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ABSTRACT 

The primary objective of a control system is stability and steady-state performance under 

varying dynamics, such as faults and disturbances. The stable power system should continue to 

function properly in case of faults and disturbances. Stability of the power systems find 

applications in various domains, such as power delivery through Permanent Magnet 

Synchronous Generator (PMSG), Doubly-Fed Induction Generator (DFIG), and data centers. 

The goal of this dissertation is to design a robust control for a power system. We propose 

a hybrid Fault-Ride-Through (FRT) strategy for DFIG and two new PMSG grid-interfaced 

models, named PMSG Boost and PMSG Rectifier-Inverter. We analyze the aforesaid system 

using symmetrical and asymmetrical grid faults and observe the following parameters: (a) 

voltage support, (b) active and reactive power support, (c) stringent grid-code conduct, (d) 

overvoltage and overcurrent protection of rotor and stator, and (e) damped rotor oscillations in 

current and voltage.  

On the other side, we also propose a bi-directional model for power system and data 

centers. The goal of this research work is to increase the steady-state performance of the power 

system through computational capabilities of the data centers. Enormous energy consumption of 

data centers has a major impact on power systems by significantly increasing the electrical load. 

Due to the increase in electrical load, power systems are facing demand and supply miss-

management problems. Therefore, power systems require fast and intelligent ancillary services to 

maintain robustness, reliability, and stability. Power system jobs will make this situation even 

more critical for data centers. In our work, we seek an Ancillary Services Model (ASM) to 

service data centers and power systems. In ASM, we find an optimal job scheduling technique 

for executing power systems’ jobs on data centers in terms of low power consumption, reduced 



 

iv 

 

makespan, and fewer preempted jobs. The power systems’ jobs include Optimal Power Flow 

(OPF) calculation, transmission line importance index, and bus importance index. Furthermore, a 

Service Level Agreement (SLA) between data centers and power systems is shown to provide 

mutual benefits.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

v 

 

ACKNOWLEDGMENTS  

First and foremost thanks to ALLMIGHTY ALLAH Who has helped me throughout the 

course of my studies. All of my knowledge, strength, courage, health, and abilities are His 

blessings upon me and there is no way to fulfill His right to thank Him. 

Special thanks to Dr. Samee U. Khan, my advisor, for his help, guidance and innovative 

ideas. I offer my sincere and deep hearted gratitude to my advisor who always encouraged me, 

and persistently conveyed the spirit and guidance required for the research. Without his kind 

guidance and continuous efforts, this disquisition would not have been possible. 

I want to express my gratitude to my committee members, Dr. Jacob Glower, Dr. Na 

Gong, and Dr. Ying Huang. I am also thankful to COMSATS Institute of Information 

Technology for providing me a wonderful opportunity for my PhD studies in United States. I am 

really grateful to my all colleagues at NDSU for their support and help.   



 

vi 

 

DEDICATION 

I would like to dedicate this dissertation to my parents, my wife Faiza Jadoon and my daughter 

Khush Bakht Ali. 

  



 

vii 

 

TABLE OF CONTENTS 

ABSTRACT ................................................................................................................................... iii 

ACKNOWLEDGMENTS ............................................................................................................. iv 

DEDICATION ............................................................................................................................... vi 

LIST OF TABLES ......................................................................................................................... xi 

LIST OF FIGURES ...................................................................................................................... xii 

1. INTRODUCTION .............................................................................................................. 1 

1.1. Overview ................................................................................................................. 1 

1.2. Motivation ............................................................................................................... 4 

1.3. Contributions........................................................................................................... 5 

1.3.1. Grid-interfaced PMSG.................................................................................5 

1.3.2. Grid-interfaced DFIG...................................................................................6 

1.3.3. Data Center Ancillary Services....................................................................7 

1.4. Research Goals and Objectives ............................................................................... 7 

1.5. Dissertation Outline ................................................................................................ 8 

1.6. References ............................................................................................................... 8 

2. RELATED WORK ........................................................................................................... 12 

2.1. Control Schemes for PMSG-WECS ..................................................................... 12 

2.2. EFL Control of Grid-Interfaced PMSG ................................................................ 12 

2.3. Conventional FRT Schemes of DFIG-WT ........................................................... 13 

2.4. Advanced FRT Schemes of DFIG-WT ................................................................. 14 

2.5. Mutual Interactions between Data Centers and Power Systems............................16 



 

viii 

 

2.6. References..............................................................................................................17 

3. EXACT FEEDABCK LINEARIZATION BASED GRID-INTERFACED PMSG 

CONTROL MODELS ...................................................................................................... 23 

 

3.1. Overview ............................................................................................................... 23 

3.1.1. Motivation ................................................................................................. 23 

3.1.2. Contributions............................................................................................. 24 

3.2. EFL Conditions for an Affine Non-Linear Systems ............................................. 26 

3.3. PMSG-Wind Energy Conversion System ............................................................. 27 

3.3.1. PMSG Wind Turbine Model ..................................................................... 28 

3.4. Non-Linear PMSG Boost Converter ..................................................................... 28 

3.5. PMSG Rectifier-Inverter ....................................................................................... 35 

3.5.1. Generator-Side Control ............................................................................. 36 

3.5.2. Grid-Side Control...................................................................................... 37 

3.5.3. Mathematical Model of the PMSG Rectifier-Inverter .............................. 38 

3.6. Simulation Results of the PMSG Boost ................................................................ 41 

3.7. Simulation Results of the PMSG Rectifier-Inverter..............................................45 

3.8. References..............................................................................................................51 

4. COMPARITIVE ANALYSIS OF FAULT RIDE THROUGH SCHEMES FOR GRID 

INTERFACED DFIG-WT ................................................................................................ 54 

 

4.1. Overview ............................................................................................................... 54 

4.1.1. Motivation ................................................................................................. 54 

4.1.2. Contributions............................................................................................. 55 

4.2. Modelling of the DFIG-WT and Grid Fault Analysis .......................................... 56 

4.2.1. Stator and Rotor Model..............................................................................57 



 

ix 

 

4.3. Proposed Hybrid Control strategy For FRT.......................................................... 61 

4.3.1. Pitch Servo Control Model........................................................................62 

4.3.2. RSC Control Model...................................................................................64 

4.3.3. GSC Control Model...................................................................................64 

4.4. Performance Evaluation ........................................................................................ 65 

4.4.1. Symmetrical Analysis................................................................................65 

4.4.2. Asymmetrical Anlaysis..............................................................................70 

4.4.2.1. Single-Phase to Ground Fault Positive Sequence..............70 

4.4.2.2. Single-Phase to Ground Fault Negative Sequence............71 

4.4.2.3. Double-Phase to Ground Fault Positive Sequence............73 

4.4.2.4. Double-Phase to Ground Fault Negative Sequence...........74 

4.4.2.5. Double-Phase Fault Positive Sequence..............................77 

4.4.2.6. Double-Phase Fault Negative Sequence............................78 

4.5. References ............................................................................................................. 81 

5. AN ANCILLARY SERVICES MODEL FOR THE DATA CENTERS AND POWER 

SYSTEM ........................................................................................................................... 83 

 

5.1. Overview ............................................................................................................... 83 

5.1.1. Motivation..................................................................................................84 

5.2. System Model ....................................................................................................... 86 

5.2.1. Data Center Module .................................................................................. 86 

5.2.1.1. Power Consumption...........................................................87 

5.3. Ancillary Services For the Power System ............................................................ 87 

5.3.1. Optimal Power Flow Analysis...................................................................88 



 

x 

 

5.3.2. Transmission Importance Index.................................................................91 

5.3.3. Bus Importance Index................................................................................92 

5.4. Service Level Agreement ...................................................................................... 93 

5.5. Revenue Modeling ................................................................................................ 95 

5.6. Simulation Settings ............................................................................................... 96 

5.7. Results and Discussions ...................................................................................... 100 

5.8. ASM Convergence...............................................................................................113 

5.9. References............................................................................................................115 

6. CONCLUSION AND FUTURE WORK ....................................................................... 118 

6.1. Summary of Contributions .................................................................................. 118 

6.2. Future Work ........................................................................................................ 120 

  



 

xi 

 

  LIST OF TABLES 

Table                 Page 

 

3.1. Symbols and notation meanings for mathematical analysis........................................... .. 30 

3.2. Parametric values of the PMSG boost .............................................................................. 34 

3.3. Parametric values of the PMSG rectifier inverter............................................................ . 40 

 

3.4. Comparison of PMSG boost and PMSG rectifier-inverter. .............................................. 50 

3.5. Comparison of PI and EFL................................................................................................ 50 

4.1. Fault expression for symmetrical and asymmetrical faults............................................... 63 

4.2. Machine parameters. ......................................................................................................... 67 

5.1. IEEE bus systems specifications ....................................................................................... 94 

5.2. Peak power consumption of a typical server. ................................................................... 94 

5.3. Data center specification. .................................................................................................. 94 

5.4. Power system job types and details. ................................................................................. 96 

5.5. Input parameter constraints for model convergence at peak-load hour. ......................... 114 

 

  

file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391060166
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391060167
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391060168
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391060169
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391060170
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391060171
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391060172
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391060173
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391060174
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391060175
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391060176
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391060177


 

xii 

 

LIST OF FIGURES 

Figure                Page 

 

1.1. Continuous and discontinuous controls in power systems. ................................................ 2 

1.2. A taxonomy of the power system stability. ........................................................................ 3 

 

3.1. PMSG boost. ..................................................................................................................... 27 

 

3.2. Wind turbine characteristic curve for the PMSG boost case. ........................................... 29 

3.3. Coordinate transformations between W, X, and Z spaces. ............................................... 32 

 

3.4. EFL control flow of the PMSG boost. .............................................................................. 34 

 

3.5. PMSG rectifier-inverter .................................................................................................... 35 

3.6. Wind turbine characteristic curve for the PMSG rectifier-inverter case. ......................... 36 

 

3.7. Generator-side and grid-side control. ............................................................................... 37 

 

3.8. DC link voltage response during steady state, SSCF, and LSCF with perturbed  

generator parameters. ........................................................................................................ 42 

 

3.9. DC link voltage response during varying input mechanical torques. ............................... 43 

 

3.10. DC link converter current (A) ........................................................................................... 44 

3.11. PMSG rotor speed (RPM). ................................................................................................ 44 

3.12. The DC link voltage during the SSCF and LSCF faults with perturbed generator 

parameters. ........................................................................................................................ 46 

 

3.13. The DC link voltage of the PMSG rectifier-inverter during 30% of the rated input  

torque. ............................................................................................................................... 46 

 

3.14. The DC link voltage of the PMSG rectifier-inverter during 50% of the rated input  

torque. ............................................................................................................................... 47 

 

3.15. The DC link voltage of the PMSG rectifier-inverter during 80% of the rated input  

torque. ............................................................................................................................... 47 

 

3.16. PMSG rotor speed. ............................................................................................................ 48 

file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037806
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037807
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037808
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037809
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037810
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037811
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037812
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037813
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037814
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037815
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037815
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037816
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037817
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037818
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037819
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037819
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037820
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037820
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037821
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037821
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037822
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037822
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037823


 

xiii 

 

3.17. Quadrature-axis current .................................................................................................... 49 

3.18. Active power and reactive power transferred to the grid. ................................................. 49 

4.1. DFIG-WT interface with grid network ............................................................................. 54 

4.2. FRT specification curve of grid-interfaced DFIG. ........................................................... 55 

4.3. Grid-interfaced DFIG-WT for FRT operation. ................................................................. 57 

 

4.4. DFIG-WT power-speed characteristic curve (β=00) ......................................................... 60 

4.5. One-line diagram of grid-interfaced DFIG-WT. .............................................................. 61 

4.6. Pitch servo control model ................................................................................................. 63 

 

4.7. RSC control model ............................................................................................................ 64 

 

4.8. GSC control model ........................................................................................................... 65 

 

4.9. Grid-interfaced DFIG-WT response during symmetrical fault with voltage dip 85%  

and wind speed is 11m/s ................................................................................................... 67 

 

4.10. Grid-interfaced DFIG-WT response during asymmetrical fault with voltage dip 71.5% 

and wind speed is 11m/s ................................................................................................... 71 

 

4.11. Grid-interfaced DFIG-WT response during asymmetrical fault with voltage dip 64.4% 

and wind speed is 11m/s. .................................................................................................. 75 

 

4.12. Grid-interfaced DFIG-WT response during asymmetrical fault with voltage dip  

45.41% and wind speed is 11m/s. ..................................................................................... 78 

 

5.1. System architecture. .......................................................................................................... 86 

 

5.2. Convergence of Newton-Raphson tolerance between power injection and power 

consumption.. .................................................................................................................... 90 

 

5.3. Network topology of the IEEE 30 bus system for reliability testing, where the data  

center is acting as a load. .................................................................................................. 99 

 

5.4. Total data center load per day over a month duration. ..................................................... 99 

5.5. Power consumption comparison of data center under: (a) SJF, (b) LJF, and (c) SRTF  

job scheduling techniques. .............................................................................................. 103 

file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037824
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037825
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037826
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037827
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037828
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037829
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037830
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037831
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037832
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037833
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037834
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037834
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037835
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037835
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037836
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037836
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037837
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037837
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037838
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037839
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037839
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037839
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037839
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037839
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037839
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037839


 

xiv 

 

5.6. Real-time electricity unit pricing offered by the power system to the data center  

during a 24 hour period ................................................................................................... 104 

 

5.7. Task preemption comparison in data center workload in one month’s time due to the 

inclusion of power system jobs. ...................................................................................... 105 

 

5.8. Comparison of data center workload job preempted the most times.. ............................ 106 

5.9. Comparison for preempted power system jobs. .............................................................. 106 

5.10. Comparison of longest running periodic power system job preempted the most  

number of times.. ............................................................................................................ 106 

 

5.11. Comparison of data center workload average queue time. ............................................. 107 

5.12. Comparison of data center workload job with longest queue time ................................. 107 

5.13. Comparison of total running time for power system jobs during a month’s time. ......... 107 

5.14. Comparison of total running time for data center’s workload during a month’s time. .. 108 

5.15. Comparison of data center idle CPUs. ............................................................................ 108 

5.16. TLL convergence using the OPF algorithm for the IEEE 2383 bus system when 17 

 TLs are out. .................................................................................................................... 108 

 

5.17. IEEE 30 bus system status during emergency, when an outage occurs on N-k 

transmission lines. ........................................................................................................... 111 

 

5.18. IEEE 30 bus system status after OPF solution provided by the data center. .................. 112 

5.19. Data center revenue curve due to the implementation of the proposed service level 

agreement. ....................................................................................................................... 114 

 

5.20. Revenue convergence region for the data center. ........................................................... 115

file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037839
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037839
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037839
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037839
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037839
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037839
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037839
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037839
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037839
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037839
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037839
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037839
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037839
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037839
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037839
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037839
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037839
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037839
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037839
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037839
file:///F:/Osman%20Thesis/Review%20by%20grad%20school/Thesis%20Osman%202014%20(2).docx%23_Toc391037839


 

1 

1. INTRODUCTION 

1.1. Overview 

Power system is a complex network that is under the close observation of the engineers 

and scientists for the past few years [1.1], [1.2], [1.3]. The generation imbalance, faults in the 

transmission network, and fluctuating load curves have produced several problems in the 

conventional power system [1.4]. The unavoidable events, such as catastrophic outages, 

blackouts, and power failures have affected the reliability, stability, and control of the 

conventional power systems [1.3]. For the above stated reason, the supplying agencies and end 

users (consumers) have shown great concerns towards the power system management and 

control [1.5]. 

The control of generation, transmission, and distribution is a vital requirement for the 

stable operation of a power system [1.6]. A small miss-match can lead to disastrous events, 

namely frequency drift, reactive power imbalance, and small angle instability [1.7], [1.8], [1.9], 

and [1.10]. The dynamics of the power system can vary from the small-scale to large-scale 

depending on the disturbances occurred [1.11]. In some cases, the dynamics of the power system 

goes beyond the operator’s control and expectations, such as severe contingencies, lightning 

strikes, and thunder storms [1.12]. Mostly, in complex weather conditions, for example heavy 

thunder-lighting, the conventional control system of the power network is unable to compute the 

high non-linearity and fluctuating system dynamics [1.13]. 

The wide area power system is said to be “stable” when all the controlling parameters are 

working in the steady-state mode. The stability of the power system is called “robust” when the 

steady-state performance persists under faults and disturbances. A real-time stable operation of 

the power system is the first and foremost requirement for carrying out control operations [1.14], 
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[1.15], and [1.16]. The stability of the power system is the steady state operation of the inter-

connected system that is desired during the short-term and long-term disturbances. The authors 

in [1.17] and [1.18] reported the factors effecting the stability and control of the WASs. 

The power system controls can be classified as: (a) continuous control and (b) 

discontinuous control. The local controls include continuous signals, such as Automatic Voltage 

Regulator (AVR) [1.13], Automatic Generation Control (AGC) [1.15], and Power System 

Stabilizer (PSS) [1.14]. The discontinuous control signals, such as the capacitor bank switching 

(reactive power compensation), operate for the local stability of small interconnected systems as 

shown in Figure 10. 

 

Figure 1.1. Continuous and discontinuous controls in power systems 

The local continuous [1.19] and discontinuous controls [1.20] are used to maintain the 

power system operations in a steady state. The control of the power system offer much more 

controllability and observability margins [1.21]. The increased margins are acceptable only at the 

cost of the advanced and efficient communication medium. The taxonomy of the power system 

stability is presented in Figure 1.2. For power systems, the faults are categorized as: (a) short-
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circuit faults and (b) open circuit faults [1.10]. The short-circuit faults are further classified into 

symmetrical and asymmetrical faults. Symmetrical fault is three-phase to ground short-circuit 

fault, while asymmetrical fault includes single-phase to ground fault, double-phase to ground 

fault, and double-phase fault [1.11]. The faults on the power system can occur on generation 

side, transmission side, and distribution side. 

 

Figure 1.2. A taxonomy of the power system stability 

In inter-connected power network, various renewable energy resources are also 

connected, such as wind power plants, solar panel generation systems, and fuel cell plants [1.12]. 

The faults related to aforesaid also includes demand-supply miss-management, frequency shifts, 

active power and reactive power miss-match, and over currents and over voltages. The fault 

tolerance of power system is provided through several schemes, namely local control system, 

central control system, Supervisory Control and Data Acquisition (SCADA), and intelligent 

energy monitoring and management devices [1.13]. The fault tolerant scheme for wind energy 

systems is called as “Fault-Ride-Through (FRT)” or “Low Voltage Ride-Through (LVRT)”. The 

above schemes results in high reliability, steady-state performance, and robustness within power 

systems [1.14], [1.15]. 
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1.2. Motivation 

Stability increases the robustness of the power system that further increases reliability 

and steady-state performance. Faults and disturbances can occur at any instant of time, improper 

design of the system will lead to malfunctions and dis-order of the equipment. The loss of 

equipment and device will result in an increase of financial loss. Moreover, system and device 

failures will cause massive losses within the power system. Furthermore, the power at the 

receiving end will be less, compared to the sending end voltage. 

The transmission lines are stressed by heavy currents flowing through the power system. 

Voltage sag and dips cause voltage imbalances at both sides of the transmission lines [1.21]. 

Voltage sag and dips cause voltage imbalances at both sides of the transmission lines. The 

abnormal currents cause severe disorders, such as the burning of conductors and heavy line 

losses. The reactive power compensation using capacitors in the form of reactor banks are widely 

used throughout the power system for controlling voltage instabilities. Large-scale instabilities 

may cause heavy blackouts in the power system. 

In the light of above, there is a pressing need to introduce decentralized control and 

distributed generation using Renewable Energy, such as wind power plants. The distributed 

generation will increase the generation capacity of the power system and will provide voltage 

support during grid faults. The stable operation of Distributed Generators (DGs), such as PMSG 

and DFIG is the foremost requirement in grid-interfaced systems. Lack of robust control for DGs 

will result in severe power outages, which can lead to complete blackout during faults and 

swings within the power system. Therefore, the goal of this dissertation is to develop a stable 

wind energy system for the power system. As the grid fault will cause voltage dip, wind energy 

system must supply voltage and reactive power support to the grid, otherwise a severe power 
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outage will cause blackout. The conventional and advanced schemes developed for FRT violate 

grid-code requirements, low voltage and power support, rotor overvoltage and overcurrent, and 

torque oscillations. The EFL control of the PMSG and Hybrid FRT control scheme for DFIG is 

proposed that overcomes the shortcomings of the conventional and advanced schemes. 

1.3. Contributions 

The objective of our research is to develop a robust and stable system for Power Systems 

that include Permanent Magnet Synchronous Generator (PMSG) and Doubly-Fed Induction 

Generator (DFIG) interfaced with the grid network and an Ancillary Service Model (ASM) for 

data centers and power system. 

1.3.1. Grid-interfaced PMSG 

For grid-interfaced PMSG wind energy models, we incorporate Exact Feedback 

Linearization (EFL) control using differential geometry and Lie-algebra. The PMSG Boost and 

PMSG Rectifier-Inverter is used for comparative analysis during grid faults. We introduce 

symmetrical faults for short-time and long-time within the grid network in order to validate the 

robustness and stability of aforementioned models. The effectiveness of the EFL control over the 

output DC link voltage of the PMSG is tested during the electrical grid faults and the mechanical 

perturbations. Moreover, we compared the above models and concluded that the stability of the 

PMSG Rectifier-Inverter is higher compared to the PMSG Boost during the variation of wind 

speed values from minimum to maximum. Furthermore, the robustness of the EFL control 

scheme for the PMSG Rectifier-Inverter is compared with the conventional Proportional and 

Integral (PI) controller and state-feedback controller. The EFL controller reports a faster output 

response, better accuracy, and quicker settling time of the output DC link voltage as compared to 

the PI controller. 
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1.3.2. Grid-interfaced DFIG 

On the other side, for DFIG, we propose a hybrid control strategy that comprises of 

switch current fault current limiter, rotor crowbar, DC chopper switch, rotor side control, grid 

side control and wind turbine pitch control using Proportional Integral (PI) control. For switching 

of rotor side converters and grid side converters, space vector pulse width modulation is utilized. 

Hysteresis current control mechanism is used for the rotor demagnetization and DC chopper 

switching. In order to investigate the stability of the proposed scheme, grid faults are introduced 

for 300ms as: (a) symmetrical faults and (b) asymmetrical faults. Symmetrical faults are three-

phase to ground faults, while asymmetrical faults are single-phase to ground fault, double-phase 

to ground fault, and double-phase fault. Moreover, positive-sequence and negative-sequence 

component analysis is discussed for in depth response of controlling parameters. Furthermore, 

our scheme provide protection of rotor and stator against overcurrent and overvoltage.  

Power electronic devices are very sensitive to overcurrent and overvoltage, so DC 

chopper control switch ensures the management of controlling parameters during voltage dips. 

Our strategy provides voltage support, active power and reactive power support, protection of 

electronic devices, and stringent following of grid-code requirements. We illustrated the 

performance of aforesaid parameters using comparative analysis of advanced FRT schemes. The 

hybrid control FRT strategy outperforms the following strategies: (a) rotor crowbar with 

advanced IGBT control, (b) advanced control of DC chopper, and (c) switch type fault current 

limiter. Last but not the least, we observe critically the response of rotor dynamical parameters in 

terms of fault initiation, fault clearance, steady-state error, torque oscillations, and maximum 

transient peaks. 
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1.3.3. Data Center Ancillary Services 

For further enhancing the steady-state performance of the power system, we propose a bi-

directional ancillary services model for mutual benefits of the data centers and power system. 

The fast computational capabilities of the data centers are utilized for emergency workload 

computations of the power systems. The ASM is based on the Service Level Agreement (SLA) 

to ensure revenue maximization of the data centers during emergency interval within the power 

system. The reliability and stability of the power system is maintained with minimum 

transmission line losses. Moreover, we proposed three main ancillary services for stable 

operation of the power system, namely: (a) Optimal Power Flow (OPF), (b) Transmission Line 

Importance Index, and (c) Bus Importance Index. Furthermore, the ASM is based on the optimal 

job scheduling technique for data centers, ancillary services for the power system, and SLA. 

1.4. Research Goals and Objectives 

The objective of our research is to develop methodologies for monitoring and analyzing 

the stability of power system under varying dynamics, such as faults and disturbances. The 

stability of the power system is analyzed critically using wind distributed generators with non-

linear control and an ancillary services of the data centers. The effect of grid-faults is observed 

on the grid-side and its effect on inter-connected system is described.  

For case studies, we used permanent magnet synchronous generators and doubly-fed 

induction generators interfaced with the grid network. Based on the performance of controlling 

parameters under varying dynamics, we proposed the best fault-ride-through strategy for doubly-

fed induction generator and permanent magnet synchronous generator model. The performance 

of the models is described during fault-initiation and clearance. Moreover, using the 

computational and on-demand services of the data centers, evaluated the steady-state 
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performance and stability of the power system using service level agreement. Furthermore, we 

used resource allocation schemes and real-time data analysis on high computing server that 

validated the aforesaid objectives of the power system stability. 

1.5. Dissertation Outline 

The dissertation is organized as follows. In Chapter 2, we present the background and 

related literature. Chapter 3 presents the stability and steady-state performance of grid-interfaced 

PMSG for wind energy applications. Chapter 4 presents comparative analysis of DFIG based 

WECS Fault-Ride-Through Schemes under symmetrical and asymmetrical grid faults. Chapter 5 

discusses the mutual interaction of data centers and power systems. In Chapter 6, we present 

conclusions with future research directions. 
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2. RELATED WORK 

This chapter presents the background as well as the literature survey on recent works 

related to the topics investigated throughout this dissertation. We perform categorization of the 

existing FRT schemes proposed for various types of Renewable Energy Systems. 

2.1. Control Schemes for PMSG-WECS 

Several control schemes have applied for an optimized performance of variable speed 

WECS. In the classical control schemes, such as the Proportional Integral (PI) control, the 

linearized expression is obtained through the Taylor Series (TS) expansion by ignoring the 

higher terms [2.1]. The final linearized expression of the PI control can only provide the stable 

operation in the fixed domain of the given parameters. By ignoring the higher order operating 

states of the dynamical system, the overall response of the system is slow. The parameter tuning 

of the PI control is obtained by trial and error method, thus making the control system 

problematic for practical applications. The use of adaptive controllers with variable speed WECS 

has several advantages, such as high tracking quality and power quality [2.2]. In addition to the 

complexity of control, the rotor dynamical characteristics must be evaluated quite accurately. 

Various modern control schemes, such as fuzzy logic control, sliding mode control, and robust 

control [2.3], [2.4], [2.5] are applied for resolving the WECS issues. The aforementioned control 

technologies vary in terms of mathematical complexity, control objectives, and applications. 

2.2. EFL Control of Grid-Interfaced PMSG 

The Exact Feedback Linearization (EFL) is a well-known control scheme that transforms 

a non-linear system into a completely linear one, through various techniques, such as the input 

output transformation, zero dynamics approach, disturbance decoupled analysis, and exact 

feedback linearization algorithms [2.6]. All the aforesaid schemes were applied in WECS except 
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algorithms of exact feedback linearization, which we will apply in our paper. The EFL provides 

higher accuracy, optimizes performance in case of fast varying dynamics, stabilizes control of 

each independent variable, and increases the robustness of the control system in case of faults 

and disturbances [2.7]. Moreover, the EFL provides an independent control of each regulated 

variable in WECS integration. Furthermore, the EFL has significant simplification in controller 

synthesis and system operation.  

The transformation of an EFL scheme is based on differential geometry and Lie-algebra. 

The final linearized expression is obtained through mapping between differential spaces, such as 

space 𝑋, space 𝑌, and space 𝑍. The authors in [2.8] presented the concept of the local and global 

linearization of the EFL non-linear affine systems. Moreover, the necessary and sufficient 

conditions for the Single Input Single Output (SISO) and Multiple Input Multiple Output 

(MIMO) EFL systems were presented in [2.9]. The linearization of the affine non-linear EFL 

system was presented in [2.10]. The idea of MIMO EFL systems was further elaborated by the 

authors in [2.10]. The aforementioned research work shows the development of the non-linear 

affine EFL control scheme. 

2.3. Conventional FRT Schemes of DFIG-WT 

Various control schemes are proposed in literature to address the objectives of FRT. The 

control schemes are classified as: (a) Passive schemes and (b) Active schemes. Passive methods 

are implemented using converter architectural modifications for improving transient stability of 

the DFIG during faults. The authors in [2.11], [2.12], and [2.13] used Passive crowbar activation 

strategies employing rotor demagnetization and fault current limiters during grid faults. The DC 

chopper control circuit for overvoltage protection is described by the authors in [2.14], [2.15]. 

The excessive power during voltage dips is dissipated across the DC bus. The work of fault-



 

14 

current limiter using superconductive coil is used in [2.16]. This mechanism limits surge 

overcurrent of stator and rotor during voltage dip. The coupling of transformer with converter in 

series with the stator for limiting fault-current is proposed in [2.17]. Although the 

aforementioned passive schemes limits the excessive fault-current, they lack complete 

controllability of rotor converters with respect to active and reactive power exchange with the 

grid. Moreover, this controllability is temporary lost during grid faults, which decreases the 

reliability of the model.  

2.4. Advanced FRT Schemes of DFIG-WT 

On the other hand, active schemes are used to reduce cost factor for FRT design models. 

Active schemes incorporate advanced non-linear control strategies and hardware modifications 

for stable FRT operation of DFIG WT. Some of the advanced FRT strategies include: (a) robust 

control [2.18], (b) sliding-mode control [2.19], (c) adaptive control [2.20], (d) model predictive 

control [2.21], (e) Fuzzy-Logic control [2.22], and (f) Input-Output Feedback Control [2.23]. The 

aforesaid non-linear strategies are too complex and complicated to implement in industrial 

applications. Moreover, these non-linear strategies possesses computational burden for the 

control system. Furthermore, the advanced control schemes cannot provide FRT capability under 

severe grid faults, as the RSC cannot supply the voltage as high as rotor back EMF because of 

the DC link voltage limitation [2.24], [2.25]. The idea of using novel Switch Type Fault Current 

Limiter (STFCL) is proposed in [2.26]. Although the authors provide STFCL based FRT 

mechanism with simple low cost stator switch circuitry, the model validation is restricted only 

under Short-time Short Circuit Fault (SSCF). Moreover, robustness and stability parameters of 

the model are not analyzed thoroughly under grid faults using positive-sequence and negative-

sequence component analysis. Over the past decade, intensive research has been published that 



 

15 

only focuses on power management issues in data centers for revenue maximization [2.27], 

[2.28], [2.29], [2.30], [2.31], [2.32], and [2.33]. On the other hand, the power system research 

community is only addressing issues of demand and supply management and voltage stability by 

providing OPF solution [2.34], [2.35]. However, interaction between data centers and power 

systems has recently attracted the attention of the research community to address the issues of 

electric power load balancing in power systems and power management in data centers for 

revenue maximization  [2.36], [2.37]. Moreover, none of the earlier works have focused on the 

usability of data centers’ computational capability for maintaining stability in power systems. 

In [2.27], the authors described a cost minimization method for data centers that 

incorporated cloud computing workload and electricity price differences. In [2.28], the authors 

discussed the aforesaid problem for renewable energy. The SLA based data center cost 

optimization model was described in [2.29]. The work in [2.30] proposed an energy saving 

model based on workload distribution to various internet data centers. The concept of the 

deregulated electricity price for data centers was discussed in [2.31]. The stochastic model for 

workload distribution on servers of the data center for cost reduction was elaborated in [2.32]. 

The work in [2.33] discussed that major cause of energy inefficiency in data centers is the 

wastage of idle power when ICT resources such as servers and data storage run at low utilization. 

In [2.34], the authors discussed the energy management issues in data center networks from the 

perspectives of data center architecture connectivity analysis. In all of the aforesaid models, the 

cost saving criterion was only related to geographical load conditions that was not an optimal 

approach, as climatic conditions are not the only controlling parameter. Moreover, the revenue of 

the data centers was only discussed in the perspective of workload, and optimal electricity prices. 
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2.5. Mutual Interactions between Data Centers and Power Systems 

Due to the rapid increase in electrical load but inadequate expansion in generation and 

transmission, power systems are operating under stressed conditions. In [2.38], the authors 

presented a voltage stability constraints based OPF approach that improved voltage stability and 

minimized power system losses during emergency conditions. In [2.39], the authors proposed an 

artificial Bee Colony algorithm for OPF solution to maintain voltage stability in power systems. 

The data centers are one of the major power consumers for the power systems, which is a major 

concern that is directly related to the stability and reliability of power systems. 

Recent trends in academic research have shown that the research community is starting to 

address the issues of interaction between power systems and data centers. In [2.40], the authors 

addressed the problem of power load balancing in smart grids by taking advantage of data 

centers’ load distribution capability. The authors in [2.41] proposed a model for a data center to 

offer ancillary services to the smart grid. The data center is a load for any smart grid and the data 

center will offer load distribution as an ancillary service to the smart grid. In response, the smart 

grid will offer a lower electricity price to the data center. 

To the best of our knowledge, no such mechanism is known to the authors for a data 

center to provide ancillary services to power systems, such as fast and intelligent OPF solution to 

reduce Transmission Line Losses (TLLs) and identify endangered TLs and buses for maintaining 

stability and reliability. Moreover, none of the earlier works addressed the issues and effects on 

data centers while providing ancillary services to power systems. Furthermore, the SLA between 

data centers and power systems had not been discussed in any previous studies. Consequently, 

our work provides a thorough treatment to the aforementioned problem at hand, with a complete 

theoretical derivation and simulation validation. 



 

17 

2.6. References 

[2.1] H. Huang, and C. Chung, “Adaptive neuro-fuzzy controller for static VAR compensator 

to damp out wind energy conversion system oscillation,” IET Generation, Transmission 

and Distribution, vol. 7, no. 2, pp. 200-207, 2013. 

[2.2] M. Haque, M. Negnevitsky, and M. Muttaqi, “A novel control strategy for a variable 

speed wind turbine with PMSG,” IEEE Trans. Ind. Applications., vol. 46, no. 1, pp. 331-

339, 2010. 

[2.3] A. Howlader, N. Urasaki, A. Yona, T. Senjyu, and A. Saber, “A new robust controller 

approach for a wind energy conversion system under high turbulence wind velocity,” in 

Proc. IEEE Industrial Electronics and Applications (ICIEA) Conf., 2012, pp. 860-865. 

[2.4] C. Xia, Q. Geng, X. Gu, T. Shi, and Z. Song, “Input-Output feedback Linearization and 

speed control of a surface permanent magnet synchronous wind generator with the boost 

chopper converter,” IEEE Trans. Ind. Electronics, vol. 59, no. 9, pp. 3489-3500, 2012. 

[2.5] F. Delfino, F. Pampararo, R. Procopio, and M. Rossi, “A Feedback Linearization Control 

Scheme for the Integration of Wind Energy Conversion Systems into Distribution Grids,” 

IEEE J. Syst., vol. 6, no. 1, pp. 85-93, 2012. 

[2.6] V. Yaramasu, and B. Wu, “Predictive Control of a Three-Level Boost Converter and an 

NPC Inverter for High-Power PMSG-Based Medium Voltage Wind Energy Conversion 

Systems,” IEEE Trans. on Power Electronics, vol. 29, no. 10, pp. 5308-5322, 2014. 

[2.7] Q. Lu, Y. Sun, and S. Mei, Non-linear control system and power system dynamics, 

Kluwer Academic Publishers, 2001, pp. 165-170. 



 

18 

[2.8] Y. Wang, Z. Xia, and T. Zhang, “Sliding mode variable structure control based on exact 

linearization mode of nonlinear system,” in Proc. IEEE Intelligent Control and 

Automation (WCICA) Conf., 2012, pp. 2878-2881. 

[2.9] R. Brockett, “Feedback Invariants for non-linear systems,” in Proc. 7th IFAC World 

Congress, Helsinki, June 1978. 

[2.10] B. Jakubczyk, and W. Respondek, On linearization of control systems, Bulletin de 

L`acadenie Polonaise des Sciences, 28, 1980. 

[2.11] S. Beheshtaein, “Optimal hysteresis based DPC strategy for STATCOM to augment 

LVRT capability of a DFIG using a new dynamic references method,” in Proc. IEEE 

Industrial Electronics (ISIE), 1-4 June 2014, pp. 612-619. 

[2.12] Guolian Hou, Zhentao Wang, Pan Jiang, and Jianhua Zhang, “Multivariable predictive 

functional control applied to doubly fed induction generator under unbalanced grid 

voltage conditions,” in Proc. IEEE Industrial Electronics and Applications, 25-27 May 

2009, pp. 2644-2650. 

[2.13] T. Riouch, and R. El-Bachtiri, “Improvement low-voltage ride-through control of DFIG 

during grid faults,” in Proc. IEEE Multimedia Computing and Systems (ICMCS), 14-16 

April 2014, pp. 1596-1601. 

[2.14] Jian-Hong Liu, Chia-Chi Chu, and Yuan-Zheng Lin, “Applications of Nonlinear Control 

for Fault Ride-Through Enhancement of Doubly Fed Induction Generators,” IEEE 

Journal of emerging and Selected Topics in Power Electronics, vol. 2, no. 4, pp. 749-763, 

Dec. 2014. 



 

19 

[2.15] Hua Geng, Cong Liu, and Geng Yang, “LVRT Capability of DFIG-Based WECS Under 

Asymmetrical Grid Fault Condition,” IEEE Trans. on Industrial Electronics, vol. 60, no. 

6, pp. 2495-2509, June 2013. 

[2.16] B. Ambati, P. Kanjiya, and V. Khadkikar, “A Low Component Count Series Voltage 

Compensation Scheme for DFIG WTs to Enhance Fault Ride-Through Capability,” IEEE 

Trans. on Energy Conversion, vol. PP, no. 99, pp.1-10. 

[2.17] F. Lima, A. Luna, P. Rodriguez, E. Watanabe, and F. Blaabjerg, “Rotor Voltage 

Dynamics in the Doubly Fed Induction Generator During Grid Faults,” IEEE Trans. on 

Power Electronics, vol. 25, no. 1, pp. 118-130, Jan. 2010. 

[2.18] D. Nguyen, and G. Fujita, “Optimal power control of DFIG wind turbines using a 

simplified power converter,” in Proc. IEEE T&D Conference and Exposition, 14-17 

April 2014, pp. 1-5. 

[2.19] M. Rahimi, and M. Parniani, “Efficient control scheme of wind turbines with doubly fed 

induction generators for low-voltage ride-through capability enhancement,” IET 

Renewable Power Generation, vol. 4, no. 3, pp. 242-252, May 2010. 

[2.20] Y. Chongjarearn, “New method of setting the maximum crowbar resistance for doubly-

fed induction generators under grid faults,” in Proc. IEEE Electrical 

Engineering/Electronics, Computer, Telecommunications and Information Technology 

(ECTI-CON), 14-17 May 2014, pp. 1-6. 

[2.21] K. Okedu, S. Muyeen, R. Takahashi, and J. Tamura, “Wind Farms Fault Ride Through 

Using DFIG With New Protection Scheme,” IEEE Trans. on Sustainable Energy, vol. 3, 

no. 2, pp. 242-254, April 2012. 



 

20 

[2.22] G. Pannell, D. Atkinson, and B. Zahawi, “Minimum-Threshold Crowbar for a Fault-

Ride-Through Grid-Code-Compliant DFIG Wind Turbine,” IEEE Trans. on Energy 

Conversion, vol. 25, no. 3, pp. 750-759, Sept. 2010. 

[2.23] I. Ngamroo, and T. Karaipoom, “Cooperative Control of SFCL and SMES for Enhancing 

Fault Ride Through Capability and Smoothing Power Fluctuation of DFIG Wind Farm,” 

IEEE Trans. on Applied Superconductivity, vol. 24, no. 5, pp. 1-4, Oct. 2014. 

[2.24] J. da Costa, H. Pinheiro, T. Degner, and G. Arnold, “Robust Controller for DFIGs of 

Grid-Connected Wind Turbines,” IEEE Trans. on Industrial Electronics, vol. 58, no. 9, 

pp. 4023-4038, Sept. 2011. 

[2.25] M. Benbouzid, B. Beltran, Y. Amirat, Gang Yao, Jingang Han, and H. Mangel, “High-

Order Sliding Mode control for DFIG-based Wind Turbine Fault Ride-Through,” in 

Proc. IEEE Industrial Electronics Society IECON, 10-13 Nov. 2013, pp. 7670-7674. 

[2.26] S. Beheshtaein, “Optimal hysteresis based DPC strategy for STATCOM to augment 

LVRT capability of a DFIG using a new dynamic references method,” in Proc. IEEE 

Industrial Electronics (ISIE), 1-4 June 2014, pp. 612-619. 

[2.27] H. Wang, J. Huang, X. Lin, A.H. Mohsenain-Rad, “Exploring smart grid and data center 

interactions for electric power load balancing,” Newsletter ACM, vol. 141, no. 3, pp. 89-

94, Dec. 2013. 

[2.28] M. Ghamkhari and H. MohsenianRad, “Data centers to offer ancillary services,” Proc. 

IEEE Conf. Smart Grid Communication (Smart Grid Comm), pp. 436-441, Oct. 2012. 

[2.29] http://www.nyiso.com/public/markets_operations/market_data/ load 

_data/index.jsp.2014. 



 

21 

[2.30] United States Environmental Protection Agency, “EPA report on server and data center 

energy efficiency,” Final Rep. to Congress, Aug. 2007. 

[2.31] U.S.-Canada Power System Outage Task Force, “Final report on the august 14th blackout 

in United States and Canada,” United State Department of Energy and National 

Resources Canada, 2004, available: http://reports.energy.gov/BlackoutFinal-Web.pdf.. 

[2.32] A.R. Bergen and V. Vittal, Power Systems Analysis, New Jersey: Prentice Hall, 2nd edn., 

pp. 81-100, 2000. 

[2.33] P. Smita and B.N. Vaidya, “Particle swarm optimization based optimal power flow for 

reactive loss minimization,” Proc. IEEE Students' Conf. on Electrical, Electronics and 

Computer Science (SCEECS), pp. 1-4, Mar. 2012.. 

[2.34] J. Rahul, Y. Sharma, and D. Birla, “A new attempt to optimize optimal power flow based 

transmission losses using genetic algorithm,” Proc. IEEE Fourth Int. Conf. on 

Computational Intelligence and Communication Networks (CICN), pp. 566-570, Nov. 

2012.. 

[2.35] M.E. Newman, Networks an Introduction, Oxford University Press, 2010. [2.36] S. 

Banerjee, A. Das, A. Mazumder, Z. Derakhshandeh, A. Sen, “On the impact of coding 

parameters on storage requirement of region-based fault tolerant distributed file system 

design,” Proc. IEEE Computing, Networking and Communications Conf. (ICNC), pp. 78-

82, 3-6 Feb. 2014. 

[2.36] X. Fan, W.D. Weber, L.A. Barroso, “Power provisioning for a ware-house-sized 

computer,” SIGARCH Comput. Archit. News, vol. 35, no. 2, pp. 13-23, 2007. 

[2.37] Amazon EC2, http://aws.amazon.com/ec2/, Accessed on: Oct. 2014.. 



 

22 

[2.38] R.D. Zimmerman, C.E. Murillo-Sánchez, and R.J. Thomas, “MATPOW ER steady-state 

operation, planning and analysis tools for power systems research and education,” IEEE 

Trans. on Power Systems, vol.  26, no.  1, pp.  12-19, Feb.  2011. 

[2.39] C.T. Kelly, Fundamentals of Algorithms: Solving Nonlinear Equations with Newton's 

Method, SIAM Press, PA, USA, 2003, ISBN: 978-0-89871-546-0. 

[2.40] K. Bilal, M. Manzano, S.U. Khan, E. Calle, K. Li, and A.Y. Zomaya, “On the 

characterization of the structural robustness of data center networks,” IEEE Trans. on 

Cloud Computing, vol. 1, no. 1, pp. 64-77, 2013. 

[2.41]  S.U. Khan and I. Ahmad, “A cooperative game theoretical technique for joint 

optimization of energy consumption and response time in computational grids,” IEEE 

Trans. on Parallel and Distributed Systems, vol. 20, no. 3, pp. 346-360, 2009. 

  



 

23 

3. EXACT FEEDBACK LINEARIZATION BASED GRID-INTERFACED PMSG 

CONTROL MODELS 

This paper is accepted to the journal: International Transactions on Energy Systems. This 

paper is going through first round of revisions. The authors of this paper are Sahibzada 

Muhammad Ali, Muhammad Jawad, Feng Gou, Jacob Glower, and Samee U. Khan. 

3.1. Overview 

Renewable Energy Resources (RERs), such as solar energy, biomass energy, and wind 

energy is the emerging need of today's power market [3.1], [3.2], [3.3], [3.4], [3.5], [3.6], [3.7]. 

With rapid development of research in Wind Energy Conversion System (WECS), the power 

generated by the wind turbine is contributing significantly towards consumers’ power demands. 

The WECS have gained attention of researchers because of high performance, reliability, and 

low maintenance costs [3.8]. The variable speed WECS possesses various promising features, 

such as maximum power output and high efficiency. Due to the aforementioned features, many 

of the power supply companies have installed wind energy generation systems to provide 

Renewable Energy (RE) to the end users (consumers).  

3.1.1. Motivation 

The performance and reliability of variable speed WECS is maintained using PMSG. The 

PMSG model for the wind energy applications need a balanced and stabilized control in the grid-

connected mode. The promising features of the PMSG are [3.8], [3.9]: (a) simple mechanical and 

electrical structure, (b) low wind speed operation, (c) self-excitation, (d) high power factor, (e) 

high reliability, (f) high efficient operation, and (g) low maintenance costs. Moreover, no 

gearbox mechanism is required during low speed operation to avoid regular maintenance, which 
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makes the system unreliable. Furthermore, DC link voltage control and maximum power 

extraction is achieved under varying wind speeds throughout a day. 

For the research community, the integration of wind energy generation systems with the 

conventional power grids, introduce various challenges. Some of the main challenges are: (a) 

control of the DC link voltage, (b) support of the grid voltage during perturbations, (c) sensitivity 

of the parameters drift during extreme conditions, and (d) optimized and robust performance of 

the PMSG even in worse-case scenarios [3.9]. Conventionally, DC link voltage was controlled 

using grid-side converter, but researchers suggested that the aforesaid control and Maximum 

Power Point Tracking (MPPT) can be effectively achieved by generator-side converter [3.10]. 

The basic issues that occur in the grid-interconnections are the voltage support during 

unbalanced conditions and the control of the output DC link voltage. Due to the non-linearity in 

the nature of wind and fast varying WECS dynamics, the steady state operation of the grid-

interfaced PMSG is a challenging task. Moreover, the stability enhancement of the control 

system during mechanical perturbations, electrical grid faults, and PMSG parameter disturbances 

is a demanding problem. Furthermore, with aforesaid scenario, converter currents and generator 

outputs, such as rotor speed and stator current need a robust control. Consequently, with this 

condition, the stability of the grid-interfaced PMSG control system can be local or global 

depending on the subsets of the control parameters.  

3.1.2. Contributions 

We present a theoretical analysis and brief comparative discussions on the non-linear 

PMSG control models applied to the wind energy systems and grid-interconnected applications. 

The detail discussion on modeling and analysis of the PMSG Boost and the PMSG Rectifier-

Inverter with the grid-interconnection is illustrated for the WECSs. Moreover, we also describe 
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the technical and comparative aspects of the PMSG models in the grid inter-connected mode. 

Furthermore, the fundamental key issues for the local stability of the PMSG Boost and the 

PMSG Rectifier-Inverter are also highlighted. We believe that our research contribution is more 

versatile in selecting a better PMSG model for WECS and design analysis provides the benefits 

of using the EFL over conventional and non-conventional control schemes, compared to prior 

works. 

In summary, our contributions in this chapter are as follows: (1) we present a robust 

design of the grid-connected PMSG for machine-side control and grid-side control. Our model 

provides an optimized control of: (a) DC link voltage, (b) converter current, (c) PMSG rotor 

speed, (d) stator current, and (e) maximum power transfer to the grid, (2) a stable DC link 

voltage control is achieved during three phase electrical grid faults (short-time and long-time) 

and mechanical disturbances (varying input wind speed from minimum to a maximum) with 

perturbed generator parameters, (3) comparative analysis of the two PMSG models is discussed 

in detail based on the control features, such as robustness, optimization, and local stability, (4) 

comparison of the PMSG Rectifier-Inverter is performed with the classical PI controller for the 

validation of robustness and stability, and (5) identification of the sensitive parameters that cause 

the abrupt response in the output of the grid-interfaced PMSG Boost. 

The rest of the chapter is organized as follows. Section 3.2 demonstrates the local and 

global linearization of the affine non-linear system. In Section 3.3, Section 3.4, and Section 3.5, 

we present a comparative analysis of the models, namely PMSG wind turbine, PMSG Boost, and 

PMSG Rectifier-Inverter. The simulation results of the two PMSG models is performed in 

Section 3.6 and Section 3.7. 



 

26 

3.2. EFL Conditions for an Affine Non-Linear Systems 

We applied EFL controller on the PMSG-Wind energy conversion systems. The EFL 

transforms non-linear systems into an exact linearized system through coordinate transformation. 

For the non-linear mapping, the first and foremost objective is to fulfill the necessary and 

sufficient conditions for exact linearization (local or global). The mathematical control law is 

derived after satisfying the aforesaid conditions. The control laws of the PMSG Boost and 

PMSG Rectifier-Inverter is presented in Section 3.3 and Section 3.4. This Section discusses all 

necessary and sufficient conditions of an EFL controller. Consider a non-linear affine system as: 

𝑋̇ = 𝑓(𝑋) + 𝑔(𝑋)𝑢,  𝑦 = ℎ(𝑥). (3.1) 

In Eqn. (1), the parameter 𝑋 ∈ 𝑅𝑛 is the state vector, 𝑢 is the control variable, and 

(𝑓, 𝑔)𝑋 are the 𝑛-dimensional vector fields. To check whether or not an affine non-linear system 

can be linearized into the Brunovsky Normal Form (BNF), the Lie bracket and the Lie derivative 

operations are performed as: 

𝑎𝑑𝑓𝑔 = [𝑓, 𝑔]𝑋 = ∆𝑔. (𝑓) − ∆𝑓. (𝑔), 

𝑎𝑑𝑓
2𝑔 = ∆𝑎𝑑𝑓𝑔 − ∆𝑓. 𝑎𝑑𝑓𝑔, 

𝑎𝑑𝑓
𝑖𝑔 = ∆𝑎𝑑𝑓

𝑖−1𝑔 − ∆𝑓. 𝑎𝑑𝑓
𝑖−1. 

(3.2) 

Consider the Lie derivative of the scalar function 𝜆(𝑋) along 𝑓(𝑋) as: 

𝐿𝑓𝜆(𝑋) =∑
𝜕𝜆(𝑋)

𝜕𝑥𝑖

𝑁

𝑖=1

𝑓𝑖(𝑋). 
  (3.3) 

For the relative degree equal to or less than the degree of the state vector, the following 

conditions must be met: 

𝐿𝑔𝐿𝑓
𝑘ℎ(𝑋) = 0, 𝑘 < (𝑟 − 1),   (3.4) 
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𝐿𝑔𝐿𝑓
𝑟−1ℎ(𝑋) ≠ 0, 

𝐷 = [𝑔, 𝑎𝑑𝑓𝑔, 𝑎𝑑𝑓
2𝑔,… , 𝑎𝑑𝑓

𝑛−1𝑔], 

𝑟(𝐷) = 𝑛. 

The matrix 𝐷 must be involutive at 𝑋 = 𝑋0. In Eqn. (4), 𝑟(𝐷) is the rank of the matrix 𝐷 

and 𝑛 is the degree of the state vector. If the aforementioned conditions are all fulfilled, then the 

non-linear coordinate transformations can be successfully employed on the system model. The 

conditions of the linearization illustrates that the non-linear coordinate transformation will be 

global, if for any value of the initial condition, the solution of the Jacobian Matrix (JM) remains 

non-singular [3.10]. Moreover, the non-linear system is linearized in a large enough region of the 

space or global space. 

3.3. PMSG-Wind Energy Conversion System  

The WECS comprises of various electrical elements, such as wind turbine, PMSG, 

machine side Pulse Width Modulation (PWM) inverter, and grid network. The diagram of the 

WECS and wind turbine power curve is described in Figure 3.1. 

 

Figure 3.1. PMSG boost 
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3.3.1. PMSG Wind Turbine Model 

The output mechanical power generated by the wind turbine is presented as: 

𝑃 =
1

2
𝜌𝐴𝑉3𝐶𝑝(𝛽, 𝛾). 

(3.5) 

In Eqn. (3.5), 𝜌 is the air density of air, 𝐴 is the area of the wind blades, 𝑉 is the velocity 

of wind, 𝐶𝑝 is the performance coefficient, 𝛽 is the pitch angle of the blades, and 𝛾 is the tip 

speed ratio. The expression of gamma is defined as: 

𝛾 =
2.237𝑉

𝜔
. 

(3.6) 

In Eqn. (3.6), 𝜔 is the rotor mechanical speed of the wind power generator. The 

simplified expression of 𝐶𝑝 is presented by a non-linear relation as: 

𝐶𝑝 =
1

2
(𝛾 − 0.022𝛽2 − 5.6)𝑒(−0.17𝛾). 

(3.7) 

The wind turbine operates in four basic regions. The working regions are described as: In 

Region A, no power will be generated by the wind turbine because of low wind speed, In Region 

B, sub-rated power is be produced. Sub-rated region exists between cut-in speed and rated speed, 

In Region C, rated power is produced by the wind turbine, and In Region D, no power is 

produced due to the existence of stronger winds. The wind turbine goes to shut down mode for 

mechanical safety. Conventionally, the DC link voltage is controlled by the grid side converter, 

while maximum power extraction is controlled by the generator side converter. 

3.4. Non-Linear PMSG Boost Converter 

The non-linear PMSG Boost Converter is presented in Figure 3.1 [3.8]. The PMSG 

model is interfaced with the Rectifier-Boost Converter circuitry to obtain the desired DC link 

voltage. The Boost circuitry is inter-linked with the Voltage Source Inverter (VSI) for 

synchronization with the grid network. The input torque to the PMSG is the wind that is blowing 
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towards the PMSG blade section. The output is the controlled DC link voltage in the presence of 

the electrical disturbances (faults, outages, etc.) and the mechanical perturbations (varying wind 

speed as an input torque). The power turbine characteristic curve of the PMSG Boost is 

presented in Figure 3.2. 

 

Figure 3.2. Wind turbine characteristic curve for the PMSG boost case 

The objective is to obtain the steady state response of the output DC link voltage during 

the grid faults and varying input torques. In our case, the maximum rated wind speed is 12 m/s, 

while rated turbine power output is 2MW. The operating region of wind turbine is between 

points B and C. The wind turbine goes to shut-down mode when wind speed exceeds 12m/s. The 

MPPT of wind turbine occurs at rated wind speed and controlled by grid-side converter. The 

objective of MPPT is to obtain maximum power from the wind energy. Moreover, for this 

objective wind turbine operates in Region B and Region C. 

For the ease of understanding, the most commonly used mathematical symbols are given 

in Table 3.1. The state space model of the PMSG Boost Converter is developed using three 

parameters, namely: inductor current, electrical rotating machine speed, and rotor electrical 

angle. The state space model can be presented as: 
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Table 3.1. Symbols and notation meanings for mathematical analysis 

Symbols Notation Meanings 

𝐼𝐿 Inductor current 

𝑅𝑠 Stator resistance 

𝐿𝑠 Stator inductance 

𝑝𝑛 Number of pole pairs 

𝜑𝑃𝑀 Useful flux linkage 

𝜔𝑒 Electrical speed of the machine 

𝜃𝑒 Rotor electrical angle 

𝜑𝑋
𝐷 Integral curve for mapping 

𝐼𝑑 Direct axis current 

𝐼𝑞 Quadrature axis current 

𝑈𝑑 Direct axis voltage 

𝑈𝑞 Quadrature axis voltage 

𝐿𝑑 Direct axis inductance 

𝐿𝑞 Quadrature axis inductance 

𝑇𝑒𝑚 Electromagnetic torque 

𝐽 Inertial constant 

∅𝑓 Useful rotor field flux 

𝑈𝑑𝑐 DC link voltage 

𝑇𝑚 Input mechanical torque 

𝑇𝑚𝑜 Rated input mechanical torque 

  

𝐼𝐿̇ = 𝐶1𝐼𝐿 + 𝐶2𝜔𝑒 sin(𝜃𝑒 − 60) + 𝐶3, 

𝜔̇𝑒 = 𝐶4𝐼𝐿 sin(𝜃𝑒 − 60) + 𝐶5𝜔𝑒 + 𝐶6, 

𝜃̇𝑒 = 𝜔𝑒 . 

(3.8) 

In Eqn. (3.8), the constants from C1-C7 consists of the several model constant parameters, 

such as stator resistance, stator inductance, inertia, and friction that we define as: 

𝐶1 = −
2𝑅𝑠

2𝐿𝑠 + 𝐿
, 

𝐶2 = −
1.732𝜑𝑃𝑀
2𝐿𝑠 + 𝐿

, 

𝐶3 = −
𝑈𝑑𝑐

2𝐿𝑠 + 𝐿
, 

(3.9) 
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𝐶4 =
1.732𝑝𝑛

2𝜑𝑃𝑀
𝐽

, 

𝐶5 = −
𝐹

𝐽
, 

𝐶6 =
𝑝𝑛𝑇𝑚
𝐽
, 

𝐶7 =
𝑈𝑑𝑐

2𝐿𝑠 + 𝐿
. 

The selected state variables on which our mathematical control model will be based on is 

described by the following three controlling parameters: 

𝑥1 = 𝐼𝐿 , 

𝑥2 = 𝜔𝑒 , 

𝑥3 = (𝜃𝑒 − 60). 

(3.10) 

The vector fields f(X) and g(X) are formed by performing the necessary conditions of the 

Lie-algebra. The control law u is the desired duty cycles for boosting the DC link voltage to a 

rated value and the output function is y. The mathematical expressions for the aforementioned 

case can be defined as:  

𝑓(𝑋) = (
𝐶1𝐼𝐿 + 𝐶2𝜔𝑒 sin(𝜃𝑒 − 60) + 𝐶3
𝐶4𝐼𝐿 sin(𝜃𝑒 − 60) + 𝐶5𝜔𝑒 + 𝐶6

𝜔𝑒

). 

𝑔(𝑋) = (
𝐶7
0
0
), 

𝑢 = 𝑑, 

𝑦 = ℎ(𝑋) = 𝑥3. 

(3.11) 

The Lie-derivative and the Lie-bracket operation is performed using the transformations 

using non-linear coordinate transformations. We define the mapping, inverse mapping, derived 
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mapping, and solving a set of partial differential equations for the conversion of the non-linear 

system into a linear system as described in Figure 3.3. The sufficient and necessary non-linear 

coordinate transforms are carried out from the W space to the Zn-1 space. Moreover, the mapping 

will be calculated from the X space to the Zn-1 space. The coordinate transform T is defined as, 

T=R(n-1)f-1. The diffeomorphic relation among W, X, and Z spaces through the non-linear 

coordinate transforms is shown in Figure 3.3. 

 

Figure 3.3. Coordinate transformations between W, X, and Z spaces 

For the Brunovsky Normal Form (BNF), the mapping between any two spaces must 

exhibit a local diffeomorphic relation. To obtain a fully linearized expression, the non-linear 

coordinate transforms are carried from one space to the other depending on the degree of the 

state model of the system. The final coordinate transformation from the non-linear system into an 

exactly linear system is called the BNF. Consequently, the BNF and linearized system will 

become as: 
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𝑍̇ = 𝐴𝑍 + 𝐵𝑉, 

𝑧̇1 = 𝑧2, 

𝑧̇2 = 𝑧3, 

𝑧̇3 = 𝑣. 

(3.12) 

The non-linear mathematical control law model for the PMSG Boost is illustrated in 

terms of the vector fields, controlling parameters, and the linear control variable. The 

performance index or cost function J is Linear Quadratic Ricatti (LQR), which is described as: 

𝐽 =
1

2
∫ (𝜑𝑇(𝑋)𝑄𝜑(𝑋)) + (

𝑑𝜑𝑛(𝑋)
𝑇

𝑑𝑡
)𝑅 (

𝑑𝜑𝑛(𝑋)

𝑑𝑡
)

∝

0

𝑑𝑡. 
(3.13) 

Where Q is semi-positive definite 𝑛 × 𝑛 matrix and R is a positive definite 𝑚 × 𝑚 

matrix. The expression of the linear control variable v is a LQR problem that provides optimized 

values of the control variables. The linear control variable v is obtained by solving Ricatti 

Equation (RE). After completely solving a set of partial differential equations the control law u 

becomes: 

𝑅𝐸 = 𝐴𝑇𝑃 + 𝑃𝐴 + 𝑃𝐵𝐵𝑇𝑃 + 𝑄 = 0, 

𝑢 = 𝑑 =
−𝑓1

~(𝑋) + 𝑣∗

𝑔1
~(𝑋)

, 

𝑣∗ = (𝑥3 − 𝑥3𝑜) − 2.29𝑥2 − 2.14(𝐶4𝑥1 sin(𝜃𝑒 − 60) + 𝐶5𝑥2 + 𝐶6), 

𝑓1
~(𝑋) = 𝐶4𝑠𝑖𝑛𝑥3(𝐶1𝑥1 + 𝐶2𝑥2𝑠𝑖𝑛𝑥3 + 𝐶3) + 𝐶5𝑥̇2 + 𝐶4𝑥1𝑥2𝑐𝑜𝑠𝑥3, 

𝑔1
~(𝑋) = 𝐶4𝐶7𝑠𝑖𝑛𝑥3. 

(3.14) 

Eqn. 3.14 is the desired control law for the stable operation of the PMSG Boost. The 

value of 𝑢 provides the duty cycles (PWM) to the boost converter for maintaining the stable 

output response of the system. The denominator term in the control law contains constants and a 

state variable term. The boundaries of 𝑥3 are defined in the subset 𝛺 as: 
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𝛺 = {𝑥3|𝑥3 ∈ 𝑢, 𝑥3 ≠ (0, 𝑝𝑖)&𝐶4𝐶7) ≠ 0}. (3.15) 

The summary of the control law model (through the EFL) can be observed from Figure 

3.4. The electrical parameters for the PMSG Boost are listed in Table 3.2. 

 

Figure 3.4. EFL control flow of the PMSG boost 

Table 3.2. Parametric values of the PMSG boost 

Model Parameters Value 

Rated power (generator) 2MW 

Flux linkage of generator 9.7Wb 

Stator resistance 0.1ohms 

Stator inductance 0.835mH 

Number of pole pairs 40 

Moment of inertia 1000,00Kg-m2 

Friction factor 1000Kg-m2 

DC link inductance 50mH 

DC link capacitance 500mF 

DC link voltage 900V 

Synchronizing frequency 60Hz 

Sampling frequency 20KHz 

Rotor speed 32rps 

Rated wind speed 12m/s 

Rated torque 4000N.m 

 

In Eqn. (3.14), the numerator and the denominator have the trigonometric terms, such as 

the sine and the cosine. Therefore, an impression of the cotangent term is created that produces 

small spikes in the output response of the system. The sensitivity of the sine parameter in the 
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denominator of the control law is very high that needs strict thresholds for the stable operation of 

the system. The local subset in Eqn. (3.14) shows the local stability of the PMSG Boost. The 

value of x3 can never be zero and 180 degrees. Between the two points, the system remains stable 

but local. The control law u will provide the desired duty cycles to control the rectifier block that 

will boost the output DC voltage up to the desired value. 

3.5. PMSG Rectifier-Inverter 

The back-to-back Pulse Width Modulation (PWM) converter is described in Figure 3.5 

[3.8]. Both the generator and the grid sections of the converter have the same main circuits that 

makes the control system similar for both sides of the system [3.9]. The synchronization of the 

obtained voltage with the electrical grid is performed by the inverter section. The capacitor 

between the two sections eliminates the ripples from the DC link voltage. The input is the wind 

speed that generates the mechanical torque. The wind turbine power characteristic curve is 

described in Figure 3.6. 

 

Figure 3.5. PMSG rectifier-inverter 



 

36 

 

Figure 3.6. Wind turbine characteristic curve for the PMSG rectifier-inverter case  

3.5.1. Generator-Side Control 

In conventional current vector control, the control strategy of the Generator-Side 

Converter (GSC) includes the following two main parts: current control loop and conversion 

from current control signals to voltage control signals. The complete generator control system 

using space vector PWM is shown in Figure 3.7. The quadrature-axis and direct-axis voltage 

equations of the synchronous d-q frame of reference are described below. The quadrature-axis 

and direct-axis currents are used as a state variables that control  𝑈𝑞 and 𝑈𝑑  through EFL. 

 𝑈𝑞 and  𝑈𝑑 are in turn used to generate three phase PWM pulses through space vector 

modulation mechanism. The aforesaid triggering pulses are used to control the DC link voltage. 

Unlike the conventional vector control, the current vector EFL control directly calculates the q-

axis reference voltage 𝑈𝑞𝑟𝑒𝑓 . 

𝑈𝑞
∗ = 𝑅𝑠𝐼𝑞 + 𝐿𝑠𝐼𝑞̇ + 𝜔𝐿𝑞𝐼𝑑 + 𝜔𝜑𝑃𝑀, 

𝑈𝑑
∗ = 𝑅𝑠𝐼𝑑 + 𝐿𝑠𝐼𝑑̇ − 𝜔𝐿𝑑𝐼𝑞 . 

 

(3.16) 
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Figure 3.7. Generator-side and grid-side control 

There is a stator d-axis current control that is set to zero (minimum stator current control 

strategy). The stator d-axis voltage 𝑈𝑑
′ can be generated by the current-loop controller. The 

current control signal can be converted to voltage control signal that is stator d-axis voltage 

 𝑈𝑑𝑟𝑒𝑓 . 

3.5.2. Grid-Side Control  

The active and reactive power grid controls are achieved by controlling the direct and 

quadrature current components. The control scheme for the Grid-Side Converter System (GSCS) 

is similar to the GSC. The GSCS circuitry consists of the circuit that generates controlled DC 

link voltage, DC bus, an inverter, and the grid section. The GSCS converts the 𝑈𝑞  and 

 𝑈𝑑 voltage signals from Cartesian Coordinates to polar coordinate system. The aforesaid signals 

are converted into three phase triggering pulses through d-q transformations. The MPPT is 

achieved using the two control loops that control the active and reactive power [3.6]. 
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The MPPT mechanism ensures the transfer of maximum active power and reactive power 

to the grid side for synchronization. The DC link voltage control loop is used to control the d-

axis current 𝐼𝑑 . The total power coming from the rectifier is delivered to the grid by the inverter. 

The reference DC voltage  𝑈𝑑𝑐𝑟𝑒𝑓 must be set a little higher than the actual one, which keeps the 

inverter to deliver the power. A reactive power control loop is setting a q-axis current reference 

 𝐼𝑞𝑟𝑒𝑓  to a current control loop that is similar to the d-axis current control loop. The grid 

controller ensures that all of the power in the DC link must be delivered to the grid. The scheme 

of the grid-side controller is depicted in Figure 3.7. 

3.5.3. Mathematical Model of the PMSG Rectifier-Inverter  

The non-linear state space model of the PMSG Rectifier-Inverter in the grid-connected 

mode is described in terms of the three parameters, namely: direct axis current, quadrature axis 

current, and electrical rotating speed. The non-linear state space model of the PMSG Rectifier-

Inverter is linearized using the same scheme of the EFL employed for the PMSG Boost. The 

three controlling parameters will be analyzed for the conversion of non-linear system into a 

completely linear model, the BNF. The simplified model is described as: 

𝑥̇1 = 𝑘1𝑥2𝑥3 + 𝑘2𝑥1, 

𝑥̇2 = 𝑘4𝑥2 + 𝑘5𝑥1𝑥3 + 𝑘6𝑉𝑞 + 𝑘7𝑥3, 

𝑥̇3 = 𝑘8𝑥2 + 𝑘9. 

(3.17) 

In Eqn. (3.17), the terms k1-k8 consists of various constant model parameters, such as 

direct axis inductance, quadrature axis inductance, and stator resistance. These constants are 

mathematically presented as: 

𝑘1 = 𝑝,  (3.18) 
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𝑘2 = −
𝑅

𝐿𝑑
, 

𝑘3 = −
𝑅

𝐿𝑞
, 

𝑘4 = −𝑝, 

𝑘5 =
1

𝐿𝑞
, 

𝑘6 = −
𝜆𝑝

𝐿𝑞
, 

𝑘7 = −
1.5𝑝2𝜆

4𝐽
, 

𝑘8 = −
𝐵𝑃

2𝐽
. 

The state variables will be equal to the degree of the state vector. The non-linear PMSG 

Rectifier-Inverter is of order three. Therefore, the three state variables are given as: 

𝑥1 = 𝐼𝑑 , 

𝑥2 = 𝐼𝑞 , 

𝑥3 = 𝜔. 

(3.19) 

The vector fields f(X) and g(X) are calculated for analyzing the Lie-algebra operation. 

The vector fields, control variable and the output function are defined as: 

𝑓(𝑋) = (

𝑘1𝑥2𝑥3 + 𝑘2𝑥1
𝑘4𝑥2 + 𝑘5𝑥1𝑥3 + 𝑘6𝑉𝑞 + 𝑘7𝑥3

𝑘8𝑥2 + 𝑘9

), 

𝑔(𝑋) = (
0
𝑘5
0
), 

𝑢 = 𝑈𝑞 = 𝑑, 

(3.20) 
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𝑦 = ℎ(𝑋) = 𝑥2. 

The electrical parameters for the PMSG Rectifier-Inverter are listed in Table 3.3. The 

linear control variable and the control law become: 

𝑢 = −
𝐷(𝐴) + 𝐸(𝐵) + 𝐹(𝐶) + (−𝑧1 − 2.29𝑧2 − 2.14𝑧3)

𝑘4𝑘5𝑘7𝑥1 + 𝑘1𝑘4𝑘5𝑥3
2 + 𝑘5𝑘3

2 + 𝑘6𝑘5𝑘7
, 

𝑧1 = ℎ(𝑋), 

𝑧2 = 𝐿𝑓ℎ(𝑋), 

𝑧3 = 𝐿𝑓
2ℎ(𝑋), 

𝐴 = 𝑘1𝑥2𝑥3 + 𝑘2𝑥1, 

𝐵 = 𝑘3𝑥2 + 𝑘4𝑥1𝑥3 + 𝑘6𝑥3, 

𝐶 = 𝑘7𝑥2 + 𝑘8, 

𝐷 = 𝑘2𝑘4𝑥3 + 𝑘4𝑘3𝑥3 + 𝑘4𝑘7𝑥2 + 𝑘4𝑘8, 

𝐸 = 𝑘7𝑘4𝑥1 + 𝑘4𝑘1𝑥3
2 + 𝑘3

2 + 𝑘6𝑘7, 

𝐹 = 𝑘2𝑘4𝑥1 + 𝑘4𝑘3𝑥1 + 2𝑘4𝑘1𝑥2𝑥3 + 𝑘3𝑘6 + 𝑘4. 

(3.21) 

Table 3.3. Parametric values of the PMSG rectifier inverter 

Model Parameters Value 

Rated power (generator) 2MW 

Flux linkage of generator 9.7Wb 

Stator resistance 0.1ohms 

Stator inductance 0.835mH 

Number of pole pairs 40 

Moment of inertia 1000,00Kg-m2 

Friction factor 1000Kg-m2 

DC link inductance 30mH 

DC link capacitance 800mF 

DC link voltage 1400V 

Synchronizing frequency 60Hz 

Sampling frequency 20KHz 

Rotor speed 40rps 

Rated wind speed 12m/s 

Rated torque 5500N.m 
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The control law of the PMSG Rectifier-Inverter, is derived on the same principle, as that 

of the EFL. Proceeding in a similar fashion, the final control equation for the PMSG Rectifier-

Inverter is obtained after solving a lengthy set of expressions according to the EFL model, as 

described in Figure 3.3.The denominator term in Eqn. (3.20) of the control law is void of the sine 

and the cosine terms. The sensitivity of the controlling parameters  𝑥1 and 𝑥3 is very low, as 

compared to the sensitivity of the control law for the PMSG Boost. Because the local subset has 

no trigonometric terms in Eqn. (3.20), the local stability associated with the thresholds 𝑥1 and  𝑥3 

will produce more stability than the PMSG Boost. The boundary subset is defined as: 

𝛺 = { 𝑥1𝑥3| 𝑥1𝑥3 ≠ 0&(𝑘1…𝑘9) ≠ 0}. (3.22) 

3.6. Simulation Results of the PMSG Boost 

The PMSG Boost is implemented using the EFL scheme in MATLAB/Simulink. The 

cotangent factor in the control law has produced an undesired peaks in the output DC link 

voltage  𝑈𝑑𝑐. With undesired spikes, the PMSG Boost in the grid synchronized mode will affect 

the stability of the inter-connected system from the small-scale to large-scale. The solution for 

the aforesaid problematic response is suggested by further linearization of the control law. In 

windy areas, the proportionality of getting the desired mechanical input (wind) is optimum. The 

high speed wind factor is putting a safety measure on the state variable 𝑥3. But as the wind speed 

fluctuates, the varying parameter 𝑥3 will produce a shift in the value of 𝑠𝑖𝑛𝑥3. The controller 

must react quickly to maintain the stabilized output with varying control parameters. The above 

mentioned problem arises due to a very high value generated by the fraction  
1

𝑠𝑖𝑛𝑥3
, when the state 

variable 𝑥3 approaches to zero. To overcome the non-linear response of  
1

𝑠𝑖𝑛𝑥3
, a limiter is applied 

in the EFL controller to avoid an infinity condition. Moreover, this methodology of adding a 

limiter is a cost increasing factor for the design of real-time applications. 



 

42 

The stability of the above mentioned designed model is analyzed in the presence of a 

three-phase short circuit line to the ground faults across the grid section. The three-phase short 

circuit faults are introduced as: (a) Short-time Short Circuit Fault (SSCF) and (b) Long-time 

Short Circuit Fault (LSCF). Figure 3.8 shows the DC link voltage response during the SSCF and 

LSCF. The PMSG parameters, such as friction, inertia, stator resistance, and flux linkage of the 

magnets are also changed from the nominal to the slight off-nominal values. These PMSG 

machine model parameters are changed to 1.5% of the rated machine values. The heavy LSCF 

will make the DC link voltage to reach the value of zero for some duration of the clearing time. 

As soon as the clearing time of the fault is over, the DC link voltage maintains a steady state 

response. Because of the large reduction in the DC link voltage  𝑈𝑑𝑐 magnitude during the SSCF 

and LSCF with perturbed generator parameters, the robustness level of the PMSG Boost against 

the faults is low. 

 

Figure 3.8. DC link voltage response during steady state, SSCF, and LSCF with perturbed 

generator parameters 

 

The stability of the PMSG Boost is further analyzed by varying the input mechanical 

torque from minimum to the maximum value. We analyzed that the stability of the PMSG Boost 

is only limited to the mechanical torque variation of 80%. The minimum torque variation of 80% 
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means that the wind speed is reduced to 20% from the maximum 100% rated speed. When the 

torque variation goes below 80% of the rated value, the output response of the DC link voltage 

goes below the rated value of 900V, as defined in Table 3.2. The PMSG Boost is not robust 

because the designed controller is only accepting the minimum varying input torque (wind 

speed) of 20%. The stability of the PMSG Boost is also compromising due to the aforementioned 

limitation of the controller. When the wind speed varies to 50% and 30% of the rated speed, the 

optimized DC link voltage response is unachievable. The output DC link voltage response of the 

PMSG Boost with varying input torques is shown in Figure 3.9. 

 

Figure 3.9. DC link voltage response during varying input mechanical torques 

The DC converter current  𝐼𝑑𝑐 during Steady State (SS), SSCF, and LSCF with perturbed 

generator parameters is presented in Figure 3.10. The controller takes five seconds for the current 

to settle down in steady-state. This output response shows variations in peak-time and overshoot 

during SSCF and LSCF. Similar output response occurs for the PMSG rotor speed during 

parameter variations and faults. The rotor speed response is described in Figure 3.11. 
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Figure 3.10. DC link converter current (A) 

 

Figure 3.11. PMSG rotor speed (RPM) 

The authors in [3.8] simulated the aforesaid model with generator parameter 

perturbations and variations in input mechanical torque. The parameter variations were shown 

separately in each plot of Rotor Speed (RS). We simulated the same system with multiple 

variations of generating parameters at the same time. Moreover, we provided the rotor speed, 

converter current, and DC link voltage during Steady State (SS), SSCF, and LSCF with 

perturbed generator parameters. Furthermore, the effect of rotor speed control on other 

parameters of the PMSG Boost, detailed discussion on the control law, and local subsets 

associated with the stability were not analyzed by the authors in [3.8]. We provided a detailed 
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technical discussion on the output response of the system due to non-linear functions. The 

critical and theoretical analysis of our simulation results are more versatile than the simulation 

results of the authors in [3.8].  

In the areas of high wind speeds, the PMSG Boost will perform a stable operation with 

small variations in the output. The stability issues associated with the non-linear control 

performance of the PMSG Boost are: feasibility placement, Computational burden, associated 

computational cost for further linearization, low stability level against varying input torques and 

short-circuit faults, and small variations in the output DC link voltage. 

3.7. Simulation Results of the PMSG Rectifier-Inverter 

The PMSG Rectifier-Inverter is implemented and interfaced with the grid section in the 

back to back converter topology. The three-phase line to ground faults (SSCF and LSCF) across 

the grid-side is introduced in the PMSG Rectifier-Inverter. The generator parameters, such as 

inertia, friction, and stator resistance values are also perturbed from the nominal values to 1.5 

times of the rated machine values to validate the stability and performance of the PMSG 

Rectifier-Inverter controller. The output DC link voltage maintains a steady state value, as shown 

in Figure 3.12. The robustness level of the PMSG Rectifier-Inverter against the SSCF and LSCF 

faults is more than the PMSG Boost. The stability of the PMSG Rectifier-Inverter is further 

verified by comparing the output DC link voltage response between the PI (linear) controller and 

the EFL (non-linear) controller with the minimum and maximum varying input torques. The 

input torque was varied between 30% (maximum) and 80% (minimum) of the rated torque 

values for the validation of the model. The settling time, accuracy and output stability of the 

PMSG Rectifier-Inverter under fast varying dynamics was improved by using the EFL controller 

compared to the PI controller. The EFL controller is able to maintain the steady DC link voltage 
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for the aforementioned input torque variations, as shown in Figure 3.13, Figure 3.14, and Figure 

3.15. However, the classical PI controller starts producing the unstable and abrupt responses to 

the varying torques. 

 

Figure 3.12. The DC link voltage during the SSCF and LSCF faults with perturbed generator 

parameters 

 

 

Figure 3.13. The DC link voltage of the PMSG Rectifier-Inverter during 30% of the rated input 

torque 
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Figure 3.14. The DC link voltage of the PMSG rectifier-inverter during 50% of the rated input 

torque 

 

Figure 3.15. The DC link voltage of the PMSG rectifier-inverter during 80% of the rated input 

torque 

 

The PMSG rotor speed is compared between EFL scheme and PI scheme. The rotor 

speed is analyzed during SS, SSCF, and LSCF. The rotor speed drifts away from the rated speed 

during SSCF with PI control. The graphical analysis of the rotor speed is described in Figure 

3.16. The output function of the state-feedback law is quadrature component of the stator 

current 𝐼𝑞 . The variation in 𝐼𝑞  is analyzed in subplots (a), (b), and (c) during SS, SSCF, and 

LSCF with the EFL control scheme, while  𝐼𝑞  response with PI control is highlighted in (d). The 
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above mentioned results are presented in Figure 3.17. During short-circuit grid fault, voltage sag 

is created which effects the inter-connected network. The WECS must “ride through” the faulty-

period and provide required power support. In case of SSCF, the active power and reactive 

power transferred to the grid through the EFL control scheme is presented in Figure 3.18. 

The comparative analysis of the PMSG Rectifier-Inverter using the EFL is much better 

than the conventional PI scheme. With PI control, the output response of various parameters, 

such as DC link voltage possesses increased settling time, less accuracy, and slow output 

response. Through EFL, the regulated parameters have higher accuracy, stabilized control, 

optimized performance, and high robustness in the presence of electrical and mechanical 

disturbances. The control performance of the above mentioned model is enhanced using 

differential game, non-linear coordinate transformations, geometrical-space linearization, and 

Lie-algebra simplifications. The PMSG Rectifier-Inverter with an EFL control under varying 

non-linear dynamics is more suitable for wind energy applications. 

 

Figure 3.16. PMSG rotor speed. The plot shows rotor speed during SS, SSCF, LSCF with EFL 

control, and rotor speed during SSCF with PI control 
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Figure 3.17. Quadrature-axis current. The subplot (a) shows  𝐼𝑞 during SS with EFL, (b) shows 

 𝐼𝑞  SSCF with EFL, (c) shows  𝐼𝑞  during LSCF with EFL, and (d) shows  𝐼𝑞  during SSCF with 

PI control 

 

Figure 3.18. Active power and reactive power transferred to the grid 

The comparison of the PMSG Boost and PMSG Rectifier-Inverter based on the control 

responses obtained through the EFL scheme is also listed in Table 3.4. The Table 3.4 highlights 

that control features of the PMSG Rectifier-Inverter, such as stability, optimization level, 

placement feasibility, and robustness level dominates the PMSG Boost. The output responses of 

both of the PMSG models are compared based on the local stability subsets, derived control 

laws, local linearization, and output response of the DC link voltage from the respective 
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converter systems. The comparison justifies the performance and the effectiveness level of the 

PMSG Rectifier-Inverter for the wind energy applications  

Table 3.4. Comparison of PMSG boost and PMSG rectifier-inverter 

Control Features PMSG Boost PMSG Rectifier-

Inverter 

Robustness level Low High 

System stability Low High 

Mathematical complexity High High 

Computational burden High High 

Reliability Low High 

Optimization level Low High 

Self-Tuning capability High High 

Parameter sensitivity High Medium 

Control law stability Local Local 

Computational cost High Medium 

Grid-Interface performance Low High 

Placement area Constant high windy Low, medium, and 

high windy 

Applications Local and Global controls Local and Global 

controls 

 

Table 3.5. Comparison of PI and EFL 

Control Features PI EFL 

Robustness level Low High 

System stability Low High 

Mathematical complexity Low High 

Computational burden Low High 

Reliability Low High 

Optimization level Low High 

Self-Tuning capability None High 

Parameter sensitivity Low High 

Control law stability Low High 

Computational cost Low High 

Grid-Interface performance Low High 

Settling time Slow Fast 

Accuracy level Low High 

Applications Limited in WECS Wide in WECS 
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With PI control, the output response of various parameters, such as DC link voltage 

possesses increased settling time, less accuracy, and slow output response. The comparison of 

the PMSG Boost and PMSG Rectifier-Inverter based on the control responses obtained through 

the EFL scheme is also listed in Table 3.4. The Table 3.4 highlights that control features of the 

PMSG Rectifier-Inverter, such as stability, optimization level, placement feasibility, and 

robustness level dominates the PMSG Boost. . Moreover, comparative features of the EFL and 

PI evaluated in this paper is summarized in Table 3.5.  
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4. COMPARITIVE ANALYSIS OF FAULT RIDE THROUGH SCHEMES FOR 

GRID INTERFACED DFIG-WT 

4.1. Overview 

The unprecedented growth rate of wind power production in recent years has attracted the 

attention of scientists and engineers. In deregulated energy market, the integration of Wind 

Turbine (WT) with grid network is a demanding task. Among various WTs, Doubly Fed 

Induction Generator (DFIG)-WT has gained more popularity due to various promising features, 

such as (a) high energy efficiency, (b) wide range of speed variation, (c) low converter rating, (d) 

independent control of active and reactive power, (e) reduced converter rating, (f) lower 

mechanical stress, and (g) improved power quality [4.1]. The model of grid interfaced DFIG-WT 

is shown in Figure 4.1. 

 

Figure 4.1. DFIG-WT interface with grid network  

4.1.1. Motivation 

With increasing integration of WTs into the grids, stability and steady-state performance 

are the alarming issues in presence of symmetrical and asymmetrical short-circuit grid faults. In 

extreme cases of voltage dips, the inter-connected system will result in widespread tripping of 

the DFIG. Moreover, voltage instabilities will cause overcurrent and overvoltage in Rotor Side 

Converter (RSC), Grid Side Converter (GSC) and DC link capacitor. Furthermore, this will lead 

to the destruction of the power sensitive components and de-stabilize the voltage and reactive 
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power support by the WT at Point of Common Connection (PCC). To address the aforesaid 

challenging problem, various utilities have revised the grid-code requirements for the stable 

operation of WTs during Fault-Ride-Through (FRT). 

The minimum grid-code requirements for FRT operation during grid fault must be 

followed by the DFIG-WT. The minimum FRT grid-code specification is depicted in Figure 4.2 

[4.2].  In Figure 4.2, tdip is the maximum allowable duration during which DFIG-WT must be 

connected to the grid network, while Vr is the minimum retaining voltage. The main objectives 

of FRT scheme are: to restore active and reactive power control during fault-initiation and 

clearance, to divert or negate rotor overcurrent, and to minimize the voltage drop at the 

generator.  

 

Figure 4.2. FRT specification curve of grid-interfaced DFIG 

4.1.2. Contributions 

We propose a Hybrid FRT Strategy. Different from conventional FRT schemes, our 

Hybrid model provides more stable and robust performance under symmetrical and asymmetrical 

grid faults of 300ms (transient-period). Moreover, effectiveness of our model is validated using 

thorough transient analysis of various dynamical parameters of the DFIG-WT. We believe that 

our research work is more versatile and covers a broad domain of FRT scheme for DFIG-WT. 
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The main contributions of our paper in the light of above stated issues are: (1) our 

Proposed Hybrid FRT Strategy consists of: (a) STFCL model, (b) Active Rotor crowbar, (c) DC 

chopper circuit, and (d) RSC control and GSC control models, (2) performance of the FRT 

strategies are analysed under: (a) symmetrical fault (3Φ-g) and (b) asymmetrical faults, such as 

single-phase to ground (Φ-g) fault, double-phase to ground (2Φ-g) fault, and double-phase (2Φ) 

fault. Moreover, sequence component analysis (positive and negative) is presented for most 

critical controlling parameters, (3) thorough stability analysis of varying parameters is 

investigated during transient period. Stability analysis includes maximum transient peak at fault 

initiation, fault-clearance period, rotor overvoltage, and dips in grid voltages, and (4) 

comparative assessment of the proposed strategy is evaluated with various active strategies, 

namely: (a) Strategy A [4.2]-IGBT based active rotor crowbar with RSC and GSC control, (b) 

Strategy B [4.3]-DC chopper circuit, rotor crowbar, and RSC and GSC control, (c) Strategy C 

[4.4]-STFCL for FRT operation. 

The remainder of the chapter is structured as follows. Section 4.2 presents modelling of 

the DFIG-WT and grid fault analysis for FRT operation. Section 4.3 highlights the control design 

of the Hybrid FRT strategy. Performance evaluation of the above mentioned strategies are 

elaborated in Section 4.4.   

4.2. Modelling of the DFIG-WT and Grid Fault Analysis 

The grid-interfaced DFIG-WT model is presented in Figure 4.3. The primary objective of 

the DFIG is to provide voltage and reactive power support and optimum-ride-through operation 

in case of grid faults. The rotor supplies power to the grid and receives power from the grid 

through AC/DC/AC power converter system. The converter system consists of three electronic 

components, such as RSC, DC link capacitor, and GSC. The RSC and GSC exhibits fast 
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switching characteristics of IGBT/Diodes circuitry with low switching and conduction losses. 

The switching controls of the aforesaid converter is provided by a control system that generates 

triggering pulses for RSC and GSC. The dynamic model of grid interfaced DFIG will be 

presented in the following sub-sections. 

 

Figure 4.3. Grid-interfaced DFIG-WT for FRT operation 

4.2.1.   Stator and Rotor Model 

In d-q frame of reference rotating at synchronous speed, the stator and rotor voltages of 

the DFIG are described as [4.5]: 

𝑈𝑠 = 𝑈𝑑𝑠 + 𝑗𝑈𝑞𝑠, 

𝑈𝑟 = 𝑈𝑑𝑟 + 𝑗𝑈𝑞𝑟. 

(4.1) 

In Eqn. (1), 𝑈𝑠 and 𝑈𝑟 are the stator and rotor voltages, 𝑈𝑑𝑠 and 𝑈𝑞𝑠  are the direct and 

quadrature axis stator voltages, 𝑈𝑑𝑟 and 𝑈𝑞𝑟  are the direct and quadrature axis stator voltages. 

The expressions of 𝑈𝑑𝑠 , 𝑈𝑞𝑠 , 𝑈𝑑𝑟 and 𝑈𝑞𝑟  are expressed as: 

𝑈𝑑𝑠 = 𝑅𝑠𝑖𝑑𝑠 − 𝜔𝑠𝜑𝑞𝑠 +
1

𝜔𝑏

𝑑𝜑𝑑𝑠
𝑑𝑡

, 

𝑈𝑞𝑠 = 𝑅𝑠𝑖𝑞𝑠 + 𝜔𝑠𝜑𝑑𝑠 +
1

𝜔𝑏

𝑑𝜑𝑞𝑠

𝑑𝑡
, 

(4.2) 
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𝑈𝑑𝑟 = 𝑅𝑟𝑖𝑑𝑟 − (𝜔𝑠 −𝜔𝑟)𝜑𝑞𝑟 +
1

𝜔𝑏

𝑑𝜑𝑑𝑟
𝑑𝑡

, 

𝑈𝑞𝑟 = 𝑅𝑟𝑖𝑞𝑟 + (𝜔𝑠 − 𝜔𝑟)𝜑𝑑𝑟 +
1

𝜔𝑏

𝑑𝜑𝑞𝑟

𝑑𝑡
. 

In Eqn. (2), 𝑅𝑠 and 𝑅𝑟 are the stator and rotor resistances, 𝜔𝑠 and 𝜔𝑟 are the angular 

frequencies of stator and rotor, 𝜔𝑏 is the base angular frequency, and 𝜑𝑑𝑠, 𝜑𝑞𝑠, 𝜑𝑑𝑟, and 𝜑𝑞𝑟 are 

the flux linage of stator and rotor. Consider 𝑖𝑠 and 𝑖𝑟 are the stator and rotor currents 

and 𝑖𝑑𝑠, 𝑖𝑞𝑠, 𝑖𝑑𝑟, and 𝑖𝑞𝑟 are the direct and quadrature axis components of stator and rotor 

currents. The simplified equations of 𝑖𝑠, 𝑖𝑟, 𝜑𝑠, and 𝜑𝑟 are described as: 

𝑖𝑠 = 𝑖𝑑𝑠 + 𝑗𝑖𝑞𝑠, 

𝑖𝑟 = 𝑖𝑑𝑟 + 𝑗𝑖𝑞𝑠, 

𝜑𝑠 = 𝜑𝑑𝑠 + 𝜑𝑞𝑠, 

𝜑𝑟 = 𝜑𝑑𝑟 + 𝜑𝑞𝑟. 

(4.3) 

The drive train model consists of turbine blades, turbine shaft, and gear box mechanism 

of the WT. The parameters for modeling drive train mechanism include generator inertial 

constant 𝐽𝑔, turbine inertial constant 𝐽𝑡, friction coefficient 𝐵, shaft damping 𝐷𝑠ℎ,shaft twist 𝜃𝑡, 

electromagnetic torque 𝑇𝑒𝑚,  𝑇𝑚 , and 𝑇𝑠ℎ. For analyzing drive train model, two-mass model is 

defined as: 

𝑑𝜔𝑟
𝑑𝑡

=
1

2𝐽𝑔
(𝑇𝑠ℎ − 𝑇𝑒𝑚 − 𝐵𝜔𝑟), 

𝑑𝜃𝑡
𝑑𝑡

= 𝜔𝑏(𝜔𝑡 − 𝜔𝑟), 

𝑑𝜔𝑡
𝑑𝑡

=
1

2𝐽𝑡
(𝑇𝑚 − 𝑇𝑠ℎ), 

(4.4) 
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𝑇𝑒𝑚 = 𝐿𝑚(𝑖𝑞𝑠𝑖𝑑𝑟 − 𝑖𝑑𝑠𝑖𝑞𝑟), 

𝑇𝑠ℎ = 𝐾𝑠ℎ𝜃𝑡 +𝐷𝑠ℎ𝜔𝑏(𝜔𝑡 − 𝜔𝑟), 

𝑇𝑚 =
𝑃𝑚
𝜔𝑡
. 

Consider 𝜌 as the air density, 𝑅 is the radius of the blades and 𝜆 is the blade tip-speed 

ratio. Pitch angle 𝛽 of the WT blade and tip-speed ratio λ are the contributing factor for the 

performance coefficient 𝐶𝑝, as 𝐶𝑝 = 𝑓(𝛽, 𝜆). The expression of 𝑃𝑚 is explored as: 

𝑃𝑚 =
1

2
(𝜌𝜋𝑅2𝐶𝑝(𝜆, 𝛽)𝑉𝑤

3), 

𝜆 = (
𝜔𝑡𝑅

𝑉𝑤
), 

𝐶𝑝 = 0.22 (
116

𝜆𝑖
− 0.4𝛽 − 5) 𝑒

(−
12.5
𝜆𝑖
)
, 

𝜆𝑖 =
1

(
1

(𝜆 + 0.08𝛽)
−
0.035
𝛽3 + 1

)
. 

(4.5) 

The output power of DFIG-WT depends on turbine speed. The power-speed 

characteristics of DFIG is depicted in Figure 4.4. The WT operates in four basic regions. In 

Region 1, no mechanical power will be produced due to low wind speed. In Region 2, sub-rated 

power will be produced, existing between cut-in speed and rated speed. In Region 3, rated power 

will be produced, while no power will be produced in Region 4 for mechanical safety. The 

tracking speed of WT is characterized by points A, B, C, and D. At point A, generated output 

power will be zero. At cut-in point, minimum turbine power will be produced. Along points A-B, 

the turbine power will start increasing with increased wind speed. The wind speed at point B is 

greater than wind speed at point A. The maximum power of the WT is tracked along the locus 

between points B-C. From points C to D, tracking characteristic is a straight line highlighted by 
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Region 3. At point D, turbine power will be maximum and WT operated in shutdown mode 

automatically beyond point D, indicated by Region 4. 

 

Figure 4.4. DFIG-WT power-speed characteristic curve (β=00) 

The one-line diagram of grid-interfaced DFIG-WT is shown in Figure 4.5. We used IEEE 

5 bus system interfaced with 9 MW DFIG using standard electrical component blocks in 

Matlab/Simulink. Short-circuit grid fault occurs on a 25 Km short transmission line (25 KV), 

denoted by an arrow. The voltage at Grid Connection Point (GCP) during fault period is 

elaborated, considering voltage dips at Point of Common Connection (PCC). The FRT Strategies 

are simulated and critically analyzed under grid faults. 

Consider a voltage divider network of Figure 5(b). Source impedance and fault 

impedance are denoted by 𝑍𝑠 and 𝑍𝑓. When fault occurs near GCP, than voltage at GCP 𝑈𝑔𝑐𝑝 is 

defined as: 𝑈𝑔𝑐𝑝 = (
𝑍𝑓

𝑍𝑠+𝑍𝑓
)𝑈𝑔,𝑥, where 𝑈𝑔,𝑥(𝑎,𝑏,𝑐) symbolize pre-fault voltage. The simplified 

expressions for symmetrical and asymmetrical fault are presented in Table 4.1. The term λ 

indicates the relative fault distance (1.27 pu), while 𝛼 denotes an impedance angle. The value of 

𝛼 depends on the type of network (00 for transmission system, -200 for distribution system, and -
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600 for wind farms). For simplicity, positive and negative impedances are considered identical 

as:  𝑍𝑠+ ≈ 𝑍𝑠− = 𝑍𝑠, 𝑍𝑓+ ≈ 𝑍𝑓− = 𝑍𝑓. We assume that DFIG is operating in steady-state 

condition before the asymmetrical fault. Let initial steady-state operation is achieved at time 𝑡𝑜 

and asymmetrical fault is analyzed during time 𝑡𝑓. The intensity of positive and negative-

sequence components during fault is symbolized as 𝑝 and 𝑛, while 𝜃1are 𝜃2 the phase-angle 

jumps of sequence components. The positive and negative-sequence grid voltages at GCP are 

defined in Table 4.1. 

 

Figure 4.5. One-line diagram of grid-interfaced DFIG-WT 

This stator voltage will induce positive and negative-sequence stator fluxes in the grid-

interfaced DFIG-WT that will induce sequence-stator currents. During asymmetrical fault, the 

rotor voltage is defined using rotor frame of reference is described in Table 4.1.   

4.3. Proposed Hybrid Control strategy For FRT 

When Wind Energy Conversion System (WECS) experiences a voltage dip, transients are 

produced that influence the stability of inter-connected system very badly. During this period, 

low voltage prevents the power transfer capability of DFIG-WT, resulting in overvoltage and 

overcurrent in stator and rotor circuitry. To protect RSC, GSC, and DC link capacitor from 

overvoltage and overcurrent is a primary objective of FRT. Moreover, DFIG-WT must be 
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connected to the grid for providing sufficient voltage and active and reactive power support. 

Furthermore, stability and steady-state performance is quickly desired when the fault-time is 

over. Due to GCP fault, the voltage at PCC falls suddenly, stabilizes for very short-time, and 

then recovers for stability. At the point of fault-initiation and clearance, maximum transient 

peaks of rotor current and voltages are generated. With voltage dip at PCC, sudden change of 

stator flux results in rotor current oscillations.   

In view of above mentioned issues, we proposed Hybrid control strategy, described in 

Figure 4.3. The proposed scheme provides robust control structure of protection, monitoring, low 

voltage ride-through, and voltage and current management for sensitive power electronic 

circuitry. Our proposed strategy damp out rotor oscillations during fault-initiation and clearance 

by cutting-off the energy injection in the rotor circuit. The active control mechanism includes: 

(a) STFCL stator switch, (b) Rotor crowbar (c) IGBT based DC chopper control, (d) Pitch servo 

control, (e) RSC control, and (f) GSC control. In stator switch scheme, STFCL is used that 

comprises of IGBT switch, current limiting inductors, snubber capacitor, and fault energy 

absorbers [4.5]. The control of DC chopper during grid faults is described by the authors in [4.6]. 

The description of pitch control, RSC control, and GSC control is elaborated in the following 

sub-sections. 

4.3.1. Pitch Servo Control Model 

The WT pitch control model is presented in Figure 4.6. It is used for controlling power 

extraction during over-speeding of rotor above rated value. By providing a dynamic resistive 

crowbar control, overcurrent in rotor windings is dissipated with RSC open-circuited [4.7].  
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Figure 4.6. Pitch servo control model 

Table 4.1. Fault expression for symmetrical and asymmetrical faults 

 
Case Positive-Seq. Fault Expression) Negative-Seq. Fault Expression 

Φ-g 
𝑈⃗⃗ (𝑔𝑐𝑝)+ =

1

3
𝑈𝑔 (3 −

1

1 + λ𝑒(𝑗𝛼)
) 𝑈⃗⃗ (𝑔𝑐𝑝)− = −

1

3
𝑈𝑔 (

1

1 + λ𝑒(𝑗𝛼)
) 

2Φ-g 
𝑈⃗⃗ (𝑔𝑐𝑝)+ = 𝑈𝑔 (1 −

2

3
(

1

1 + λ𝑒(𝑗𝛼)
)) 𝑈⃗⃗ (𝑔𝑐𝑝)− =

1

3
𝑈𝑔 (

1

1 + λ𝑒(𝑗𝛼)
) 

2Φ 
𝑈⃗⃗ (𝑔𝑐𝑝)+ = 𝑈𝑔 (1 −

1

2
(

1

1 + λ𝑒(𝑗𝛼)
)) 𝑈⃗⃗ (𝑔𝑐𝑝)− =

1

2
𝑈𝑔 (

1

1 + λ𝑒(𝑗𝛼)
) 

3Φ-g 
𝑈𝑔𝑐𝑝 = 𝑈𝑔,𝑥 (

λ𝑒(𝑗𝛼)

1 + λ𝑒(𝑗𝛼)
) 

𝑈⃗⃗ 𝑠 𝑈⃗⃗ 𝑠+ =

(
𝑒𝑗𝜔𝑡𝑓 , 𝑡0 < 0,

(1 − 𝑝)𝑒𝑗(𝜔𝑡𝑓+𝜃1), 𝑡0 ≥ 0,
), 

 

𝑈⃗⃗ 𝑠− = (
0 , 𝑡0 < 0,

𝑛𝑒−𝑗(𝜔𝑡𝑓+𝜃2), 𝑡0 ≥ 0,
) 

𝜑⃗ 𝑠 𝜑⃗ 𝑠+

=

(

 
 

1

𝑗𝜔
𝑒𝑗𝜔𝑡𝑓 , 𝑡0 < 0,

(1 − 𝑝)

𝑗𝜔
𝑒𝑗(𝜔𝑡𝑓+𝜃1), 𝑡0 ≥ 0,

)

 
 

 

𝜑⃗ 𝑠− = (

0 , 𝑡0 < 0,
𝑛

−𝑗𝜔
𝑒−𝑗(𝜔𝑡𝑓+𝜃2), 𝑡0 ≥ 0,

) 

𝑈⃗⃗ 𝑟  
𝑈⃗⃗ 𝑟 =

𝐿𝑚
𝐿𝑠
(
𝑑𝜑⃗ 𝑠
𝑑𝑡
) + (𝑅𝑟𝑖 𝑟 + (𝜎 = 1 − (

𝐿𝑚
2

𝐿𝑠𝐿𝑟
))𝐿𝑟

𝑑𝑖 𝑟
𝑑𝑡
) 

 

 

In contrast to overvoltage and overcurrent protection [4.6], Hybrid control strategy will 

convert increased rotor power into Kinetic Energy (KE) of WT, slightly increasing the rotor 

speed and damping the oscillations. During high wind speeds, pitch control will decrease the 

required wind power extraction to ensure mechanical safety. 

The mathematical model of pitch control is described as: 
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𝑑𝛽

𝑑𝑡
=

𝑇𝛽

1 + 𝑇𝛽𝑠
(𝛽 − 𝛽𝑟𝑒𝑓). 

(4.6) 

4.3.2. RSC Control Model 

            Our proposed scheme will ensure controllability of RSC and GSC during short-circuit 

faults, which is completely lost in conventional schemes [4.8]. The RSC control model is 

depicted in Figure 4.7. Electromagnetic torque oscillations and overcurrent protection is 

achieved using Proportional Integral (PI) controllers. We considered d-q axis orientation of the 

stator fluxes and rotor currents in torque control and var control loops. The d-q voltages of rotor 

are converted to triggering pulses of rotor side converter 𝑈𝑟𝑠𝑐𝑐  after passing through Space 

Vector Pulse Width Modulation (SVPWM) control block.  

 

Figure 4.7. RSC control model 

4.3.3. GSC Control Model 

The GSC control model is presented in Figure 4.8. Power imbalance results from FRT 

operation that causes increased DC link voltage 𝑈𝑑𝑐 and grid side converter current 𝐼𝑔𝑠𝑐. During 

steady-state operation, the value of DC link voltage is constant. When grid fault occurs, current 

miss-match occurs between grid side converter current 𝑖𝑔𝑠𝑐 and rotor side converter current 𝑖𝑟𝑠𝑐 . 

The SVPWM scheme will produce control pulses of GSC 𝑈𝑔𝑠𝑐𝑐 for safe operation during FRT. 

This is described in Figure 4.8. 
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Figure 4.8. GSC control model 

The expression of DC link voltage is defined as: 

𝑑𝑈𝑑𝑐
𝑑𝑡

=
1

𝐶𝑑𝑐
(𝑖𝑔𝑠𝑐 − 𝑖𝑟𝑠𝑐). 

(4.7) 

4.4. Performance Evaluation 

4.4.1. Symmetrical Analysis 

Four FRT Strategies are compared using 9MW DFIG-WT interfaced with grid (IEEE 5 

Bus System) is shown in Figure 4.5 using Matlab/Simulink. The rated wind speed in each 

evaluation is 11m/s. Short-circuit fault occurs on 25KV transmission line for 300ms. The 

parameters of DFIG-WT model are listed in Table 4.2. The Strategies compared critically are 

described as: (1) Strategy A: Active rotor crowbar, (2) Strategy B: DC Chopper control with 

rotor crowbar, (3) Strategy C: STFCL stator switch, and (4) Strategy D: Hybrid control 

(proposed). 

For fair comparison, the aforesaid Strategies are implemented with pitch control, RSC 

control, and GSC control mechanism. Short-circuit three-phase to ground faults occurs for 

300ms. At time t=0.3s, fault is initiated, dynamic responses of grid-interfaced DFIG-WT is 

shown in Figure 4.9. All currents must be lower than twice the rated values, DC link voltage 

variance must be less than 15% of rated value, rotor speed must be within 70% to 130% of rated 

values, and power ratings of the RSC and GSC must be lower than 30% of DFIG rated power 
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capability [4.20]. Various critical parameters of grid-side and machine-side systems are 

discussed to evaluate the performance of Strategies A, B, C, and D. The parameters include rotor 

variables, power converter variables, grid voltage, and grid current. The variation in the 

controlling parameters during grid faults will describe the comparative response of the 

Strategies.  

Figure 4.9(a) shows that Strategies A, B, and C produces 99.6% grid voltage dip 𝑈𝑔, 

while Strategy D has 85% voltage dip with 0.15pu voltage support in accordance with grid-code 

requirements [4.2]. Strategies A and B produces maximum transients during fault start-time and 

end-time of 𝐼𝑔 , as described in Figure 4.9(b). Moreover, abrupt response is shown by Strategies 

A, B, and C during fault, however, Strategy D presents a stable current response during fault in 

presence of power-imbalance during voltage dip. Regarding rotor voltage 𝑈𝑟, Strategies A and B 

produces maximum transient peaks during fault initiation, while Strategies C and D have lower 

transient peaks. However, high frequency oscillations (0.04pu) are illustrated using Strategies A, 

B, and C, while in case of Strategy D, low frequency oscillations (0.01pu) are depicted in Figure 

4.9(c). Similarly, rotor overcurrent for Strategies A and B is clear in Figure 4.9(d), however, low 

oscillations exists for Strategy C, while due to increased KE in WT, this value is reduced to zero 

for Strategy D. Figure 4.9(e) describe 𝑈𝑑𝑐, which is reduced to zero in case of Strategies A, B, 

and C with high transient peaks. Strategy D possesses smooth DC link voltage response during 

fault initiation and clearance, which presents controllability of RSC and GSC during fault. 

𝑇𝑒𝑚 for Strategy D is zero during fault because of temporary increasing rot Strategies A, B, and 

C shows abrupt response when fault is initiated and unstable response during fault interval. The 

aforesaid increase in rotor speed for Strategy D is described in Figure 4.9(g). or speed resulting 

in damping of current and torque oscillations, as presented in Figure 4.9(f). 
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Table 4.2. Machine parameters 

DFIG Parameters Values 

Rated power 9 MW 

Nominal stator voltage 575 V 

System frequency 60 Hz 

Slip -10% (-251.28 rad/s) 

Pole pairs 3 

Stator resistance 0.023 pu 

Rotor resistance 0.016 pu 

Magnetizing inductance 2.9 pu 

Rated wind speed 11 m/s 

Rated torque 0.83 pu 

Rated DC link voltage 1150 m/s 

DC link capacitance 10000*10-6 F 

Switching frequency 20 KHz 

RSC gains (Kp, Ki) 0.6, 8 

GSC gains (Kp, Ki) 0.83, 5 

Speed regulator gains (Kp, Ki) 3, 0.6 

Pitch compensation gains (Kp, Ki) 3, 30 

 

Strategy D provides active power support of 0.05pu to the grid at PCC, while Strategies 

A, B, and C do not comply grid-codes, as illustrated in Figure 4.9(h). Figure 4.9(i) shows 

Strategy D reactive power support of 0.1pu during voltage drop (super-synchronous mode with 

slip 𝑠 < 0), while Strategies A, B, and C absorbs power from grid operating in sub-synchronous 

mode (𝑠 > 0). 

 

 (a)  

Figure 4.9. Grid-interfaced DFIG-WT response during symmetrical fault with voltage dip 85% 

and wind speed is 11m/s (a) Variation of grid voltage, (b) Variation of grid current, (c) Variation 

of rotor voltage, (d) Variation of rotor current, (e) Variation of DC link voltage, (f)  Variation of 

elecromagnetic torque, (g) Variation of roror speed, (h) Variation of active power support at 

PCC, and (i) Variation of reactive power exchanged with grid at PCC 
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(b) 

 

(c) 

 

(d)  

 

(e) 

Figure 4.9. Grid-interfaced DFIG-WT response during symmetrical fault with voltage dip 85% 

and wind speed is 11m/s (a) Variation of grid voltage, (b) Variation of grid current, (c) Variation 

of rotor voltage, (d) Variation of rotor current, (e) Variation of DC link voltage, (f)  Variation of 

elecromagnetic torque, (g) Variation of roror speed, (h) Variation of active power support at 

PCC, and (i) Variation of reactive power exchanged with grid at PCC (continued) 
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(f) 

 

(g) 

 

(h)  

 

(i) 

Figure 4.9. Grid-interfaced DFIG-WT response during symmetrical fault with voltage dip 85% 

and wind speed is 11m/s (a) Variation of grid voltage, (b) Variation of grid current, (c) Variation 

of rotor voltage, (d) Variation of rotor current, (e) Variation of DC link voltage, (f)  Variation of 

elecromagnetic torque, (g) Variation of roror speed, (h) Variation of active power support at 

PCC, and (i) Variation of reactive power exchanged with grid at PCC (continued) 
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4.4.2. Asymmetrical Anlaysis 

4.4.2.1. Single-Phase to Ground Fault Positive Sequence 

Figure 4.10(a) describe 𝑈𝑔 response during (Φ-g) fault at GCP. Strategies A and B starts 

producing low frequency oscillations during fault, violating grid-code requirements. Strategies C 

and D illustrate 71.5% voltage dip with fast settling time and smallest steady-state error. DFIG-

WT is more sensitive to asymmetrical grid faults that induce voltage and current transient EMF 

in rotor circuitry. Strategies A and B generate maximum transients in Ur , while Strategy C 

produces constant high frequency oscillations of low magnitude during fault, as shown in Figure 

4.10(b). Strategy D also induces transients but of low frequency and severity, compared to 

Strategies A, B, and C. The behavior of rotor current 𝐼𝑟 transients is same in all Strategies during 

fault initiation and clearance, as shown in Figure 4.10(c). However, response of the aforesaid 

Strategies is quite different during fault. Strategies A and B results in high peak swings (0.26pu) 

above rated value (0.1pu), while Strategy C exhibits constant high frequency oscillations of 

0.05pu magnitude. Due to RSC controllability in case of Strategy D that produces low frequency 

oscillations swinging between 0.004pu and 0.05pu. This response is in accordance with grid-

codes and twice below the rated value of 0.1pu during fault. 

Figure 4.10(d) illustrates 𝑈𝑑𝑐 response of Strategies A and B generating very high 

transients (90% above the rated value) that will destroy the sensitive power electronic devices, 

such as DC link capacitor. Strategies C and D remains within the specified limit of ratings with 

effective damped fluctuations and better FRT operation. Over speed of rotor is more obvious in 

Strategy D due to additional transformation of KE into WT, as shown in Figure 4.10(e). 

Strategies A, B, and C generate lower rotor speed during grid faults at GCP. This clarifies that 

damping of oscillations in case of Strategy D will be more, compared to Strategies A, B, and C. 
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Figure 4.10(f) and Figure 4.10(g) describe effectiveness of Strategy D supplying 0.1pu 𝑃𝑔 and 

0.04pu 𝑄𝑔  to the grid at PCC, while Strategy C shows a lower values of power support. 

Moreover, Strategies A and B shows power imbalance, abrupt response, oscillations, and 

absorbing reactive power from grid during fault. Strategies A, B, and C generate lower rotor 

speed during grid faults at GCP. This response is in accordance with the desired grid-code 

requirements of the national code. 

4.4.2.2. Single-Phase to Ground Fault Negative Sequence 

The negative-sequence performance of above mentioned Strategies is analyzed in terms 

of rotor voltage and rotor current, as depicted in Figure 4.10(h) and Figure 4.10(i). The response 

is better for Strategy D and Strategy C but worse for Strategies A and B, as RSC is disconnected 

during the fault interval. 

 

(a) 

 

 (b)  

Figure 4.10 Grid-interfaced DFIG-WT response during asymmetrical fault with voltage dip 

71.5% and wind speed is 11m/s (a) Variation of grid voltage, (b) Variation of rotor voltage, (c) 

Variation of rotor current, (d) Variation of DC link voltage, (e) Variation of roror speed, (f) 

Variation of grid active power support at PCC (g) Variation of reactive power exchanged with 

grid at PCC, (h) Variation of negative-sequence rotor voltage, and (i) Variation of negative-

sequence rotor current 
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(c) 

 

(d) 

 

(e) 

 

(f)  

Figure 4.10 Grid-interfaced DFIG-WT response during asymmetrical fault with voltage dip 

71.5% and wind speed is 11m/s (a) Variation of grid voltage, (b) Variation of rotor voltage, (c) 

Variation of rotor current, (d) Variation of DC link voltage, (e) Variation of roror speed, (f) 

Variation of grid active power support at PCC (g) Variation of reactive power exchanged with 

grid at PCC, (h) Variation of negative-sequence rotor voltage, and (i) Variation of negative-

sequence rotor current (continued) 
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(g) 

 

(h)  

 

(i) 

Figure 4.10 Grid-interfaced DFIG-WT response during asymmetrical fault with voltage dip 

71.5% and wind speed is 11m/s (a) Variation of grid voltage, (b) Variation of rotor voltage, (c) 

Variation of rotor current, (d) Variation of DC link voltage, (e) Variation of roror speed, (f) 

Variation of grid active power support at PCC (g) Variation of reactive power exchanged with 

grid at PCC, (h) Variation of negative-sequence rotor voltage, and (i) Variation of negative-

sequence rotor current (continued) 

 

4.4.2.3. Double-Phase to Ground Fault Positive Sequence 

All the Strategies fulfilled grid voltage 𝑈𝑔 grid-code requirements during 2Φ-g at GCP. 

The voltage drop in Ug is more for Strategies A and B (64.4%), while Strategy C and Strategy D 

possesses a voltage dip of 62%, as presented in Figure 4.11(a). Figure 4.11(b) shows extreme 
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maximum induced 𝑈𝑟 transients for Strategies A and B with peak values 0.6pu and 0.55pu (27.5 

times the rated value) during fault initiation. Moreover, Strategies A and B produces high 

fluctuations of 0.11pu during fault interval, while Strategy C generates oscillations of 0.06pu. 

Furthermore, Strategy C shows high frequency rotor transients three times more than a rated 

value (0.02pu). Strategy D shows a robust performance for aforesaid case, resulting in low 

frequency oscillations of 0.01 pu. For 𝐼𝑟, Strategies A, B, and C performs worse, Strategy D 

produces induced current of 0.0018pu below the rated value (0.1pu), as seen in Figure 4.11(c). 

Strategy D exhibits a smooth 𝑈𝑑𝑐 response during fault with variation of 12.3% of rated value in 

accordance with FRT requirements, as shown in Figure 4.11(d). Strategies A, B, and C violates 

FRT grid-codes for DC link voltage. Figure 4.11(e) describe that rotor speed increases the most 

(within grid-code limits) during FRT for Strategy D, compared to Strategies A, B, and C. 0.04pu 

of 𝑃𝑔 is delivered by DFIG-WT during fault to the grid, while A and C absorbs the power from 

grid. Strategy B delivers 0.08pu of active power to grid with transients at fault initiation, as 

presented in Figure 4.11(f). Strategy D provides 0.01pu reactive power support to the grid, while 

Strategies A, B, and C absorbs from the grid, as illustrated in Figure 4.11(g). 

4.4.2.4. Double-Phase to Ground Fault Negative Sequence 

Figure 4.11(h) presents negative-sequence rotor voltage on the performance of DFIG-

WT. The abovementioned Strategies do not fulfill grid-codes, oscillations of 𝑈𝑟 are high than 

rated value during fault interval. This abrupt response is very high for Strategies A and B and 

Strategies C and D also produces oscillations exceeding twice the rated value. Moreover, 

controllability of DFIG is lost during aforesaid scenario and RSC has no counteraction against 

negative-sequence transient EMF [4.10]. Furthermore, these negative-sequence transient EMF 

are consumed by rotor impedance.  
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(a)  

 

(b) 

 

(c) 

 

(d) 

Figure 4.11. Grid-interfaced DFIG-WT response during asymmetrical fault with voltage dip 

64.4% and wind speed is 11m/s (a) Variation of grid voltage, (b) Variation of rotor voltage, (c) 

Variation of rotor current, (d) Variation of DC link voltage, (e) Variation of roror speed, (f) 

Variation of grid active power (g) Variation of reactive power exchanged with grid at PCC, (h) 

Variation of negative-sequence rotor voltage, and (i) Variation of negative-sequence rotor 

current 
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(e)  

 

(f) 

 

(g) 

 

(h) 

Figure 4.11. Grid-interfaced DFIG-WT response during asymmetrical fault with voltage dip 

64.4% and wind speed is 11m/s (a) Variation of grid voltage, (b) Variation of rotor voltage, (c) 

Variation of rotor current, (d) Variation of DC link voltage, (e) Variation of roror speed, (f) 

Variation of grid active power (g) Variation of reactive power exchanged with grid at PCC, (h) 

Variation of negative-sequence rotor voltage, and (i) Variation of negative-sequence rotor 

current (continued) 
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(i)  

Figure 4.11. Grid-interfaced DFIG-WT response during asymmetrical fault with voltage dip 

64.4% and wind speed is 11m/s (a) Variation of grid voltage, (b) Variation of rotor voltage, (c) 

Variation of rotor current, (d) Variation of DC link voltage, (e) Variation of roror speed, (f) 

Variation of grid active power (g) Variation of reactive power exchanged with grid at PCC, (h) 

Variation of negative-sequence rotor voltage, and (i) Variation of negative-sequence rotor 

current (continued) 

 

4.4.2.5. Double-Phase Fault Positive Sequence 

In Figure 4.12(a), Strategy C and D shows a voltage drop of 45.41% in 𝑈𝑔 and Strategies 

A and B presents a voltage dip of 57.36%. 2Φ fault is most harmful for FRT operation [4.10] and 

Strategy D performs a robust operation during this interval, while Strategies A, B, and C 

produces abrupt EMF fluctuations in rotor voltage 𝑈𝑟 and this effect of 𝑈𝑟 is presented in Figure 

4.12(b). Similarly, 𝐼𝑟 response clarify the difference between aforementioned Strategies, as 

shown in Figure 4.12(c). Strategy D shows a smooth response during fault interval, while 

Strategies A, B, and C produces transients during fault initiation and clearance. Strategy D 

fulfills the most  𝑈𝑑𝑐  response in Figure 4.12(d) and output  𝜔𝑟  in Figure 4.12(e) satisfying grid-

code specifications. Figure 4.12(f) shows Strategy D supplies 0.05pu 𝑃𝑔  to grid and Strategy B 

provides 0.08pu 𝑃𝑔 to grid. Moreover, Strategies A and B absorbs active power from grid 

violating FRT requirements. Strategy D provides maximum 𝑄𝑔  0.05pu support at PCC, as 

illustrated in Figure 4.12(g). Furthermore, Strategy C provides least reactive support, while 

Strategies A and B absorbs power from grid. 



 

78 

4.4.2.6. Double-Phase Fault Negative Sequence 

Figure 4.12(h) shows that all Strategies violates FRT specifications of RSC control, while 

Strategy D violation is minimum than the rest of the Strategies. Strategy D performs controlled 

response in case of, as depicted in Figure 4.12(i). Moreover, Strategies A, B, and C do not 

comply the standardized specifications for optimum FRT. 

 

(a) 

 

(b) 

 

(c)  

Figure 4.12. Grid-interfaced DFIG-WT response during asymmetrical fault with voltage dip 

45.41% and wind speed is 11m/s (a) Variation of grid voltage, (b) Variation of rotor voltage, (c) 

Variation of rotor current, (d) Variation of DC link voltage, (e) Variation of roror speed, (f) 

Variation of grid active power, (g) Variation of reactive power from GSC, (h) Variation of 

negative-sequence rotor voltage, and (i) Variation of negative-sequence rotor current  
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(d)  

 

(e) 

 

 

(f) 

 

(g) 

Figure 4.12. Grid-interfaced DFIG-WT response during asymmetrical fault with voltage dip 

45.41% and wind speed is 11m/s (a) Variation of grid voltage, (b) Variation of rotor voltage, (c) 

Variation of rotor current, (d) Variation of DC link voltage, (e) Variation of roror speed, (f) 

Variation of grid active power, (g) Variation of reactive power from GSC, (h) Variation of 

negative-sequence rotor voltage, and (i) Variation of negative-sequence rotor current (continued) 
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 (h) 

 

(i) 

Figure 4.12. Grid-interfaced DFIG-WT response during asymmetrical fault with voltage dip 

45.41% and wind speed is 11m/s (a) Variation of grid voltage, (b) Variation of rotor voltage, (c) 

Variation of rotor current, (d) Variation of DC link voltage, (e) Variation of roror speed, (f) 

Variation of grid active power, (g) Variation of reactive power from GSC, (h) Variation of 

negative-sequence rotor voltage, and (i) Variation of negative-sequence rotor current (continued) 

 

From above analysis, we conclude that if the fault occur near GCP, non-ride through 

zones will be created. Controllability of positive-sequence components is higher for RSC, 

compared to negative-sequence quantities. In case of negative-sequence rotor variables, 

controllability with Strategy D is slightly higher than Strategies A, B, and C. This controllability 

factor may be increased by increasing the power ratings of the converter. Moreover, negative 

sequence quantities require separate control mechanism and ride-through specifications, 

compared to positive-sequence quantities. Furthermore, this critical difference exists for 

symmetrical faults as well. In case of negative-sequence rotor variables, controllability with 

Strategy D is slightly higher than Strategies A, B, and C. 
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5. AN ANCILLARY SERVICES MODEL FOR THE DATA CENTERS AND 

POWER SYSTEM 

This paper is submitted to the journal: IEEE Transactions on Parallel and Distributed 

Computing. The authors of this paper are Sahibzada Muhammad Ali, Muhammad Jawad, M. U. 

S. Khan, K. Bilal, Jacob Glower, Scott. C. Smith, Samee U. Khan, K. Li, A. Y. Zomaya. 

5.1. Overview 

Energy crises pose some of the key problems faced by the world today. Power hungry 

data centers make the problem even worse for power systems. For example, one of Google’s data 

centers consumes more than 260 MW of power, which is more than the power consumed by the 

entire Salt Lake City [5.1]. The growing usage of World Wide Web and cloud computing 

services increases the power consumption and operating costs of data centers [5.2]. The increase 

in power consumption of data centers has a significant influence on the operation of the power 

system [5.2]. However, due to the large network size, power systems need data centers for 

intensive computational requirements [5.3]. The computational services provided by the data 

center for stable and reliable operation of the power system are known as ancillary services [5.3]. 

The key ancillary services required by the power system are optimal power flow on all 

Transmission Lines (TLs), voltage stability, power loss reduction, and identification of 

endangered TLs and buses. In a conventional power system, the lack of fast and intelligent 

control results in contingencies in some power system sections. The resultant contingencies lead 

to Transmission Line Failures (TLFs), un-optimized power flow, degradation in Quality of 

Service (QoS), electrical equipment failure, and complete blackouts [5.4]. The parallel 

computing capability of the data center can meet the computational requirements of the power 
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system jobs, which can return the power system back to steady-state operation in a manageable 

time. 

5.1.1. Motivation 

The power system’s revenue is highly dependent on reliability and steady state 

performance [5.5]. Unreliable power systems that lack in QoS result in revenue loss. Moreover, 

the economic factors of power systems, such as demand-supply management, operational cost, 

standby generating unit, and salaries of the utility crew get disturbed. Furthermore, degradation 

in QoS will prevent the electrical network from further expansion. Therefore, data centers should 

provide ancillary services on a priority basis because the delay in power system jobs can lead to 

revenue loss for power system companies.  

       The data center and power system are part of a bigger cloud environment [5.1]. Most 

of the time, in cloud, data center resources remain idle during normal operations. Therefore, the 

data center’s scheduler does not require reshuffling or delaying cloud computing jobs to execute 

a power system’s ancillary services. However, at certain times, a data center may be over-loaded 

[5.6]. In such scenarios, the data center must preempt cloud computing jobs to satisfy the 

priorities of the power system jobs [5.6]. The power system jobs should not over burden the data 

center or violate the Service Level Agreement (SLA) of cloud computing jobs. Therefore, the 

data centers need an efficient job scheduling technique that minimally affects cloud computing 

jobs, while executing ancillary services.  

This paper presents an Ancillary Services Model (ASM) that maximizes the revenue of 

the data center while ensuring the reliability and stability of the power system. We believe that 

our research contribution is more versatile and covers a broader area in the field of smart power 
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systems using the ASM compared to prior works. The proposed ASM for data centers and power 

systems consists of the following: 

In summary, our contributions in this chapter are as follows: (1) we evaluated Longest 

Job First (LJF), Shortest Job First (SJF), and Shortest Remaining Job First (SRTF) to determine 

that SRTF is the best job scheduling technique in case of average queue time and makespan of 

data center workload, while SJF performs better in terms of data center workload preemption and 

power system job preemption. Our evaluation is based on power consumption, makespan, 

number of preempted jobs, queue time, and resource utilization, (2) we proposed three main 

ancillary services for stable operation of the power system, namely: (a) Optimal Power Flow 

(OPF), (b) Transmission Line Importance Index, and (c) Bus Importance Index. We performed 

our experiments on standard IEEE bus systems, and found the convergence condition for the 

OPF solution. Moreover, we identified endangered TLs and Buses, when two or more TLs are 

out, (3) we defined a SLA for priority execution of ancillary services on data centers. The SLA 

elaborates the revenue generation and penalty on the data center, if the ancillary services are 

delayed. The SLA is tested for variable load of the data center, variable energy price, and 

variable job length given by the power system during a month’s time, and (4) The ASM is based 

on the optimal job scheduling technique for data centers, ancillary services for the power system, 

and SLA. The ASM reduces the revenue loss of the power system during contingencies with 

minimum effect on the data center. 

The rest of the chapter is organized as follows. Section 5.2 demonstrates the system 

model. In Section 5.3 presents ancillary service model for the power system, Section 5.4 describe 

service level agreement, Section 5.5 discusses the revenue modeling, Section 5.6 shows 

simulation settings, and Section 5.7 presents ASM convergence. 
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5.2. System Model 

In this section, we define a system model named ASM and notations for both data center 

and power system. We use these notations and system model to define a SLA and revenue 

model. The high level architecture of the system model is shown in Fig. 1. The data center has 

Mmax servers that compute internet services and cloud workload. In return, the data center 

demands a service cost from customers. Moreover, the data center spends a large portion of its 

revenue on purchasing reliable and stable power from the power system. On the other hand, the 

power system revenue is highly dependent on demand-supply stability. The power system 

requires fast computing workstations for ancillary services to maintain reliability. Therefore, we 

divide our system model into two sub-parts: (a) data center module, (b) ancillary services for the 

power system. 

 

Figure 5.1. System architecture 

5.2.1. Data Center Module 

The purpose of data center module is to calculate the power consumption with and 

without the work-load of the power system jobs. Moreover, different job scheduling algorithms 

on the data center work-load are tested. The module provides an appropriate job scheduling 

technique that handles the power system jobs with minimal effect on the data center. The effect 

is calculated in terms of power consumption, makespan, number of job/task preemptions, and job 

queue time. The estimated revenue of the data center is highly dependent on electricity unit price 

and power consumption. Therefore, the discussion on electricity price and workload based power 

consumption is essential. 
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The electricity price model depends on the regulated or deregulated power market of the 

region [5.17]. In a regulated market, the electricity price remains uniform throughout the day. 

Conversely, in deregulated markets, the electricity price changes during the day depending on 

changes in the wholesale electricity market. The non-uniform pricing tariffs include time of use 

pricing, day ahead pricing, and real-time pricing. In the real world, the varying order of 

magnitude between demand and supply, and average pricing of electricity units make real-time 

pricing the most complex pricing tariff [5.17]. We used real-time pricing tariffs in the data 

center.  

5.2.1.1. Power Consumption 

The total power consumption of the data center is the sum of power consumption by 

computer servers, cooling plants, and lighting facilities, as given below [5.15]. 

𝒫 = 𝔐[𝒫𝐼 + (𝛯𝑈 − 1)𝒫𝑃 + (𝒫𝑃𝑒𝑎𝑘 − 𝒫𝐼)𝔘] . (5.1) 

In Eqn. (5.1), 𝒫𝐼 denotes the power consumption of an idle server, and 𝒫𝑃 is the average 

peak power when a server is busy handling requests. The term 𝔐 ≤𝔐𝑚𝑎𝑥 denotes the number 

of “on” servers, 𝔘 denotes CPU utilization in servers, and 𝛯𝑈  is the energy efficiency of the 

servers [5.11]. The power consumption of the data center varies throughout the day depending on 

workload. The detailed description of workload, power consumption, CPU utilization in servers, 

energy efficiency of servers, job scheduling techniques, queue time analysis, job preemption 

mechanism, and revenue calculation are discussed in Section 5.7. 

5.3. Ancillary Services For The power System 

Power systems are large and complex networks that constantly run at operational limits. 

Any transmission line failure can cause massive cascading failures [5.12]. Therefore, reliability 

of the power system depends on the ability to deliver the desired amount of electricity to all 
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delivery points within acceptable quality levels and at minimum cost. The aforementioned 

attributes need to be accomplished by finding an adequate balance between reliability and 

uncertainties of future conditions.  

In our proposed model, the power system is modeled as a set of buses interconnected by 

TLs to form a network topology. The total number of buses defines the size of the power system. 

The loads and generators are connected to the buses that consume and inject power into the 

transmission net-work, respectively. The total load of the power system is the sum of background 

load (commercial and residential) and data center power load. The above network topology is 

suitable to solve for steady-state voltages and power flows [5.14]. The three main ancillary 

services provided by the data center to the power system include the following: Optimal Power 

Flow Analysis, Transmission Line Importance Index, and Bus Importance Index. 

5.3.1. Optimal Power Flow Analysis 

The primary objective in a balanced power system is to minimize generation cost. There 

are two main constraints in power balancing: (a) equality constraints (generation-load balance) 

and (b) inequality constraints (upper and lower limits on the output of generating units). In a 

power system, the generating units and loads are not connected to the same bus. Therefore, the 

economic dispatch will result in voltage instability within the power system. Moreover, an 

optimal solution is required that results in acceptable power flows on all transmission lines. The 

OPF is among the key parameters of power system that provides an optimal solution for the 

above mentioned problem, and has a cogent relationship with cascading failures [5.10]. 

In the OPF, the equality constraint is to balance complex power at each bus using power 

flow equations. The inequality constraints consist of TL flows and voltage limitations of control 

variables, including active power of generators, voltage of generating units, position of phase 
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shifters, status of reactors and switched capacitors, and disconnected loads. State variables are 

used to describe the system response due to the change in control variables. Voltage magnitude is 

defined at each bus except generator buses. Similarly, the voltage angle is defined for each bus 

except the slack bus. The main parameters for OPF calculation are the known system 

characteristics, system topology, and network parameters (generation limits and generation cost 

function) [5.2]. The main objective function is to minimize power generation cost, as stated in 

Eqn. (5.2): 

min
𝑢
∑𝐶𝑜𝑖(𝑃𝑖) 

𝑁

𝑖=1

. 
(5.2) 

Where 𝐶𝑜𝑖 is the cost of bus 𝑖, 𝑃𝑖 is the active power of bus 𝑖, 𝑁 is the total number of 

buses, and 𝑢 is the vector of control variables. The other objective functions are: (a) minimizing 

following, and (b) minimizing the TLLs using the objective function 𝑂. 

min
𝑢
∑𝐶𝑜𝑖|𝑢𝑖 − 𝑢𝑖

0| ,

𝑁𝑢

𝑖=1

 

(5.3) 

𝑂 =∑ (𝐺𝑘(𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗𝑐𝑜𝑠𝛿𝑖𝑗)∀𝑘 ∈ 𝑁𝑏) .
𝑖=(𝑘,𝑗)

 (5.4) 

 In Eqn. (5.4), 𝑉𝑖 is the voltage of bus 𝑖 and 𝑉𝑗 of bus 𝑗, 𝐺𝑘 is the conductance of TL 𝑘, 

𝑁𝑏 is the number of TLs in the network, and 𝛿𝑖𝑗  is the voltage angle difference between bus 𝑖 and 

bus 𝑗. The power flow equations used for equality constraints are given below: 

𝑃𝑘
𝐺 − 𝑃𝑘

𝐿 =∑𝑉𝑘𝑉𝑖[𝐺𝑘𝑖 cos(𝜃𝑘 − 𝜃𝑖) + 𝐵𝑘𝑖 sin(𝜃𝑘 − 𝜃𝑖)],

𝑁

𝑖=1

 

𝑄𝑘
𝐺 − 𝑄𝑘

𝐿 =∑𝑉𝑘𝑉𝑖[𝐺𝑘𝑖 sin(𝜃𝑘 − 𝜃𝑖) + 𝐵𝑘𝑖 cos(𝜃𝑘 − 𝜃𝑖)],

𝑁

𝑖=1

 

(5.5) 
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𝐶𝑜𝑚𝑝𝑎𝑐𝑡 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛: 𝐺(𝑥, 𝑢, 𝑦) = 0. 

Where 𝑃𝑘
𝐺  is the active power of the generator, 𝑃𝑘

𝐿 is the active power of the load, 𝑄𝑘
𝐺 is 

the reactive power of the generator, 𝑄𝑘
𝐿 is the reactive power of the load, 𝐺𝑘𝑖 is the mutual 

conductance, 𝐵𝑘𝑖 is the mutual susceptance, and 𝜃𝑘 is the phasor angle. The state variables vector 

and parameter vectors are denoted by 𝑥 and 𝑦, respectively. For inequality constraints, the limits 

on the control variables must be imposed as: 𝑢 ≤ 𝑢 ≤ 𝑢, the operating limits on power flows are 

|𝑃𝑖𝑗| ≤ 𝑃𝑖𝑗, the operating limits on voltages are 𝑉𝑗 ≤ 𝑉𝑗 ≤ 𝑉𝑗, and the compact expression of 

inequality constraints is written as 𝐻(𝑥, 𝑢, 𝑦) ≥ 0. The OPF problem is complex due to the non-

linear behavior of all the components of the power system. The Newton-Raphson method is 

applied to solve the OPF, where the tolerance of the power injection and consumption mismatch 

is 10−8 [5.20]. If the tolerance is below 10−8, the OPF solution is considered to be converged, as 

shown in Figure 5.2. 

 

Figure 5.2. Convergence of Newton-Raphson tolerance between power injection and power 

consumption 

 

 Newton-Raphson is an iterative method that locally converges [5.15]. Theoretically, the 

cost function value indicated in Eqn. (5.5) should converge to the optimum solution. How close 

is enough? This question is problem dependent and most difficult to measure in practice [5.22]. 

However, decades of practice shows that Newton’s method converges in a few iterations for most 
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problems. Therefore, the theory has practical importance, and our results in Section 5.7 support 

the theory. Eqn. (5.5) is a set of non-linear expressions that need to converge as 𝐺(𝑥, 𝑢, 𝑦) ≅ 0. 

Here 𝐺: 𝑅𝑛 → 𝑅𝑛. The Newton iteration expression is defined as: 

𝐺(𝑥𝑘) = −𝐽(𝑥𝑘)∆𝑥𝑘, ∆𝑥𝑘 = 𝑥𝑘+1 − 𝑥𝑘  , (5.6) 

 where 𝑥𝑘 is the state variable for the kth iteration, 𝑥𝑘+1 is the state variable for the 

(k+1)th iteration, ∆𝑥𝑘 is the error between two consecutive iterations, and  𝐽(𝑥𝑘) is the Jacobian 

matrix for 𝑥𝑘. If 𝐺(𝑥) is differentiable, then the Jacobian matrix is expressed as: 

𝐽(𝑥𝑘) = 𝐺
′(𝑥𝑘) =

𝜕𝐺

𝜕𝑥
|𝑥𝑘  . 

(5.7) 

 Newton’s method is convergent under the following three assumptions: Assumption 1: 

non-linear function G(x) has solution x∗. Assumption 2: G′: Ω →  Rn×n is lipschtiz continuous 

near x∗.  Assumption 3: G′(x∗) is non-singular. Therefore, a constant, K > 0, exists such that: n 

is sufficiently large and mismatch tolerance decreases quadratically.  

‖𝑒𝑛+1‖ ≤ 𝐾‖𝑒𝑛‖
2 , (5.8) 

 The non-singularity of the Jacobian matrix is assured by Assumption 3, iteratively. 

Therefore, the initial point and Jacobian singularity play a vital role in the convergence of the 

OPF solution for the power system.  

5.3.2. Transmission Importance Index 

We evaluate the TL importance index for fault detection and cascading failure avoidance 

in the power system. When a TL failure occurs, the AC power flow on some other TLs will 

increase and cause volt-age instability. The TL importance index identifies those TLs whose 

failure can lead to a complete or partial blackout. If the AC power flow ratio on any TL increases 

above a certain threshold, then an outage will occur on the TL. The threshold depends on the 

maximum AC power flow a TL can sustain. Therefore, power system operators can take 



 

92 

precautionary measures before the occurrence of a failure. The judgment criteria for detecting 

whether a TL outage can cause system failure depends on two fac-tors: (a) the convergence of 

OPF solver and (b) power loss constraints on TLs. As explained in Section 5.2.1, the Newton-

Raphson method is used to calculate the OPF solution [5.20]. If the Newton-Raphson method 

provides a converged OPF solution but unacceptable power loss on TLs, then the sys-tem will 

still be considered as un-converged for the sake of practical economic constraints. Therefore, 

both conditions are necessary and sufficient for an acceptable optimized OPF solution. 

5.3.3. Bus Importance Index 

The bus importance index is another important measure for the power system that 

depends on the concept of centrality. Centrality defines the most important or central bus in a 

network [5.3]. The most common and famous method is Eigenvector centrality that assigns the 

centrality value 𝛽 to all of the isolated buses within a network [5.3]. Mathematically, the 

Eigenvector centrality of a network is defined as: 

𝐶𝑖 = 𝛼∑𝐴𝑖𝑗
𝑗

𝐶𝑗

𝑘𝑗
𝑜𝑢𝑡 + 𝛽 . 

(5.9) 

 Where 𝛼 is a damping factor that can have value0 < 𝛼 < 1, 𝐴𝑖𝑗  is the entry of the 

adjacency matrix, 𝐶𝑗 in the centrality of bus j that is directly connected to bus 𝑖, 𝑘𝑗
𝑜𝑢𝑡 is the out 

degree of bus j, and β is the constant centrality value assigned to the isolated bus. The out degree 

describes how many buses are taking power from bus j. If there are buses in the power system 

that have an out degree equal to zero, then the first term in Eqn. (5.9) will be undefined. To avoid 

such condition, 𝑘𝑖
𝑜𝑢𝑡 is set to 1 for all such buses. The matrix notation of Eqn. (5.9) is 

represented as: 

𝐶 = 𝛼𝐴𝐷−1𝐶 + 𝛽1 . (5.10) 
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 Where ‘1’ is the vector (1, 1, 1, ….) and D is the diagonal matrix with elements 𝐷𝑖𝑖 =

max (𝑘𝑗
𝑜𝑢𝑡, 1). The power system depends on the calculation of OPF, whose solution defines 

whether the system is operating normally or the TLLs exceed the threshold. During an 

emergency, when outages occur on multiple TLs, the power system needs an optimized OPF 

solution. Moreover, the system requires identification of TLs that can cause a cascade outage and 

endanger buses due to over-voltage. The TL importance index identifies such TLs that are in 

danger of failure due to excess power flow. The bus importance index identifies power system 

buses that have excess voltage, which can trip relays on these buses. 

5.4. Service Level Agreement 

 The core of the ASM is to define a SLA between the data center and the power system 

with minimum loss at both ends. The nature of the workload in data centers is stochastic and the 

execution time of each job varies [5.4]. Therefore, the following calculations are necessary for 

defining the SLA: (1) How much revenue loss is acceptable for the data center to prioritize 

execution of power system jobs? And How much uptime can the data center provide to the power 

system in a month’s time. 

 In our proposed model, ancillary services for the power system are the highest priority 

jobs. If the data center is operating at its peak, then the scheduler must preempt other cloud 

computing jobs to execute an ancillary service request. There is no such mechanism known to 

the authors to determine how much delay a power system can withstand before power 

transmission gets perturbed. Excess delay in ancillary services also indirectly affects the data 

center’s power supply. The ASM model will benefit the power system and the data center in a 

coordinated controlled manner. 
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Table 5.1. IEEE bus systems specifications 

IEEE 

Bus 

Systems 

TLs GBs Load 

Buses 

GC (MW) BL (MW) OPF  Convergence 

Time on 

Single-

Processor 

(seconds) 

30 41 6 20 191.6 189.2 14 5.88 

118 186 54 99 4374.9 4242 19 72.06 

300 411 69 201 23935.4 23525.8 22 462.25 

2383 2896 327 1826 25281 2458.4 34 980.20 

 

Table 5.2. Peak power consumption of a typical server 

Component Peak Power (W) Count Total Power (W) 

CPU 40 2 80 

Memory 9 4 36 

Disk 12 1 12 

Motherboard 25 1 25 

PCI Slots 25 2 50 

Fan 10 1 10 

Total-System 

Power 

  213 

 

Table 5.3. Data center specification 

Time Duration 20 February 2009 – 22 March 2009 

Total data center jobs executed  22,385 

Total distinct servers 1,056 

Processor name 1056 Dell PowerEdge SC1425  

Processor speed 3.0 GHz or 3.2 GHz 

Peak performance 13 TFlop/second 

 

  

 Moreover, if ancillary services are delayed, then how much extra will power cost the data 

center? Furthermore, when a data center delays cloud computing jobs more than a certain time, 

data center revenue will be drastically affected. For example, if the Amazon Elastic Compute 

Cloud (EC2) delays a job by upto 1% of the total agreed upon execution time, then Amazon pays 
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a penalty (named service credit by amazon) of 10% of the agreed upon cost for the job. 

Moreover, if the delay is more than 1% of the agreed upon time, then the penalty is increased to 

30% of the agreed amount [5.5].  

 We define a SLA that minimally affects the cost of the data center and maintains 

reliability of the power system. According to the SLA, the increased power consumption cost of 

the data center due to the execution of ancillary services will be paid by the power system. 

Moreover, a threshold will decide the number of cloud computing jobs that a data center can 

delay without penalty. We calculate this threshold in Section 5.7. 

5.5. Revenue Modeling 

 The revenue model depends on the power consumption of the data center that is 

calculated by Eqn. (5.1) for any instant in time, where 𝔐 is the number of “on” servers in the 

data center. The revenue (ℜ) of the data center is calculated as: 

ℜ =∑(1 − 𝓆𝑖(𝜇𝑖)) [1 +
𝔉𝑖
ℒ𝑖
] − 𝓆𝑖(𝜇𝑖) [1 +

𝔉𝑖
ℒ𝑖
]

𝑇𝐽

𝑖=1

. 

(5.11) 

 The job service rate 𝜇𝑖 is defined as: 

𝜇𝑖 = 𝑘𝔐𝑖  . (5.12) 

Let 𝒯 be the time taken by a data center server to finish a job. In Eqn. (5.12), the variable 

𝑘 represents jobs per second (1 𝒯⁄ ). In Eqn. (5.11), 𝓆𝑖(𝜇𝑖) is the probability of job failure, 

and 𝑇𝐽 is the total number of jobs in the month. The data center’s loss for preempting a cloud 

computing job and executing the ith power system job is represented by ℒ𝑖. The data center will 

demand ℒ𝑖  dollars from the power system to minimize revenue loss. Moreover, 𝔉𝑖 is the 

monetary incentive that the data center can demand from the power system. In Eqn. (5.11), the 

term (1 − 𝓆𝑖(𝜇𝑖)) [1 +
𝔉𝑖

ℒ𝑖
] denotes the total revenue earned by the data center for completing the 
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computational jobs of the power system in sufficient time. The term 𝓆𝑖(𝜇𝑖) [1 +
𝔉𝑖

ℒ𝑖
] is the 

penalty that the data center will pay for delaying power system jobs. Eqn. (5.11) minimizes the 

revenue loss of the data center and provides incentives to prioritize power system jobs. 

Table 5.4.  Power system job types and details 

Power System Jobs Type 
 Execution 

Time (minutes) 

Number of CPUs 

Utilized 

Emergency 1-5 100-500 

Reactive 1-10 50-300 

Periodic 1-10 1-100 

 

5.6. Simulation Settings 

We consider IEEE 30 bus, IEEE 118 bus, IEEE 300 bus, and IEEE 2383 bus systems for 

the power system reliability tests. As the size of the power system increases, job lengths 

associated with the workload increase accordingly. The detailed descriptions of the IEEE bus 

systems are given in Table 5.1. To understand the network topology of IEEE bus systems, an 

IEEE 30 bus system is shown in Figure 5.2. The data center is powered from bus number 30 in 

the IEEE 30 bus system. Our exemplary data center consumes on average 1.885 MW of power 

operating at peak-load during a day with 1,056 servers running. A typical data center server has 

𝒫𝑃 = 213 watts and 𝒫𝐼 = 100 watts, as shown in Table 5.2. 

The TL outages are taken as an emergency condition for the power system, requiring 

ancillary services from the data center. TLs outages are modeled as a “two state Markov” model 

on each TL. A Markov state of the power system is defined by a particular condition where every 

TL is in a given state of its own. All possible states of the TLs make up the state space. The TL 

state (Up/Down) is considered to be a continuous random variable. In our study, the distributions 

for up and down states of the TLs are taken as exponential. The exponential distribution has the 

following probability distribution defined as: 
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𝐹(𝑥) = 1 − 𝑒−𝜌𝑥 = 𝑧 . (5.13) 

 In Eqn. (5.13), the mean of random variable 𝑋 is denoted by 𝜌−1. We set the exponential 

function given in Eqn. (5.13) equal to a uniform random decimal number, 𝑧, with values between 

0 and 1. Equation (13) is then rewritten as: 

𝑥 = −
ln(𝑧)

𝜌
. 

(5.14) 

The occurrence time of TL failures and their maintenance time duration is determined by 

Eqn. (5.14). Moreover, in the real-world the nature of the load is random and precise load 

forecasting is challenging. Therefore, the background load distribution on power system buses is 

also modeled as a random variable with normal distribution. For example, the mean value of 

active power on all load buses in the IEEE 30 bus system is 9.46 MW (nominal). 

  We use a real-world data center workload, collected from Computational Research of 

State University of New York at Buffalo to validate the ASM [5.6]. The workload is a collection 

of a 30 day time span taken during February 20, 2009 to March 22, 2009. The unit electricity 

price offered to the data center is taken from the New York Independent System Operator 

(NYISO) for the same period February 20, 2009 to March 22, 2009 [5.14]. The complete data 

center specification is given in Table 5.3. The workload distribution sometimes exceeds 100% 

for a day, as shown in Figure 5.4. Therefore, data center resources are inadequate to complete all 

jobs at these particular times. 

 For clarity, ancillary services for the power system that will execute on data centers are 

called “power system jobs”. Moreover, we represent all other cloud computing jobs as the “data 

center workload”. We model three categories of power system jobs in our simulations along with 

the data center workload. The highest priority jobs are emergency jobs that arrive when a failure 

occurs in the power system. The data center will allocate the maximum required resources for the 
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completion of these jobs in least amount of time. The second highest priority jobs are called 

reactive jobs, which occur when there is a sudden large drift in the load. The data center will 

allocate a large number of resources to complete reactive jobs in a reasonable time with 

minimum effect on the data center workload. All of the remaining power system jobs required 

for normal operation are called periodic jobs, which will execute periodically on the data center. 

These periodic jobs also require significant resources, but delay is acceptable. A detailed 

description of power system jobs is given in Table 5.4. 

 We include “five” emergency jobs, 30 reactive jobs, and 2,930 periodic jobs in our 

dataset. Emergency power system scenarios rarely occurs in a month’s time. Therefore, we only 

include “five” emergency jobs in our simulations scenario. Reactive jobs occur more often than 

emergency jobs. Therefore, we include one job per day at a random time in the workload. 

Regular jobs required for stable power system operation are executed periodically every 15 

minutes. Power system jobs can vary from a few minutes to a couple of hours, depending on the 

number of TL outages and network size. For testing and validation of the ASM, the power 

system job timing (e.g., OPF convergence time) varies from one minute to twenty minutes [5.7]. 

End user power consumption is always variable over time, and this phenomenon is also 

considered in the simulations. Table 5.4 also includes execution time and CPU utilization for the 

various power system jobs. In contrast, time-sharing algorithms divide time on a processor into 

several slots and assign the slots to every unique job. In our work, due to the priority of power 

system jobs, we choose space-sharing scheduling algorithms for the data center. The three space-

sharing job scheduling techniques used are: (a) Longest Job First (LJF), (b) Shortest Job First 

(SJF), and (c) Shortest Remaining Time First (SRTF). 
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Figure 5.3. Network topology of the IEEE 30 bus system for reliability testing, where the data 

center is acting as a load 

 

 

Figure 5.4. Total data center load per day over a month duration 

 Substantial research in the field of parallel and distributed computing has introduced 

several job scheduling algorithms, categorized as two mainly types: (a) time-sharing and (b) 

space-sharing. Space-sharing algorithms allocate resources to a single job until the job executes 

completely. The LJF space-sharing scheduling algorithm allocates resources to the longest job 

first. LJF is known to maximize server utilization. Similar to LJF, SJF periodically sorts 

incoming jobs and executes the shortest job first. SJF tends to minimize turn-around time. SRTF 

is the preemptive form of SJF. In SRTF, the job with the smallest remaining time will be 

executed first till completion unless a new job is added that requires less execution time than the 

remaining time of the current job. The above job scheduling algorithms are used to execute 

power system jobs along with the data center workload. The priority of all power system jobs are 
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set to be higher than the data center workload, such that inclusion of power system jobs can 

delay the data center workload. In our simulation settings, the job delaying criteria for all 

scheduling techniques is to preempt the job that has the longest remaining time. Whenever there 

are two or more jobs with the same time remaining and one of these job must be preempted, the 

first job in the queue will be selected first for preemption. The reason for comparing job 

scheduling techniques is to find an optimal job scheduling technique that has the minimum effect 

on number of preempted jobs, makespan, and average queue time. Moreover, an optimal job 

scheduling technique will also reduce idle power consumption and improve data center resource 

utilization. Conversely, a scheduling technique that results in a large number of preempted jobs 

and long duration of jobs in queues will adversely affect the SLA. Similarly, a scheduling 

technique that create a large makespan for the data center workload will result in increased 

power consumption.  

In the ASM, the monetary cost to execute job is based on the “on-demand pricing 

criteria” of Amazon [5.25]. For example, a job utilizing 8 CPUs will bear a cost of $0.840/hour 

[5.25]. Moreover, the job preemption penalty is also the same as the service credit rate of 

Amazon EC2 [5.25]. 

5.7. Results and Discussions 

  We have carried out simulations of our proposed ASM on a 96 core super server SYS-

7047GR-TRF system. The data center provides in-time OPF solutions and identification of 

endangered TLs and buses for establishing a robust power system. However, due to the effect of 

power system jobs, power consumption of the data center increases. This increase in power 

consumption has various reasons that are described later in the Section. The ASM is simulated 

for the period of one month using three job scheduling techniques, as stated in Section 5.6. 
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Figure 5.5(a), Figure 5.5(b), and Figure 5.5(c) show the average power consumption of the data 

center averaged over 20 runs for a 24-hours period, under the influence of the LJF, SJF, and 

SRTF job scheduling technique, respectively. The aforesaid figures elaborate that the power 

consumption of the data center increases after the inclusion of power system jobs.  

However, we can observe from the figures that in the beginning and end hours of the day, 

the average power with the added power system jobs is less than the average power without 

power system jobs, which is counter intuitive. Since Figure 5.5 reports the average power 

consumption graphs over a month’s time, and the inclusion of power system jobs increases the 

makespan of the overall workload of the data center, the total hours of work increases, which 

reduces the average power consumption with power system jobs in the beginning and end hours 

of the day, but still yields a net overall increase in average power consumption per day of 

0.05527%, 0.05754%, and 0.06342%, using SRTF, SJF, and LJF, respectively. Figure 5.5(d) 

shows this power consumption comparison graphically for all three job scheduling techniques. 

The graph trend shows that most of the time power consumption remains the same; however, 

during the peak load period (starts from late afternoon till midnight), the SRTF performs better 

than LJF and SJF. To calculate the obvious increase in power consumption cost, a real-world 

electricity unit price is used, as shown in Figure 5.6 [5.17]. 

 This subsection describes the impact of executing power system jobs on the data center. 

The influence is observed on the number of preempted jobs, makespan of jobs, average queue 

time, and resource utilization. Job preemption involves the purging of the data center workload 

in favor of power system jobs. Figure 5.7 shows the number of preempted tasks in one month’s 

time. A job in the data center workload can have more than one task depending on the number of 

CPUs utilized by the job. In the data center, task preemption affects job execution time, which 
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may result in a monetary penalty, per the SLA. The more preempted tasks, the more the data 

center will be penalized for delaying jobs. In Figure 5.7, we observe that SJF preempts fewer 

tasks compared to SRTF and LJF. We also observe the job that was preempted the most number 

of times, as shown in Figure 5.8. Moreover, the job that is preempted the most times is also the 

longest running job in our data center workload. Furthermore, when the SJF job scheduling 

technique is used, this job is preempted fewer times compared to SRTF and LJF. 

Although, the priority of power system jobs is higher than the data center workload, the 

job preemption effect of the different scheduling algorithms is still noticeable on the power 

system jobs, as shown in Figure 5.9, which illustrates that SJF and SRTF preempt fewer power 

system jobs compared to LJF over a month’s time. SJF and SRTF preempt less than 0.1% of 

power system jobs; whereas LJF preempts four times the number of power system jobs, 0.4%. 

As shown in Figure 5.10, we also identify the effect of preemption on the longest running 

periodic job of the power system, illustrating that SRTF results in more preemptions compared to 

SJF and LJF. 

Job queue time is another important metric that directly affects data center performance. 

The longer the queue time, the longer overall execution time for jobs will be; and data center 

power consumption is directly related to job execution time. Figure 5.11 shows that average 

queue time using SJF, SRTF, and LJF increases by 4.6%, 3.6%, and 12.76%, respectively, after 

adding power system jobs. This percentage increase in queue time is directly proportional to the 

increase in number of preempted tasks of the data center.   
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.5. Power consumption comparison of data center under: (a) SJF, (b) LJF, and (c) SRTF 

job scheduling techniques. (d) Power consumption comparison of data center for all three job 

scheduling techniques when power system jobs are included  
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 The workload makespan demonstrates the total running time of jobs on the data center. A 

job scheduling technique with a longer makespan results in increased power consumption. The 

maekespan of LJF for power system jobs is approximately 17.4 minutes longer than for SJF and 

15.6 minutes longer than SRTF, as shown in Figure 5.13. As illustrated in Figure 5.14, a similar 

effect is observed for the overall data center makespan, which increases by 2.37%, 0.5%, and 

0.53% using LJF, SJF, and SRTF respectively, after adding power system jobs. As shown in Figure 

5.7 and Figure 5.11, SJF preempts fewer jobs and the percentage increase in average queue time 

for the jobs is smallest compared to the other two job scheduling techniques.  

 However, SRTF has minimum average queue time among all three job scheduling 

techniques. The power consumption of the data center is also affected by idle running resources. 

We observed the effect of resource utilization in the data center, as shown in Figure 5.15. The 

waste of idle running resources was reduced most by using SJF; however, SRTF results in the least 

number of idle CPUs. SRTF results in the least makespan and queue time, which allows jobs to 

complete earlier. Therefore, more resources will be available for execution of power system jobs 

within the allotted time. Given the current simulation parameters for data center workload and 

number of power system jobs. The best job scheduling technique among all three, when we 

consider number of power system job preemptions.  

 

Figure 5.6. Real-time electricity unit pricing offered by the power system to the data center 

during a 24 hour period [5.17] 
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 Therefore, using SJF and SRTF, the data center can safely agree on a SLA with the power 

system for computationally intensive ancillary services with minimum impact on the rest of the 

data center workload. We conclude that there is a trade-off between the two job scheduling 

techniques (SJF and SRTF). However, we have to compromise on average queue time and 

makespan of data center workload. In our ASM, the power system provides incentives to the data 

center to nullify the negative impact on data center revenue due to prioritizing power system jobs. 

These incentives include a lower electricity unit price during the execution period of power system 

jobs.  

 Moreover, as illustrated in Figure 5.9, SJF and SRTF preempted the fewest power system 

jobs during the entire month, which is the minimum job preemption possible for executing power 

system jobs. Therefore, we define this percentage as our threshold. If the data center preempts 

more jobs than this threshold, then the data center will sustain a penalty cost. For example 

residential load, commercial load, and industrial load. In the real-world, the background load 

varies depending on consumer requirements and the daily load curve. Therefore, inequality 

constraints are applied to the random background loads. 

 

Figure 5.7. Task preemption comparison in data center workload in one month’s time due to the 

inclusion of power system jobs 
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Figure 5.8. Comparison of data center workload job preempted the most times 

 

Figure 5.9. Comparison for preempted power system jobs 

 

Figure 5.10. Comparison of longest running periodic power system job preempted the most 

number of times 
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Figure 5.11. Comparison of data center workload average queue time 

 

Figure 5.12. Comparison of data center workload job with longest queue time 

 

Figure 5.13. Comparison of total running time for power system jobs during a month’s time 
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Figure 5.14. Comparison of total running time for data center’s workload during a month’s time 

 

Figure 5.15. Comparison of data center idle CPUs 

 

Figure 5.16. TLL convergence using the OPF algorithm for the IEEE 2383 bus system when 17 

TLs are out 

 

The stability and reliability of the power system depends on a balanced power flow 

solution. Once TL failures occur, the main requirement is to balance the generation and load. The 

bound on the inequality constraint is adjusted, such that the sum of the background load power 
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(active and reactive) does not exceed the total generation of the IEEE bus system minus the peak 

power consumption of the data center. Secondly, standard deviation of the background load on 

any given load bus is set at 10KW with mean value of the loads for all tested IEEE bus systems 

provided in Table 5.1.  

The cost/objective function for the OPF solution is active power loss on all TLs. The 

power loss in the system is calculated with real power miss-match between the sending and 

receiving bus of each TL. TL outages are randomly generated. Whenever an outage occurs, the 

power system jobs become emergency jobs. Moreover, when there is a drastic change in load, the 

jobs generated are called reactive jobs. For normal steady-state operation, the power system 

requires periodic checks on load and generation. These jobs are called periodic jobs. The data 

center will calculate the OPF solution to balance the power system for all three cases. If the OPF 

fails to converge, then this situation is known as a blackout or system failure. Moreover, if the 

OPF converges but TLLs exceed 5% of the generated power, then the system is still considered 

to be in a failure state. Figure 5.16 illustrates the convergence iterations of the OPF algorithm for 

the IEEE 2383 bus system. The OPF converges in 17-23 iterations in most situations. The least 

TLLs achieved for the 17 TLs outage case is 58.594MW, which is less than 5% of the total 

generated power, making this an acceptable loss. During contingencies, the TL importance index 

is also calculated. For the clarity of the readers, the results for the IEEE 30 bus system are 

presented in Figure 5.17(a). The IEEE 30 bus system presents a more elaborative picture of TL 

outages. With increased power system network size, such as the IEEE 2383 bus system, the 

influence of TL outages on the system is not well visualized graphically.  

Figure 5.17(a) shows that TL 10 and TL 20 are the most endangered TLs in the IEEE 30 

bus system because the AC power flow ratio of these TLs are higher than the threshold. The 
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overall system has more chance of failure if an outage occurs on these TLs. Furthermore, Figure 

5.17(b) shows the centrality based bus importance index. Buses with higher centralities are more 

prone to cause TL failures because these buses are associated with those TLs that have high AC 

power flow, and load power on these buses is more than for other buses. This concept is similar 

to the node centrality concept in networks [5.15]. In Figure 5.17(b), we observe that bus 1, bus 2, 

bus 3, bus 4, and bus 12 are the most critical buses in the IEEE 30 bus system. The data center 

provides an optimized OPF solution to reduce AC power flow on endangered TLs. The OPF 

solution also reduces overloading on these buses. Figure 5.18(a) shows the optimized AC power 

flow ratio of all TLs after running the OPF algorithm. The AC power flow on TL 10 and TL 20 

has been reduced, such that the remaining TLs are no longer in danger. Figure 18(b) illustrates 

the reduction in the bus importance index compared to Figure 5.17(b). The decrease in centrality 

values of the endangered buses is observed. However, Figure 5.18(b) shows the increase in 

centrality values of bus 6 and bus 12. From Figure 5.3, we can observe from the one-line 

diagram of the IEEE 30 bus system that bus 6 is the most central and critical bus in the network.  

Therefore, the centrality value of bus 6 will remain high. Moreover, bus 12 is directly 

connected to bus 13 that is directly linked with a 37MW generator. Bus 12 is the only connection 

between the 37MW generator and the entire network, such that when the transmission line 

between bus 12 and bus 13 is out, the network suddenly faces a power drop of 37MW. 

Therefore, bus 12 is the second most critical bus in the system; and after the OPF solution it still 

remains critical. The aforementioned analysis and discussion plays a pivotal role for maintaining 

stability, robustness, steady-state operation, and reliability of the power system. However, a 

problem arises when the data center is unable to complete ancillary services in time. Figure 5.19 

depicts the data center revenue curve, as illustrated in Eqn. (5.11). In Figure 5.19, 100% revenue 
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means that the incentives, 𝔉𝑖 , provided by the power system, all become the profit of the data 

center. Section 5.7 describes the results of the data center’s revenue loss for providing ancillary 

services to the power system on a priority basis. In the ASM, the data center is compensated for 

this loss by the power system. Therefore, the data center will be motivated to prioritize execution 

of the power system’s jobs. According to Eqn. (5.11), the power system will not only provide the 

cost, ℒ𝑖 , for the ancillary services to the data center, but will also provide incentive, 𝔉𝑖  , to 

maintain a minimum profit level for the data center.  

 

(a) 

 

(b) 

Figure 5.17. IEEE 30 bus system status during emergency, when an outage occurs on N-k 

transmission lines. (a) Transmission line importance index and (b) Bus importance index 
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(a) 

 

(b) 

Figure 5.18. IEEE 30 bus system status after OPF solution provided by the data center. (a) AC 

power flow on Transmission lines and (b) Bus importance index 

 

   Furthermore, the graph below 0% depicts when the data center incurs a net loss in 

revenue by delaying cloud computing jobs to execute power system jobs. Figure 5.19 also 

illustrates the minimum failure rate (𝓆𝑖  = 0.48) for a power system job that is bearable for the 

data center. In Figure 5.9, the LJF preempts 0.4% of power system jobs during a month’s time, 

which means approximately eleven power system jobs are preempted. However, SJF and SRTF 

only preempt two power system job per month. Therefore, if two or more power system jobs are 

delayed more than 48%, the data center will lose revenue.  
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5.8. ASM Convergence 

To understand the concept of ASM convergence, a specific case of the IEEE 2383 bus 

system is considered. The parameters of the system have certain limitations, as listed in. Table 

5.5. We arbitrarily selected 17 out of the 2896 TLs of the IEEE 2383 bus system to incur an 

outage for a period of ten minutes. The TLLs are increased to 62.216MW. The OPF algorithm 

reduces the power loss to 58.699MW and saves 3.517MW of power. In response, the incentives 

provided to the data center will be equivalent to the power saved by reducing TLLs. 

Figure 5.20 shows a nonlinear curve between percentage increase in data center power 

consumption and corresponding percentage increase in data center cost, when power system jobs 

are executed on the data center. The intersection points C represents the percentage increase in 

data center cost when SJF and SRTF job scheduling techniques are used, while point D 

represents the percentage increase in data center cost when LJF is used. The horizontal solid-line 

defines the threshold amount that the power system will offer to the data center for providing 

OPF solution and reduction in power losses, as mentioned above. Therefore, Point B represents 

the maximum increase in power consumption (0.29%) of the data center that will be 

compensated by the power system. If the increase in power consumption is more than this 

threshold, data center will be in loss.  

The aforementioned discussion is only for the specific case of 17 TLs out in the IEEE 

2383 bus system. The threshold defined by horizontal solid-line is dependent on the power 

system network size and number of TLs out. In the IEEE 2383 bus system, if the number of TLs 

out is more than 17, then the OPF algorithm will not provide a converged solution. Therefore, we 

conclude that the region of convergence for data center revenue, for this case only, will have a 

threshold of approximately 0.29% increase in power consumption of the data center. The data 
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center’s revenue will decrease whenever its power consumption exceeds this threshold, since the 

power system will not be able to provide enough compensation to the data center. Moreover, LJF 

is not be suitable for the execution of power system jobs. However, we can use either SJF or 

SRTF for scheduling power system jobs on data center.  

The above discussion and analysis elaborates the integration model of data centers and 

power system. Through mutual ancillary services, data center will increase its revenue, while 

power system will increase the steady-state performance and reliability during emergencies. 

Table 5.5. Input parameter constraints for model convergence at peak-load hour  

System Model Parameters Description 
Convergence  

Constraints 

Power System  

 

Maximum number of TL outage that 

the power system can sustain 

17 

Tolerance between power injection 

and power consumption 

10-8 

Limit on each Background Load 13.84MW±10kW 

Maximum Background Load (BL) 0<BL≤ 2458.4MW 

Maximum Power Loss (PL) savings 

resulting from the OPF data center 

calculation for the case of 17 TLs out 

$0 < PL ≤ $3880 

Data Center Maximum Incentives given to the data 

center (ℒ + 𝔉) 

ℒ + 𝔉 ≤ PL 

 

 

 

Figure 5.19. Data center revenue curve due to the implementation of the proposed service level 

agreement 
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Figure 5.20. Revenue convergence region for the data center. Point A depicts the percentage cost 

saved by OPF to reduce TLLs for the case of 17 TLs out. Point B depicts the maximum increase 

in power consumption of the data center to not lose revenue. Point C depicts the increase in cost 

due to SJF and SRTF. Point D depicts the increase in cost due to LJF 
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6. CONCLUSION AND FUTURE WORK 

This dissertation contributes to the development of a novel stability problem for power 

systems. We proposed an Exact Feedback Linearization (EFL) control for grid interfaced 

Permanent Magnet Synchronous Generators (PMSG) and a Hybrid Control Strategy for an 

effective Fault Ride Through (FRT) operation for Doubly Fed Induction Generator-Wind 

Turbines (DFIG-WT). Moreover, we also present a novel bi-directional ancillary services model 

for power system and data centers. Designing a stable control system is challenging because of 

the uncertainties during faults, and disturbances. By efficiently designing the control system, the 

proposed schemes achieved better performance in terms of robustness, performance, and steady-

state performance during faults. The proposed research and simulation results are presented in 

separate chapters, and a brief summary of contributions is provided in the following subsection. 

6.1. Summary of Contributions 

In Chapter 3, we presented a detailed simulation and analysis of the PMSG models 

interfaced with the grid network. The stability and robustness against faults and disturbances 

plays a pivotal role in the efficiency of the grid-interfaced PMSG wind energy systems. We 

applied the EFL control scheme for the critical and comparative analysis of the PMSG Boost and 

PMSG Rectifier-Inverter. The spikes perturbations in the output DC link voltage response of the 

PMSG Boost were the main cause of instability in the designed system. The involvement of the 

trigonometric parameters in the control model of the PMSG Boost resulted in small spikes in the 

output DC link voltage. The EFL control law for the PMSG Boost was further linearized and 

simplified that resulted in the effective performance of the system in case of electrical grid faults. 

The stability of the PMSG Boost was limited, as the mechanical torque variations were only 

accepted up to 95% of the rated value. 
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The robustness of the PMSG Rectifier-Inverter was tested using different perturbations. 

The PMSG Rectifier-Inverter was proved to be more robust and efficient as compared to the 

PMSG Boost during the grid faults and varying mechanical perturbations for the wind energy 

applications. The EFL controller performance was compared with the conventional PI controller. 

In the PMSG Rectifier-Inverter, the EFL controller generated the fast response, quick settling 

time, and more robust performance as compared to the PI controller. 

Chapter 4 discussed the FRT schemes employed for grid-interfaced DFIG-WTs.  We 

evaluated the symmetrical and asymmetrical grid faults for the stability and steady-state 

performance of the DFIG-WT during FRT operation. Among all above mentioned strategies, 

Hybrid control strategy (Strategy-D) performs a robust and optimized performance with limited 

overloading of the power devices. Under symmetrical grid faults of 300ms, the proposed scheme 

was capable of power generation and absorbs excessive energy with slight increase in rotor speed 

at coupling point. Moreover, the fault switching transients and DC link voltage were suppressed 

effectively in rotor side converter and grid side converter. Furthermore, by implementing new 

control strategy, DFIG-WT provided voltage and reactive power support to the grid and effective 

“ride-through” during grid faults. 

In case of asymmetrical grid faults, double-phase (2Φ) fault was most serious for DFIG-

WT during FRT. The negative-sequence stator voltage induced very high EMF in rotor side 

converter than positive-sequence voltage. The positive-sequence power capability of WT was 

also limited for asymmetrical faults. For severe, grid faults, the fluctuations cannot be eliminated 

because of limited power rating capabilities of the electronic circuitry. There existed a trade-off 

between damping oscillations and power support of WT. Moreover, our proposed strategy 

strongly fulfilled stringent grid-code requirements for FRT. Furthermore, compared to classical 
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and advanced schemes, Hybrid Control Strategy provided the most robust control against various 

short-circuit faults.  

In Chapter 5, we proposed an analytical model for a mutually beneficial relationship 

between a data center and its power system. The model ensures data center revenue 

maximization and power system stability and reliability enhancement. Our model includes 

several factors, such as Service Level Agreement (SLA), electricity price, data center revenue 

model, Optimal Power Flow (OPF) solution for the power system to reduce transmission line 

losses, and identification of endangered buses and transmission lines. The simulations using a 

real-world data center’s workload and IEEE standard bus systems validate the performance of 

the Ancillary Services Model (ASM). 

6.2. Future Work 

In the near future, we will extend the robust affine PMSG grid-interfaced wind energy 

system to various MIMO-WECS using the EFL control scheme. We will further incorporate 

multi-RERs, multi-decentralized controls and power grid model together for the smart design of 

the MIMO-WECSs for the RE application in the smart grid environment. Our multi-

decentralized control model of MIMO system will include excitation control, steam-valve 

control, and ripple free DC link voltage. 

We will also extend our work of FRT operation of DFIG-WT further using PMSG-WT 

control during grid faults. The differential geometry and Lie-algebra based control, such as exact 

feedback linearization will be used for designing higher-order schemes for effective FRT 

operation for both DFIG and PMSG. 

The proposed ASM will be further extended to multiple data centers attached to the 

power system. Various demand response pricing schemes, such as time-of-use pricing will be 
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incorporated to develop cost reduction models and power management algorithms for the data 

centers and power system. This work will be further extended by incorporating the geographical 

locations of the cloud data centers. We will consider electricity price differences and server 

loading conditions for jobs migration, execution, and re-directing. The service level agreement of 

clients and cloud data centers will also be incorporated for the design of more cost efficient fault 

tolerant system.  


