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ABSTRACT

Farmers always have been concerned about the quantity of crops (yield) as well as

the quality of crops (sugar content of the sugar beets). The quality and quantity of crops

are affected by various attributes, some are natural elements (rain, sunshine etc) and some

are not (the amount of fertilizer, seed type etc). Some techniques have been developed to

discover attributes that are important to different crops’ yield. But within those selected

attributes, how can we tell one attribute is more important than the other? The proposed

algorithm is aimed to utilize the advantages of multiple response attributes to select the

important attributes and then put the selected attributes in a hierarchical order. Although

at the end this paper only focuses on yield prediction, any other target attribute can be a

candidate for the prediction model.
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CHAPTER 1. INTRODUCTION

Agricultural applications provide a variety of data sources and with that complexity

the existing data mining techniques are not sufficient enough to answer all the questions.

More and more farmers are becoming interested in more than just the quantity of the crops,

which is measured by the pure weight of crops. For example, many wheat farmers also care a

lot about the protein content of the wheat and sugar beet farmers care about sugar content

and sugar lost to molasses. This means that the sugar beet production can be described

as three-dimensional vector data: yield, sugar content and sugar lost to molasses. Weather

affects the growth of sugar beets greatly, therefore rainfall and temperature data are used in

the data analysis; satellite images have also been used to measure the health of the crops by

measuring how green they are. Most of the existing statistical or data mining algorithms use

multiple explanatory attributes to predict single target attribute, but they lack of the ability

to analyze multi-dimensional target attributes. There are other data mining techniques that

can do attribute selection for multiple response attributes, but some of them don’t rank the

importance of the selected attributes. Therefore to find interesting patterns and to derive the

top most important attributes, it’s important to use all the available information including

all the target and explanatory attributes.

1.1. Problem Statement

There are many existing data mining techniques that can capture the relationship be-

tween multiple explanatory attributes and a single categorical or continuous target attribute,

but the problem is that many times we can not really find meaningful patterns using a single

target attribute and there can be some meaningful patterns found when multiple target

1



attributes are considered. As shown in Figure 1, the X’s and O’s represent two data types

and they are normalized. Both of the data types are evenly distributed when they are

projected on either axis a or axis b, a and b here represent single target attribute; therefore

if we only have one target attribute we can not see any difference between X’s and O’s and

there is no meaningful information. However, when we evaluate the data on both target

attribute a and b the same time, we can see that X’s have an obvious pattern, they gather

together in both corners of the plot; but O’s are just some scattered points. This problem

is well known in the world of classification.

Figure 1. Example to show common problem of only considering one
demension data. But meaningful patterns can be found when multiple
target attributes are considered.
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One solution to the problem presented in Figure 1, is to find more target attributes

that will give us more information about the relationship between the independent attributes

and target attributes. After more target attributes are selected, one method is to develop

a model for each target attribute individually and combine them afterwords. However, this

method runs into the risk of the interrelationship between the target attributes; it assumes

that the response attributes are independent to each other. Another way is to combine the

target attributes into a vector format and evaluate them at the same time, which is what we

propose here.

Figure 2 illustrates our solution. On the left hand side of the plot, only one response

attribute is under consideration and the highlighted data points in both plots seem to have

some patterns; the gray lines seem to be randomly distributed data points. However, when

we evaluate them in multiple response attributes and plot them out on the right hand side

of the Figure 2, we find they are very much different. Data set from the top plots have

significant pattern in multiple attributes A, B, C; but data set from the bottom plots don’t

have any patterns on the multiple attributes.

When approaching the problem described in Figure 1, the key is to notice that both

the explanatory attributes and response attributes are mutli dimensional. With the existing

data mining techniques, they work well with multi-dimensional explanatory attributes and

single response attribute; but it lacks the ability to work with multi-dimensional response

attribute. There are some alternative ways. One is to try to use explanatory attributes

to predict each response attribute individually; the other way is to project all response

attributes into one single attribute. However, both techniques fail to capture all information

and fail to discover some significant patterns like shown in Figure 2. This proposed algorithm

3



X Y A B C

X Y A B C

Figure 2. Concept question: if some patterns exist in attributes X and
Y, can the similar patterns be found on multiple target attributes: A,
B, C? In this case, on the left side plots, certain patterns (highlighted
with black lines) exist in attributes X and Y. But when the same data
is plotted over multiple attributes A, B, C, the top data set shows
significant patterns but not with the bottom data set.
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utilizes all the response attributes to find the significant patterns and find the significant

explanatory attributes, ranking them in the order of importance.

Comparing with conventional data mining project data sets, which usually have just

one categorical or continuous target attribute, the agricultural data set used in this study has

multiple characteristics described by multiple attributes. In the agricultural domain, farmers

care about quality of crops as much as about quantity. In this specific case, we place high

importance on sugar beet total yield (quantity), its sugar content and sugar lost to molasses

(quality). Here sugar content is measured by sugar per weight of beet. For instance, a sugar

beet field with high yield but with low sugar content is not desired, because processing sugar

beets takes a lot of energy to get rid of the extra water out of the sugar beets. Therefore,

the lower the sugar content, the more energy is needed to produce the same amount of sugar

from a high sugar content field with the same yield. On the other hand, a field with a low

yield and high sugar content is also not desirable because the total sugar content is very low.

5



CHAPTER 2. RELATED WORKS

In this section we are going to look at some existing models for predictions and attribute

selections. For example: linear model, Kullback-Leiber Voronoi and MANOVA etc. We

also examined some information gain techniques, for example Kullback-Leiber divergence.

Since this research is focused on agriculture, dynamic models from a biology perspective

are mentioned in the section too. In the end, we list some data types used in the research,

Normalized Difference Vegetation Index (NDVI) from sattelite images and other weather

related data types.

Traditionally data mining techniques implement one of several techniques to recognize

patterns in data sets or to predict outcomes. Often those techniques only work with a single

target data. For example in [1], in order to identify which attributes effect a person’s decision

to purchase a certain item, association rule mining is applied to recognize patterns within

the independent attributes and Chi-square test is performed to evaluate the significance level

among the attributes. Those selected attributes are then used to predict target attributes.

There are several existing models for prediction, Artificial Neural network and Classification

And Regression tree (CART) models are used to predict the cost for cancer treatment [3].

Y = a0 + a1 ∗X1 + a2 ∗X2 + ... + an ∗Xn (1)

Linear model is often used for prediction, as it is pointed out in [8], Equation 1 provides

a generalized equation of linear model; each Xi represents individual explanatory attribute

and Y is the target attribute, and the key of finding a good model is to find the best

coefficients ai. [8] also uses cross-validation in its linear model. Cross-validation involves

using parts of the data for training and the rest of the data for testing. For example, if a
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data set consists of n data points, nc data points are used to fit a linear model, and n-nc

data points are reserved to assess the predictive ability of the fitted model. One classic cross-

validation procedure is called leave-one-out cross validation, it corresponds to the choice nc

= n - 1, which is used in this research too. The purpose of cross-validation is to prevent

overfitting the prediction model and to make sure it is more generalized for independent data

set. Linear model makes certain assumptions that the explanatory attributes are independent

of each other and the relationship between explanatory attributes and target attribute is

linear. Although linear model does prediction, it does not rank the explanatory attributes

and it lacks the ability of multivariate selection.

More complex data mining algorithms have been developed to find patterns on two or

more continuous target attributes jointly. From a mathematical point of view, those target

attributes can be represented as a vector. One way to find a relationship between target

attributes and the explanatory attributes is finding distinguished patterns. This technique

is known as vector-item pattern mining. In order to classify the gene sequence signatures

in a gene data set [14], vector-item pattern mining is used to uncover patterns of different

genes’ presence in different gene sequences. Furthermore, [14] shows that the relationship

discovered by pattern mining is not found using a classification algorithm. Even though

vector-item pattern mining can give us more insight about how explanatory attributes effect

response attributes, the technique does not rank the importance of the selected attributes.

Decision Tree is one model to select attributes, other models used for attribute selection

include: Neural Networks and Support Vector Machine [18]. In [17], a Neural Network model

is used to predict wheat yield. A Neural Network is a network of neurons, or nodes. A node

receives an input then produces an output passed onto the another node. Neural Network
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is a complex and adaptive system. A Neural Network can change its internal structure

depending on the information passing between different nodes. Typically, the information

passed between two nodes is controlled by the weights, and each connection between two

nodes has a weight. For more detailed information about Neural Networks please refer to

[9] and [10]. However, those models mentioned above traditionally only consider one target

attribute not multiple target attributes.

The models mentioned above are some common known data mining techniques, ex-

tensive work has been done on developing dynamic models from a biology perspective too

[24]. For example a dynamic model is specifically built for predicting the growth of tomatoes

[25]. The limitation of a dynamic model is that it only works well for one crop, the same

model does not work for other crops; also developing one dynamic model can be very time

consuming. A limited number of crops have been chosen for dynamic model researching,

for example tomato [25] and wheat [11]. Therefore, there isn’t one dynamic model that

works for a variety of crops. With our study, our aim is for our algorithm to select and rank

important attributes for multiple target attributes yet not be limited to a specific crop.

Multivariate Analysis of Variance (MANOVA) incorporates multiple target attributes.

MANOVA expands univariate ANOVA by involving several dependent attributes. Univariate

ANOVA compares the means between two or more groups, in contrast MANOVA discovers

the difference between two or more vectors of means. It discovers how the independent

attributes affect the dependent attributes (target attributes) based on comparison of the error

variance matrix and the effect variance matrix. In order to test the multiple dependent at-

tributes, some artificial dependent attributes are created; those artificial dependent attributes

are linear combinations of the measured dependent attributes. For example, MANOVA can

8



be used to compare several test scores for two populations, students in a Catholic school and

students in a public school. In [21], MANOVA is used to study how people from different

culture backgrounds differ in the Big Five personality traits: Neuroticism, Extraversion,

Openness-to-Experience, Agreeableness, and Conscientiousness. However, MANOVA works

under the assumption that dependable variables are normally distributed and have a linear

relationship. Also it is very sensitive to outliers in the data set [22]. Attribute ranking is not

necessary in all the multi-variate attribute selection methods, but often they are included in

the algorithm [19]. Different algorithms use various informational gain techniques to rank

the attributes, MANOVA isn’t really known for ranking the selected attributes, but we can

rank the attributes from comparing variance-covariance values [21], others use chi-squared

value or p-value etc [1, 20]. One obstacle in agriculture is to obtain those attributes, a variety

of technologies have been used to achieve that goal.

Researchers have taken advantage of remote sensing technology. There are various

types, one of them is using satellites to capture an image of a massive area. Then the image

can be processed to give us more insights of the crop’s health[27]. One of the remote sensed

attributes is Normalized Difference Vegetation Index (NDVI)[16], NDVI can be calculated

from images captured by satellite or unmanned aircraft, this study uses satellite images.

NDVI can be used to reflect how green crops are and it also can be used to predict next year’s

yield for the crop, in this case sugar beets. NDVI can be calculated throughout different

stages of sugar beets, and NDVI during grainfill period improves the yield prediction for

spring wheat [27].

A challenge with data pertaining to agriculture is which attributes to include, NDVI by

itself is clearly not enough. Weather plays a big role in agriculture in general and previous

9



research has been done to show that by incorporating weather data in the model, it helps

with yield prediction. Temperature data has been proved useful in predicting yield for spring

wheat [27], and it is shown that precipitation has strong correlation with yield in [26]. But the

problem is that there are so many other attributes that can be used in the prediction model,

which attributes should be included in the model and which ones shouldn’t be needs to be

resolved. The proposed technique will allow us to find more information on the relationship

between the explanatory attributes and multiple target attributes. The technique selects the

important explanatory attributes then ranks them in the order of importance.

10



CHAPTER 3. CONCEPTS AND ALGORITHM

3.1. Concepts

The goal of our vector-vector pattern mining algorithm is to select significant ex-

planatory attributes in a data set with multi-dimensional response attributes and also to

rank the selected explanatory attributes with the more important ones on top of a tree

structure, since the more important attributes give us significant patterns than with the less

important attributes. As shown in Figure 3, the independent attributes are in a hierarchical

structure, and in order to select each node attribute, their Kullback-Leibler divergence values

are calculated. It measures the distribution difference between the left side of the branch

(denoted as P ) and all the data on that node. Whichever attribute gives the biggest K-L

divergence value is the most effective one, so it is selected for that node. The same algorithm

is applied for each node until reaching the end of the tree.

A technique often used to rank the importance of the selected attributes is Decision

Tree, it often works well with a single target attribute. In [3], a Decision Tree is used to

select variables that effect the cost of cancer treatment and then rank them. Decision Tree

utilizes information gain to evaluate which attributes are important to the target attribute.

There are several reasons why Decision Tree was chosen in [3], there are many different

categories that effect the cost but with a Decision Tree it’s easier to visualize and interpret,

it can represent different scenarios etc. There are different methods to calculate information

gain such as entropy and Kullback-Leibler divergence. Traditionally entropy is used in

Decision Trees, however the limitation of entropy is that it only works with a single target

attribute. In contrast to entropy, Kullback-Leibler divergence can target multiple attributes.

11



Figure 3. Combining Kullback-Leibler divergence and Decsion Tree

Since multiple target attributes are evaluated in this research, we choose Kullback-Leibler

divergence for this paper.

Kullback-Leibler divergence, or K-L divergence, is a non-symmetric measurement of

difference between two distributions P and Q. The KL divergence of Q from P is denoted

as

DKL(P ||Q) (2)

it is the information lost when Q is used to approximate P . The equation below shows the

formula, p and q denote the densities of P and Q; where q is the reference distribution,

which in this case is the full distribution of all the data points, and p is the distribution of

data points that have the item of interest, and KL divergence is a non-negative value. It’s

worth noting that because KL divergence is non-symmetric, DKL(P ||Q) is different from

DKL(Q||P ).

12



DKL(P ||Q) =
∫ ∞
−∞

p(x)ln(p(x)
q(x)) dx (3)

Figure 4. A Voronoi construction with all the P values

K-L divergence is frequently used in data mining algorithms[28, 4, 5]. As in the example

of text categorization [6], each category is considered as a discrete target attribute and their

distributions are compared with each other using K-L divergence. In this project the target

attributes are continuous instead of discrete and all our explanatory attributes are in discrete

format, to find the nearest neighbor a Voronoi cell based on K-L divergence is calculated,

also noted as K-L Voronoi.

13



Figure 5. A finished Voronoi construction with all the P values that
make all the cells

The K-L Voronoi has been used in [14], and K-L Voronoi uses the nearest neighbor

[23, 7]. The Voronoi construction is shown in Figure 4 and Figure 5, first a seed is chosen,

in this case they are all the P values, then the rest of the points are distributed into cells

based on the seed values. They are grouped into the cell with the shortest distance to the P

point, and the probability depends on the number of points in that cell. The probability of

each P point is 1 divided by the total number of points of P and Q. Natural log of zero is

invalid, which means that p(x) has to be ensured not to be zero, so in the implementation

of Voronoi function the number of points in each P cell is initialized to 1.
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Once we have the tree structure based on the K-L divergence values, we will have a

visualization of the top attributes. It’s worth to point out that we care more about the

structure of the tree than the individual leaf nodes. The individual leaf nodes are not used

in our prediction model, but from the tree structure we can see what types of attributes are

on the top of the tree; is it previous crops or soil type or the weather attributes etc. For

example, if there are different types of previous crops showing up on top the tree structure,

which means that previous crop category should be used in our prediction model; but not

necessary just any specific kind of previous crop. And upon termination of a branch, it’s

either because all the binary attributes have been evaluated or because all the K-L divergence

values are zeros on that branch.

3.2. Algorithm

The algorithm is implemented in R [32], an open source programming language. An

overview of the algorithm is illustrated in the figure below. The first step is to list all possible

binary attributes, more details of this step can be found in the data preparation section. For

each binary attribute, P represents all the fields that contain that specific binary attribute,

and Q represents all the fields on that branch of the tree. To select the most influential

attribute on each branch, a KL divergence value is calculated for each binary attribute (Step

2). The more important the attribute is the bigger its KL divergence is, therefore the one

with the biggest KL divergence value is identified (Step 3). The implementation of the KL

divergence function is mentioned in the KL Voronoi section from the previous chapter. Once

that binary attribute is identified (Step 4), it is removed from binary attribute list so that

it won’t be reconsidered (Step 5). Based on the selected attribute, two new branches (or

two subsets) are created: one branch with all fields that contain that binary attribute (the

15



Algorithm 1: KL Divergence and tree structure based vector-vector pattern mining
Algorithm

Data: binary attributes /* all binary attributes on the branch */
Data: Pi /* fields contain the binary attribute */
Data: Q /* all fields on that branch */
Data: left side /* fields have selected attribute */
Data: right side /* fields don’t have selected attribute */
Result: tree /* tree structure */

1 BuildTree(side, BinaryAttributes) :
2 for i = 1 to |binary attributes| do
3 KL Divergencei = KLDiv(Pi,Q)
4 index = max(KL Divergence)
5 selected attribute = binary attributes[index]
6 binary attributes = remove(selected attribute)
7 tree = BuildTree(left side,binary attributes)
8 tree = BuildTree(right side,binary attributes)
9 return tree

left side branch) and the other branch contains all the fields that don’t have that binary

attribute (the right side branch). Then the same algorithm is applied to those two child

branches recursively on Step 6 and Step 7.
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CHAPTER 4. DATA PREPARATION

Before proceeding to the results, the data set used in this study and its preparation will

be described. Because of the uniqueness of agriculture, the data set used in this study draws

upon several sources. Consequently, combination of the data types into a cohesive format was

a time consuming obstacle. The proposed algorithm is applied to data pertaining to various

attributes of sugar beet fields. The fields are located in the Red River Valley in northern U.S.,

which includes parts of Eastern North Dakota and parts of Western Minnesota. The data set

includes confidential data provided by American Crystal Sugar Company, temperature and

rainfall data from National Oceanic and Atmospheric Administration, and Landsat images

from U.S. Geological Survey. The time frame of the collected data is from 2007 to 2011, and

the spatial range covers majority of the Red River Valley. Each data type is pre-processed

and then they are combined together using GRASS GIS software [31]. In this chapter, we

are going to cover the processing of the data related to all the fields, weather data, and

satellite data.

4.1. Field Data

Local farmers and American Crystal Sugar Company provided Substantial amount of

data about each field. The data include geographical location of each sugar beet field and a

few categorized and continuous data types too. The categorized attributes include soil types,

previous crops, seed types, etc. Our target attributes were three continuous attributes: Yield,

Sugar, and Sugar lost to molasses. Yield measures total weight of the sugar beets from each

field; sugar is the weight of sugar content from the total yield; sugar lost to molasses is the

weight of sugar lost during sugar-making process due to the heat, waste, etc. The desired
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outcome is high yield with high sugar content and low sugar lost to molasses is desired. The

three continuous target attributes were normalized in this study. All the data related to

each field is stored in a vector, and each field has a spatial reference as shown in Figure 6.

The different shapes of rectangles are the fields in the study.

4.2. Weather Data

Figure 6. Fields with rainfall vector points, The x represents rain fall
vector points and the rectangles represent fields

Weather data consists of rainfall data and temperature data. Raw daily precipitation

data [33] was retrieved from National Weather Service of National Oceanic and Atmospheric

Administration. As shown in Figure 6, this data was in vector format which produced a grid
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of vector points. Since those points don’t cover each field individually, each field uses the

nearest grid point for its rainfall data and surface interpolation was used (interpolating data

points on a two dimensional grid). Figure 6 illustrated the rainfall grid vector file displayed

over the all the fields. X’s designate points of measured rainfall, and rectangle shapes set

field boundaries.

Figure 7. Rainfall in raster format displayed over the vector points
after surface interpolation

Each vector rainfall file is then converted to raster file using surface interpolation

Figure 7. Once we have the daily rainfall for each field, the monthly rainfall is summed up

from the plant date to near-harvest date for each field.
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Growing Degree Days approximates accumulated heat for scrips based on temperature.

The daily min and max temperature reading can be retrieved from National Climatic Data

Center, and is processed the same as the rainfall data. The minimum and maximum

temperatures are adjusted accordingly in Equations 4 and 5 and GDD is calculated according

to Equation 6. All temperature readings are in Fahrenheit.

Tmin = Max(Actual Daily Min Temperature, 34 ◦F ) (4)

Tmax = Min(Actual Daily Max Temperature, 86 ◦F ) (5)

GDD ◦F = Tmax + Tmin

2 − 34 ◦F (6)

4.3. Satellite Imagery

Satellite imagery is available from Landsat 5 and Landsat 7 [30]. The areas of this study

are covered by image tiles 30026 and 30027. The images from the two satellites are processed

then combined using GRASS GIS [31], excluding the cloud cover and reflections from the

atmosphere. Then those images are used to calculate (Normalized Difference Vegetation

Index) NDVI. NDVI normalizes the difference between red and infared red, as shown in

Equation 7. It is used to represent the health of the crops by measuring how green the

target is, so the greener the target, the more positive its NDVI value is. The Figure 8 shows

processed satellite image laid on top of the fields image.

NDVI = near infrared− visible red
near infrared + visible red (7)
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Figure 8. Calculated Normalized Difference Vegetation Index, the black
rectangles represent the fields and the white areas are clouds

After all the data is processed in GRASS GIS, they are imported into R for analysis,

then all of the explanatory attributes are transformed into binary attributes afterwords;

there are two types of explanatory attributes: categorical and discrete. The categorical

explanatory data types are separated into different types individually, then 1 represents

the field has that data type and 0 represents otherwise. The numeric data (Rain, NDVI,

GDD) is broken into two halves; 1 represents the value is above its mean and 0 represents

below its mean. Note, some binary attributes are removed because of their small number of

occurrences.
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CHAPTER 5. RESULTS

The evaluation of the selected attributes from our algorithm is done by comparing re-

sults from regular multi-variate attribute selection algorithms. In this section a visualization

of the tree structure from some subsets of the attributes and also a snapshot of the full tree

structure is provided, we also show some of the discovered patterns from the attributes on

the top branches. In order to assess the performance of the algorithm, a speed test is carried

out on the algorithm. We recorded the time spent by the algorithm when various number

of explanatory attributes were evaluated, starting from five to 25 in the increment of five.

Then its time is compared against the time of regular multi-attribute selection algorithms

on the same number of attributes. In the end, our top selected attributes are applied to

linear model to predict total yield and that result is compared against the prediction from

traditional multi-variate selection algorithms.

5.1. Previous Crops

Before we proceed to the results in depth, let’s look at some results by running the

algorithm on some subset of all the attributes. In this subset, the same algorithm is only used

on all the previous crops (in order to preserve certain nutrition in the soil, farmers usually

plant different crops on the same field every year); the results are presented in Figure 9.

Similar with traditional decision tree graphs, the more important attributes are on the top

of the tree structure and the less important ones are at the bottom. And because the nature

of the binary attributes, each node in the tree only has two branches in this study; the left

side branch represents the fields that have the binary attribute on that node, and right side

branch represents fields don’t have that attribute. Here zero is used to indicate that the end
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Figure 9. The same algorithm is tested on all the previous crops, the
more important attributes rank higher on the tree structure. Potato
is on the top branch, which validates the conventional wisdom. Zero
signals the end of the branch and it appears on the left side branch is
because we are only considering one category of the data.

of the branch has been reached. Since each field typically only has one type of cover crop,

this tree structure looks like one sided leaning towards right. Some existing research [12] has

shown that potatoes and edible beans are some very good choices for cover crop on sugar

beet fields. As we can see in Figure 9, potato is on the top of the tree and edible bean is one

of the top choices too. This validates that our algorithm against conventional wisdom when

it comes to previous crops.
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5.2. Soil Types

Figure 10. The same algorithm is tested on all the soil types of the
fields.

The same algorithm is tested on the soil types and the result is shown in Figure 10.

Since the field samples are taken from the Red River Valley region, the region’s soil types

are very limited. However, according to common practices soil that’s well drained and no

rocks is good for sugar beet; sandy soil is not considered ideal for sugar beet farming.
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5.3. Full Tree Structure

Figure 11. A snapshot of the full tree, this shows the top attributes
of the tree. Soil types, previous crops and weather data dominates the
top branches.

All the available explanatory attributes are used in constructing the full tree. Since

there are a lot of attributes in this study, the full tree view can’t fit in one page; Figure 11

depicts a portion of the top branches of the full tree. There are total 25 binary attributes used

in the study, since NDVI, rain and GDD are calculated later for the field, they are split into

halves by their mean. For example, if the field’s NDVI is above the average NDVI, then it is

considered that it contains NDVI; otherwise it doesn’t contain the attribute. As expected,

the top attributes are dominated by soil types, previous crops and weather data. Because

agriculture depends on the weather condition, it makes logical sense that GDD, NDVI and

Rain show up in many sub-branches. We are going to investigate the top branches in more

detail below.
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5.4. Example Pattern

SOILSONGLACIALTILLPLAINS + GDD_ABOVE

Yield Sugar SLM

−4
−2

0
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4

Figure 12. Pattern comparison between fields of above average GDD and fields with Glacial
Till Plains.

Performance patterns reveal significance of explanatory attributes among taget at-

tributes: Yield, Sugar, and Sugar Lost to Mollasses. Some patterns observed from our data

set using the top selected attributes are shown in Figure 12 and Figure 13. In Figure 12

and Figure 13, the gray lines are the fields that have Glacial Till Plains as soil type. Since

GDD is the attribute right below Glacial Till Plains, those fields are then separated into two

types based on GDD; one type with GDD above its average (represented by the black lines

in Figure 12) and the other type with GDD below its average (represented by the black lines

in Figure 13). The black lines within each plot have distinguished performance patterns
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Figure 13. Pattern comparison between fields of below average GDD and fields with Glacial
Till Plains.

comparing against the gray lines, and the black lines have different patterns between the two

figures. This confirms that the top branches can successfully find distinguished patterns of

response attributes and that they are not just randomly selected attributes.

5.5. Speed

To assess the efficiency of the algorithm, a speed test is carried out. The impact on

speed due to additional independent attributes and speed comparison against traditional

multi-variate attribute selection algorithms are described in this section. The number of

explanatory attributes is incremented from 5 to 25 by step of 5. The same data is used

on the traditional methods and the proposed algorithm, as shown in Figure 14, the dashed
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Figure 14. Comparison of run time from using our aglrithm versus using traditional multi-
variate attribute selections depending on the number of explanatory attributes.

line represents the traditional multi-variate selection algorithms (they include: StepWise,

Linear Forward selection and Best First, then the mean of their time is taken) and the solid

line represents our algorithm (the same hardware is used on all algorithms). The multiple

traditional multi-variate attribute selection algorithms are evaluated using Weka. As we

can see, KL divergence is faster than the traditional algorithms all the time, and the gap

increases as the number of dimensions increases. The KL divergence algorithm takes about

half of the traditional algorithms’ time at the end of the plot. And as expected, with the

number of attributes increases as both algorithms take more time to finish. Most of the time

in KL divergence algorithm is spent on calculating the KL divergence value (KL Voronoi
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value) for each binary attribute and comparing all the values to come up with the selected

attribute. At this point the KL Voronoi value calculation function is not optimized for speed

yet.

The run time for KL divergence algorithm increases linearly with the number of

explanatory attributes in a steady slope. However, the traditional algorithms’ slope gets

steeper as the number attributes increases. The number of dimensions in our study is

relatively large in agricultural data sets, but it is definitely not large in comparison with other

data mining data sets. Therefore, KL divergence algorithm definitely has a big advantage

on speed over other traditional multi-variate attribute selection algorithms, especially when

a large number of explanatory attributes are evaluated. The speed test is carried out on a

Linux machine with 32GB total RAM and CPU Intel(R) Xeon(R) at 3.33GHz.

5.6. Predictions

It is interesting to observe the patterns described in the previous section, but using the

selected attributes to improve yield prediction gives a bigger financial benefit to farmers and

crop processors. So far future prediction has been focusing on yield only, so in this section of

study the selected attributes are evaluated by yield prediction. In our previous researches,

several models were explored and linear model achieved the best results in future prediction;

therefore linear model is used in our evaluation process.

Error Percentage = actual regional yield− predicted regional yield
actual regional yield (8)

As described previously in the generalized linear model Equation 1 in related works

section, each Xi represents individual explanatory attribute and Y is the target attribute. A
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baseline linear model is built to predict the total yield from year 2007 to 2011, so there are

total five linear models; for each year’s model, all the other years’ data is used for training

and then the model is tested on that year’s data alone. In the baseline model, some collected

farming attributes (e.g. previous crop, seed type, Nitrogen fertilizer) and weather data (e.g.

GDD, NDVI, Rain) are included. However, in order to improve the prediction accuracy,

based on our top selected attributes that baseline model is modified. Traditionally, the

correlation coefficient is used in linear model, but we care the most about the total yield

(total weight) of the sugar beets; so we will show the error percentage of the model based on

yield. The overall error percentage (Equation 8) of the linear model is calculated by taking

the difference between the actual total harvested sugar beets weight from all the fields and

the predicted total weight of sugar beets for each year divided by the actual total harvested

yield. Below we are going to compare the yield prediction results from our algorithm against

the yield prediction results from traditional multi-variate selection algorithms.

Figure 15 shows the error percentages of yield prediction from year 2007 to 2011. The

dotted line is the error percentage from the original model. The dashed the line is from

new model without the selected attributes and the solid line is the new model with selected

attributes. The original model is the model to be used, but from observation of the tree,

some of the attributes in the old model are not on the top branches of the tree structure,

so they are removed from that model. The new model does a better job predicting yield

(dashed line vs dotted line), and that model is used to compare the impact of using our

top selected attributes (the sold line vs the dashed line). In all three different approaches,

the new model with our selected attributes achieves the best yield prediction; the biggest
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Figure 15. Error percentages of the same model with selected attributes and without selected
attributes.

difference is in year 2009. It’s about a two percent difference between the new and old linear

models.

Another prediction comparison is between conventional multi-variate attribute selec-

tion and our algorithm. To do that, the selected attributes from the two approaches are tested

in the same linear model. Those selected attributes are used to predict the yield for a whole

year, and since we are mostly concerned about the total error percentage, Figure 16 shows the

absolute error percentages of using conventional multi-variate attribute selection algorithms

and our algorithm. The dotted line is the absolute prediction error percentage from using

regular attribute selections and the other line represents the absolute error percentage from

using our algorithm. As we can see, both lines have the similar trend but the our algorithm
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Figure 16. Absolute error percentage of using regular multi-variate attribute selection
aglorithms and our algorithm. Both lines have similar trend, but the result from our
algorithm has much smaller error percentage.

has much smaller error percentage. The smallest error percentage difference is in 2007, it’s

about 1.5 percent difference; however, it’s about 10 percent difference for the rest of the

years. This further shows the effectiveness of the proposed algorithm. The prediction should

be better if there were other years of data, as right now there are only five years worth of

data, so the training data for the model is very limited. However, with the limited data, the

prediction overall is fairly good. The minimum absolute error percentage is 0.16, and the

maximum absolute error percentage is 3.4.
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CHAPTER 6. CONCLUSIONS

This project demonstrated a new algorithm for multi-variate attribute selection, the

algorithm is tested in an agricultural data set. It successfully identifies some significant

patterns in the multi-dimensional explanatory attributes and multi-dimensional response

attributes. It also ranks the selected attributes in a tree structure by the order of impor-

tance. K-L divergence is used in the algorithm for identifying meaningful pattern, and the

top resulting attributes are compared with the traditional multi-variate attribute selection

results. The selected attributes from traditional methods and the proposed algorithm are

evaluated in the same prediction model, the yield prediction from the proposed algorithm has

higher accuracy than the other algorithms, and the speed of this algorithm is much faster.

Therefore, it is successfully demonstrated in this study that Kullback-Leibler divergence can

be used to find distinguishing patterns in a multi-variate data set.

6.1. Future Works

The current project only predicts yield, but many other response attributes or com-

binations of them remain as viable research interests. For our prediction, a linear model is

selected but more models can be explored for improvement in the future. One disadvantage

of using five year agriculture data is a shortage of training data, because we want to predict

yearly yield, it means that we only have five data points in our prediction model. Therefore,

it makes the prediction more difficult. It would be ideal if more data can be collected in the

future. In this study sugar beet is the target crop, but this algorithm is not limited to sugar

beets; it can be used and improved upon evaluating different crops or any other multi-variate

data sets. At this point the time taken to run the algorithm is O(n), it would be ideal to

increase the speed so that it only takes O(ln(n)).

33



REFERENCES

[1] S. Brin, R. Motwani, and C. Silverstein, Beyond market baskets: generalizing association
rules to correlations, SIGMOD ’97: Proc. of the 1997 ACM SIGMOD Int’l Conf. on
Management of Data (New York, NY, USA), ACM Press, 1997, pp. 265–276.

[2] K. Younghee, K. Wonyoung, and K. Ungmo, Mining Frequent Itemsets with Normalized
Weight in Continuous Data Streams, JIPS 6.1, 2010, pp. 79–90.

[3] K. Jin Oh, S-H. Chung, and Y-M Suh, Prediction of hospital charges for the cancer
patients with data mining techniques, Journal of Korean Society of Medical Informatics
15.1, 2009, pp. 13–23.

[4] W.M. Campbell, and K. Zahi N, Simple and efficient speaker comparison using
approximate KL divergence, INTERSPEECH. 2010.

[5] L.D. Baker, and A.K. McCallum, Distributional clustering of words for text
classification, Proceedings of the 21st annual international ACM SIGIR conference on
Research and development in information retrieval, ACM, 1998.

[6] B. Biggi, Using Kullback-Leibler Distance for Text Categorization, ECIR 2003, LNCS
2633, 2003, pp. 305–319.

[7] T.M. Cover, P.E. Hart, Nearest neighbor pattern classification, IEEE Transactions on
Information Theory, January 1967, vol.13, no.1, pp. 21–27.

[8] J. Shao, Linear model selection by cross-validation, Journal of the American statistical
Association 88.422, 1993, pp. 486–494.

[9] Hagan, M.T.: Neural Network Design (Electrical Engineering). Thomson Learning,
1995.

[10] S. Haykin: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall,
Englewood Cliffs, 1998.

[11] M. Teittinen, T. Karvonen, and J. Peltonen, A dynamic model for water and nitrogen
limited growth in spring wheat to predict yield and quality, Journal of Agronomy and
Crop Science 172.2, 1994, pp. 90–103.

[12] A. L. Sims, Sugar Beet production after previous crops of corn, wheat and soybean,
University of Minesota, Northwest Research and Outreach Center, 2006.

34



[13] A.M. Denton and J. Wu, Data mining of vector-item patterns using neighborhood
histograms, Knowledge and Information Systems (KAIS) journal, 2009, 173–199.

[14] A.M. Denton, J. Wu, and D. Dorr, Point–distribution algorithm for mining vector-item
patterns, Proc. 16th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining:
Useful Patterns Workshop (Washington, DC), July 2010.

[15] D.W. Franzen, 2 nitrogen management in sugar beet using remote sensing and gis, GIS
applications in agriculture, 2007, 35.

[16] S. Panda, D. Ames, and S. Panigrahi, Application of vegetation indices for agricultural
crop yield prediction using neural network techniques, Remote Sensing, 2010, no. 3,
673–696.

[17] G. Ruß, Data mining of agricultural yield data: A comparison of regression models,
Advances in Data Mining. Applications and Theoretical Aspects, 2009, 24–37.

[18] G. Ruß, R. Kruse, M. Schneider, and P. Wagner, Data mining with neural networks for
wheat yield prediction, Advances in Data Mining. Medical Applications, E-Commerce,
Marketing, and Theoretical Aspects, 2008, 47–56.

[19] G. Isabelle, A. Elisseeff, An introduction to variable and feature selection, The Journal
of Machine Learning Research 3, 2003, 1157-1182.

[20] A. S. Moucheshi, E. Fasihfar, H. Hasheminasab, A. Rahmani, and A. Ahmadi, A
Review on Applied Multivariate Statistical Techniques in Agriculture and Plant Science,
International journal of Agronomy and Plant Production. Vol. 4, 127-141, 2013

[21] J. W. Grice, A Truly Multivariate Approach to MANOVA, Applied Multivariate
Research, Volume 12, No. 3, 2007, 199-226.

[22] French, Aaron, et al, Multivariate analysis of variance (MANOVA), Retrieved January
18, 2002: 2009.

[23] Q. Wang, S.R. Kulkarni, and S. Verdu, A nearest-neighbor approach to estimating
divergence between continuous random vectors, 2006 IEEE International Symposium
on Information Theory, 2006, pp. 242–246.

[24] H.P. Yan, M.Z. Kang, P.D. Reffye, and M Dingkuhn, A Dynamic, Architectural Plant
Model Simulating Resource-dependent Growth, Annals of Botany, 2004, pp. 591-602.

[25] E. Heuvelink, Evaluation of a Dynamic Simulation Model for Tomato Crop Growth,
Annals of Botany, 1999, pp. 413-422.

35



[26] D.W. Shin, G.A. Baigorria, Y.-K. Lim, S. Cocke, T.E. LaRow, James J.O’Brien, and
James W. Jones, Assessing Crop Yield Simulations with Various Seasonal Climate Data,
Proc. 7th NOAA Annual Climate Prediction Application Science Workshop (Norman,
OK), October 2009.

[27] P. C. Doraiswamy, B. Akhmedov, L. Beard, A. Stern, and R. Mueller, Operational
prediction of crop yields using modis data and products, International Archives of
Photogrammetry Remote Sensing and Spatial Informatioon Sciences, 2007.

[28] B. Bigi, Using Kullback-Leibler Distance for Text Categorization, ECIR, 2003. pp. 305-
319.

[29] P.J. Moreno, P.P. Ho, N. Vasconcelos, A Kullback-Leibler Divergence Based Kernel for
SVM Classification in Multimedia Applications, 2003

[30] U.S. Geological Survey, Satellite images - landsat, http://glovis.usgs.gov.

[31] GRASS Development Team, Geographic resources analysis support system (grass gis)
software, http://grass.osgeo.org, 2008.

[32] R Development Core Team, R: A language and environment for statistical computing,
http://www.R-project.org, 2008, ISBN 3-900051-07-0.

[33] National Weather Service, Precipitation data, http://water.weather.gov/precip/
download.php.

36




