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ABSTRACT 

In order to adopt geopolymer concrete as a pavement repair material due to its better 

durability, splitting and slant shear tests are performed. Effect of curing time, degradation of the 

pavement concrete under different acid conditions on the bond strength of geopolymer with 

conventional concrete, and comparison of the metakaolin geopolymer with other pavement repair 

materials are analyzed. It was found curing time affects the interface bond strength greatly and 

the interface bond strength degrades quickly in an acid environment. Effect of molar ratio of 

SiO2/Na2O, calcium aluminate cement, and slag on early strength of the geopolymer have been 

studied. It was found molar ratio of SiO2/Na2O of 1.0 gave the highest early strength in 24 hours. 

Also, freeze-thaw durability of geopolymer concrete are investigated by exposing the specimens 

to rapid freeze-thaw cycles. Based on these research results, adopting metakaolin geopolymer in 

accelerated PCC pavement repairs is a feasible option. 
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CHAPTER 1. INTRODUCTION 

1.1. Introduction 

Portland cement concrete (PCC) pavement and structures need to be repaired due to 

different reasons such as deterioration, poor riding quality, and structural failures. It is widely 

known that the most repair materials for concrete repair applications today are polymer-modified 

cement, consisting of Portland cement with additional of polymer. Portland cement is the world’s 

most used construction binder material (Fernandez-Jimenez, et al, 2006). However, cement 

production emits large amounts of CO2 that pollutes the atmosphere (Aleem and Arumairaj, 

2012), and consumes significant amount of energy (required temperature up to 1400-1500˚C). 

Production of one ton of Portland cement releases one ton of CO2 into the atmosphere (Hardjito 

et al, 2004a). Cement production (Madeleine, 2012) contributes 5%-7% of all global greenhouse 

emissions in total. Figure 1 shows the emission of CO2 during Portland cement production. It is a 

common viewpoint that finding an alternative material to the Portland cement is imminent. 

 

Figure 1. Emission of CO2 during Portland cement production (Van Chanh et al, 2008) 
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On the other hand, geopolymer is a new construction material which could be produced 

by the chemical action of inorganic molecules, without using any Portland cement. The 

geopolymer binder could be produced through chemical reaction between aluminosilicate 

materials such as fly ash or metakaolin that are rich in SiO2 and Al2O3 and alkaline solutions 

such as sodium hydroxide or sodium silicate. Fly ash is a by- product of burnt coal that could be 

obtained from the thermal power plant, and it is readily available worldwide (Hardjito et al, 

2004b). Metakaolin is produced by heating kaolin (a natural clay) at 750°C and could be 

produced in a large quantity with homogeneous properties (Rovnaník, 2010). Even though other 

types of alumina-silicate exist, the metakaolin is used in this study due to its large quantity and 

homogeneous properties. Geopolymer binder production releases 80-90% less CO2 than Portland 

cement does, which makes it a green material. The geopolymer concrete can also be 

manufactured and implemented using the same equipment and practices used for Portland 

cement concrete. So the best alternative to Portland cement in the earth is geopolymer (Kim, et 

al, 2006).  

Davidovits found the geopolymer after the reaction between polymer and geological 

origin source material in 1970’s (Davidovits, 1988). Shortly after Davidovits’s finding, the 

geopolymer binder was quickly researched as the main binder to replace Portland cement 

(Duxson et al, 2007; Gourley, 2003). Typically, synthesis of geopolymer consists of three steps. 

The first step is to dissolve alumino-silicate under strong alkali solution; then the free ions re-

orientate into clusters in the solution, and the last step is polycondensation. The geopolymer 

forms very rapidly, consequently the three steps occur almost simultaneously, which makes the 

kinetics in the chemical reaction inter-dependent (Kamarudin et al, 2011). 
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To use the geopolymer as a repair material, the bond strength between the substrate 

concrete and the repair material (Geissert et al, 1999; Momayez et al, 2005) is critical. The 

properties of geopolymer concrete (Hardjito et al, 2004c; Hardjito et al, 2005) such as the 

modulus of elasticity, Poisson’s ratio, and the tensile strength are similar to those of Portland 

cement concrete, which shows the compatibility between the geopolymer concrete and Portland 

cement concrete. In addition, durability and rapid curing of geopolymer concrete need to be 

considered before using it as a new repair material. However, there is no specific publications 

regarding to use geopolymer mortar as a pavement repair material, and no specific publications 

are available concerning the freeze-thaw resistance of metakaolin-based geopolymer concrete. 

This thesis will take the initiative and discuss the use of geopolymer mortar as a pavement repair 

material and characterize the freeze-thaw resistance of geopolymer concrete. 

1.2. Research objectives 

The objectives of this research are to experimentally assess the possibility of using 

metakaolin-based geopolymer mortar as a pavement repair material and characterize the 

durability of metakaolin-based geopolymer concrete against freeze and thaw. The research 

includes the effect of aggressive environments on the bond strength between geopolymer mortar 

and existing concrete and the effect of rapid freeze-thaw on metakaolin-based geopolymer 

concrete. The bond strength of geopolymer mortar to exciting concrete was evaluated by splitting 

tensile test and slant shear test with line interface at 30˚ and 45˚. Also, the durability of 

geopolymer concrete was evaluated by means of destructive and un-destructive tests, where the 

compressive strength and relative dynamic modulus of elasticity of geopolymer concrete with 

different mix ratios was tested and compared.  
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In summary, the research objectives are: 

I. To investigate the feasibility of using metakaolin-based geopolymer mortar as a repair 

material under various aggressive environments. 

II. To systematically characterizes the bond strength between geopolymer mortar and 

concrete substrate under different aggressive environments and compare it with current 

repair materials in market. 

III. To study the effect of SiO2 to Na2O ratio, aluminum calcium cement, and slag on the 

early strength of the geopolymer mortar, for the purpose to find a rapid curing binder. 

IV. To evaluate the durability of metakaolin-based geopolymer concrete. 

1.3. Scope of the research  

In this thesis, most of work was conducted through experiments. The main scope of the 

experimental work is to evaluate the bond strength and durability of the suggested metakaolin-

based geopolymer with conventional concrete substrate. Materials used in this research are 

metakaolin, which can be obtained by heating kaolin (a natural clay) at 750°C, and alkaline 

solution such as sodium silicate solution (Na2Si3O7) and sodium hydroxide solution (NaOH).  

1.4. Thesis organization  

This thesis is organized into six chapters. Chapter one shows the effect of using Portland 

cement concrete on the environment and the motivation for developing metakaolin-based 

geropolymer concrete as an alternative to Portland cement concrete. Chapter two provides a 

literature review of previous researches on geopolymer. It includes the historical background of 

developing alkali activated binder systems, the chemistry of geopolymer, the reaction 

mechanism of geopolymer, and the advantages and disadvantages of using geopolymer in lieu of 
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Portland cement. Chapter three reports the experimental results of splitting tensile test of 

composite materials and slant shear test with line interface at 30˚ and 45˚ which are carried out to 

find the bond strength of geopolymer mortar to existing concrete at normal and acid 

environments. Chapter four experimentally discusses the effect of the ratio of SiO2 to Na2O, 

adding aluminum calcium cement, and slag on the early strength of the geopolymer mortar. 

Chapter five reports the resistance of geopolymer concrete to rapid freezing and thawing cycles. 

The relative dynamic modulus of elasticity and compressive strength of geopolymer concrete are 

determined after they are subjected to certain cycles of freeze-thaw following ASTM-C666, for 

resistance of concrete to rapid freezing and thawing. Chapter six provides the conclusions and 

recommendations for future work. 

1.5. Team effort 

 Dalu Zhang assisted me to prepare and test the specimens. Especially, Dalu Zhang helped 

me test the freeze-thaw durability and compressive strength of geopolymer concrete. 
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CHAPTER 2. LITERATURE REVIEW 

2.1. Introduction 

An extensive review about geopolymer is presented in this chapter. The literature review 

includes the historical background, terminology, chemistry, applications, and properties of 

geopolymer. Also, current progress on geopolymer and its application in pavement repairs are 

discussed in this chapter. 

2.2. Historical background 

A historical background about some important events on development of alkali-activated 

binders is chronologically presented in this section. The beginning was with Feret’s work which 

is considered related to the development of alkali-activated binders by blending slag with 

ordinary Portland cement without using alkali activator (Feret, 1939; Roy, 1999). But the major 

contribution in the field of alkali-activated binders was led by the work of Purdon in the 1940s 

(Purdon, 1940). Purdon used sodium hydroxide to activate the blast furnace slag. According to 

Purdon, alkali hydroxide acted as catalysts. 

In 1959, the ancient Roman and Egyptian constructions were first examined to find out 

the composition of the binders used to build ancient Roman and Egyptian constructions 

(Glukhovsky, 1959). The compositions of the binders were aluminosilicate calcium hydrates and 

crystalline phases of analcite. Aluminosilicate calcium hydrates is like the ones in the Portland 

cement and crystalline phases of analcite is a natural rock that would explain the durability of 

ancient Roman and Egyptian constructions. Based on the result of this investigation, new binders 

named “soil-cement” were developed by Glukhovsky. Ground aluminosilicate mixed with rich 

alkali industrial wastes were the main components of “soil-cement”.  
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Ancient constructions repaired with Portland cement were also investigated in 

(Malinowsky, 1979; Longton et al, 1984; Roy et al, 1989). Malinowsky concluded that the 

repairing material decayed only after 10 years and had low durability compare to ancient 

construction. In addition, the ancient binders were studied to find out why ancient constructions 

have high durability, and the reason was due to its high level of amorphous zeolitic compounds 

according to (Campbell et al, 1991). It had been also reported that ancient constructions were 

stable and durable due to the presence of zeolitic compounds in ancient binders (Longton et al, 

1984; Roy et al, 1989; Granizo, 1998).  

 The term “geopolymer” was named in 1978 by Davidovits (Davidovits, 1979), which was 

later used as patented binders obtained from the alkali-activator of metakaolin (Davidovits and 

Sawyer, 1985). Davidovits assumed that the pyramids were made by man-made binders not 

natural stone. Moreover, the “F-cement” in Finland (Forss, 1983) and “geocements” in the 

Ukraine were assigned under this category (Glukhovsky, 1994; Krivenko, 1997).  For the basic 

compositions of alkali-activated binders, Krevenko suggested that the binding systems could 

separate into two different categories: Me2O-Me2O3-SiO2-H2O and Me2O-MeO-Me2O3-SiO2-

H2O, even though they are overlapped on some of the compositions (Glukhovsky, 1994; 

Krivenko, 1997; Talling et al, 1989). 

 Most of the investigations on alkali-activated binders used blast furnace slag with the 

alkali solution known as “Alkali-slag cement” or “Alkali-activated slag cement” (Forss, 1983; 

Talling et al, 1989; Malolepszy et al, 1986; Malek et al, 1986; Deja et al, 1989; Majumbar et al, 

1989; Roy et al, 1991; Roy et al, 1993; Wang et al 1995; Jiang et al, 1997; Clarke, 1997). Blast 

furnace slag is a by-product of iron production. Blast furnace slag has high content of calcium 

because the calcium carbonate is used in the calcination process. C-S-H, (C,M)4AH13, or 
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hydrotalcite and minor amounts of C2ASH8 are the main reaction products of alkali-activated 

slag cements. However, other aluminosilicate binders of natural and waste products were also 

investigated as binders to be activated under strong alkali solution. 

2.3. Terminology 

Geopolymer is an inorganic alumino-silicate polymer with a chemical composition 

similar to zeolites but with an amorphous microstructure. Davidovits proposed the term 

‘Poly(sialate)’ to use for the chemical designation of geopolymers based on silico-aluminate 

where sialate is an abbreviation for Silicon-oxo-Aluminate (Davidovits, 1988). In addition, 

Davidovits also discussed in details the chemistry and terminology of inorganic polymers 

(Davidovits, 1988). The geoploymerization process involves dissolution of alumino-silicate 

under strong alkali solution, yielding polymeric Si-O-Al-O bonds in amorphous form.  

Alumina silicate binders that are rich in alumina and silica are also named alkaline 

cements or alkali-activated cements, but this name makes civil engineers confused because of 

alkali-aggregate reaction which is also harmful for Portland concrete. Calling these new binders 

as alkali cement is not very accurate due to the ability of Portland cement to harden in alkaline 

solution. As known in Portland concrete, the alkali-aggregate reaction is one of the concerns in 

the Portland concrete, since most of aggregate has high silica that could chemically react with 

alkali in Portland cement and cause failure of Portland concrete. The failure could occur when 

the reaction between silica in aggregate and alkali in cement take place and form gel to swell. As 

a result of swelling, the gel can induce enough pressure to damage the concrete. On the other 

hand, geopolymer concrete does not show any sign of alkali-aggregate reaction and does not 

suffer from alkali-aggregate reaction even in the presence of high alkalinity (Davidovits, 1999).  
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2.4. Geopolymer chemistry 

As mentioned in terminology, Davidovits used the term “Geopolymer” to name the 

alumino-silicate binders that have chemical composition similar to that found in zeolites, but 

with an amorphous microstructure, and formed in alkaline environment. Davidovits also used 

another term “Poly(sialate)”, which sialate known as an abbreviation form for silicon-oxo-

aluminate, to describe the chemical designation or molecular structure of geopolymers based on 

silico-aluminates (Davidovits, 1988a; Davidovits, 1988b; Davidovits, 1991; Van Jaarsveld et al, 

2002). Polysialates are defined as chain and ring polymers with Si4+ and AL3+ in IV-fold 

coordination with oxygen and range from amorphous to semi-crystalline. Equation 2-1 presents 

the empirical formula of Polysialates: 

𝑀𝑛 (−(𝑆𝑖𝑂2)𝑧 − 𝐴𝑙𝑂2)𝑛  ∙ 𝑤𝐻2𝑂                                             (2-1) 

Where M refers to alkali cation such as potassium or sodium, “n” refers to the degree of 

polycondensation, and “z” is either 1, 2, or 3 or higher up to 32 (Davidovits, 1988b; Davidovits, 

1984; Davidovits, 1994; Davidovits, 1999). In addition, Davidovits differentiated three types of 

polysialates as shown below (Davidovits, 1999):  

 Poly (sialate), which has [-Si-O-Al-O-] as the repeating unit. 

 Poly (sialate-siloxo), which has [-Si-O-Al-O-Si-O-] as the repeating unit. 

 Poly (sialate-disiloxo), which has [-Si-O-Al-O-Si-O-Si-O-] as the repeating unit. 

 Geopolymer can be produced by a chemical reaction between alumino-silicate binders 

and high alkaline solution, yielding a polymeric Si-O-Al-O bonds. The chemical reaction process 

between alumino-silicate binders and high alkali solution is called geopolymerization. Equation 

2-2 presents the schematic formation of geopolymer and an example of polycondensation by 

alkali into polysialate-siloxo (Wallah et al, 2006). 
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(2-2) 

The second part of equation 2-2 was discussed in details by (Rangan, 2008), and reported 

below:  

“The last term in Equation 2-2 reveals that water is released during the chemical reaction 

that occurs in the formation of geopolymers. This water, expelled from the geopolymer matrix 

during the curing and further drying periods, leaves behind discontinuous nanopores in the 

matrix, which provide benefits to the performance of geopolymers. The water in a geopolymer 

mixture, therefore, plays no role in the chemical reaction that takes place; it merely provides the 

workability to the mixture during handling. This is in contrast to the chemical reaction of water 

in a Portland cement concrete mixture during the hydration process”. 

 Portland cement hardens through the hydration process and forms calcium-silicate-

hydrates (C-S-H) gel for matrix formation and strength, whereas geopolymer hardens through 

the geopolymerization process and forms 3D frameworks using the polycondensation of 

alumino-silicate precursors and the alkali activator to attain structural strength. Anyway, 

geopolymerization process has not been fully understood yet. Recently, another model or theory 

for geopolymerization has been developed based on the model that proposed by (Glukhovsky, 

1959). Also, the conceptual model for geopolymerization is presented in (Duxson et al, 2007).   
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2.5. Constituents of geopolymer 

The constituents of geopolymer concrete are: 

 Alumino-silicate binders 

 Alkaline activator 

Alumino-silicate materials used to produce geopolymer are the ones that rich in silica and 

alumina such as fly ash and metakaolin. While the most common alkaline activator used to 

produce geopolymer is a combination of sodium silicate solution (water glass) and sodium 

hydroxide (NaOH). 

2.5.1. Alumino-silicate materials 

 Any material that is rich in silicon and aluminum can be used as geopolymer. There are 

several alumino-silicate materials that have been used to produce geopolymer. However, the 

most common alumino-silicate materials are low calcium fly ash Class F and metakaolin. Silicon 

and aluminum are the primary reactants in the geopolymerization process. 

 Fly ash is defined by the American Concrete Institute, ACI 116R, as “the finely divided 

residue that results from the combustion of ground or powdered coal and that is transported by 

flue gases from the combustion zone to the particle removal system” (ACI Committee 232 

2004). Fly ash is one of the most available materials in the World, and fly ash will be available in 

the future for many years. The utilization of fly ash is still limited so far. The main components 

of fly ash are aluminum, silicon, calcium, magnesium, and iron. The typical particles of fly ash 

are spherical in shape and the diameters vary from 1 μm to 150 μm (Nawy, 2008).  

ASTM C618 divided fly ash into two classes, low-calcium fly ash (Class F) and high-

calcium fly ash (Class C). They are different in chemical composition and physical properties. 
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Low-calcium (ASTM Class F) fly ash can be obtained by burning anthracite or bituminous coal, 

where high-calcium (ASTM Class C) fly ash can be obtained by burning lignite or 

subbituminous coal. The percentage of unburned material in low-calcium fly ash should be less 

than 5%, Fe2O3 content should be less than 10%, reactive silica content should range between 40-

50%, 80-90% particles of low-calcium fly ash should be smaller than 45 μm, and has low CaO 

content (Fernández-Jiménez et al, 2003). The high quantity of calcium in the high-calcium fly is 

not recommended because it can change the microstructure of geopolymer, so low-calcium fly 

ash is preferable (Gourley, 2003). On the contrary, high-calcium fly ash can develop higher 

compressive strength in the early age due to the formation of calcium-silicate-hydrate gel and 

other calcium compounds (Van Jaarsveld et al, 2003), but the formation of calcium-silicate-

hydrate gel would reduce the corrosion resistance. 

The largest fly ash producer in the World is China with 70 million tons per year (Fu, 

2010), then the United States with 68 million tons per year (Ramme et al, 2004). Figure 2 shows 

a comparison between the production and use of coal ash from 1966 to 2011 (ACAA, 

http://www.acaa-usa.org/). Figure 2 shows a huge gap between the production and use of coal 

ash.  
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Figure 2. Comparison between production and use of coal ash from 1966 to 2011 

 Metakaolin is defined as a dehydroxylated pozzolanic material that obtained by firing raw 

kaolin at high temperature. Metakaolin is produced by heating kaolin (a natural clay) at 750°C 

for 6 hours and could be produced in a large quantity with homogeneous properties (Rovnaník, 

2010). The raw material used to manufacture metakaolin is kaolin or kaolinite [Al2Si2O5(OH)4]. 

Kaolin is a fine, white, and natural clay, and kaolin has been utilized in the porcelain industry. 

The main components of metakaolin are similar to the main components of high-calcium fly ash. 

Metakaolin has been become the preferred alumino-silicate material among researchers (Barbosa 

et al, 2003; Duxson et al, 2007; Fernández-Jiménez et al, 2008) due to its high rate of dissolution 

in the reactant solution, ability to manufacture with same homogenous properties, easy to control 

over Si/Al ratio, and its colour (Gourley, 2003). However, using fly ash to produce geopolymer 

is cheaper than using metakaolin due to the use of the calcination in producing metakaolin.  
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2.5.2. Alkaline activator 

 The most used alkaline activator to activate the alumino-silicate materials is a 

combination of sodium hydroxide (NaOH) or potassium hydroxide (KOH) and sodium silicate or 

potassium silicate. An addition of sodium hydroxide (NaOH) solution to sodium silicate solution 

(water glass) has become the most used alkaline activator due to its enhancement on the reaction 

between the alumino-silicate material and the solution (Xu et al, 2000). In addition, Single 

alkaline activator can be used to activate the alumino-silicate materials (Palomo et al, 1999; 

Teixeira-Pinto et al, 2002). The alkaline activator has been reported to play an important role in 

the geopolymerization process (Palomo et al, 1999). 

2.6. Advantages and disadvantages of geopolymer concrete 

 2.6.1. Advantages 

 The main reason for the continued investigation on geopolymer concrete is its higher 

mechanical properties of geopolymer concrete compared to these of Portland cement concrete. 

Compare with Portland cement concrete, geopolymer concrete has many advantages over 

Portland cement concrete.  From environmental aspect, geopolymer concrete would bring a lot of 

environmental benefits and reduce environmental concerns in producing concrete. Producing one 

ton of Portland cement requires 2.8 tons of raw materials (Khale et al, 2007), and emits one ton 

of CO2 into the atmosphere (Hardjito et al, 2004a). Moreover, alumina silicate binders that are 

rich in alumina and silica such as fly ash is worldwide available, and fly ash will be disposed in 

the landfill if it is not used. As a result, disposing these materials into landfill would create a risk 

through leaching metal elements into ground water.  
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 Economically, production of geopolymer binders would bring lots of benefits for the 

economy over Portland cement. The price of Portland cement production is high due to high 

amounts of energy that are required to produce Portland cement. Portland cement production 

requires temperature between (1400-1500 °C) which makes it energy-intensive process and 

costly (Fernández-Jiménez et al, 2005). On the other hand, binders that are used to produce 

geopolymer are readily available such as fly ash and blast furnace slag, and therefore it is 

inexpensive to obtain them. It has been reported that 60-70% of fly ash is disposed in the landfill 

which could potentially pollute the inland and marine waters (Sumajouw et al, 2006). The cost of 

geopolymer concrete is about 10 to 30% cheaper than the cost of Portland cement concrete 

(Lloyd et al, 2010; Rangan, 2008). Taking into account the properties of geopolymer concrete 

such as very little drying shrinkage, excellent resistance to acid, rapid strength gain will add 

more economic benefits when geopolymer concrete is used in infrastructure applications. 

 It has been reported that geopolymer possesses excellent resistance to acids. Geopolymer 

shows superior resistance to acid attack due to lower calcium content of the source material and 

geopolymer does not show any gypsum or ettringite formation during acid attack (Škvára et al, 

2007), while Portland cement deteriorates very badly when it is attacked by acids due to 

expansive gypsum and ettringite formation which causes cracking and spalling in the concrete. In 

addition, metakaolin-based geopolymer mortar when immersed in seawater, sodium sulfate, and 

sulfuric acid, did not show any sign of deterioration in microstructure and reduction in strength 

(Khale et al, 2007). X-ray diffraction analysis was used to find out if geopolymer specimens 

would have expansive hydration products after immersed for a period of 1.5 years in solutions of 

sodium chloride (NaCl) and MgSO4 (McDonald et al, 2006), but it failed to find any presence of 

expansive hydration products in geopolymer specimens. Concrete sample fails to be considered 
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durable if it expands more than 0.5% of its geometric dimensions after exposed to sulfate attack. 

Geopolymer specimens only had less than 0.02% change in length after exposed to sulfate attach 

for a period of 24 weeks (Khale et al, 2007). In addition, geopolymer specimens only lost 3 % of 

its mass when they are immersed in sulfuric acid, while Portland cement samples were totally 

destroyed (Khale et al, 2007; Škvára et al, 2007). The visual appearances of geopolymer concrete 

specimens after and before immersed in sodium sulfate solution and tap water for a period of one 

year are shown in (Wallah et al, 2006). The geopolymer specimens after exposures to different 

sodium sulfate solutions did not show any sign of cracking and surface erosion on the specimens.  

 Geopolymer mortar performs much better at high temperature than Portland cement 

mortar does. Based on (Fernández-Jiménez et al, 2008), Portland cement showed high bending 

and compressive strength at room temperature, but the bending strength of Portland cement 

significantly decreases at 400 °C due to the loss of the Ca(OH)2 content. Also the compressive 

strength of Portland cement sharply decreases beyond 600 °C. On the other hand, the bending 

strength of fly ash-based geopolymer barely changed with temperature, and its compressive 

strength sharply increased over 400 °C as reported in (Fernández-Jiménez et al, 2008). The 

fracture toughness of Portland cement and fly ash geopolymer was also investigated in 

(Fernández-Jiménez et al, 2008). Both materials have almost the same toughness at ambient 

temperature, but beyond 400 °C, the toughness of Portland cement slightly goes down till the 

half of initial values at 600 °C, while that of fly ash geopolymer does not change to a 

temperature of 600 °C. To illustrate the effect of exposure to high temperature on Portland 

cement and fly ash mortars, the variation in the residual values for bending (𝜎𝐹𝑅) and 

compressive strength (𝜎𝐶𝑅), standardized to the respective bending (𝜎𝐹𝑂) and compressive 

strength (𝜎𝐶𝑂) values at ambient temperature are reported in (Fernández-Jiménez et al, 2008). 
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Less shrinkage is an advantage of geopolymer concrete. Geopolymer mortar did not show 

any shrinkage when the reaction occurred and the dimensional characteristics of the fresh paste 

did not change (Škvára et al, 2007). The drying shrinkage strain of fly ash-based geopolymer 

concrete at different days was investigated in (Wallah and Rangan, 2006). The geopolymer 

concrete specimens were first cured at 60 °C for 24 hours, then let the specimens to cure at 

ambient temperature and steam, respectively. The drying shrinkage strain of geopolymer 

concrete slightly fluctuated and was only 100 micro strains during a one-year period. In addition, 

there is insignificant variations of drying shrinkage strains between both cured specimens. 

However, the difference between the drying shrinkage strain of heat-cured and ambient was 

studied in (Wallah and Rangan, 2006). The drying shrinkage strains of geopolymer concrete 

specimens that cured in ambient temperature are much larger than those heat-cured due to water 

that evaporated during geopolymerization process. 

2.6.2. Disadvantages  

 Little variations in the chemical composition of geopolymer binders greatly affect the 

resulting properties. The physical properties and the kinetic degree get significantly affected by 

the amount of calcium in the raw materials. In addition, the workability of geopolymer concrete 

is less than that of Portland cement concrete. Adding 2% or more of superplasticizers increases 

the workability of geopolymer concrete and slightly decreases the compressive strength of 

geopolymer concrete. Moreover, the cost of geopolymer concrete could be cheaper or more 

expensive than that of Portland cement concrete. The reasons the cost of geopolymer concrete 

can be higher or cheaper than that of Portland cement concrete are the location of the raw 

materials, the energy source, and transportation (McLellan et al, 2011). Geopolymer concrete 
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needs a very good control to be used on site. One of the drawbacks of geopolymer concrete is the 

health and safety issues associated with high corrosive activator solutions. 

2.7. Geopolymer application 

Geopolymer has many great properties such as less CO2 emission, low energy 

consuming, low production cost, and high early strength. All these properties make geopolymer 

materials possible to be widely used in different industrial fields such as civil engineering, 

automobile and aerospace, plastic industries, waste management, art and decoration, and retrofit 

of buildings (Abdullah et al, 2011; Li et al, 2004). For example, geopolymer mold and tooling 

has been utilized to develop the fighter plane “Rafle” by the French aeronautical company. In 

addition, geopolymer has efficiently been used to immobilize hazardous wastes (Comrie et al, 

1988). Geopolymer also can be used to not only for heavy metals, but also for many different 

elements, ions, and compounds (Provis and Van Deventer, 2009). Fly ash-based geopolymer 

concrete can be adopted where Portland cement concrete is usually used (Ryu et al, 2013). The 

applications of geopolymer materials can be classified based on the molar ratio of Si to Al 

(Wallah and Rangan, 2006). Numerous different applications of geopolymer materials are 

mentioned in (Edouard, 2011). However, there is only a very little application of geopolymer 

concrete in the construction industry so far.  

2.8. Ethics of geopolymer concrete 

Based on the code of ethics in the National Society of Professional Engineers “Engineers 

shall at all times strive to serve the public interest and are encouraged to adhere to the principles 

of sustainable development in order to protect the environment for future generations (NSPE 

Code of Ethics for Engineers).” Geopolymer concrete can be called an ethical solution, since fly 
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ash is known as a highly toxic material and carcinogen in its raw form, by chemically 

transferring the harmful effects into useful materials. Using fly ash in geopolymer will reduce the 

amount of fly ash that ends up in landfill. This is considered a huge contribution that confirms 

geopolymer concrete is an ethical technology. In addition, the definition of sustainable 

development as stated by National Society of Professional Engineers is “the challenge of 

meeting human needs for natural resources, industrial products, energy, food, transportation, 

shelter, and effective waste management while conserving and protecting environmental quality 

and the natural resources essential for future development. According to the definition of 

sustainable development, geopolymer concrete is a sustainable technology. 

 The section in the ASCE code of ethics states that “Engineers [will] uphold and advance 

the integrity, honor and dignity of the engineering profession by using their knowledge and skill 

for the enhancement of human welfare and the environment (Code of Ethics. American Society 

of Civil Engineers.)” Currently, Portland cement is used to produce concrete. As mentioned 

before, production of one ton of Portland cement emits one ton of CO2 into the atmosphere and 

consumes huge quantity of energy. On the other hand, using geopolymer concrete instead of 

Portland cement concrete will release 80-90% less of CO2 into the atmosphere. 
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CHAPTER 3. BOND STRENGTH OF PCC PAVEMENT REPAIRS USING 

METAKAOLIN-BASED GEOPOLYMER MORTAR 

3.1. Introduction 

 There are more than 4 million miles of roadways in the U.S. Most of them degrades 

rapidly and requires frequently maintenance and rehabilitation that would need a large portion of 

federal and state investment. In addition, delays for road users are considered as an indirect cost 

that doubles the financial burdens. Portland cement concrete pavement is a common pavement 

type of these roadways that premature fails and requires early repair (lee et al, 2005). The aim of 

repairing the Portland cement concrete pavement is to restore the load carrying capacity of 

roadways and to enhance its function and durability for an extra period of time. For these 

reasons, searching for a durable and reliable pavement repair material is one of the challenges in 

Civil Engineering field. In this chapter, metakaolin-based geopolymer mortar will be developed 

and used as a new pavement repair material that has high performance and cost-effective.  

To use geopolymer as a pavement repair material (Geissert et al, 1999; Momayez et al, 

2005), the bond strength between the substrate concrete and the repair material is critical. The 

properties of geopolymer concrete (Hardjito et al, 2004c; Hardjito et al, 2005) such as the 

modulus of elasticity, Poisson’s ratio, and the tensile strength are similar to those of Portland 

cement concrete, which shows the compatibility between the geopolymer concrete and Portland 

cement concrete. Furthermore, the geopolymer concrete degrades significantly less than the 

Portland cement concrete does when they are soaked in an acid solution (Bakharev et al, 2003; 

Rangan et al, 2005). Geopolymers also present low permeability and excellent anticorrosion, and 

effective bonding with cement paste and mortar (Zhang et al, 2010). Moreover, geopolymers can 

be implemented using the same equipment and practices used for Portland cement concrete to 
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repair deteriorated infrastructures such as manholes, pipes and chambers (Montes et al, 2012). 

All these merits make geopolymer an excellent candidate for pavement repair; however the 

durability of these applications has not been evaluated in literatures. Therefore, in this chapter, 

the possibility of using the geopolymer as a repair material under various aggressive 

environments will be studied. Since one of the most critical factors impacting repair durability is 

the bond strength between geopolymer and existing concrete, a splitting tensile and slant shear 

test will be employed, and their results will be compared with these of repair materials in market.  

3.2. Experimental study 

Evaluation of the bond strength of the metakaolin-based geopolymer mortar to concrete 

substrate will be performed using split tensile and slant shear test with line interface at 30˚ and 

45˚. In order to reduce the number of influence factors and minimize the surface heterogeneity 

and focus on the bond strength of geopolymer and conventional concrete, the effect of coarse 

aggregates is excluded temporarily. 

Since all concrete pavement will subject to degradation at some level during their usage 

life and hydration products decompose in acid environment, an experiment to submerge the 

concrete substrate into a 0.5 N HCl solution for different duration is chosen to represent different 

stage of concrete pavement degradation. 0.5 N HCl solution corresponds to a pH = 0.3 strong 

acid environment. Consider the linear chemical reaction in the acid-alkaline reaction process, this 

solution concentration could be extrapolated to different pH level environments with different 

durations. For example, degradation in a pH=0.3 solution for 5 days will be equivalent to 

degradation in a pH = 3.0 environment for 7 years.  In order to assess the feasibility of using 

geopolymer mortar for degraded concrete pavement repairs, bond strength of geopolymer mortar 

and degraded conventional concrete substrate is characterized. 
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3.2.1. Materials 

  The metakaolin was supplied by Fishstone Studio Inc. Elgin, IL. The sodium silicate 

solution (water glass) was supplied by The Science Company, Denver, CO. The chemical 

composition of the metakaolin is presented in Table 1 which is obtained from the supplier’s data 

sheet. The chemical composition of sodium silicate solution consists of 9.2% Na2O, 28.67% 

SiO2, and 63.39% H2O with SiO2/ Na2O ratio of 3.21. Then, the sodium hydroxide (NaOH) in 

flakes of 98% purity was supplied by Alfa Aeser, Ward Hill, MA. Type I cement and river sand 

were used to prepare the concrete substrate. Alkaline silicate solution was prepared 24 hours 

prior to use by dissolving sodium hydroxide pelts (Flake, 98.0%) in sodium silicate (water glass). 

Table 1. Chemical composition of metakaolin 

Component (%) Metakaolin 

Al2O3 40.94 

SiO2 55.01 

K2O 0.6 

Na2O 0.09 

CaO 0.14 

MgO 0.34 

Fe2O3 0.55 

TiO2 0.55 

LOI 1.54 

3.2.2. Specimen preparation 

The specimen of splitting tensile test is prepared by casting a 50x100 mm (2×4 inch) 

cylinder for bond strength testing. The cylinder is longitudinally divided in half. One half 

contained cement mortar with mix ratio of 1(cement):3(river sand) at water/cement ratio of 0.5, 

and cure for 28 days. The cement mortar portion has the same mix design for all specimens. The 

cured cement mortar results in a compressive strength of 35.0 MPa. The other half contained the 
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geopolymer mortar, will be added after 28 days cure period. Also, the bond strength will be 

determined by slant shear test with interface line at 30˚ and 45˚. The geopolymer portion is 

casted to the cement mortar substrate specimens on a slant plane inclined angle of 30° and 45° to 

form a 75x150 mm (3×6 inch) composite cylinder specimens and 50x50x50 mm (2x2x2 inch) 

composite cubic specimens, respectively. In addition, twelve cubes of size 50x50x50 mm (2x2x2 

inch) will be prepared for compressive strength test of geopolymer mortar. 

For the degradation experiments, the cement mortar is submerged in a plastic bucket 

filled with 0.5 N HCl solution through a clipper, taken out after the designated duration, and 

dried for one day before bonding with geopolymer mortar. 

Geopolymer portion is prepared by mechanically mixing metakaolin and sand for 3 min, 

then adding the activator solution to the mixture and mixing it for 5 min with additional 65 ml 

water in order to improve workability of the mortar. The ratio of water to solid is 0.201. The 

water components are the water from sodium silicate and extra water, and the solid components 

are the solid from metakaolin and sand. The geopolymer mortar portion is composed of 300 g 

river sand, 100 g metakaolin, 82 g alkaline silicate solution, and 29 ml water. All specimens are 

cured at room temperature and have the same mix ratio. Please note the mix ratio used to prepare 

the geopolymer cubes for the compressive strength testing is the same as the mix ratio used to 

prepare the geopolymer mortar portion for the bond strength testing. In all the geopolymer 

samples prepared, the SiO2 to Na2O ratio is kept at 1.4.  

3.2.3. Compressive strength test 

Compressive strength of the geopolymer mortars is measured using the compression 

machine (ASTM C109/109M standard). The compressive strength of metakaolin-based 

geopolymer concrete after 24 hours, 3 days, 7 days, and 28 days of curing at ambient 
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temperature is measured. The fresh geopolymer mortar are mechanically mixed then poured in 

50 mm standard steel cubic mold. According to ASTM C109/109M, the samples are compacted 

by tampers in two layers. The samples are first cured in molds for 3 days and then at room 

temperature.   

3.2.4. Bond strength test (Split tensile test) 

The splitting strength of the composite cylinder is used to measure the bond strength 

between the substrate concrete and the repair material (Momayez et al, 2005, Geissert et al, 

1999). Split tensile test (ASTM C496 / C496M – 11) is a standard test method of split tensile 

strength of homogeneous cylindrical specimen. This test can also be used for composite 

cylinders, made of half substrate concrete and half repair material as shown in Figure 3.  

 

Figure 3. Cylindrical split tensile test 

3.2.5. Bond strength test (Slant shear test) 

Another accepted test to investigate the bond strength among the researchers is the slant 

shear test in which the interface is under combined state of shear and compression stresses. It has 
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been adopted by several international codes (ASTM C882 / C882M – 13a) as a standard test to 

investigate the bond strength of repair materials. The slant shear test represents more closely the 

real stress situation in the construction site due to the shear component (Neshvadian Bakhsh, 

2010). 

3.2.6. Interface image analysis and porosity  

Interface properties after acid immersion, such as roughness of interface surface and 

porosity of the cement mortar, are also checked to analyze the durability of geopolymer mortar 

and conventional concrete bonding. 

3.3. Results and discussion 

3.3.1. Compressive strength  

Compressive strength of the geopolymer mortars is measured using ASTM 

C109/C109M. Table 2 and Figure 4 show the results of the compressive strength of the 

geopolymer mortar which cures at room temperature and tests at different curing times. The 

compressive strength is calculated as the average value of three repeated samples. The results in 

Table 2 indicate that the geopolymer concrete that cures at room temperature would have lower 

compressive strength at 24 hours of curing time. However, the compressive strength of 

geopolymer after three days of curing reaches 80% of its final strength, which is mainly due to 

the increase in curing time and the increase of reaction completion rate between the metakaolin 

and alkaline solution. 
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Table 2. Compressive strength of geopolymer mortar 

days cured 
Average compressive 

strength of 3 cubic 

samples (MPa) 

Standard 

deviation 
Coefficient of variation 

1 5.55 1.292 0.233 

3 59.67 1.392 0.023 

7 60.7 2.309 0.038 

28 73.26 1.618 0.022 

 

 

Figure 4. Compressive strength of the metakaolin-based geopolymer mortar 

3.3.2. Bond strength (Split tensile test) 

The split tensile test of the manufactured cylindrical composite material shows the bond 

strength between geopolymer and concrete substrate. Twenty-four cement portion specimens are 

first cured at room temperature for 28 days, then 18 cement mortar specimens are soaked in 0.5 

N HCl for different durations. Six half-specimens of fresh cement mortar without soaking in acid 

and the 18 soaked ones are repositioned to the mold and the other empty half of the mold is filled 
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with geopolymer mortar. After 3 days of curing, the specimens are demoulded and tested under 

splitting test. Table 3 and Figure 5 show the results of the splitting test. The bond strength is 

calculated by the equation 𝜎 = 2𝑃/𝜋𝐴 based on references (Momayez et al, 2005, Geissert et al, 

1999). One of the typical failure modes occurred at the interface is shown in Figure 6. It is 

observed that all the failure modes are always an adhesion failure at the interface. Based on 

reference (Springkel and Ozyildirim, 2000), bond strength test results may be classified based on 

strength quality defined in Table 4. 

Table 3. Results of splitting tests 

Spec. No. Cured days 
Cross section 

area (mm2) 
Bond strength (MPa) 

Geopolymer mortar with cement mortar without immersion 

1 3 5161 4.2 

2 3 5161 3.4 

3 3 5161 3.3 

Geopolymer mortar with deteriorated cement mortar by immersed in 

0.5 N HCl for One day 

1 3 5161 0.94 

2 3 5161 1 

3 3 5161 1 

Geopolymer mortar with deteriorated cement mortar by immersed in 

0.5 N HCl for Three days 

1 3 5161 0.89 

2 3 5161 0.94 

3 3 5161 0.92 

Geopolymer mortar with deteriorated cement mortar by immersed in 

0.5 N HCl for Five days 

1 3 5161 0.35 

2 3 5161 0.38 

3 3 5161 0.58 
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Figure 5. The bond strength between geopolymer mortar and cement mortar with different 

deterioration time 

Table 4. Bond strength quality 

Bond strength (MPa) Quality 

2.1 Excellent 

1.7 to 2.1 Very good 

1.4 to 1.7 Good 

0.7 to 1.4 Fair 

0 to 0.7 poor 

 

Based on Table 4, the bond strength between geopolymer and concrete substrate without 

soaking in acid is excellent. And the bond strength between geopolymer and concrete substrate 

that is soaked in acid for 24 hours and three days show fair bond strength, while the bond 

strength between geopolymer and concrete substrate that is soaked in acid for five days is poor. 

For these conditions, a full depth replacement is recommended. 
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Figure 6. Failure mode between metakaolin-based geopolymer mortar and conventional concrete 

Table 5 presents a comparison of the bond strength based on splitting test of the current 

results with other repair materials obtained from literatures (Momayez et al, 2005, Tayeh et al, 

2013). The first four repair materials consist of sand–cement mortars containing 0%, 5%, 7%, or 

10% of silica fume. The fifth and sixth repair materials are modified cement-based. One of the 

modified cementitious mortars is made by replacing 10% of the cement content with a polymer 

concrete adhesive K100. The other modified cementitious mortar is made by replacing 20% of 

the cement content with styrene butadiene resin (SBR) (Momayez et al, 2005). The seventh 

repair material is ultra-high performance fiber concrete(UHPFC) which contained Type-I 

ordinary Portland cement, densified silica fume, well graded sieved and dried mining sand, very 

high strength micro-steel fiber, and polycarboxylate ether based (PCE) superplasticizer (Tayeh et 

al, 2013). The last material is the metakaolin-based geopolymer mortar suggested in this thesis. 

The comparison between the seven repair materials is shown in Figure 7. In the table, different 

roughness of the interface surface is also included for the literature materials. However for the 

current study, effect of roughness will be explored in the next phase. 
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Table 5. Bond strength of different repair materials by split test 

Specimen 

group 
Repair material Curing days 

Compressive 

strength 

(MPa) 

Roughness 
Bond 

strength 

(MPa) 

RL 
0% SF 28 36 

L 1.19 

RH H 1.36 

5L 
5% SF 28 37 

L 1.27 

5H H 1.44 

7L 
7% SF 28 41 

L 1.38 

7H H 1.62 

10L 
10% SF 28 43 

L 1.39 

10H H 1.64 

KL 
Modified by K100 28 35 

L 1.95 

KH H 2.14 

SL 
Modified by SBR 28 38 

L 2.69 

SH H 2.9 

UHPFC 

Ultra-high 

performance fiber 

concrete 

28 170 -  1.82 

MK Metakaolin 28 73.26  - 3.63 

L= low roughness, H = high roughness 
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(a) Low roughness 

 

(b) High roughness 

 

Figure 7. Bond strength of different repair materials by split test: (a) low roughness and (b) high 

roughness 
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From Figure 7, it can be seen that the suggested metakaolin geopolymer shows much 

higher bonded strength compared to several repair materials in the market. It needs to point out 

that the curing conditions for the materials in literature are different from the geopolymer 

material. For all the cementitious sand–cement mortars containing 0%, 5%, 7%, or 10% of silica 

fume, and the two polymer modified cements, they are moisture cured at 20oC for the first 7 

days, following with 50% humidity at the same temperature for 14 days, and tested after 1 day 

dry. For the UHPFC material, the composite specimens were steam cured for 48 hours at a 

temperature of 90°C and submerged in a water tank for another 14 days before the experimental 

strength test. 

3.3.3. Bond strength (Slant shear test) 

      The bond strength between cement mortar substrate and geopolymer mortar is also 

investigated by the slant shear test. The geopolymer mortar is bonded to cement mortar substrate 

after 28 days of curing with an angle of 30° and 45° as shown in Figure 8. The interface surface 

during loading is subjected to the combination of shear stress and compression stresses. 

 

Figure 8. Slant shear test with line interface of 30° and 45° 
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The bond strength is calculated by dividing the maximum load on bond area following 

ASTM C882 / C882M – 13a. After three days of curing, the specimens are demoulded, then 

tested under slant shear tests. The average bond strength of the three samples with line interface 

at 30° is 15.6 MPa with standard deviation of 0.99 MPa and coefficient of variation is 6.33 %. 

On the other hand, the average bond strength of the three samples with line interface at 45° is 

42.2 MPa with standard deviation of 1.4 MPa and coefficient of variation of 3.35 %. Based on 

(Chynoweth et al, 1996), the acceptable bond strength of slant shear test of repair materials 

should fall between 6.9 ̴ 12 MPa and 13.8 ̴ 20.7 MPa at test ages 7 and 28 days, respectively. The 

bond strength between geopolymer mortar and cement mortar substrate at test age 3 days is 

higher than the ACI requirement at test age 7 days and falls in the ranges of the ACI requirement 

at test age 28 days. Failure modes of the slant shear test with line interface at 30° occurs in the 

substrate mortar as shown in Figure 9, which indicates a split failure in the cement mortar 

portion due to the superior bond of the interface between geopolymer and the cement mortar than 

that between the cement mortars themselves. On the other hand, most failure modes for the slant 

shear test with line interface at 45° follow the interface surface with small particle disintegration 

as shown in Figure 10, due to decreased compressive stress along the interface. And the failure is 

a shear failure with three times load capacity comparing to that of the specimen with 30o slant 

interface, partially due to the decreased compressive stress normal to the interface reduces the 

opportunity for the split failure in cement mortar. 
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Figure 9. Failure mode of slant shear test with line interface at 30° between metakaolin-based 

geopolymer mortar and conventional mortar 

 

Figure 10. Failure mode of slant shear test with line interface at 45° between metakaolin-based 

geopolymer mortar and conventional mortar 
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3.3.4. Interface roughness and porosity after acid immersion 

Convention cement mortar with the mixture ratio defined above is submerged into the 0.5 

N HCl solution for different durations. The interface surface after 1 day, 3 days, and 5 days 

submersion are compared with the fresh cured cement mortar interface. It is found that cement 

mortar crazing becomes more and more apparent due to acid erosion, as shown in Figure 11. It is 

obvious that the interface of cement mortar has been weakened tremendously. The degradation 

of cement mortar in acid could also be observed from the porosity increase due to its weight loss 

in acid as shown in Table 6. The acid immersion reduces the stiffness of cement mortar interface 

and degrades the bonding of Geopolymer with it. 

 

Figure 11. Surface image of cement mortar after different time of immersion in acid 

Table 6. Weight loss of cement mortar after different days of immersion in acid 

Numbers of days of 

immersion in acid 
Weight loss (%) 

0 0 

1 3.57 

3 3.77 

5 4.52 

 

         

(a) 0 day                             (b) 1 day                              (c) 3 days                            (d) 5 days 
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3.4. Summary 

In this chapter, metakaolin-based geopolymer mortar was developed to be used as a new 

pavement repair material at normal and aggressive environments. The bond strength between 

cement mortar and geopolymer mortar was investigated through splitting tensile test and slant 

shear test with line interface at 30˚ and 45˚. The experimental results indicated that the curing 

duration exhibits a significant effect on the compressive strength of the geopolymer mortar and 

the bond strength decreases as the cement mortar deteriorates. In addition, the comparison 

between the suggested geopolymer mortar with other pavement repair materials in the market 

shows the superior bond strength of the suggested metakaolin-based geopolymer to substrate 

mortar.  
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CHAPTER 4. IMPROVING EARLY STRENGTH OF GEOPOLYMER MORTAR 

THROUGH MIXTURE TUNING AND ADDITIVES  

4.1. Introduction 

 Traffic volume has increased rapidly in the urban areas for the last decades (Dam et al, 

2005; Buch et al, 2008). Delays due to pavement repair have become less and less tolerable. 

“Early-opening-to-traffic” (EOT) rehabilitation strategies have been used by most departments of 

transportations (DOTs) to reduce delays during pavement rehabilitation (Buch et al, 2008). In 

EOT rehabilitation strategies, a material should be able to harden and open for the traffic at the 

same day, and the repair work is only allowed at night or during periods of low traffic. Portland 

cement concrete with accelerating admixture that can gain enough strength to carry traffic load in 

less than 24 hours and occasionally within 4 hours, is usually used in this application. Yet, high 

early strength Portland cement concrete has been reported to suffer from lack of durability (Dam 

et al, 2005; Buch et al, 2008). The minimum compressive strength required to be open to traffic 

is usually around 20.7 MPa. Based on a survey over 20 states with similar climate as North 

Dakota (Yang et al, 2013), it is found that 73.7% of states use accelerated pavement repair for 

Portland cement concrete. In addition, more than 40% of states use the time to open for traffic as 

the most important factor to select a repair material. Table 7 and Figure 12 present the factors 

that state agencies use to select a repair material. For illustration, time to open for traffic in  

Table 7 was chosen as the highest priority by seven states for selecting a repair material, and the 

second priority for two agencies. 
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Table 7. The factors that agencies use to select a repair material 

Options 1 2 3 4 5 6 

Repair type 3 3 1 1 2 1 

Curing time 2 3 2 2 2 0 

Time to open for traffic (criteria 

for time to open for traffic, such 

as strength gain) 

7 2 1 0 1 0 

Durability 2 1 5 3 0 0 

Cost 0 1 3 3 4 0 

Others 1 0 0 0 0 1 

*Note: The number in the table is the number of states selecting the individual factor at the 

different priority to determine the repair material. 

 

Figure 12. Highest priority to select a repair material 

Repair type

20%

Curing time

13%

Time to open 

for traffic

47%

Durability

13%

Cost

0%
Other

Highest priority to select a repair material
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In chapter 3, metakaolin geopolymer mortar has shown superior bond strength comparing 

to other repair materials in the market. In this chapter, several factors that affect the mechanical 

properties and accelerate the geopolymerization process of geopolymer mortar will be studied in 

order to meet the requirements of early opening to traffic. The effect of SiO2/Na2O at five 

different ratios will be investigated in order to accelerate the geopolymerization process. Also, 

investigation of adding slag and calcium aluminate cement by weight on the strength of 

metakaolin geopolymer mortar will be performed.  The study in this chapter focuses on the effect 

of these parameters on the compressive strength of metakaolin geopolymer mortar, since the 

compressive strength is the most used criteria by agencies to open to traffic. Based on a survey 

over 20 states with similar climate as North Dakota (Yang et al, 2013), 84.62% of states use 

compressive strength criteria to determine the time to open for traffic. Table 8 summarizes the 

minimum required compressive strength to open for traffic. 

Table 8. The minimum required compressive strength to open for traffic 

State Compressive strength 

Colorado 20.7 MPa 

Kansas 24.2 MPa 

Minnesota 20.7 MPa 

Missouri 20.7 MPa 

Nebraska 24.2 MPa 

Oregon 
17.3 MPa if "rapid set" or similar product is 

used. 20.7 MPa for Type I/II/III cement 

Pennsylvania 
20.7 MPa for all repairs except partial 

depth = 13.8 MPa 

South Dakota 
Varies depending on time to open to traffic. 

From 24.8 to 27.6 MPa. 

Utah 27.6 MPa 

Washington 17.3 MPa 

Wisconsin 20.7 MPa 
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 One way to accelerate the geopolymerization process is to let the geopolymer cure at 

elevated temperature which is complicated and hard to apply at the field site. However, the most 

common activating solution used to activate the alumino-silicate materials is a mixture of sodium 

hydroxide (NaOH) and water glass (Na2SiO3). There is only a few researchers who investigated 

the effect of SiO2/NaO2 on the properties of geopolymer concrete. But, the influence of 

SiO2/NaO2 ratio on accelerating the geopolymerization process of geopolymer concrete is 

neglected, even though it has been reported that the SiO2/NaO2 ratio plays an important role in its 

mechanical properties. In addition, the effect of adding aluminate silicate cement to metakaolin 

on its geopolymerization process is also investigated. Aluminate silicate cement can harden and 

set within 1 to 3 minutes and known to have the quickest hydration reaction of all calcium 

aluminate minerals (Rovnanik, 2010). Also, Blending slag with other alumino-silicate binders 

has shown to increase the compressive strength and enhance other properties (Deb et al, 2014). 

To study the effect of slag on the geopolymerization process, replacing metakaolin partially with 

slag is worthy to investigate. In summary, the scope of this chapter is to evaluate the effect of 

different ratios of SiO2/NaO2, aluminate silicate cement, and slag on the early strength of the 

geopolymer mortar, for the purpose to find a rapid curing binder. The results will be compared 

with the results of geopolymer mortar without adding any setting accelerator. 

4.2. Materials and methods 

4.2.1. Materials 

The chemical compositions of metakaolin, slag, and calcium aluminate cement are 

presented in Table 9 which are obtained from the suppliers’ data sheets. Metakaolin was supplied 

by Fishstone Studio Inc. Elgin, IL. The contents of silica and alumina in metakaolin are about 
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97% of chemical composition of metakaolin. Slag or blast furnace slag is a byproduct of iron 

making in a blast furnace. Slag used in this research was obtained from Holcim US Inc. St. Paul, 

MN. The specific gravity of slag is 2.89. On the contrary to metakaolin, slag contains high 

content of CaO. Calcium aluminate cement was obtained from Kerneos Inc. Chesapeake, VA. 

Calcium aluminate cement possesses good mechanical properties and can gain high early 

strength when it is used as the primary binder. Its specific gravity is 3.24. 

The most common used alkaline activator to prepare geopolymer is a mixture of sodium 

hydroxide (NaOH) and sodium silicate (water glass) (Na2SiO3). The chemical composition of 

sodium silicate solution consists of 9.2% Na2O, 28.67% SiO2, and 63.39% H2O with SiO2/ Na2O 

ratio of 3.21. The sodium hydroxide (NaOH) in flakes of 98% purity was supplied by Alfa 

Aeser, Ward Hill, MA. River sand were used to prepare the geopolymer mortar. Alkaline silicate 

solution was prepared 24 hours prior to use by dissolving sodium hydroxide pelts (Flake, 98.0%) 

in sodium silicate (water glass). 
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Table 9. Chemical compositions of metakaolin, slag, and calcium aluminate cement 

Oxide Mass (%) 

  Metakaolin Slag Calcium aluminate cement 

Al2O3 40.94 7.34 ≥ 37.0 

SiO2 55.01 37.95 ≤ 6.0  

K2O 0.6 0.36 < 0.2 

Na2O 0.09 0.27 < 0.2 

CaO 0.14 38.93  ≤ 39.8  

MgO 0.34 10.22 < 1.5  

Fe2O3 0.55 0.54 ≤ 18.5 

TiO2 0.55 0.39 < 4.0  

Cl 0 0.09 0 

Mn2O3 0 0.55 0 

SO3 0 2.69 < 0.4  

LOI 1.54 1.8 -  

Total 98.22 99.6  - 

      LOI: Loss on ignition 
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4.2.2. Specimens preparation 

The molar ratio of SiO2/ Na2O of the waterglass solution used in this research is 3.21. 

The effect of different molar ratios of SiO2/ Na2O of the alkaline solution is studied in order to 

accelerate the geopolymerization process and gain early high strength. Ratios of 0.8, 1, 1.2, 1.4, 

and 1.8 of SiO2/ Na2O of alkaline solution are prepared by adding sodium hydroxide pellets to 

adjust the molar ratios of SiO2/ Na2O of alkaline solution. The SiO2 content comes only from 

sodium silicate solution (waterglass), while Na2O comes from waterglass and sodium hydroxide 

solution. By the way, the alkaline solution is prepared 24 hours prior to use. In the preparation of 

geopolymer mortars, metakaolin and river sand are mechanically mixed for 3 minutes, then the 

alkaline solution is added and mixed for another 5 minutes with additional 65 ml water to 

enhance the workability of geopolymer mortar. The ratio of water to solid is 0.201 for all mix 

ratios. The water components are the water from sodium silicate and extra water, and the solid 

components are the solid from metakaolin and sand. The geopolymer mortar portion is composed 

of 675 g river sand, 225 g metakaolin, 186 g alkaline silicate solution with five different ratios of 

SiO2/ Na2O, and 65 ml water. Then, the geopolymer mortars are molded into 50 mm cubes and 

cured at ambient temperature for compressive strength testing. The geopolymer mortars with five 

different SiO2/ Na2O molar ratios of alkaline solution are tested at ages of 1, 2, and 3 days to find 

the effect of SiO2/ Na2O on the early strength of geopolymer mortars. 

After the effect of molar ratios of SiO2/ Na2O of alkaline solution is investigated, the best 

SiO2/ Na2O ratio giving the highest early strength is found. Adding calcium aluminate cement 

and slag to accelerate the geopolymerization process is also performed.  Calcium aluminate 

cement is added to geopolymer mortar at different ratios of 20% and 30% by weight at molar 

ratio of SiO2/ Na2O of 1. On the other hand, metakaolin is partially replaced in geopolymer 
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mortar with slag at level of 30% by weight at molar ratio of SiO2/ Na2O of 1. Metakaolin is 

partially replaced with 30% of slag. 30% of slag is selected based on literature which shows the 

best ratio to replace alumino-silicate binder by slag is 30%. Table 10 summarizes all mix ratios. 

Table 10. Summary of mixture proportions 

Mix 
Metakaolin 

(g) 

Calcium 

aluminate 

cement      

(g) 

Slag      

(g) 

Sand 

(g) 

alkaline 

solution 

(g) 

SiO2/Na2O 

Extra 

water 

(ml) 

M1 225  -  - 675 186 0.8 65 

M2 225  -  - 675 186 1 65 

M3 225  -  - 675 186 1.2 65 

M4 225  -  - 675 186 1.4 65 

M5 225  -  - 675 186 1.8 65 

M6 225 45  - 675 186 1 65 

M7 225 67.5  - 675 186 1 65 

M8 157.5  - 67.5 675 186 1 65 

 

4.2.3. Compressive strength test 

 50 mm cubic specimens are used to measure the compressive strength of geopolymer 

mortar following ASTM C109/109M standard. The compressive strength of geopolymer mortars 

1, 2, and 3 days with different parameters is found. The one day compressive strength is 

measured to provide the information on the geopolymer strength prior to use it in early-opening-

to-traffic pavement repairs.  
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4.3. Results and discussions  

4.3.1. The effect of different molar ratios of SiO2/ Na2O of the alkaline solution  

 One of the most important property to describe concrete is the compressive strength due 

to its correlation to other concrete properties. The compressive strength of metakaolin-based 

geopolymer mortars with different molar ratios of SiO2/ Na2O of the alkaline solution at the ages 

of 1, 2, and 3 days are shown in Table 11 and Figure 13. It is observed form the results that the 

curing age significantly affect the compressive strength of geopolymer mortars, so that the 

compressive strength of geopolymer mortars increases as the curing age increases.   

 Five ratios of molar ratios SiO2 to Na2O of alkaline solution are studied and the mix ratio 

of geopolymer mortar is kept constant for all five different ratios. After 1 days curing, the 

average compressive strength of three samples of ratios 0.8, 1, 1.2, 1.4, and 1.8 are 21.23 MPa, 

58.01 MPa, 52.97 MPa, 5.55 MPa, and 0 MPa with standard deviations of 3.949 MPa, 2.65 MPa, 

2.443 MPa, 1.292 MPa, and 0 MPA at coefficient of variations of 0.186%, 0.046%, 0.046%, 

0.233%, and 0%, respectively. The maximum compressive strength is at ratio SiO2/Na2O =1 

because the silica and alumina highly dissolved at this ratio which accelerates the 

geopolymerization process and improves the compressive strength. However, it is observed that 

the workability decreases as the SiO2/Na2O ratio decreases. In addition, the results of 

compressive strength show that the compressive strength of metakaolin-based geopolymer 

mortar increases with increase of the curing age. 
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Table 11. Compressive strength of geopolymer mortars at five different ratios of SiO2/Na2O 

SiO2/Na2O 
 Cured 

days 

Compressive strength 

(MPa) 

Standard 

deviation 

Coefficient of 

variation 

0.8 

1 21.23 3.949 0.186 

2 47.07 0.942 0.020 

3 49.6 2.049 0.041 

1 

1 58.01 2.650 0.046 

2 66.83 2.604 0.039 

3 67.5 3.315 0.048 

1.2 

1 52.97 2.443 0.046 

2 64.07 1.673 0.026 

3 64.74 0.654 0.010 

1.4 

1 5.55 1.292 0.233 

2 59.23 0.979 0.017 

3 59.67 1.392 0.023 

1.8 

1 0 0.000 0.000 

2 0 0.000 0.000 

3 5.38 0.600 0.109 
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Figure 13. Average compressive strength of geopolymer mortar with different ratios of 

SiO2/Na2O at curing ages of 1, 2, and 3 days 

 The maximum compressive strength of geopolymer mortars at curing age of one day is 

58.01 MPa at molar ratio of SiO2/ Na2O =1. It is observed from the results that the compressive 

strength increases when the molar ratio of SiO2/ Na2O increases from 0.8 to 1. On the other hand, 

the compressive strength significantly decreases when the molar ratio of SiO2/ Na2O increases 

from 1 to 1.8.  

 The results give an opportunity to control the compressive strength and the workability of 

geopolymer mortar by adjusting the molar ratio of SiO2/ Na2O. The decrease in the SiO2/ Na2O 

ratio is a result of increasing NaOH in the alkaline solution. Based on (Škvára et al, 2006), 

sodium plays an important role for the formation of geopolymer since it works as charge 

balancing ions. However, adding more sodium silicate would result in decreasing the 

compressive strength because excess sodium silicate prevents water from evaporation and 

structural formation. 
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 The investigation of using different molar ratios of SiO2/ Na2O in the alkaline solution 

leads successfully to accelerate the geopolymerization process and gain early strength of 

geopolymer mortar. SiO2/ Na2O ratios of 0.8,1, and 1.2 achieve the required strength that 

determined by DOTs to open to traffic within 24 hours. However, molar ratio of SiO2/ Na2O =1 

gives the highest compressive strength, which is selected to be investigated further with adding 

other accelerated setting material in order to shorten the time to open for traffic. 

4.3.2. The effect of adding calcium aluminate cement to metakaolin  

 Reaching high early strength within 8 hours increases the opportunity of geopolymer to 

be used in concrete pavement repairs with priority on early opening to traffic. Calcium aluminate 

cement is added to geopolymer mortar to shorten the setting time, with ratio of 20% and 30% to 

metakaolin by weight. The compressive strength of adding calcium aluminate cement to 

metakaolin is shown in Table 12 and Figure 14. 

Table 12. The effect of calcium aluminate cement on compressive strength of geopolymer  

Mix 
 Cured 

hours 

Compressive 

strength (MPa) 

Standard 

deviation (MPa) 

Coefficient of 

variation (%) 

M6 

8 8.780 0.630 0.072 

24 43.380 0.430 0.010 

72 48.333 1.544 0.032 

M7 

8 7.900 0.284 0.036 

24 39.133 0.962 0.025 

72 55.967 1.730 0.031 
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Figure 14. Average compressive strength of geopolymer mortar with adding calcium aluminate 

cement in different weight at curing ages of 8, 24, and 72 hours 

Calcium aluminate cement is added to reduce the setting time. It is observed that it 

reduces the setting time and decreases the compressive strength at 24 hours compared to the 

result of compressive strength at SiO2/ Na2O =1 without adding any accelerator. In addition, 

waterglass works as retarder on the hydration of calcium aluminate cement. There are no 

significantly differences in compressive strength when calcium aluminate cement is added in 

ratios of 20% and 30% of metakaolin weight, but the workability is so low at the ratio of 30%. 

4.3.3. The effect of partially replacing metakaolin with slag  

Blending slag with metakaolin has been investigated to reduce the setting time. 

Metakaolin is partially replaced with slag at a ratio of 30% to metakaolin by weight at SiO2/ 

Na2O =1. Table 13 summarizes the effect of slag replacement to metakaolin on the compressive 

strength of geopolymer mortar. 
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Table 13. The effect of slag replacement to metakaolin on the compressive strength of 

geopolymer mortar 

Mix 
 Cured 

hours 

Compressive 

strength (MPa) 

Standard 

deviation (MPa) 

Coefficient of 

variation (%) 

M8 

8 0.000 0.000 0.000 

24 13.48 0.903 0.067 

72 44.57 0.967 0.022 

 

Although slag has been reported to enhance the compressive strength and reduce the 

setting time due to calcium content in slag, the results here show that slag negatively affects the 

compressive strength and increase the setting time. The specimens after only 8 hours were still in 

liquid stage, so the compressive strength was zero. However, slag has proved to increase the 

workability of geopolymer mortar.   

4.4. Summary 

The influence of SiO2/Na2O at five different ratios, adding calcium aluminate cement, 

and adding slag in the early strength of metakaolin-based geopolymer mortar are discussed in 

this chapter. The purpose of this chapter is to accelerate the geopolymerization process to make 

geopolymer gains high early strength in order to be used in EOT since geopolymer mortar has 

shown high bond strength in Chapter 3. It was found that SiO2/Na2O = 1 gives higher strength at 

24 hours of curing at ambient temperature and meet the requirements to open early to traffic. In 

addition, adding 20% of calcium aluminate cement is more effective in term of accelerating the 

geopolymerization process. Also, replacing partially metakaolin with slag negatively affects the 

early strength of geopolymer mortar.  
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CHAPTER 5. FREEZE-THAW DURABILITY OF GEOPOLYMER CONCRETE 

5.1. Introduction 

Previous studies in chapter 3 and 4 have reported that geopolymer mortar can be used as 

a pavement repair material and can be used in EOT technique since geopolymer mortar shows 

higher bond strength than the repair materials in the market and high strength within 24 hours at 

ambient temperature, respectively. However, geopolymer concrete has better durability than 

Portland cement concrete (Ariffin et al, 2013; Reddy et al, 2012; Sanni et al, 2012), but there is 

no specific study discussing the freeze-thaw durability of metakaolin-based geopolymer 

concrete, which is a very important property for a material to be successfully applied as a repair 

material. The most important consideration for concrete that is used in northern parts of the 

world and other places that have freezing and thawing problems is its freeze-thaw performance. 

In this chapter, the durability of metakaolin-based geopolymer concrete will be investigated by 

subjecting the geopolymer concrete to rapid freeze-thaw cycles. In addition, the freeze-thaw 

durability of geopolymer concrete at different ratios of SiO2/Na2O with adding calcium 

aluminate cement and slag will be investigated. 

ACI defines the durability of concrete as the ability of concrete to resist weathering 

conditions, chemical attack, abrasion, or any other process of deterioration while maintaining its 

desired engineering properties. ACI also defines the cold weather as the period where more than 

three continuous days have mean daily temperature less than 40°F (4.44°C). The attack of cyclic 

freezing and thawing can lead to pavement deterioration by cracking and spalling of the concrete 

surfaces as shown in Figure 15. The deterioration due to freeze-thaw requires considerable repair 

or even replacement of any structure before it reaches its expected life. The freeze-thaw 

durability of concrete can be determined by using ASTM C-666. Durability of concrete is the 
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percent ratio of the dynamic modulus of elasticity after a number of freeze and thaw cycles to the 

initial value before the freeze and thaw cycles (Hamoush et al, 2011). However, several 

researchers have proposed different theories to explain the concrete damage due to freeze and 

thaw cycles. For instance, critical saturation theory is based on the expansion of water in pores 

when it freezes to ice it occupies 9% more than the volume of that water. If there is no enough 

space for the expansion, it will create stress in concrete and cause cracks. 

 

Figure 15. Pavement damage due to freeze-thaw cycles (civildigital.com) 

5.2. Experimental procedures  

5.2.1. Materials and mix proportions 

 The materials that are used to prepare metakaolin-based geopolymer concrete samples are 

metakaolin as alumino-silicate binder, calcium aluminate cement and slag as setting accelerators, 

fine sand, coarse aggregate, combination of sodium hydroxide and sodium silicate solution as 

alkaline liquid activator, and water. In the preparation of geopolymer concrete, metakaolin, fine 

sand, and coarse aggregate are mixed in a rotating drum mixer with fixed blades for three 

minutes as shown in Figure 16, then the alkaline solution is added and mixed for another five 

minutes with additional water to enhance the workability of geopolymer concrete.  
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Figure 16. Mixer used for manufacturing geopolymer concrete 

 Five geopolymer concrete mixtures are prepared which are designated as Mix-1, Mix-2, 

Mix-3, Mix-4, and Mix-5. Table 14 summarizes the mix ratios proportions of geopolymer 

concrete. The fresh geopolymer concrete is poured immediately after mixing into 3x4x16-in. 

(75x100x405-mm) steel mold, in case of rectangular beam specimens, and into 3x6-in. (75x150-

mm) disposable plastic mold to form cylindrical specimens as shown in Figure 17.   

Table 14. Mix proportions of geopolymer concrete 

Ingredient Mix-1 Mix-2 Mix-3 Mix-4 Mix-5 

Metakaolin (g) 450 360 450 360 360 

Slag (g) 0 90 0 90 90 

Aluminate silicate cement (g) 0 0 0 0 90 

Fine sand (g) 675 675 675 675 675 

Coarse aggregate (g) 1350 1350 1350 1350 1350 

Alkaline solution (g) 562 562 562 562 562 

Water/solid 0.148 0.148 0.148 0.148 0.148 

Water/Metakaolin 0.813 0.813 0.813 0.813 0.813 

SiO2/Na2O 1.4 1.4 1 1 1.4 

Curing temperature Room Room Room Room Room 
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Figure 17. Fresh geopolymer concrete specimens (Mix-5) 

5.2.2. Freeze-thaw testing  

 Freeze-thaw resistance of concrete is determined using ASTM C 666 (Procedure A). All 

geopolymer concrete specimens are first cured 14 days at ambient temperature prior to testing. 

The specimens are subjected to multiple rapid freeze-thaw cycles in the freeze-thaw chamber 

while the specimens are fully saturated as shown in Figure 18.  The dynamic modulus of 

elasticity, weight loss, and compressive strength of gropolymer concrete specimens will be 

recorded at 0, 30, 60, 90, 120, 150, 180, 210, 240, 270, and 300 freeze-thaw cycles. The 

sonometer as seen in Figure 19 is used to find the transverse frequency to calculate the dynamic 

modulus of elasticity. The relative dynamic modulus of elasticity (RDME) is the ratio of the 

dynamic modulus of elasticity after a specific number of freeze-thaw cycles to the initial value of 

the dynamic modulus of elasticity before subjected to freeze-thaw cycles. According to ASTM C 

666 (Procedure A), the specimen is considered not to be durable if the RDME drops to 60% or 

its weight loss exceeds 5%. A thermistor sensor is embedded in the center of the concrete sample 

to control the temperature of the concrete samples. In a single cycle, the temperature in the center 
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of concrete sample drops from 40°F (4.44°C) to 0°F (-17.8°C) for 1.5 hour, followed by a hold at 

0°F (-17.8°C) for 0.5 hour, then rises from 0°F (-17.8°C) to 40°F (4.44°C) for 1.5 hour, followed 

by a hold at 40°F (4.44°C) for 0.5 hour. One complete cycle takes around 4 hours to complete. 

The RDME is calculated at every 30 freeze-thaw cycles. 

 

Figure 18. Freeze-thaw test chamber 

 

Figure 19. Sonometer used in determining dynamic modulus of freeze-thaw test specimens 
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5.3. Results and discussions 

After 30 freeze-thaw cycles in accordance with ASTM C666, the weight loss data of all 

five mix ratios are listed in Table 15, together with the RDME. The Mix-1 (Only metakaolin 

with 1.4 molar ratio of SiO2/Na2O) specimens experienced the highest weight loss, which was 

four times higher than the Mix-3 (Only metakaolin with 1 molar ratio of SiO2/Na2O) specimens. 

Both the Mix-2 (Metakaolin with slag at 1.4 molar ratio of SiO2/Na2O) and Mix-4 (Metakaolin 

with slag at 1 molar ratio of SiO2/Na2O) specimens underwent less weight loss comparing to 

other specimens with same molar ratio of alkaline but without adding slag. From the results, it 

can be concluded that geopolymer concrete with higher water content is less frost resistance than 

geopolymer concrete with lower water content. In addition, the freeze-thaw cycles has significant 

effect on the durability of the geopolymer concrete. The drop in the dynamic modulus of 

elasticity of geopolymer concrete samples with freeze-thaw cycles means the loss of the 

stiffness. According to the ASTM C 666 Standard Test (Procedure A), Mix-3 and Mix-4 are 

giving the best durability compared to other mixtures since they lost less than 5% of their weight. 

The weight loss observed is mainly due to the spalling of concrete surface with freeze-thaw 

cycles. However, results indicate a significant loss of weight and RDME after only 30 cycles. 

Figure 20 and Figure 21 present the effect of freeze-thaw cycles on geopolymer concrete. 

Table 15. RDME and Weight loss after 30 freeze-thaw cycles 

Mix No. Mix-1 Mix-2 Mix-3 Mix-4 Mix-5 

Weight loss (%) 6.86 5.82 1.88 1.29 6.31 

RDME (%)  -  - 46.21 37.72 37.88 
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Figure 20. Surface of geopolymer concrete specimens after 30 cycles of freeze-thaw 

 

Figure 21. Effect of 30 cycles of freeze-thaw on cylindrical geopolymer concrete specimens 

5.4. Summary 

In this chapter, the freeze-thaw resistance of metakaolin-based geopolymer concrete was 

investigated through laboratory experiments by subjecting the geopolymer concrete to rapid 

freeze-thaw cycles. The freeze-thaw durability of five different mix ratios of geopolymer 

concrete was explored. The effect of rapid freeze-thaw cycles on geopolymer concrete were 

studied by recoding the dynamic modulus of elasticity, weight loss, and compressive strength of 

geopolymer concrete specimens at certain numbers of cycles. 



58 

CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 

6.1. Conclusions 

This thesis experimentally evaluates the possibility of using metakaolin-based 

geopolymer mortar/concrete as a pavement repair material and characterizes the durability of 

metakaolin-based geopolymer concrete against freeze and thaw. The research includes the effect 

of aggressive environments on the bond strength between geopolymer mortar and existing 

concrete and the effect of rapid freeze-thaw on metakaolin-based geopolymer concrete. The bond 

strength of geopolymer mortar to exciting concrete was evaluated by splitting tensile test and 

slant shear test with line interface at 30˚ and 45˚. Also, the durability of geopolymer concrete 

was evaluated by means of destructive and non-destructive tests, where the compressive strength 

and relative dynamic modulus of elasticity of geopolymer concrete with different mix ratios were 

tested and compared. 

In chapter 3, a new cementless metakaolin geopolymer pavement repair material is 

developed that cures at room temperature. The developed geopolymer concrete can obtain 80% 

of its final strength within three days, although the geopolymer concrete shows lower strength at 

24 hours, which indicates the curing duration exhibits a significant effect on the compressive 

strength of the geopolymer concrete. Furthermore, this research pilot tested the geopolymer 

concrete as a new pavement repair material. Through the splitting test conducted, the 

experimental results indicated that the bond strength decreases as the cement mortar deteriorates. 

The majority of the failure modes in the samples tested by splitting tests are always an adhesion 

failure at the interface. The comparison between the suggested geopolymer concrete with other 

pavement repair materials in the market shows the superior bond strength of the suggested 

metakaolin-based geopolymer to substrate concrete. The bond strength between the cement 
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mortar and the geopolymer mortar through the slant shear test is also conducted. It is found that 

the failure started at the mortar substrate and most of failure modes occur through cement mortar 

substrate, which indicates an excellent bond interface formed by geopolymer mortar with cement 

substrate.  

In chapter 4, experimental works have been carried out to investigate the effect of the 

molar ratios of SiO2/ Na2O of the alkaline solution, adding calcium aluminate cement to 

metakaolin, and replacing partially metakaolin with slag on the early compressive strength of the 

geopolymer mortars. All parameters are found to tremendously influence the early compressive 

strength of the geopolymer mortars. By investigation of the effect SiO2/ Na2O on geopolymer 

mortar, SiO2/ Na2O = 1 is found to be the optimum ratio which accelerates the 

geopolymerization process and enhances the compressive strength. In addition, calcium 

aluminate cement has been found to be used an accelerator for geopolymer, and the best adding 

ratio of calcium aluminate cement to metakaolin is 20% by weight. Calcium aluminate cement 

plays a significant role to accelerate the geopolymerization process and results in faster strength 

gain and higher compressive strength. Slag blended with metakaolin has less compressive 

strength than that of metakaolin when it is used alone. Following the superior bond strength of 

geopolymer to concrete substrate found in chapter 3, geopolymer has proven to be a good 

candidate for pavement repairs and can be used for repairs specified for opening early to traffic. 

In chapter 5, freeze-thaw resistance of metakaolin-based geopolymer concrete were 

investigated. Five different mix ratios of geopolymer concrete were exposed to standard rapid 

freeze-thaw test. From test results, it can be concluded that the mix with the SiO2/Na2O molar 

ratio equal to 1 gives higher durability than the mix with the SiO2/Na2 molar ratio equal to1.4, the 

geopolymer concrete mix ratio with adding slag shows less weight loss than the others. However, 
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all five mix ratios failed to be durable since their RDME dropped to less than 60% of its original 

dynamic modulus of elasticity and Mix-1, Mix-2, and Mix-5 lost more than 5% of its original 

weight.  

6.2. Recommendations and future work 

Even though the results obtained in this thesis would increase the body of knowledge on 

using metakaolin-based geopolymer concrete as a pavement repair material, extensive research is 

needed on using geopolymer in lieu of Portland cement. For the future work, the freeze-thaw 

durability of geopolymer concrete is worthy to be more investigated, especially for pavement 

repairs in northern US regions. Another area for future work is to develop a non-alkali activator 

and geoploymerization accelerators, which will greatly enhance work safety and broaden the 

application fields of geopolymer concrete. 
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