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ABSTRACT

Nonlinear effects in optical fibers impose a capacity limit for optical communication systems.

In this dissertation, the nonlinear Fourier transform (NFT) is investigated as a method to mitigate

and compensate for those effects. This study consists of two parts: first a computational complexity

analysis for the use of the NFT for nonlinear compensation in the normal dispersion regime, and

second, an analysis of the robustness of the performance of the discrete spectrum modulation in

the anomalous dispersion regime using the NFT.

The first part investigates the computational complexity of the NFT based on the Zakharov-

Shabat scattering problem as a nonlinear compensation technique for quadrature-phase-shift keyed

(QPSK) signals with raised cosine frequency characteristic in optical fiber transmission systems

with normal dispersion fibers. Results show that there are two primary sources of computational

errors that arise from the use of the NFT: The computational error due to the finite eigenvalue

resolution of the reflection spectra and the computational error due to the Born approximation

used in the inverse NFT. In this scenario, computational costs become unacceptably large at data

frame lengths and powers that are too small for this approach to be competitive with standard

transmission methods.

The second part of this study investigates the robustness of a recently proposed nonlinear

frequency-division multiplexing (NFDM) system comprised of two independent quadrature phase-

shift keying (QPSK) channels modulated in the discrete spectrum associated with two distinct

eigenvalues. We focus on determining the limits given by third-order dispersion, the Raman effect,

amplified spontaneous emission (ASE) noise from erbium-doped fiber amplifiers (EDFAs), and

lumped gain from EDFAs. Each of these impairments impact this system with discrete spectrum

modulation and 1600 km of propagation distance in different ways: Third-order dispersion limits

the maximum launch power to 13 dBm, the Raman effect limits the maximum launch power to

10.25 dBm, the ASE noise limits the maximum launch power to 9 dBm, while lumped gain limits

the maximum launch power at 3.75 dBm.

Additional studies are needed to investigate the effectiveness of the NFT for discrete spec-

trum modulation formats with three or more eigenvalues.
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1. INTRODUCTION

1.1. Background

Optical fiber communication systems are a reliable and fast medium for long distance com-

munication; most of the world’s information travels over fiber optic networks as they serve as the

backbone of the internet. The capacity of such systems have increased significantly, since its cre-

ation. However, in the past few years, the demand for higher capacity has increased even faster.

As the capacity demand continue to increase rapidly, the communications systems should face a

capacity shortage in the next decade [18].

In information theory, the Shannon limit defines what the capacity limit is for an specific

channel in the presence of an all white Gaussian noise (AWGN). It is a good physical upper bound

on the system capacity [39]. This limit is calculated based on the signal to noise ration (SNR) of a

channel and it is true for low power optical communication systems; however, as the optical power

increases the capacity reaches a maximum and starts to decay. This is caused by other optical

fiber impairments that were not considered at the original Shannon limit calculation. Nonlinearity

in optical fibers limits the achievable signal-to-noise ratio and, consequently, the transmission ca-

pacity of optical fiber communications systems [44]. To better describe the optical fiber capacities

Essiambre et al. [17] proposed an analytical formula for nonlinear Shannon capacity limit:

C = log2

1 +

[
nsphω0αLRs

P0
+ 4

γ2P 2
aL

|R2
sβ2|

]−1
, where Pa =

 Nch/2∑
n=Nch/2(n6=0)

κ

2π

Rs
|∆fn|

1/2

P0 (1.1)

In 1.1 C is the nonlinear capacity estimate, nsp is the spontaneous emission factor relative to the

amplifiers used in the system, hω0 is the photon energy in J, α is the fiber loss coefficient in km−1,

L is the propagation distance, Rs is the symbol rate, p0 average signal power, nonlinear coefficient

γ, β2 is the group-velocity dispersion and κ is a shaping factor (varies depending on the pulse and

constellation used), Nch is the number of channels in the system and ∆fn is the channel separation.

The principal source of nonlinearity in optical fibers is the Kerr nonlinearity, and it has been

known since the 1980s that to lowest order in the nonlinearity strength and second-order dispersion,

light propagation can be modeled by the nonlinear Schrödinger equation (NLS) [25], [33]. The NLS
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is one of a very special class of nonlinear equations that can be solved using a nonlinear analogue

of the Fourier transform [27], [2] that was first found by Zakharov and Shabat [48]. In general, this

transformation will produce both a discrete (soliton) and continuous (reflection) spectrum. Due

to the nonlinearity, the evolution of initial data in the time domain can be quite complex, but all

this complexity disappears in the transform domain, and the evolution becomes linear and quite

simple. It is this observation that is at the heart of efforts in the 1980s and 1990s to use solitons

in communications systems, since the evolution of solitons is simple in systems that obey the NLS.

With the advent of coherent communications and advanced signal processing techniques in

optical fiber communications systems, this basic idea has undergone a renaissance. Yousefi and

Kschischang [45]–[47] have proposed to combine high-order soliton solutions with advanced signal

processing techniques to achieve high spectral efficiency. Experimental studies have demonstrated

that it is possible to implement this idea for at least low-order soliton solutions [15].

Turitsyn and colleagues [28, 29] have proposed to encode information in the continuous

spectrum, as opposed to the discrete spectrum.. This proposal has several attractive features.

First, the continuous spectrum reduces to the usual Fourier transform at low intensities, so that

it is possible to carry over standard modulation formats in a straightforward way. Second, a

continuous spectrum can be generated in both the normal and the anomalous dispersion regimes,

while a discrete spectrum (solitons) can only be generated in the anomalous dispersion regime.

1.2. Objectives

The goal of this research is to investigate the capabilities of the Nonlinear Fourier Transform

(NFT) as a possible candidate to mitigate the nonlinear impairments on optical fiber communication

systems; to overcome the capacity limits imposed by Kerr nonlinearity. Furthermore, it is to build

a platform to verify how efficient, robust to the physical impairments, and computational costly

some of the most promising NFT methods are. Therefore, a continuous spectrum modulation

method was studied in a normal dispersion regime and compared to traditional linear methods on

its complexity and efficiency. In addition, a discrete spectrum modulation format was tested for

robustness in the anomalous regime.

1.3. Organization

The dissertation is organized as follows: Chapter ?? presents the study on the effectiveness of

the continuous spectrum modulation using the NFT, with a description of the limitations of the use

2



of this modulation technique. Chapter 3 presents the results of the analysis of the effectiveness of the

discrete spectrum modulation with respect to the following optical fiber impairments: inter-symbol

interference, gain and loss, Raman effect and third-order dispersion. Chapter 4 is a discussion on

the overall results and implications for future research topics resulting from this research.

3



2. NORMAL DISPERSION REGIME: CONTINUOUS

SPECTRUM1

2.1. Background

While the idea of using the continuous spectrum is attractive, work to date has pointed

to several issues that must be addressed if this idea is going to have practical value. First, the

computational complexity of carrying out the analogue of the Fourier transform and its inverse is

high. The NFT and its inverse (INFT) are given by the solution to the Zakharov-Shabat scattering

problem (ZSSP). In the forward direction, the most widely used computational methods have a

computational complexity that is proportional to N2, where N is the number of points in the

waveform that is being processed [1, 7]. In the backward direction (INFT), the most commonly

used methods have a computational complexity that is either proportional to N2 in differential layer

peeling methods [40] or N2 logN in the integral layer peeling method [35]. The complexity of these

methods scale too rapidly with N to be acceptable in practice, and there is recent work indicating

that it is possible to find algorithms in both directions that scale proportional to N logmN , where

m is a small positive integer [5]. However, more work must be done to determine the practicality

and robustness of these approaches.

Work to date has pointed to the possible existence of two additional, more fundamental

problems. The NFT and the INFT rely fundamentally on the assumption that the signal is zero

at the edges of the time domain that is being considered and that the second-order dispersion is

constant along the transmission. For these reason, the data must be carved into data frames that

reside inside larger signal frames or total time frames that are sufficiently large to accommodate any

spread in the data that is due to second-order dispersion. In this respect, these systems resemble

orthogonal frequency domain multiplexed (OFDM) systems [30]. In studies to date of the NFT

and INFT in both the normal [42, 32] and anomalous [28] dispersion regimes, the data frame only

1The material in this chapter was co-authored by Thiago D. S. DeMenezes and Dr. Ivan Lima Jr. Thi-

ago D. S. DeMenezes had the responsibility for generating some of the simulation results, figures and tables.

Dr. Ivan Lima Jr. lead the submission of this chapter as a journal paper and both participated on the review

process.
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occupies a small fraction of the total time frame. In the normal dispersion regime, the fraction

occupied was a little over 1% [42]; in the anomalous dispersion regime, the fraction occupied was

a little over 10% [28]. There are reasons to believe that there may be a fundamental limit to the

size of the data frames. In the normal dispersion regime, the waveform encoding the symbols act

as barriers in the forward ZSSP. As the reflection coefficient approaches 1 with the increase in

the frame duration, the waveform containing the symbols in the center of the data frame become

increasingly difficult to resolve. In the anomalous dispersion regime, for a fixed power, standard

estimates indicate that the number of solitons should grow with the data length [2].

Just as there may be limits on the size of the data frames, there may be limits on the signal

power within those frames. In the anomalous dispersion regime, increased power is expected to

lead to soliton generation [2]. In the normal dispersion regime, it becomes increasingly difficult to

resolve bits in the center of the data frame.

This chapter explains in detail the scaling of the back end processing time as both the

size of the data frame and signal power within the data frame increase for the same quaternary-

phase-shift-keyed (QPSK) format that Le et al. [28], studied, although the focus here is on the

normal dispersion regime. One of the findings is that the use of the NFT and the INFT in the

signal processing results in a computational error in the calculation that grows exponentially with

the channel power and the data frame duration. For realistic fiber parameters, the onset of this

exponential growth occurs at a combination of signal powers and data frame lengths that are too

low for this scheme to be competitive as an alternative to standard quasilinear transmission. When

the channel power is set to 3 dBm in a QPSK modulation format at 56 Gbaud with 512 symbols

per data frame, the number of points required to discretize the reflection spectra exceeds 2103. It

is important to highlight that this exponential increase in the back end processing time is not due

to the computational complexity of the algorithms. Rather, it is a fundamental limit due to both

the increase in the error due to the Born approximation and the rapid increase in the resolution

of the reflection spectra that is required to decode the waveform when the channel power and the

number of symbols per data frame are large.

Because these issues are fundamental, they will arise with any data format, and the limits

that they impose should be determined when investigating a data format’s performance.
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The remainder of this chapter is organized as follows: Sec. 2.2 reviews the ZSSP and de-

scribes the computational algorithms that were used to solve the NFT and INFT and the motivation

for these choices. In Sec. 2.3 the numerical results relating the computational cost of the NFT and

the INFT as a function of the launch power and the frame duration. Sec. 2.4 describes the un-

derlining reasons for the exponential increase of the computational cost of the NFT and the INFT

with both the launch power and the frame duration. The limits on the data frame length and signal

power are surprisingly low compared to quasilinear systems. Section 2.5 contains the conclusion.

2.2. Numerical Methods

The time and the space dependence of the slowly varying envelope of the optical signal

propagating in optical fibers is modeled by the nonlinear Schrödinger (NLS) equation [3],

i
∂A(t)

∂z
+ i

α(z)

2
− β2

2

∂2A(t)

∂t2
+ γ |A(t)|2A(t) = 0, (2.1)

where A(t) is the slowly varying envelope of the optical signal that also depends implicitly on z, the

space coordinate along the direction of propagation, γ is the nonlinear parameter, β2 is the second-

order dispersion, and α(z) is the attenuation coefficient or gain. The most efficient techniques to

solve the NLS equation in optical fiber communications systems is the split-step Fourier method.

In the particular case in which the losses can be either neglected or mitigated through the use of

distributed amplification (α ∼= 0), the normalized slowly varying envelope of the optical signal q(t)

satisfy the ZSSP, which is defined in terms of the equations [48]

du(t, ζ)

dt
= iζu(t, ζ) + q(t)v(t, ζ),

dv(t, ζ)

dt
= −iζv(t, ζ) + q∗(t)u(t, ζ),

(2.2)

where u(t, ζ) and v(t, ζ) are the eigenfunctions of the ZSSP associated to the eigenvalue ζ. To apply

the ZSSP in (2.2) to optical fibers with the slowly varying envelope of the optical signal A(t), the

expression 2.3 is used.

q(t) =

√
γ

|β2|
A(t). (2.3)
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The term (γ/|β2|)1/2 in (2.3) is the normalization coefficient of the ZSSP, so that (2.2) can be

applied to lossless optical fibers with arbitrary nonlinear parameter γ and second-order dispersion

β2. The eigenfunctions u(t, ζ) and v(t, ζ) also depend implicitly on z, but the eigenvalue ζ, is a

conserved quantity that, consequently, does not change with the propagation.

The QPSK frame of symbols is located near the center of the computation time window

[0, Tw] with boundary conditions A(0) = A(Tw) = 0. The left and the right reflection spectra at

the receiver are given by

rL(ζ) =
v(0, ζ)

u(0, ζ)

∣∣∣∣
v(Tw,ζ)=0

, rR(ζ) =
u(0, ζ)

v(0, ζ)

∣∣∣∣
u(0,ζ)=0

. (2.4)

The advantage of using the reflection spectra to represent the waveform, compared to the

Fourier spectrum, is that the magnitude of the reflection spectra at each eigenvalue ζ does not

change with z if the medium does not have losses. Moreover, the phase of the reflection spectra

evolves linearly, so that the reflection spectra calculated at the receiver can be forward or backward

to any point along propagated z using a single propagation step that compensates for the com-

bined effects of nonlinearity and dispersion along the transmission. The reflection spectra at the

transmitter (z = 0) can be computed from the calculated reflection spectra at the receiver (z = L)

using the equations

rL(ζ, 0) = rL(ζ, L)e+i2ζ2β2L,

rR(ζ, 0) = rR(ζ, L)e−i2ζ
2β2L.

(2.5)

It is the resolution in ζ that is required to accurately determine the original data that in turns

determines the value of Tw. In practical cases, the value of Tw is much larger than that of a single

data frame.

2.2.1. Nonlinear Fourier Transform

This study makes use of the piece-wise constant approximation (PCA) to calculate the

NFT [7] or, equivalently, to solve the direct scattering problem. Most studies so far have made use

of only the left reflection spectrum. However, there is no computational cost required to calculate

the right reflection spectrum together with the left reflection spectrum using the PCA method.

Moreover, there is also little additional computational cost in using both the left reflection spectrum,
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to construct the first half of the time-domain waveform of the optical signal in our computation

of the INFT, and the right reflection spectrum, to construct the second half of the time-domain

waveform, in our computation of the same INFT. The most efficient methods to compute the

INFT are based on iterative procedures, whose computational error accumulates as the number

of iterations increases. The computational error in the symbols near the right end of the frame

dominate the overall computational error of INFT procedures that use only the left reflection

spectrum. Therefore, the error in our computation of the INFT is significantly reduced when the

waveform is reconstructed from both ends of the data frame in time domain.

To calculate both the left and the right reflection spectra using the PCA, the procedure

described in [40] was used. For every eigenvalue ζ, it calculates the evolution of the eigenfunctions

during each time-step,  u (tn+1ζ)

v (tn+1ζ)

 = Tn+1(ζ)

 u (tnζ)

v (tnζ)

 , (2.6)

where

Tn(ζ) =



cosh(k∆t)

+iζ sinh(k∆t)
q(tn) sinh(k∆t)

q∗(tn) sinh(k∆t)
cosh(k∆t)

−iζ sinh(k∆t)


, (2.7)

and k2 = |q|2 − ζ2. Then the transmission matrix is calculated

T(ζ) =
N−1∏
n=0

Tn(ζ) (2.8)

for a given eigenvalue ζ, the left and the right reflection spectra in (2.2) can be calculated,

rL(ζ) =
−T2,1(ζ)

T2,2(ζ)
, rR(ζ) =

T1,2(ζ)

T2,2(ζ)
. (2.9)

The eigenvalue spectral range is defined from −π/(2∆t) to π/(2∆t). If the eigenvalue range

is discretized with Npt points, the eigenvalue resolution is given by ∆ζ = π/(Npt∆t). The eigen-

values of the ZSSP computed are evenly spaced because practical INFT methods make use of the

Fourier transform and/or the inverse Fourier transform of the reflection spectra. The computa-
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tional complexity of the PCA is proportional to Nsamp×Npt, where the constant of proportionality

is the number of operations used to evaluate the 2× 2 complex matrix in (2.5) and to carry out a

2× 2 complex matrix multiplication.

2.2.2. Inverse Nonlinear Fourier Transform

The first computational method to solve the INFT consisted of integral equations developed

by Gel’fand, Levitan, and Marchenko [13]. However, due to the high computational complexity

required to directly solve the Gel’fand-Levitan-Marchenko (GLM) integral equations (N3), more

efficient iterative methods have been developed [40, 35, 41, 19, 12, 14, 6].

The differential layer peeling (DLP) method is one of the most efficient INFT methods [12].

The DLP method exploits causality to iteratively solve the GLM integral equations with compu-

tational complexity proportional to Nsamp × Npt, where Nsamp is the number of samples used to

discretize the waveform in time domain, and Npt is the total number of points used to discretize

the left reflection spectrum [40, 19, 12]. The DLP method that is applied to fiber grating design

requires that the reflection coefficient from within a discrete space step be small enough so that

the reflection coefficient of that layer can be lumped at the end of the discrete space step [19].

Otherwise, the computational error in the result produced by the DLP algorithm, which increases

exponentially along the direction of the profile extraction, would be unacceptably high. For that

reason, strong gratings, in which the reflection coefficient is close to 1 over a large spectral band,

require a large number of steps along the grating for the DLP to produce accurate results. In the

optical fiber communications problem considered, a QPSK modulation format with −3 dBm of

channel power and 56 dB per data frame requires time steps that are significantly smaller than the

symbol period.

Rosenthal and Horowitz [35] developed an inverse scattering algorithm–denoted integral

layer peeling (ILP) method–that consists of solving the GLM integral equations for each layer

using an iterative procedure that includes the recursive calculation of the local reflection spectrum,

starting with the left reflection spectrum in (2.9). Because the errors in the ILP accumulate with

the number of iterations, as it is the case in the other iterative methods for calculating the INFT,

the choise was to implement and use the symmetric ILP (SILP) method. In the SILP method, the

left portion of the waveform is computed from the left edge of the waveform up to the center of

the time window, using the left reflection spectrum. Then, the right portion of the waveform is
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computed from the right edge of the waveform until the center of the time window, using the right

reflection spectrum.

The SILP method uses the Born approximation to define the local reflection spectra at the

time tm+1 = tm + ∆t,

rL,m+1(ζ) =
rL,m(ζ)− r̄L,m(ζ)

1− rL,mr̄∗L,m(ζ)
e−i2ζ∆t ,

rR,m+1(ζ) =
rR,m(ζ)− r̄R,m(ζ)

1− rR,mr̄∗R,m(ζ)
e−i2ζ∆t ,

(2.10)

where

r̄L,m(ζ) =

∫ 2∆t

−∞
hL,m(τ)eiζτdτ,

r̄R,m(ζ) =

∫ ∞
(π/∆ζ)−2∆t

hR,m(τ)e−iζτdτ,

(2.11)

and

hL,m(ζ) =

∫ ∞
−∞

rL,m(τ)e−iζτdτ,

hR,m(ζ) =
1

2π

∫ ∞
−∞

rR,m(τ)eiζτdτ,

(2.12)

are the Fourier transform of the left-local reflection spectrum and the inverse Fourier transform

of the right-local reflection spectrum, respectively. The local reflection spectra at m = 0 is the

reflection spectra calculated with the PCA algorithm in (2.9). The recovered waveform at the

discrete time tm = m∆t is given by:

A(tm) =

√
β2

γ
×


−hL,m(tm+1), m ≤ Nsamp/2

hR,m(tNsamp−m+1), m > Nsamp/2

. (2.13)

Since only Nsamp values of the time-domain waveform are generated by the SILP metthod, whose

reflection spectra has a much larger number of discrete values, Npt, it is necessary to shift the time
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in the reflection spectra prior to the execution of the iterative procedure in (2.10)–(2.13):

rL,0(ζ) = rL(ζ)e−iζ∆t(Npt−Nsamp)/2,

rR,0(ζ) = rR(ζ)e−iζ∆t(Npt−Nsamp)/2.

(2.14)

The SILP method is capable of extracting the profile of gratings whose reflection coefficient

is very close to 1 across a wide spectral band. The computational error of the SILP method does

not accumulate as fast as with the DLP method, enabling the SILP method to reconstruct gratings

with reflectivity as large as 1− 10−10 [35]. Even though the computational complexity of the SILP

is Nsamp×Npt · logNpt, as needed to solve (2.10)–(2.13), this method converges significantly faster

than the DLP method when applied to strong gratings, which correspond to optical signals with

channel power close to −3 dBm.

Belai, et al., developed an alternative method to solve the GLM integral equations based

on the iterative inversion of Toeplitz matrices obtained from the GLM integral equations that was

denoted Toeplitz inner-bordering (TIB) [6] which has numerical complexity equal to N2
pt when the

iterative matrix inversion procedure is optimized. However, in [6], the authors pointed out that the

TIB method is only adequate to extract the profile with gratings with a maximum reflectivity up to

99.9% because of the large increase of the computational error with the iterative matrix inversion

procedure. When these results are extended to optical fiber communications systems operating in

the normal dispersion regime, the maximum magnitude of the reflection spectra that the TIB can

operate corresponds to the linear/quasi-linear regime of operation.

Due to the higher robustness of the SILP method in the nonlinear regime, in which the

magnitude of the reflection spectra is very close to 1 over a wide range of the eigenvalue ζ, the

choice was the SILP method to calculate the INFT in this study.

2.2.3. Modulation Format

The simulation uses each data frame with a sequence of symbols using the QPSK modulation

format with raised cosine frequency characteristics as in [34]. Simulation also includes the raised

cosine frequency characteristic using the matched receiver filter, in which the transmitted signal

has the root raised cosine frequency characteristic, and the receiver filter has a transfer function
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H(f) with the root raised cosine frequency characteristic given by

H(f)=



1,
1− ε
2Ts

cos

[
πTs
2ε

(
|f | − 1− ε

2Ts

)]
,

1− ε
2Ts

< |f | ≤ 1 + ε

2Ts

0, |f | > 1 + ε

2Ts

, (2.15)

where Ts is the symbol period per data frame and ε is the roll-off factor.

The algorithms chosen to carry out the NFT-INFT computation (PCA and the SILP)

are applied to the waveform before the receiver filter. These could in principle be implemented

experimentally by applying a digital filter whose transfer function is close to the inverse of the

receiver filter in (2.15) after the signal is demultiplexed and optically filtered at the receiver. Then,

after the left and the right reflection spectra are digitally propagated backward to the transmitter

and the waveform is extracted from the reflection spectra using the SILP method, the signal is

passed through a filter whose transfer function is shown in (2.15).

2.2.4. Channel Power and Effective Symbol Rate

In addition to the requirement that the transmission systems do not have losses for the

eigenvalues to remain constant during the fiber transmission, the nonlinear parameter γ, along

with the second-order dispersion β2, must remain constant. Therefore, each data frame with a

fixed number of symbols has to be separated by a guard time that is large enough to ensure that

the dispersed frames do not produce inter-data frame cross-talk along the transmission due to

the nonlinearity and, more importantly, they do not produce inter-data frame interference at the

receiver.

Therefore, the requirement of the guard time leads to a reduction in the channel power,

given the average power per data frame, and a reduction in the effective symbol rate, given the

symbol rate in the data frame. The guard time tg required to accommodate for the dispersion along

the fiber transmission is given by

tg = tg,R × 2π|β2|fs,df · L, (2.16)
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Table 2.1. The ratio (in dB) of the channel power and the average launch power per data frame
(Pch/Pdf ), the effective symbol rate (fs), and the spectral efficiency (SE) for a QPSK modulation
format at 56 GBd per data frame as a function of the number of symbols per data frame for 1000 km
of propagation distance.

Symbols/Frame Pch/Pdf (dB) fs(GHz) SE (bits/s/Hz)

32 −6.7 11.9 0.43

64 −4.5 19.7 0.70

128 −2.8 29.1 1.04

256 −1.7 38.3 1.37

512 −0.9 45.5 1.62

where fs,df is the symbol rate in the data frame, tg,R is the relative guard time, and L is the length

of the fiber transmission system. In the results shown here, simulaiton used tg,R = 1.2, which

provides a 20% margin for the guard time, as in [28]. Given the guard time in (2.16), the channel

power Pch is given by

Pch =
Nsym

Nsym + tg · fs,df
Pdf , (2.17)

where Pdf is the average power per data frame and Nsym is the number of symbols per data frame.

The effective symbol rate fs is given by

fs =
Nsym

Nsym + tg · fs,df
fs,df . (2.18)

Table I shows the difference in dB between the average launch power and the channel power in dB,

the ratio between the symbol rate per data frame and the effective symbol rate, and the spectral

efficiency for 56 GBd QPSK systems with 32, 64, 128, 256, and 512 symbols per data for 1000 km

of propagation distance.

Therefore, it is desirable to have the number of symbols per data frame as large as possible

in order to minimize the performance degradation due to the guard time. Conversely, as previously

discussed, increasing the size of the data frame or the power leads to a rigid increase in the spectral

resolution that is required to accurately implement any computational INFT algorithms. It is the

tradeoff between these requirements that limits the performance.
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2.2.5. System Model and Performance Metric

The Q-factor calculated from the error-vector magnitude (EVM) [37, 36] was used as the

performance metric for the computational errors from the nonlinear compensation using the NFT

. Each simulation consists of the following steps:

1. Generation of the QPSK waveform from a randomly-chosen data frame and propagation

through all the spans of a lossless and noise-free optical fiber transmission system modeled

by (2.1) using an adaptive split-step method.

2. Application of the PCA method to the received waveform.

3. Propagation of the reflection spectra in the backward direction to the transmitter using a

single step, as shown in (2.5).

4. Reconstruction of the waveform at the transmitter using the SILP.

5. Addition of a time-shift in the frequency domain on half the time step to cancel the time shift

between the NFT and the INFT;

6. The reconstructed waveform is filtered using the transfer function in (2.15).

7. Calculation of the EVM in the data frame.

8. Repeat the steps 1-6 30 times, and calculate the Q-factor from the average EVM. In a QPSK

system, the Q-factor is given by

Q =

(
1

N

N∑
n=1

EVMn

)−1

. (2.19)

The Q-factor is calculated using 30 randomly-chosen data frames to reduce the variance in the

calculation.

2.3. Results

Computer simulations were used to assess the effectiveness of signal processing techniques

based on the ZSSP applied to optical fiber communications systems in the normal dispersion regime.

The optical fiber that is considered has second-order dispersion β2 = 5 ps2/km and nonlinear

parameter γ = 1.27 (W·km)−1. These parameters are close to those of commercially available
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Figure 2.1. Schematic diagram of the nonlinear mitigation technique based on the NFT. It uses
here the PCA to compute the NFT and the SILP to compute the INFT. The numbers here are
applicable to a QPSK waveform with 128 symbols at 56 GBd per data frame and −2.9 dBm of
channel power (0 dBm of average power per data frame) with 4 samples per symbol and relative
guard time tg,R = 1.2, resulting in a total of (128 + 119)× 4 = 988 samples. The reflection spectra
are discretized with 217 points.

single-mode fiber and to those used in [42]. The total propagation distance consider here is equal

to 1, 000 km. The QPSK modulation format was used with the raised cosine spectral characteristic

described in Sec. 2.2.3 with a roll-off factor ε = 1/7. The PCA method is used to solve the

NFT and the SILP method that was presented in Sec. 2.2.2 to solve the INFT. When executing

the PCA and the SILP methods, the computational cost of those methods is minimized by only

calculating the NFT and the INFT for the smallest number of samples in the time domain that are

sufficient to accommodate the frame duration and the guard time. Figure 2.1 shows the schematic

representation of the steps 1 through 4 shown in Sec. 2.2.5 applied to a QPSK system with 128

symbols at 56 GBd per data frame with a channel power equal to −2.9 dBm. The number of points
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used to discretize the reflection spectra, Npt = 217, is the smallest number of points–in powers of

two–that produces a Q > 15 dB due to discretization errors in the PCA-ILP algorithms.

2.3.1. Reflection Spectra

This sub-section investigates the dependence of the reflection spectra resolution on the

channel power. Unlike the equivalent representation of the waveform in the Fourier domain, the

reflection spectra in (2.4) and (2.9), which accounts for the combined effects of nonlinearity and

dispersion along the fiber transmission, are also dependent on the channel power.

10−1

100

−100  100

|r
L
(ζ

)|2

ζ (Grad/s) 

−8.8 dBm
−2.8 dBm

Figure 2.2. Squared magnitude of the left reflection spectrum as a function of the eigenvalue ζ
for channel power equal to −8.9 dBm (with 210 points) with 2 samples per symbol and −2.9 dBm
(with 217 points) with 4 samples per symbol with 128 QPSK symbols per symbol at 56 GBd per
data frame with 1, 000 km of lossless propagation distance and relative guard time tg,R = 1.2, which
corresponds to and effective symbol rate of 29 GBd.

Figure 2.2 shows the squared magnitude of the left reflection spectrum of a QPSK waveform

at 56 GBd per data frame with 128 symbols, 1, 000 km of lossless propagation distance, and relative

guard time tg,R = 1.2, which corresponds to an effective symbol rate of 29 GBd. The left reflection

spectrum is shown at −8.9 dBm of channel power (−6 dBm of average power per data frame) with

2 samples per symbol and −2.9 dBm of channel power (0 dBm of average power per data frame)

with 4 samples per symbol. The number of samples per symbol used in each case was the minimum

number of samples that enabled Q > 15 dB due to numerical errors in the NFT-INFT algorithms.

The system with −8.9 dBm of channel power has a left reflection spectrum whose magnitudes are

clustered toward 1, but vary broadly between 0 and 1. By contrast, in the system with −2.9 dBm

of channel power, the magnitude of the non-zero left reflection spectrum is close to 1 at almost all
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Figure 2.3. The same results shown in Fig. 2.2 for the eigenvalue ζ from −28 to −23 Grad/s.

values of ζ. However, the left reflection spectrum is punctuated by a set of sharp spikes that must

be resolved in order to accurately calculate the INFT.

The largest value of the left reflection spectrum magnitude with −2.9 dBm of channel power

is equal to 1 − 1.9 × 10−9, while the largest value of the left reflection spectrum magnitude with

−8.9 dBm of channel power is equal to 0.9993. The maximum possible value that the reflection

spectra magnitude in (2.9) in a system with positive second-order dispersion can take is equal to 1,

as in the case of fiber Bragg gratings, and it should approach 1 as the channel power or the number

of symbols per data frame increase. Therefore, optical fiber communications systems with normal

dispersion fibers and distributed gain that compensates for the fiber loss have reflection spectra

that are very close to 1 at channel powers as low as −2.9 dBm with as little as 128 symbols per

data frame. If the channel power in this system is increased to as little as −1.2 dBm of channel

power (1.7 dB of average power per data frame), the magnitude of the left reflection spectrum in

at least one of the eigenvalues ζ becomes so close to 1 that it exceeds the accuracy of the floating

point numerical representation with double precision, which leads to numerical errors in any INFT

algorithm that makes use of the reflection spectra, regardless of the spectral resolution that is used.

In Figure 2.3, which was generated using a sub-set of the data showed in Figure 2.2, results

show that the QPSK waveform with −2.9 dBm of channel power (0 dBm of average power per data

frame) requires a much higher eigenvalue resolution of the reflection spectra than the same waveform

with −8.9 dBm of channel power (−6 dBm of average power per data frame). With a power of
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−8.9 dBm of channel power and 210 points in the reflection spectra, it has Q = 20.0 dB. With a

power of −2.9 dBm of channel power and 217 points in the reflection spectra, it has Q = 16.6 dB.

To quantify the rapid increase of the required eigenvalue resolution of the reflection spectra

with the channel power, it is also calculated the maximum value of the magnitude of the derivative

of the left reflection spectrum with respect to the eigenvalue ζ for the results shown in Figure 2.2.

For −8.9 dBm of channel power, the maximum value of the derivative of the left reflection spectrum

with respect to the eigenvalue ζ was equal to 5.80 × 109 (rad/s), while for −2.9 dBm of channel

power the corresponding number was equal to 3.73×107 (rad/s). Therefore, a factor of four increase

in the channel power produces an increase of two orders of magnitude in the derivative of the left

reflection spectrum with respect to the eigenvalue ζ. These results indicate that there is a trade-off

between the channel power and the eigenvalue resolution of the NFT, which is one of the main

factors that determines the computational cost of the algorithm.

2.3.2. NFT and Channel Power
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Figure 2.4. The logarithm with base 2 of the number of points used to discretize the reflection
spectra as a function the channel power and Q > 15 dB due to the numerical error of the NFT-
INFT algorithms. The symbol rate per data frame is equal to 56 GBd and the relative guard time
tg,R = 1.2. The results are parametrized by the number of symbols per data frame. The Q-factor
is calculated from the EVM using 30 randomly-chosen data frames.

In the previous sub-section, it is indicated that the eigenvalue resolution required to apply

the NFT to a frame with 128 QPSK symbols at−2.9 dBm of channel power was orders-of-magnitude

higher than the eigenvalue resolution required to apply the NFT to the same QPSK frame with
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Figure 2.5. Same results shown in Figure 2.4 presented with the average power given in mW.

−8.9 dBm of channel power. To investigate the dependence of the computational error of the NFT-

INFT algorithms that were used on the channel power, the number of points used to discretize the

reflection spectra, and the number of symbols per data frame, this studied carried out a channel

power sweep for eight different number of points used to discretize the reflection spectra: 210, 211,

212, 213, 214, 215, 216, and 217 points, and five different number of symbols per data frame: 32,

64, 128, 256, and 512 symbols. For every channel power, it was determined the number of points

required in powers of two to discretize the reflection spectra that results in Q > 15 dB from the

average EVM due to discretization errors in 30 randomly-chosen data frames with the NFT-INFT

algorithms. Since the number of samples per symbol in these cases was equal to 4 and the range of

eigenvalues ζ is fixed, the increase in the number of points used to represent the reflection spectra

increases only the resolution of the reflection spectra.

The results of this study are shown in Fig. 2.4 with the relative guard time tg,R = 1.2. At

56 GBd per data frame, the effective symbol rates of: 11.9 GBd for 32 symbols per data frame,

19.7 GBd for 64 symbols per data frame, 29.1 GBd for 128 symbols per data frame, 38.3 GBd for

256 symbols per data frame, and 45.5 GBd for 512 symbols per data frame. Figure 2.5 shows the

same results in Figure 2.4 presented with the channel power in linear scale (in mW). It was found

that the number of points required to discretize the reflection spectra increases exponentially or

faster with the channel power. For the QPSK system with 512 symbols to operate at Q > 15 dB
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at 3 dBm, it can be extrapolated from the results in Figure 2.5 that the reflection spectra has to

be discretized with at least 2103 points, which is not computationally feasible.

The faster than exponential growth at high-channel power levels is also due to spectral

broadening along the transmission that leads to an increase in the guard time beyond the allocated

amount with 20% guard time margin used (tg,R = 1.2). Therefore, even if the numerical complexity

of the NFT-INFT algorithms could be made as low as that of the Fourier transform (N logN), the

computational cost of using the existing NFT-INFT algorithms to encode/decode data would not

be practical even when the system is operating in the quasi-linear regime.

2.3.3. NFT and Time Discretization
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Figure 2.6. Q-factor of the received waveform as a function of the channel power for a QPSK
waveform with 128 symbols and 56 GBd per data frame with relative guard time tg,R = 1.2. The
reflection spectra are discretized with 215 points with 2, 4, and 8 samples per symbol. The Q-factor
is calculated from the EVM using 30 randomly-chosen data frames.

Figure 2.6 shows the Q-factor due to numerical error in the NFT-INFT algorithms for a

QPSK waveform with 56 GBd of symbol rate per data frame and relative guard time tg,R = 1.2

as a function of the channel power for 2, 4, and 8 samples per symbol with the reflection spectra

discretized with 215 points. At channel power below −10 dBm, the use of larger number of samples

per symbol produces more accurate results, as shown in Fig. 2.6. In the linear regime of operation,

the residual numerical error reduces by 12 dB for every doubling of the number of samples per
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symbol. This residual error is the result of the Born approximation, whose accuracy increases with

the decrease of ∆t.

As the average power per data frame increases for a fixed number of samples peer sym-

bol, the computational error in the calculation of the INFT also increases. This increase in the

computational error with the channel power is due to the Born (zero-order) approximation [35],

which in the SILP method, numerically lumps the reflection from each step at the end of the step.

The computational error due to the Born approximation increases with the average power, and

accumulates with each iteration of the SILP method. It was found that, the Q-factor decreased

slowly with the increase of channel power until reaching a channel power threshold beyond which

the Q-factor decreases much faster with the average power due to the limited resolution of the

reflection spectra. Therefore, the computational error in the results shown in Fig. 2.6, before the

Q-factor decreased rapidly with the channel power, is the result of the Born approximation, which

produces a computational error that increase as the average power increases. Hence, the Born

approximation is one of the effects that limits the use of the NFT-INFT algorithms for nonlinear

mitigation even in the quasi-linear regime.

Using the DLP algorithm in [19], the magnitude of the lumped local reflectance in (2.6) at

the end of a time step ∆t is given by:

|ρ| = tanh

[√
γ

|β2|
|A(t)|∆t

]
. (2.20)

The Born approximation requires that ρ � 1. Since the optical fiber under consideration has the

normalization coefficient of the ZSSP in (2.3) is given by

√
γ

|β2|
= 5.04× 1011 W−1/2 · s−1, (2.21)

it was found that the average power per time step has to stay below −3 dBm at 224 Gsamp/s per

data frame for |ρ| < 5% at the center of a symbol. This rate corresponds, for example, to 56 Gbd

per data frame with 4 samples per symbol. For 128 QPSK symbols per data frame with relative

guard time tg,R = 1.2, this limit corresponds to −5.9 dBm of channel power. As the magnitude of

the local reflection increases, the Born approximation becomes less accurate, leading to an increase
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in the computational error of the calculation of the waveform in each layer with duration ∆t. This

error accumulates during the layer peeling procedure.

The magnitude of the lumped local reflection per layer close to the center of the symbols

calculated for the results shown in Fig. 2.6 at −12 dBm of channel power are 5%, 2.5%, and 1.2%

for 2, 4, and 8 points per symbol, respectively. These values of the lumped local reflection per layer

(time step ∆t) are much smaller than 1, as required by the Born approximation. However, at 0 dB

of channel power, the corresponding magnitude of the local reflection is 19.7%, 9.9%, and 4.9%

for 2, 4, and 8 samples per symbol, respectively. Therefore, the computational error that results

from the use of the Born approximation increases as the average power per data frame increases,

which requires an increase in the number of samples per symbol used in the INFT algorithm. If

the channel power is increased to 3 dBm, it would be necessary to have at least 16 samples per

symbol to achieve |ρ| < 5%. Since the Fourier bandwidth of the waveform increases very little due

to the nonlinear effects in the quasi-linear regimes that this research investigated, this increase in

the number of samples per symbol that is needed to satisfy the Born approximation in the SILP

method, or other INFT methods that make use of the Born approximation, can in principle be

accomplished by interpolating the sampled values from the waveform.

The zero-order numerical approximation that is actually used in the numerical discretization

of the SILP is given in terms of the kernel functions and the Fourier transform of the reflection

spectra. Even though the computational error due to the Born approximation in the SILP is also

due to a zero-order approximation as in the DLP method, the computational error in the former

accumulates slower than in the latter during the iterative layer peeling procedure because of the

higher numerical robustness of the SILP method.

2.3.4. NFT and Number of Symbols per Data Frame

In Figure 2.5, the performance of the computational NFT in a QPSK modulation format

at 56 GBd per data frame with 128 symbols per data frame and a minimum allowed value of

Q = 15 dB due to numerical error. The maximum power was limited to −4 dBm using Npt = 217

to discretize the reflection spectra. For a minimum allowed Q = 15 dB and 217 points to discretize

the reflection spectra for 256 and 512 symbols per data frame it is observed that the channel power

decrease to −6 dBm and −8 dBm, respectively. Figure 2.7 shows that the computational cost of
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Figure 2.7. The logarithm with base 2 of the number of points used to discretize the reflection
spectra as a function the number of symbols per data frame (in linear scale) for Q > 15 dB due
to the numerical error of the NFT-INFT algorithms. The symbol rate per data frame is equal to
56 GBd and the relative guard time tg,R = 1.2. The results are parametrized by the channel power.
The Q-factor is calculated from the EVM using 30 random data frames.

the NFT-INFT algorithms increases exponentially with the number of symbols for a fixed channel

power.

2.4. Reflection Spectra Resolution

The numerical results shown in the previous section indicate that the eigenvalue resolution

of the reflection spectra and, consequently, the computational cost of the NFT-INFT algorithms

increases rapidly as the system moves from the linear to the quasi-linear regime of operation. The

nonlinear effects in the optical fiber transmission system without in-line dispersion compensation,

which requires the use of a fixed frame followed by a guard time, increase as a result of the increase

in the channel power, in the number of symbols per data frame, or both. Since the practical vi-

ability of using computational NFT-INFT algorithms for nonlinear compensation in optical fiber

communications systems depends significantly on the computational cost of the method, it is im-

portant to understand the reason for the interdependence between the computational cost of the

NFT-INFT algorithms and both the channel power and the number of symbols per data frame.

In what follows, an intuitive explanation is given for the rapid growth in computational cost with

both the channel power and the data frame length.
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2.4.1. Reflection Spectra and Computation Time Window

Since the NFT based on the ZSSP described in Sec. 2.2 has a fixed value of the nonlinear

parameter γ and the second-order dispersion β2, there is always a finite propagation distance at

which the non-zero region of the waveform centered at Tw/2 would disperse beyond the limits of

the computation time window: [0, Tw]. Since Tw is in practical cases far larger than the signal

frame, this distance will typically be larger than the propagation distance of 1, 000 km. However,

this distance always exists in the normal dispersion regime (β2 > 0), since this regime does not

support solitons. Once the waveform exceeds the upper or the lower limit of the simulation time

window due to the chromatic dispersion, the signal appears at the opposite end of the simulation

window in our computational algorithm due to the intrinsic periodicity that arises from the use of

a finite eigenvalue resolution ∆ζ of the reflection spectra that was used to numerically represent the

waveform. In case studied, the eigenvalue resolution is given by ∆ζ = π/(Npt∆t) and Tw = Npt∆t.

The eigenvalue resolution ∆ζ will be the same for any other INFT algorithm that makes use of the

fast Fourier transform. If the signal is still propagating nonlinearly when the periodic wrapping

occurs, then the computational window is not large enough to resolve the nonlinear evolution. In

this case, the INFT algorithm must produce a large error at any distance since its accuracy is the

same at all distances.

Figure 2.8 shows the relative root-mean-square (RMS) width of the Fourier spectrum of a

QPSK waveform with 128 symbols at 56 GBd per data frame with relative guard time tg,R = 1.2

as a function of the propagation distance. The initial RMS width of the spectrum waveform

at the origin is equal to 32.5 GHz. The RMS width of the Fourier spectrum increases until the

dispersed waveform spreads out so much that the nonlinear effects become negligible or the dispersed

waveform exceeds the simulation window. The total duration of the dispersed data frame Tdf in

the quasi-linear regime as a function of the propagation distance L is given by:

Tdf = Nsym ·
1

fs,df
+ 2π|β2|fs,df · L. (2.22)

For the simulation with 211 (for −8.9 dBm of channel power), 213 (for −5.9 dBm of channel

power), and 217 (for −2.9 dBm of channel power) to discretize both the reflection spectra and the

time window of simulation, the size of the periodic window is: 3.90× 103 km, 15.5× 103 km, and
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331× 103 km, respectively. These are the number of points used to discretize the reflection spectra

that are the minimum to enable Q > 15 dB due to numerical error in the NFT-INFT algorithms.

Note that the number of points required to discretize the time window in most of the systems

operating in the quasi-linear regime that were investigated here is much larger than the number

of points required to discretize the reflection spectra, since the actual propagation distance that

is considered, L = 1, 000 km, is short compared to the propagation length in which the nonlinear

effect is significant, as illustrated in Figure 2.8. In the practical cases in which the number of

samples recovered in time domain, Nsamp, is smaller than the number of points used to discretize

the reflection spectra, Npt, the time shift in (2.14) has to be used.
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Figure 2.8. The evolution along the fiber of the relative RMS width of the Fourier spectrum of
the waveform that consists of 128 QPSK symbols with 56 GBd of symbol rate per data frame with
relative guard time tg,R = 1.2 for −8.9 dBm, −5.9 dBm, and −2.9 dBm of channel power with of
channel power with 211, 213, and 217 points to discretize both the reflection spectra and the time
window of simulation, respectively. The results are calculated from the average of 30 random data
frames.

2.4.2. Equivalence to Fiber Bragg Gratings

The left reflection spectra associated to the eigenvalues ζ in the ZSSP in (2.2) that models

lossless transmission in optical fiber systems with normal dispersion is equivalent to the reflectance

spectrum of a fiber Bragg grating, which can also be described by (2.2) [7]. The slowly varying

envelope of a data frame in a normal dispersion fiber corresponds to the refractive index profile of

a fiber Bragg grating:
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• A fiber Bragg grating with large value of the refractive index. This is equivalent to a waveform

with large optical power launched in an optical fiber with normal dispersion.

• A wide fiber Bragg grating. This corresponds to a waveform with a long duration launched

in an optical fiber with normal dispersion.

In both of the cases described above, the larger the refractive index of the fiber grating

and/or the larger the fiber grating length, the closer to the maximum value of 1 the reflectance of

the fiber grating will be over a wide spectral range. Likewise, in both of these cases, the narrower will

be the frequency bands whose reflectance is significantly lower than 1, since constructive interference

in the forward direction would take place in a narrow bands that decrease with both the refractive

index of fiber the grading and the fiber grading width. Therefore, the reflection spectra of the

waveform launched in the corresponding optical fiber would also be close to 1 over a wide range

of the eigenvalue ζ and the reflection spectra will be different from 1 in narrow eigenvalue bands

whose widths decrease with the launch power and waveform duration at the transmitter. As a

consequence, higher launch powers and a larger number of symbols per data frame require higher

reflection spectra resolution.

The numerical error due to the Born approximation also increases with the the average

power, since the error per time step increases. Moreover, a larger number of symbols in the frame

implies that more iterations are needed in the INFT algorithms, and the errors will accumulate due

to the Born approximation. The combination of the finite reflection spectra resolution in the NFT

algorithms and the Born approximation in the INFT algorithms leads to the exponential increase

in the errors with both the average power and the number of symbols per data frame as shown in

Figs. 2.5 and 2.7.

2.5. Conclusion

This research used computationally efficient and robust computational methods to imple-

ment the NFT-INFT algorithms that work well when the reflection spectra is close to 1. It inves-

tigated the computational cost of nonlinear compensation techniques based on the NFT applied

to optical transmission systems with normal dispersion fibers. The QPSK format was used with

raised cosine spectral characteristic to show that the computational cost of the NFT-INFT al-

gorithms increases exponentially or faster with both the channel power and with the number of
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symbols per data frame. It is shown that the computational cost of the NFT is primarily limited

by two factors: 1) The eigenvalue resolution required for the reflection spectra in the NFT and 2)

The number of samples per symbol required to satisfy the Born approximation in the INFT. Since

the computational NFT methods that were investigated require that the slowly varying envelope

of the optical signal converges towards zero before the edges of the simulation window, the relative

guard time has to be increased beyond tg,R = 1.2 at higher power levels due to the increase in the

spectral bandwidth along the propagation due to the fiber nonlinearity. This is a third, additional,

effect that contributes to the decrease of the effectiveness of the NFT as a technique for nonlinear

mitigation.

The computational error of the NFT due to the finite eigenvalue resolution of the reflection

spectra is the result of an intrinsic property of the ZSSP, since the reflection spectra have to be

able to reconstruct the waveform at any position z along the direction of propagation up to the

point in which the nonlinear effect does not cause additional changes in the Fourier spectrum. That

distance can be orders of magnitude larger than the actual transmission distance when the optical

fiber is operating in the nonlinear regime. If this condition is not satisfied, the computational

error of the NFT-INFT algorithms will be large at any point along the transmission. For example,

to use the NFT to process the signal that consists of 128 QPSK symbols at 56 GBd per data

frame at −8.9 dBm of channel power, whose left reflection spectrum is shown in Fig. 2.2, the NFT

requires only 210 points to achieve Q > 15 dB. When the channel power is increased to −2.9 dBm,

the number of points required by the NFT to achieve Q > 15 dB for the same QPSK waveform

increases to 217. For this system to operate at Q > 15 dB at 3 dBm, it is estimated that the

reflection spectra has to be discretized with at least 2103 points to process each QPSK frame with

512 symbols. The associated computational cost is not practical with currently available technology.

This study only explores data modulation in the time domain using the QPSK raised cosine

modulation format. Le, et al. [28], carried out a study in which the signal was modulated directly

in the left reflection spectrum in a transmission system that consisted of anomalous dispersion

fibers. In that study, the peak performance was observed at only −4 dBm of average power per

data frame, which was 3 dB above the peak performance of −7 dBm of average power per data

frame produced by modulation in the time domain. Because of the guard time requirement due

to the chromatic dispersion after 2, 000 km of propagation distance, the actual channel power for
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peak performance in those two cases are −13.3 dBm and −16.6 dBm, respectively. Additional

studies need to be carried out to determine the effectiveness of directly modulating the left- or

the right-reflection spectrum. With all the results presented here it is expected that extending

this method to normal dispersion fibers is challenging. Systems with −2.9 dBm channel power,

which corresponds to 0 dBm of average power per data frame with 128 symbols per data frame,

in the normal dispersion regime have reflection spectra whose magnitudes are within 10−10 of 1

over a large portion of the reflection spectra. In the case considered in this study, in which it

directly modulated the slowly varying envelope of the optical signal, the maximum magnitude of

the reflection spectra magnitude comes so close to 1 that it exceeds the accuracy of the floating

point numerical representation at −1.2 dBm of channel power, which corresponds to 1.7 dBm of

average power per data frame with 128 symbols per data frame, regardless of the number of points

used to discretize the reflection spectra. While the results apply to a particular data format, it is

expected that the rapid increase of the required spectral resolution of the NFT algorithms with

both the length of the data frame and the average power per data frame will hold generally. The

corresponding increase in the computational cost is not dependent on the computational complexity

of the NFT and INFT algorithms that are used. These issues should be addressed when assessing

the practicality of the NFT with any modulation format.
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3. ANOMALOUS DISPERSION REGIME: DISCRETE

SPECTRUM

3.1. Background

The spectral efficiency of traditional optical fiber communications systems is limited by the

maximum launch power imposed by the Kerr nonlinearity [16]. It is of paramount importance to

investigate techniques that have the potential to increase the maximum power and, therefore, the

spectral efficiency to increase the data rate that can be transmitted in the optical fiber using the

currently available optical fiber transmission links.

An alternative to the traditional linear systems is to use the NFT, also known as forward

scattering transform, to exploit the use of the nonlinear spectrum. The NFT is based on the

Zakharov-Shabat spectral problem [48]. The NFT provides a solution to the Nonlinear Schrodinger

Equation (NLS) which describes the propagation on a lossless and noiseless optical transmission

medium. The NFT transforms a waveform into a spectrum function that evolves linearly along

an optical fiber in the presence of the nonlinear Kerr effect. Unlike the the conventional Fourier

transform, the NFT separates the spectrum into two parts: a continuous and a discrete spectrum.

The use of the continuous and the discrete spectra, which evolve linear along the propagation

direction, can lead to the development of a modulation format that has the potential to mitigate

for the nonlinear impairments and lead to systems with higher spectral efficiencies (SE).

Previous chapter studied the use of one-step digital back-propagation based on the NFT

to mitigate the nonlinear Kerr effect in optical fiber communications systems [31]. It was found

that the computational cost of this approach becomes unacceptably large at such small data frames

and power levels that this method is not practical with the currently available NFT methods. This

chapter complements that study by investigating the effectiveness of discrete spectrum modulation.

Discrete spectrum modulation has been investigated in the past as part of eigenvalue com-

munication by [25]. independent groups have brought attention to this approach by proposing

modulation formats that use the discrete spectrum of the ZSSP to exploit the potential of this

method as a candidate to improve the current capacity of optical fiber system [11][15][24][22].
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The method used by Dong et al. in [15] and Hari et al. in [24] can be described as a type

of on-off-keying (OOK) modulation format of multiple eigenvalues. Those methods utilize symbols

defined by different combinations of eigenvalues, generating a variety of solitons of different orders.

In [24], the authors performed a fine selection of symbols formed with combinations of up to 5

eigenvalues out of 50, choosing only the pulses/symbols that meet a specific pulse duration and

bandwidth. This method has achieved SE of 3.14 bits/s/Hz.Even though that method does not

encode information on the phase of the discrete spectrum, it does set the adjacent solitons to be as

out of phase as possible at the transmitter. Moreover, the SE was calculated at the transmitter.

Therefore, it does not take into consideration any change on the pulse duration nor bandwidth.

This can only be done when the dispersion length (Ldisp) is much larger than the system length,

which significantly limits the maximum launch power used in this system.

Ldisp =
2πc

λ2

T 2
0

D
, Lperiod =

π

2
Ldisp (3.1)

The equation 3.1 shows the relationship of the soliton period and the dispersion length,

where T0 is the basic normalized time, D is the dispersion in ps/(nm×km).

Another modulation technique used in [11] consists of modulating the phase of the discrete

spectrum. In that case, a second-order soliton was chosen and two independent quadrature phase-

shift keying (QPSK) channels are modulated in each eigenvalue. That method utilizes more degrees

of freedom but still presents an unacceptably low SE: it can only achieved 0.12 bits/s/Hz at the

receiver.

This section investigates the effectiveness of the use of the discrete spectrum of the ZSSP to

encode data in optical fiber communications systems with two eigenvalues that was proposed in [11].

It utilizes the concepts of Nonlinear Frequency Division Multiplexed (NFDM) system introduced

by Yousefi et al. [45][46][47] and the specific transmitter/receiver model used is based on Bülow et

al.[11]. The transmitter/receiver evaluated is a second-order soliton with QPSK channels modulated

independently in each of the two eigenvalues.

This is a simple model system for the assessment of the robustness of modulating the

discrete spectrum of the ZSSP with respect to other fiber impairments, including the Raman effect,

third-order dispersion, ASE noise from EDFAs, and lumped gain from EDFAs.
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Table 3.1. Related Work Spectral Efficiencies

Modulation SE (bits/s/Hz) Source

3-soliton OOK 0.04 Experimented in 2015 [15]

2-soliton QPSK 0.12 Experimented in 2016 [11][43]

2-soliton OOK 0.39 Simulated in 2013 [22]

6-soliton OOK 1.5 Simulated in 2013 [22]

5-soliton OOK 3.14 Experimented in 2016 [24]

The Table 3.1 shows the SE for different proposed methods of discrete spectrum modulation,

the 2-eigenvlaue QPSK modulation format has a very small SE when compared to most of the other

discrete spectrum modulation systems in this table. The SE of the 2-eigenvalue QPSK modulation

format can, in principle, be increased by adding more eigenvalues (higher-order soliton) and/or

use a more complex quadrature amplitude modulation (QAM) modulation applied to the spectral

function of each eigenvalue. However, the increase in the number of eigenvalues has the potential

to decrease the robustness of this method with respect to other impairments.

3.2. Modulation Degrees of Freedom

When modulating the discrete spectrum one may use the following degrees of freedom:

• Imaginary Axis. The eigenvalues are positive imaginary, (the negative imaginary eigenval-

ues are a mirror of the positive, so it is not a degree of freedom)(Ex: 0.3j, 0.6j, etc)

Implications on the time domain: The larger the eigenvalue is, the taller and narrower is

the pulse and therefore the peak power is higher.

Implications on the frequency domain: The larger the eigenvalue is, the wider is its

spectrum, as the pulse energy level transitions are steeper.

• Real Axis. The eigenvalues are located on the complex plane. (Ex: 1 + 0.3j , -1 + 0.6j, etc)

Implications on the time domain: the real part causes the pulse to suffer from the fiber

dispersion and it will broaden with the distance.

Implications on the frequency domain: The larger the real part of the eigenvalue is the

more distant from the original center frequency the pulse gets. Therefore if multiple eigen-

values are used it will use a broader spectrum.
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• Phase of the spectral function. Each eigenvalue has a spectrum function associated with

it and it can have different phases.

Implications on the time domain: the phase of different eigenvalues will change how

multiple eigenvalues interact with each other and in high order soliton it will define the pulse

shape at a specific point of the breathing process.

Implications on the frequency domain: It does not affect the spectrum much if the whole

period spectrum is considered, because all the phases are used in one period.

• Amplitude of the spectral function. Each eigenvalue has a spectrum function associated

with it and it can have different amplitudes.

Implications on the time domain: it given by the pulse distance from the center of the

symbol window. It is a type of timing jitter, therefore when the time jitter happens the

amplitude of the spectral function is deeply disturbed.

Implications on the frequency domain: It does not affect the spectrum as the pulse shape

remains the same.

3.3. Numerical Methods

The slowly-varying envelope of the optical field in a lossless nonlinear medium including

both the second-order and the third-order dispersion described by the NLS [3][9][4]:

i
∂A(t)

∂z
+ i

α(z)

2
− β2

2

∂2A(t)

∂t2
− iβ3

6

∂3A(t)

∂t3
+ γ |A(t)|2A(t) = 0, (3.2)

The fiber parameters β2, β3 and γ are the chromatic dispersion, third-order dispersion and

the nonlinearity coefficient, respectively. For the fiber parameters, simulation used an SMF with

attenuation α = 0.2 dB/km, β2 = −5.75 ps2/km, β3 = 0.7 ps3/km and γ = 1.6 (W.km)−1. The

simulated fiber transmission system consists of a dispersion map span of 80 km and propagation

distances up to 1600 km.The Raman effect is another nonlinear phenomenon that affects the prop-

agation of the optical signal that is not included in the NSE. The ZSSP does not account for

third-order dispersion, fiber losses, and the Raman effect.

The NFT of the signal results is two spectral components: the discrete and the continuous.

The discrete spectrum corresponds to the solitonic component of the signal, therefore soliton waves
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are generated when a waveform is generated from discrete spectrum of the ZSSP. The eigenvalues

ζj of the discrete spectrum are located in the complex plane with spectral function qd(ζj), which is

also a complex number [45].
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Figure 3.1. On the left: the waveform for a single symbol. In the middle: a constellation diagram
of the decoded eigenvalues. The blue dots correspond to the eigenvalue ζ1 = 0.6j and the red
dots correspond to the eigenvalue ζ2 = 0.3j. The data is encoded at the spectrum phase of each
eigenvalue and it generate another constellation of 16 possible symbols. On the right: the discrete
spectrum amplitude and phase constellation associated with each decoded eigenvalue ζi.

For this study the simulated system considered only eigenvalues ζj on the imaginary axis

and with that generate the value of the spectral function qd(ζj) in the complex plane as a QPSK

modulation for each eigenvalue. This system used two eigenvalues, ζ1 = 0.6j and ζ2 = 0.3j, to

generate the 2-soliton waveform with independent QPSK modulation of each respective spectral

function qd(ζj).

The algorithms for the NFT and its inverse NFT (INFT) are based on the Ablowitz-Ladik

and the Darboux transform, respectively. The Ablowitz-Ladik combined with Newton-Raphson

method is a suitable NFT method to recover the eigenvalues ζj and their respective encoded spectral

functions qd(ζj) at the receiver. On the transmitter, the waveform is generated from the eigenvlaues

and the spectral functions using the Darboux transform.

The Darboux transform [22] is used to generate the waveform of the specific 2-soliton with

the information encoded into the phase of the spectral function associated with each of the two

discrete eigenvalues with independent QPSK channels. The waveform in [11] is generated using
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Figure 3.2. Schematic for the simulations.

64 GSa/s and pulse width of 1 ns, which corresponds to therefore 64 samples per symbol, with launch

power (average power) of −5.4 dBm and optical filter bandwidth of 33 GHz. In this study, the

symbol period, the sampling frequency, and the in-line filter bandwidth are adjusted to according

to the specified launch power, maintaining the same proportion.

At the receiver, the signal is up-sampled to 1024 for the symbol period TS1 and 2048 for the

symbol period TS2 (TS2 = 2TS1), in order to meet the NFT requirements, then the Ablowitz-Ladik

method calculates the discrete spectrum of the signal to extract the encoded spectral functions

associated to the two eigenvalues used. To extract the eigenvalues that were transmitted without

having to scan over a large area, the Ablowitz-Ladik method was combined with the Newton-

Ralphson method. The combination of these two methods reduce the computational cost to identify

the eigenvalues, which may undergo changes due other effects along the fiber propagation that are

not included in the ZSSP. This was the approach used in [11],[8],[10],[24][23],[15].

The Q-factor associated to each eigenvalue is estimated based on the Error Vector Magni-

tude (EVM) of the received QPSK signal of the received spectral function of each eigenvalue. The

EVM is one efficient indicator of the quality of the received signal in systems that use quadrature

amplitude modulation that is based on the deviation of the complex value of the received symbol

with its ideal location on the complex plane [38]. To calculate the spectral efficiency, the final

spectrum bandwidth and the symbol rate at the receiver are considered.

3.4. Results

Each of the fiber impairments were simulated from 200 km to 1600 km of propagation

distance on anomalous dispersion fibers with launch power levels from −10 dBm to +15 dBm. In

all cases the transmitter and receiver used are the same for the same launch power. The pulse
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duration and the receiver bandwidth are adjusted to produce the eigenvalues of the ZSSP for each

launch power.

3.4.1. Baseline

The Baseline simulation is the simulation obtained with the fiber model without any of

the physical impairments of the optical fiber. The ideal optical fiber case is simulated without

the following effects: distributed losses, third-order dispersion, ASE noise, and the Raman effect.

Because the modulation format contains two individual independent channels, we analyze the Q-

factor individually for each channel, as they are associated with different eigenvalues.

Figure 3.3 shows the performance of the baseline simulation as a function of the propagation

distance and the launch power over. Figure 3.3(a) shows the Q-factor of the first eigenvalue,

ζ1 = 0.6j, and Figure 3.3(b) shows the Q-factor of the second eigenvalue, ζ2 = 0.3j.
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Figure 3.3. Baseline performance of system with QPSK spectrum modulation of the spectral
function of two eigenvalues of the ZSSP: (a) shows results for the eigenvalue ζ1 = 0.6j and (b)
shows results for the eigenvalue ζ2 = 0.3j. The level curves shown in these two sub-figures are for
the following values of the Q-factor: 6, 12, 20, 30 and 40 dB. The area with Q-factor bellow 6 dB
represent the unacceptably low Q-factor for a QPSK signal.

In principle, the Q-factor associated to the eigenvalues of the ZSSP should not decay as the

signal propagates along an ideal lossless fiber. However even the ideal fiber simulation has presented

some distortions at the receiver at long distances. At the upper right corner of Figs. 3.3(a) and (b)

we observed the degradation of the Q-factor with the increase of both the launch power and the

35



propagation distance, which primarily affects the eigenvalue ζ2. This performance degradation in

the ideal fiber model is due to the finite size of the time window used to represent the waveform that

leads to inter-symbol interference (ISI).The ISI is caused by the proximity of neighbor symbol and

it affects the breathing process of the solitons. This ISI includes the interaction among neighboring

solitons described in [20]. As the launch power increases, the soliton breathing period decreases.

Therefore, there are more soliton periods in the same propagation distance and it degrades the

waveform. To investigate the sources of errors due to the finite size of the time window, this

simulations also investigated the same system with twice the symbol period with the same sample

rate to maintain the accuracy of the waveform discretization and, consequently, we also doubled

the number of points used in the Fast Fourier Transforms (FFT) and the NFT.

3.4.1.1. Mitigating inter-symbol interference

Neighbor symbols may interfere with each other even without the presence of other fiber

impairments. To investigate the ISI effect, this section studied the performance of the same system

with twice the symbol period. The symbol period denoted as TS1 is the symbol period of the system

that corresponds to that in [11]m while the system with symbol period TS2 = 2TS1 corresponds

to the same waveform with twice the symbol period but with the same sample rate. Figure. 3.4

compares the systems with these two symbol duration and also different number of points used to

discretize the FFT and the NFT methods used in the simulations.

For the system with symbol period(TS1), the Q-factor of the second eigenvalue shown in

Figure. 3.4(b) drops below zero before 14 dBm of launch power at 1600 km of propagation distance,

while the system with twice the symbol period, TS2, still has the Q-factor close to 45 dB at 14 dBm

of launch power. Since the goal is to investigate the impact of each of the non-ideal system

impairments, this section studies systems with symbol periods TS1 and TS2. This allows us to

identify the effects that lead to ISI and those who lead to other forms of performance degradation.

The Q-factor in Figures. 3.4(a) and (b) increases when the symbol period TS is doubled with

the same sample rate at the expense of dropping the SE by half. This performance improvement

results from the more accurate representation of the second-order soliton as the symbol period

increases, which reduces the ISI from the tails of adjacent symbols. Since there was no noticeable

improvement in the performance when the number of points used to discretize the FFT and the

NFT was increased, that was not a limiting factor in the performance of the system.
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Figure 3.4. Baseline Q-factor as a function of the launch power when the system does not include
any effect beyond those included in the ZSSP. (a) Results of signal decoded from the first eigenvalue
ζ1 = 0.6j. (b) Results of signal decoded from the second eigenvalue ζ2 = 0.3j. Results are shown
for the system with symbol period is equal to TS1 and for the system with symbol period equal to
TS2 = 2TS1.

3.4.1.2. Constellation analysis

Figures 3.5(a)-(d) show the impact of ISI on the waveform and on the decoded QPSK signal.

The waveform is selected from a random symbol from the received sequence at 1600 km with launch

power 11 dBm. The results shown in Figures. 3.5 (a, b, c) use TS = TS1 and the results shown in

Figures. 3.5 (d, e, f) use TS = TS2.

Figure 3.5(b) shows that there is little distortion on the eigenvalue location after 1600 km of

fiber propagation with 11 dBm of launch power. Therefore the eigenvalues were properly recovered

at the receiver and robust to cross-talk even using the shorter symbol period TS1. The eigenvalue

ζ2 = 0.3j experiences more degradation than the eigenvalue ζ1 = 0.6j because the portion of the

waveform more closely related to the eigenvalue ζ2 is significantly broader than the portion of the

waveform associated to ζ1. For this reason, the eigenvalue ζ2 = 0.3j is more susceptible to suffer

from ISI than the eigenvalue ζ1 = 0.6j when the symbol period is reduced. The higher susceptibility

to errors of the eigenvalue ζ2 = 0.3j is shown in Fig. 3.5(c), in which the constellations of qd(ζ1)

(blue) are a significantly less dispersed when compared to the constellations of qd(ζ2) (red).
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Figure 3.5. Baseline simulation at 1600 km with launch power 11 dBm. (a, b, c) use TS = TS1 while
(d, e, f) use TS = TS2. (a, d) Received waveform of one symbol of the sequence. (b, e) Received
eigenvalue. (c, f) Normalized received spectral function evaluated at the two eigenvalues: qd(ζ1) in
blue and qd(ζ2) in red.

3.4.2. Raman Effect

Figure 3.6 shows how the Raman effect limits the launch power of a system with 1600 km

of propagation distance. This study does not include any other effect; it does not include the

third-order dispersion, ASE noise, loss and lumped gain along the fiber propagation. Since that ISI

plays an important rule on the performance of this system for launch power levels above 10 dBm

at the 1600 km of propagation distance, simulations obtained results with the symbol period equal

to TS1 and TS2.

The case with regular symbol period, TS1, which corresponds to that in [11], and with

doubled symbol period, TS2, is compared versus their corresponding baseline cases. It is not clearly

identified the impact of the Raman effect on the the results with the symbol period equal to TS1,

since the baseline performance of the signal encoded in the eigenvalue ζ2 = 0.3j degrades rapidly

with the launch power. However, when the symbol period is equal to TS2, the Raman effect limit

the performance of the system to launch power levels below 11 dBm.
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Figure 3.6. Q-factor as a function of the launch power when the system includes only the Raman
effect. (a) Results of signal decoded from the first eigenvalue ζ1 = 0.6j. (b) Results of signal
decoded from the second eigenvalue ζ2 = 0.3j.; Results are shown for the system with symbol
period is equal to TS1 and for the system with symbol period equal to TS2 = 2TS1.

The system with the smaller symbol period TS1 appears to outperform the larger symbol

period TS12 in the results shown in Fig. 3.6(a). However, that performance difference is the result

of the use of the launch power, which implies that the simulation with symbol period TS2 needs to

have twice the peak power of the simulation with TS1 to correspond to the same launch power.

3.4.2.1. Constellation analysis

Since this coding scheme generates a second-order soliton, the portion of the waveform

associated to each individual eigenvalue may propagate with different group velocity when subjected

to the fiber impairments, such as the Raman effects. The Raman effects disturb the equilibrium of

the interaction forces of the given second-order soliton. As it is composed by two eigenvalues of the

ZSSP, the unbalancing of the attraction and repulsing forces cause pulse displacements, resulting

in the second-order soliton breaking apart into 2 individual solitons [21][26].

When the propagation distance is long enough or the launch power is high enough, the the

main lobe of one of the two soliton components reach the neighboring symbol due to the Raman

effect. Once that happens, the ISI due to Raman lead to errors in the symbol decoding. This is

caused by the attracting and repealing forces of the solitons main lobe to the neighbor symbol.

Before the total collapse of this modulation scheme due to ISI, the pulse shift inside the symbol
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time window due to the Raman effect causes changes in the amplitude of the spectral function q(ζ)

of at least one of the eigenvalues. This change in the amplitude of q(ζ), which increases linearly

with the propagation distance until the onset of ISI, precludes the use of QAM with multiple levels

of modulation and, thus, significantly limiting the possibility of increase in the SE with the use of

multilevel modulation. The larger shift in the amplitude of the spectral functions for the case in

which the symbol period is equal to TS2 compared to that in which the symbol period is equal to

TS1 is because the former system with larger symbol period has a higher peak power for the same

launch power.
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Figure 3.7. Simulation with the Raman effect at 1600 km with 9 dBm of launch power. (a,b,c)
Shows results for the symbol period TS1. (d,e,f) Shows results for the symbol period TS2. (a,d)
Received waveform of one symbol of the sequence. (b,e) Received eigenvalue. (c,f) Normalized
received spectral function constellations, qd(ζ1) in blue and qd(ζ2) in red.

The changes in the value of the eigenvalues due to the Raman effect do not make them to

cross the threshold of inter-eigenvalue interference at the propagation distance and launch powers

that we considered, but the Raman effect significantly changes the eigenvalue ζ1 from its original

value 0.6j. This suggests that the Raman effect would significantly limit the performance of modu-
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lation schemes in which the information is encoded in the location of the eigenvalues in the complex

plane.

Note, however, that most of the shift in the spectral function of the eigenvalues q(ζ) is

deterministic and could be taken into account when designing the symbols to optimize the choice

of the magnitude and the phase, as long as this shift is not large enough to lead to decoding errors

due to ISI.

The constellations of qd(ζ1) shown in blue in Fig. 3.7(c) maintain approximately same phase

for ζ1 = 0.6j but have different amplitudes due to the Raman effect, depending on the symbol

pattern. The 16 different symbols have four starting patterns determined by the phase difference

between the two soliton components. This phase difference determines the shape of the waveform

at the starting point of the breathing period. Appendix A.1 addresses how one can recognize these

patterns and how one can mitigate for those deterministic shifts in the amplitude of the phase

function before the onset of decoding errors due to ISI.

Differently from the constellations of qd(ζ1), the constellations of qd(ζ2) shown in red in

Figure. 3.7(c) are spread equally on amplitude and phase, this is because at this propagation

distance and channel power, the ISI (present on the baseline simulation) is the primary cause of

the distortions in qd(ζ2).

For the system with symbol period TS2, in which ISI is virtually absent, both qd(ζ1) and

qd(ζ2) constellations are distorted by the Raman effect, even though qd(ζ1) is more strongly affected

by the Raman effect than qd(ζ2) because the former is related to a soliton wave with a much higher

peak power when compared to the latter.

3.4.3. Third-Order Dispersion

The impact of third-order dispersion in the eigenvalue encoding is also investigated with the

two different symbol periods TS1 and TS2. Figure 3.8 shows the impact of third-order dispersion

as the power increases. For the TS2 the impact on the Q-factor estimation at a launch power of

12 dBm is of approximately 40 dB when compared to the baseline simulation without any fiber

impairments. Therefore, the third-order dispersion alone can cause the communication system

with 1600 km to fail at launch powers higher than 13 dBm. The performance degradation due to

third-order dispersion of the eigenvalue encoding based on the ZSSP with the increase in the launch
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power is due to the bandwidth increase required to generate the second-order soliton as the launch

power increases.
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Figure 3.8. Q-factor as a function of the launch power when third-order dispersion is included. (a)
Results of signal decoded from the first eigenvalue ζ1 = 0.6j. (b) Results of signal decoded from
the second eigenvalue ζ2 = 0.3j. Results are shown for the system with symbol period is equal to
TS1 and for the system with symbol period equal to TS2 = 2TS1.

3.4.3.1. Constellation analysis

To study how the third-order dispersion impact the signal a constellation and pulse shape

analysis was made on figure 3.9. It shows that the eigenvalues location does not suffer degradation

at 12 dBm of launch power after 1600 km of propagation distance. However, the spectral func-

tion constellations undergo a significant pattern of spread, which causes the Q-factor to degrade

significantly.

3.4.4. Lumped Gain

To address the impact of the lumped gain from EDFAs, it is necessary to adjust the launched

waveform because the effective nonlinearity of the fiber is lower than that of a lossless fiber with

the same launch power. This occurs because the average power of the waveform decreases as the

waveform propagates through a practical fiber with losses. One approach to mitigate the effect of

losses is to calculate an average/effective value of the nonlinear coefficient of the fiber and generate

the waveform based on that new effective nonlinearity coefficient. Calculations show that a launch
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Figure 3.9. Third-order dispersion simulation results with symbol period equal to TS2 at 1600 km
of propagation distance. (a,b,c) Results with launch power 1 dBm. (d,e,f) Results with launch
power 12 dBm. (a,d) Received waveform of one symbol of the sequence. (b,e) Received eigenvalue.
(c,f) Normalized Received spectral function constellations, qd(ζ1) in blue and qd(ζ2) in red.

power increase of about 5.7 dB is needed for a 80 km fiber span with attenuation of of 0.2 dB/km

when compared to the ideal lossless fiber. This is the same technique used in [24],[11].

The results shown in Figure. 3.10 with fiber losses and lumped gain from EDFAs show a

significant degradation of the Q-factor with the increase of the launch power. This is caused by the

worsening of the approximation between the lossless fiber approximation and the practical fiber

with losses and lumped gain, at the end of each span, with the increase of the local power variation

from the beginning to the end of a fiber span. This effect is also symbol dependent and the error is

much larger for specific symbols, especially those with large peak-to-average power ratio (PAPR).

3.4.4.1. Constellation analysis

Because the performance with fiber losses and lumped gain from EDFAs decreases so rapidly

with the increase of the launch power, I examined the effect of fiber losses and lumped gain in

the waveform generated by a symbol that was strongly affected by fiber losses and lumped gain.

Figure 3.11 shows results for −0.25 dBm of launch power when fiber losses and lumped gain are

included. The constellations for both simulations with symbol period TS1 and symbol period TS2

are almost equally affected because the waveform degradation is not due to ISI. The eigenvalues
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Figure 3.10. Q-factor as a function of the launch power when the system includes only losses and
lumped gain from EDFAs. (a) Results of signal decoded from the first eigenvalue ζ1 = 0.6j. (b)
Results of signal decoded from the second eigenvalue ζ2 = 0.3j. Results are shown for the system
with symbol period is equal to TS1 and for the system with symbol period equal to TS2 = 2TS1.

shown in Figures. 3.11 (b,e) are disturbed even at −0.25 dBm of launch power, while the qd(ζj)

constellations are significantly spread out, reducing the Q-factors down to 10 dB at this low launch

power.

Due to errors in the decoding of some of the transmitted symbols using discrete spectrum

modulation, Bülow proposed to drop the symbols that are more prone to errors in [11]. After

dropping 25% the symbols with errors and calculating the Q-factor for the remaining symbols, a

significant improvement in the Q-factor was observed at the expense of a reduction of 25% in the

SE. When all the symbols are included, the Q-factor is equal to 1 dB due to the large value of the

EVM associated to a few of the symbols. When the 25% of the symbols with the largest EVM are

excluded, the Q-factor increases to 13 dBm. Therefore, to mitigate the errors due to losses and

lumped amplification, the symbols with the higherst EVM, which correspond to those with high

PAPR, have to be excluded.

One approach to mitigate the impairments due to fiber losses and lumped gain from EDFAs

in the discrete spectrum modulation is to use distributed Raman amplification. However, the high

cost and the low efficiency of that amplification scheme significantly limit the use of that method

to enhance the effectiveness of discrete spectrum modulation based on the ZSSP.

44



-1 0 1

Normalized Time

0

0.5

1

1.5

N
or

m
al

iz
ed

 A
m

pl
itu

de Waveform

-0.1 0 0.1
Re(ζ

i
)

0

0.5

1

Im
(ζ

i)

Eigenvalue

-2 0 2
Re(q

d
(ζ

i
))

-2

0

2

Im
(q

d
(ζ

i))

Phase

-1 0 1

Normalized Time

0

0.5

1

1.5

N
or

m
al

iz
ed

 A
m

pl
itu

de

-0.1 0 0.1
Re(ζ

i
)

0

0.5

1

Im
(ζ

i)
-2 0 2

Re(q
d
(ζ

i
))

-2

0

2

Im
(q

d
(ζ

i))

(a) (b) (c)

(e) (f) (g)

Figure 3.11. Simulation results at 1600 km or propagation distance with launch power −0.25 dBm.
(a,b,c) Results with symbol period equal to TS1. (d,e,f) Results with symbol period equal to TS2.
(a,d) Received waveform of one symbol of the sequence. (b,e) Received eigenvalue. (c,f) Normalized
Received spectral function constellations, qd(ζ1) in blue and qd(ζ2) in red.

3.4.5. ASE Noise

This sub-section investigates the impact of the ASE noise in the performance of discrete

spectrum modulation. This system consists of 20 spans of 80 km with an EDFA at the end of

each span. Since the purpose of this study is to characterize the impact of optical noise in the

performance of eigenvalue modulation, the launch power is maintained constant throughout the

propagation, but ASE noise is added at the end of each span consistently with the amount of ASE

noise that is generated in a fiber transmission system with losses and lumped amplification by

EDFAs. To limit the noise bandwidth, the system used an optical filter with 33 GHz of bandwidth

for the pulse with TS1 = 1 ns to limit the ASE noise.

Figure 3.12 shows the Q-factor as a function of the launch power for both eigenvalues and

for symbol periods equal to TS1 and TS2. The ASE noise limits the maximum power that can be

launched in the two-eigenvalue system. The signal encoded in the spectral function of the eigenvalue

ζ1 is limited to about 0 dBm of launch power. At low channel power levels, the ASE limits the

performance because the noise dominates the signal. As the channel power increases, the nonlinear
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noise increases faster than the signal for at about −7 dBm for ζ1 = 0.6j and 0 dBm for ζ2 = 0.3j

because of the high PAPR of the second-order solitons.
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Figure 3.12. Q-factor as a function of the launch power when the system includes only ASE noise
from EDFAs. (a) Results of signal decoded from the first eigenvalue ζ1 = 0.6j. (b) Results of signal
decoded from the second eigenvalue ζ2 = 0.3j.

3.4.6. All Impairments Combined

When all the impairments are considered, the performance is capped by the combination

of all these effects. However the lumped gain in EDFAs to compensate for the fiber losses along

the transmission dominates the overall performance degradation. As discussed in Sec. 3.4.4, this

performance degradation with the increase of the launch power is due to the degradation of the

lossless propagation approximation modeled by the ZSSP compared with the practical model that

accounts for losses and lumped amplification from EDFAs located at the end of each fiber span. In

essence, the distributed losses have the effect of changing the local eigenvalues of the ZSSP along

the propagation distance, which deviates from those of the lossless propagation model of the ZSSP

as the launch power increases.

Figure 3.14 shows the case with TS2, in this case we can see the effects without the cap

of the baseline ISI that exists at TS1. Note that the performance with symbol period TS2 is 3 dB

shifted when compared to that with TS1 because the former has twice the symbol period of the

latter.
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Figure 3.13. Q-factor as a function of the launch power when all the effects are included. (a)
Results of signal decoded from the first eigenvalue ζ1 = 0.6j. (b) Results of signal decoded from
the second eigenvalue ζ2 = 0.3j. Results are shown for the system with symbol period is equal to
TS1.

3.4.6.1. Constellation analysis

The impact of all the effects combined have little difference from the case TS1 and TS2

besides the 3 dB shift caused by the larger window, therefore Figure 3.15 compares the signal

constellation and pulse shape from two different power levels, −7 dBm and 0 dBm; this shows

the impact of the different launch powers. At a low power the eigenvalues are recovered properly

without any kind of displacement while the spectral function constellations show a pattern of spread

that causes the Q-factor estimation to decay.

From Figure 3.14 it is possible to conclude that gain and loss along with noise are the

dominant impairments at 1600 km propagation with a launch power around 3 dBm. At Figure

3.16 the impact of each impairment is shown in a different plot to clarify the impact at the same

original waveform.

3.5. Conclusion

In an ideal lossless fiber without ASE noise, the Raman effect is the limiting factor of the

performance of a modulation scheme based on a two-eigenvalue spectrum modulation, since the

Raman effect brakes the second-order soliton and at least one of the two soliton components shifts

into a neighbor symbol. For this modulation format it occurs when the launch power is higher than

10.25 dBm for a propagation over 1600 km of optical fiber. This degradation due to the Raman
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Figure 3.14. Q-factor as a function of the launch power when all the effects are included and the
symbol period is equal to TS2 = 2TS1. (a) Results of signal decoded from the first eigenvalue
ζ1 = 0.6j. (b) Results of signal decoded from the second eigenvalue ζ2 = 0.3j.

effect under that power level can be compensated through equalizing the signal and mapping each

symbol individually to compensate for the Raman shift suffered for the given distance. However,

this consequence of the Raman effect significantly limits the use of multilevel modulation formats

that could have been used to increase the SE. At even lower launch power levels, other effects

such as ASE noise and lumped gain from EDFAs limit this system performance. In the systems

that we investigated, the primary limiting factor of the performance was the lumped gain from

EDFAs, which limits the maximum launch power to about 2 dBm. The performance degradation

of the discrete spectrum modulation format is due to the lumped gain to compensate for the fiber

losses, which deviates from the lossless fiber model that is described by the ZSSP. The performance

of discrete spectrum modulation is expected to worsen with the increase of the number discrete

eigenvalues per symbol. Therefore, the use of modulation of the discrete spectrum of the ZSSP

is unlikely to lead to the design of optical fiber communications systems with spectral efficiency

higher than those of conventional QAM systems that are currently being used.
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Figure 3.15. All effects simulation results with symbol period equal to TS2 at 1600 km of propagation
distance. (a,b,c) Results with launch power −7 dBm. (d,e,f) Results with launch power 0 dBm.
(a,d) Received waveform of one symbol of the sequence. (b,e) Received eigenvalue. (c,f) Normalized
Received spectral function constellations, qd(ζ1) in blue and qd(ζ2) in red.
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Figure 3.16. All effects simulation results with symbol period equal to TS2 at 1600 km of propagation
distance. Each row of figures represent a different impairment simulation: Row 1 Baseline, 2 Raman
effect, 3 Dispersion, 4 Noise, 5 GainLoss and 6 All impairment. The waveform compared is for the
same original symbol and the performance is compared for the same original signal under each
of the circumstances. For the Eigenvalue and Phase columns it is used the normalized received
spectral function constellations, qd(ζ1) in blue and qd(ζ2) in red.
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4. CONCLUSIONS AND RECOMMENDATIONS FOR

FUTURE WORK

One of the objectives of this research was to develop a collection of algorithms to build a

functional simulation library for optical fiber communication systems, including propagation with

ASE noise, loss, gain, Raman and third-order dispersion. Now this platform is available for use in

future research projects related to this topic.

On the continuous spectrum at normal dispersion regime it was found that the complexity of

the NFT-INFT algorithms exponentially increase as the channel power increases. For the proposed

system to operate at Q > 15 dB at 3 dBm, it was estimated that the reflection spectra has to be

discretized with at least 2103 points to process each QPSK frame with 512 symbols. The associated

computational cost is not practical with currently available technology. Another trade off is the

allocation of a guard time to accommodate for the accumulated dispersion, this way only a fraction

of the sent package has effective data, reducing its spectral efficiency. Therefore the use of the NFT

continuous spectrum for nonlinear compensation in normal dispersion regime is not a practical

method for high launch power with the current NFT-INFT algorithms.

The goal of the second phase of this research was to determine the effectiveness of discrete

spectrum modulation using the NFT as a tool to mitigate for the nonlinear Kerr effects that

limit the capacity of optical fiber communications systems. The impairments for the 1600 km

(20×80 km, with distributed EDFA) of SSMF prevent it to reach channel power levels above 4 dBm

for a second-order soliton, which corresponds to only two QPSK wavelength-division multiplexed

(WDM) channels. Therefore the use of the discrete spectrum alone on the anomalous regime is

not a good candidate for a high spectral efficiency on long distance propagation and high channel

power for a second-order soliton.

Even though the NFT methods studied here are not yet practical nor robust to mitigate the

nonlinear effects in the normal or in the anomalous dispersion regime using either the continuous

or the discrete spectrum of the NFT, more research needs be done with different fiber parameters,

different modulation formats and different implementations of the NFT and the INFT algorithms.
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APPENDIX. PRE-COMPENSATION FOR RAMAN SHIFT

The Raman effect brakes the second-order soliton and causes each solitonic component to

shift apart inside the symbol time window. Different symbols with different phases encoded on

each eigenvalue will breath differently, causing the shift to be different for each symbol. This effect

is deterministic and one can equalize and pre-compensate for the pulse shift at the transmitter.

Figure A.1 compares the constellation of a regular and a pre-equalized constellation at the receiver.
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Figure A.1. Constellations recovered at the receiver after 1600 km of propagation distance with the
Raman effect and 10.25 dBm launch power. (a) Results of the received constellations without using
any equalization technique. (b) Results of the received constellations with the use of a pre-equalized
technique.

The equalization technique consists in adjusting the original constellation with enough time

and phase shift to address the expected shift in the phase at the receiver due to the Raman effect,

which depends on the phase difference between the eigenvalues and.The results of this technique

are shown in Figure. A.2.
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Figure A.2. Waveform of all 16 possible symbols at the receiver when equalization was not used.
There are 4 different patterns for each initial phase encoded in the two eigenvalues.
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