac bone biopsies. Complimentary information on the bone matrix at 

identical topographic locations is obtained with other techniques such as small angle and wide-

angle X-ray scattering (SAXS/WAXS), NI, scanning acoustic microscopy (SAM), Raman 

microspectroscopy (RAMAN) and Fourier transform infrared imaging (FTIRI). For clinical use, 

the characterization of bone quality usually includes CT scan and Magnetic resonance imaging 

(MRI), which can measure the geometry and microstructure of bone. Finite-element analysis, 

which is an image-based method, can also calculate bone strength (137). 
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1.5. Scope of this dissertation 

Given the trends of bone structure and mechanics studies, it is evident that with various 

emerging techniques, the studies of bone are forwarding to a more nano-scale, atomic-scale, and 

hierarchical aspect to discover the anatomical position-specific structure and mechanical 

properties and help to understand bone and bone diseases. However, bone research is still far 

from the end. Firstly, bone mineral, although many studies have given the formula of bone 

mineral which is similar to hydroxyapatite and possesses vacancies and ion substitutes, the 

problem still hovers about the structural OH and its presence in the crystal structure. Besides the 

molecular structure of bone mineral, some debates are also aroused concerning the crystal 

structure and heterogeneity of bone mineral, as well as the details of extrafibrillar mineral due to 

sample preparation problems and instrumentation limits. Secondly, although the collagen 

sequence is well-understood, the interactions between mineral and collagen is still under study. 

Thirdly, what is the significance of collagen mutations for initial mineral nucleation and 

biomineralization? Fourthly, the role of different noncollagenous proteins in the initial nucleation 

and growth of bone mineral is not well-understood, especially in diseased bones. Therefore, in 

this doctoral dissertation, Field emission-Scanning probe microscopy (FE-SEM), modulus 

mapping, in situ FE-SEM nanoindentation, and nanoDMA techniques are utilized to explore the 

structure and nanomechanical properties and of bone at multi-scales, particularly, nanometer and 

sub-micro scales. In addition, our group’s multiscale modeling work has also demonstrated the 

influence of the interactions among different constituents on the mechanics of collagen; the 

interaction is of our specific interest and studied by using Fourier transform infrared 

spectroscopy (FTIR). Further, X-ray diffraction (XRD) is used to study the crystal structure of 

bone mineral as a supplement. Overall, this doctoral dissertation focuses on the study of 
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molecular bases of bone constituents, bone crystal structure, nanomechanical properties of bone, 

and OI diseased bone.  

This dissertation is organized in the following manner: 

 Chapter 1: Introduction 

 Chapter 2: This chapter presents SEM images, photoacoustic FTIR spectroscopic study of 

undisturbed human cortical bone. 

 Chapter 3: This chapter presents microstructural (SEM images) and infrared 

spectroscopic of human cortical bone (anterior region) with osteogenesis imperfect. 

 Chapter 4: This chapter presents nanomechanical properties of undisturbed human 

normal and OI cortical bones (anterior region) measured by modulus mapping and in situ 

FE-SEM nanoindentation.  

 Chapter 5: This chapter presents dynamic nanomechanical behavior of both healthy and 

OI human cortical bone (anterior regions) using nanoDMA technique 

 Chapter 6: This chapter presents SEM images, FTIR studies of four sections (anterior, 

medial, posterior, and lateral) of OI human cortical bone and nanomechanical properties 

of anterior and posterior sections obtained using in situ FE-SEM nanoindentation 

technique. 

 Chapter 7: This chapter summarizes our research work and major conclusions.  

 Chapter 8: This chapter describes the major contributions of this work. 

 Chapter 9: This chapter discusses some future directions for the research in this field. 
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CHAPTER 2.  PHOTOACOUSTIC FTIR SPECTROSCOPIC STUDY OF 

UNDISTURBED HUMAN CORTICAL BONE
2
 

This chapter presents SEM images and photoacoustic FTIR spectroscopic study of 

undisturbed healthy human cortical bone. Here we find that the stoichiometry of bone mineral is 

influenced by the interactions between collagen and mineral. The content of this chapter has 

been published in Gu, C.; Katti, D. R.; Katti, K. S.; Photoacoustic FTIR spectroscopic study of 

undisturbed human cortical bone. Spectrochimica acta Part A. 2013, 103, 25-37. 

 

2.1. Introduction        

Bone tissue is composed of collagen fibers, crystals of a calcium-phosphate mineral, 

hydroxyapatite or cement containing mucopolysaccharides etc., among which collagen, mineral 

and water are three primary components. Collagen accounts for nearly 1/3 of the dry weight of 

bone and the mineral accounts for nearly 2/3 of the dry weight of bone matrix (1). The water 

component is on average 10-12wt.% of cortical bone (2). As all structural materials in biology, 

bone exhibits a detailed hierarchical organization (3-5) that spans length scales from nm to mm 

(6, 7). The collagen found in bone (type I), forms a fibrillar structure consisting of staggered 

arrangement of collagen molecules with a periodicity of 67 nm (6, 7). The hydroxyapatite 

crystals are present in the hole-zone between collagen molecules (3-5). The collagen mineral 

interactions as well as collagen structural behavior have been extensively studied through 

modeling efforts (8-15). The principle orientation of bone mineral is along the long axis of the 

                                                 
2
 This chapter was co-authored by Chunju Gu, Kalpana Katti, and Dinesh Katti. Chunju Gu had 

primary responsibility for preparing samples, conducting all tests, and drafting this chapter. 

Kalpana Katti and Dinesh Katti directed the research orientation and revised this chapter. 
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bone, whereas bone collagen fibers are aligned with alternating fiber orientation in successive 

lamellae (16).   

The human bone mineral is composed of a poorly crystallized apatite, with similar 

composition to synthetic hydroxyapatite Ca10 OH)2(PO4)6. Hydroxyapatite has a hexagonal 

crystal structure (space group P63/M) (17). However, in contrast to synthetic hydroxyapatite, 

bone mineral is structurally disordered, and compositionally nonstoichiometric. Synthetic 

hydroxyapatite prepared in a laboratory is often stoichiometric but hydroxyapatite present in 

bone is known to be nonstoichiometric (18). In the hydroxyapatite structure, some ions can be 

replaced, leading to the presence of vacancies. For example, CO3
2-

 can substitute for either PO4
3-

 

or OH
-
 ions. The bone crystal structure is primarily maintained by electrostatic cohesion such 

that bone crystals are more soluble as compared to stoichiometric apatite (19). 

Mechanical properties of bone have orientation dependence resulting from preferential 

orientation of collagen and mineral. It was found that two orders of magnitude change in the 

fracture energy can be observed depending on the orientation of collagen (20, 21). Using Raman 

spectral mapping, bone osteonal tissues were studied indicating that, the PO4
3-

 ν1 and amide I 

vibrations are sensitive to the orientation and the polarization direction of the incident light. This 

is in accordance with the mineral c-axis and the position of carbonyl in collagen chains, while 

amide III, ν2 and ν4 PO4
3-

 vibrations are observed to be less sensitive to orientation effects (22).  

It was also shown that the ν1 PO4
3-

 to amide I ratio is indicative of the lamellar bone orientation, 

and ν2 PO4
3- 

to amide III and CO3
2- 

to ν2 PO4
3-

 ratios are suggestive of variation in bone 

composition (23).  

As a nondestructive technique, Fourier transform infrared (FTIR) spectroscopy has been 

extensively used to study the composition and structure of bone tissue by calculating the 



 

47 

 

lipid/protein ratio, Ca/P ratio, protein/mineral ratio, the crystallinity of the mineral phase (24), 

crystallinity index (25) as well as collagen cross-link ratio (26). The most widely used mode for 

FTIR experiments on bone is transmission (TS). TS-FTIR combined with microscopy (27-29) 

and imaging have been extensively used to study the correlation between the image, spectra and 

the structure of bone (29-33) as well as different ages (26, 34) and diseases such as osteoporosis 

(35), osteopetrosis (36), osteomalacia (37), and osteogenesis imperfect (38), etc. TS-FTIR has 

the highest signal-to-noise ratio, and is useful for quantitative measurements (39).  Transmission 

is the most frequently used mode for infrared spectroscopy and one of the common methods for 

sample preparation involves fixation, dehydration of bone tissue followed by embedding of the 

sample in resin that is sectioned using a microtome (25, 26, 33, 34, 40, 41) or directly mixing the 

sample with Potassium bromide (KBr) powder in a mortar and pestle (24, 42-45). Both sample 

preparation methods have the potential to influence the water content and interactions between 

mineral and collagen. Further, fixation of bone specimens prevents bacterial growth and 

degradation of the specimen before data are collected. However, it was found that formalin 

fixation had little effect on the collagen, but a significant effect on the mineral structure, while 

ethanol fixation had the opposite effect (46).  

Thus, chemical pretreatment may potentially influence the organic matrix and mineral 

interaction. For example, literature prior to 2003 indicated that there are almost no hydroxyl 

groups in bone mineral crystals (47-52). Most of the specimens reported underwent chemical 

pretreatments and were characterized by FTIR, Raman, Nuclear magnetic resonance (NMR) and 

inelastic neutron-scattering. However, for samples with no pretreatment other than cryogenic 

grinding it was found that hydroxyl ions could be detected by solid-state NMR spectroscopy and 

the OH
-
 content of human cortical bone was roughly 20% of the amount expected in 
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stoichiometric hydroxyapatite (53). Therefore, techniques of sample preparation are crucial for 

spectroscopic investigations of bone.  

Photoacoustic (PA-) FTIR spectroscopy is commonly used technique due to minimal 

sample preparation requirements and ability to examine specimen in situ. Recently, this has been 

particularly useful while investigating nanocomposites of biological origin such as seashells (54) 

and geological origin such as oil shales (55). In the photoacoustic technique (Figure 2.1), the 

infrared beam incidents on the sample and excites vibrational motion of molecules which causes 

the perturbation of coupling gas, thereby generating compression waves in the inert gas in the 

proximity of the sample which can be detected by a sensitive microphone (56). PA-FTIR is 

insensitive to surface morphology and capable of measuring spectra of all types of solids without 

exposure to air or moisture, and also applicable to liquids and gases (57). Therefore, sample 

preparation of PA mode is faster and easier as compared to that for transmission mode. In 

addition, as shown in Figure 2.1, the coupling inert gas, helium, has shown to inhibits bacteria 

growth in bone by displacing oxygen (58). Two modes of data collection are used in PA-FTIR, 

linear-scan (LS, also called continuous scan or rapid scan), and step-scan (SS). The primary 

distinction between these methods is the varied or constant modulation frequency for a given 

wavelength. The expression for the modulation frequency  at a certain wavenumber is given by 

(57).  

where is the velocity of the interferometer mirror (cm/s), and  is the wavenumber (cm
-1

). 

Step-scan (SS-PA-FTIR) spectroscopy measures samples’ absorbance spectrum directly with a 

controllable sampling depth by keeping the beam modulation frequency constant. The thermal 

(2.1) 
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waves decay to 37% (1/e) of their original amplitude over a distance L, which is called the 

thermal diffusion depth or the thermal wave decay length, given by the following equation:  

  

where D and f refer to the sample’s thermal diffusivity and the infrared beam phase modulation 

frequency, respectively (59).  

 

Figure 2.1. Schematic diagram of PA-FTIR instrument. 

 

PA-FTIR technique has already been utilized to study heterogeneous polymer (60, 61) 

and polymer clay nanocomposites (62, 63), seashells (54, 64), and enamel of an intact human 

tooth (65, 66). Thermal damages by lasers on the tibia of rabbits was investigated by Linear scan 

(LS-PA-FTIR) spectroscopy (67) . Heated deer antler (group I) and whale tympanic bulla were 

also investigated by LS-PA-FTIR spectroscopy recently (68).  

In the present study, PA-FTIR has been utilized to study undisturbed human cortical bone 

from both transverse and longitudinal planes. We have also conducted depth profiling 

experiments, utilizing SS-PA-FTIR to study human bone at several penetration depths. 

(2.2) 
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2.2. Materials and Methodology 

2.2.1. Materials 

The human femur was obtained from National Disease Research Interchange, PA (from 

27 years old, female donor with no apparent metabolic bone disease record) and was stored in a 

freezer at -70˚C. The femur was cut into small pieces with a saw and cleaned thoroughly using 

deionized water at room temperature in a very short time. A diamond-wafering blade (Buehler, 

Isomet, Lake Bluff, IL) was used to cut the pieces into smaller samples (~8mm, 6mm, 1mm) in 

both longitudinal and transverse planes to get longitudinal section and transverse section 

correspondingly for FTIR experiments. Another set of samples with the same preparation 

methods as above were further cut into three sections for additional FTIR experiments (Figure 

2.2).   

 

 

Figure 2.2. (a) Location of the tested sample from the human femur; and (b) Schematic 

representation of bone showing from where the sample were cut, 1 represents inner side, 2 

middle, and 3 outer side of the bone piece. 

 

(a) 

(b) 
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For SEM imaging, the samples in both longitudinal and transverse planes were further 

fixed in 2.5% Glutaradehyde (Tousimis) overnight. Further, the resulting specimens were rinsed 

twice with sodium phosphate buffer (0.1M PH 7.35, Tousimis), followed by post-fixation in 1% 

Osmium-tetroxide (Electron Microscopy Sciences) for 2 h. The samples were then rinsed twice 

again as before, followed by dehydration through a graded series of ethanol (30%, 50%, 70%, 

90%, 100%, 100%, 100%, from Aaper Alcohol and Chemical Co.). After being critical point-

dried in liquid CO2 (Autosamdri-810, Tousimis) and fractured in liquid nitrogen, the specimens 

were coated with carbon (Carbon coater: Cressington 208 carbon) and examined using a Field 

Emission Scanning Electron Microscope (JEOl JSM-7600F). 

2.2.2. Methods 

FTIR spectra were collected using Thermo Electron, Nexus 870 spectrometer equipped 

with MTEC Model 300 photoacoustic accessory. Before each data collection, the PA chamber 

was purged with dry helium for 15 min. All spectra were collected in the range of 4000-400 cm
-

1
, at a spectral resolution of 4 cm

-1
 and SS-PA experiments were done at frequencies ranging 

from 50Hz to 1000Hz. GRAMS/32 software was used for spectra analysis. The center positions 

for each sub-band in curve-fitting were determined by second-derivative analysis and the shapes 

of the underlying bands were chosen by Gaussian algorithm.  

 

2.3. Results  

2.3.1. Microstructures of human bone in transverse and longitudinal planes 

The human bone exhibits a hierarchical structure with the osteon as an important 

structural element. Figure 2.3 shows microstructure of bone sample in transverse and 

longitudinal planes. Figure 2. 3a shows an osteon with a haversian canal at the center which is 
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surrounded by concentric lamellae of collagen fibers. Lamellae are made up of fiber bundles 

with normally plywood-like array pattern (69). The fiber bundles are further composed of 

mineralized fibrils which consist of nanoscale collagen and minerals. In mineralized fibrils, 

collagen and mineral have a staggered arrangement with periodicity of 67nm, as shown in Figure 

2.3d. Bone collagen is assembled in an orderly manner with hole-zones of neighboring 

molecules being adjacent to one another to form channels or grooves in the packed assemblage 

(schematically shown in Figure 2.4a and b). Platelet-shaped hydroxyapatite (HAP) crystals are 

positioned in channels or grooves and crystal sizes may exceed the dimensions of hole-zones (4, 

9, 70).   

  

  

Figure 2.3. SEM micrographs of human bone (a and b) Transverse section; and (c and d) 

Longitudinal section. 

(a) 

 

(c) (d) 

(b) 
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Collagen and mineral have preferential orientations. In the transverse plane, round 

osteons can be seen on the section, and the mineralized fibrils are protruding out of lamellae as 

shown in Figure 2.3b. In the longitudinal plane, the fibrils are aligned parallel or at an angles to 

the long axis, as shown in Figure 2.3c, and the mineral crystals are roughly along the long axis of 

the bone (16). Figure 2.4c shows a model of the mineral structure in the (001) plane and the 

(100) plane. Details of model construction are reported elsewhere (71). As seen from the model 

for (100) plane (from Figure 2.4c), each of the two OH ions is surrounded by a Ca triangle, and 

the OH ions are relatively isolated from the other structural units such as PO4 tetrahedral and 

CaO6 octahedra. 

   

Figure 2.4. HAP in bone. (a) Staggered arrangement if mineralized fibrils. (b) Relationship 

between collagen molecules and intra-fibrillar HAP crystal. (c) HAP structure projected on the 

(001) plane and (100) plane (adapted from (71)). 

 

(c) 
(b) 

(a) 

 

(a) 

(b) 
(c) 
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2.3.2. Comparison of PA-FTIR and TS-FTIR spectra 

A typical PA-FTIR spectrum（linear-scan） from bone sample is shown in Figure 2.5. 

On comparing the PA spectra to TS-FTIR spectra such as that obtained from rat tibia (obtained 

from powder in a KBr pellet) in the range of 4000-400 cm
-1

 (24) or healthy human cortical bone 

in the range of 1800-800 cm
-1

 (26), band positions appear similar, but some band-shapes such as 

the phosphate ν3 band and the carbonate ν2 band are observed to be different. Further, the 

intensity of the phosphate ν3 band in transmission mode is the strongest while in PA mode it is 

much weaker; For PA-FTIR spectra, the OH band at 2262-3732 cm
-1

 is the strongest.  

 

Figure 2.5. LS-PA-FTIR spectra of human bone in the 4000-400 cm
-1

 region, velocity of mirror: 

0.158 cm/s: (a) Transverse; and (b) Longitudinal sections. 

 

TS-FTIR experiments evaluate the bulk sample, whereas PA-FTIR measures the near-

surface (~35µm) molecular structures. In addition, magnitude of the PA-FTIR signal is 

proportional to absorptivity, concentration or sampling depth (59). All of these factors influence 

the intensity of bands. In PA mode, the detector is replaced by a photoacoustic sample cell which 



 

55 

 

has a KBr window for transmitting mid-infrared radiation and a microphone for photoacoustic 

signal detection. The carbonate ν2 vibration shows a sharp band which indicates that PA-FTIR is 

more sensitive to carbonate ν2. In a previous work, PA-FTIR appears more sensitive than TS-

FTIR in observing some cross-linking reactions (72). The appearance of amide III as a distinct 

band as seen in Figure 2.5 also indicates that PA-FTIR is more sensitive to this band.  

Additionally, ν1 PO4
3-

 vibration at 960cm-1 and ν4 PO4
3-

 at ~476cm
-1

 are also distinctly 

observed in the PA-FTIR spectrum while being very weak in transmission mode (26). Phosphate 

exhibits four fundamental modes of vibrations: ν1 the symmetric stretching at ~962cm
-1

, ν2 

symmetric bending at ~470, ν3 antisymmetric stretching at 900-1200cm
-1

, and ν4  antisymmetric 

bending at 564~603cm
-1

. Only the triply degenerate vibration species of the tetrahedral 

molecules are infrared active, so only ν3 and ν4 should be observed in the FTIR spectra. 

However, when the geometrical parameters shift to lower molecular symmetry, ν1 and ν2 

become observable(43). As observed in the data, in the transmission mode, these two bands are 

very weak, but very prominent in the photoacoustic mode. Therefore, it appears that phosphate 

ion geometry is less symmetric in its undisturbed state as detected by the PA-FTIR, with all 

phosphate vibrations detected. 

2.3.3. Comparison of PA spectra from transverse and longitudinal sections 

Figure 2.5 shows LS-PA-FTIR spectra for solid bone samples from the transverse and the 

longitudinal sections in the energy range of 4000-400cm
-1

. The spectra were normalized with the 

O-H peak (3322cm
-1

). The assignments of the bands are given in Table 2.1. The spectral analyses 

from these data were performed in three spectral ranges corresponding to 3700-2500, 2000-1180, 

and 1180-450cm
-1

. 
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Table 2.1. Band assignments of PA-FTIR spectra from human bone. 

Wavenumber 

(cm
-1

) 

transverse 

Wavenumber 

(cm
-1

) 

longitudinal 

Band assignment Ref. 

3564 3570 Structural OH (73) 

3322 3328 OH stretching vibration from embedded water (43) 

2959 2961 CH3 asymmetric stretch: mainly lipids (24) 

2926 2926 CH2 asymmetric stretch: mainly lipids, with the little 

contribution from proteins, carbohydrates, nucleic 

acids 

(24) 

2884 2885 CH3 symmetric stretch: mainly proteins, with the little 

contribution from lipids, carbohydrates, nucleic 

acids 

(24) 

2855 2853 CH2 symmetric stretch: mainly lipids, with the little 

contribution from proteins, carbohydrates, nucleic 

acids 

(24) 

 1747 C=O stretch: lipids, cholesterol esters, triglycerides (74) 

1652 1654 Amide 1 (protein C=O stretch) (74) 

1549-1505 1546- 

1506 

Amide 2 (Protein N-H bend, C-N stretch) (74) 

 

1449,1415 1447,1415 carbonyl and carbonate ν3 vibration (24) 

1342 1340 CH2 wagging (43) 

1236 1236 Amide 3(C-N stretch, N-H bend, C-C stretch) (43) 

1180-1000 1180-1100 ν3
 
PO4

3- (43) 

962 963 ν1PO4
3- (43) 

874 875 ν2
 
CO3

2- (43) 

609,576 606,567 ν4
 
PO4

3- (43) 

476 470 ν2 PO4
3- (43) 

 

As seen in Figure 2.6a in the energy range of 4000-2000cm
-1

, a broad band in the region 

around 3322cm
-1

 is observed, that is attributed to the O-H stretching vibration from water 
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combined with N-H stretching (amide A) (43). This indicates that there is a large amount of 

water present in both bone samples. Figure 2.6b shows the second-derivative spectral curves for 

this region. The bands at 3564cm
-1

 and 3570cm
-1

 are assigned to the stretching vibration of the 

structural hydroxyl group from hydroxyapatite (73). Although the presence of hydroxyl ions in 

the bone mineral has been debated (52, 53), from the appearance of a shoulder to the broad O-H 

band and the resulting features in second-derivative (Figure 2.6b), we believe that there are a 

small amount of structural OH ions in the bone mineral. The band at around 3074cm
-1

 is 

attributed to amide B which is Fermi resonance band of the first overtone of the amide II band 

powered by the N-H stretching vibration (75). The O-H bending band from water is overlapped 

by amide I. The band around 2100 cm
-1

 is assigned to OH stretching vibrations from P-OH. 

These bands lie in 2100 cm
-1

 region and have been previously observed in hydroxyapatite spectra 

(76-78). They were attributed to PO4
3-

 (76) and P-OH vibrational modes
 
(79). In the present 

spectra, the shapes of these bands are more like those obtained from hydroxyapatite. 

                                (a)                                                               (b)

  

Figure 2.6. (a) PA-FTIR spectra of human bone (transverse and longitudinal) in the 4000-2000 

cm
-1

 region; and (b) Inverted second-derivative curves in the energy range of 3900-2400cm
-1

. 

 

(b) 
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In the second-derivative curves, the sharp C-H stretching bands from organic matrix are 

smoothed out. It is observed in the spectra that CH3, and CH2 asymmetric and symmetric 

stretching vibrations are present at 2960, 2926, 2884 and 2854cm
-1

 in both sample sections (see 

Table 2.1). The CH2 asymmetric band (~2926cm
-1

) arises primarily from lipids, with the little 

contribution from proteins, carbohydrates, and nucleic acids in the longitudinal section, this band 

is observed to be comparatively stronger than that in the transverse section. This may result from 

structure difference between longitudinal and transverse sections. In the longitudinal section, the 

cross-section of arteries is probed as compared to only cross-section of osteons observed in the 

transverse section. 

The energy range of 2000-1180cm
-1

 (Figure 2.7) is attributed primarily to the organic 

matrix of bone. The band at around 1654cm
-1

 arises from amide I, which corresponds to C=O 

stretching of protein. In the longitudinal section, the band at 1747cm
-1

 is attributed to C=O 

stretching of lipids, cholesterol esters, and triglycerides from the arteries (74). The bands in the 

range of 1555-1500cm
-1

 are attributed to amide II, which corresponds to the N-H bending and C-

N stretching of protein. The bands at around 1454, 1413 cm
-1

 are attributed to CH3 and carbonate 

ν3 asymmetric stretching (80). The band at 1236 cm
-1

 is attributed to amide III. No significant 

differences are observed between the two sections of these bands, which indicate that these 

bands are not orientation dependent. Kazanci et al. found that ν1 PO4
3-

 and amide I vibrations are 

sensitive to the orientation and the polarization direction of the incident light in Raman spectra 

(22). However, because of overlapping O-H bending vibration, amide I in PA-FTIR spectra does 

not show orientation dependence. 
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Figure 2.7. Photoacoustic infrared spectra of human bone (transverse and longitudinal) in the 

energy range of 2000-1180 cm
-1

. 

 

In the energy range of 1180-400 cm
-1

, as seen in Figure 2.8, spectra intensity rises 

primarily from mineral vibrations. The broad and strong absorption band in the region 1180-900 

cm
-1

 is typically assigned to ν1 and ν3 PO4
3-

, and the band at 609-576 cm
-1

 is assigned to ν4 

PO4
3-

 vibrations. The band at 874 cm
-1

 is assigned to ν2 out-of-plane bending of CO3
2-

. In the 

energy range of 1180-900 cm
-1

, there is a small amount of contribution from collagen around 

1030 cm
-1

 and 1080 cm
-1

 (81). In Paschalis’s and Magne’s studies, a subtraction procedure was 

developed using spectra from decalcified bone to remove those contributions (27, 82). However, 

those contributions are very small, and the decalcification procedure also includes some change 

to the organic matrix structure, and therefore, in recent papers, the subtraction step is not 

performed (41, 83). It is widely accepted that PO4
3-

 vibrations have orientation dependence  (22, 

84). In Raman spectra, the band at 1059 cm
-1

 displayed a strong intensity dependence on the 

scattering configuration of the parallel polarization. In the regions of ν4 and ν2 PO4
3-

 modes, 
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bands showing orientation dependent intensity are observed (84). In the present study, we also 

see the orientation-dependent changes of ν3 and ν2 PO4
3-

, but ν1 and ν4 vibration modes exhibit 

little change in the different planes. 

 

Figure 2.8. Photoacoustic infrared spectra of human bone (transverse and longitudinal) in the 

energy range of 1180-400 cm
-1

. 

 

The inverted second-derivative curve in the energy range of 1180-927 cm
-1 

is shown in 

Figure 2.9a, exhibiting a broad band from mineral. This broad mineral band arises from 12 sub-

bands (Table 2.2). These ν1, ν3 PO4
3-

 sub-bands were previously observed using X-ray and FTIR 

studies (27, 85, 86). Curve-fitting in this region is shown in Figure 2.9b and c after 

normalization. The ratio of the 1023/1038 cm
-1

 bands (often used to describe stoichiometry) (35) 

in the transverse section is 0.51, while in the longitudinal section it is 0.29. Further, at around 

1090cm
-1

 the sub-band area in the longitudinal section is larger than that in the transverse 

section. Therefore, bone appears to be more stoichiometric in longitudinal section surface.  



 

61 

 

Table 2.2. Major components of the ν1, ν3 PO4 
3-

 bands in bone (27, 87, 88). 

Position 

Transverse 

Area 

Transverse 

Position 

Longitudinal 

Area 

Longitudinal 
Band assignment 

1150 23 1140 60 HPO4 
2-

  containing apatites 

1122 211 1121 95 ν3 PO4 
3-

 in Poorly crystalline 

apatites 

1110 125 1105 217 ν3 PO4 
3-

 in Poorly crystalline 

apatites 

1091 48 1086 52 ν3 PO4 
3-

  in stoichiometric HA 

1077 0.16 1071 60 ν3 PO4 
3-

 in Poorly crystalline 

apatites 

1067 262 1059 120 ν3 PO4 
3-

 in Poorly crystalline 

apatites 

1050 41 1047 139 HPO4 
2-

  containing apatites and 

type B carbonate-containing apatites 

1038 53 1038 58 PO4 
3-

 in stoichiometric HA 

1023 27 1023 17 Nonstoichiometric apatites 

containing HPO4
2-

 and/or CO3
2-

 

1007 163 1010 144 ν3 PO4 
3-

 in apatitic environment 

993 19 988 80 ν3 PO4 
3-

 in apatitic environment 

959 73 959 62 ν1 PO4 
3-
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Figure 2.9. (a) Inverted second-derivative curves in the energy range of 1180-927 cm-1; curve 

fitting analysis of the ν1, ν3 phosphate band (1180–927 cm
-1

) of (b) Transverse section, and (c) 

Longitudinal section. 

 

(a) 

 

(b) 

 

(a) 

(b) 



 

63 

 

 

Figure 2.9. (a) Inverted second-derivative curves in the energy range of 1180-927 cm
-1

; curve 

fitting analysis of the ν1, ν3 phosphate band (1180–927 cm
-1

) of (b) transverse section, and (c) 

longitudinal section (continued). 

 

2.3.4. Comparison of three smaller sections in the transverse and longitudinal planes 

Further, similar positioned bone pieces are cut into three smaller sections in both 

transverse and longitudinal planes respectively (Figure 2.2b), and the spectra collected are shown 

in Figure 2.10. It is to be noted that the outer section includes periosteum and the inner section 

includes endosteum in the vicinity of the medullary cavity.  

From the spectrum of the transverse sections, it is clearly seen that when closer to the 

inner side, the shoulder around 3550 cm
-1

 appears stronger indicating that more structural O-H 

appears towards the medullary cavity. However, this band does not show any obvious change in 

the longitudinal sections. Both two planes exhibit similar characteristics, when approaching the 

inner side, C-H stretching bands arising from lipids, proteins etc. appear stronger, the C=O 

stretching band at 1747cm
-1

 appears sharper on the inner side of both planes. Nevertheless, the 

(c) 

 (c) 
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C=O stretching band shows small peaks on the outer and middle sides of the longitudinal 

sections, while being significantly reduced on these sides of the transverse sections. It is known 

that the major intra-cortical arteries (mainly Haversian canal and Volkman’s canal) carry the 

longitudinal blood supply (89). On the longitudinal section surface, some canals are crosscut so 

that the materials from arteries appear on the surface which make this C=O stretching band more 

intense in the longitudinal section rather than in the transverse section. Moreover, a great number 

of arterioles in the endosteal membrane were seen so that the inner sides along both planes also 

exhibit this sharp band. This phenomenon can also be confirmed by the stronger signs of C-H 

band at around 2900 cm
-1

 in the corresponding spectra. In addition, ν3 PO4
3-

 broad band profile 

is varying in these sections. 
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Figure 2.10. PA-LS-FTIR spectra of human bone in the 4000-400 cm
-1

 region, velocity of 

mirror: 0.158 cm/s. (a) Transverse section, 4000-400 cm
-1

 region; (b) Longitudinal section, 4000-

400 cm
-1

 region. 

 

2.3.5. Depth profiling    

 For cortical bone, thermal diffusivity D equals 5.5 10
-3

 cm
2
/s in the transverse section 

and 4.4 10
-3

 cm
2
/s in the longitudinal section (90). L is calculated using Eq. (2.2). In our 

experiments, we used the frequencies of 50, 100, 200, 500, and 1000Hz, resulting in values of L 

(a) 

(b) 
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to be 59.2, 41.8, 29.6, 18.7, 13.2 m in the transverse section and 52.9, 37.4, 26.5, 16.7, 11.8 m 

respectively in the longitudinal section (Table 2.3).  

Table 2.3. Thermal diffusion depths of bone varying with Phase Modulation (PM) frequencies. 

PM frequency(Hz) 50 100 200 500 1000 

Ltransverse( m) 59.2 41.8 29.6 18.7 13.2 

Llongitudinal( m) 52.9 37.4 26.5 16.7 11.8 

 

Figure 2.11a and Figure 2.11b show the SS-PA-FTIR spectra obtained at the five 

penetration depths in the transverse and longitudinal sections in the energy range of 4000-830 

cm
-1

. The spectra were normalized with the O-H peak (3323 cm
-1

). In both sections, the O-H 

broad band (3732-2262 cm
-1

) appears sharper and the intensity of this band appears lower as 

compared to the matrix band or mineral band. This is primarily due to the loss of water during 

cutting of bone. Interestingly it is found that the structural O-H shoulder appears increasingly 

reduced on approaching the surface of the sample. The bands at 2926cm
-1

 (stretching from 

lipids) in Figure 2.11a appear stronger at 200hz and 500hz compared to other frequencies which 

indicates that through different penetration depths, the component of lipids may vary due to the 

plywood-like array pattern of lamellae. Comparing the different penetration depths, it is apparent 

that when closer to the surface, the variation becomes stronger. 

Figure 2.11c and d shows the SS-PA-FTIR spectra in the energy range of 2000-830 cm
-1

. 

In both sections, the broad amide I band appears sharper as the thermal diffusion depth L 

decreases. Amide II and amide III appear similar at different penetration depths. Usually bands 

in the amide III region are more resolved in the original protein spectrum than they are in the 

amide I spectrum. This results from reduced OH vibrations in the amide III region due to 

reduced water interfering with spectrum as compared to amide I region (91). Hence, the variation 
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of amide I also reflects the loss of water when approaching the surface. Thus significant change 

of the organic matrix in the spectra is not observed. 

The most significant variation at different depths arises from the mineral bands including 

CO3
2-

 stretching and PO4
3
 bands. The intensity of ν3 PO4

3-
 band appears stronger and sharper 

close to the surface which probably can result from loss of water near surface. Water forms 

hydrogen bonds between water and collagen, and also water and mineral, which broaden the ν3 

phosphate and amide I bands. Additionally, it is interesting to note that all of the changes are 

gradual, but from 500Hz to 1000 Hz the change is particularly abrupt. This may imply that the 

material system is significantly altered around 12 m because of the surface structure distortion 

and the loss of surface water.      

 

  

Figure 2.11. SS-PA-FTIR spectra of human bone: (a) Transverse section (4000-830 cm
-1

); (b) 

Longitudinal section (4000-830 cm
-1

); (c) Transverse section (2000-830 cm
-1

); and (d) 

Longitudinal section (2000-830 cm
-1

). 

 

 

 

(a) (b) 
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Figure 2.11. SS-PA-FTIR spectra of human bone (continued): (a) Transverse section (4000-830 

cm
-1

); (b) Longitudinal section (4000-830 cm
-1

); (c) Transverse section (2000-830 cm
-1

); and (d) 

Longitudinal section (2000-830 cm
-1

). 

 

(c) 

(d) 
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2.3.6. Discussion  

 PA-FTIR is shown to be a useful technique for investigation of bone since it enables 

samples to be tested as-received and also the coupling gas helium (He) protects the material from 

bacterial growth. Comparison of the FTIR spectra obtained using transmission and photoacoustic 

modes, indicated differences: (1) Sample in photoacoustic mode indicates a broad O-H band due 

to presence of water in the as-received PA sample. In addition, the OH band and the band from 

organic matrix band at around 1500 cm
-1

 are both stronger than those in the transmission mode. 

(2) Changes to ν3 phosphate band: in PA-FTIR, the band shows higher intensity at higher energy 

side while in TS-FTIR the reverse is observed. We found that the ν3 phosphate band not only 

depends on the orientation of bone sample, but also depends on the position of the sample. 

However, overall the composition is the most crucial factor. By inspecting the spectrum obtained 

by PA-FTIR from our group’s study on synthetic HAP (92), we saw that the shape of ν3 

phosphate band of synthetic HAP was quite similar to that of healthy human cortical bone 

obtained by transmission mode which underwent a series of treatments (26). Therefore, we 

believe that the difference between the shapes of ν3 PO4
3-

 band from both modes is primarily due 

to the sample condition. Further, the undisturbed healthy cortical human sample exhibits 

nonstoichiometric HAP based on the study of PA-FTIR spectra. (3) Both amide III and ν2 CO3
2-

 

bands are more prominent in PA-FTIR than those in TS-FTIR (26). Amide III region from FTIR 

is quite promising for studying protein secondary structure because it has more resolved 

differences and has no water interference (93). However, this region was not sufficiently 

investigated due to low signal in TS-FTIR. The ν2 CO3
2-

 bands could be related to Ca/P ratio and 

mineral structure(94).  
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The presence of hydroxyl groups in bone mineral crystals has been long debated. The 

absence of the OH infrared spectral band in bone was first reported by Biltz and Pellegrino (47) 

and was later confirmed by extensive studies of undisturbed and deproteinated isolated crystals 

of bone (48-52). Furthermore, free and unbounded OH appeared after the bone was heated to 

above 600˚C which was explained by the decomposition of carbonate ions with the presence of 

water to form O-H apatite (47). Blumenthal and Posner attributed the failure to detect OH group 

in IR spectrum to distortions in the lattice of the bone crystals and hydrogen bonding with water 

especially that on the surfaces of the crystals (48). We know that, the formation of hydrogen 

bonds usually leads to lowering of the frequency of vibration, broadening of the O-H stretching 

vibrations, as well as skewing of the band profile. Rey et al. (50) utilized FTIR, magic angle 

spinning and proton nuclear magnetic resonance spectroscopy to confirm that there was no 

detectable O-H in bone mineral. And they also found that the decomposition of carbonate ions 

were eliminated by CO2 environment at elevated temperature which confirmed the conclusion of 

Biltz and Pellegrino (47). Inelastic neutron-scattering study (51) showed the absence of structural 

OH group but only very small amount of OH ions belonging to HPO4
-
 like species. Raman 

spectra also showed that there was no OH ions in bone mineral while they exist in dentin and 

enamel to some degree (52). However, almost all of the above studies have done chemical 

pretreatments on bone to make it anorganic and the pretreatments may eliminate interference 

from the organic matrix to the mineral. A two-dimensional solid-state nuclear magnetic 

resonance (NMR) spectroscopy technique that detects the proton spectrum of bone crystals while 

suppressing the interfering matrix signals was utilized to eliminate the need for specimen 

pretreatment other than cryogenic grinding show that the bone crystal OH
-
 is readily detectable 

(53). The OH
-
 content of human cortical bone is roughly 20% of the amount expected in 
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stoichiometric hydroxyapatite (53). Later C. Rey concluded that ―the biological bone apatites 

contain only a very small percentage of the total number of hydroxyl groups present 

stoichiometric hydroxyapatites‖ (95). However, due to the lack of accurate chemical analytic 

techniques and the presence of numerous trace elements and a hydrated surface layer, it is still 

very difficult to correctly describe the chemical composition of bone apatites such as the 

amounts of HPO4
2-

 and OH
-
 ions (95).   

Based on the PA-FTIR spectra, from the shoulder of the broad OH band and second-

derivative of undisturbed bone spectra in both longitudinal and transverse sections, we believe 

that there is a small amount of structural OH ions existing in bone mineral. By inspecting the 

PO4
3- 

broad band of three small sections, it is observed that in the transverse section structural 

OH is more prominent in the inner side of bone sample. This phenomenon is consistent with 

results from Paschalis et al. (28) which indicate that the mineral lying in the vicinity of the 

medullary cavity is more crystalline/mature, and has more hydroxyapatite-like stoichiometry. 

Therefore in the vicinity of the medullary cavity there is more structural OH, and more 

stoichiometric phosphate.  

In collagen molecules, C=O bonds are perpendicular to the backbone of the collagen 

molecule and the mineral c-axis, so amide I has preferential orientation. In polarized Raman 

experiments, amide I stretching vibration is the strongest when the beam is perpendicular to c-

axis (22, 96). However, in our PA-FTIR experiments, orientation effect of amide I band is not 

observed since the band is severely overlapped by O-H bending vibration.  

In our present study, it is interesting to note a band at 1747 cm
-1

 is observed which is 

quite prominent in the vicinity of the medullary cavity in the both sections. In previous studies, 

this band was absent in most cases after subtraction by Poly(methyl methacrylate) (PMMA) (26, 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&sqi=2&ved=0CCUQFjAB&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPoly%2528methyl_methacrylate%2529&ei=b2B2VO3wG8XfoASRmIKgAg&usg=AFQjCNEI5g2xM7VNTz16b1RPQN6BzeVNWg&bvm=bv.80642063,d.cGE
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34, 97, 98) or glycolmethacrylate (GMA) in which the tissue was fixed (99). The C=O band from 

PMMA or GMA is centered at around 1730cm
-1

, and is strong and broad and may overlap the 

weak C=O band from bone. In the current experiments, no pretreatment of bone is performed 

hence this band cannot be attributed to PMMA or GMA. In some other studies, the presence of 

carbonates at the channel sites in the structure may also generate a small band at 1745cm
-1 

(44, 

84). In the apatite structure, the channel site is defined by triads of Ca ions. The Ca ions are 

bonded not only to oxygen (of the phosphate groups), but also to hydroxyls that make them 

distinguishable (52). However, in the vicinity of the medullary cavity, the 1747 cm
-1

 band 

appears very intense and may have contributions from sources other than Ca ions. According to 

the literature, the total lipid content of bone is less than 3% (100), but content is high in 

arteries(74) or other tissues (101). After comparison of the spectra in different planes and 

different sites, we infer that this band can be attributed to the C=O stretching of lipids, 

cholesterol esters, triglycerides (74) from the arteries. 

In polarized Raman experiments, ν1 PO4
3-

 stretching vibration is the strongest parallel to 

the axis of the fiber (22, 102) and exhibits orientation effect. But in infrared spectrum, only those 

modes accompanying dipole moment changes during vibration are active, hence ν3 PO4
3-

 

stretching vibration has the strongest signal. This broad band shows different sub-bands 

according to orientations and sites of bone. Although compositionally and structurally similar to 

synthetic calcium hydroxyapatite Ca10(OH)2(PO4)6, human bone mineral is composed of a poorly 

crystallized apatite which is calcium (Ca)-deficient and contains hydrogen phosphate (HPO4
2-

), 

carbonate (CO3
2-

), and other ions. The hydroxyapatite crystal in bone has a hexagonal structure 

with space group P63/m; however, many vacancies and substitutes exist in the structure that 

cause distortions. Considerations of site group symmetry and factor group symmetry would 
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result in six phosphate bands to be active in the ν3 domain of stoichiometric hydroxyapatite 

(103). Additionally, due to the vacancies and substitutes, C. Rey found more sub-bands based on 

the deconvoluted spectra in this domain (88). Boskey’s group (27, 28, 86) assigned 11 or 12 

peaks in the ν1ν3 domain based on second-derivative of the spectra. Their work also presented a 

―crystallinity/maturity index‖ as the ratio of 1020/1030cm
-1 

and the more crystalline/mature, the 

more hydroxyapatite-like stoichiometry, the bigger the crystalline size, the less the ion 

substitution by ions such as CO3
2- 

(28, 88). Magne et al. followed these assignments (based on 

Fourier Self-Deconvolution treatment of spectra) in studying dentin and confirmed that the two 

sub-bands at around 1030cm
-1

 and 1090cm
-1

 can be attributed to ν3 PO4 
3-

 in stoichiometric 

apatites whereas other sub-bands were all from ν3PO4 
3-

 in poor crystalline or from HPO4 
2-

, 

except ν1PO4 
3-

 (82, 87). Magne et al. also agreed that when the apatite gets increasingly mature, 

probably through the loss of HPO4 
2-

 and vacancies, the stoichiometric apatite would tend to 

increase. But the evolution of carbonate ions is controversial in these studies. Farlay et al. 

questioned the denotation of ―crystallinity/ maturity index‖ and suggested that it should be only 

―maturity index‖ because an increase in 1030/1020 ratio is not necessarily related to an increase 

of crystal size in human bone (25). Additionally, Farlay et al. suggested using 1030/1100 cm
-1

 

ratio instead as the ―maturity index‖ and the trend of which is in accordance with that of 

1030/1020cm
-1

 ratio by peak curve-fitting.  

The data presented here thus indicates that based on the ratio of 1023/1038cm
-1

 bands, 

human bone shows more stoichiometric characteristics in the longitudinal surface. As shown in 

Figure 2.3a, intrafibrillar mineral is positioned in the hole-zone and the shape of the mineral is 

regulated by the collagen around it. The surface of the longitudinal section being launched by 

incident infrared beam contains the interface between the mineral and the three chains of 
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collagen, while the surface of the transverse section contains mainly the interface between the 

mineral and the collagen telopeptide. On the mineral surface, there is a hydrated layer containing 

loosely bound ions which are easily exchangeable with charged groups of proteins present in 

collagen and non-collagenous protein. The collagen molecules are mainly composed of 

uncharged amino acids including glycine, proline, alanine, hydroxyproline, etc. which account 

for about 68% of the total collagen composition (104). The charged amino acids such as glutamic 

and aspartic acid, lysine, arginine, hydroxylysine and histidine may form ion bindings with 

mineral ions (105). On the other hand, collagen molecules have a partial positive charge at the N-

telopeptide and a partial negative charge at the C-telopeptide. An interface formed from the 

interactions of these telopeptides and HAP has been found to significantly influence the load-

deformation behavior of collagen (8, 10). Additionally, it was found that the positive net charge 

close to the C-telopeptide of the collagen molecules is the most favorable for interaction with 

negative charges and promotes the infiltration of the fibrils with amorphous calcium phosphate 

to induce mineral nucleation and organization (106). Therefore, we suggest that the strong 

interaction between exchangeable ions-contained-mineral surface and the charged collagen 

telopeptides leads to higher non-stoichiometry in the transverse surface rather than in the 

longitudinal surface.  

Hence in our opinion, by scrutinizing the assignments of the ν1ν3 PO4 
3-

 contour 

suggested by Paschalis and Magne (27, 28, 82, 87), the positions of the bands have some 

differences because for different samples the mineral structures may vary to a certain degree. 

Therefore based on second-derivative treatment of the raw spectra, we come up with 12 sub-

bands by peak curve-fitting. The ratio of 1023/1038cm
-1

 bands in the longitudinal section is 

much larger than that in the transverse section. At around 1090 cm
-1

 the sub-band area in the 
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longitudinal section is larger than that in the transverse section. Therefore, the bone in the 

longitudinal section appears more stoichiometric. 

 

2.4. Conclusion 

In the present study, PA-FTIR experiments were performed on undisturbed human 

cortical bone. Specifically, the directionality of molecular interactions is probed by testing the 

samples in longitudinal and transverse modes. The spectra obtained demonstrate that this 

technique has similar results as compared to traditionally used transmission mode, and it is more 

sensitive to amide amide III and ν2 carbonate bands. PA-FTIR spectra of bone shows a C=O 

band at 1747 cm
-1

 in undisturbed human bone that can result from C=O stretching of lipids, 

cholesterol esters, and triglycerides from the arteries. The comparison of the spectra in the 

transverse and longitudinal sections indicates that the mineral in the longitudinal surface is more 

stoichiometric. This may result from reduced interaction between exchangeable ions contained 

within mineral surface and collagen molecules than that between mineral surface and collagen 

termini on the transverse surface. In the vicinity of the medullary cavity, bone also has more 

organic matrix, and the mineral is more stoichiometric as compared to that in the middle or near 

periosteum. The depth profiling results of PA-FTIR demonstrate that the presence of hydroxyl 

group in FTIR may relate to the water content of bone, and the organic matrix and mineral 

structure are both affected by surface cutting. These studies describe the spectroscopic evidence 

of role of mineral protein interactions on mineral structure and stoichiometry.  
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CHAPTER 3.  MICROSTRUCTURAL AND INFRARED SPECTROSCOPIC STUDIES 

OF HUMAN CORTICAL BONE WITH OSTEOGENESIS IMPERFECTA 

This chapter presents microstructural (SEM images), FTIR spectral, and XRD studies of 

normal and osteogenesis imperfeta (OI) human cortical bones. 

 

3.1.  Introduction  

Osteogenesis imperfecta (OI) is an inheritable disease characterized by the fragility of 

bones and other tissues rich in the type I collagen. About 90% of OI cases result from a causative 

variant in one of the two structural genes (COL1A1 or COL1A2) for the type I procollagens. OI 

provides an interesting platform for investigating how alterations of collagen at the molecular 

level cause changes in the structure of bone. Severity of the disease varies ranging from very 

mild forms without fractures to intrauterine fractures and perinatal lethality. This disease is 

associated with all tissues containing type I collagen and also manifests itself to include 

dentinogenesis imperfecta, blue sclera, hyperlaxicity of ligaments and tendons, hearing 

impairment and the presence of wormian bones on skull radiographs (1). Usually, the collagen 

from OI bone has reduced tensile strength; it breaks more easily than normal bone when 

deformed because fatigue damage accumulates much faster on repetitive loading. It was found 

that 90% or more of probands with OI have a mutation in one of the two structural genes for type 

I procollagens (2), with the remaining 10% due to causative recessive variants in the 8 genes 

known so far, or in other currently unknown genes (3). The two structural genes, COL1A1 and 

COL1A2, which encode the proα1(I) and proα2(I) chains of type I procollagen, have 1277 (776 

in COL1A1, 501 in COL1A2) distinct mutations in the event of osteogenesis imperfecta (R 

Dalgleish: Osteogenesis Imperfecta Variant Database, http://oi.gene.le.ac.uk, accessed 7 July, 

http://oi.gene.le.ac.uk/
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2014) (4).  These mutations range in complexity from simple deletions, insertions, and single 

base substitutions that convert a codon for glycine to a codon for a bulkier amino acid preventing 

proper folding of the triple helix of collagen. Among the 1277 mutations found, over 85% are 

substitutions. These mutations may affect the primary structure of a procollagen by preventing 

the zipper-like folding of the triple helix and causing degradation of normal and abnormal proα 

chains through procollagen suicide, or producing a kink in the triple helix and causing assembly 

of abnormally branched or dendritic collagen fibrils (5).  

Classically, four types of OI were first described by Sillence et al. in 1979 based on 

clinical features of the severity of the skeletal phenotype: type I (mild OI with bone fragility and 

blue sclerae), type II (perinatal lethal), type III (progressive deforming), and type IV (normal 

sclerae and mild deformity) (6). These four types are entirely designated for mutations in 

COL1A1 or COL1A2, causing autosomal dominant OI (7, 8). Because of specific 

clinical/radiological and/or histological features and the discovery of rare recessive genetic 

causes of OI, this classification was expanded into 11 (7). Among all of the OI phenotypes, OI 

type I is the mildest form. Patients usually have normal or slightly short stature. They have 

slender shafts of tubular bones with thin cortex and poorly trabeculated spingiosa as well as 

vertebral compression fractures (3). In the vast majority of instances, this classic non-deforming 

OI results from mutations in one COL1A1 allele (frameshift, nonsense and splice-site alteration) 

that cause mRNA instability and haploinsufficiency. In a small number of individuals with OI 

type I, substitutions for glycine were found by small amino acids (cysteine, alanine and serine) 

near the amino terminal ends of the triple-helical domains of either COL1A1 or COL1A2 (9).  

Recently, Forlino et al. proposed that type I OI should be limited to cases with type I collagen 
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haploinsufficiency and the occasional individual with a collagen mutation and a very mild 

phenotype should be designated type IV OI (7).  

Many studies have attempted to find a relation between phenotype and genotypes with 

phenotypic severity (10-13) . As a general rule, the phenotypic severity depends on the affected 

alpha chain, the position of the mutation, the substituting amino acid, or the combination of these 

three variables. For example, OI severity increases with an amino to carboxyl terminal 

orientation and substitution by large and charged amino acids (10-12). When the substituting 

amino acid in the alpha 1 chain is charged or branched and affects a glycine at the amino acid 

position that is C-terminal of position 200, these substitutions are more likely to have a lethal 

outcome. No such relationship was found for the alpha 2 chain (14). Researchers have also 

conducted some related modeling work to investigate this genotype-phenotype relationship. For 

example, seven types of single point glycine mutations are investigated, and a reduction of the 

mechanical stiffness of individual tropocollagen molecules is observed (15). It is also shown that 

the mutations that lead to the most severe OI phenotype correlate with the strongest effects, 

leading to weakened intermolecular adhesion, increased intermolecular spacing, reduced 

stiffness, as well as reduced failure strength of collagen fibrils (16). A more recent work 

demonstrates that the free energy changes as a function of OI point mutations in model collagen 

molecules which agrees with the trend in the severity of OI from statistical analysis in collagen 

Type I (17). 

In other studies, researchers have conducted various experiments to examine the 

influences of collagen defects on different constituents of bone, different structural 

characteristics of bone, and cell activities as well. The findings evaluate the mechanisms of OI 
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disease. Bone samples are usually from OI patients or OI mouse models. As a direct effect from 

the mutations in the procollagen, it is found that the amount of collagen from OI bone is less than 

that from age-matched normal controls (18), collagen aggregation is abnormal (19), stabilizing 

intermolecular cross-links are reduced (20), and the diameter of type I collagen fibrils in OI bone 

is larger (21) or smaller (22) as compared with normal bone, and the distribution of D-periodic 

spacing values was distinctive between WT and Brtl/+ mouse phenotypes (23, 24). As an indirect 

effect from the mutations in the procollagens, other organic matrix proteins might have an 

abnormal expression pattern (25-27). Osteonectin is found to be reduced in the bone of all OI 

patients, with the lowest levels from severely affected type III OI patients (18, 28). The reduction 

of three proteoglycans (a large chondroitin sulfate proteoglycan, biglycan, and decorin) are also 

observed from OI bone (18). In another work, an elevated amount of bone sialoprotein and 

similar decorin level are observed in the bones of OI patients as compared with normal controls 

(28). Further, higher steady-state levels of fibronectin, thrombospondin, and matrix hyaluronan 

are observed from bone cells produced by OI patients compared with age-matched controls, 

exhibiting deficient osteoblastic matrix synthesis (18, 25). Mineral phase from OI models are 

also found with defects including higher average mineralization density (29-32), smaller, less 

well aligned, and highly packed mineral crystals with decreased crystallinity (33-37). In addition, 

higher mineral/matrix ratio and lower carbonate: mineral ratio are usually seen in the mouse 

model of osteogenesis imperfect (34, 38, 39). Lower Ca/P ratio is also seen in OI human patients 

(40). There is a contradiction about the heterogeneity of OI bone mineralization in literature: 

increased heterogeneity in high bone mineralization density (BMD) OI (41) and reduced 

heterogeneity in OI-I patients  (32). Moreover, other structural characteristics are reported with 

defects due to the procollagen mutations, such as a decrease in the stabilizing enzymatic cross-
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links  (42), thinner and more disrupted lamellae (1, 43), lower bone mass, and decreased size and 

amounts of cortical and cancellous bone (32, 44) are seen in OI models. Increased bone turnover 

is also observed in children and mice with OI (44-46), whereas reduced bone turnover is seen in 

some OI (type I, and IV) adults and children (47, 48). Immature woven bone is also seen in most 

clinically, severely affected patients (43). Further, cell activities are influenced by the defective 

procollagen as an increase in the number of vascular channels (1, 43) and increased osteoclasts 

and osteocytes are seen in OI bone (49). Meanwhile, deposition of new bone at the single 

osteoblast level is reduced, and is not compensated by the increased osteoblast cell number (32, 

44, 50). Synchrotron radiation-based computed tomography shows that oim bone has more 

numerous and more branched canals (p<0.001) and more osteocyte lacunae per unit volume 

compared to WT (p<0.001), although total cortical porosity is comparable between oim and WT 

bone (51). A similar technique reveals drastically increased cortical porosity, canal diameter, and 

connectivity of OI bone as compared to pediatric controls (52). The contradictory findings 

discussed above such as diameter of collagen fibrils, amount of some proteoglycans, and 

heterogeneity of mineralization are due to large variations of OI phenotypes. 

With these findings, the mechanisms of OI disease have been explored. It is suggested 

that the increased remodeling in OI (increased number of osteoclast and osteocyte) might be due 

to increased microdamage in the bone matrix (44), and the occurrence of the microdamage might 

be caused by higher mineralization (53). The higher mineralization density is created by 

increased nucleation centers in OI bone matrix (32). Therefore, Roschger et al. attributes the OI 

phenotype to a failure in the osteoblast differentiation pathway and concomitant synthesis of 

noncollagenous matrix protein which disturbs bone matrix stoichiometry, and this failure causes 

similar bone mineralization conditions in different OI types (32). In other studies, it is also 
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suggested that the low ultimate strength observed in oim/oim bone despite its high mineralization 

content is because the defective quality of mineral present in oim/oim bone might prohibit 

normal fusion of crystals into an end-to-end fusion of contiguous structure (42). In addition, the 

structural changes in the mineral also result from abnormal collagen fibril scaffold for mineral 

deposition (42). 

In nature, the most common biominerals are calcium carbonates and calcium phosphates.  

Their extraordinary ability to accept substitutions and vacancies made the latter occur as a 

crystalline apatite structure in vertebrates (54). This ability imparts its adaptability to the 

biological function of different tissues. For example, bone crystals are found to contain 

significant and varying amounts of CO3
2- 

and HPO4
2-

 ions. The suggested formula for bone 

mineral is (55): 

 

In literature, four items have been usually selected as standards to describe the 

composition and mineral crystal of OI bone: (1) mineral/matrix ratio (calculated from the 

integrated areas of phosphate (916-1180 cm-1) to amide I (1592–1712 cm
-1

)), (2) collagen cross-

linking network maturity (XLR, the peak intensity ratio of amide I subbands at 1660 and 

1690cm
-1

), (3) carbonate/phosphate ratio (calculated as the integrated area of the ν2 carbonate 

peak (840–892 cm
-1

) to that of the phosphate), and (4) crystallinity (XST, calculated as the 

phosphate subband 1030/1020 cm
-1

 peak intensity ratio 1030/1020cm
-1

). These studies on human 

beings with osteogenesis imperfecta include that: (1) significantly increased mineral/matrix ratio 

in both cortical and trabecular bone of two high BMD OI patients is observed as compared with 

normal or classical OI bone (41). In this work, increased collagen maturity in trabecular bone is 
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also seen and the heterogeneity of both mineral and crystallinity distribution is increased in the 

two patients relative to both classic OI and the controls (41).  (2) FTIR is conducted on different 

clinical types (I, IB, and IVA) of OI patients; however, there is no conclusion drawn from FTIR 

spectra (40). FTIR studies of OI mouse models include: (1) Fro/fro and oim/oim genotypes 

exhibit abnormal collagen crosslinking as determined by FTIRI (39); (2) Higher mineral/matrix 

ratio and lower carbonate/phosphate ratio for oim/oim as compared with normal controls are 

observed (34, 38, 42, 56); (3) In the oim/oim mouse model, the bisphosphonate treatment results 

in increased metaphyseal bone mineralization, but does not improve mineral maturity (57).  In 

addition to the four items mentioned above, acid phosphate content HPO4
2-

 (1128/1096 cm
-1

) has 

also been utilized to estimate the amount of acid phosphate substitution in the mineral lattice in 

recent publications and increased acid phosphate contest was noted in Brtl/+teeth (58, 59). 

Almost all of these studies focus on these specific bands without considering the wavenumber 

beyond 2000 cm
-1

 or below 800 cm
-1

. In the present study, we attempt to inspect the FTIR 

spectra carefully throughout the 4000-400 cm
-1

 range.  

In addition, since bone is an orthotropic material, orientational difference in 

stoichiometry of hydroxyapatite was investigated using FTIR in our previous study (60). This 

orientational difference was found to be influenced by the interactions between the collagen 

molecules and mineral. In the present study, the stoichiometry of hydroxyapatite from both 

transverse and longitudinal planes is also examined using FTIR. XRD and EDS would help to 

understand the mineral phase of the OI and healthy bone samples in the transverse and 

longitudinal planes. We found that the OI bone shows similar viscoelastic response as the normal 

bone in Chapter 5 (61). In this work, the ultrastructure, molecular differences, and mineral 
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crystal structure as well as Ca/P ratio were studied with the techniques of FE-SEM, FTIR, XRD 

and EDS. 

 

3.2.  Methods and Materials 

3.2.1. Materials 

Human normal cortical bone (femur, no apparent metabolic bone disease record, 27 years 

old, female) and OI cortical bone (tibia, no apparent metabolic bone disease record, 22 years old, 

female with pregnancy experience) were both obtained from National Disease Research 

Interchange, PA, and were stored in a freezer at -70˚C. The OI type is putative type I, the mildest 

type, since the person had a height of 67 inches and weight of 180lb. The microstructure and 

spectroscopic studies of the normal cortical bone have been reported in a published work (60). 

One 20-mm-thick transverse section was cut from the mid-diaphysis of the cortical bone with a 

diamond saw. Marrow and flesh were removed by scraping with a ceramic knife and then the 

bone was washed with deionized (DI) water at room temperature for approximately 10min to 

avoid deterioration of bone. Then, it was further trimmed down using a low-speed diamond-

wafering blade (Buehler, Isomet, Lake Bluff, IL) to obtain specimens with thickness of about 1 

mm from both transverse and longitudinal planes (Figure 3.1). These specimens were ready for 

photoacoustic-FTIR (PA-FTIR) and X-ray diffraction (XRD) characterizations. 
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Figure 3.1. Schematic representation of bone showing from where the samples were cut; 

transverse section and longitudinal section are both from the anterior area of OI bone specimen. 

 

3.2.2. Experiments 

3.2.2.1.  Scanning electron microscopy  

Microstructure of the bone specimens was examined using a JEOL JSM-7600F analytical 

high resolution field-emission scanning electron microscope. Sample preparation for the 

scanning electron microscope (SEM) imaging involved fixing in 2.5% Glutaradehyde (Tousimis) 

overnight followed by rinsing twice with sodium phosphate buffer (0.1M PH 7.35, Tousimis). 

These samples were further fixed in 1% Osmium-tetroxide (Electron Microscopy Sciences) for 2 

hours. Details of the sample preparation for imaging are reported earlier (60).  

3.2.2.2.  FTIR  

FTIR spectra were obtained with a Thermo Electron, Nexus 870 spectrometer which is 

equipped with MTEC Model 300 photoacoustic (PA) accessory. Before collecting data for each 

sample, the PA chamber was purged with dry helium for 15 minutes. All spectra were obtained 

in the range of 4000-400 cm
-1

, with a spectral resolution of 4 cm
-1

. GRAMS/32 software was 

used for spectra analysis. The center positions for each sub-band in the curve-fitting were 
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determined by second-derivative analysis. The shapes of the underlying bands were chosen by 

Gaussian algorithm.   

3.2.2.3.  XRD method 

XRD characterization was performed using X-ray diffractometer (Philips Analytical 

X’pert MPD, Almelo, Netherlands) with a secondary monochromator and Cu-tube by CuKα 

radiation wavelength of 1.5406Å. XRD was conducted at a scan rate of 0.05°/s with the scan 

range of 2θ = 20-60°. Samples for XRD characterization are transverse and longitudinal sections 

for healthy and OI bone.  The widths of the 002 profiles from all the samples were measured to 

obtain information on the size and/or internal perfection of the crystals along their c-axis. 

Assuming the changes in crystallinity are due to size rather than strain effects, the crystal size of 

bone mineral can be obtained by using Scherrer equation, D = λ/βcosθ, where D is the mean 

crystallite size, λ is the X-ray wavelength, θ is the Bragg angle, and β is the full width at half 

maximum (FWHM) of 002 profile expressed in radians (36).  

 

3.3.  Results  

3.3.1. Microstructure of OI human cortical bone 

It has been shown that healthy bone has a comparatively homogenous structure with well 

attached mineralized fibrils (62). In contrast, the structure of OI bone is quite different. Figure 

3.2 (a-j) shows the SEM images of the surfaces of OI bone specimen fractured in liquid N2. OI 

bone surface shows loosely bound fibers and particles (Figure 3.2a and b, see arrows), indicating 

a weaker interaction between the constituents of OI bone than those in healthy bone. Figures 3.2a 

and 2b also show some osteons with good lamellae shapes; however, some osteons are irregular 

with big Haversian canal channels (Figure 3.2c and d, see arrows) which can arise from 
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abnormal remodeling processes. These significant porous structures exacerbate the fragility of OI 

bone. In addition, OI bone has abnormal collagen fiber areas within crevices (Figure 3.2e and f). 

No banding pattern was observed on these abnormal collagen fibers using a low angle 

backscattered electron (LABE) detector. In contrast, a regular banding pattern was detected by 

the LABE detector on the normal areas of OI bone specimen (Figure 3.2h). However, the 

periodicity for the OI samples was measured to be about 62.0 nm on average which is smaller 

than healthy bone periodicity of 67.0 nm. Traub et al. compared the ultrastructure of healthy and 

different types of OI bones and found that the OI type I bone has a similar texture to healthy 

cortical bone, which has a relatively homogenous coherent appearance, while type II, III and IV 

bones have abnormal deposition of mineral regions and loose fibers (62). Our OI bone specimen 

also shows the abnormal deposition of the mineral region with the size of about 485 µm ×629µm 

as a separate cluster (Figure 3.2i). The image at higher magnification (Figure 3.2j) reveals that 

this area is over mineralized with globules of several microns. 



 

100 

 

  

Figure 3.2. (a-j) SEM micrographs of OI bone specimens. 
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3.3.2. Comparison of PA-FTIR Spectra of Normal and OI bones 

Infrared microscopy and Fourier transform infrared (FTIR) spectroscopy have been 

utilized to investigate healthy and diseased bones (63). These spectroscopic techniques can 

reveal molecular information of materials regarding both composition and conformation. Due to 

the genetic mutants of procollagen molecules, an abnormal molecular structure of protein in OI 

is expected. Figure 3.3 depicts PA-FTIR spectra for healthy and OI solid bone samples from the 

transverse and longitudinal sections in the energy range of 4000–400 cm
-1

. The spectra were 

normalized with respect to the O−H band (3322 cm
-1

). The assignments of the bands are shown 

in Table 3.1. 

 

Figure 3.3. PA-FTIR spectra of human OI cortical bone and healthy cortical bone (longitudinal 

and transverse sections, respectively) in the 4000-400 cm
-1

 region, velocity of mirror: 0.158 

cm/s. 

 

 

 



 

102 

 

Table 3.1. Band assignments of PA-FTIR spectra from OI bone. 

Wavenumber 

 (cm
-1

) 

Transverse 

Wavenumber 

(cm
-1

) 

Longi. 

Band Assignment Ref. 

3588 3588 Structural OH (64) 

3322 3322 
OH stretching vibration from water and combination of 

Amide A with N-H stretching 
(65) 

3072 3074 
Amide B Fermi resonance band of the first overtone of 

the Amide II band powered by N-H stretching vibration 
(66) 

2967 2965 CH3 asymmetric stretch: mainly lipids (67) 

2925 2925 
CH2 asymmetric stretch: mainly lipids, with the little 

contribution from proteins, carbohydrates, nucleic acids 
(67) 

2856 2856 
CH2 symmetric stretch: mainly lipids, with the little 

contribution from proteins, carbohydrates, nucleic acids 
(67) 

2074, 1984 2076, 1983 OH stretching vibrations from P-OH 
(68-

70) 

1746 1747 C=O stretch: lipids, cholesterol esters, triglycerides (71) 

~1652 ~1652 Amide I (protein C=O stretch) (71) 

1551-1505 1550-1506 Amide II (Protein N-H bend, C-N stretch) 
(71) 

 

1455,1414 1457,1413 CH3 and carbonate ν3 vibration (67) 

1342 1342 CH2 wagging (65) 

~1241 ~1241 Amide 3(C-N stretch, N-H bend, C-C stretch) (65) 

1180-927 1180-927 ν 3
 
ν 1PO4

3-
 (65) 

875 875 ν 2
 
CO3

2-
 (65) 

640-710 640-710 C-S stretching vibration (72) 

607,573 608,570 ν 4
 
PO4

3-
 (65) 
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Significant differences between healthy and OI bone specimens can be observed in 

Figure 3.3. For the organic component, C-H stretching bands around 2854 cm
-1

 and 2926 cm
-1

 of 

OI bone exhibit much higher and sharper peaks than those of healthy bone. The appearance of 

these bands are from organic components such as lipids, proteins, carbohydrates, and nucleic 

acids (67). Likewise, C=O stretching band at 1747cm
-1

 of OI bone also has much higher intensity 

than that of healthy bone. The C=O stretching band is attributed to lipids, cholesterol esters, and 

triglycerides (71). These intensity differences indicate that this OI bone specimen contains 

relatively more non-collagenous organic components (as compared to collagen) than the healthy 

bone specimen, whereas the band positions remain the same, which suggests that their 

compositions are not noticeably abnormal. In addition, a new prominent broad band appears at 

around 640-710 cm
-1

 in OI bone spectra, which is probably attributed to C-S stretching vibration 

(72). In some cases of type I OI, glycine can be replaced by small amino acids, such as alanine, 

serine, and cysteine, near the amino terminal ends of the triple-helical domains of either 

COL1A1 or COL1A2 (9). The appearance of a C-S vibration band indicates that the collagen 

molecules or other organics in the OI tibia may contain more cysteine. Since collagen molecules 

occupy 90% of all organic components in bone, the relatively high intensity of this new band is 

likely from the type I collagen molecules. Therefore, the structure of collagen molecules may 

possess more cysteine replacement for glycine. However, another possibility cannot be ruled out 

that relatively higher concentration of osteonectin, a cysteine-rich phosphorylated glycoprotein, 

is present in the OI tibia.  

The amide I, II, and III bands are major bands of collagen molecules. As seen from 

Figure 3.4, Amide I (protein C=O stretch, at around 1652 cm
-1

) bands of the two sections from 

healthy bone are similar; however, they are different from those of OI bone. Although 
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overlapped with OH bending vibration, the amide I band profiles of OI bone are still different, 

exhibiting significant altered collagen structures. The bands of amide II (Protein N−H bend, C−N 

stretch) at around1546-1506 cm
-1

, CH3 and carbonate ν3 vibrations at around 1457and 1413 cm
-

1
, respectively, are not prominent; therefore, they do not show apparent difference between 

healthy and OI bone specimens.  In contrast, the amide III (C-N stretch, N-H bend, C-C stretch) 

band of healthy bone is apparently different from that of OI bone: a small band at 1275 cm
-1

 

arises in the OI bone spectra; the peak of amide III in the OI spectra is at 1241 cm
-1

, 5 cm
-1

 

upshifting from that peak in the healthy bone spectra; a band at around 1200 cm
-1

 in the healthy 

bone spectra almost disappears in the OI bone spectra. The band of amide III provides both 

composition and secondary structure information of proteins. Therefore, it is too complex to 

analyze, but still reflects the significant alteration of the organic component of OI bone from 

healthy one. 

 

Figure 3.4. PA-FTIR spectra of human OI cortical bone and healthy cortical bone (longitudinal 

and transverse sections, respectively) in the 2400-1180 cm
-1

 region. 
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For the mineral component part, the bands at 3073 cm
-1

 and 3628 cm
-1

 from the OI 

second-derivative spectral curve (Figure 3.5) are assigned to OH asymmetric stretching mode 

(ν3), and symmetric stretching mode (ν1) for water associated with HAP (64). The appearances 

of these new bands in the OI bone spectra implies that the water interacts more closely with HAP 

in OI bone specimen. The band at 3588 cm
-1

 is attributed to the stretching vibration of the 

structural hydroxyl group from HAP (64); however, it shifts to higher energy as compared to that 

band at 3570 cm
-1 

in healthy bone spectra, implying that the molecular structure of OI HAP is 

slightly different from healthy bone. The bands at around 2100 cm
-1

, OH stretching vibrations 

from P−OH (60), are more prominent in OI bone than in healthy bone. Unlike synthetic HAP, 

the HAP present in human bone is calcium (Ca)-deficient and contains specific lattice 

substitutions such as labile and stable CO3
2-

 and HPO4
2-

 species, and  ion vacancies in the apatitic 

crystals as well (73). Since P-OH originates from HPO4
2-

, the stronger intensity of OH stretching 

vibrations from P-OH band of OI bone indicates that OI bone contains more HPO4
2-

 than healthy 

bone. 

 

Figure 3.5. Inverted second-derivative curves in the energy range of 2400-3900 cm
-1

.
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The ν4 PO4
3-

 band at 572-610 cm
-1

 of these two bone specimen appears similar, as shown 

in Figure 3.6. However, the broad profiles of ν3ν1 PO4
3-

 band at 1180-927 cm
-1

 all vary from one 

another due to orientational effect and the difference of bone species as well. Detailed analysis 

using curve fitting is described in a subsequent section. The ν2 out-of-plane bending vibration of 

CO3
2- 

at 873 cm
-1

 almost remains in the same band position and shape. However, the ratio of its 

intensity over ν3ν1 PO4
3-

 band is lower in OI bone than in healthy bone, indicating that CO3
2- 

ions present in the OI mineral are less than those in the healthy mineral. 

 

Figure 3.6. PA-FTIR spectra of human OI cortical bone and healthy cortical bone (longitudinal 

and transverse sections, respectively) in the 1180-420 cm
-1

 region. 

 

3.3.3. Comparison of PA-FTIR spectra of OI bone in transverse and longitudinal planes 

The PA-FTIR spectra of the transverse and longitudinal sections of OI bone are also 

compared. As for the organic part, as seen in Figure 3.3, the C-H stretching vibrations at around 

2855 cm
-1

 and 2926 cm
-1

, and C=O stretching vibration at around 1747 cm
-1

 of the longitudinal 

section are more intense than those of the transverse section. This phenomenon is also seen in 
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healthy bone, probably due to more canals crosscut and exposed on the longitudinal section 

surface (60). As mentioned before, the amide I (protein C=O stretch, at around 1652 cm
-1

) band 

of OI bone differs from healthy bone. Raman spectral mapping of bone osteonal tissues shows 

that amide I bands are more intense in the perpendicular direction to the fiber axis since C=O 

bonds are perpendicular to the collagen backbone, while amide III, ν2 and ν4PO4
3-

 vibrations are 

observed to be less sensitive to orientation effects (74). Unlike Raman spectroscopy, in FTIR 

studies, the amide I band is overlapped by O-H bending band from water. Therefore, the 

orientational difference of the amide I band is not easily seen. However, in OI, the amide I band 

of the longitudinal section differs from that of the transverse section as can be seen in Figure 3.7. 

The bands of amide II (Protein N−H bend, C−N stretch) at around 1546-1506 cm
-1

, and CH3 and 

carbonate ν3 vibrations at around 1457 and 1413cm
-1

, respectively, are all more intense in the 

longitudinal section than in the transverse section. These effects have also been observed in the 

amide III band. 

 

Figure 3.7. Inverted second-derivative curves of OI longitudinal and transverse sections in the 

1720-1590 cm
-1

 region. 
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For the mineral part, the O-H stretching bands from P-OH at around 2000 cm
-1

 from the 

transverse section is stronger than that of the longitudinal section, indicating that the transverse 

section contains more HPO4
2-

 than the longitudinal section. From Figure 3.3, more CO3
2- 

ion 

content and less HPO4
2− 

ion in the longitudinal sections than in the transverse sections are also 

noticed. The broad profile of ν3ν1 PO4
3-

 band at 1180-927cm
-1

 arises from 12 sub-bands (Table 

3.2). Curve fitting in this region is performed based on the second derivative of the curves with 

the normalization depicted in Figure 3.8 (a) and (b).  The ratio of the 1023/1038cm
-1

 bands (often 

used to describe the relative amount of crystal perfection or amount of non-stoichiometric apatite 

in the lattice) (58, 75, 76) in the transverse section is 0.45, while, in the longitudinal section, it is 

0.21. Further, the sub-band area at around 1090cm
-1

 (often used to describe the amount of 

stoichiometric apatite in the lattice) (58, 75, 76) in the longitudinal section is larger than that in 

the transverse section. Therefore, OI bone appears to be more stoichiometric in the longitudinal 

section surface. This phenomenon is the same as in healthy bone (60). 

3.3.4. XRD and EDS results 

Usually a sample of bone tissue contains crystals of very different ages and stages of 

maturation. The ages and the stages of maturation are attributed to the length of time the 

individual crystals remain in the tissue and the remodeling proceeds heterogeneously throughout 

the life (79). In this XRD experiment, a piece of copper filter with a 10mm 1mm window was 

used to focus that size of the beam on the samples. The mineral information acquired by XRD 

reflects an average from that size of bone tissue. XRD is sensitive to the long-range crystalline 

structure of the material (80). 
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Figure 3.8. (a) Curve fitting analysis of the ν1, ν3 phosphate band (1180–927 cm
-1

) of (a) 

Transverse section, and (b) Longitudinal section. 
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Table 3.2. Major components of the ν1, ν3 PO4
3-

 bands (75, 77, 78). 

Position 

Transverse 

Area 

Transverse 

Position 

Longitudinal 

Area 

Longitudinal 
Band assignment 

1160 6 1160 11 HPO4 
2-

  containing apatites 

1120 134 1120 121 
ν3 PO4 

3-
 in Poorly crystalline 

apatites 

1107 14 1108 20 
ν3 PO4 

3-
 in Poorly crystalline 

apatites 

1090 36 1089 51 ν3 PO4 
3-

  in stoichiometric HA 

1075 23 1073 24 
ν3 PO4 

3-
 in Poorly crystalline 

apatites 

1061 62 1060 62 
ν3 PO4 

3-
 in Poorly crystalline 

apatites 

1045 39 1043 31 

HPO4 
2-

  containing apatites and 

type B carbonate-containing 

apatites 

1038 61 1036 63 PO4 
3-

 in stoichiometric HA 

1022 28 1025 13 
Nonstoichiometric apatites 

containing HPO4
2-

 and/or CO3
2-

 

1004 83 1005 97 ν3 PO4 
3-

 in apatitic environment 

1001 3 998 5 ν3 PO4 
3-

 in apatitic environment 

959 26 959 33 ν1 PO4 
3-

 

 

Figure 3.9 shows the X-ray diffraction profiles of healthy and OI bone specimens, with 

their transverse section and longitudinal section, respectively. The profiles show obvious 

intensity peaks of (002), (211), (202), (310), (203), (213), and (004) planes. All the profiles are 

normalized at the strongest peak of (211) reflection. As compared to the well-crystallized HAP 

(81), all X-ray lines of bone specimens are broadened except (002) reflection. The X-ray 
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line broadening is mainly due to smaller crystallite size (<200nm) and lattice strain or 

crystal distortions resulting from atomic substitutions within the crystal lattice . The (211) 

broad profile is overlapped with (112), (300), and (202) reflections (82). The (002) 

reflection is the only one free of any overlapping adjacent lines. This (002) reflection 

reflects the length axis of the bone crystal with minimal strain influence. The average 

crystallite size in the c-axis direction was found to increase with age under 20 years old, and 

reach a constant average domain size above 20 years old. Microstrain has the opposite trend and 

decreases to a constant small average strain value above 20 years old (see the figures in (82)). In 

this study, the healthy bone sample is 27 years old; the OI bone sample is 22 years old. 

Therefore, we can ignore the aging effects and only consider disease as affecting crystal size. 

Scherrer equation has been employed to calculate the crystal size in other bone studies (30, 36, 

83). The present study also uses Scherrer equation, and the crystal sizes along c-axis direction of 

healthy and OI bone specimen are listed in Table 3.3. The crystal sizes along c-axis direction of 

healthy bone in the transverse and longitudinal sections are calculated as 28.35 and 25.82 nm, 

whereas the crystal sizes of OI bone in the transverse and longitudinal sections are 28.42 and 

20.80 nm, respectively. It seems that the direction of specimens affects the results. The crystal 

sizes from the two transverse sections are the greatest among all the specimens, and they are very 

close. The biggest difference is from the two longitudinal sections. These differences are still 

under investigation with orientational effect. Since the c-axis is perpendicular to the transverse 

section plane, the signals from the transverse sections are much stronger than the longitudinal 

section. The (002) plane also shows apparent orientational difference: the transverse section is 

more intense in both healthy and OI bone specimens than the longitudinal section. In addition, 

the experimental error due to the weak signal in the longitudinal section cannot be ignored. 
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Overall, the crystal size along the c-axis direction of OI bone is close to healthy bone, implying 

that OI and healthy bone have almost identical mineral crystals. 

To further investigate the elemental ratios in bone specimens, Energy-dispersive X-ray 

spectroscopy (EDS) in SEM was used to examine Ca/P molar ratio. As seen in Table 3.4, for the 

same kind of samples, the Ca/P molar ratio of healthy and OI bone specimens are similar.  

 

Figure 3.9. X-ray diffractogram of bone specimens: Healthy bone (T-transverse section and L-

longitudinal section) and OI bone specimens. 

 

Table 3.3. Crystal size along c-axis direction of bone mineral (nm). 

Bone sample Transverse section Longitudinal section 

Healthy bone 28.35 25.82 

OI bone 28.42 20.80 
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Table 3.4. Ca/P molar ratio of bone specimens (±STD). 

Bone sample Transverse section Longitudinal section 

Healthy bone 1.53 ± 0.06 1.41 ± 0.09 

OI bone 1.46 ± 0.02 1.42 ± 0.02 

  

3.4. Discussion  

The classic non-deforming OI cases either result from mutations in one COL1A1 allele or 

substitutions for glycine by a small amino acid (cysteine, alanine and serine). As the mutations 

are heterozygous, some of the gene products still should be normal. Even in severe OI, there are 

normal lamellar bone structures composed of normally mineralized fibrils (62). In the present 

study, FE-SEM images show some normal lamellae. Meanwhile, these images also reveal 

significant altered structures of OI bone from healthy bone on all scales, e.g.: OI bone is more 

porous and fibrous; OI bone contains abnormal collagen fibril areas and over mineralized 

deposits; and an  abnormal banding pattern of mineralized fibrils. The changes in bone porosity 

at the tissue level indicate changes in bone metabolism and altered bone mechanical integrity. 

The loosely attached fibrils and condensed mineral areas are the signs of weakened 

intermolecular adhesion and interaction between collagen molecules and mineral phase. The 

abnormal banding pattern of mineralized fibrils demonstrates the influence of the poor collagen 

matrix, which serves as a framework for biomineralization. It seems that the whole bone 

structure as seen in SEM images is significantly altered due to the collagen defects and 

secondary changes caused by the collagen defects.  

PA-FTIR spectra display aberrant structures of collagen molecules and slightly altered 

minerals. According to FTIR analysis of the organic components: (1) The C-H stretching bands 

and C=O stretching bands from the non-collagenous organic components exhibit similar shape 
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and position  in the OI spectra as in the healthy bone spectra, implying that the main 

compositions of the non-collagenous organic components are not noticeably abnormal. However, 

the volume of the non-collagenous organic components is relatively greater because of their 

higher intensity. This phenomenon can result from the porous feature of OI bone which can 

accommodate more non-collagenous proteins (NCPs). In a previous study, the amount of total 

protein synthesized by osteoblasts from patients with mild to moderately severe forms of OI was 

found normal when compared to that of an age-matched control (18). It is generally regarded that 

increased levels of NCPs in OI bone reflect a reduced collagen content, leaving space that is 

passively filled by deposition of some NCPs (28). This viewpoint accords with the present FTIR 

results; (2) The collagen molecules of OI bone have altered structures due to the apparently 

altered amide I and amide III bands; and (3) The appearance of a new band at 705-640 cm
-1

 

implies that more cysteine may be contained in the collagen molecules as substitutions or/and 

higher concentration of osteonectin (a cysteine-rich phosphorylated glycoprotein) is present in 

OI tibia. Osteonectin was found reduced in bones from OI patients as compared with age-

matched normal controls (18, 28). However,  as seen from the figure in (18), the amount of 

collagen from OI type I is about 20% of age-matched normal controls while the amount of 

osteonectin from OI type I is about 60% of age-matched normal controls. Therefore, in 

comparison with collagen, osteonectin is highly increased in OI type I bone. The source of this 

C-S band requires further study through either collagen analysis or NCPs analysis. 

The mineral component shows three different kinds of OH stretching bands between OI 

and healthy bones: (1) The first kind of OH stretching bands shows two new bands at 3703 and 

3628cm
-1

, and their appearance indicates that water interacts more closely with HAP in OI bone 

specimens; (2) The upshifting 12 cm
-1

 of the stretching vibration of the structural hydroxyl group 
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from hydroxyapatite implies that the molecular structure of OI hydroxyapatite is slightly 

different from healthy bone; (3) Around 2000 cm
-1

, bands of OH stretching vibrations from 

P−OH of OI bone are more prominent than in healthy bone, indicating that OI bone may contain 

more HPO4
2-

 

ions. This agrees with a previous study which demonstrates increased acid 

phosphate content in Brtl/+ teeth (59). In contrast to the OH stretching bands, the intensity ratio 

of ν2 CO3
2-

 over ν3ν1 PO4
3-

 band in OI is lower than in healthy bone, indicating less CO3
2-

 ions
 

in OI mineral. This lower CO3
2-

/PO4
3-

 ratio has also been found in several OI bone studies (34, 

38). However, PO4
3-

 and CO3
2- 

bands of OI bone do not display significant differences as 

compared to healthy bone. Therefore, in OI, the mineral component does not have significant 

molecular alterations. Our XRD and EDS results on both healthy and OI bone specimens also 

support that the mineral crystals in OI are not significantly altered. Studies of phosphorus-31 

solid state nuclear magnetic resonance (
31

P-NMR) spectra also suggest that the bulk of the 

phosphorus in both healthy and OI samples is present in the same phase (40). No detectable 

defect of matrix mineralization was found in OI patients by histomorphometric study (44). For 

the type I OI, crystal size is reduced in children only and returns to normal in adolescence (36). 

As mentioned before, the bone samples investigated in the present study are both from post 

adolescence. Therefore, it is reasonable that our samples do not show significant alterations. In 

another study, it is reported that the monovalent ion OH
-
 within the apatite tunnels can be easily 

exchanged at high temperatures without any crystal alteration, whereas the trivalent ion PO4
3-

 

and bivalent ion Ca
2+ 

that constitute the apatite frame can be substituted, but with structure 

reorganization (84). Therefore, in OI, there are alterations of OH
-
 groups, but these alterations do 

not remarkably influence the whole crystal structure. Instead, they change the mineral ion 

environment, making it more attachable to water and elevating the number of HPO4
2-

 

ions in the 
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hydrated layer of the mineral crystal. The improved attachability of OI bone mineral to water and 

the nonstoichiometry of the mineral favor the resorption of bone by osteoclasts.  

31
P-NMR spin-spin relaxation studies (85) show that a substantial fraction of the 

protonated phosphates (HPO4
2-

) are situated on the surfaces of the bone mineral crystals and the 

concentration of unprotonated phosphates (PO4
3−

) within the apatitic lattice increases toward the 

center of the crystal. The studies also demonstrate that the younger, less mature biological 

crystals contain a higher concentration of the surface HPO4
2−

 groups. C. Rey et al. (79) find that 

maturation of bone mineral is accompanied by an increase of CO3
2- 

ion content and a decrease of 

HPO4
−2 

ion content. When bone is more mature, the mineral also becomes more stoichiometric 

(75). Our FTIR spectra exhibit increased CO3
2- 

ion content and reduced HPO4
2− 

ion content in 

healthy bone than in OI bone, implying that healthy bone is more mature than OI bone, which 

also suggests that healthy bone is more stoichiometric. The piece of healthy bone in the present 

study is 5 years older than the OI bone. The difference in maturation between OI and healthy 

bone mineral may originate from both the age difference and the OI disease. In our previous 

paper (60), we discussed that the longitudinal section is more stoichiometric than the transverse 

section. This phenomenon is attributed to the reduced interaction between exchangeable ions 

contained within the mineral surface and collagen molecules in the longitudinal section rather 

than the interaction between the mineral surface and collagen termini in the transverse section. 

Therefore, the nonstoichiometry of OI bone mineral might also be influenced by the interactions 

between the collagen and mineral. 

It is noteworthy that 1020/1030cm
-1

 has long been regarded as the measure of 

―crystallinity/maturity index‖ of bone mineral, and the more crystalline/mature, the more 
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hydroxyapatite-like stoichiometry, the bigger the crystalline size, and the less the ion substitution 

by ions such as CO3
2-

 (76, 86). However, Farlay et al. argued that an increase in 1030/1020 ratio 

is not necessarily related to an increase of crystal size in human bone and therefore this ratio 

should only be maturity index (73). A more recent work agrees with Farley et al.’s point when 

the crystal size is measured by XRD (39). Regardless of crystallinity and maturity, 1030cm
-1

 and 

1020cm
-1

 are assigned to stoichiometric and nonstoichiometric apatite; therefore, in the present 

study, stoichiometry is used as a description of the mineral phase instead of crystallinity or 

maturity. 

Our FTIR spectra also exhibit the trend of more CO3
2- 

ion content and less HPO4
2− 

ion 

content in the longitudinal section of OI bone than in the transverse section, implying that the 

longitudinal section is more stoichiometric for the same reason as previously discussed. This 

conclusion, which concurs with our curve-fitting analysis in the results section, is also in 

accordance with the prior spectral study on healthy bone (60).  Since the crystalline HAP core is 

stoichiometric, the nonstoichiometric ions and vacancies are located on the mineral surface as the 

hydrated layer. The transverse section is more nonstoichiometric, implying that the hydrated 

layer in the transverse plane has a greater volume than it does in the longitudinal plane. This 

schematic nanocrystal of bone mineral is illustrated in Figure 3.10. This structure is similar to 

what Jager et al. suggests based on solid-state NMR studies (87). 
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Figure 3.10. Structure of an HAP nanocrystal. 

 

It appears that collagen type I abnormalities lead to secondary changes in the mineral 

phase of the bone material due to the poor collagen framework and the interactions between 

collagen molecules and mineral surfaces. However, Roschger et al. suggest that the tissue- and 

materials- abnormalities found in OI-I seem to be independent of the collagen mutations because 

no differences of mineralization (measured by quantitative backscattered electron imaging 

(qBEI)) are found between two different OI mutation types (qualitative and quantitative) (32). 

Roschger et al. prefers a failure in the osteoblast differentiation pathway and concomitant 

synthesis of noncollagenous matrix proteins as the cause of OI phenotype (32). Likewise, Jones 

et al. claims that the increased mineral content, which seems to be the hallmark for all types of 

OI, is due to impaired osteoblastic function rather than to the altered structure of the collagen 

matrix, since increased cellularity, increased osteocyte lacunar density and abnormal areas of 

woven bone have been observed in different types of OI (88). Impaired osteoblast differentiation, 

abnormal metabolism and altered secretion of non-collagenous proteins are common features in 
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OI (18). The proliferative capacity and growth rate of OI cells are reduced relatively to normal 

cells (89). Striking abnormalities in the differentiation pathway of bone marrow progenitor cells 

towards osteoblasts have been recently demonstrated in an OI mouse model (90). It is also 

believed that altered osteoblastic differentiation may arise from altered extracellular matrix 

feedback into cellular metabolism, since the pattern of expression and fine structure of the 

proteoglycans (PGs) were consistent with OI-derived osteoblasts, failing to follow a  

developmental differentiation pattern (27). Bone histomorphometry also reveals that osteoblasts 

from affected patients produce only half the amount of collagen matrix; however, the adaptation 

of skeleton to the increasing mechanical needs during growth is improved by increased 

recruitment of remodeling units, yet this improvement cannot compensate for the bone loss (44). 

The increased remodeling process is reflected by elevated osteoclast formation; meanwhile, 

decreased osteoblast function is also seen in OI mice models (91, 92). Besides impaired 

osteoblast and osteoclast functions, increased numbers of osteocytes and multiple osteocytes in 

some lacunae of OI are observed in human bone (49). In bone homeostasis,  osteoblasts sense 

osteocyte apoptosis via gap junctions; and then osteoblasts trigger osteoclast maturation and 

recruitment (93). Therefore, in OI bone, cellular interactions with abnormal matrix and 

compromised osteoblast development influence signaling between osteoblasts and osteoclasts, 

increasing bone remodeling and exacerbating the bone weakness caused by the primary collagen 

change. All in all, secreted mutant collagen from OI bone affects fibril structure, interactions of 

NCPs with matrix, matrix mineralization, osteoblast development, and cell-cell and cell-matrix 

cross-talk (7). 

It has long been debated whether or not collagen or non-collagenous proteins (NCPs) 

initiate intrafibrillar mineralization. In addition, the debate extends to the mechanisms producing 
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intrafibrillar mineralization at the molecular level (94). Many believe that the biomineralization 

process is controlled by bone cells and interactive noncollagenous phosphorylated proteins, and 

is also influenced by collagen (95). Osteoblast cells derived from OI patients are found to have 

reduced levels of collagen, osteonectin, three proteoglycans (a large chondroitin sulfate 

proteoglycan, biglycan, and decorin), and elevated amounts of thrombospondin and fibronectin 

when compared with levels found in age-matched control bone cell cultures (18, 96). In another 

study, osteonectin is found to be reduced in the bone of all OI patients, with the lowest levels 

from severely affected type III OI patients (28). These alterations in NCPs give rise to an 

extracellular matrix with an aberrant stoichiometry (18). In the present study, osteonectin is 

probably the source of the C-S band at around 640-710 cm
-1

 from OI bone. Osteonectin is found 

in highest concentrations in developing bone and thereby regarded as related to mineral 

nucleation and mineral crystal formation with the ability to bind Ca
2+

 ions (97, 98). The relative 

higher amount of osteonectin as compared to collagen (18) might be the cause of the high 

mineralization of OI bone. Except for the probable abnormal amount of osteonectin, the overall 

composition of NCPs in OI do not show remarkable change as compared to healthy bone in IR 

spectra, and the crystal structure and Ca/P ratio as investigated by XRD and EDS do not have 

significant differences between OI and healthy bones. Conversely, collagen molecules are 

significantly altered. Therefore, we also claim that the biomineralization process is more 

controlled by NCPs than collagen.  

It should be noted that there are several limitations in this study: (1) Sample size is 

obviously insufficient to address many important questions. For statistical reasons, more OI 

samples and more controlled samples are required; (2) Collagen analysis or NCPs analysis of the 
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OI bone is required to confirm the source of the C-S band at around 640-710 cm
-1 

on FTIR 

spectra. 

 

3.5.  Conclusion 

With OI disease, the mutations in procollagen molecules cause aberrant collagen 

molecules and secondary changes in mineral, NCPs, and cell activities due to their interactions 

and cross-talks with collagen matrix. In the present study, FE-SEM, PA-FTIR, XRD and EDS 

are utilized to characterize the OI human cortical bone (putative type I) and healthy human 

cortical bone. The study demonstrates that OI bone structure is significantly altered due to 

collagen defects. FE-SEM images show more porous, fibrous features, abnormal collagen fibrils, 

overmineralized deposits, as well as an altered banding pattern of mineralized fibrils of OI bone. 

PA-FTIR spectra demonstrate altered OI collagen molecules with a markedly different amide III 

band and the appearance of a new C-S band which might be caused by a collagen defect 

(cysteine replacement of glycine) or/and an increased amount of osteonectin (a cysteine-rich 

phosphorylated glycoprotein). The slightly altered mineral structure in the OH
-
 group and more 

HPO4
2-

 in OI is also seen in the spectra. However, NCPs in OI do not show significant alteration 

in shape or position in spectra except for their higher intensity. These phenomena indicate that 

the biomineralization process is more controlled by the bone cells and non-collagenous 

phosphorylated proteins as suggested by other studies. However, the biomineralization process is 

also significantly influenced by the collagen, in addition to the interactions between the collagen 

molecules and mineral phase. PA-FTIR spectra also show that OI bone mineral is more 

attachable to water and is more nonstoichiometric than healthy bone, which can result from the 

altered mineral ion environment. The loosely attached fibrils and condensed mineral areas are the 
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results of weakened intermolecular adhesions and poor collagen frameworks. Also, the banding 

pattern of mineralized fibrils is slightly altered in OI because of the altered collagen framework. 

OI bone has the same orientational stoichiometry of hydroxyapatite as healthy cortical bone; that 

is; the longitudinal section is more stoichiometric than the transverse section. This orientational 

stoichiometry results from the interaction between the mineral surface and the different parts of 

collagen molecules as discussed in our previous study (290). The larger volume of the hydrated 

layer in the transverse plane of bone mineral nanocrystal is also suggested. It should be stressed 

that further study involving collagen analysis or NCPs analysis of the OI bone is needed.  
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CHAPTER 4.  NANOMECHANICAL PROPERTIES OF UNDISTURBED HUMAN 

NORMAL AND OSTEOGENESIS IMPERFECTA CORTICAL BONES 

This chapter presents nanomechanical properties of undisturbed healthy and OI human 

cortical bones measured by modulus mapping and in situ FE-SEM nanoindentation. 

 

4.1. Introduction  

Nanoindentation has been widely utilized to examine elastic modulus and hardness of 

bone (1-7). The reported nanoindentation values for human femur vary from 16.58 to 26.6 GPa 

for elastic modulus, and ranging from 234 to 840 MPa for hardness (4, 5, 8-11). The 

nanoindentation depth in these studies is at least 150 nm. Over that last 15 years, modulus 

mapping technique, is utilized to study the surface modulus of materials for small areas with high 

spatial resolution.  Modulus mapping measures the elastic properties of a material surface by 

applying extremely shallow displacements (2 to 3 nm). Detailed descriptions of the principle of 

modulus mapping can be found in the literature (12, 13). This technique has been utilized to 

measure mechanical properties of trabecular bone of osteoporotic rats (14), bone matrix of mice 

(15), trabecular bone of glucocorticoid-treated mice (14-16), bone nodules (17), and human 

trabecular bone extracted from proximal femur (18). Bone is anisotropic and heterogeneous, so 

the local variations in mechanical properties detectable with this technique play an important role 

in controlling the mechanical behavior at macroscopic length scales. Hence, in this work, 

modulus mapping technique is used to examine the surface mechanical property variation of 

human cortical bones in longitudinal and transverse planes. We also attempt to reveal the 

relationship between structure and mechanical properties at the nanometer level.  
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Other than examining surface properties, nanoindentation generally measures the bulk 

properties of material. The structure and mechanical properties of bone vary markedly at 

different sites due to the complex constituents and heterogeneity. In order to investigate 

mechanical properties of bone, typically hundreds of indents are required. Also, the scanning 

process using a traditional triboscope instrument is time consuming. In contrast, in situ filed 

emission-scanning electron microscopy (FE-SEM) nanoindentation provides a new tool to 

investigate the mechanical properties of materials with simultaneous imaging and precise 

positioning of the indenter. A quantitative nanoindentation system integrated into a high-

resolution SEM was developed recently (19) and the real-time observation of the 

nanoindentation test also allows for visualization of certain material deformation behaviors such 

as pileup, sink-in and delamination. The in situ FE-SEM nanoindentation technique has been 

utilized to study the mechanical behavior of several metallic and semiconductive materials (19-

29), and nacre (30) as well.  Here we use SEM nanoindentation to investigate the 

nanomechanical properties of human cortical bones.  

Bone with Osteogenesis imperfecta (OI) disease is characterized by the fragility, 

primarily due to a causative variant in one of the two structural genes (COL1A1 or COL1A2) for 

the type I procollagens. The amount of collagen from OI bone is observed to be less than that 

from age-matched normal controls (31). The distribution of D-periodic spacing values was found 

to be distinctive between Brtl/+ (a kind of OI type) mouse phenotype and normal one (32, 33). In 

addition, smaller, less well aligned, highly packed mineral crystals with decreased crystallinity, 

and higher mineral/matrix ratio are found in OI bone (34-40). The heterogeneity of OI bone 

mineralization in literature show different trends: increased heterogeneity in high bone 

mineralization density (BMD) OI (41) and reduced heterogeneity in OI-I patients (42). However, 
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the details of extrafibrillar mineral of bone and the nanomechanical properties of OI bone are not 

well understood. Here, in order to have a better understanding of the extrafibrillar mineral and 

the arrangements of mineral and collagen in the near-surface area, both modulus mapping and in 

situ FE-SEM nanoindentation techniques have been utilized to observe the nanomechanical 

properties of undisturbed normal and OI bone. 

Mechanical properties of bone are orders of magnitude better than a simple sum of the 

individual components of bone (43) due to the interactions among the organic phase, mineral 

phase, and noncollagenous proteins(44, 45). Research shows that collagen alone fails to bind 

calcium or phosphate ions of mineral. However, the stereochemical configurations and charges 

provided by specific amino acid residues of collagen can bind calcium and phosphate ions and 

likely provide sufficient closeness to induce ion interaction (46). In addition, the interaction 

between collagen and mineral is mediated by noncollagenous acidic proteins which are bound to 

the triple helices of collagen (47). Our group’s modeling work demonstrated that the mechanical 

behavior of collagen is significantly influenced by collagen-mineral interaction as well as 

collagen-water-mineral interactions (45, 48, 49). Nevertheless, the commonly used pretreatment 

on bone samples such as dehydration affects the interactions and mechanical properties of bone 

(50, 51). Furthermore, The indentation moduli of bone specimens were reported to increase from 

11% to 28% after dehydration (6, 50, 52, 53), with additional increase after embedding (53). 

Therefore, in the present work, ―undisturbed‖ bone specimens are used to study their 

nanomechanical properties.  

 



 

138 

 

4.2. Materials and Methods 

4.2.1. Materials 

The normal human femur (no apparent metabolic bone disease record, 27 years old, 

female) and OI human tibia (no apparent metabolic bone disease record, 22 years old, female 

with pregnancy experience) were both obtained from National Disease Research Interchange, PA 

and stored in a freezer at -70˚C. The OI type is putative type I, the mildest type, because the 

person had a height of 67 inches and weight of 180lb. One 20-mm-thick transverse section was 

cut from the mid-diaphysis of the femur with a low-speed diamond saw. Then, it was further cut 

with a low-speed diamond-wafering blade (Buehler, Isomet, Lake Bluff, IL) to obtain specimens 

with thickness of about 1 mm in both transverse and longitudinal directions (Figure 4.1). Marrow 

and flesh were removed by scraping with a ceramic knife and then the bone was washed with 

deionized (DI) water at room temperature in approximately 10 minutes to avoid deterioration of 

bone.  

In order to perform modulus mapping and nanoindentation, the specimens were ground 

with silicon carbide paper (Buehler, 600, 800 and 1200 grit) and polished using a series of 

diamond compound paste (Buehler, 3 µm,1 µm, 0.25 µm) on cloth and finished by polishing 

with 0.02 µm non-crystallizing colloidal silica polishing suspension. After each polishing step, 

the specimens were ultrasonically cleaned in DI water for 30 seconds (the total rinsing time was 

limited about 3.5 minutes to avoid demineralization (54)).  
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Figure 4.1. Schematic of cutting bone. 

 

In order to perform modulus mapping and nanoindentation, the specimens were ground 

with silicon carbide paper (Buehler, 600, 800 and 1200 grit) and polished using a series of 

diamond compound paste (Buehler, 3 µm,1 µm, 0.25 µm) on cloth and finished by polishing 

with 0.02 µm non-crystallizing colloidal silica polishing suspension. After each polishing step, 

the specimens were ultrasonically cleaned in DI water for 30 seconds (the total rinsing time was 

limited about 3.5 minutes to avoid demineralization (54)).  

4.2.2. Methods 

Modulus mapping experiments were conducted on a Hysitron triboscope nanomechanical 

instrument (Minneapolis, MN), equipped with a Nanoscope IIIa controller (Veeco Metrology, 

Santa Barbara, CA) with a Berkovich (three-sided pyramid, 100–200 nm tip radius) diamond 

indenter tip. Modulus maps of the surface of bone specimens were acquired by applying a quasi-

static force of 3 µN with a superimposed l-2 µN sinusoidal force at a frequency of 200 Hz. The 

sinusoidal dynamic force was adjusted while scanning to get AC displacement amplitude of 

approximately 1nm. Each of the images created have a pixel resolution of 256×256, meaning 

65,536 individual modulus values are acquired. Tip shape calibration was performed using a 
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standard fused quartz sample of known elastic modulus. During the performance of experiments, 

dry helium was kept flowing into the experimental chamber (Figure 4.2) to prevent bacteria 

growth as much as possible (55). Although carefully polished, many holes still existed in the 

bone specimens such as canals, lacunae, and canaliculi; the maps with these holes were excluded 

from the results. 

 

Figure 4.2. Modulus mapping instrument 

 

Nanoindentation tests were performed with a Hysitron PI-85 nanomechanical instrument 

with a Berkovich tip made of boron-through-doped diamond (Minneapolis, MN), which was 

installed in a high-resolution Field Emission Scanning Electron Microscope (FE-SEM, mode: 

Jeol JSM-7600F). Detailed descriptions of the principle of this instrument can be found in the 

literature (19). The probe was also calibrated on fused quartz. Lower secondary electron images 

(LEI) were obtained by FE-SEM while nanoindentation was performed. 

The elastic modulus and hardness of bone are determined by using the common method 

developed by Oliver and Pharr (56). The Young’s modulus is calculated using the following 

equation (4.1): 
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where E is the elastic modulus, ν is Poisson’s ratio, s and i refer to sample and indenter tip 

material, respectively. Er is the reduced modulus which can be obtained from indentation curve; 

νs of bone is set to 0.3; Ei and νi are the same quantities for the diamond indenter: Ei = 1141 GPa, 

νi = 0.07. 

In situ FE-SEM nanoindentation was performed with static load control; 50 µN was 

applied as the load for the samples on the transverse section plane (Figure 4.3a). An interlamellar 

cement band is obviously seen in the figure and separates the osteon and interstitial lamellae. 

Thirty indents were performed inside the osteon, and ten indents outside the osteon. For the 

samples on the longitudinal plane (Figure 4.3b), 15 µN, 50 µN, and 100 µN were applied with 

thirty indents for each load. To avoid pile-up effect, indent spacing was set about 0.8 µm. Some 

surface defects were observed (e.g., pitch, cracks, pop-outs) and excluded from the 

nanoindentation.          

    

Figure 4.3. In situ HR-SEM nanoindention were performed on (a) Transverse surface; (b) 

Longitudinal surface. 

 

(a) (b) 

(4.1) 
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4.3. Results 

4.3.1. Modulus mapping  

The representative modulus maps of normal bone for the longitudinal and transverse 

sections are shown in Figure 4.4a and Figure 4.4c, respectively. These two figures display the 

nanomechanical properties from the areas of 2µm×2µm and 5µm×5µm, respectively. The 

corresponding elastic modulus values in the longitudinal section are marked as black lines in 

Figure 4.4b. Figure 4.4d is the square subset of Figure 4.4c. Figure 4.4b shows a periodicity of 

elastic modulus along the marked line. Every peak spans about 140-167 nm on average in Figure 

4.4b. Scale bars in Figure 4.4a and Figure 4.4c display the range of the modulus values in these 

two maps: 10.86-45.37 GPa and 6.2-120.9 GPa, respectively. The scale bars exhibits large 

variation among different areas of bone specimens. The bright areas in these figures correspond 

to the materials with higher modulus values than those dark areas. In Figure 4.4a and Figure 

4.4c, the mineralized collagen fibers can also be clearly seen. In Figure 4.4d, the short white line 

―a‖ passes through 4 mineralized collagen fibers and the diameter of each mineralized collagen 

fiber is measured as about 122.42nm. Bright plates and dots are observed in Figure 4.4c. Since 

they possess greater modulus, they are likely arising from mineral crystals or mineral crystal 

agglomerates. Several bright plates shown in Figure 4.4d are measured and noted as ―b‖, ―c‖, 

and ―d‖. The area noted as ―b‖ contains 6 plates. The white line perpendicular to these plates is 

measured with each periodicity at about 61.98nm. The bright plate noted as ―c‖ has a length of 

93.50nm and a width of 40.00nm, while the ―d‖ plate has a length of 100.23nm and a width of 

26.98nm. It is also clearly seen that the size of other bright plates or dots are similar or smaller to 

―c‖ and ―d‖ plates.  
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Figure 4.4. Modulus map images and corresponding data of normal human bone. (a) Modulus 

map image for the longitudinal section, area: 2µm×2µm; (b) Modulus data of the black line in 

Figure a; (c) Modulus map image for the transverse section, area: 5µm×5µm; (d) The square 

subset in Figure c. 

 

The representative modulus maps of OI bone for the transverse and longitudinal sections 

are shown in Figure 4.5a and Figure 4.5d, respectively. Both figures display the nanomechanical 

properties from 3µm×3µm areas. Scale bars in Figure 4.5a and Figure 4.5d display the range of 

the modulus values in these two maps: 20.5-99.8 GPa and 3.0-199.1 GPa, respectively. The scale 

bars also exhibit great variation among different areas of OI bone specimens. The square subsets 

of Figure 4.5a and Figure 4.5d are shown in Figure 4.5b and Figure 4.5e. In Figure 5b, the white 

line crosses 3 mineralized collagen fibers, and the diameter of each fiber is about 78.75 nm. 

(c) 

(a) 
(b) 

(d) (c) 
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Similar to the normal bone, Figure 4.5c also shows a periodicity of elastic modulus along the 

black line from Figure 4.5a. Each peak spans about 176 nm on average, which corresponds to 

collagen fiber bundles. In Figure 4.5d, many bright dots are distributed and are attributed to bone 

mineral crystals. The magnified square is shown in Figure 4.5e. The bright dot ―a‖ has a length 

of 40.19nm and a width of 28.05nm, while the bright dot ―b‖ has a length of 32.10nm and a 

width of 24.00nm. Plate ―C‖ has a length of 64.19nm and a width of 24.00nm. As compared to 

normal bone shown in Figure 4.4d, it appears that the mineral crystals in OI bone exhibit more 

―dot‖ style instead of ―plate‖ form and the length/width ratio is lower than that of normal bone. 

Figure 4.5f does not show as obvious periodicity as Figure 4.5c or Figure 4.4b since the black 

line in Figure 4.5d goes through observable dark lines (observed in Figure 4.5e), which represent 

pure collagen fibrils or noncollagenous organic matrix areas. As seen in Figure 4.5f, the dots 

exhibit pit-like appearance in ―a‖ and ―b‖ areas and are consistently about 5.1 GPa.  
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Figure 4.5. Modulus map images and corresponding data of OI human bone. (a) Modulus map 

image for the transverse section, area: 3µm×3µm; (b) The square subset in Figure a; (c) Modulus 

data of the black line in Figure a; (d) Modulus map image for the longitudinal section, area: 

3µm×3µm; (e) The square subset in Figure c; (f) Modulus data of the black line in Figure d. 

 

(c) 

(d) (e) 

(a) (b) 
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The elastic moduli data drawn from all modulus maps (data are from 10 black lines from 

each modulus map) are shown in Figure 4.6, and the corresponding statistical results are listed in 

Table 4.1. It is seen that the highest elastic modulus values are in the range of 12.86-22.52 GPa 

(Q1-Q3) for normal bone, which is in agreement with those data of mineralized collagen fibrils 

obtained from other techniques such as nanoindentation or acoustic method (57). The median 

moduli for the longitudinal and transverse sections are 18.69 and 16.79 GPa, respectively. It is 

also observed in Table 4.1 that the minimum elastic modulus is 2.42 GPa, which is quite similar 

to that of pure collagen (totally demineralized bone) observed experimentally (58) and through 

steered molecular dynamics (59, 60). This minimum elastic modulus can be attributed to that 

from near-pure collagen. The highest elastic modulus is observed to be 189.85 GPa, which can 

arise from near-pure mineral because the elastic modulus of hydroxyapatite is from 135 GPa (61) 

to 150 GPa (62-64) and acquired using nanoindentation method. However, values of high elastic 

moduli above 100 GPa are only present in very few points of all maps. 

 

Figure 4.6. Elastic modulus results produced by modulus mapping on the longitudinal and 

transverse sections of both normal and OI bones. Bars show the median with 25th (Q1) and 75th 

(Q3) percentiles. The lines perpendicular to the box are whiskers. Upper limit of whisker = Q3 + 

1.5 (Q3 - Q1); lower limit of whisker = Q1- 1.5 (Q3 - Q1). *outliers of the whisker. (N=35840). 
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Table 4.1 Statistics of elastic moduli from all modulus maps (Figure 4.4 and Figure 4.5)
a
. 

Sample 
Q1 

(GPa) 

Median 

(GPa) 

Q3 

(GPa) 

Whisker 

(GPa) 

Max. 

(GPa) 

Min. 

(GPa) 

Normal 
Longitudinal 15.83 18.69 21.57 7.21-30.19 189.85 2.42 

Transverse 12.86 16.79 22.52 3.10-37.00 169.31 3.10 

OI 
Longitudinal 20.80 27.63 37.78 5.93-63.22 231.65 5.93 

Transverse 18.16 23.68 32.05 2.85-52.85 294.69 2.85 

      a 
N = 35840 for both sections. 

 

From Figure 4.6 and Table 4.1, it is also seen that, as compared to normal bone, OI bone 

exhibits higher median moduli for the longitudinal and transverse sections at 27.63 and 23.68 

GPa, respectively. OI bone also exhibits greater variation of moduli from 18.16 to 37.78GPa 

(Q1-Q3) than normal bone. The minimum modulus for OI bone is 2.85 GPa, while the maximum 

modulus is 294.69 GPa. This maximum modulus of OI bone is much greater than that of normal 

bone. Therefore, the maximum modulus of OI bone is suspected to be from polishing residues. 

However, the elastic modulus of one possible polishing residue silicon carbide is 450 GPa, and 

another possible polishing residue colloidal silica has lower elastic modulus depending on the 

size (65) than bulk silica, which possesses the elastic modulus of 66.3-74.8 GPa. Therefore, the 

observed moduli higher than 200 GPa do not originate from the residues from polishing. In 

addition, after each polishing step, bone specimens were washed using ultrasound. Hence, the 

moduli over 200 GPa are also suggested to be from bone mineral crystals in OI bone. Overall, 

the data points above 200 GPa are very rare.   

4.3.2. In situ HR-SEM nanoindentation 

In order to investigate the nanomechanical properties of bone in the near-surface area, in 

situ FE-SEM nanoindentation has also been performed on normal and OI bone samples in the 
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two directions. The representative load displacement curve is shown in Figure 4.7, from which 

we can see that the loading curve is nonlinear.  

 

Figure 4.7. Representative load-displacement (L~D) curve for bone sample at peak load of 

50µN. 

 

In the transverse plane, in addition to the Haversian canal, bone has other holes like 

lacunae. With SEM imaging, we can effectively avoid indenting those holes. The resulting 

elastic modulus and hardness from the transverse sections of normal and OI bones are shown in 

Table 4.2. Each test was performed horizontally with around 1 µm between neighboring indents. 

Figure 4.8 shows elastic modulus of normal bone from the vicinity of the Haversian canal toward 

the interstitial lamellae. Figure 4.8 contains about 8 periodic modulations of properties, and each 

modulation covers around 5 indents wide (5μm). This is in accordance with the thickness of a 

lamella which is 3-7μm (66). From Figure 4.8, it is interestingly found that the lowest values in 

the osteon are located in the vicinity of the Haversian canal, whereas the highest values are also 

beside the central area and close to the lowest values. Then the values gradually decrease toward 

the periphery of the osteon. Table 4.2 also show that, for normal bone, the elastic modulus and 

hardness of interstitial lamellae are 27.92 and 3.29 GPa, respectively; elastic modulus and 

hardness of osteonal lamellae are 18.5 and 2.86GPa, respectively. The interstitial lamellae have 
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higher median elastic modulus and hardness than osteonal lamellae. The reason is that the 

interstitial lamellae are more mature than the osteonal lamellae. For OI bone, this trend is the 

same: the elastic modulus and hardness of interstitial lamellae are 30.77 and 1.65 GPa, 

respectively; elastic modulus and hardness of osteonal lamellae are 25.18 and 1.39 GPa, 

respectively. The interstitial lamellae also have higher median elastic modulus and hardness than 

osteonal lamellae. We also observe that the OI bone has higher elastic modulus than normal 

bone. This phenomenon can be attributed to the higher mineral/matrix ratio of OI bone (67). 

Nevertheless, regardless of greater elastic moduli, median hardness values of OI bone are lower 

for the transverse sections than the corresponding normal bone. In addition, it is also observed 

that the range of elastic moduli of OI bone is greater than that of normal bone. 

Table 4.2. Elastic moduli and hardness of normal and OI bones for the transverse sections. 

Bone sample 

Elastic moduli(GPa) Hardness(GPa) 

Min Median Max Min Median Max 

Normal 
Osteonal lamellae 6.78 18.35 54.28 0.34 2.86 18.26 

Interstitial lamellae 15.47 27.92 72.38 2.40 3.29 16.90 

OI 
Osteonal lamellae 6.51 25.18 138.99 0.21 1.39 13.46 

Interstitial lamellae 1.13 30.77 123.51 0.04 1.65 9.40 

 

 

Figure 4.8. Elastic modulus values of human bone in the transverse section. 
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Table 4.3 shows maximum, minimum, and median values of elastic modulus and 

hardness of normal and OI bones in the longitudinal section. As seen from the table, for normal 

bone, the variation of mechanical values with the lower load is greater than that with higher load. 

This phenomenon has been observed previously in other bio-nanocomposites such as nacre (68). 

Lower load corresponds to shallow indents reflecting more individual constituent properties 

rather than bulk properties at deeper indents. As compared to elastic moduli of individual 

collagen and hydroxyapatite, which is obtained by the modulus mapping technique, the values 

shown in Table 4.3 are intermediate between the two. At a displacement of around 20 nm at 15 

µN loads, all properties detected are from bulk; however, the fraction of the constituents varies 

greater than that at deeper displacements. For OI bone, the longitudinal section does not have the 

same trend of a greater elastic modulus at lower load, possibly arising from a more 

heterogeneous feature of OI bone which makes elastic moduli of the longitudinal section of OI 

bone more dependent on the indentation site. 

Table 4.3. Elastic moduli and hardness of normal and OI bones for the longitudinal sections. 

Bone Sample 

Elastic modulus (GPa) Hardness (GPa) 

Min Median Max Min Median Max 

Normal 

15µN 10.13 32.87 60.90 0.30 2.14 4.22 

50 µN 8.00 17.57 40.20 0.21 0.88 3.42 

100 µN 8.12 10.86 18.82 0.22 0.36 1.02 

OI 

15µN 2.96 15.86 172.17 0.02 1.47 16.92 

50 µN 2.57 15.87 34.04 0.06 1.07 2.37 

100 µN 11.55 27.92 69.72 0.33 1.36 4.27 
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4.4. Discussion 

At the nanometer scale, bone is composed of mineralized collagen fibrils which consist of 

three tiered triple-helical collagen molecules and mineral particles. They are arranged in a 

staggered pattern as shown in Figure 4.9 and Figure 4.10. The diameter of a collagen molecule is 

approximately 1.23 nm, and the length is about 300 nm (46). The diameter of collagen fibers are 

50-70 nm, and collagen fiber bundles are 150-250 nm (69). The typical size of a bone mineral 

crystal is about 50*25*3 nm (69). This size is determined from TEM imaging experiments (70). 

The size of the bright plates or dots shown in Figure 4.4c are on the same length scale as this 

size. Therefore, it is reasonable to suggest that these bright plates or dots are bone mineral 

crystals or mineral crystal aggregates. Since the displacement in modulus mapping is only 2-3 

nm, the material under the tip is probed within the elastic region. Due to this small scale, the 

properties of pure collagen molecules and mineral crystal are possibly detected with this 

technique. However, according to the modulus maps, very few points have values exceeding 100 

GPa. This indicates that, although there is a large amount of mineral in bone (e.g., in bone, the 

mineral component accounts for nearly 2/3 of the dry weight and about half volume of bone 

matrix (71); 70-75% of the mineral might be extafibrillar (72)), in these two directions pure 

mineral is hardly detected. This phenomenon may arise from the following reasons: (1) 

Intrafibrillar mineral crystal is aligned as shown in Figure 3.9. From both longitudinal and 

transverse surfaces only the edge of mineral crystal appears, which is about 3nm thick and hardly 

detected with the indenter with the radius of hundreds of nanometer; however, since the 

mineralized collagen fibrils are not accurately aligned along the c-axis of bone, some of the 

mineral crystals are still seen. Sasaki et al. (73) proposed a model for the arrangement of 

extrafibrillar mineral as a crust around collagen fibrils based on AFM study. The crust was said 
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to be usually divided into a few pieces by intercalation of collagen microfibrils.  The 

extrafibrillar mineral volume is also found to be at least 60% of the total and cemented together 

by noncollagenous organic matter (73, 74). In addition, bone mineral is nonstoichiometric 

overall, and the mineral crystals are found to contain significant and varying amounts of CO3
2- 

and HPO4
2-

 ions (75). There is a substantial fraction of the protonated phosphates (HPO4
2-

) 

situated on the surfaces of the bone mineral crystals and the concentration of unprotonated 

phosphates (PO4
3−

) within the apatitic lattice increases toward the center of the crystal as shown 

by 
31

P-NMR spin-spin relaxation studies (76). Therefore, because of the significant difference of 

the moduli between collagen fibrils and mineral crystals, the modulus maps can reveal the 

arrangement of near-pure organic matrix (collagen or non-collagenous proteins), mineralized 

collagen fiber bundles which combines collagen fibrils with intrafibrillar mineral, and mineral 

crystals with nonstoichiometric parts. Figure 4.4a, 4c, 5a, and Figure 5d, clearly display these 

arrangements. 

 

Figure 4.9. Schematic illustration of the mineralized collagen fibril (not drawn to scale). Plate-

like mineral crystals are sandwiched between layers of collagen molecules. P, T, L refer to the 

periosteal, transverse and longitudinal planes, respectively, perpendicular to the corresponding 

arrows. Transverse plane is normal to the bone long axis and periosteal plane is parallel to the 

natural outer surface of the bone (adapted from (77)). 
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Figure 4.10. Arrangement of collagen and mineral, black lines represent collagen molecules; 

green squares represent mineral particles (not drawn to scale). 

 

Figure 4.4 and Figure 4.5 display the same trends of normal and OI bones: (1) the great 

variation of modulus, which originates from the different composition and their arrangement of 

bone at different sites; (2) the median modulus of the longitudinal sections are greater than the 

transverse sections. The differences between normal and OI bones include: (1) normal bone 

appears more compact than OI bone since OI bone modulus map consists of black lines 

indicating low moduli as displayed in Figure 4.5d; (2) the diameter of a collagen fiber in normal 

(122.42 nm) is greater than that in OI bone (78.75 nm), but the size of the collagen fiber bundles 

are similar in these two bones (140-167 nm in normal bone and around 176nm in OI bone); (3) 

OI mineral crystals are smaller than normal mineral crystals, and OI mineral crystal is less 

heterogeneous. This conclusion is in accordance with another study which shows reduced 

heterogeneity of bone mineral in OI-I patients (42). In our previous work (Chapter 3), XRD data 

of mineral crystal of normal and OI bones are observed to be not significantly different. 

However, in this work, the plates or dots in modulus maps reflect varying mechanical properties. 

Therefore, the OI bone mineral crystal may contain some mineral with low nanomechanical 
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properties outside of the surface; (4) OI bone has higher median elastic modulus than normal 

bone, probably due to higher mineral/matrix ratio (35, 39, 40) and higher elastic modulus of 

mineral crystal of OI bone as seen in Figure 4.5.   

In the modulus mapping experiments, as mentioned earlier, the median elastic moduli of 

the longitudinal sections are greater than those of the transverse sections for both normal and OI 

bones. However, in the in situ FE-SEM nanoindentation experiments, when applying the same 

load as 50μN, the elastic moduli of the longitudinal sections are smaller than either those of 

osteonal lamellae or interstitial lamellae for normal and OI bones. The latter result is quite 

reasonable since much of the nanoindentation and microindentation studies in literature indicate 

that bone has generally a higher elastic modulus in its longitudinal compared to its transverse 

direction (6, 77-80). As shown in Figure 4.9, in both directions, the indenter encounters the 

mineral crystal layers edge-on, but because the Young’s modulus of unmineralized collagen 

fibrils is 1.43 times greater than that perpendicular to the fibril axes (81), the elastic modulus of 

bone in the longitudinal direction is generally greater than that in the transverse direction, as 

explained in the literature (77). In the modulus mapping experiments, the result is the opposite 

possibly because at the modulus mapping scale which only probes 2-3 nm depth, the 

composition of collagen and mineral as well as their interactions should be taken into account. In 

our previous work (82), we have discussed that the longitudinal section surface contains 

extensive interactions between collagen molecules and mineral surface while the transverse 

section surface contains extensive interactions between collagen termini and mineral surface 

(Figure 3.10). Since collagen molecules are comprised of about 68% uncharged amino acid, and 

collagen termini are both charged groups which possess stronger interactions with exchangeable 

ions contained within mineral surface, the mineral in the longitudinal section surface appears to 
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be more stoichiometric than that in the transverse section surface, as suggested by FTIR spectra. 

Therefore, the elastic modulus of the longitudinal section surface might also be greater than that 

of the transverse section surface. In a previous modeling study, the collagen pulled parallel to the 

mineral (100) surface (periosteal plane) is found to have a higher elastic modulus than that when 

the collagen pulled perpendicular to (001) mineral surface (transverse plane) in the proximity of 

mineral (49). This is different from the results on microindentation on bone (77), indicating that, 

at nanoscale, the interaction between collagen and mineral plays a more important role than at 

larger scales. Another modeling study (83) also reflects this scale issue by suggesting that: the 

nonbonded interactions have a far more important role than hydrogen bonds in the mechanics of 

full-length collagen; however, for short-length collagen models, interchain hydrogen bonds 

dominate the conformation.  

A periodicity of about 5μm in accordance with the width of lamella is seen in Figure3.7. 

This periodic modulation was also found in the literature (84) and was understood to arise from a 

variable fiber orientation and mineral content which helps prevent incipient microcracks in 

osteons from developing into catastrophic failures. Interstitial lamellae is made of the remnants 

of the remolded old osteons or primary bone tissue, so in general, osteons are less mineralized 

and less stiff than interstitial lamellae. Therefore, the elastic modulus of interstitial lamellae is 

significantly greater than that of osteonal lamellae (5, 6). Our results agree with this 

phenomenon. There are different mechanical trends when increasing the distance from the center 

of osteon toward the periphery. A decreasing trend was obtained from osteons in human femur 

samples (5). Meanwhile, decreasing osteonal mineralization was observed with distance from the 

central Haversian canal from microradiographic imaging (85) and backscattered electron 

imaging (86). Though the work from Gupta’s group did not show significant variation between 
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osteonal lamellae, from the diagrams shown in the paper (84), it can be observed that the largest 

indentation modulus is at the location near the Haversian canal, just as seen in Figure 4.8. This 

highly mineralized inner ring (also called a calcification ―halo‖) adjacent to the Haversian canal 

present in old completed osteons was reported as having high mineral density (87) and great 

hardness (88) since it contains more amorphous calcium phosphate. On the other hand, the 

opposite trend was observed with FTIRM from human iliac crest biopsies (89, 90) and with 

Raman from baboon femur samples (91). Both of the spectra showed an increase in the mineral: 

organic ratio with increasing distance from the Haversian canal. Increasing elastic modulus with 

distance from the osteonal center toward the periphery was also found as probed by 

nanoindentation (91). Therefore, further study is needed to clarify the debate. 

The comparison of nanomechanical properties between OI and normal bones is mixed for 

the longitudinal sections (Table 4.3) because of more site-specific feature of OI bone. In contrast, 

the comparison of the nanomechanical properties of the normal and OI cortical bones for the 

transverse sections have more applicable indications, because nanoindentation force applied on 

the transverse section is parallel to the long axis of bone (see Figure 4.1), which is the direction 

of physiological loading. Table 4.2 shows that the median elastic moduli of OI bone are higher 

than those of normal bone, however, the trend for median hardness values is the opposite. Elastic 

modulus is an intrinsic material property and fundamentally related to atomic bonding. Hardness 

is the resistance of a material to deformation due to a constant compression load, and also is a 

good indication of the underlying microstructure. Elastic modulus is generally considered to be 

related to hardness from statistical trend, but there are exceptions depending on the 

microstructure (92). The lower hardness values explain the fragility of OI bone despite its higher 
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elastic modulus, which also reflects the influence of the porous microstructure and altered 

molecular structure on the mechanical properties of materials.  

Modulus mapping technique provides the capability to quantitatively map both the 

contact stiffness and elastic modulus of a material surface with nanometer resolution. Unlike the 

bone specimens embedded in resins, the undisturbed bone specimens still possess many holes 

such as canals, lacunae, and canaliculi. Therefore, the maps with these holes are excluded from 

the results. In situ SEM nanoindentation has the advantage of high resolution images and precise 

positioning of the indenter compared to the traditional triboscope instrument, especially for 

metals and semiconductors; however, bone specimens, without gold or carbon covering, which 

can affect mechanical tests, don’t produce high-resolution images. In addition, the 

nanoindentation accessory needs to be tilted to a specified degree so that the sample can be 

detected by SEM; the tilt degree is too small for the specimens to be detected by Energy 

Dispersive X-ray Spectral (EDS or EDX) detector which is commonly used for elemental 

analysis. Future instrumentation models are expected to overcome these limitations. 

 

4.5. Conclusion 

Modulus mapping and in situ FE-SEM nanoindentation were both performed for the first 

time on ―undisturbed‖ human normal and OI cortical bones. Modulus mapping, which is able to 

map the surface elastic moduli of materials, reveals elastic moduli of near-pure hydroxyapatite 

and collagen, and the distribution of mineralized fibrils and extrafibrillar minerals. In situ FE-

SEM nanoindentation, on the other hand, reveals the bulk properties of bone. With this 

technique, the elastic modulus of interstitial lamellae and osteonal lamellae were compared; the 

largest indentation modulus was also observed at the location near the Haversian canal which is 

http://en.wikipedia.org/wiki/Chemical_element
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due to the highly mineralized inner ring adjacent to the Haversian canal present in older osteons. 

Both techniques demonstrate that nanomechanical properties of bone specimens are structure 

specific due to the periodic modulations for mineralized fibers and lamellae.  

The comparison of the results from these two techniques showed the opposite trends 

about the median elastic modulus of transverse and longitudinal sections. This indicates that at 

the shallow depth of about 2-3nm, the interactions between collagen and mineral should be taken 

into account, whereas at the deeper depths, the orientation and arrangement of mineral and 

collagen play more important roles. Therefore, the nanomechanical behaviors should be analyzed 

with the knowledge of the structure of bone at nanoscale as well as the interactions between 

different constituents of bone. Normal and OI bones are also compared by these two techniques 

and smaller collagen fiber bundles, smaller and less heterogeneous mineral crystals, greater 

median and maximum elastic modulus of OI bone are found. The transverse section of OI bone 

shows greater elastic moduli for both interstitial and osteonal lamellae, but lower hardness than 

that of normal bone. 
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CHAPTER 5.  DYNAMIC NANOMECHANICAL BEHAVIOR OF HEALTHY AND OI 

HUMAN CORTICAL BONES
3
 

This chapter presents viscoelastic response of demineralized and intact healthy human 

cortical bone and OI human cortical bone. The content of this chapter has been published in Gu, 

C.; Katti, D. R.; Katti, K. S.; Dynamic mechanical behavior of undisturbed and demineralized 

human cortical bone measured by nanoindentation. Bioinspired, Biomimetic and 

Nanobiomaterials. 2014, 3, 1-11. 

 

5.1. Introduction  

A wide range of materials show some combination of linearly elastic and viscous 

behavior, such as linear polymer, rubber, pliable biomaterials and bone. Bone tissue is composed 

of hydroxyapatite (HAP) mineral, organic collagen, water, as well as a small amount of 

noncollageneous proteins (1). Due to its complex composition, as well as hierarchical structure, 

bone tissue exhibits viscoelastic behavior such as creep deformation and stress-relaxation, 

especially when it is in a hydrated state (2-5). Because the organic collagen is primarily the type 

I collagen, which is a long-chain triple helix, collagen has been shown to cause creep 

deformation (6) or stress relaxation process (7) of bone. The cross-links between collagen 

molecules also affect the creep behavior of tendon (8). However, results also show that collagen 

does not significantly affect the viscoelasticity of bone (9); instead, moisture content has a 

significant effect on this property (10). HAP has also been reported to affect the viscoelasticity, 

                                                 
3
 This chapter was co-authored by Chunju Gu, Kalpana Katti, and Dinesh Katti. Chunju Gu had 

primary responsibility for preparing samples, conducting all tests, and drafting this chapter. 

Kalpana Katti and Dinesh Katti directed the research orientation and revised this chapter. 
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which may be due to the energy dissipation influenced by the interaction between the mineral 

and collagen (11), or by dislocations in the HAP mineral itself (12). Viscoelastic behavior has 

been attributed to trapped water in mineral platelets in other natural biocomposites such as nacre 

from sea shells (13, 14). At the microscopic scale, many interfaces such as cement lines and the 

boundaries between the lamellae within osteons also contribute to viscoelasticity (15, 16).  

In addition to the contribution from the above mentioned components to the viscoelastic 

property, the role of orientation is also noteworthy. Bone has long been recognized as an 

orthotropic material, since it has a roughly parallel alignment of the primary components to the 

long axis of bone. The orientation of HAP has been reported to cause the anisotropic 

viscoelasticity of bone (17). Macroscale tension tests of bovine cortical bone showed that the 

energy loss was noticeably larger for specimens in the longitudinal direction than in transverse 

direction (18).    

There are several methods for measuring viscoelasticity of bone. Firstly, creep 

deformation is usually measured by detecting the change of strain when applying a constant 

stress, whereas stress-relaxation is measured by detecting the change of stress maintaining a 

constant strain. At the macroscopic scale, the response of bone to stress was examined with a 

biaxial, driven torsion pendulum system (4), three-point bending combined with force sensor 

(17), or compressive loading to allow creep strains (19). Secondly, dynamic mechanical analysis 

(DMA) technique, which is widely used for characterization of polymeric materials, was used to 

characterize bone by several researchers (9-11, 18, 20, 21). In DMA, a sinusoidal force (stress ζ) 

is applied to a material and the resulting displacement (strain ε) is measured. The measured strain 

lags behind the applied stress by a phase difference for viscoelastic materials. Storage modulus 

(E’), loss modulus (E‖) as well as mechanical damping factor are thus acquired. Thirdly, at the 
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microscopic scale, quasi-static nanoindentation has been developed to study the creep behavior 

of bone by fitting the depth vs. time data at constant load to rheological models in recent years 

(22-26). Lastly, based on the principle of traditional DMA and the development of 

nanoindentation, nanoDMA technique has emerged for conducting the microscopic scale 

dynamic nanoindentation tests (27). Some researchers have considered the tan δ values versus 

frequency for bone tissue (5, 28, 29). Other researchers have also used nanoDMA to investigate 

the dynamic properties of different dehydrated bone specimens without considering the change 

of frequency (23, 26). 

The studies on viscoelastic properties of bone at nanoscale are few, and studies on 

dynamic mechanical behavior are even less understood. Almost all of the bone specimens 

studied are either wet or dry. The wet specimens are kept in saline solution before testing or 

immersed in phosphate buffered saline (PBS) in a fluid cell during test duration; at shallow 

indentation depth, the indenter tip oscillation is not avoided during wet sample testing. In 

addition, the dry specimens are usually dehydrated and embedded, which affect the interactions 

and mechanical properties of bone (30, 31). Therefore, we attempt to study the bone specimens 

in their intact state without any treatment other than polishing the surface and conduct dynamic 

indentation tests under inert helium environment to reduce bacterial growth on the bone 

specimens. In our previous modeling work, we have demonstrated that the mechanical behavior 

of collagen is significantly influenced by collagen-mineral interaction as well as collagen-water-

mineral interactions (32, 33). The mechanical behavior of collagen is direction-dependent and 

also influenced by strain rate (34). Therefore, in the current study, we evaluate the anisotropic 

viscoelasticity of intact human cortical bone at nanoscale and the influence of different 

components of bone on this property. In order to obtain a better understanding of the viscoelastic 
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behavior, demineralized bone specimens and osteogenesis imperfecta (OI) bone specimens were 

also selected for dynamic nanoindentation tests. Bone samples with OI are typically brittle and 

this disease is associated with collagen abnormity (35). In OI bone, the collagen molecules are 

often altered due to gene defects. These gene defects may affect the primary structure of a 

procollagen by preventing the zipper-like folding of the triple helix and causing degradation of 

normal and abnormal proα chains through procollagen suicide, or producing a kink in the triple 

helix and causing assembly of abnormally branched or dendritic collagen fibrils (36). 

 

5.2. Materials and Methods 

5.2.1. Materials 

A healthy human femur (No apparent metabolic bone disease record, 22 years old, 

female) and a human OI tibia (No apparent metabolic bone disease record, 27 years old, female, 

OI type was not identified; yet suspected to be type I since she had height of 67 inches, and 

weight of 180lb with pregnancy experience) were obtained (Figure 5.1) from National Disease 

Research Interchange, PA and stored in a freezer at -70˚C. Bone specimens were cut from the 

mid-diaphysis of these two samples. A low-speed diamond saw was used for the initial rough cut 

and then a low-speed diamond-wafering blade (Buehler, Isomet, Lake Bluff, IL) was used to trim 

the sample down and subsequently the pieces were stored in a freezer at -70˚C. Anterior sections 

were selected as the specimens from both femur and tibia. The specimens were about 1 mm thick 

in both transverse and longitudinal directions (Figure 5.2). Marrow and flesh were removed by 

scraping with a ceramic knife and then the bone samples was washed with deionized (DI) water 

at room temperature in approximately 10 minutes since longer time may begin to influence 

material behavior. 
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Figure 5.1. Bone samples (Specimens for testing are from the mid-diaphysis part as shown in 

squares). 

 

 

Figure 5.2. Schematic of bone specimen positions and indentation directions. 

 

In order to perform the dynamic indentation tests, the specimens were polished with 

silicon carbide paper (Buehler, 600, 800 and 1200 grit), further polished using a series of 

diamond compound pastes (Buehler, 3µm,1µm, 0.25µm) on a cloth and finished by polishing 

with a 0.02µm non-crystallizing colloidal silica polishing suspension. After each polishing step, 
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the specimens were ultrasonically cleaned in DI water for 30 seconds (the total rinsing time was 

limited about 3.5 minutes to avoid demineralization (37)).    

After following the polishing steps and ultrasonically cleaning in DI water, one set of 

transverse sections of the normal bone were demineralized in 10% ethylenediamine tetraacetate 

(EDTA) (pH 7.5) for 5 minutes, 4, 24, and 72 hours at room temperature, washed exhaustively 

with DI water to remove all traces of EDTA. The same procedure was applied to another set of 

the longitudinal sections, but only demineralized for 5 minutes and 4 hours. The specimens 

demineralized for 5 minutes are denoted as Demi-5m, while the specimens demineralized for 4 

hours are denoted as Demi-4h.   

5.2.2. FTIR and AFM characterizations 

Photoacoustic-Fourier transform infrared spectroscopy (PA-FTIR) experiments were 

performed on these demineralized bone specimens using Thermo Electron, Nexus 870 

spectrometer equipped with MTEC Model 300 photoacoustic accessory. All spectra were 

collected in the range of 4000–400 cm
-1

 at a spectral resolution of 4 cm
-1

. Root mean squared 

(RMS) roughness Rq of the normal and demineralized bone specimens was measured over the 

area of 1mm*1mm using Atomic Force Microscope (AFM, Veeco Metrology Group, Santa 

Barbara, CA), which is equipped with a Nanoscope IIIa controller and J-type piezo scanner. The 

mathematical definition of Rq are as follows 

 

The RMS mean line is the line that divides the profile so that the sum of the squares of 

the derivations of the profile height from it is equal to zero.  

(5.1) 
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5.2.3. Dynamic nanoindentation tests 

Dynamic nanoindentation tests were conducted on the polished bone specimens (intact 

and demineralized for 5minutes and 4 hours) using nanoDMA® (Dynamic Mechanical Analysis) 

software in the Hysitron Triboscope nanomechanical instrument (Minneapolis, MN), equipped 

with a Nanoscope IIIa controller (Veeco Metrology, Santa Barbara, CA). The load and 

displacement resolutions of the instrument are 1nN and less than 1nm, respectively. A Berkovich 

(three sided pyramid, 100–200 nm tip radius) diamond indenter tip was used to perform the tests. 

During the performance of experiments, dry helium was kept flowing into the experimental 

chamber to prevent bacterial growth (38). Variable dynamic load tests were performed, in which 

the load and the load-amplitude were changed while a constant frequency was maintained. The 

static load was varied from 200 μN to a maximum of 1000 μN in 9 segment steps. The starting 

dynamic load was set at 20 μN. Tests were performed at three different frequencies, i.e. 25, 50, 

and 100 Hz, with 15 indents in each test.  A schematic representation of the load function 

showing variation of load over time is shown in Figure 5.3. During the tests, the loss modulus 

(E’), storage modulus (E‖), and the tan δ (tan δ) were calculated by measuring the load 

amplitude, displacement amplitude, and the phase lag (δ). The dynamic model of indenter system 

in the instrument in contact with specimens was described in detail in literature (27, 39). 

Assuming linear viscoelasticity, dynamic mechanical behavior of the material can be obtained 

using the following equations: 

(5.2) 
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where ks, Cs denote the sample stiffness and damping coefficients, respectively, w denotes the 

frequency of the applied force, and Ac is the projected contact area of the indent on the surface of 

the sample. Storage modulus measures the stored energy, representing the elastic portion, 

whereas the loss modulus measures the energy dissipated as heat, representing the viscous 

portion; and the tan δ, which describes the relative amount of energies stored/returned and lost 

by a specimen during mechanical deformation, has been considered as a measure of the degree of 

viscoelasticity of a material (5, 9, 40).   

 

Figure 5.3. Schematic plot of load versus time for a variable dynamic load test. 

 

5.3. Results and Discussion 

5.3.1. Dynamic nanomechanical behaviour of intact normal human cortical bone 

Figure 5.4(a) and (b) show the mean tan δ with 95% confidence intervals for the intact 

bone specimens with variable static force (200-1000µN) at 25, 50 and 100Hz. As seen from 

(5.3) 

 

(5.4) 
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these figures, the tan δ decreases with the increase of frequency for both longitudinal and 

transverse sections. This decrease of tan δ is associated with the decrease of the internal friction, 

which can result from stiffening of the molecular configuration with increased frequency. Figure 

5.4 (a) and (b) also show that the mean tan δ and 95% confidence intervals of the transverse 

section are both greater than those of the longitudinal section for all three frequencies. It is 

observed that the mean tan δ values are lower than 0.04 which indicates that the bone specimens 

exhibit low viscoelasticity. Figure 5.5 (a) and (b) show representative E’, E‖, and tan δ values of 

the normal human bone during one dynamic nanoindentation with a maximum displacement of 

246 nm. It is evident that, during this dynamic nanoindentation, E’ is almost constant. However, 

both tan δ and E‖ vary significantly and are correlated.  

 

 

Figure 5.4. The mean loss tangent with 95% confidence intervals of normal bone specimens with 

variable static force (a) Longitudinal section; (b) Transverse section. 

  

(a) (b) 
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Figure 5.5. Representative storage modulus, loss modulus and loss tangent values of the human 

bone during one dynamic nanoindentation (Longitudinal section, frequency: 50Hz) (a) E’ and 

E‖; (b) Tanδ. 

 

5.3.2. Demineralization of normal human cortical bone 

In order to better understand the dynamic nanoindentation results of bone, the transverse 

sections of the normal bone were demineralized to varying degrees with the demineralization 

times of 5 minutes, and 4, 8, 24, and 72 hours. The infrared spectra of demineralized transverse 

sections are shown in Figure 5.6a. It is seen that, after demineralization for 4 hours, the spectra 

appear to not vary much with additional time. The shape and position of the range of 1000-1300 

cm
-1

 are also very similar as the spectra from pure type I collagen (41), which means that, after 4 

hours of demineralization, the surfaces of the samples have been totally demineralized with the 

depth of about 30μm (calculated from the equation 2.2 in Chapter 2 (42)). When the sample is 

(a) 

(b) 
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demineralized after 5 minutes (Demi-5m), as shown in Figure 5.6a, the ν1 and ν3 PO4 
3-

bands 

(900-1180cm
-1

), ν2CO3
2-

 (at 874cm
-1

), and ν2 PO4
3-

 bands (at 564-603 cm
-1

) all remain in the 

same positions as those of intact bone specimen; however, their intensities decrease. Therefore, 

after 5 minutes, demineralization on the surface of the specimens has already occurred but still 

has not completed within the depth of about 30μm (the depth that infrared beam can penetrate). 

Since, after 4 hours (Demi-4h), the surface has been totally demineralized, the longitudinal 

sections were demineralized for 5 minutes and 4 hours to compare the dynamic nanomechanical 

properties. Figure 5. 6b shows the spectra from intact or demineralized specimens for 5 minutes 

and 4 hours in both transverse and longitudinal planes. The intact transverse and longitudinal 

sections have different ν1 and ν3 PO4 
3-

bands (900-1180cm
-1

) as also described in detail earlier 

(43); However, after demineralization, the PO4 
3-

 bands are almost the same in the two directions. 

Therefore, demineralization appears to damage the orientation of the mineral crystals. From 

Figure 5. 6b, it is also observed that all bands from the organic phase (C-H stretching, amide I, II, 

and III) remain in their positions regardless of the demineralization treatment. Therefore, it 

seems reasonable to assume that demineralization has a negligible effect on the collagen 

molecular structure and the three-dimensional network of the collagen fibers, as described in the 

literature (11). 
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Figure 5.6. Photoacoustic infrared spectra of undisturbed and demineralized human bone in the 

energy range of 4000-400cm
-1

 (a) Transverse section, time of demineralization: 5 minutes, 4, 8, 

24, and 72hours; (b) Transverse and longitudinal sections, time of demineralization: 5 minutes, 

and 4hours. 

 

(a) 

(b) 
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5.3.3. Dynamic nanomechanical behaviour of demineralized normal human cortical bone 

Roughness of the bone specimens of intact and demineralized bone samples are listed in 

Table 5.1, as assessed with AFM analysis of several 1 µm×1 µm regions. It is seen from Table 

5.1 that the demineralized samples are much rougher than the intact samples. The viscoelastic 

response of the transverse and longitudinal sections after demineralization for 5 minutes and 4 

hours are compared (Figure 5.7 (a-d)). The tan δ, E’, and maximum contact depths for intact and 

demineralized (5 minutes and 4 hour) samples are listed in Table 5.2. From Figure 5.7 (a-d) and 

Table 5.2, it is seen that for both longitudinal and transverse sections, tan δ values of the Demi-

4h specimens increase as compared with the intact bone specimens. In addition, this increase is 

exceptionally significant for the transverse section, whereas the increase is marginal for the 

longitudinal section. It is known that the collagen molecules are aligned roughly parallel to the c-

axis of bone. After demineralization for 4 hours, only collagen molecules are left on the surface 

of these bone specimens (<30µm). Therefore, this difference of tan δ between the longitudinal 

section and transverse section of Demi-4h reflects the viscoelastic response in the two directions 

of collagen molecules. In other words, along the long axis, the viscoelastic response of collagen 

molecules is greater than perpendicular to the c-axis of bone.  

Table 5.1. Roughness Rq of the bone specimens of intact and demineralized bone samples 

(average ±STDEV). 

Sample 

Longitudinal section Transverse section 

Intact 
Demi. 

5 minutes 

Demi. 

4 hours 
Intact 

Demi. 

5 minutes 

Demi. 

4 hours 

Roughness 

 (nm) 

18.52 

5.52 

34.84 

7.28 

39.63 

18.52 

7.15 

1.62 

47.21 

25.62 

51.22 

31.75 
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Figure 5.7. The mean loss tangent with 95% confidence intervals of demineralized normal bone 

specimens with variable static force (a) Longitudinal section, demineralized for 5 minutes; (b) 

Longitudinal section, demineralized for 4hours; (c) Transverse section, demineralized for 5 

minutes; (d) Transverse section, demineralized for 4 hours. 

(b) 

(a) 

(c) 
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Figure 5.7. The mean loss tangent with 95% confidence intervals of demineralized normal bone 

specimens with variable static force (continued) (a) Longitudinal section, demineralized for 5 

minutes; (b) Longitudinal section, demineralized for 4hours; (c) Transverse section, 

demineralized for 5 minutes; (d) Transverse section, demineralized for 4 hours. 

 

From Figure 5.7 (a-d) and Table 5.2, it is also seen that most tan δ values of Demi-5m 

bone specimens increase as compared to the intact bone specimens for both longitudinal and 

transverse sections. However, some of the tan δ values of Demi-5m bone specimens are greater 

than the values of corresponding Demi-4h specimen. This phenomenon indicates that the surface 

properties of the Demi-5m specimens vary from site to site because of incomplete 

demineralization, which results in a combination of mineral and collagen proteins on the sample 

surface. Table 5.2 also shows that the tan δ values of the transverse section of Demi-4h specimen 

are greater than corresponding tan δ values of the longitudinal sections. In addition, the tan δ 

values decrease with an increase of frequency for both longitudinal and transverse sections of 

Demi-4h specimens. These two trends for Demi-4h specimens as shown in Table 5.2 are the 

same as the intact bone specimens. However, the Demi-5m specimens do not exhibit these trends, 

indicating that these bone specimens have more heterogeneous state and properties. Table 5.2 

(d) 
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shows the trend of E’ after demineralization; E’ decreases with the extent of demineralization as 

expected. Maximum displacement of bone specimens at frequencies of 25, 50 and 100Hz 

increases with the extent of demineralization, as listed in Table 5.2.  

Table 5.2. Tan δ, E’, and maximum displacement values of intact and demineralized normal 

bone specimens at frequencies of 25, 50 and 100Hz (average ±STDEV). 

Item Specimen 
Longitudinal section Transverse section 

25Hz 50Hz 100Hz 25Hz 50Hz 100Hz 

Tan δ 

Intact 
0.030  

0.014 

0.015  

0.006 

0.014  

0.003 

0.031  

0.009 

0.021  

0.010 

0.018  

0.005 

Demi. 

5min. 

0.038  

0.026 

0.032  

0.025 

0.028  

0.009 

0.035  

0.017 

0.020  

0.009 

0.025  

0.004 

Demi. 

4hrs 

0.043  

0.011 

0.023  

0.015 

0.016  

0.003 

0.111  

0.025 

0.093  

0.020 

0.083  

0.012 

E’ (GPa) 

Intact 
20.20  

3.76 

19.63  

4.42 

23.45  

2.96 

21.90  

8.77 

22.43  

6.85 

25.53  

6.98 

Demi. 

5min. 

8.00  

2.48 

11.37  

4.34 

11.31  

3.24 

9.49  

5.41 

8.67  

4.09 

9.87  

4.55 

Demi. 

4hrs 

3.70  

1.04 

5.94  

2.73 

7.41  

2.29 

7.43  

3.54 

5.91  

2.39 

5.77  

0.48 

Max. 

displacement 

(nm) 

Intact 
247.36±

32.38 

246.89±

39.92 

220.01

±21.02 

265.16±

69.21 

248.89

±66.87 

251.03±

110.82 

Demi. 

5min. 

409.57±

87.99 

332.93±

72.10 

309.60

±33.33 

411.26±

164.36 

394.61

±93.11 

365.42±

88.97 

Demi. 

4hrs 

639.71±

156.67 

558.25±

361.76 

385.27

±87.45 

410.93±

192.74 

416.51

±80.49 

423.26±

71.68 
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5.3.4. Dynamic nanomechanical behaviour of OI human cortical bone 

The mean tan δ values with 95% confidence intervals of OI human bone specimens at 

variable static force are displayed in Figure 5.8 (a) and (b). The comparison of tan δ, E’, and 

maximum contact depths for normal and OI human cortical bone specimens are listed in Table 

5.3. As shown in the table and figures, the same trends of tan δ for OI bone as intact and Demi-

4h normal bone specimens are observed: (1) tan δ decreases with the increase of frequency; and 

(2) tan δ of the transverse section is generally greater than that of the longitudinal section. As 

compared to the normal bone at different frequencies, OI bone has less tan δ in most cases, 

indicating that viscoelastic response of OI bone is less than the normal bone. Table 5.3 shows 

that the average E’ values of OI bone specimens are greater than those of normal bone. This is 

reasonable because OI bone has higher mineral/matrix ratio(44). It is also noticed that the 

maximum contact depth of OI bone specimens at each frequency is lower than that of normal 

bone. However, the overall difference of dynamic nanomechanical behavior between OI bone 

and intact normal bone is small. 
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Figure 5.8. The mean loss tangent with 95% confidence intervals of OI bone specimens with 

variable static force (a) Longitudinal section (b) Transverse section. 

 

  

(a) 

(b) 
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Table 5.3. Tan δ, E’, and maximum displacement values of normal and OI bone specimens at 

frequencies of 25, 50 and 100Hz (average ±STDEV). 

Item Specimen 
Longitudinal section Transverse section 

25Hz 50Hz 100Hz 25Hz 50Hz 100Hz 

Tan δ 

Normal 
0.030 

0.014 

0.015 

0.006 

0.014 

0.003 

0.031 

0.009 

0.021 

0.010 

0.018 

0.005 

OI 
0.024 

0.011 

0.019 

0.008 

0.013 

0.003 

0.026 

0.009 

0.019 

0.004 

0.017 

0.003 

E’ (GPa) 

Normal 
20.20 

3.76 

19.63 

4.42 

23.45 

2.96 

21.90 

8.77 

22.43 

6.85 

25.53 

6.98 

OI 
23.21 

2.20 

22.56 

3.03 

26.67 

4.91 

27.19 

5.47 

31.71 

6.19 

33.96 

4.60 

Max. 

displacement 

(nm) 

Normal 
247.36 

±32.38 

246.89 

±39.92 

220.01 

±21.02 

265.16 

±69.21 

248.89 

±66.87 

251.03 

±110.82 

OI 
211.76 

±13.88 

218.87 

±20.55 

198.36 

±22.96 

211.20 

±59.98 

185.85 

±19.96 

174.70 

±15.11 

 

5.3.5. Effects of frequency, orientation and composition on viscoelasticity of bone 

Amoung other reasons, dynamic viscoelasticity arises due to molecular motions between 

collagen and also collagen-mineral structures. Collagen is highly constrained by crosslinks and 

close apposition with mineral crystallites; therefore, the molecular mobility of collagen is 

expected to result in a broad distribution of tan δ (45). In the Section 5.3.1, 5.3.3, and 5.3.4, we 

compared this viscoelastic behavior of bone specimens from three aspects: (1) tan δ changes with 

frequencies; (2) differences between the longitudinal sections and the transverse sections; and (3) 

different composition (e.g. intact, demineralized and abnormal OI bone specimens) leading to 

different viscoelastic behaviors.   
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In the literature, the examination of the tan δ versus frequencies reveal that dehydrated 

human cancellous bone, saline solution soaked bovine bone, trabecular human bone, and 

hydrated mouse bone all have the same trend as discovered in the study: the tan δ decreases with 

frequency (5, 18, 28, 29). This phenomenon is different in nacre from seashells, where we’ve 

seen tan δ values positively correlated with frequencies (14). The relationship between tan δ 

values and frequencies of viscoelastic materials are strongly related to their composition, internal 

structure and environmental condition. The specimens used in this study are in the same 

environmental conditions, therefore, the differences in viscoelastic behaviors are due to their 

composition (e.g. intact, demineralized and abnormal OI bone specimens) and internal structure. 

By comparing the transverse sections with the longitudinal sections, it is found that the 

intact normal bone and OI bone have the same trend: the transverse sections have slightly higher 

tan δ values than the longitudinal sections at almost all frequencies. In this work, the transverse 

section of bone is subjected to a vertical force while the longitudinal section is subjected to a 

perpendicular force as shown in Figure 5.2. The nanoindentation force for the transverse sections 

is along the long axis of bone, and therefore the indenter can penetrate in the long axis into 

collagen molecules which have the length of about 300 nm. However, after it is demineralized 

for 4 hours, when there is no mineral left within the indentation displacement, there is a 

significant difference between the transverse and longitudinal sections. The tan δ values of 

transverse sections are markedly greater than the longitudinal sections. Therefore, (1) the 

anisotropic feature of collagen molecules is greater than bone, and (2) the viscoelastic response 

of collagen molecules is larger parallel to the long axis than perpendicular to the long axis of 

bone. It is also interesting to observe that after demineralization for 5 minutes, the tan δ values of 

the transverse section are slightly smaller than those of the longitudinal sections at all 
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frequencies. This difference between Demi-5m and both the intact and Demi-4h specimens is 

attributable to the alteration of mineral because collagen molecules are regarded as intact in these 

specimens.  

The comparison of dynamic nanomechanical properties of intact normal and OI bone 

specimens further accentuates the role of mineral to the viscoelasticity of bone. Although there is 

significant molecular defects in collagen molecules, the mineral crystal structure of OI bone is 

similar to that of normal bone and the dynamic nanomechanical behavior of OI bone is also 

similar to the intact normal bone. Therefore, the viscoelasticity of intact bone is primarily 

attributed to the mineral, although the collagen phase affects the viscoelasticity to some extent. 

This statement is in a good agreement with the study of Wang et al. (11). Differently, in the 

present study, the displacement in mechanical tests is hundreds of nanometer. The underlying 

mechanism is still required to be further explored.  

  

5.4. Conclusion 

Time-dependent characteristics of viscoelastic materials are strongly related to their 

composition, internal structure, and environmental condition. In this work, dynamic 

nanomechanical properties of normal human cortical bone (intact, demineralized) and OI human 

cortical bone were investigated using a nanoindentation instrument under the same 

environmental condition. Variable dynamic load tests showed that intact bone has low 

viscoelasticity. The viscoelastic response of all bone specimens (intact, demineralized, and OI) 

decreases with frequency, possibly arising from the stiffening of the molecular configuration 

when frequency increases. With demineralization, viscoelastic response of bone increases, so 

does the maximum displacement. Almost all transverse sections of intact normal and OI bone 
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specimens possess slightly higher viscoelastic response than the longitudinal sections except 

demineralized specimens. The transverse section of Demi-4h (totally demineralized) exhibits 

significantly greater viscoelastic response than the corresponding longitudinal section, indicating 

that the anisotropic feature of collagen molecules is greater than bone and the viscoelastic 

response of collagen molecules is greater along the long axis than perpendicular to the long axis 

of bone. On the contrary, the transverse section of Demi-5m (partially demineralized) exhibits 

lower viscoelastic response than the corresponding longitudinal section. This phenomenon is 

attributed to the alteration of the mineral phase. OI bone has slightly greater E’ than normal bone 

due to its higher mineral/matrix ratio. Viscoelastic response of OI bone is slightly less than that 

of normal bone. Despite the significant altered collagen molecules, the overall similar dynamic 

nanomechanical behaviors of OI bone and normal bone indicates that the viscoelasticity of intact 

bone is mostly determined by the mineral. The collagen phase also contributes to the 

viscoelasticity to some extent. 
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CHAPTER 6.  ANISOTROPIC PROPERTIES OF HUMAN CORTICAL BONE WITH 

OSTEOGENESIS IMPERFECTA 

This chapter presents SEM images, FTIR studies of four sections (anterior, medial, 

posterior, and lateral) of OI human cortical bone and nanomechanical properties of anterior and 

posterior sections obtained using in situ FE-SEM nanoindentation technique.  

 

6.1. Introduction  

The heterogeneity of long bone (femur and tibia) diaphyseal shape and size variation are 

modulated by genetic, mechanical, nutritional, and hormonal patterning throughout its lifetime 

(1). According to Wolff’s law, bone adapts itself to be stronger in positions subjected to higher 

loads (2). Non-uniform loading applied to different anatomical positions affect the formation of 

its microstructures, leading to various load-carrying capacities. A study of archaeological 

samples using high-resolution X-ray computed tomography reveals that the femoral and tibial 

midshaft shapes are relatively conserved throughout lifetime; yet, conversely, the proximal and 

distal femoral diaphysis and proximal tibial diaphysis appear more sensitive to developmentally 

induced changes in mechanical loading with high cross-sectional shape variability proximally 

and less change distally for tibia (3). The study also claims that the relative conservation of 

midshaft cortical geometry throughout development is due to the low strain that midshaft bears 

(3). The typical cross-sectional shape of tibia is divided into four areas: anterior, medial, 

posterior, and lateral sections (Figure 6.1). The cross-sectional shapes of the femoral and tibial 

midshaft are altered from a relatively circular shape in early childhood, to a less uniform 

structure in early puberty. The medio-lateral proximal femur and antero-posterior tibial 

expansions are due to hip breadth effects and locomotion loads (3). Meanwhile, another study on 
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human archaeological samples show that larger active remodeling areas are concentrated in the 

lateral and anterior portions of infant tibia, and the remodeling areas are more likely to spread 

throughout the entire cortex of adult tibia (4). This study also uses Geographical Information 

Systems (GIS) and observed that bone tissue reorganization seems to start in the lateral side 

during infancy and is concentrated in the anterior part of the tibia during youth and pre-adult 

stages. In adulthood, remodeling is mostly localized in the medial section and progressively 

reaches the medial-posterior region. Raman studies of these infant, juvenile, and adult samples 

further demonstrate that the lateral side in the infant and the posterior side in juveniles indicate 

the lower levels of crystallinity and thus active remodeling. It is worth mentioning that for adults, 

the crystallinity of the anterior section is markedly less than the other three sections (4). These 

studies demonstrate that the composition as well as modeling and remolding processes in these 

four sections are different. 

This phenomenon was also examined on animal bones. Abel-Wahab et al. (5) compared 

the mechanical properties of the four anatomical positions (anterior, medial, posterior, and 

lateral) in two directions (axial and transverse) of bone. They assessed microstructure-linked 

anisotropic mechanical properties of bovine femur using macroscale tension test and dynamic 

mechanical analysis (DMA). The study shows that the axial strength (longitudinal sections) for 

various anatomical positions is higher than the transversal strength (transverse sections) with 

significant differences in magnitude for those positions. For the longitudinal specimens, the 

anterior portion is the strongest while the lateral is the weakest. Differently, for the transverse 

specimens, the medial part is the stiffest and the posterior is the weakest. Authors linked these 

distinctions to the differences of their microstructures that the lateral and posterior sections 

contain more secondary osteons while the anterior and medial sections contain more primary 
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osteons (5). The anterior cortex and posterior cortex of equine bones are also extensively studied 

for examining the adaptation of bone histology to loading because in life the anterior cortex is 

loaded almost entirely in tension, while the posterior cortex in compression (6-14). Microscopic 

analysis reveals that primary lamellar bone is composed of predominantly longitudinal collagen 

fibers, irrespective of cortex; however, secondary osteons in the posterior cortex contained 

predominantly transverse collagen, while those formed elsewhere contain longitudinal collagen 

(8). Small-angle X-ray scattering (SAXS) experiments also reveals the differences of bone 

mineral crystals from the anterior and posterior zones: the average thickness of the mineral 

crystals are greater in the anterior section than in the posterior section; the orientation of the bone 

mineral crystals is predominantly in the longitudinal direction of bone, and the average tilt angle 

is about 30 degree for the anterior section and 45 degree for the posterior section (15). The 

anterior cortex shows a significantly higher ultimate tensile stress, a greater Young’s modulus, 

and tensile and bending strength, as well as higher impact energy absorption than the posterior 

cortex and the trends are reversed in compression (7, 9). Currey et al. (6) utilized 

nanoindentation method and found that the anterior osteons are stiffer than the posterior osteons 

at 0º (parallel to the bone’s long axis) and less stiffer at 90º (6).   

Osteogenesis imperfect (OI) is a genetic disorder characterized by the fragility of bones 

and other tissues rich in type I collagen. The clinical manifestations include recurrent fractures 

with secondary deformities, muscle weakness, ligamentous laxity, bluish sclera, dentinogenesis 

imperfecta, and bone pain. Patients with OI, even the least severe type (type I), have major 

physical disabilities associated with the presence of deformities that directly affect mobility. 

However, the incentive of mobility in a safe environment helps to preserve bone resistance and 
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functional independence (16-18). It is beneficial to take a close look at the microstructure, 

molecular structure, and nanomechanical properties of tibia with OI disease. 

Previous studies on the microstructure of OI bone specimens reveal five characteristics: 

thinner and more disrupted bone lamellation patterns; an increased number of vascular channels 

(19, 20); abnormal collagen aggregation and collagen fibrils (21);  decreased mineral crystal size 

and crystallinity (22, 23); and altered D-periodic spacing (24, 25). The OI bone also has higher 

mineral:matrix ratio and lower carbonate: mineral ratio (26, 27), 34). Using nanoindentation, 

contradictory results are obtained. Both decreased elastic modulus and hardness of long bone 

were found in children with OI type III (28) and OI from mild to severe forms (29) as compared 

with normal data. Oim bone has lower stiffness (30). On the contrary, higher stiffness and 

hardness of the OI bone specimens than the controlled ones are also found (31). The 

nanoindentation method also reveals that bone from children with OI type III was more brittle 

than with OI type IV (32, 33) and that the use of sclerostin antibody does not alter the local tissue 

mineralization dynamics of OI bone (34). Studies also show that osteoblast in OI patients may 

interfere with multiple mechanisms that ensure adaptation of the skeleton to the increasing 

mechanical needs during growth because of three mechanisms leading to an increase in bone 

mass during childhood; that is, modeling of external bone size and shape, production of 

secondary trabeculae by endochondral ossification, and thickening of secondary trabeculae by 

remodeling (35). 

In this study, we investigated the microstructural, molecular differences, and 

nanomechanical properties of OI bone specimens in transverse and longitudinal planes. The OI 

bone specimens are divided to anterior, medial, posterior, and lateral sections based on 
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anatomical positions. The goal of this study is not to merely compare the structure and 

mechanical properties of these sections, but to add to the understanding of OI disease. 

 

6.2. Methods and Materials 

6.2.1. Materials 

One 20-mm-thick transverse section was cut from the mid-diaphysis of a human OI tibia 

which was obtained from National Disease Research Interchange, PA (No apparent metabolic 

bone disease record, 22 years old, female with pregnancy experience) and stored in a freezer at -

70˚C. The OI type was putative type I, the mild type, since the person had height of 67 inches 

and weight of 180lb with, which are typical of a healthy person. Marrow and flesh were removed 

by scraping with a ceramic knife and then the bone section was washed with deionized (DI) 

water at room temperature in approximately 10min to avoid deterioration of bone. Specimens 

with the size of about 5×5×1mm were cut from four anatomical positions parallel and transverse 

to the bone axis (Figure 6.1) using a low-speed diamond-wafering blade (Buehler, Isomet, Lake 

Bluff, IL). Three groups of these specimens were obtained for SEM, FTIR, and in situ FE-SEM 

nanoindentation experiments.  
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Figure 6.1. Schematic representation of bone showing from where the samples were cut, 

transverse section and longitudinal section are both from the anterior, medial, posterior, and 

lateral areas of OI bone specimen. 

 

6.2.2. Experiment 

6.2.2.1.  Scanning electron microscopy studies  

Microstructure of the bone specimens was studied using a JEOL JSM-6490LV scanning 

electron microscope (SEM) and a JEOL JSM-7600F analytical high resolution field-emission 

scanning electron microscope (FE-SEM). Sample preparation for the scanning electron 

microscope (SEM) imaging follows our previous work (36).  

 

6.2.2.2.  FTIR Spectroscopy studies  

Photoacoustic (PA)-FTIR experiments were carried out using a Thermo Electron, Nexus 

870 spectrometer which is equipped with MTEC Model 300 photoacoustic accessory. Before 

collecting data for each sample, the PA chamber was purged with dry helium for 15 minutes. 
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Linear photoacoustic spectra were collected after 1000 scans in the range of 4000-400 cm
-1

 at a 

mirror velocity of 0.15cm/s, with a spectral resolution of 4 cm
-1

. GRAMS/32 software was used 

for spectra analysis.  

  

6.2.2.3.  In situ FE-SEM nanoindentation tests 

Nanoindentation tests were performed with a Hysitron PI-85 nanomechanical instrument 

with a Berkovich tip made of boron-through-doped diamond (Minneapolis, MN), which was 

installed in a high-resolution Field Emission Scanning Electron Microscope (FE-SEM, mode: 

Jeol JSM-7600F).  Detailed descriptions of the principle of this instrument can be found in the 

literature (37). The probe was also calibrated on fused quartz. Lower secondary electron images 

(LEI) were obtained by FE-SEM while nanoindentation was performed. 

The elastic modulus and hardness of bone are determined by using the common method 

developed by Oliver and Pharr (38). With the assumption that bone tissue is elastically isotropic 

and homogeneous, the Young’s modulus is calculated using the following equation (6.1): 

where E is the elastic modulus, ν is Poisson’s ratio, s and i refer to sample and indenter tip 

material, respectively. Er is the reduced modulus which can be obtained from indentation curve; 

νs of bone is set to 0.3; Ei and νi are the same quantities for the diamond indenter: Ei = 1141 GPa, 

νi = 0.07. 

In situ FE-SEM nanoindentation was performed with static load control; 50 µN was 

applied as the load for the samples on the transverse section plane (Figure 6.2). An interlamellar 

cement band is obviously seen in the figure and separates the osteon and interstitial lamellae. 

(6.1) 
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Sixty indents were performed inside the osteon, and thirty indents outside the osteon. For the 

samples on the longitudinal plane (Figure 6.2b), 15 µN, 50 µN, and 100 µN were applied with 

thirty indents for each load. To avoid pile-up effect, indent spacing was set about 1 µm. Some 

surface defects were observed (e.g., pitch, cracks, pop-outs) and excluded from the 

nanoindentation.  

  

  

Figure 6.2. In situ FE-SEM nanoindention performed on the surface of (a)(b) Trans-anterior 

section; (c)(d) Longi-anterior section. 

 

6.3. Results  

6.3.1. Microstructure of OI human cortical bone  

Figure 6.3 (a-j) shows the SEM images of the surfaces of OI bone specimens fractured in 

liquid N2 from different cortex positions (anterior, medial, posterior, and lateral) in the 

(a) (b) 

(c) (d) 
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longitudinal and transverse planes. The four sections all show trabecular structures near 

medullary cavity (Figure 6.3a, c), some of these structures are broken and lost after cutting and 

fracturing (Figure 6.3f, i). From these SEM images, it is hard to differentiate primary osteon and 

secondary osteon for some Harversian systems. However, some secondary osteons with cement 

lines as boundaries are still evidently seen in all of the four sections (Figure 6.3a, c, f, and i).  

Therefore, these four sections all have remodeling areas. It is also seen that the anterior, 

posterior, and lateral sections all contain big resorption cavities and more Harversian systems 

compared to the medial section. This reflects larger remodeling areas of the three sections than 

the medial section, which is different from the study on archaeological samples (4). As compared 

to the anterior section, the posterior section seems less porous and contains more bone mass.   

The lateral section has parallel bundles of mineralized fibrils in alternating directions 

within adjacent lamellae (Figure 6.3j), which is the same as the normal bone microstructure (39). 

The anterior, posterior, and medial sections have fibril bundles in one direction with gaps 

between adjacent lamellae (Figure 6.3b, d, g). This structure is essentially similar to the normal 

bone. As the mutations of OI bone are heterozygous, some of the gene products should still be 

normal. There are always normal lamellar bone structures composed of normally mineralized 

fibrils even in severe OI bone (39). Figure 6.3e and 3h are areas from the medial and posterior 

sections, respectively. The fibril bundles in these two areas are aligned in many different 

directions and some cracks appear in some of the interfaces between fibril bundles.   

Overall, each section has its own variation in microstructure including smooth, near-

normal areas and messed up, cracked areas. Comparatively, the medial section is more mature 

than the other three, and the lateral section possesses normal areas.  
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Figure 6.3. SEM images of human OI cortical bone (a, b) Anterior section; (c, d, e) Medial 

section; (f, g, h) Posterior section; (i, j) Lateral section (Thin arrows indicate secondary osteon 

(SO) regions and arrowheads bone powder region probably created from cutting procedure). 
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6.3.2. Photoacoustic-FTIR (PA-FTIR) spectra  

PA-FTIR was also conducted on the eight samples as mentioned in the microstructure 

study part. Figure 6.4 (a) and (b) show PA-FTIR spectra of these four sections (anterior, medial, 

posterior, and lateral) of OI bone in the longitudinal and transverse planes. The spectra were 

normalized with the OAH peak (3322 cm
-1

). The assignments of the bands are shown in Table 

6.1. Bone is primarily comprised of organic component (collagen molecules and other organic 

component such as non-collagenous proteins, lipid, etc.) and inorganic component 

(hydroxyapatite).  

Figure 6.4 (a) shows that the intensities of C-H stretching (2926 cm
-1

), C=O stretching 

(1745 cm
-1

), and C-H bending (1455 cm
-1

) bands are correlated. Therefore, it is reasonable to 

assume that these three bands are from the same source, which is mainly lipid, with a little 

contribution from proteins, carbohydrates, and nucleic acids (40). In addition, it is observed that 

there is a great variety of the intensities of these three band areas for the longitudinal sections. 

The order of their intensities of the longitudinal sections is: Medial>Anterior>Lateral>Posterior. 

For the transverse sections, the intensities are almost the same.  The trend that the longitudinal 

section  has higher C-H stretching and C=O stretching intensities than the transverse section (36) 

is also seen here for the medial, anterior, and lateral sections except the posterior section. This 

phenomenon indicates the composition differences in the four areas.  
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Figure 6.4. PA-FTIR spectra of human OI cortical bone (anterior, medial, posterior, and lateral 

sections for the longitudinal and transverse sections, respectively). Velocity of mirror: 0.158 

cm/s. (a) 4000-450 cm
-1

 region; (b) 2300-450 cm
-1

 region. 

 

(a) 

(b) 
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Table 6.1. Band assignments of PA-FTIR spectra from OI bone. 

Wavenumber 

(cm
-1

) 
Band Assignment Ref. 

3322 
OH stretching vibration from water and combination of Amide A 

with N-H stretching 
(57) 

2926 
CH2 asymmetric stretch: mainly lipids, with the little contribution 

from proteins, carbohydrates, nucleic acids 
(40) 

2854 
CH2 symmetric stretch: mainly lipids, with the little contribution 

from proteins, carbohydrates, nucleic acids 
(40) 

~2100 OH stretching vibrations from P-OH 
(58-

60) 

1745 C=O stretch: lipids, cholesterol esters, triglycerides (61) 

~1652 Amide I (protein C=O stretch) (61) 

1550-1506 Amide II (Protein N-H bend, C-N stretch) 
(61) 

 

1455 CH3 and carbonate ν3 vibration (40) 

~1240 Amide 3(C-N stretch, N-H bend, C-C stretch) (57) 

1180-927 ν 3ν 1
 
PO4

3-
 (57) 

877 ν 2
 
CO3

2-
 (57) 

721 C-H rocking  

677 C-S stretching vibration (41) 

572-610 ν 4
 
PO4

3-
 (57) 

 

The organic part from the collagen protein: Amide I band of C=O stretching at around 

1652 cm
-1

 band area varies from one another. Since this band is overlapped with O-H bending, it 

is not analyzed here. Amide II (Protein N-H bend, C-N stretch) at 1550-1506 cm
-1

 and amide III 

(C-N stretch, N-H bend, C-C stretch) at around 1240 cm
-1

 are not prominent and they have 

almost the same shapes at the same positions.  
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It is noticeable that a broad band at around 677 cm
-1

 , which is assigned to C-S stretching 

vibration (41), only appears strongly in the anterior section and less strongly in the lateral section, 

while it disappears in the other two sections. Instead, a small band exists at 721 cm
-1

 in the longi-

medial section. This small band is assigned to C-H rocking vibration (41). These differences in 

spectra further prove that the four sections of tibia contain different compositions. 

The spectra from the mineral component part, including OH stretching vibrations from 

P−OH around 2100 cm
-1

, ν4 PO4
3-

 band at 572-610cm
-1

, and
 
ν2 out-of-plane bending of CO3

2- 
at 

877 cm
-1

 almost all remains the same band position and shape. The broad profiles of ν3ν1 PO4
3-

 

band at 1180-927cm
-1

 all vary from one another due to orientation effect and the difference 

among bone species as well. 

6.3.3. In situ FE-SEM nanoindenation  

In situ FE-SEM nanoindentation was performed on the anterior and posterior sections of 

both normal and OI cortical bones in the two planes (Figure 6.1). The representative load-

displacement curves are shown in Figure 6.5 (a) and (b) for both transverse sections. The curve 

for the trans-posterior section is less smooth than the normal bone, while the curve for the trans-

anterior section is zigzag shaped with lots of small and short turns. These phenomena reflect a 

more heterogeneous nature of the anterior section of OI bone at nanoscale. 

The resulting elastic moduli from the transverse sections are shown in Table 6.2 and 

Figure 6.6. For the convenience of comparison, the corresponding data from normal bone are 

also listed in the Table. Three items can be compared here. (1) Comparison of interstitial 

lamellae and osteonal lamellae. As seen from Table 6.2 and Figure 6.6, for both anterior and 

posterior sections of normal and OI bones, the median elastic modulus and hardness of 

interstitial lamellae are almost all higher than those of osteonal lamellae. The reason is that the 
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interstitial lamellae are more mature than the osteonal lamellae (42,43). This trend is consistent 

for both normal and OI bones. (2) Comparison of anterior and posterior section. Figure 6.6 and 

Table 6.2 show that almost all median elastic moduli and hardness of the posterior sections are 

greater than those of values of corresponding anterior sections except the harness of normal 

bone. However, the hardness of normal bone exhibits different trend that the posterior section of 

normal bone shows much lower hardness than its anterior section. For OI bone, the trend of 

hardness is the same as that of elastic modulus. (3) Comparison of normal and OI bones. The 

median elastic modulus of OI bone is greater than those of normal bone. The hardness of OI 

bone is lower in the anterior section but higher in the posterior section than normal bone.  

                                           (a)                                                                (b) 

  

Figure 6.5. Representative load-displacement curve taken during a single nanoindentation test of 

the OI bone specimen with peak load of 50 µN: (a) Trans-anterior section; (b) Trans-posterior 

section.   

(a) (b) 
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Figure 6.6. Nanomechanical properties of normal and OI bones (anterior and posterior sections) 

in the transverse plane. OL refers to osteonal lamellae, and IL refers to interstitial lamellae. (a) 

Elastic modulus; (b) Hardness. 

 

 

(a) 

(b) 

(a) 

(b) 



 

214 

 

Table 6.2. Elastic moduli and hardness of anterior and posterior sections of human OI cortical 

bone for the transverse sections. 

Bone specimen 

Elastic moduli(GPa) Hardness(GPa) 

Min  Median   Max   Min  Median   Max   

OI 

bone 

Anterior 

section 

Osteonal lamellae 6.51  25.18  138.99  0.21 1.39 13.46 

Interstitial lamellae 1.13  30.77  123.51  0.04  1.65  9.40  

Posterior 

section 

Osteonal lamellae 21.14  30.51  81.28  0.65  1.40  4.45  

Interstitial lamellae 13.61  52.12  174.05  0.39  2.58  20.31  

Normal 

bone 

Anterior 

section 

Osteonal lamellae 6.78 18.35 54.28 0.34 2.86 18.26 

Interstitial lamellae 15.47 27.92 72.38 2.40 3.29 16.90 

Posterior 

section 

Osteonal lamellae 3.54 43.41 157.22 0.09 0.57 1.89 

Interstitial lamellae 4.59 43.30 146.75 0.31 1.07 2.07 

 

For the longitudinal sections, elastic modulus and hardness of anterior and posterior 

sections of normal and OI bones are shown in Table 6.3 and Figure 6.7. Similar three items are 

compared. (1) Comparison of different displacement. As seen from the Table 6.3 and Figure 6.7, 

the variation of elastic moduli with the lower load is greater than that with higher load in all bone 

sample types. This phenomenon has been observed previously (44). Lower load corresponds to 

shallow displacement which reflects more individual constituent properties rather than bulk 

properties with deep displacement. It is also noticed that the posterior section of OI bone has the 

same trend as the anterior section of normal bone: the median elastic modulus reduces with 

increased loading force. However, the trend of the anterior section of OI bone and the posterior 

section of normal is quite mixed. (2) Comparison of anterior and posterior sections. For normal 

bone, most median elastic moduli and hardness of posterior section are greater than those of 

anterior section. For OI bone, the median elastic moduli are hard to compare between anterior 

and posterior sections, while the hardness of posterior section is lower than that of anterior 
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section. (3) Comparison of normal and OI bones. Most median elastic moduli and hardness of 

normal bone are greater than those of OI bone. 

 

 

Figure 6.7. Nanomechanical properties of normal and OI bones (anterior and posterior sections) 

in the longitudinal plane. OL is osteonal lamellae, and IL is interstitial lamellae. (a) Elastic 

modulus; (b) Hardness. 

 

(a) 

(b) 
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Table 6.3. Elastic moduli and hardness of anterior and posterior sections of human OI cortical 

bone for the longitudinal sections. 

Bone specimen 
 Elastic modulus (GPa) Hardness (GPa) 

Load Min  Median   Max   Min  Median   Max   

OI bone 

Anterior 

section 

15µN 2.96 15.86 172.17 0.02  1.47  16.92  

50 µN 2.57 15.87 34.04 0.06  1.07  2.37  

100 µN 11.55 27.92 69.72 0.33  1.36  4.27  

Posterior 

section 

15µN 17.87  34.57  73.34  0.42  0.73  1.41  

50 µN 16.21  23.15  62.30  0.35  0.83  1.41  

100 µN 12.96  15.73  31.09  0.26  0.42  1.04  

Normal 

bone 

Anterior 

section 

15µN 10.13 32.87 60.90 0.30 2.14 4.22 

50 µN 8.00 17.57 40.20 0.21 0.88 3.42 

100 µN 8.12 10.86 18.82 0.22 0.36 1.02 

Posterior 

section 

15µN 9.54 38.26 141.24 0.46 1.23 17.41 

50 µN 8.93 33.21 103.48 0.31 1.48 8.04 

100 µN 3.92 36.47 92.96 0.20 1.61 4.86 

 

6.4. Discussion  

Bone constantly undergoes mechanical force induced modeling (reshaping) and 

remodeling processes to remove old, microdamaged bone and replace it with new bone to help 

preserve bone strength.  Remodeling of bone involves resorption of old bone by osteoclasts and 

formation of new bone by osteoblasts. The round secondary osteons only appear in the existing 

bone tissue during remodeling process with a characteristic cement line seen at the junction 

between the outermost lamella of the new osteon and the preexisting older bone. In comparison, 

the primary osteons are created in the periosteum during the modeling process; therefore the 

primary osteons are usually surrounded by parallel circumferential lamellae (45). It is largely 
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accepted that remodeling exists from the perinatal and infant stages (46). Generally, the positions 

containing circumferential lamellae maintained higher elastic modulus and ultimate tensile 

strength than those with secondary osteons (47). In this study, SEM images show that 

remodeling occurs throughout all sections characterized by secondary osteons. The lateral 

section has some areas the same as the normal bone, while the other three sections have similar 

structures. However, from the SEM images, it is hard to identify the structural differences at the 

molecular scale or nanoscale among the four sections. 

In another study, we find that the anterior section of OI bone is very porous and contains 

more non-collagenous proteins (48). SEM and FTIR studies of the four sections in the present 

study further confirm that OI bone is porous and contains more non-collagenous proteins. The 

medial section of OI bone has the largest amount of non-collageneous proteins based on the 

spectroscopic study. The intensity of C-S stretching vibration band at around 640-710 cm
-1

 is 

correlated for the longitudinal and transverse sections when it is from the same anatomical 

position of OI bone. The C-S band is probably from the replacement of cysteine for glycine in 

the collagen molecules or an increased amount of cysteine-rich osteonectin. The intensity of C-S 

band is the greatest in anterior, followed by lateral, and the least intense are posterior and medial, 

which have similar intensity. This order may reflect the extent of alteration in the collagen 

molecules or non-collagenous proteins in these four positions of OI bone. This phenomenon is in 

good agreement with the nanomechanical testing results. In situ FE-SEM nanoindentation shows 

that the anterior section of OI bone has unsmooth load-displacement curves and more site-

specific nanomechanical properties than the posterior section, indicating that the anterior section 

is more heterogeneous than the posterior section. The nanomechanical properties of the posterior 

section are also seen to have similar trends as the anterior section of normal bone: (1) For the 
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transverse section, both of the median elastic moduli and hardness values of interstitial lamellae 

are greater than osteonal lamellae; (2) As the load increases, the elastic moduli and hardness 

values decrease; (3) The variation of nanomechanical properties of the posterior section 

decreases with increased load. On the other hand, the posterior section of normal bone has some 

similarities as the anterior section of OI bone: (1) Both of them have great variation of 

mechanical properties except the hardness of transverse section of normal bone; (2) Both of them 

show irregular trend for the longitudinal sections. Overall, the comparison of nanomechanical 

properties between OI and normal bones is mixed for the transverse and longitudinal sections 

because of the variation and site-specific nanomechanical properties of bone samples. Therefore, 

more nanoindentations and bone samples are required for a better statistical study. 

As mentioned before, reduced nanomechanical properties are found in bones from OI 

type III children (3.2-12.4 years) and oim mice as compared with normal and controlled data (28, 

30). The oim model mimics moderate to severe OI in humans, similar to OI type III (30). 

Therefore, one reason for those reduced nanomechanical properties of OI bone is that, as the 

second most severe type, OI type III bone contains structurally abnormal microstructure  and 

abnormal cortical remodeling (39, 49), causing both reduced elastic modulus and reduced 

hardness. In the present study, the OI bone sample is putative type I OI, which is the mildest type 

with less abnormal microstructure than type III. The second possible reason for those reduced 

nanomechanical properties of bone from OI type III children (3.2-12.4 years) as compared with 

normal matured data is that, bone becomes stronger when it gets more mature (50). In other 

words, bone from an adult is more mature and, therefore, stronger than bone from a person 

before puberty.  Bone constantly undergoes modeling and remodeling processes to help preserve 

bone strength. Holguin et al. find that the tibial structure and strength are both influenced by 
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compression. The cortical bone volume and strength of bone increase with the loading (51). Silva 

et al. find the same trend that with loading , there is an increase in cortical bone volume, and they 

also find that there is significant increases in osteoblast/matrix genes in older mice (52). Under 

microgravity conditions, there are changes in the bone tissue such as the decreasing of bone mass 

and the reduction of bone strength (53). These studies confirm that bone adapts itself to the 

bearing force. Even with genetic bone disease, bone still adapts itself to obtain a higher strength 

to adapt to the increased body weight. Therefore, in OI patients, after puberty bone usually 

becomes stronger and less fractures occur (50). Our study shows that for the transverse sections, 

all interstitial lamellae have greater elastic moduli and hardness values than osteonal lamellae 

(54). Interstitial lamellae are made up of the remnants of the remodeled old osteons or primary 

bone tissue. The interstitial lamellae are more mature than newly formed secondary osteons. 

Therefore, the stronger mechanical properties of bone after puberty are due to the replacement of 

microdamaged bone by new secondary osteons through the remodeling process.  

 

6.5. Conclusion 

In the present study, SEM and PA-FTIR are utilized to characterize the OI human cortical 

bone (putative type I). Microstructure and IR spectra from four anatomical positions (anterior, 

medial, posterior, and lateral) in two planes (longitudinal and transverse) are compared. In 

addition, nanomechanical properties of the anterior and posterior sections from both normal and 

OI bones are measured using in situ FE-SEM nanoindentation. SEM images show that 

remodeling process occurs throughout all of the OI sections. Comparatively, the medial section 

contains less secondary osteons and the lateral section contains normal microstructure while the 

other three sections contain microstructures similar to normal.  
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FTIR spectra showed that the medial section contains more non-collagenous proteins 

than the anterior section. The lateral and posterior sections have even less non-collagenous 

proteins. The abnormal C-S band, which is probably from the replacement of cysteine for glycine 

in the collagen molecules or an increased amount of cysteine-rich osteonectin, appears more 

prominently in the anterior section than the lateral section. Meanwhile, there is almost no C-S 

band from the posterior and medial sections. This FTIR spectra analysis is in a good agreement 

with nanomechanical testing results that the anterior section of OI bone seems more 

heterogeneous in its properties. As compared to the anterior section, the posterior section 

exhibits more similar nanomechanical properties to the anterior section of normal bone. The 

nanomechanical properties of interstitial lamellae in all these bone samples are consistently 

greater than those of osteonal lamellae due to more mature nature of interstitial lamellae. 

However, other nanomechanical properties of these sections do not accord with each other, 

indicating a heterogeneous and site-specific nature of bone samples. It also seems that the 

nanomechanical properties of bone depends on its anatomical section and its direction as well.  

In order to better understand the molecular mechanism of OI, genomic identity of this 

bone material used in the present study is needed. Also, in situ FE-SEM nanoindentation on the 

medial and lateral sections are also required.  
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CHAPTER 7. SUMMARY AND CONCLUSIONS 

This chapter summarizes and concludes the research presented in this dissertation. 

 Photoacoustic-Fourier transform infrared spectroscopy (PA-FTIR) experiments were 

conducted to investigate the orientational differences in molecular structure of human 

bone. PA-FTIR has the priority to investigate ―undisturbed‖ bone samples with the 

protection of coupling inert gas which can inhibit bacterial growth of bone by 

replacing oxygen. It is found that the photoacoustic mode (linear-scan) can obtain 

basically similar spectra of bone as compared to the traditional transmission mode, 

but it seem more sensitive to amide III and ν2 carbonate bands. As indicated by ν1 

phosphate band in the spectra, phosphate ion geometry appears less symmetric in its 

undisturbed state as detected by the photoacoustic mode as compared to higher 

symmetry observed using transmission mode on disturbed samples. Moreover, the 

PA-FTIR spectra indicate a band at 1747 cm
-1

 possibly resulting from C=O stretching 

of lipids, cholesterol esters, and triglycerides from the arteries. Comparison of the 

spectra in transverse and longitudinal cross-sections demonstrates that, the surface of 

the longitudinal section bone appears to have more organic matrix exposed and with 

higher mineral stoichiometry. The PA-FTIR depth profiling experiments on human 

cortical bone also indicate the influence of water on OH band and the cutting effects 

on amide I and mineral bands. 

 PA-FTIR, scanning electron microscopy (SEM), and X-ray diffraction (XRD) are 

used to describe the structural and compositional differences between osteogenesis 

imperfecta (OI) and healthy bones at the molecular-, micro-, and macro- scale levels. 

OI bone exhibits more porous, fibrous features, abnormal collagen fibrils, and 
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abnormal mineral deposits, as revealed by SEM images. Likewise, photoacoustic-

Fourier transform infrared spectroscopy (PA-FTIR) experiments indicate an aberrant 

collagen structure. The spectra also reveal a slightly altered mineral structure in OI. In 

contrast, there is neither significant difference in the non-collagenous proteins (NCPs) 

composition as shown in the spectra nor apparent change in the crystal structure 

between OI and healthy bone minerals as shown in x-ray diffraction (XRD) and 

Energy-dispersive X-ray spectroscopy (EDS) results. This phenomenon indicates that 

the biomineralization process is more controlled by the bone cells and non-

collagenous phosphorylated proteins. PA-FTIR studies of OI bone also confirm that 

there is an orientational difference in the stoichiometry of the mineral in OI bone. In 

addition, a larger volume of the hydrated layer in the transverse plane than the 

longitudinal plane of the mineral crystal structure is proposed. The appearance of a 

new C-S band in FTIR spectra in OI bone suggests the substitution of glycine by 

cysteine in collagen molecules or/and an increased amount of cysteine-rich 

osteonectin which relates to mineral nucleation and mineral crystal formation. 

 Modulus mapping technique and in situ field emission-scanning electron microscope 

(FE-SEM) nanoindentation are both applied for the first time on ―undisturbed‖ 

normal and OI human cortical bones at the nanometer and sub-micro scale levels in 

this work. Modulus mapping test reveals the elastic moduli of near-pure 

hydroxyapatite and collagen to be 189.85 GPa and 2.42 GPa for normal bone, and 

294.69 GPa and 2.85 GPa for OI bone, respectively. Modulus mapping also indicates 

spatial variation of elastic moduli consistent with the distribution of mineralized fibril 

and extrafibrillar mineral. From modulus maps, the diameter of collagen fiber and the 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCwQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEnergy-dispersive_X-ray_spectroscopy&ei=n-d9VLLeBsG2yAT7_YHACQ&usg=AFQjCNGukh_d_Co5x-jjjV9UjtGctkEYiA&bvm=bv.80642063,d.aWw
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size of mineral crystals in OI are observed to be smaller and the mineral crystal in OI 

is also observed to be less heterogeneous than those from normal bone. The median 

elastic moduli of OI bone are greater than those of normal bone. In situ FE-SEM 

nanoindentation reveals the existence of a highly mineralized inner ring with higher 

elastic moduli adjacent to the Haversian canal, and that the elastic nanomechanical 

properties of interstitial lamellae are greater than osteonal lamellae. A periodic 

modulation in modulus corresponding to the width of a lamella is also observed in in 

situ FE-SEM nanoindentation. Varying median elastic moduli in the transverse and 

longitudinal orientations obtained from these two experiments indicate that at 

nanoscale, the interaction between mineral and collagen influences the mechanical 

properties; while at micro scale, the orientation and arrangement of mineral and 

collagen play more significant roles.  OI bone in the transverse section 

(nanoindentation force is applied along the physiological loading direction) shows 

higher elastic moduli for both interstitial and osteonal lamellae, but lower hardness 

than normal bone.  

 Time-dependent nanomechanical properties of human cortical bone were studied 

using dynamic nanoindentation (nanoDMA) at the sub-micro scale level. The samples 

include intact, demineralized, and OI human cortical bone specimens. Loss tangent, 

tan δ, was considered as a measure of the degree of the viscoelastic response. 

Variable dynamic load tests show that the viscoelastic responses of all bone 

specimens increase with frequency. With demineralization, bone specimens show 

greater viscoelastic response than intact specimens. OI bone shows similar 

viscoelastic response as normal bone. Results suggest that the viscoelasticity of bone 



 

231 

 

is mostly attributable to the mineral phase. The present study adds to the 

understanding of viscoelastic response of bone material. In addition, the dynamic 

mechanical properties of OI bone are firstly reported here.  

 The microstructure and molecular composition of different anatomical positions 

(anterior, medial, posterior, and lateral regions) in the diaphysis of an OI human tibia 

are also examined for the first time.  Study shows that although there is no significant 

microstructural difference seen in SEM images, FTIR results still reveals some 

differences in molecular composition of the four anatomical positions. This FTIR 

spectra analysis is in a good agreement with in situ FE-SEM nanoindentation testing 

that the anterior section of OI bone seems more heterogeneous in its properties. 

Nanomechanical properties of interstitial lamellae in all these bone samples are 

consistently greater than those of osteonal lamellae. The nanomechanical properties 

of bone depend on its anatomical section and its direction as well.
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CHAPTER 8.   MAJOR CONTRIBUTIONS 

Our research makes four major contributions: 

 The development of a novel methodology for conducting infrared spectroscopic study on 

―undisturbed‖ biological samples using photoacoustic-Fourier transform infrared 

spectroscopy (PA-FTIR). Comparison between photoacoustic and transmission modes 

were conducted. We find that orientational differences in stoichiometry of hydroxyapatite 

are influenced by the interactions between mineral and collagen molecules. Another 

finding is that FTIR spectra of OI (putative type I) bone show the appearance of a new C-

S band which might be from either the substitution of glycine by cysteine in collagen 

molecules or/and an increased amount of cysteine-rich osteonectin which relates to 

mineral nucleation and mineral crystal formation. 

 For the first time we performed in situ field emission-scanning electron microscopy (FE-

SEM) nanoindentation on bone samples. In situ FE-SEM nanoindentation provides a new 

tool to investigate the mechanical properties of materials with high resolution image and 

precise positioning of the indenter. We find the existence of a highly mineralized inner 

ring with higher elastic moduli adjacent to the Haversian canal, and that the elastic 

nanomechanical properties of interstitial lamellae are greater than osteonal lamellae. A 

periodic modulation in modulus corresponding to the width of a lamella is also observed 

in in situ FE-SEM nanoindentation. The nanomechanical properties of bone depends on 

its anatomical section and its direction as well. 

 The difference of elastic modulus values acquired from modulus mapping and 

nanoindentation tests indicates a scale issue, i.e. at different length scales, due to different 
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arrangement and different interactions among the constituents, materials exhibit different 

mechanical behaviors. 

 We compared the microstructure, compositional differences, and nanomechanical 

properties of healthy and osteogenesis imperfect (OI) bones, helping to understand the 

molecular bases of OI disease and the mineralization condition in OI bone. We find that 

the defective collagen results in a distorted microstructure in bone and also that the 

mineralization of hydroxyapatite in OI bone is also altered.  

 Several novel experimental findings: We find that modulus mapping reveals the elastic 

moduli of near-pure hydroxyapatite and collagen to be 189.85 GPa and 2.42 GPa for 

normal bone, and 294.69 GPa and 2.85 GPa for OI bone, respectively. Modulus mapping 

also shows the distribution of mineralized fibril and extrafibrillar mineral according to the 

spatial variation of elastic properties. From modulus maps, the diameter of collagen fiber 

and the size of mineral crystals in OI are observed to be smaller and the mineral crystal in 

OI is also observed to be less heterogeneous than those from normal bone. In addition, 

the viscoelastic response of all bone specimens (intact, demineralized, and OI) decreases 

with frequency. Despite the significant altered collagen molecules, the overall similar 

dynamic nanomechanical behaviors of OI (putative type I) bone and normal bone indicate 

that the viscoelasticity of intact bone is mostly determined by the mineral. The collagen 

phase also contributes to the viscoelasticity to some extent. Lastly, different anatomical 

positions (anterior, medial, posterior, and lateral regions) in the diaphysis of an OI human 

tibia show varying molecular compositions as revealed by FTIR spectra.  
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CHAPTER 9.  FUTURE WORK 

The following are possible future directions for investigating the multiscale behavior of 

both healthy and osteogenesis imperfecta (OI) bones: 

 Acquiring an OI femur and then comparing healthy and OI femurs or acquiring a 

healthy tibia and then comparing healthy and OI tibias.  

 Conducting nanomechanical testing on demineralized healthy and OI bones using 

atomic force microscope (AFM) to investigate the mechanical properties of their 

collagen fibrils.  

 Conducting microindentation and/or larger scale mechanical testing of both healthy 

and OI bones. 

 Obtaining more bone samples and conducting statistical study. 

 Collagen analysis or Noncollagenous proteins (NCPs) analysis or genetic analysis of 

the OI bone is required to confirm the source of the C-S band at around 640-710 cm
-1

 

on FTIR spectra. 

  



 

235 

 

APPENDIX A.  INFORMATION SHEETS FOR HUMAN BONE SAMPLES 

A.1.  Healthy human femur 

 

Figure A.1. Information sheet of healthy human femur from NDRI 
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A.2.  Osteogenesis imperfecta human tibia 

 

Figure A.2. Information sheet of OI human tibia from NDRI 
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APPENDIX B.  SEM IMAGES OF HEALTHY HUMAN FEMUR 

B.1. Anterior section 

B.1.1. Transverse section 

B.1.1.1. Transverse section of healthy human femur (anterior), fixed with a series of chemicals 

and fractured in liquid N2 

B.1.1.1.1. Acquired on 12/1/2010 

 

Figure B.1．SEM image of healthy human 

femur (transverse, anterior section) 85

 

Figure B.2． SEM image of healthy human 

femur (transverse, anterior section) 100

 

Figure B.3. SEM image of healthy human 

femur (transverse, anterior section) 550 

 

Figure B.4. SEM image of healthy human 

femur (transverse, anterior section) 1,000 
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Figure B.5．SEM image of healthy human 

femur (transverse, anterior section) 5,000 

 

Figure B.6. SEM image of healthy human 

femur (transverse, anterior section) 13,000 

 

Figure B.7. SEM image of healthy human 

femur (transverse, anterior section) 15,000

 

Figure B.8. SEM image of healthy human 

femur (transverse, anterior section) 40,000

 

Figure B.9. SEM image of healthy human 

femur (transverse, anterior section) 70,000 

 

Figure B.10. SEM image of healthy human 

femur (transverse, anterior section) 37,000 
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B.1.1.1.2. Acquired on 3/2/2011 

 

Figure B.11. SEM image of healthy human 

femur (transverse, anterior section) 400 

 

Figure B.12. SEM image of healthy human 

femur (transverse, anterior section) 1,400

 

Figure B.13. SEM image of healthy human 

femur (transverse, anterior section) 60

  

Figure B.14. SEM image of healthy human 

femur (transverse, anterior section) 450

 

Figure B.15. SEM image of healthy human 

femur (transverse, anterior section) 60

  

Figure B.16. SEM image of healthy human 

femur (transverse, anterior section) 500 
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Figure B.17. SEM image of healthy human femur (transverse, anterior section) 1,500 

B.1.1.2. Transverse section of healthy human femur (anterior), no chemical treatment, fractured 

in liquid N2 (3/25/2011) 

 

Figure B.18. SEM image of healthy human 

femur (transverse, anterior section) 85

  

Figure B.19. SEM image of healthy human 

femur (transverse, anterior section) 100

 

Figure B.20. SEM image of healthy human 

femur (transverse, anterior section) 550

  

Figure B.21. SEM image of healthy human 

femur (transverse, anterior section) 1,000 
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Figure B.22. SEM image of healthy human 

femur (transverse, anterior section) 15,000

  

Figure B.23. SEM image of healthy human 

femur (transverse, anterior section) 40,000

 

Figure B.24. SEM image of healthy human 

femur (transverse, anterior section) 70,000 

 

Figure B.25. SEM image of healthy human 

femur (transverse, anterior section) 40,000

B.1.1.3. Transverse section of healthy human femur (anterior), no chemical treatment, polished 

(3/2/2011) 

 

Figure B.26. SEM image of healthy human 

femur (transverse, anterior section) 100

  

Figure B.27. SEM image of healthy human 

femur (transverse, anterior section) 220
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Figure B.28. SEM image of healthy human 

femur (transverse, anterior section) 180

  

Figure B.29. SEM image of healthy human 

femur (transverse, anterior section) 350 

 

Figure B.30． SEM image of healthy 

human femur (transverse, anterior section) 

750

  

Figure B.31． SEM image of healthy 

human femur (transverse, anterior section) 

900 

 

Figure B.32．SEM image of healthy human 

femur (transverse, anterior section) 5,000

  

Figure B.33. SEM image of healthy human 

femur (transverse, anterior section) 2,000 
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B.1.2. Longitudinal section 

B.1.2.1. Longitudinal section of healthy human femur (anterior), fixed with a series of chemical 

and fractured in liquid N2 (12/1/2010)

 

Figure B.34. SEM image of healthy human 

femur (longi., anterior section) 30,000

  

Figure B.35． SEM image of healthy 

human femur (longi., anterior section) 

75,000

 

Figure B.36． SEM image of healthy 

human femur (longi., anterior section) 

7,000

  

Figure B.37. SEM image of healthy human 

femur (longi., anterior section) 20,000
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Figure B.38. SEM image of healthy human 

femur (longi., anterior section) 13,000

  

Figure B.39． SEM image of healthy 

human femur (longi., anterior section) 

3,000 

 

Figure B.40. SEM image of healthy human 

femur (longi., anterior section) 10,000

  

Figure B.41. SEM image of healthy human 

femur (longi., anterior section) 30,000 

 

Figure B.42. SEM image of healthy human 

femur (longi., anterior section) 80,000

  

Figure B.43. SEM image of healthy human 

femur (longi., anterior section) 15,000 
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Figure B.44. SEM image of healthy human 

femur (longi., anterior section) 25,000

  

Figure B.45. SEM image of healthy human 

femur (longi., anterior section) 40,000 

(2) Acquired on 3/2/2011 

 

Figure B.46. SEM image of healthy human 

femur (longi., anterior section) 40

  

Figure B.47． SEM image of healthy 

human femur (longi., anterior section) 150 

 

Figure B.48. SEM image of healthy human 

femur (longi., anterior section) 700

  

Figure B.49. SEM image of healthy human 

femur (longi., anterior section) 3,500 
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Figure B.50. SEM image of healthy human 

femur (longi., anterior section) 10,000

  

Figure B.51. SEM image of healthy human 

femur (longi., anterior section) 20,000

 

Figure B.52. SEM image of healthy human 

femur (longi., anterior section) 60,000

  

Figure B.53. SEM image of healthy human 

femur (longi., anterior section) 120,000 

 

Figure B.54. SEM image of healthy human 

femur (longi., anterior section) 40,000

  

Figure B.55. SEM image of healthy human 

femur (longi., anterior section) 15,000 
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Figure B.56. SEM image of healthy human 

femur (longi., anterior section) 35,000

  

Figure B.57. SEM image of healthy human 

femur (longi., anterior section) 40,000 

 

Figure B.58. SEM image of healthy human 

femur (longi., anterior section) 60,000

  

Figure B.59. SEM image of healthy human 

femur (longi., anterior section) 60,000

 

Figure B.60. SEM image of healthy human 

femur (longi., anterior section) 15,000

  

Figure B.61. SEM image of healthy human 

femur (longi., anterior section) 40,000 
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Figure B.62. SEM image of healthy human femur (longi., anterior section) 40,000 

B.1.2.2. Longitudinal section of healthy human femur (anterior), polished (3/2/2011) 

 

Figure B.63. SEM image of healthy human 

femur (longi., anterior section) 15,000

  

Figure B.64. SEM image of healthy human 

femur (longi., anterior section) 50 

 

Figure B.65. SEM image of healthy human 

femur (longi., anterior section) 20,000

  

Figure B.66. SEM image of healthy human 

femur (longi., anterior section) 50,000 
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Figure B.67. SEM image of healthy human 

femur (longi., anterior section) 35,000

  

Figure B.68. SEM image of healthy human 

femur (longi., anterior section) 23,000 

 

Figure B.69. SEM image of healthy human femur (longi., anterior section) 80,000 

 

B.2. Medial section 

B.2.1. Transverse section 

 

Figure B.70. SEM image of healthy human 

femur (transverse, medial section) 25

  

Figure B.71. SEM image of healthy human 

femur (transverse, medial section) 50 
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Figure B.72. SEM image of healthy human 

femur (transverse, medial section) 30

   

Figure B.73. SEM image of healthy human 

femur (transverse, medial section) 100

 

Figure B.74. SEM image of healthy human 

femur (transverse, medial section) 300

  

Figure B.75. SEM image of healthy human 

femur (transverse, medial section) 1,000 

 

Figure B.76. SEM image of healthy human 

femur (transverse, medial section) 100

   

Figure B.77. SEM image of healthy human 

femur (transverse, medial section) 95 
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B.2.2. Longitudinal section 

 

Figure B.78. SEM image of healthy human 

femur (longi., medial section) 25

   

Figure B.79. SEM image of healthy human 

femur (longi., medial section) 50 

 

Figure B.80. SEM image of healthy human 

femur (longi., medial section) 150

  

Figure B.81. SEM image of healthy human 

femur (longi., medial section) 1,000 

 

Figure B.82. SEM image of healthy human 

femur (longi., medial section) 20,000

  

Figure B.83. SEM image of healthy human 

femur (longi., medial section) 80,000 
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Figure B.84. SEM image of healthy human 

femur (longi., medial section) 100

  

Figure B.85. SEM image of healthy human 

femur (longi., medial section) 1,000 

 

Figure B.86. SEM image of healthy human 

femur (longi., medial section) 10,000

   

Figure B.87. SEM image of healthy human 

femur (longi., medial section) 40,000 

 

Figure B.88. SEM image of healthy human 

femur (longi., medial section) 80,000

  

Figure B.89. SEM image of healthy human 

femur (longi., medial section) 80,000 
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Figure B.90. SEM image of healthy human femur (longi., medial section) 80,000  

 

B.3. Lateral section 

B.3.1. Transverse section 

 

Figure B.91. SEM image of healthy human 

femur (transverse, lateral section) 25

 

Figure B.92. SEM image of healthy human 

femur (longi., medial section) 25
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Figure B.93. SEM image of healthy human 

femur (transverse, lateral section) 100

  

Figure B.94. SEM image of healthy human 

femur (transverse, lateral section) 500 

 

Figure B.95. SEM image of healthy human 

femur (transverse, lateral section) 3,000 

 

Figure B.96. SEM image of healthy human 

femur (transverse, lateral section) 20,000 

 

Figure B.97. SEM image of healthy human 

femur (transverse, lateral section) 80,000

 

Figure B.98. SEM image of healthy human 

femur (transverse, lateral section) 80,000
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Figure B.99. SEM image of healthy human 

femur (transverse, lateral section) 10,000

  

Figure B.100. SEM image of healthy human 

femur (transverse, lateral section) 7,000

 

Figure B.101. SEM image of healthy human 

femur (transverse, lateral section) 40,000

  

Figure B.102. SEM image of healthy human 

femur (transverse, lateral section) 10,000 

B.3.2. Longitudinal section 

 

Figure B.103. SEM image of healthy human 

femur (longi., lateral section) 25

  

Figure B.104. SEM image of healthy human 

femur (longi., lateral section) 100 



 

256 

 

 

Figure B.105. SEM image of healthy human 

femur (longi., lateral section) 100

  

Figure B.106. SEM image of healthy human 

femur (longi., lateral section) 100 

 

Figure B.107. SEM image of healthy human 

femur (longi., lateral section) 500

  

Figure B.108. SEM image of healthy human 

femur (longi., lateral section) 1,000 

 

Figure B.109. SEM image of healthy human 

femur (longi., lateral section) 7,000

  

Figure B.110. SEM image of healthy human 

femur (longi., lateral section) 80,000 
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Figure B.111. SEM image of healthy human femur (longi., lateral section) 40,000 

   

B.4. Posterior section 

B.4.1. Transverse section 

 

Figure B.112. SEM image of healthy human 

femur (transverse, posterior section) 25

  

Figure B.113. SEM image of healthy human 

femur (transverse, posterior section) 25 
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Figure B.114. SEM image of healthy human 

femur (transverse, posterior section) 25

  

Figure B.115. SEM image of healthy human 

femur (transverse, posterior section) 100

 

Figure B.116. SEM image of healthy human 

femur (transverse, posterior section) 1,000

  

Figure B.117. SEM image of healthy human 

femur (transverse, posterior section) 4,500 

 

Figure B.118. SEM image of healthy human 

femur (transverse, posterior section) 200

  

Figure B.119. SEM image of healthy human 

femur (transverse, posterior section) 

20,000 
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Figure B.120. SEM image of healthy human 

femur (transverse, posterior section) 

30,000

  

Figure B.121. SEM image of healthy human 

femur (transverse, posterior section) 

40,000 

B.4.2. Longitudinal section 

 

Figure B.122. SEM image of healthy human 

femur (longi., posterior section) 25

  

Figure B.123. SEM image of healthy human 

femur (longi., posterior section) 100
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Figure B.124. SEM image of healthy human 

femur (longi., posterior section) 550

  

Figure B.125. SEM image of healthy human 

femur (longi., posterior section) 3,000

 

Figure B.126. SEM image of healthy human 

femur (longi., posterior section) 10,000

  

Figure B.127. SEM image of healthy human 

femur (longi., posterior section) 45,000 

 

Figure B.128. SEM image of healthy human 

femur (longi., posterior section) 100

  

Figure B.129. SEM image of healthy human 

femur (longi., posterior section) 100 
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Figure B.130. SEM image of healthy human 

femur (longi., posterior section) 43

  

Figure B.131. SEM image of healthy human 

femur (longi., posterior section) 25

 

Figure B.132. SEM image of healthy human 

femur (longi., posterior section) 100 

 

Figure B.133. SEM image of healthy human 

femur (longi., posterior section) 150 

 

Figure B.134. SEM image of healthy human 

femur (longi., posterior section) 180

  

Figure B.135. SEM image of healthy human 

femur (longi., posterior section) 180 
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APPENDIX C.  SEM IMAGES OF OI HUMAN TIBIA 

C.1. Anterior section, fixed with a series of chemicals and fractured in liquid N2  

C.1.1. Transverse section 

C.1.1.1.  Acquired on 12/10/2012 (JEOL JSM-7600F analytical high resolution field-emission 

scanning electron microscope (FE-SEM)) 

 

Figure C.1. SEM image of OI human tibia 

(transverse, anterior section) 37

  

Figure C.2. SEM image of OI human tibia 

(transverse, anterior section) 100

 

Figure C.3. SEM image of OI human tibia 

(transverse, anterior section) 150

  

Figure C.4. SEM image of OI human tibia 

(transverse, anterior section) 250 
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Figure C.5. SEM image of OI human tibia 

(transverse, anterior section) 650

  

Figure C.6. SEM image of OI human tibia 

(transverse, anterior section) 40,000 

 

Figure C.7. SEM image of OI human tibia 

(transverse, anterior section) 80,000

  

Figure C.8. SEM image of OI human tibia 

(transverse, anterior section) 3,000 

 

Figure C.9. SEM image of OI human tibia 

(transverse, anterior section) 10,000

  

Figure C.10. SEM image of OI human tibia 

(transverse, anterior section) 40,000 
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Figure C.11. SEM image of OI human tibia 

(transverse, anterior section) 40,000

  

Figure C.12. SEM image of OI human tibia 

(transverse, anterior section) 3,000 

 

Figure C.13. SEM image of OI human tibia 

(transverse, anterior section) 3,000

 

Figure C.14. SEM image of OI human tibia 

(transverse, anterior section) 7,000 

 

Figure C.15. SEM image of OI human tibia 

(transverse, anterior section) 35,000

 

Figure C.16. SEM image of OI human tibia 

(transverse, anterior section) 40,000 
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C.1.1.2.  Acquired on 2/6/2014 (JEOL JSM-6490LV scanning electron microscope (SEM)) 

 

Figure C.17. SEM image of OI human tibia 

(transverse, anterior section) 25

  

Figure C.18. SEM image of OI human tibia 

(transverse, anterior section) 50 

 

Figure C.19. SEM image of OI human tibia 

(transverse, anterior section) 100

  

Figure C.20. SEM image of OI human tibia 

(transverse, anterior section) 1,000 

 

Figure C.21. SEM image of OI human tibia 

(transverse, anterior section) 5,000

  

Figure C.22. SEM image of OI human tibia 

(transverse, anterior section) 10,000 
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Figure C.23. SEM image of OI human tibia 

(transverse, anterior section) 20,000

 

Figure C.24. SEM image of OI human tibia 

(transverse, anterior section) 250 

 

Figure C.25. SEM image of OI human tibia 

(transverse, anterior section) 1,000

 

Figure C.26. SEM image of OI human tibia 

(transverse, anterior section) 100 

 

Figure C.27. SEM image of OI human tibia 

(transverse, anterior section) 750

 

Figure C.28. SEM image of OI human tibia 

(transverse, anterior section) 500 
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Figure C.29. SEM image of OI human tibia 

(transverse, anterior section) 1,000

 

Figure C.30. SEM image of OI human tibia 

(transverse, anterior section) 500 

 

Figure C.31. SEM image of OI human tibia 

(transverse, anterior section) 100

 

Figure C.32. SEM image of OI human tibia 

(transverse, anterior section) 500 

 

Figure C.33. SEM image of OI human tibia 

(transverse, anterior section) 700

 

Figure C.34. SEM image of OI human tibia 

(transverse, anterior section) 3,000 
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Figure C.35. SEM image of OI human tibia (transverse, anterior section) 10,000 

C.1.2. Longitudinal section  

C.1.2.1.  Acquired on 1/30/201 

 

Figure C.36. SEM image of OI human tibia 

(longi., anterior section) 100

  

Figure C.37. SEM image of OI human tibia 

(longi., anterior section) 1,500 
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Figure C.38. SEM image of OI human tibia 

(longi., anterior section) 6,000

  

Figure C.39. SEM image of OI human tibia 

(longi., anterior section) 15,000 

 

Figure C.40. SEM image of OI human tibia 

(longi., anterior section) 35

  

Figure C.41. SEM image of OI human tibia 

(longi., anterior section) 150 

 

Figure C.42. SEM image of OI human tibia 

(longi., anterior section) 50

 

Figure C.43. SEM image of OI human tibia 

(longi., anterior section) 250 
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Figure C.44. SEM image of OI human tibia 

(longi., anterior section) 100

  

Figure C.45. SEM image of OI human tibia 

(longi., anterior section) 50 

 

Figure C.46. SEM image of OI human tibia 

(longi., anterior section) 150

  

Figure C.47. SEM image of OI human tibia 

(longi., anterior section) 3,000 

 

Figure C.48. SEM image of OI human tibia 

(longi., anterior section) 6,000

  

Figure C.49. SEM image of OI human tibia 

(longi., anterior section) 7,000 
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Figure C.50. SEM image of OI human tibia 

(longi., anterior section) 3,000

  

Figure C.51. SEM image of OI human tibia 

(longi., anterior section) 7,000 

 

Figure C.52. SEM image of OI human tibia 

(longi., anterior section) 30,000

 

Figure C.53. SEM image of OI human tibia 

(longi., anterior section) 100 

 

Figure C.54. SEM image of OI human tibia 

(longi., anterior section) 3,000

  

Figure C.55. SEM image of OI human tibia 

(longi., anterior section) 7,000 
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Figure C.56. SEM image of OI human tibia 

(longi., anterior section) 3,000

  

Figure C.57. SEM image of OI human tibia 

(longi., anterior section) 7,000 

 

Figure C.58. SEM image of OI human tibia 

(longi., anterior section) 14,000

  

Figure C.59. SEM image of OI human tibia 

(longi., anterior section) 18,000 

 

Figure C.60. SEM image of OI human tibia 

(longi., anterior section) 3,000

 

Figure C.61. SEM image of OI human tibia 

(longi., anterior section) 7,000 
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Figure C.62. SEM image of OI human tibia 

(longi., anterior section) 14,000

  

Figure C.63. SEM image of OI human tibia 

(longi., anterior section) 18,000 

 

Figure C.64. SEM image of OI human tibia 

(longi., anterior section) 3,000

  

Figure C.65. SEM image of OI human tibia 

(longi., anterior section) 7,000 

 

Figure C.66. SEM image of OI human tibia 

(longi., anterior section) 3,300

  

Figure C.67. SEM image of OI human tibia 

(longi., anterior section) 3,000 
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Figure C.68. SEM image of OI human tibia 

(longi., anterior section) 7,000

  

Figure C.69. SEM image of OI human tibia 

(longi., anterior section) 14,000 

 

Figure C.70. SEM image of OI human tibia 

(longi., anterior section) 18,000

 

Figure C.71. SEM image of OI human tibia 

(longi., anterior section) 700 

 

Figure C.72. SEM image of OI human tibia 

(longi., anterior section) 7,000

 

Figure C.73. SEM image of OI human tibia 

(longi., anterior section) 3,000 
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Figure C.74. SEM image of OI human tibia 

(longi., anterior section) 100

 

Figure C.75. SEM image of OI human tibia 

(longi., anterior section) 100 

 

Figure C.76. SEM image of OI human tibia 

(longi., anterior section) 3,300

  

Figure C.77. SEM image of OI human tibia 

(longi., anterior section) 7,000 

 

Figure C.78. SEM image of OI human tibia 

(longi., anterior section) 18,000

  

Figure C.79. SEM image of OI human tibia 

(longi., anterior section) 18,000 
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Figure C.80. SEM image of OI human tibia 

(longi., anterior section) 3,000

  

Figure C.81. SEM image of OI human tibia 

(longi., anterior section) 300 

 

Figure C.82. SEM image of OI human tibia 

(longi., anterior section) 300

  

Figure C.83. SEM image of OI human tibia 

(longi., anterior section) 3,000 

 

Figure C.84. SEM image of OI human tibia 

(longi., anterior section) 3,000

  

Figure C.85. SEM image of OI human tibia 

(longi., anterior section) 7,000 
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C.1.2.2. Acquired on 12/10/2012 

 

Figure C.86. SEM image of OI human tibia 

(longi., anterior section) 25

  

Figure C.87. SEM image of OI human tibia 

(longi., anterior section) 50 

 

Figure C.88. SEM image of OI human tibia 

(longi., anterior section) 250 

 

Figure C.89. SEM image of OI human tibia 

(longi., anterior section) 500 

 

Figure C.90. SEM image of OI human tibia 

(longi., anterior section) 1,000

  

Figure C.91. SEM image of OI human tibia 

(longi., anterior section) 3,000 
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Figure C.92. SEM image of OI human tibia 

(longi., anterior section) 10,000

  

Figure C.93. SEM image of OI human tibia 

(longi., anterior section) 7,000 

 

C.2. Medial section, fixed with a series of chemicals and fractured in liquid N2  

C.2.1. Transverse section (acquired on 2/6/2014) 

 

Figure C.94. SEM image of OI human tibia 

(transverse, medial section) 25

  

Figure C.95. SEM image of OI human tibia 

(transverse, medial section) 50 
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Figure C.96. SEM image of OI human tibia 

(transverse, medial section) 500

  

Figure C.97. SEM image of OI human tibia 

(transverse, medial section) 1,000 

 

Figure C.98. SEM image of OI human tibia 

(transverse, medial section) 3,000

 

Figure C.99. SEM image of OI human tibia 

(transverse, medial section) 10,000 

 

Figure C.100. SEM image of OI human tibia 

(transverse, medial section) 3,000

 

Figure C.101. SEM image of OI human tibia 

(transverse, medial section) 10,000 
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Figure C.102. SEM image of OI human tibia 

(transverse, medial section) 250

 

Figure C.103. SEM image of OI human tibia 

(transverse, medial section) 500 

 

Figure C.104. SEM image of OI human tibia 

(transverse, medial section) 1,000

 

Figure C.105. SEM image of OI human tibia 

(transverse, medial section) 3,000 

 

Figure C.106. SEM image of OI human tibia 

(transverse, medial section) 10,000

 

Figure C.107. SEM image of OI human tibia 

(transverse, medial section) 70 
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Figure C.108. SEM image of OI human tibia 

(transverse, medial section) 25

 

Figure C.109. SEM image of OI human tibia 

(transverse, medial section) 50 

 

Figure C.110. SEM image of OI human tibia 

(transverse, medial section) 100

 

Figure C.111. SEM image of OI human tibia 

(transverse, medial section) 3,000 

 

Figure C.112. SEM image of OI human tibia 

(transverse, medial section) 100

 

Figure C.113. SEM image of OI human tibia 

(transverse, medial section) 250 



 

282 

 

 

Figure C.114. SEM image of OI human tibia 

(transverse, medial section) 1,000

  

Figure C.115. SEM image of OI human tibia 

(transverse, medial section) 3,000 

 

Figure C.116. SEM image of OI human tibia 

(transverse, medial section) 250

 

Figure C.117. SEM image of OI human tibia 

(transverse, medial section) 3,000 

 

Figure C.118. SEM image of OI human tibia 

(transverse, medial section) 500

 

Figure C.119. SEM image of OI human tibia 

(transverse, medial section) 1,000 
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Figure C.120. SEM image of OI human tibia 

(transverse, medial section) 3,000

 

Figure C.121. SEM image of OI human tibia 

(transverse, medial section) 10,000 

 

Figure C.122. SEM image of OI human tibia 

(transverse, medial section) 500

 

Figure C.123. SEM image of OI human tibia 

(transverse, medial section) 1,000 

 

Figure C.124. SEM image of OI human tibia 

(transverse, medial section) 3,000

 

Figure C.125. SEM image of OI human tibia 

(transverse, medial section) 2,000 
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Figure C.126. SEM image of OI human tibia 

(transverse, medial section) 10,000

 

Figure C.127. SEM image of OI human tibia 

(transverse, medial section) 500 

 

Figure C.128. SEM image of OI human tibia 

(transverse, medial section) 1,000

  

Figure C.129. SEM image of OI human tibia 

(transverse, medial section) 250 

 

Figure C.130. SEM image of OI human tibia 

(transverse, medial section) 250

 

Figure C.131. SEM image of OI human tibia 

(transverse, medial section) 1,000 
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Figure C.132. SEM image of OI human tibia 

(transverse, medial section) 3,000

  

Figure C.133. SEM image of OI human tibia 

(transverse, medial section) 500 

C.2.2. Longitudinal section (acquired on 2/5/2014) 

 

Figure C.134. SEM image of OI human tibia 

(longi., medial section) 50

 

Figure C.135. SEM image of OI human tibia 

(longi., medial section) 3,000 

 

Figure C.136. SEM image of OI human tibia 

(longi., medial section) 10,000

 

Figure C.137. SEM image of OI human tibia 

(longi., medial section) 40,000 
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Figure C.138. SEM image of OI human tibia 

(longi., medial section) 80,000

 

Figure C.139. SEM image of OI human tibia 

(longi., medial section) 20,000 

 

Figure C.140. SEM image of OI human tibia 

(longi., medial section) 30,000

 

Figure C.141. SEM image of OI human tibia 

(longi., medial section) 20,000 

 

Figure C.142 SEM image of OI human tibia 

(longi., medial section) 10,000

 

Figure C.143. SEM image of OI human tibia 

(longi., medial section) 3,700 
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Figure C.144. SEM image of OI human tibia 

(longi., medial section) 10,000

 

Figure C.145. SEM image of OI human tibia 

(longi., medial section) 40,000 

 

Figure C.146. SEM image of OI human tibia 

(longi., medial section) 2,500

 

Figure C.147. SEM image of OI human tibia 

(longi., medial section) 5,000 

 

Figure C.148. SEM image of OI human tibia 

(longi., medial section) 27,000

 

Figure C.149. SEM image of OI human tibia 

(longi., medial section) 10,000 
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Figure C.150. SEM image of OI human tibia 

(longi., medial section) 40,000

 

Figure C.151. SEM image of OI human tibia 

(longi., medial section) 5,000 

C.3. Lateral section, fixed with a series of chemicals and fractured in liquid N2  

C.3.1. Transverse section (acquired on 2/6/2014) 

 

Figure C.152. SEM image of OI human tibia 

(transverse, lateral section) 25

  

Figure C.153. SEM image of OI human tibia 

(transverse, lateral section) 50 
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Figure C.154. SEM image of OI human tibia 

(transverse, lateral section) 100

  

Figure C.155. SEM image of OI human tibia 

(transverse, lateral section) 500 

 

Figure C.156. SEM image of OI human tibia 

(transverse, lateral section) 1,000

 

Figure C.157. SEM image of OI human tibia 

(transverse, lateral section) 500 

 

Figure C.158. SEM image of OI human tibia 

(transverse, lateral section) 100

 

Figure C.159. SEM image of OI human tibia 

(transverse, lateral section) 1,000 
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Figure C.160. SEM image of OI human tibia 

(transverse, lateral section) 3,000

 

Figure C.161. SEM image of OI human tibia 

(transverse, lateral section) 10,000 

 

Figure C.162. SEM image of OI human tibia 

(transverse, lateral section) 500

  

Figure C.163. SEM image of OI human tibia 

(transverse, lateral section) 3,000 

 

Figure C.164. SEM image of OI human tibia 

(transverse, lateral section) 1,000

  

Figure C.165. SEM image of OI human tibia 

(transverse, lateral section) 5,000 
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Figure C.166. SEM image of OI human tibia 

(transverse, lateral section) 500

 

Figure C.167. SEM image of OI human tibia 

(transverse, lateral section) 1,000 

 

Figure C.168. SEM image of OI human tibia 

(transverse, lateral section) 5,000

  

Figure C.169. SEM image of OI human tibia 

(transverse, lateral section) 500 

 

Figure C.170. SEM image of OI human tibia 

(transverse, lateral section) 1,000

  

Figure C.171. SEM image of OI human tibia 

(transverse, lateral section) 3,000 
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Figure C.172. SEM image of OI human tibia 

(transverse, lateral section) 10,000

 

Figure C.173. SEM image of OI human tibia 

(transverse, lateral section) 25 

 

 

Figure C.174. SEM image of OI human tibia 

(transverse, lateral section) 50

  

Figure C.175. SEM image of OI human tibia 

(transverse, lateral section) 100 

 

Figure C.176. SEM image of OI human tibia 

(transverse, lateral section) 250

 

Figure C.177. SEM image of OI human tibia 

(transverse, lateral section) 500 
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Figure C.178. SEM image of OI human tibia 

(transverse, lateral section) 1,000

 

Figure C.179. SEM image of OI human tibia 

(transverse, lateral section) 3,000 

 

Figure C.180. SEM image of OI human tibia 

(transverse, lateral section) 10,000

  

Figure C.181. SEM image of OI human tibia 

(transverse, lateral section) 100 

 

Figure C.182. SEM image of OI human tibia 

(transverse, lateral section) 500

 

Figure C.183. SEM image of OI human tibia 

(transverse, lateral section) 250 
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Figure C.184. SEM image of OI human tibia 

(transverse, lateral section) 500

  

Figure C.185. SEM image of OI human tibia 

(transverse, lateral section) 1,000 

 

Figure C.186. SEM image of OI human tibia 

(transverse, lateral section) 3,000

  

Figure C.187. SEM image of OI human tibia 

(transverse, lateral section) 10,000 

 

Figure C.188. SEM image of OI human tibia 

(transverse, lateral section) 250

  

Figure C.189. SEM image of OI human tibia 

(transverse, lateral section) 1,000 
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Figure C.190. SEM image of OI human tibia 

(transverse, lateral section) 3,000

 

Figure C.191. SEM image of OI human tibia 

(transverse, lateral section) 10,000 

C.3.2. Longitudinal section (acquired on 2/6/2014) 

 

Figure C.192. SEM image of OI human tibia 

(longi., lateral section) 50

  

Figure C.193. SEM image of OI human tibia 

(longi., lateral section) 100 
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Figure C.194. SEM image of OI human tibia 

(longi., lateral section) 250

  

Figure C.195. SEM image of OI human tibia 

(longi., lateral section) 500 

 

Figure C.196. SEM image of OI human tibia 

(longi., lateral section) 50

  

Figure C.197. SEM image of OI human tibia 

(longi., lateral section) 100 

 

Figure C.198. SEM image of OI human tibia 

(longi., lateral section) 250

  

Figure C.199. SEM image of OI human tibia 

(longi., lateral section) 550 
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C.4. Posterior section, fixed with a series of chemicals and fractured in liquid N2  

C.4.1. Transverse section (acquired on 2/6/2014) 

 

Figure C.200. SEM image of OI human tibia 

(transverse, posterior section) 25

  

Figure C.201. SEM image of OI human tibia 

(transverse, posterior section) 50 

 

Figure C.202. SEM image of OI human tibia 

(transverse, posterior section) 100

  

Figure C.203. SEM image of OI human tibia 

(transverse, posterior section) 100 
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Figure C.204. SEM image of OI human tibia 

(transverse, posterior section) 250

 

Figure C.205. SEM image of OI human tibia 

(transverse, posterior section) 1,000 

 

Figure C.206. SEM image of OI human tibia 

(transverse, posterior section) 3,000

  

Figure C.207. SEM image of OI human tibia 

(transverse, posterior section) 10,000

 

Figure C.208. SEM image of OI human tibia 

(transverse, posterior section) 250

  

Figure C.209. SEM image of OI human tibia 

(transverse, posterior section) 500 
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Figure C.210. SEM image of OI human tibia 

(transverse, posterior section) 1,000

  

Figure C.211. SEM image of OI human tibia 

(transverse, posterior section) 3,000

 

Figure C.212. SEM image of OI human tibia 

(transverse, posterior section) 10,000

  

Figure C.213. SEM image of OI human tibia 

(transverse, posterior section) 100

 

Figure C.214. SEM image of OI human tibia 

(transverse, posterior section) 250

  

Figure C.215. SEM image of OI human tibia 

(transverse, posterior section) 500 
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Figure C.216. SEM image of OI human tibia 

(transverse, posterior section) 1,000

  

Figure C.217. SEM image of OI human tibia 

(transverse, posterior section) 3,000

 

Figure C.218. SEM image of OI human tibia 

(transverse, posterior section) 5,000

  

Figure C.219. SEM image of OI human tibia 

(transverse, posterior section) 10,000

 

Figure C.220. SEM image of OI human tibia 

(transverse, posterior section) 250

 

Figure C.221. SEM image of OI human tibia 

(transverse, posterior section) 500 
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Figure C.222. SEM image of OI human tibia 

(transverse, posterior section) 1,000

 

Figure C.223. SEM image of OI human tibia 

(transverse, posterior section) 4,300

 

Figure C.224. SEM image of OI human tibia 

(transverse, posterior section) 10,000

 

Figure C.225. SEM image of OI human tibia 

(transverse, posterior section) 50

 

Figure C.226. SEM image of OI human tibia 

(transverse, posterior section) 100

 

Figure C.227. SEM image of OI human tibia 

(transverse, posterior section) 500 
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Figure C.228. SEM image of OI human tibia 

(transverse, posterior section) 1,000

  

Figure C.229. SEM image of OI human tibia 

(transverse, posterior section) 3,000

  

Figure C.230. SEM image of OI human tibia 

(transverse, posterior section) 10,000

  

Figure C.231. SEM image of OI human tibia 

(transverse, posterior section) 20

 

Figure C.232. SEM image of OI human tibia 

(transverse, posterior section) 50

  

Figure C.233. SEM image of OI human tibia 

(transverse, posterior section) 250 
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Figure C.234. SEM image of OI human tibia 

(transverse, posterior section) 100

  

Figure C.235. SEM image of OI human tibia 

(transverse, posterior section) 250

 

Figure C.236. SEM image of OI human tibia 

(transverse, posterior section) 500

 

Figure C.237. SEM image of OI human tibia 

(transverse, posterior section) 1,000

 

Figure C.238. SEM image of OI human tibia 

(transverse, posterior section) 3,000

 

Figure C.239. SEM image of OI human tibia 

(transverse, posterior section) 1,000 
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Figure C.240. SEM image of OI human tibia 

(transverse, posterior section) 500

  

Figure C.241. SEM image of OI human tibia 

(transverse, posterior section) 3,000

 

Figure C.242. SEM image of OI human tibia 

(transverse, posterior section) 5,000

  

Figure C.243. SEM image of OI human tibia 

(transverse, posterior section) 10,000

 

Figure C.244. SEM image of OI human tibia 

(transverse, posterior section) 500

 

Figure C.245. SEM image of OI human tibia 

(transverse, posterior section) 100 
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Figure C.246. SEM image of OI human tibia 

(transverse, posterior section) 250

 

Figure C.247. SEM image of OI human tibia 

(transverse, posterior section) 250

 

Figure C.248. SEM image of OI human tibia 

(transverse, posterior section) 100

 

Figure C.249. SEM image of OI human tibia 

(transverse, posterior section) 1,000

 

Figure C.250. SEM image of OI human tibia 

(transverse, posterior section) 1,000

 

Figure C.251. SEM image of OI human tibia 

(transverse, posterior section) 3,000 
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Figure C.252. SEM image of OI human tibia 

(transverse, posterior section) 3,000

  

Figure C.253. SEM image of OI human tibia 

(transverse, posterior section) 5,000

C.4.2. Longitudinal section (acquired on 2/6/2014) 

 

Figure C.254. SEM image of OI human tibia 

(longi., posterior section) 50

  

Figure C.255. SEM image of OI human tibia 

(longi., posterior section) 100 

 

Figure C.256. SEM image of OI human tibia 

(longi., posterior section) 250

  

Figure C.257. SEM image of OI human tibia 

(longi., posterior section) 550
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Figure C.258. SEM image of OI human tibia 

(longi., posterior section) 1,000

  

Figure C.259. SEM image of OI human tibia 

(longi., posterior section) 3,000 

 

Figure C.260. SEM image of OI human tibia 

(longi., posterior section) 7,500

  

Figure C.261. SEM image of OI human tibia 

(longi., posterior section) 19,000 

 

Figure C.262. SEM image of OI human tibia 

(longi., posterior section) 3,500

  

Figure C.263. SEM image of OI human tibia 

(longi., posterior section) 6,000 
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Figure C.264. SEM image of OI human tibia 

(longi., posterior section) 40,000

  

Figure C.265. SEM image of OI human tibia 

(longi., posterior section) 40,000 

 

Figure C.266. SEM image of OI human tibia 

(longi., posterior section) 12,000

  

Figure C.267. SEM image of OI human tibia 

(longi., posterior section) 10,000

 

Figure C.268. SEM image of OI human tibia 

(longi., posterior section) 10,000

  

Figure C.269. SEM image of OI human tibia 

(longi., posterior section) 40,000 



 

309 

 

 

Figure C.270. SEM image of OI human tibia 

(longi., posterior section) 40,000

  

Figure C.271. SEM image of OI human tibia 

(longi., posterior section) 5,000 

 

Figure C.272. SEM image of OI human tibia 

(longi., posterior section) 35,000

  

Figure C.273. SEM image of OI human tibia 

(longi., posterior section) 10,000 

 

Figure C.274. SEM image of OI human tibia 

(longi., posterior section) 40,000

 

Figure C.275. SEM image of OI human tibia 

(longi., posterior section) 10,000 
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Figure C.276. SEM image of OI human tibia 

(longi., posterior section) 5,000

 

Figure C.277. SEM image of OI human tibia 

(longi., posterior section) 2,000 

 

Figure C.278. SEM image of OI human tibia 

(longi., posterior section) 10,000

  

Figure C.279. SEM image of OI human tibia 

(longi., posterior section) 40,000 

 

 



 

311 

 

APPENDIX D.  AFM IMAGES OF HEALTHY AND OI HUMAN BONES 

D.1. Healthy human femur (left image: height, right image: phase) 

D.1.1. No treatment, not polished 

 

Figure D.1. AFM image of healthy human femur (longi., anterior section, no treatment, not 

polished), 5µm×5µm 

 

Figure D.2. AFM image of healthy human femur (longi., anterior section, no treatment, not 

polished), 2µm×2µm 
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D.1.2. No treatment, polished 

 

Figure D.3. AFM image of healthy human femur (longi., anterior section, no treatment, 

polished), 2µm×2µm 

 

Figure D.4. AFM image of healthy human femur (longi., anterior section, no treatment, 

polished), 2µm×2µm 

 

 



 

313 

 

D.1.3. Demineralized for 5 minutes in EDTA (left image: height, right image: phase) 

 

Figure D.5. AFM image of healthy human femur (longi., anterior section, demineralized for 5 

minutes), 2.66µm×2.66µm

 

Figure D.6. AFM image of healthy human femur (longi., anterior section, demineralized for 5 

minutes), 2µm×2µm 
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Figure D.7. AFM image of healthy human femur (longi., anterior section, demineralized for 5 

minutes), 1µm×1µm 

D.1.4. Demineralized for 4 hours in EDTA 

 

Figure D.8. AFM image of healthy human femur (longi., anterior section, demineralized for 4 

hours), 1µm×1µm 

Period: 452.77/8=56.60 nm (it should be 65.01nm after calibration adjustment)      
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After calibration (calibrated on 5/15/2013, 43.5nm becomes 50.0nm):  

 

Figure D.9. AFM image of healthy human femur (longi., anterior section, demineralized for 4 

hours), 2µm×2µm 

Period: 313.94/5=62.79 nm 

 

Figure D.10. AFM image of healthy human femur (longi., anterior section, demineralized for 4 

hours), 1µm×1µm 

Period: 66.27/3=66.27 nm; 259.77/4=64.94 nm 
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D.2. OI human tibia 

D.2.1. No treatment, not polished

 

Figure D.11. AFM image of OI human femur (longi., anterior section, no treatment, not 

polished), 1µm×1µm 

 

Figure D.12. AFM image of OI human femur (longi., anterior section, no treatment, not 

polished), 5µm×5µm 
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Figure D.13. AFM image of OI human femur (longi., anterior section, no treatment, not 

polished), 1µm×1µm 

D.2.2. No treatment, polished 

 

Figure D.14. AFM image of OI human femur (transverse, anterior section, no treatment, 

polished), 5µm×5µm 
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Figure D.15. AFM image of OI human femur (transverse, anterior section, no treatment, 

polished), 2µm×2µm 

 

Figure D.16. AFM image of OI human femur (transverse, anterior section, no treatment, 

polished), 1µm×1µm 
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Figure D.17. AFM image of OI human femur (transverse, anterior section, no treatment, 

polished), 1µm×1µm 

Longitudinal section (acquired on 04/07/2013, 04/16/2013) 

 

Figure D.18. AFM image of OI human femur (longi., anterior section, no treatment, polished), 

2µm×2µm 
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D.2.3. Demineralized for 5 minutes 

 

Figure D.19. AFM image of OI human femur (longi., anterior section, demineralized for 5 

minutes), 5µm×5µm 

 

Figure D.20. AFM image of OI human femur (longi., anterior section, demineralized for 5 

minutes), 2µm×2µm 
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Figure D.21. AFM image of OI human femur (longi., anterior section, demineralized for 5 

minutes), 1µm×1µm 

  

Figure D.22. AFM image of OI human femur (longi., anterior section, demineralized for 5 

minutes), 2µm×2µm 
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Figure D.23. AFM image of OI human femur (longi., anterior section, demineralized for 5 

minutes), 1µm×1µm 

Period: 283.14/5=56.63 nm (it should be 65.09 nm after calibration adjustment) 

 

 

 


