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ABSTRACT 

The particle filter is usually used as a tracking algorithm in non-linear under the Bayesian 

tracking framework. However, the problems of degeneracy and impoverishment degrade its 

performance. The particle filter is thereafter enhanced by evolutionary optimization, in 

particular, Particle Swarm Optimization (PSO) is used in this thesis due to its capability of 

optimizing non-linear problems. In this thesis, the PSO enhanced particle filter is reviewed 

followed by an analysis of its drawbacks. Then, a novel sampling mechanism for the particle 

filter is proposed. This method generates particles via the PSO process and estimates the 

importance distribution from all the particles generated. This ensures that particles are located in 

high likelihood regions while still maintaining a certain level of diversity. This sampling 

mechanism is then used together with the marginal particle filter. The proposed method’s 

superiority in performance over the conventional particle filter is then demonstrated by 

simulations.  
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1. INTRODUCTION 

In this chapter, the definition of visual object tracking is introduced first. The major 

applications of this technology and the challenges are then briefly reviewed. After that 

evolutionary optimization, in particular, Particle Swarm Optimization (PSO) is introduced. PSO 

was chosen for this work because of its capability to work on complex problems such as visual 

object tracking. The overall organizational structure and major contribution of this thesis are then 

presented at the end of this chapter. 

1.1. Object Tracking 

Visual object tracking is one of the most active and challenging research topics in the 

area of computer vision. Its goal is to estimate the target state within video frames including 

trajectory, orientation, position and scale, etc. [1]. More specifically, the tracker labels an area in 

the video frames as target based on the previous knowledge of the target and the scene and 

possible constraints. This area indicates the projection of real target onto the 2D image plane. It 

represents what the object looks like from the perspective of the camera after all the variation of 

the background and target between the frames. The word “visual” here emphasizes that the only 

guaranteed input is a visible scene in the form of a 2D video record, which was captured by the 

camera previously or in real-time. Other types of sensors may not be equipped, therefore, inputs 

other than the aforementioned 2D video record are not always available, such as the velocity or 

distance from a radar, image of occluded target from an infrared camera and orientation from a 

gyroscope, although the availability of these inputs could improve the performance of tracking. 

The ability of the visual object tracking serves as a fundamental component for many 

computer vision applications. As one of the most promising applications, automated surveillance 

is now deployed to perform tasks much more complicated than the traditional plain video 



 

2 

recording or monitoring. For example, object tracking can be used for suspicious activities 

detection in public spaces such as the detection of luggage left unattended in a public 

transportation facility [2], as well as for traffic statistics and path optimization. In these tasks, 

high-level analyses such as behavior analysis are performed based on the trajectory of the target 

extracted only by visual object tracking. Intelligent assist driving is another emerging application 

of computer vision, which enables vehicles to automatically make decisions on behalf of a driver 

to apply the brake in a critical situation to avoid a collision with pedestrians or other vehicles, or 

to keep the vehicle in the lane in case of a distracted or drowsy driver, or even to drive 

autonomously with minimal human intervention. In order to make the appropriate yet critical 

decisions, the computer needs to estimate the target position or motion state from the video 

augmented by other available auxiliary data. A “video-based lane estimation and tracking” 

(VioLET) system [3] is specifically designed for driver assistance including: Lane-Departure-

Warning, Automated Vehicle-Control and Driver-Attention Monitoring. The system works 

exactly as a visual object-tracking task by relying majorly on a vision sensor because of its 

accurate and real-time video information in contrast to GPS and other types of sensors, which 

often need extra infrastructure or prior knowledge of the road such as map data. More computer 

vision applications that rely on visual object tracking include human-computer interaction, 

mobile robot navigation, video indexing, etc. 

However, depending on the deployment scenario, visual object tracking could be very 

complex and challenging because of the presence of so many adverse issues of real-world 

application. Essentially videos are captured by a camera which usually only records 2D images; 

i.e., information about a 3D real world is compressed into 2D images, which in turn implies great 
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and inevitable information loss. Besides the inherent loss of information, other adverse facts 

include:  

 background changes in color and texture;  

 scene illumination changes;  

 rotation and movement of the object;  

 shape change for non-rigid object; 

 partial and full object occlusions; 

 measurement noise. 

In order to overcome these negative conditions and derive the object state as accurate as 

possible, multiple visual object-tracking algorithms have been developed. Basically, a tracking 

algorithm can be decomposed into two major parts: object appearance model and object 

localization.  

In natural language, the appearance of an object can be described by the object’s visible 

characteristics such as shape, color, texture, etc. For instance, a book is a rectangular shape and 

its color is the color of the cover. Similarly, a computer uses an appearance model to describe an 

object. The visible characteristics such as color, edge, optical flow, texture, and shape are basic 

elements used to construct the appearance model. Usually, the appearance models can be roughly 

categorized into two types: generative model, and discriminative model. In the generative model, 

the appearance of the target is modeled such that the similarity between the candidates and the 

target can be effectively measured. Examples include Gaussian mixture model [5], color 

histogram [6], and principal component analysis [7]. The discriminative model constructs a 

classifier that labels the candidate as either target or non-target. Examples include SVM based 

classifier [8], boosting-based classifier [9], etc. 
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With the appearance model defined, the object localization estimates the most possible 

target position by applying the object appearance model on the current frame. Other constraints 

such as a target motion model may also be taken into account to improve the accuracy. A generic 

procedure for doing the localization consists of two steps: generation of a set of candidates, and 

selection of the best one. For the generative model, the one with the highest similarity with the 

target is chosen, and in discriminative model, the one with the highest confidence as determined 

by the classification is chosen. However, it is not necessary for each tracker to go through these 

steps. For example, for the particle filter the estimation is made by calculating the weighted sum 

of all particles.  

Without loss of generality, the object-tracking process can be depicted as shown in Figure 

1. 

Target 
Initialization

Appearance 
Representation Target Localization:

- Similarity
 - Classification

Motion Model

Target Model

Video
Tracking 
Result

Model 
Update

 

Figure 1. Object tracking reference model. 

 

1.2. Evolutionary Optimization 

Object localization in the tracking process can also be formulated into an optimization 

problem, where the objective function is defined as similarity or confidence as described in the 

appearance model. The goal is to find an area that maximizes the objective function, i.e. yields 

peak similarity or confidence. However, because of the complexity of the appearance model, the 

objective function is usually very complex and cannot be described in analytical form. Therefore, 
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the applicability of the conventional optimization methods such as linear programming and goal 

programming is not possible. This situation draws attention to the evolutionary optimization 

methods that are based on stochastic processes applied to object tracking.  

Evolutionary algorithms borrow ideas from natural evolution and adaptation to solve 

complex often non-linear or non-differentiable optimization problems. Evolutionary algorithms 

identify themselves by its two distinct features [10]: population of individual solutions, and 

individual solutions renew themselves towards optimality by exchanging information with their 

peers. Its output (fittest individual solution) is generated by iterations of natural selection upon 

the population. Typical evolutionary algorithms used for optimization include genetic algorithm 

(GA), particle swarm optimization (PSO), differential evolution (DE), etc. In this thesis, PSO is 

employed to help to optimize the object localization problem. 

1.2.1. Particle Swarm Optimization 

Particle swarm optimization (PSO) was first introduced in [11] as a population based 

stochastic optimization method. As other evolutionary algorithms, PSO was inspired by some 

natural phenomenon. PSO mimics the social behavior that is often observed in bird flocking by 

adopting the concept of swarm in which individuals can communicate with their peers. In a 

swarm (bird flock), each individual (bird) represents a solution (a position) and each solution 

corresponds to a fitness value (distance to the food). An individual’s movement is influenced by 

both its own experience and its peers’ knowledge. Eventually, the whole swarm is likely to 

converge at an optimal position.  

Formally, the social behavior within PSO can be represented as follows: 

𝑣𝑖𝑑
𝑡+1 = 𝑤𝑣𝑖𝑑

𝑡 +  𝑐1𝑝1(𝑝𝑖𝑑
𝑡 − 𝑥𝑖𝑑

𝑡 ) +  𝑐2𝑝2(𝑝𝑔𝑑
𝑡 − 𝑥𝑖𝑑

𝑡 )  (1) 

𝑥𝑖𝑑
𝑡+1 = 𝑥𝑖𝑑

𝑡 +  𝑣𝑖𝑑
𝑡+1      (2) 
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where 𝑣𝑖𝑑
𝑡  represents the velocity of individuals, 𝑝𝑖𝑑

𝑡  represents the best known position an 

individual has explored, 𝑝𝑔𝑑
𝑡  represents the global best known position exchanged between the 

peers, 𝑤 is the inertia coefficient, and 𝑐1, 𝑐2 are weights. 

It has been shown that PSO can search very large candidate spaces for solution with very 

few assumptions about the problem being optimized. Moreover, since PSO has few parameters, 

it can be used in a broad range of applications without major modifications once it has been set 

up. 

1.3. Motivation 

Although intensive research has been done on the topic of visual object tracking, the 

application of evolutionary optimization on this issue has not been studied thoroughly. For 

example, both the particle filter and PSO perform very well in on-linear non-Gaussian scenarios, 

however, researchers tend to use only either of them for performing the object localization.  

Several papers have attempted to use particle filter together with PSO, but failed to make 

the best use of PSO [16][17][18]. In these attempts, particle filter was applied on the joint space 

of target states from all the frames up to the current, and the sampling mechanism still follows 

the classic method and fails to take full advantage of PSO since it only moves particles that are 

drawn from the importance distribution. Additionally, after finishing a PSO iteration, most of the 

particle generations are discarded except the last generation. In this thesis, a novel visual object-

tracking method is proposed to take full advantage of both the particle filter and PSO for object 

localization. The issues mentioned above are addressed by the proposed algorithm. 
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1.4. Contribution 

In this thesis, an object-tracking algorithm based on the Bayesian statistical inference 

framework is proposed. It differentiates itself from other algorithms in the literature in the 

following ways: 

 It adopts marginal particle filter for visual object-tracking where the state space is 

only for the current frame instead of using the joint space for all the frames. 

 PSO is used as a sampling mechanism, which means the sampling is no longer drawn 

from an arbitrary distribution. 

 In contrast to the traditional use of the particle filter, all generations of particles 

during the PSO procedure are used for the calculation of the optimal solution. 

1.5. Organization of the Thesis 

Chapter 1 provides an overview of visual object-tracking and introduces evolutionary 

optimization. In Chapter 2, the object-tracking algorithms employing particle filter and PSO 

simultaneously are discussed as well as their shortcomings. Chapter 3 describes in details the 

proposed algorithm introducing a marginal particle filter that is incorporated within PSO. The 

simulations and results are presented in Chapter 4. Finally, the conclusion and future work are 

explained in Chapter 5.  
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2. PARTICLE FILTER FOR OBJECT TRACKING 

In this chapter, the Particle Filter is discussed. We first review the Bayesian tracking 

framework and mention that it is impossible to develop an analytical form of the Bayesian 

tracking in non-linear situations. Then, techniques such as Monte Carlo approximation and 

sequential importance sampling are introduced as corner stone of the later introduced particle 

filter. Finally, major steps for applying the particle filter to object tracking are discussed as well 

as the review regarding the usage of the particle filter combined with PSO.  

2.1. Bayesian Tracking 

In this section, the object-tracking problem is modeled in a Bayesian dynamic system, 

where two models are defined: system model and measurement model. In which the system 

model represents dynamic transition of the state as the time proceeds; and the measurement 

model represents the observation of the state through the noisy measurement process. Formally, 

the system model is given by: 

𝑥𝑘 =  𝑓𝑘 (𝑥𝑘−1 , 𝑣𝑘−1 )     (3) 

where the state sequence { 𝑥𝑘, 𝑘 ∈  𝑁} denotes the target state, the sequence { 𝑣𝑘 , 𝑘 ∈ 𝑁} 

denotes i.i.d. process noise, and 𝑓𝑘 is a non-linear transition function of 𝑥𝑘−1. 𝑁 is the set of 

natural numbers. The measurement model is given by:  

𝑧𝑘 =  ℎ𝑘  (𝑥𝑘 , 𝑛𝑘 )      (4) 

where the sequence { 𝑧𝑘, 𝑘 ∈  𝑁} denotes the measurement of the state sequence, the sequence 

{ 𝑛𝑘, 𝑘 ∈ 𝑁} denotes i.i.d. measurement noise, and ℎ𝑘 is a non-linear measurement function of 

𝑥𝑘. The complete Bayesian dynamic system is depicted in Figure 2. 
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x1 xk-1 xk xN

z1 zk-1 zk zN

... ...

... ...
 

Figure 2. Bayesian dynamic system 

 

The goal is to estimate 𝑥𝑘 based on the prior knowledge about the measurement and the 

process noise and all measurements 𝑧1:𝑘 = {𝑧𝑖, 𝑖 = 1,2, … , 𝑘} up to time  𝑘. In the Bayesian 

tracking context, that can be expressed as building the posterior probability density function 

(PDF) of the state 𝑥𝑘 based on the prior knowledge and measurements. Then, an optimal 

estimation of 𝑥𝑘 is inferred by calculating the expected value from the posterior probability 

density constructed as above. 

Usually, Bayesian tracking is performed in a recursive manner such that the computer 

does not have to always store the entire data set. Instead, upon receiving new data, a new 

estimation of the posterior probability density is obtained and this estimation is in turn used for 

the next data. In details, in order to obtain the posterior probability density denoted as 𝑝(𝑥𝑘|𝑧1:𝑘) 

at time k given the measurement data up until k, 𝑧1:𝑘, the whole Bayesian tracking is essentially 

divided into two steps: prediction and update. 

In the prediction stage, as the name suggests a prediction of the state 𝑥𝑘 is obtained in 

this step denoted as 𝑝(𝑥𝑘|𝑧1:𝑘−1). Particularly, it can be expressed via the Chapman-Kolmogorov 

equation as: 

𝑝(𝑥𝑘|𝑧1:𝑘−1) =  ∫ 𝑝(𝑥𝑘|𝑥𝑘−1)𝑝(𝑥𝑘−1|𝑧1:𝑘−1)𝑑𝑥𝑘−1   (5) 
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where 𝑝(𝑥𝑘−1|𝑧1:𝑘−1) is the posterior distribution from the previous time-step and 

𝑝(𝑥𝑘|𝑥𝑘−1) is derived from the system transition model. It is assumed that the initial PDF 

𝑝(𝑥0|𝑧0) is available where 𝑧0 is defined as no measurement. 

 In the update stage, upon receiving the measurement 𝑧𝑘 at time step k, the posterior 

probability density 𝑝(𝑥𝑘|𝑧1:𝑘) is updated by the Bayes’ theorem: 

𝑝(𝑥𝑘|𝑧1:𝑘) =  
𝑝(𝑧𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑧1:𝑘−1)

𝑝(𝑧𝑘|𝑧1:𝑘−1)
    (6) 

where 𝑝(𝑧𝑘|𝑧1:𝑘−1) is a constant given 𝑧𝑘 has determined, thus, it functions as the normalization 

denominator. 𝑝(𝑧𝑘|𝑥𝑘) measures the likelihood that the current observations is the true 

measurement of the predicted state, and is used to update the prior distribution. Usually this 

likelihood can be derived from the similarity or confidence level output obtained by the 

appearance model.  

The prediction and update represents the generic and analytical solution to the Bayesian 

dynamic system. However, in many practical cases of visual object tracking, the system model or 

measurement model are highly non-linear because of the complexity of the video capturing 

process and the object movement. This makes the posterior density function very difficult to 

derive. It could be even worse in cases where the posterior density function is non-standard, thus, 

there is no analytical PDF representation at all. 

To cope with such situations, an original particle filter was proposed in [12]. It is a 

sequential Bayesian filtering method based on random sampling known as Sequential 

Importance Sampling (SIS). The major steps in SIS are discussed in the following sections. 
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2.1.1. Monte Carlo Approximation 

First, a PDF is no longer always in analytical form, instead it can be approximated by the 

Monte Carlo approximation using a group of samples called particles. For a generic PDF 

𝜋𝑛(𝑥1:𝑛) with a given n, its Monte Carlo approximation can be expressed as: 

�̂�𝑛(𝑥1:𝑛) =  
1

𝑁
∑ 𝛿𝑋1:𝑛

𝑖 (𝑥1:𝑛)𝑁
𝑖=1     (7) 

where 𝑥1:𝑛
𝑖  ~ 𝜋𝑛(𝑥1:𝑛), i = 1,2, … N are N independent random variables drawn from the generic 

PDF 𝜋𝑛(𝑥1:𝑛), and 𝛿𝑥 denotes the Dirac delta mass located at x. 

The Monte Carlo approximation avoids the need for the analytical form, which is often 

difficult to obtain for a distribution. However, this comes with two major problems [14]:  

 Sometimes it is difficult to directly sample from 𝜋𝑛(𝑥1:𝑛), for example, it may not 

have an explicit form. 

 The computational complexity of such a sampling scheme is ascending along with the 

dimensional increase of the joint space. At the latter phases of the tracking, n could 

become very large. 

2.1.2. Sequential Importance Sampling 

Importance Sampling is introduced to handle the first issue. Generally, it is circumvented 

by sampling from an importance density 𝑞𝑛(𝑥1:𝑛) instead. Suppose 𝑥1:𝑛
𝑖  ~ 𝑞𝑛(𝑥1:𝑛), i = 1,2, … N 

are N independent random variables drawn from the 𝑞𝑛(𝑥1:𝑛), then the generic PDF 𝜋𝑛(𝑥1:𝑛) is 

approximated as: 

�̂�𝑛(𝑥1:𝑛) =  ∑ 𝑊𝑛
𝑖𝛿𝑋1:𝑛

𝑖 (𝑥1:𝑛)𝑁
𝑖=1     (8) 

where  

𝑊𝑛
𝑖 =

𝑤𝑛(𝑋1:𝑛
𝑖 )

∑ 𝑤𝑛(𝑋1:𝑛
𝑗

)𝑁
𝑗=1

     (9) 
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𝑤𝑛(𝑥1:𝑛) =
𝜋𝑛(𝑥1:𝑛)

𝑞𝑛(𝑥1:𝑛)
     (10) 

By carefully selecting the importance density 𝑞𝑛(𝑥1:𝑛), the samples can now be drawn 

even though 𝜋𝑛(𝑥1:𝑛) is not explicitly described. 

The authors in [14] point out that the computational complexity to perform sampling on 

𝜋𝑛(𝑥1:𝑛) is at least linear with n, which is the dimension of the joint state space, which is 

analogous of the number of frames up to now in the context of object tracking. It has been shown 

that the method to solve this problem stems from the factorization of the importance density. 

Factorizing the importance density and 𝑤𝑛(𝑥1:𝑛) such that: 

𝑞𝑛(𝑥1:𝑛) =  𝑞𝑛−1(𝑥1:𝑛−1)𝑞𝑛(𝑥n|𝑥1:𝑛−1)      

=  𝑞1(𝑥1) ∏ 𝑞𝑘(𝑥k|𝑥1:𝑘−1)𝑛
𝑘=2       (11) 

and  𝑤𝑛(𝑥1:𝑛) =
𝜋𝑛(𝑥1:𝑛)

𝑞𝑛(𝑥1:𝑛)
       

=  
𝜋𝑛−1(𝑥1:𝑛−1)

𝑞𝑛−1(𝑥1:𝑛−1)
 

𝜋𝑛(𝑥1:𝑛)

𝜋𝑛−1(𝑥1:𝑛−1)𝑞𝑛(𝑥n|𝑥1:𝑛−1)
     

= 𝑤𝑛−1(𝑥1:𝑛−1) ∗ 𝛼𝑛(𝑥1:𝑛)       

=  𝑤(𝑥1) ∏ 𝛼𝑘(𝑥1:k)𝑛
𝑘=2                        (12) 

The decompositions above show that both the importance density and weights can be 

derived recursively. 

2.1.3. Particle Filter 

Applying Monte Carlo approximation and sequential importance sampling as well as 

selecting the appropriate importance distribution, a basic particle filter is defined as shown 

above. One only needs to recursively sample from the importance density and calculate the 

weight for the samples with appropriate initial values, then a density 𝜋𝑛(𝑥1:𝑛) can be optimally 

estimated using the particle filter. 
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Referring back to the object tracking case, in order to estimate the posterior density 

𝑝(𝑥0:𝑘|𝑧1:𝑘) in the joint space, let 𝜋𝑛(𝑥1:𝑛) in Equation 6 be 𝑝(𝑥0:𝑘|𝑧1:𝑘), and 𝑞𝑛(𝑥1:𝑛) in 

Equation 10 be  𝑞(𝑥0:𝑘|𝑧1:𝑘), then 

𝑤𝑘
𝑖 =

𝑝(𝑥0:𝑘|𝑧1:𝑘)

𝑞(𝑥0:𝑘|𝑧1:𝑘)
     (13) 

where 𝑤𝑘
𝑖  is the weight of the i th particle at time k. Similar to Equation 11 [15], 

𝑞(𝑥0:𝑘|𝑧1:𝑘) =  𝑞(𝑥𝑘|𝑥0:𝑘−1, 𝑧1:𝑘)𝑞(𝑥0:𝑘−1|𝑧1:𝑘)   (14) 

𝑝(𝑥0:𝑘|𝑧1:𝑘) =  
𝑝(𝑧𝑘|𝑥0:𝑘, 𝑧1:𝑘−1)𝑝(𝑥0:𝑘|𝑧1:𝑘−1)

𝑝(𝑧𝑘|𝑧1:𝑘−1)
 

=  
𝑝(𝑧𝑘|𝑥0:𝑘, 𝑧1:𝑘−1)𝑝(𝑥𝑘|𝑥0:𝑘−1, 𝑧1:𝑘−1)𝑝(𝑥0:𝑘−1|𝑧1:𝑘−1)

𝑝(𝑧𝑘|𝑧1:𝑘−1)
 

=  
𝑝(𝑧𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑥𝑘−1)𝑝(𝑥0:𝑘−1|𝑧1:𝑘−1)

𝑝(𝑧𝑘|𝑧1:𝑘−1)
 

∝ 𝑝(𝑧𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑥𝑘−1)𝑝(𝑥0:𝑘−1|𝑧1:𝑘−1)   (15) 

Substitute (14) and (13) into (12), 

𝑤𝑘
𝑖 ∝

𝑝(𝑧𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑥𝑘−1)𝑝(𝑥0:𝑘−1|𝑧1:𝑘−1)

𝑞(𝑥𝑘|𝑥0:𝑘−1, 𝑧1:𝑘)𝑞(𝑥0:𝑘−1|𝑧1:𝑘)
 

=  𝑤𝑘−1
𝑖 𝑝(𝑧𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑥𝑘−1)

𝑞(𝑥𝑘|𝑥0:𝑘−1, 𝑧1:𝑘)
       (16) 

By recursively calculating the weights, the estimation of the posterior density 

𝑝(𝑥0:𝑘|𝑧1:𝑘) can then be obtained using 

𝑝(𝑥0:𝑘|𝑧1:𝑘) =  ∑ 𝑤𝑛
𝑖 𝛿𝑋1:𝑛

𝑖 (𝑥1:𝑛)𝑁
𝑖=1     (17) 

If the importance density becomes only dependent on 𝑧𝑘 and 𝑥𝑘−1, then 𝑝(𝑥𝑘|𝑧1:𝑘) is 

obtained similarly, except where 

𝑤𝑘
𝑖 ∝ 𝑤𝑘−1

𝑖 𝑝(𝑧𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑥𝑘−1)

𝑞(𝑥𝑘|𝑥𝑘−1, 𝑧𝑘)
    (18) 
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2.2. Particle Filter with PSO 

Particle Filter successfully solves the problem of non-linearity of an optimization 

scenario by using particles to approximate a distribution, i.e., Monte Carlo approximation, and 

avoiding the ever-increasing dimension of the sampling space by sequential importance 

sampling. However, a generic particle filter suffers from several problems that are inherent from 

the particles. 

The first issue resulting from the generic particle filter is degeneracy, where a large 

portion of the particles will have negligible weight after a few iterations. These particles 

contribute very little towards the distribution approximation because of their small weight. A 

popular technique to reduce such a situation is to resample where particles of small weights have 

a smaller chance to be forwarded to the next iteration. While alleviating the degeneracy problem, 

however, resampling on the other hand may lead to the impoverishment problem, where the 

diversity of particles are reduced especially for the case of small process noise. 

Recently, there are research investigations trying to incorporate PSO with particle filter to 

overcome the limitations mentioned above. The authors in [16] merged PSO into particle filter 

by replacing sampling from importance density with PSO. By using PSO to generate the set of 

samples around high likelihood regions, the authors claim that the particle impoverishment is 

avoided. A similar algorithm was proposed in [17], in which PSO was used to move samples to a 

region in which both the likelihood of state and the prior density are significant. This algorithm 

however suffers from the same problem as in [16], even though these samples are originally 

drawn from the importance density. Since they are moved by PSO, their distribution does not fit 

the importance density anymore. Similar to the PSO based algorithm in [18], where the so-called 
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multi-layer importance sampling method is also used to move particles towards the region with 

high likelihood of observation. 
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3. OBJECT TRACKING BY MARGINAL PARTICLE FILTER WITH PSO 

In this chapter, the problem of increasing dimension of the sampling space of the 

sampling mechanism in the generic particle filter is reviewed. Then, a novel marginal particle 

filter with PSO is proposed and discussed. 

3.1. Marginal Particle Filter  

As shown in Equation 11, the sequential importance sampling scheme draws samples, 

i.e., particles, from the importance density 𝑞(𝑥0:𝑘|𝑧1:𝑘). In practice, the sampling has to be done 

in a sequential manner, such that one does not have to perform sampling directly in a high 

dimension joint space. That means at each step the samples of the current state 𝑥𝑘, denoted as 𝑥𝑘
𝑖  

where i = 1,2, … N and N is the number of particles, are drawn directly from 𝑞(𝑥𝑘
𝑖 |𝑥0:𝑘−1

𝑖 , 𝑧1:𝑘). 

Then, every such sample 𝑥𝑘
𝑖  together with its previous sample 𝑥0:𝑘−1

𝑖  constitute a sample in the 

joint space of 𝑞(𝑥0:𝑘|𝑧1:𝑘). The trajectory of 𝑥0
𝑖 , 𝑥1

𝑖 , … 𝑥𝑘
𝑖  can be treated as a path from the first 

time step to the current time step k, as shown in Figure 3 as given in [19]. 

 

Figure 3. Sequential importance sampling path [19] 

 

It is clearly shown that as the path grows, the dimension of the sampling space also 

increases. This situation usually leads to the problem of degeneracy of the weights, and this leads 

to the variance of the weights to increase without bound [19].  
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The high dimension of the sampling space is inherited from the joint posterior density 

𝑝(𝑥0:𝑘|𝑧1:𝑘) that is being approximated by the particles. If we can reduce the dimension of the 

posterior density, then we could avoid problems induced by the high dimensional sampling 

space. The authors in [19] developed a Marginal Particle Filter (MPF), which estimates the 

marginal posterior density 𝑝(𝑥𝑘|𝑧1:𝑘) only, thus, this essentially eliminates the need for sampling 

in a high dimensional joint space. 

The marginal prediction step and update step is essentially the same as in Equation 5 and 

6, rewritten as such: 

𝑝(𝑥𝑘|𝑧1:𝑘−1) =  ∫ 𝑝(𝑥𝑘|𝑥𝑘−1)𝑝(𝑥𝑘−1|𝑧1:𝑘−1)𝑑𝑥𝑘−1   (19)  

𝑝(𝑥𝑘|𝑧1:𝑘) =  
𝑝(𝑧𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑧1:𝑘−1)

𝑝(𝑧𝑘|𝑧1:𝑘−1)
    (20) 

Substitute Equation 19 into 20, the update step becomes: 

𝑝(𝑥𝑘|𝑧1:𝑘) ∝  𝑝(𝑧𝑘|𝑥𝑘) ∫ 𝑝(𝑥𝑘|𝑥𝑘−1)𝑝(𝑥𝑘−1|𝑧1:𝑘−1)𝑑𝑥𝑘−1   (21) 

Assume 𝑝(𝑥𝑘−1|𝑧1:𝑘−1) is already approximated by a set of particles {𝑥𝑘−1
𝑖 , 𝑤𝑘−1

𝑖 }, then 

the approximation of 𝑝(𝑥𝑘|𝑧1:𝑘−1) is derived by: 

𝑝(𝑥𝑘|𝑧1:𝑘−1) =  ∑ 𝑤𝑘−1
𝑖 𝑝(𝑥𝑘|𝑥𝑘−1

𝑖 )𝑁
𝑖=1    (22) 

Then posterior density can be estimated by 

𝑝(𝑥𝑘|𝑧1:𝑘) ∝  𝑝(𝑧𝑘|𝑥𝑘) ∑ 𝑤𝑘−1
𝑖 𝑝(𝑥𝑘|𝑥𝑘−1

𝑖 )𝑁
𝑖=1     (23) 

 And the importance weights are updated by: 

𝑤𝑘 =  
𝑝(𝑥𝑘|𝑧1:𝑘)

𝑞(𝑥𝑘|𝑧1:𝑘)
     (24) 

where 𝑞(𝑥𝑘|𝑧1:𝑘) is an arbitrarily chosen importance distribution to generate samples. 
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3.2. Marginal PF with Sampling by PSO 

As discussed in Section 3.1, the marginal particle filter estimates the marginal posterior 

density  𝑝(𝑥𝑘|𝑧1:𝑘−1), thus its sampling space is always the state space at the current time 𝑥𝑘 

whose dimension is 1. The sampling space can be dimensionally reduced because samples in the 

current time step are disconnected from their predecessors by the marginalizing operation in 

Equation 19. This helps to alleviate the problem of degeneracy since the probability of samples is 

not vanishing along with the advance of the time step. However, the problem of degeneracy does 

not disappear completely. As shown in Figure 4, if the samples by sampling from the importance 

distribution are located in the region where the likelihood happens to be small, these particles 

will only negligibly contribute to the posterior density because of their small importance weights. 

Likelihood

Importance

 

Figure 4. Illustration of an importance sampling example 

 

3.2.1. Particles in the Particle Filter 

Recalling that in the PSO procedure the particles are “travelling” all over the search space 

while being attracted by their personal best and global best as well as driven by their own inertia. 

These particles are usually scattered quite dispersedly within the search space during the 

initialization process in consideration of the large coverage. Eventually all particles will gather 

around the convergence point in case of convergence.  
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We use a standard PSO as given in [20] applied to 2D images as an example to 

demonstrate this convergence process. In this optimization problem, the fitness function 

evaluates the similarity between a predefined object and the candidates, which are represented by 

particles. The swarm population size is 30. 

 Initialization. Particles are distributed across the possible region in the search 

space. Usually, the particles are spread out relatively broad to ensure a large 

search space coverage as shown in Figure 5.  

 

Figure 5. Particles at initialization step 

 

 During iterations. Particles are attracted by both their own best position up to 

now and the global best position. While exploring the new position within the 

search space, particles start concentrating around the future convergence point if 

convergence was achieved at the end of the iteration. This is essentially the core 

philosophy of PSO. The movement of the particles during this stage of the process 

is show in Figure 6 and Figure 7. 
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Figure 6. Particles during PSO iteration-1 

 

Figure 7. Particles during PSO iteration-2 

 

 Convergence. Eventually, if successful, most, if not all, the particles will gather 

at the convergence point as shown in Figure 8. 
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Figure 8. Illustration of convergence of particles 

 

As illustrated by the figures above, after an appropriately configured PSO process, the 

particles from the randomly assigned position have moved to the high likelihood region. This is 

basically how PSO is used together with the particle filter in literature as discussed in Section 

2.2.  

However, the current application and utilization of PSO in the context of particle filter is 

far from adequate. In [16], particles are first drawn from the importance distribution and then 

driven by PSO towards a high likelihood region. Though, the authors claim by using PSO the 

problem of impoverishment is avoided, the usage of PSO outlined in their paper is inadequate. 

First, only the last generation of particles are used in the approximation of the posterior. Second, 

PSO upon convergence trends to gather all particles in a small zone around the convergence 

point. This somehow introduces certain level of concentration and reduces diversity between 

particles, which is the main origin of the impoverishment problem. Another drawback, which 

however is not quite apparent, is the inapplicability in the case of multiple separated high 
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likelihood regions. This drawback stems from the inherent property of the PSO for which a 

single swarm can only have one convergence position.  

The algorithm in [17] fails to update the weights of the particles after they are moved by 

the PSO process. In that paper, the weights of samples are calculated according to the initial 

particle positions, yet particles by then have been moved. The meaning of the weight for samples 

is thus not the ratio of the importance density and posterior density at the point of the particles 

anymore. 

The particle filter investigated in [18] is merely used as an initialization method by 

locating the position with maximal similarity. The complete tracking process can be hardly 

treated as Bayesian tracking. 

3.2.2. Sampling by PSO 

In this section, we introduce a novel sampling mechanism for use with the particle filter. 

Let us assume the posterior 𝑝(𝑥𝑘−1|𝑧1:𝑘−1) for time step k-1 is available and we are proceeding 

to the next frame. The sampling of particles for the calculation of the approximation of posterior 

for time step k is done by the following steps: 

 Initialize. Particles are distributed across the possible region in the search space 

as in basic PSO. Depending on the implementation, this region could be around 

the optimal estimation of the target position at time step k-1. 

 Iterate. Let the particles move per Equation 1 and Equation 2 whereby denoting 

particles in each iteration as 𝑥1:𝑛
𝑖 , where i is the index of the current iteration and 

n is the swarm size. 

 Converge. If the convergence criteria are met (the details will be discussed in the 

Section 4.1), then stop the iteration. Once convergence is achieved, the particles 
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stay closely around the convergence position with potential small variation, if 

any. If the maximum generation has been reached before the convergence criteria 

is met, then this particular execution of sampling has failed. 

 Combine. Put particles from different iterations into the same set, denoting the set 

as 𝑥1:𝑛
1:𝑚 =  { 𝑥𝑘

𝑖 , 𝑘 = 1,2, … , 𝑛, 𝑖 = 1,2, … 𝑚}, where m is the number of iterations 

and n is the swarm size of the population. The combined particle set is distributed 

as shown in Figure 9. 

 

Figure 9. Distribution of all particles in PSO 

 

 Estimate Importance Distribution. Empirically estimate the distribution of 

𝑥1:𝑛
1:𝑚, which is then used as the importance distribution. This can be done by 

either distribution fitting or non-parametric estimation. 

 Calculate Importance Probability. For each particle in the set of 𝑥1:𝑛
1:𝑚, calculate 

its importance probability. This probability is then used towards the estimation of 

the posterior as given in Equation 23. 
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Although the estimation of the importance distribution from the set of particles may 

introduce a certain level of variance into the system, since the particles are not drawn directly 

from this importance distribution. Our sampling mechanism using PSO still differentiates the 

other methods discussed in Section 3.2.1 in the following aspects: 

 Instead of using only the last generation of particles, our method considers all 

generations, which increases the number of particles dramatically by several folds 

without extra computational expense, and in turn provides more robust 

approximation of the posterior density. 

 By putting all generations of particles together, the final particle set focuses both 

on the concentration and diversity thanks to the latter generations of particles 

around the convergence position, and the scattering of earlier generations of 

particles in the search space, respectively.  

 The balance between diversity and concentration can be easily adjusted via the 

parameters of PSO. By adjusting the termination criteria, the particles piling up in 

a high likelihood region can be controlled. By tuning the initializing parameters, 

the coverage of the sampling can be changed correspondingly.  

 Compared to the particle filter used in [17], the empirically estimated importance 

distribution provides reasonable importance density for the particles. 

3.2.3. Marginal Particle Filter with Sampling by PSO 

To summarize our proposed marginal particle filter with sampling by PSO, let us revisit 

the marginal particle filter discussed in Section 3.1. The marginal particle filter approximates 

only the marginal posterior distribution, thus, the dimension of the sampling space is limited and 

the problem of degeneracy of the weights is alleviated. However, the sampling distribution (the 
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part that influences the performance significantly) is up to the researcher’s arbitrary choice. This 

is where our PSO based sample mechanism comes in. The complete description of our proposed 

algorithm is presented as follows: 

Algorithm 1: Marginal Particle Filter with Sampling by PSO 

Input: 

{𝑥𝑘−1
𝑖 , 𝑤𝑘−1

𝑖 }𝑖=1
𝑁 , which are N particles and their weights at time k-1. 

𝑧𝑘, which is the measurement at time k. 

Steps: 

 Perform PSO. Initialize the first generation of particles for PSO, denoting them 

as 𝑥𝑘
1:𝑚 =  { 𝑥𝑘

𝑖 , 𝑖 = 1,2, … 𝑚}, where m is the swarm size of the population. 

Perform the PSO iterations according to the PSO procedure until convergence or 

the maximum number of generations is reached.  

1) If PSO terminates due to convergence, then aggregate the particles from all 

iterations to obtain a particle set:  {𝑥𝑘
𝑖 , 𝑝𝑙𝑘

𝑖 }𝑖=1
𝑚∗𝑛 =  { 𝑥𝑘

𝑖 , 𝑖 = 1,2, … 𝑚 ∗ 𝑛}, where n is 

number of iterations, m is the swarm population size and 𝑝𝑙𝑘
𝑖  is the likelihood 

(𝑝(𝑧𝑘|𝑥𝑘)) of particle 𝑥𝑘
𝑖 . 

2) If PSO terminates due to reaching the maximum number of generations, then use 

the global best 𝑥𝑔𝑏𝑒𝑠𝑡 and {𝑥𝑘
𝑖 , 𝑤𝑘

𝑖 }𝑖=1
𝑁 = {𝑥𝑔𝑏𝑒𝑠𝑡, 1} as the final output. Where 𝑥𝑔𝑏𝑒𝑠𝑡 

is the estimation of the object position for this frame, and {𝑥𝑘
𝑖 , 𝑤𝑘

𝑖 }𝑖=1
𝑁  is used as the 

input for the next frame. Then, proceed to the next frame.  

 Prediction. For each 𝑥𝑘
𝑖  in {𝑥𝑘

𝑖 , 𝑝𝑙𝑘
𝑖 }𝑖=1

𝑚∗𝑛, estimates its prior as: 

       𝑝(𝑥𝑘
𝑖 |𝑧1:𝑘−1) =  ∑ 𝑤𝑘−1

𝑗
𝑝(𝑥𝑘

𝑖 |𝑥𝑘−1
𝑗

)𝑁
𝑗=1    (25) 

to obtain 𝑝𝑝𝑘
𝑖  , which is the prior probability (𝑝(𝑥𝑘|𝑧1:𝑘−1)) for particle 𝑥𝑘

𝑖 . 
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 Estimate Importance Probability: First, estimate an empirical importance 

distribution for the particle set of PSO. Then, the importance probability for each 

particle 𝑞𝑘
𝑖  is calculated by the estimated importance distribution as described in 

Section 3.2.2.  

 Calculate weight. The weight for each particle 𝑤𝑘
𝑖  is computed according to  

    𝑤𝑘
𝑖  =  

 𝑝(𝑧𝑘|𝑥𝑘
𝑖

) ∑ 𝑤𝑘−1
𝑗

𝑝(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑗
)𝑁

𝑗=1

𝑞(𝑥𝑘
𝑖

|𝑧1:𝑘)
    (26) 

Specifically 𝑤𝑘
𝑖 =  

 𝑝𝑙𝑘
𝑖 𝑝𝑝𝑘

𝑖

𝑞𝑘
𝑖  . After normalization of the weights, the particles and 

their weights, denoted as {𝑥𝑘
𝑖 , 𝑤𝑘

𝑖 }𝑖=1
𝑚∗𝑛, are obtained. 

 Object Position Estimation: As discussed in [14][15], the best estimation of the 

object position is the expected value of the posterior which can be obtained by:  

     �̂�(𝑥𝑘|𝑧1:𝑘) =  ∑ 𝑤𝑘
𝑖 𝑥𝑘

𝑖𝑁
𝑖=1 .    (27)  
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4. EXPERIMENTS AND RESULTS 

In this chapter, we perform a series of experiments to verify our hypothesis and validate 

our algorithm. First, we will demonstrate that our tracking algorithm sampling by PSO is feasible 

and robust with regards to the parameter setting. Then, we compare the proposed marginal 

particle filter with PSO (MPFPSO) against the conventional particle filer (PF).  

4.1. Experiments with Sampling by PSO 

Before starting the experiment of sampling by PSO as described in Section 3.2.2, our 

experimental environment is set up as follows: 

 The dataset for demonstration of sampling by PSO is gathered from an actual 

MPFPSO tracking process. 

 The population size of the particle swarm is 50. 

 The convergence criterion we use here is: the global bests in 5 consecutive frames 

are similar at least 98%, where similarity is measured as: 

overlap (5th frame, 1-4 frames combined) / combine (5th frame, 1-4 frames 

combined), where: 

overlap (5th frame, 1-4 frames combined) means the overlapping area between the 

5th frames and the combined area of 1-4 frames, and  

combine (5th frame, 1-4 frames combined) means the combined area of the last 

frames and the previous 4 frames. Basically, this criterion stops the PSO process 

when the global best of the swarm only improves very little. 

 Particles in the swarm are initialized uniformly within ±32 pixel on both 

horizontal and vertical axis around the previous target position. 
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 The code is run based on the framework developed in [21], and the test video is 

the one named “CarDark”.  

 We use the appearance model and similarity measurement defined in [22] because 

of its high resolution and peaked likelihood landscape. 

We first make the assumption about the distribution to which the combined particles 

would conform, then, we estimate its parameters using the method of maximum likelihood as in 

Equation 29.  

Here, we assume that the distance of particles from their center conforms to the Half-

Normal Distribution. Its probability density function is given by: 

𝑝(𝑦) =  
 √2

𝜎√𝜋
exp (−

𝑦2

2𝜎2)    y > 0    (28) 

The reason we choose the Half-Normal Distribution is because it only depends on one 

parameter, which introduces less deviation during the method of maximum likelihood. First, the 

center of particles is obtained by retrieving the mean of all the particles. Then, the Euclidean 

distance between the particles and the center are calculated. Finally, the only parameter 𝜎 can be 

estimated by: 

�̂� =  √
1

𝑛
∑ 𝑑𝑖

2𝑛
1       (29) 

 

where 𝑑𝑖 is the distance to the center for particle i. 

 Let us take the particle dataset output by sampling by PSO on one frame as an example. 

The PSO converges at iteration 9, so there are in total 450 particles in the dataset. Figure 10 

shows how these particles are scattered on the image plane. Figure 11 shows the histogram of 

distance of particles to the center fitting the Half-Normal Distribution very well. We can as well 
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treat the histogram presented in Figure 11 as a probability density function by normalization. 

These two probability density functions are very similar to each other as illustrated in Figure 12. 

Actually, the Bhattacharrya distance [1] (also a.k.a Hellinger distance) between two density 

functions is only 0.0746.   

 

Figure 10. Particles distribution on the image plane 

 

  

Figure 11. Comparison of empirical data and Half-Normal Distribution (histogram) 
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Figure 12. Comparison of empirical data and Half-Normal Distribution (density) 

 

As PSO is a stochastic algorithm, and the distribution of particles is the result of such a 

stochastic process. Therefore, the particles sampled by the PSO process are non-deterministic, 

i.e., data from one frame is not enough to eliminate uncertainty. In order to address such concern, 

we collected the Bhattacharrya distances between the empirical distribution and the fitted Half-

Normal Distribution for each frame in a video sequence. After deleting data for frames on which 

the PSO process failed to converge, we obtained the Bhattacharrya distances for a total of 383 

frames in the video sequence “CarDark” as shown in Figure 13. From this figure, it can be 

observed that on most frames the Bhattacharrya distance is less than 0.15. 

Figure 14 shows the comparison of aggregated empirical distribution and Half Normal 

Distribution, where the aggregated empirical distribution is obtained by averaging the 

standardized empirical distribution of each frame. The figure shows that the comparison of the 

aggregated empirical distribution and Half Normal Distribution fits closely except for a small 

region around the distance of 8. 
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Figure 13. Bhattacharrya distance for each frame 

 

   

Figure 14. Aggregated empirical distribution vs Half Normal (Standardized) 

 

It is worth to note that the factors that impact the empirical distribution of particles 

include: PSO convergence criteria, the particle initialization, and PSO control parameter such as 

particle maximal velocity, particle swarm size, etc. 
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4.2. Experiments and Results 

In this section, a tracking performance comparison is made between the marginal particle 

filter with PSO (MPFPSO) and the bootstrap particle filter (BPF) [23] as well as the pure 

marginal particle filter (MPF).  

We keep using the experimental environment set up as in the previous section, with the 

following extra adjustments and constraints: 

 In total, 51 video sequences collected in [21] are tested. 

 To simplify the problem, only the positions of the center of the target are tracked. 

That means the bounding box of the target does not change its shape and scale 

throughout the whole tracking process. 

 The motion model is assumed to be 𝑝(𝑥𝑘|𝑥k−1) ~ 𝑁(𝑥k−1, 𝑅), where 𝑅 is a 

covariance matrix. 

 In MPFPSO, the swarm size is 50 and maximal generation is 20.  

 In BPF and MPF, the size of the particles is set to 500. 

1.  Comparison of precision rate and success rate of the trackers 

We use precision and success rate for quantitative analysis as in [21], between which the 

precision rate shows the percentage of frames whose estimated location is within the given 

threshold distance of the ground truth, and the success rate shows the percentage of successful 

frames whereby successful means that the tracking result bounding box overlaps with the ground 

truth by at least a certain amount. 

The precision rate is given in Figure 15, and the success rate is given in Figure 16. We 

can observe that MPFPSO is performing best in terms of both precision rate and success rate. 
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Figure 15. Comparison of performance: Precision rate 

 

 

Figure 16. Comparison of performance: Success rate 

 

2.  Comparison of the running time for trackers 

The running time to perform the tracking measures how fast a tracker can process the 

video sequences. Although the running time depends on many factors, such as appearance 

model, coding style, platform, etc., however, in our experiment, we fix as many factors as 
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possible to focus on the difference among the three trackers. Since we use the same platform and 

appearance model in the three trackers, the discrepancy of the running time basically boils down 

to how the trackers approximate the posterior density function of the particles and how many 

particles are used. 

Table 1 shows the comparison of processed frame per second (fps) and particle number 

for three trackers. Please note that for MPFPSO, the particle number per frame is obtained by the 

average. 

  Table 1. Comparison of the fps and the particle number. 

 fps Particle number per frame 

MPFPSO 6.7019 457 

BPF 9.0882 500 

MPF 5.6616 500 

   

4.3. Discussion 

In Section 4.1, the sampling by PSO is demonstrated and discussed. In this section, we 

focus on the experiments presented in Section 4.2.  

1.  Precision rate and success rate 

As shown in Figure 15 and Figure 16, MPFPSO performs best compared to the other two 

trackers in both performance measure: precision rate and success rate. This performance margin 

comes mostly from the sampling mechanism. MPF itself is actually inferior to BPF as shown in 

both precision rate and success rate figures. The reason for this is because for BPF we used the 

optimal importance distribution - exactly the same as the motion model. The adaptation of 

optimal importance distribution [24] minimizes the variance of particles’ weight [15]. But still 

the sampling by PSO compensates as explained in the following paragraphs. 
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By randomly choosing a frame as an example, the likelihood landscape around the target 

region is illustrated in Figure 17. The peak is where the target is located. 

 

Figure 17. Likelihood landscape 

 

Figure 18 shows how the particles distribute around the target region in different ways for 

this chosen frame comparing the three approaches. It can be observed that particles in MPFPSO 

are scattered more dispersedly than in BPF and MPF. Yet, the swarm of particles in MPFPSO 

can always focus on the high likelihood region. In contrast, the particles in BPF and MPF flock 

together with very few diversity and in turn cover a smaller area than in MPFPSO. The reason 

for such discrepancy lies in how these particles are generated. In BPF and MPF, the particles are 

drawn from the motion model or the importance distribution. The way the particles stretch out is 

defined only by the motion model or the importance distribution without regard to the likelihood 

landscape. In comparison, the particles in MPFPSO are first spread out throughout a relatively 

large search space and then concentrate around the high likelihood region.  



 

36 

 
MPFPSO  

BPF 

 
MPF 

Figure 18. Comparison of particle distribution 

 

2.  Running time of the trackers 

Our experiments show that the calculation of Equation 25 is very computational 

intensive. In particular, for MPFPSO the calculation of Equation 25 results in 43.7 % of the 

overall computational time. However, this part does not change even when the appearance model 

is changed. Considering MPFPSO generates less particles on average than BPF and MPF does, 

for the complex appearance model, MPFPSO is more computational efficient than BPF and 

MPF. This observation can also be supported by the fact that MPF is actually slower than 

MPFPSO, because MPF generates more particles per frame but also carries the same workload 

of having to do the calculation of Equation 25. 

The reason that MPFPSO generates less particles on average though maintain high 

performance is because the PSO process stops once convergence is achieved. That saves 

unnecessary computation and it also means that the population size of the particles is adaptive to 

the image of the current frame as shown in Figure 19. For a distinct target, the PSO process 

terminates earlier, otherwise the PSO just iterates over more generation in order to search for the 

high likelihood region. On the other side, the number of particles in BPF and MPF are constant. 
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Figure 19. Number of PSO iterations  
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5. CONCLUSION AND FUTURE WORK 

This thesis first reviewed the current state of visual object-tracking and evolutionary 

optimization, then discussed past research on the applications of particle filter and PSO applied 

to object-tracking and listed their drawbacks. In the Chapter 3, a novel particle filter has been 

proposed to overcome the problems including unused particles and lack of diversity as identified 

previously, where a sampling by PSO mechanism is used together with the marginal particle 

filter. Simulations and results are then presented and discussed. It is demonstrated that the 

proposed method does improve the tracking performance without introducing extra computation 

cost. 

Overall, it is shown that our sampling by PSO method works quite well together with the 

marginal particle filter. Its performance is better than both bootstrap particle filter and pure 

marginal particle filter. It is also illustrated that the sampling by PSO method is an efficient yet 

effective sampling mechanism, which adapts its computational cost to image quality and always 

focuses on the high likelihood region. 

In the future, our marginal particle filter with sampling by PSO could be further 

investigated in the following ways: 

 Accelerate convergence of PSO, thus, reduce the number of particles to save 

computation cost. 

 Optimize PSO parameters to achieve better importance distribution fitting. 

 The motion model could be further enhanced to reflect the real target motion. 

 Relation between swarm size and tracking performance, computational cost is yet to 

be examined. 
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