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ABSTRACT 

Due to the increased concern on dissolved organic nitrogen (DON) in surface waters, it is 

necessary to understand the biodegradability and bioavailability of DON in point and non-point 

sources. In this study, algae and bacteria were applied under lab condition to undestand the 

impact of DON to water environment. Biodegradable DON (BDON) was determined using 

bacteria while bioavailable DON (ABDON) was determined using green algae Selenastrum 

capricornutum, Chlamydomonas reinhardtii, and Chlorella vulgaris and/or mixed culture 

bacteria in municipal and animal wastewaters. In both wastewater sources, ABDON efficiencies 

(%) for all three algae were not significantly different indicating that Chlamydomonas reinhardtii 

and Chlorella vulgaris can be used as a test species for nitrogen determination similar to 

Selenastrum capricornutum. Results showed that, the ranges of BDON and ABDON in 

municipal wastewaters were 50-60% and 30-77%, respectively, while the ranges of BDON and 

ABDON in animal wastewaters were 48-54% and 40-81%, respectively.   
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CHAPTER 1. INTRODUCTION 

1.1. Background 

Excess nitrogen in water environment are mainly linked to human activities, including 

agricultural uses of fertilizer, application of manure, and discharge of municipal wastewater. 

Nutrient over-enrichment in receiving waters affects ecological systems by stimulating harmful 

algal blooms. The overabundance of algae in water ecosystems reduces water transparency, 

creates oxygen-deprived aquatic zones, and ultimately leads to death of dwelling plants and 

fishes. Dissolved organic nitrogen (DON) is one of the dominant nitrogen forms in surface 

waters and its natural and/or anthropogenic inputs increases deterioration of the water quality.  

DON in aquatic systems originated from both non-point and point sources. Field research 

and modelling studies suggest that DON in groundwater is mainly released by sandy sediments 

through digenetic reactions (Gobler and Sanudo-Wilhelmy 2001). Atmospheric DON deposition 

is another great non-point contributor to watershed and the concentration is greatly affected by 

human activities and seasonal changes (Zhang et al., 2012). Wastewater effluent from point 

sources is another significant DON contribution to surface waters.  

Current knowledge on the fate and characterization of wastewater derived DON are 

limited. Biologically enhanced nitrogen removal process largely reduces nitrogen load by 

transforming dissolved inorganic nitrogen (DIN) to free nitrogen via denitrification process. 

Thus, DON in advanced wastewater treatment plant (WWTP) effluents becomes the major 

component in effluent total dissolved nitrogen (TDN). In final effluent of tertiary (advanced) 

WWTPs, DON concentration ranges between 0.3 and 1.8 mg-N/L which could comprise 

between 25 and 70% of final effluent TDN (Pehlivanoglu Mantas and Sedlak, 2006; Sattayatewa 

et al., 2009; Simsek et al., 2012). However, the level of DON from other point and non-point 
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sources such as wastewaters from animal feeding operations and agricultural runoff are still 

poorly investigated.  

Several studies have been conducted to characterize the compositions and properties of 

DON in last decade (Pehlivanoglu Mantas and Sedlak. 2008). Nevertheless, identifying the 

composition of DON at any given time in a treatment plant remains as a great challenge. In 

primary effluent, proteins are considered as the major group of effluent organic nitrogen 

(Westgate and Park, 2010). In secondary biological treatment, researchers have confirmed that 

chelating agents and soluble microbial products (SMPs) can be produced by microorganisms 

within the process (Parkin et al., 1981; Westgate and Park et, 2010). In treated effluent prior to 

discharge, Pehlivanoglu Mantas and Sedlak (2008) reported that only about 30% of DON have 

been identified, which contained organic compounds such as amino acids, dimethylanine (DMA), 

and ethylenediaminetetraacetic acid (EDTA), while 70% of DON remained unknown. However, 

organic nitrogen forms in treatment plants effluent are mainly driven by different biological 

treatment methods. Biological nitrification process can reduce the concentration of hydrophobic 

portion of DON, while advanced treatment processes, such as powdered activated carbon and 

soil aquifer treatment, could substantially remove all kinds of organic matters which results in 

the change of DON composition fraction (Krasner et al., 2009; Chen et al., 2011).  

Previous studies evaluated the impact of effluent DON to algal and bacterial species in 

receiving water environments. Wastewater-derived DON is both biodegradable and bioavailable 

to bacteria and/or algae in bioassays experiments. Biodegradable DON (BDON) and bioavailable 

DON (ABDON) have been determined in different stages of wastewater along the treatment train 

as well as in various biological nutrient removal (BNR) systems, such as activated sludge (AS), 

anaerobic-anoxic-oxic process (AAO), Bardenpho reactor, trickling filter (TF), and membrane 
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biological reactor (Urgun-Demirtas et al. 2008; Sattayatewa et al., 2009; Liu et al., 2012; Huo et 

al., 2013; Simsek et al., 2013; Qin et al., 2015). These studies showed that the BDON and 

ABDON ranged widely between 28 and 86% of influent DON. Meanwhile, DON became more 

bioavailable to algae in the presence of bacteria.  

Green alga Selenastrum capricornutum (S. capricornutum) is considered as a test species 

by the U. S. Environmental Protection Agency (EPA) to examine wastewater nutrients and 

toxicity. Adopted from EPA Printz Algal Assay Bottle Test, S. capricornutum has been 

commonly applied in bioassay studies to determine the bioavailability of wastewater (Urgun-

Demirtas et al. 2008; Sattayatewa et al., 2009; Liu et al., 2012. Simsek et al., 2013). The lack of 

information on the bioavailability of DON to other algae species limits the complete 

understanding of ABDON. Therefore, the overall goal of this study was to investigate the 

bioavailability of DON to three different algal species, which were S. capricornutum, 

Chlamydomonas reinhardtii (C. reinhartii) and Chlorella vulgaris (C. vulgaris) with/without 

bacteria addition in municipal wastewaters and two different algal species, which were C. 

reinhartii and C. vulgaris with/without bacteria addition in animal wastewaters.  

1.2. Research Objectives  

The main scope of this research was to investigate bioavailability of DON to different 

algal species with/without presence of bacteria. The specific objectives were as follows: 

1. To examine DON, ABDON, and BDON in wastewaters collected from a two-stage 

trickling filter WWTP using three different algal species: S. capricornutum, C.reinhardtii, and C. 

vulgaris with/without the presence of mixed culture bacteria.  

2. To investigate DON, ABDON, and BDON in wastewaters collected from an animal 

feeding operation center storage tank and from a sheep wastewater storage lagoon system using 
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two different algal species, which were C.reinhardtii and C. vulgaris with/without the presence 

of mixed culture bacteria. 

1.3. Hypotheses 

The corresponding hypotheses based on the study objectives, are: 

1. Bioavailability and biodegradability of DON to three different algal species are 

different. DON is more bioavailable to algae + bacteria compare to algae only inoculum. 

2. DON in agricultural wastewater has similar characterization as domestic wastewater 

which is bioavailable to algae and/or bacteria.  

1.4. Thesis Organization  

This thesis contains 5 chapters. Chapter 1 describes the general introduction and overall 

objectives of the study. Chapter 2 provides an overview of related background and previous 

literature on DON, ABDON, and BDON. Chapter 3 and 4 describe the ABDON and BDON 

study in municipal and animal agricultural wastewaters, respectively. Lastly, Chapter 5 provides 

an overall conclusions and further recommendations.  
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CHAPTER 2. LITERATURE REVIEW 

2.1. Dissolved Organic Nitrogen 

2.1.1. Definition, Determination, and Environmental Impact 

Nitrogen is an essential nutrient source for plant and animal nutrition and it controls the 

productivity of aquatic ecosystem. Optimal amount of nitrogen is important to natural surface 

waters, such as lakes, streams, rivers, estuaries, and oceans; however, in high concentrations it 

can be a contaminant in the water environment. DON pool in aquatic ecosystem consists of 

various N-containing functional organic compounds, such as nucleic acids, amino sugars, 

proteins, and humic substance (Berman and Bronk, 2003). Molecular weight fractionation of 

DON is an approach to understand the bioavailability of DON. In oceans, about 30% of marine 

DON is comprised as high molecular weight (HMW) DON which consists of great fraction of 

amide-N compounds and small portion of humic substances (Repeta et al., 2002; Aluwihare et al., 

2005). In municipal wastewater effluent, low molecular weight (LMW) nitrogen compounds that 

have a molecular size less than 1000 Dalton cutoff, such as free and combined amino acids play 

a dominant role (50-78%) of the secondary effluent DON (Parkin and McCarty, 1981; 

Pehlivanoglu-Mantas and Sedlak, 2008).   

DON behaves as a dynamic participant in N cycle which is biochemically transformable 

through ammonification, nitrification, and denitrification by bacteria first to ammonia N (NH3-N) 

and nitrate N (NO3-N), and then back to atmospheric N. In surface waters, the chemical 

compositions and properties of DON largely depend on its origination from numerous natural 

and anthropogenic sources, atmospheric deposition, and autochthonous production. Therefore, 

different DON issues that include DON determination methods, structural composition, sources, 
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sinks, and environmental impact of DON are main challenges remained, which requires 

significant consideration. 

Since there is not a direct method available to measure DON, one major challenge on 

DON characterization is the lack of reliable measurement methods to quantify it. Generally, 

DON is determined indirectly from the mass-balance equation of nitrogen (Equation 2.1.). To 

increase the accuracy of DON determination, the measurement variance of dissolved ammonia N 

(DNH3-N), dissolved nitrite N (DNO2-N), dissolved nitrate N (DNO3-N), and TDN must be 

reduced. TDN is commonly determined using persulfate digestion method that was firstly 

developed by Delia et al. (1977). In this method, nitrogenous compounds are converted into 

DNO3
- with oxidizing reagent under alkaline conditions. In 1992, Crumpton et al. determined 

DNO3
- using second derivative UV spectrophotometric methods (SDUS) at the peak of 224 nm. 

Eckford and Fedorak (2002) further suggested that the SDUS method was reliable to determine 

DNO3
- when wastewater contained organic compounds. Sattayatewa et al. (2011) modified and 

described a simple protocol to measure TDN combining persulfate oxidation and the second-

derivative UV spectrometry method. This protocol proved high accuracy on DNO3
- measurement 

at very low DON concentration (0.05-3 mg-N/L, Sattayatewa et al., 2011). 

 DON (mg-N/L) = TDN – DNH3-N – DNO2-N – DON3-N
 (Eq. 2.1.) 

The accuracy of measuring DON can be further improved by using pretreatment methods 

that consequently minimize DIN and maximize DON level in wastewater sample. Dialysis 

pretreatment by membrane (nanofiltration and reverse osmosis) and adsorption process (ion-

exchange resin) are considered as the most promising methods for low level DON (in µg-N/L) 

such as marine water. However, between 4 and 21% of organic matters including DON 

compounds can be lost during the pretreatment process. In addition, the interference of DOC and 
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DIN forms becomes another remaining challenge (Crumpton et al., 1992; Vandenbruwane et al., 

2007; Xu et al., 2010; Sattayatewa et al., 2011).  

2.2. Biodegradable Dissolved Organic Nitrogen (BDON) and Bioavailable Dissolved 

Organic Nitrogen (ABDON) 

2.2.1. Definition, Determination, and Environmental Impact 

BDON reveals the portion of DON that can be taken up by bacteria, while ABDON 

expresses the portion of DON that can be minimized by algae-only or algae + bacteria inocula. 

The level of wastewater BDON and ABDON rely on different influential factors that include 

bioassay incubation time, inoculum types, dissolved oxygen level, and the origin of wastewater. 

Excess amount of BDON and ABDON in surface waters can potentially cause algal growth and 

dissolved oxygen depletion and ultimately cause eutrophication. These two variables (BDON 

and ABDON) evaluate the potential environmental effect of wastewater-derived DON to river 

and estuaries. Therefore, characterizing BDON and ABDON can provide a better understanding 

for the impact of DON to aquatic environment.  

In general, DON from autochthonous sources, such as urban runoff, animal feedlot runoff, 

and wastewater associated with human activities, are more bioavailable to bacteria and algae, 

while DON from forest, wetlands, and soil leaching are less bioavailable (Seitzinger and Sanders, 

1997 and 1999; Bronk et al., 2010). Certain organic compounds such as urea can be readily 

converted to ammonium carbonate and it can be found as ammonium instead of urea in aquatic 

system. Some portions of DON are readily biodegradable and/or bioavailable to bacterial 

communities in biological treatment systems, while some portions of it remain recalcitrant 

(Seitzinger and Sanders, 1997; Bushaw-Newton and Moran, 1999; Koopmans and Bronk, 2002; 

Vahatalo and Zepp, 2005; Pehlivanoglu-Mantas and Sedlak, 2006). In addition, previous 
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investigations have proved that a great portion (between 50 and 85%) of the refractory DON 

becomes biodegradable and/or bioavailable to living organisms when the optimum 

environmental conditions, such as the concentration of initial DON, residence time, type and 

amount of bacterial and algal communities, DO level, and temperature, are met (Koopmans and 

Bronk, 2002; Pehlivanoglu and Sedlak, 2004; Vahatalo and Zepp, 2005; Urgun-Demirtras et al., 

2008; Sattayatewa et al., 2009; Simsek et al., 2013).  

BDON and ABDON determination methods have been developed to evaluate the 

bioavailability and biodegradability of DON under different experimental conditions 

(Pehlivanoglu and Sedlak, 2004; Urgun-Demirtas et al. 2008; Khan et al., 2009; Simsek at al., 

2012). BDON and ABDON are calculated as the differences of DON values before and after 

incubation. BDON relies on the changes of initial DON (DONi) and final DON (DONf) in 

bacteria-only (B-only) seeded samples (Equation 2.3.) (Simsek et al., 2012). The ABDON 

calculation relies on the changes between DONi and DONf in algae with/without bacteria 

inoculated samples before and after the incubation period (Equation 2.2.) (Simsek et al., 2013). 

Blank corrections (inoculum controls) for either bacteria or algae bioassays and the blank 

samples are carried throughout the experiments. Final calculations are included blank for DONi 

(DONbi) and blank for DONf (DONbf) (Equations 2.2. and 2.3.).  

 BDON (mg-N/L) = [(DONi – DONf) – (DONbi – DONbf)]
 (Eq. 2.2.) 

 ABDON (mg-N/L) = [(DONi – DONf) – (DONbi – DONbf)]
 (Eq. 2.3.) 

Studies have emphasized on wastewater BDON and ABDON from different aspects of 

initial wastewater treatment methods, various length of incubation period, and different types of 

bioassay inoculum (Pehlivanoglu and Sedlak, 2004; Khan et al., 2009; Sattayatewa et al., 2009; 

Simsek et al., 2013). Prior to determining DON, BDON, and ABDON, the initial samples are 
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filtered using different pore size of membrane filters including 0.2, 0.45, and 1.2 µm filter sizes 

depended on the experimental design (Pehlivanoglu and Sedlak, 2004; Urgun-Demirtas et al. 

2008; Simsek et al., 2013). Particulate fraction of organic matters that greater than 0.45 µm 

usually contains various suspended solids, such as algae, protozoa, and bacterial cells, while the 

portion of DON passed through 0.45 µm is mainly cell fragment and macromolecules including 

proteins and lipids (Shon et al., 2006). Smaller pore-size filter (such as 0.2 µm) can further 

eliminate the bacteria, while retaining more organic nitrogen constituents from wastewater 

samples (Khan et al., 2009). 

Different lengths of incubation periods from 14 to 180 days have been applied in 

bioassay tests (Pehlivanoglu and Sedlak, 2004; Khan et al., 2008). Short incubation periods (5 

days), which have been applied in BOD and DOC determination, did not achieve sufficient 

biodegradation of DON. Then, 14 days (2-week) of incubation period were used to determine 

BDON and ABDON in the study of Pehlivanoglu and Sedlak (2004) and Urgun-Demirtas et al. 

(2008). Khan et al. (2008) described a protocol to determine BDON choosing a 20-day 

incubation period for tertiary treated effluent. They suggested that there was limited BDON 

exertion after 20 days. Simsek et al. (2012 and 2013) selected 28 days of incubation period to 

determine wastewater derived DON in primary effluent. Long term incubation such as 60 or 180 

days could not contribute to additional biodegradability in bioassay experiment. Nevertheless, 

long term incubation in the environment may cause the release of DON from phytoplankton and 

the increase of DON in wastewater (Khan et al., 2009; Sattayatewa et al., 2009). 

Both natural inoculum and highly selected bacteria from WWTPs have been applied in 

BDON and ABDON assay experiments. To represent the real environmental conditions, 

Sattayatewa et al. (2009) filtered the local river water and used the retentate on the 0.2 µm filter 
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as natural bacteria. Liu et al. (2012) further selected the bacteria that passed through 1.0 µm 

pore-size filter and retained on 0.2 µm membrane filter. Moreover, Khan et al. (2009) used 

mixed liquor suspended solids (MLSS), which contained raw wastewater and activated sludge in 

their experiments. They investigated different concentrations (30, 60, 120, 240 mg/L) of MLSS 

in the BDON assay suggesting that MLSS at 240 mg/L was most appropriate for BDON assay. 

Later, Sattayatewa et al. (2009) and Simsek et al. (2012) further adopted this approach using 

diluted MLSS and primary wastewater as bacterial inoculum for bioassay.  

DON pretreatment of wastewater did not greatly affect the BDON and ABDON assay 

results. Sattayatewa et al. (2011) prepared both ion-exchange rinsed and untreated wastewater. 

For pretreated effluent, during BDON and ABDON assay, additional mineral nutrients were 

added to wastewater to support essential algal growth since nitrate and phosphorus were 

removed in the ion-exchange resin. BDON and ABDON results were recorded slightly higher in 

pretreatment of wastewater than they were in untreated wastewater. In terms of degradation, 

BDON and ABDON showed similar first order degradation rate in both treated and untreated 

wastewater. 

Bioassay is an important approach to study DON and it has been conducted to analyze 

different nitrogen species in laboratory condition. In the tests, nitrogen uptake by algae largely 

depended on the bioavailability and energetically expense of different nitrogen forms. In general, 

ammonium is the most favorable form for algal utilization since it requires less energy and 

enzyme (He et al., 2013). Lower ammonia concentration (<50 mg/L) is generally preferred by 

microalgae since high ammonia concentration can inhibit photosynthesis (Abeliovich and Azov, 

1976). Moreover, nutrient utilization efficiencies by algae in bioassay experiments are mostly 

affected by initial nutrient concentration, cell inoculate density, pH, light exposure time and 
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intensity, and temperature (Cai et al., 2013). The pH value around 7 to 7.5 were most optimal for 

C. vulgaris and C. reinhardtii growth, however, C. reinhardtii still achieved sufficient growth 

under pH condition from 6.5 to 9.5 (Kong et al., 2010). 

Pehlivanoglu and Sedlak (2004) applied S. capricornutum in wastewater effluent prior to 

discharge to determine the bioavailability of DON. The bacterial inoculum in the bioassay was 

isolated from effluent receiving surface waters (Truckee River). Their results showed that DON 

was not readily available to algae S. capricornutum, while around 56% of DON was available to 

algae and bacteria. Later, Sattayatewa et al. (2009) conducted similar experiments with 

wastewaters consisting low nitrogen level. About 28 to 57% of DON was biodegradable for 

bacteria in 40 days of incubation period, while DON in large molecules was likely to be 

converted to ammonia before final use. The results concluded that 28 to 48% of DON was 

bioavailable to algae, which utilized the big portion of DON in 3 to 8 days. Similarly, ABDON 

assay has been performed to examine the bioavailability of specific portion of DON (Liu et al., 

2012; Qin et al., 2015). Hydrophilic substances can contribute to 64 to 80% of DON. Liu et al. 

(2012) evaluated the bioavailability of hydrophilic and hydrophobic DON. They extracted the 

wastewater effluent to separate hydrophilic and hydrophobic DON. Their results showed that 40 

to 85% of hydrophilic DON was bioavailable to algae + bacteria in the bioassay study, while the 

hydrophobic portion of DON was not readily available for algae in 14 days.  

In ABDON assay tests, algae S. capricornutum have been mostly applied to determine 

wastewater ABDON in previous studies (Pehlivanoglu and Sedlak, 2004; Urgun-Demirtas et al., 

2008; Sattayatewa et al., 2009; Simsek et al., 2012). S. capricornutum (also called as 

Pseudokirchneriella subcapitata; Monraphidium capricornutum; Raphidocelis subcapitata; and 

Ankistrodesmus bibraianus) is considered as a standard species in the laboratory bioassay. 
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Culturing S. capricornutum is relatively easy under lab condition. In Printz Algal Assay Bottle 

Test protocol developed by EPA, the recommended S. capricornutum culture conditions 

suggested to control temperature at 25  1℃, light intensity about 4306 lux, and continuous 

agitation rate at 100 rpm (Miller et al., 1978). However, single test species (S. capricornutum) 

inhibits the comprehensive understanding of the fate and characterization of DON and ABDON.  

Other microalgae species such as C. reinhardtii, Scenedesmus obliquus, and C. vulgaris 

have proved high nutrient removal efficiency and great environmental adaptability in varies 

wastewaters (An et al., 2003; Kong et al., 2010; Ruiz-Marin et al., 2010). These algae have been 

used in the studies to remove nitrogen in wastewaters with a wide range of initial concentrations. 

Both C. vulgaris and C. reinhardtii showed high TDN removal and were tolerant to high 

ammonia. C. vulgaris removed 23 to 100 % of TDN in wastewater with initial TDN of 13 to 410 

mg/L, while C. reinhardtii showed 42 to 83% of TDN removal in animal wastewater with an 

initial TDN of 130 mg/L (Aslan and Kapdan, 2006; Kong et al., 2010). Besides S. capricornutum, 

C. reinhardtii have also been used as a test species by EPA in the method, which was a short-

term method to estimate the chronic toxicity of effluents and receiving waters to freshwater 

organisms (Lewis et al., 1994). Those microalgae species can further applied in ABDON assay 

test. 

Bioavailability of DON to C. vulgaris and C. reinhardtii have not been fully understood; 

however, studies have demonstrated that when inorganic N (ammonia and nitrate) is limited in 

the sample, algae species can utilize certain organic nitrogen compounds such as urea and amino 

acid (Hodson et al., 1969; Happe and Naber, 1993). Hodson et al. (1969) applied 15N labeled 

tracer experiments and found that C. vulgaris metabolized urea and sequentially formed 

ammonia under dark aerobic condition. Under certain conditions, uptake of compounds, which 
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occurred via active transport, was caused by the concentration gradient when the organic 

nitrogen level was high. For large MW compounds, enzyme activates which mainly include 

amino acid oxidation and peptide hydrolysis, are necessary to breakdown proteins and produce 

small compounds. Munoz - Blanco et al. (1990) observed that C. reinhardtii utilized the L-amino 

acid directly and further oxidized it into ammonia to support algal growth. In addition, leucine 

amino peptidase, which is capable of hydrolyzing proteins, have been found on cell wall of C. 

reinhardtii indicating the existence of external proteolytic enzyme activities to hydrolyze 

peptides (Langheinrich, 1995). 

2.3. DON, BDON, and ABDON in Natural Water Ecosystem 

DON consists of a great proportion of TDN in natural streams, lakes, and marine 

ecosystem. The fraction of DON in surface waters is higher than other constituents in the N 

pools, such as particulate organic nitrogen (PON), ammonium, nitrate, and nitrite (Berman and 

Bronk, 2003). In general, DON concentrations in rivers and lakes are below 100 M-N, while 

the DON to TDN ratio could show a wide range (8 to 83%) (Hopkinson et al., 1998; Seitzinger 

and Sanders, 1997). Even though DON concentrations in some selected rivers (Parker River, 

Childs River, Susquehanna River, and Satilla River) in Georgia and Maryland were low that 

varied between 23 and 56 M-N, the fraction of DON to TDN was relatively high that varied 

between 19 and 94% of TDN (Hopkinson et al., 1998).  

DON in surface waters can be released from natural inputs, such as forest floor, 

sediments, and atmospheric deposition. DON can also be naturally released via biological 

processes of cell lysis and bacterial transformation from soil and sediments (Berman and Bronk, 

2003). In some studies, DON is the dominant nitrogen form in leaching of forest floor and soil 

(Michel and Matzner, 1999; Lapworth et al., 2008). Additionally, human intervention has great 
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impact on the fraction of DON. Significant amount of DON in rivers and lakes originated from 

anthropogenic sources which were associated with human activities, such as municipal and 

industrial discharges, agriculture wastewaters from livestock operations, and irrigation runoff 

with nitrogen fertilizer application, which may further affect the water quality in estuaries and 

coastal areas.  

Perakis and Hedin (2002) observed that DON contributed about 80% of TDN in the 

rivers of an unpolluted forest in South America, while DON:TDN ratio was greatly reduced to 20% 

in polluted forest of North America. Boyer et al. (2006) has observed that riverine DON 

contributed 33 to 37% of TDN to coastal area, while significant amount of it originated from 

municipal and agricultural sources. In summer, the increase of surface flow input from municipal 

and agricultural sources resulted in the change of water salinity and the seasonal variation of 

DON:TDN ratio in the river of Southeast England as higher DON fraction was observed in 

summer than in winter (Badr et al., 2008). In addition, studies on fog and rainfall have suggested 

that DON contributed 20 to 65% of atmospheric TDN, while the majority of DON was produced 

during fossil fuel combustion processes (Cornell et al., 2003; Boyer et al., 2006).  

Transportation and accumulation of DON in downstream surface waters can greatly 

affect the living organisms in a water body since DON is a primary constituent in aquatic 

systems. The fate and amount of DON transportation and transformation in surface waters relied 

on different factors that include the spatial and temporal variations of surface water, residence 

time of the nutrient and living organisms in the water, light intensity and exposure time, initial 

DON loading rate, temperature, dissolved oxygen level, and the type of bacterial and algal 

communities. 
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DON in marine ecosystems was firstly believed to be largely refectory and unavailable 

for algae and microorganism uptake. Earlier studies reported that DON had relatively fast 

turnover cycle and very slow degradation rate (<0.005 day-1μM, Jackson and Williams, 1985). 

The traditional belief was that if DON was an available N source to phytoplankton or bacteria, 

the concentration of DON wouldn’t have been depleted. Later, with isotopic techniques, which 

were developed in 1970s, studies showed that DON was regenerated by phytoplankton due to the 

uptake of inorganic nitrogen (NH4
+, NO3

-). Similar DON release rate and uptake rate results in 

the stable concentration of DON in marine environment over the time and spaces scales (Bronk 

and Glibert, 1993; Bronk et al., 1994; Berman and Bronk, 2003; Bronk et al., 2010).   

In fact, blooms of phytoplankton were observed in the waters that contained high DON 

and low DIN levels (Keller and Rice 1989; Gobler and Sanudo-Wilhelmy 2001). In long term 

analyses, researchers noticed that enrichment of DON concentration resulted in the enhanced 

growth of alga A. anophagefferens and caused the destructive brown tides in northeast U.S. 

embayment (LaRoche et al., 1997; Golber et al, 2002; Gilbert et al., 2007). Studies have found 

that some phytoplankton can hydrolyze DON substrates directly, while others can utilize DON 

indirectly by deriving N source from DON pool with extracellular enzyme (Berg et al., 2002; 

Mulholand et al., 2004).  

The bioavailability and biodegradability of DON from different sources of rivers, 

atmosphere, and estuaries have been investigated (Wiegner and Seitzinger, 2001; Badr et al., 

2008). LaRoche et al. (1997) found that relatively high DON level (35 µM) in the Long Island 

bay stimulated the brown tide blooms (A. anophagefferens) in 1980s. By observing decrease of 

DON and an increase of algal cells, authors suggested that brown tide were more likely to occur 

in drought year when DON was more readily available than surface water DIN sources. 
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Furthermore, DON associated with anthropogenic sources tends to be more bioavailable than 

DON in natural sources. Seitzinger et al. (2002) examined that the bioavailability of DON was 

observed in sources of urban rainfall runoff, agricultural runoff, and forest, referring that DON in 

urban runoff was the most bioavailable to phytoplankton.  

Some phytoplankton species were found to be able to hydrolyze organic compounds, 

such as amino acid, urea, peptides, and proteins in natural environment (Berg et al., 2002; Gobler 

et al., 2002; Glibert et al., 2007). Wiegner et al. (2006) determined bioavailability of DON to 

phytoplankton in nine rivers of eastern U.S. They applied natural bacteria in river water samples 

under dark condition for 6 days of incubation. The results showed that 37 to 49% of initial DON 

was available to bacteria even though DIN existed in the samples. However, it was more 

common that riverine DON becomes a primary nitrogen sources for algae and microorganisms 

when inorganic nitrogen was limited. Another in-situ study conducted by McCarthy et al. (1997) 

investigated the nitrogen preference of phytoplankton in the Chesapeake Bay over a 13 months 

period. Their result indicated that N uptake sequence of phytoplankton was ammonium > urea > 

nitrate.  

Photochemical decomposition of DON is another pathway to provide N source to algae 

and bacteria. Under sunlight exposure, low MW compounds (ammonia, nitrate, and dissolved 

primary amines) were released from effluent organic nitrogen and substantially uptake by algae 

in a photochemical release assays (Bronk et al., 2010). Labile bioavailable N were produced 

from biologically recalcitrant DON via photochemical reactions to support N-limited plankton 

growth (Vähätalo and Järvinen, 2007).  

Overall, monitoring the entire large DON pool via the bioassay approach has issues 

remained. The main difficulty is that bioassay studies can measure only a small portion of DON 
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uptake while it was difficult to represent the large DON uptake rates and the DON regeneration 

rate (Bronk et al., 2007). Current available data on BDON and ABDON is not enough to 

understand the behavior and characterization of BDON and ABDON from point and non-point 

sources. Further characterization of organic nitrogen should be performed. 

2.4. DON, BDON, and ABDON in Anthropogenic Sources 

2.4.1. Municipal Wastewater Treatment Plants 

Municipal wastewater effluent DON is one of the most important autochthonous nitrogen 

sources to receiving waters and its reduction is crucial for especially nutrient sensitive surface 

waters. Wastewater effluent DON may consist of urea, amino acids, amino sugars, proteins, 

nucleic acids, fulvic acids, humic acids, and a variety of uncharacterized components. Due to the 

complex properties of DON, the identifiable effluent DON usually accounts for less than 10% of 

DON, while major portion (70%) of DON that may consists of mainly polymerized biological 

compounds, cannot be identified directly with current technologies (Pehlivanoglu-Mantas and 

Sedlak, 2006).  

The concentration of DON and BDON decreases along the treatment trains. In WWTP 

influent, DON level ranged between 5.1 and 9.0 mg-N/L, which consisted of 2.3 to 4.4% of 

dissolved combined amino acids (DCAA), 0.6 to 1.0% of dissolved free amino acids (DFAA), 

and other organic compounds. Huo et al. (2013) have observed limited DON removal (0 to 10%) 

in primary clarifiers, while most DON was removed within biological treatment process.  

Certain portion of organic matters can be removed during the biological treatment. 

Studies have investigated the fate of DON and BDON in different operational systems to 

understand removal and biodegradability of wastewater-derived DON (Sattayatewa et al., 2009; 

Simsek et al., 2012; Huo et al., 2013). Simsek et al. (2012) determined the fate of DON and 
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BDON removal in a trickling filter plant. During the treatment process in the plant, about 62% of 

influent DON and 72% of influent BDON were removed mainly in the BOD and nitrification 

treatment units. BDON in treatment train found between 51 and 69% of DON, which were high 

enough to be consider as critical for the stringent TDN discharge limits. Moreover, Huo et al. 

(2013) examined DON and BDON level in an anaerobic, anoxic, and oxic treatment plant. About 

78% of influent DON was removed in the study, while the major DON reduction (70%) was 

achieved in anaerobic process. They also observed 84% of DFAA and 48% of DCAA removal 

referring that low molecular weight (MW) DON, such as urea and amino acid, were effectively 

removed during the biological process (Huo et al., 2013).  

Based on previous studies, DON removal efficiency ranging from 60 to 80% indicates 

that a portion of DON is refractory and remains resistant to degrade during the biological 

wastewater treatment process (Simsek et al., 2012; Huo et al., 2013). A portion of refractory 

DON (0.1 to 0.2 mg-N/L) in wastewater treatment plants originated from drinking water sources 

(Lee et al., 2006). As treated drinking water was used during human activities, DON remained 

and further sent to WWTPs. Pehlivanoglu-Mantas and Sedlak (2006) reported that around 10% 

of DON in wastewater effluent was originated as disinfection by-product N-

nitrosodimethylamine (NDMA), which was produced from water treatment plants. Results 

showed that more than 50% of NDMA was biodegraded after 30 days of incubation in the 

bioassay study. They further suggested that during the BDON assay a portion of refractory DON 

in effluent can be minimized by microbial activity. In addition, Westgate and Park (2010) 

confirmed the existence of refractory DON by measuring protein concentration and protein 

profiles in effluent along the treatment trains. They found that some high MW proteins (50 to 
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150 kDa) remained in both primary and secondary effluents that were considered as recalcitrant 

DON.  

Moreover, some researchers observed that some portion of DON can be newly generated 

in different treatment units of the BNR process. In secondary biological treatment, with the 

appearance of low protein bands (25 to 50 kDa), Westgate and Park (2010) indicated that soluble 

microbial products (SMPs), which consisted of mainly amino acids and proteins, were produced 

via microbial activities. In the aerobic process of an activated sludge reactor, Czerwionka et al. 

(2012) found that DON0.1µM was released by anoxic microorganisms during the nitrification 

process. However, Sattayatewa et al. (2010) observed an increase of DON in primary anoxic 

zone which may resulted from anoxic microbial metabolism. In the BNR effluent, around 90% of 

DON was produced in biological treatment process (Pehlivanoglu-Mantas and Sedlak, 2006). To 

control effluent DON concentration, it is necessary to investigate the optimal operating 

conditions for microbial processes to reduce SMPs concentration and minimize the release of 

DON.  

Chen et al. (2011) evaluated the transformation of effluent DON in a river water that 

receives wastewater effluent from a WWTP, and found that DON concentration decreased along 

the length of the river. They determined 17 and 35% of DON removal in summer and winter, 

respectively, within the 14.3 miles length of the river. Finding higher biodegradability of DON in 

winter was unexpected by the authors, since bacterial activity must be reduced during the winter 

compare to summer. However, it was discovered that 3.9 mg/L free chlorine was applied to the 

wastewater effluent in summer but not in winter. They speculated that formation of chloramines 

during the chlorination altered the biodegradation of DON. Overall, they concluded that water 
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quality changes in an effluent dominated river Chen et al. (2011). The fate and behavior of 

effluent DON and its impact to the natural ecosystems requires further studies on DON.  

2.4.2. Animal Wastewater 

Livestock wastewaters generated from concentrated animal feeding operations, such as 

dairy, poultry, swine, and beef feedlots, are crucial agricultural point sources. TDN level in 

animal wastewater can reach to thousands in mg-N/L, while N mainly existed in the form of 

ammonia and organic nitrogen. The organic load from animal wastewater is much higher than 

domestic sewage wastewater.  

Anaerobic digestion process is commonly considered as an effective way to treat animal 

wastewater organic matters which can stabilize organics and produce methane gas. Hydrolysis is 

the first step in anaerobic digestion. During hydrolysis, organic polymers (proteins and lipids) 

are breakdown to mono and oligomers (sugars, amino acids, peptides) which become available to 

other bacteria. Enzymatic and chemical pre-treatment during digestion can help improve the 

biodegradation degree and rate of bacteria. For example, in swine wastewater, the level of 

dissolved organics was increased by 26.6 and 2.5% by adding cellulose (Trichoderma reesie) 

and protease enzymes (Bacillus licheniforms, Lee et al., 2008). Acidic (HCl) and alkaline (NaOH) 

treatment of swine wastewater can also promotes the breakdown of soluble organic matters. 

However, most studies focus on reduction of organics and production of methane gas. Further 

studies are necessary to investigate the effects of animal wastewater DON to aquatic and soil 

environment.  
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CHAPTER 3. BIOAVAILABILITY OF DISSOLVED ORGANIC NITROGEN TO 

GREEN MICROALGAE SELENASTRUM CAPRICORNUTUM, CHLAMYDOMONAS 

REINHARDTII, CHLORELLA VULGARIS AND BACTERIA IN MUNICIPAL 

WASTEWATER  

3.1. Introduction 

Biological availability of DON to bacterial and/or algal species in aquatic ecosystems 

accelerates DON transformation into highly soluble inorganic nitrogen forms include ammonia 

(NH3), nitrite (NO2
-), and nitrate (NO3

-). Some algal species preferred to utilize organic nitrogen 

species over nitrate (Berman and Chava, 1999; Mulholland et al., 2004). Hence, excessive 

concentrations of DON accumulation increase the readily bioavailable and biodegradable 

primary limiting nutrients in aquatic systems (Paeral et al., 1997; Seizinger and Sanders, 1997; 

Gobler et al., 2002, 2005). Lack of removing organic nitrogen remains potential for 

eutrophication that can result in algal blooms in receiving water. From mid-2000, brown tides in 

northeast U.S. estuaries were found correlated to DON level in receiving waters from modeling 

and long-term observations (MacIntyre et al., 2004; Trice et al., 2004; Glibert et al., 2007). The 

algal blooms had great impact to local marine ecosystems, fisheries, and public health (Cape et 

al., 2011). Therefore, removing wastewater derived DON is crucial to control the cumulative 

amount of nitrogen in surface waters. 

Due to the complex structure of DON, reducing DON (either from influent wastewater or 

generated during the biological process) has not been successful. Around 20% of DON consists 

of compounds such as DCAA, DFAA, protein, urea, and ethylenediaminetetraacetic acids 

(EDTA), while the major portion of DON structure remains unknown (Berman and Bronk et al., 

2003; Pehlivanoglu-Mantas and Sedlak, 2008; Huo et al., 2013). Researchers have confirmed 
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that some other compounds including chelating agents and soluble microbial products were 

produced by organisms during biological treatment process (Parkin et al., 1981; Westgate and 

Park, 2010). Therefore, understanding the composition and characterization of DON at any given 

time in treatment plant is still a great challenge.  

ABDON examines the portion of DON which can be minimized by algae-only or algae + 

bacteria inocula. Although many studies exist on the ABDON from natural and anthropogenic 

sources (Bushaw et al., 1996; Seitzinger and Sanders, 1997; Vähätalo, et al., 2005; Bronk et al., 

2007) limited studies are available on the ABDON in domestic wastewater (Pehlivanoglu and 

Sedlak, 2004, 2006; Urgun-Demirtas et al., 2008; Xu et al. 2010; Simsek et al., 2013). Most of 

the previous studies used a unicellular green microalgae Selenastrum capricornutum to 

investigate bioavailability of nitrogen since S. capricornutum has some advantages including 

easy to grow in the laboratory conditions and has high efficiency to utilize the primary nutrients. 

S. capricornutum has been used and suggested by United States Environmental Protection 

Agency as a test species of water quality and fresh water algae toxicity studies (van der Heever 

and Grobbelaar, 1998). It has been widely applied in toxicity studies of ionic liquids (Pham et al., 

2010), metal oxide nanoparticles (Kahru et al., 2008), and of hazard organics (Staples et al., 

2002) to quantify pollutants bioavailability. In this study, three different algal species, S. 

capricornutum, Chlamydomonas reinhardtii and Chlorella vulgaris and their combination with 

bacteria were used to obtain DON, ABDON, and BDON data in the samples collected from three 

different locations along the two-stage TF WWTP. The results were analyzed and compared to 

investigate if C. reinhardtii and C. vulgaris were also suitable to use as control species in aquatic 

environment. 
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3.2. Material and Methods 

3.2.1. Samples Source, Collection, and Preparation 

Wastewater samples were collected from the City of Fargo WWTP. The plant has a two-

stage tricking filter process, which are biochemical oxygen demand (BOD) TFs and nitrification 

TFs, with a peak pumping capacity of 29 MGD and an average flow of 11-15 MGD. The facility 

consists of an influent pumping station, screening, grit removal, two pre-aeration channels, seven 

primary clarifiers, three BOD TFs, two intermediate clarifiers, two nitrification TFs, one final 

clarifier, chlorination, and de-chlorination units. The treated wastewater from the plant is 

discharged continuously to the Red River. The samples were collected from three different 

locations, which were after primary clarifier, after BOD TF, and after nitrification TF along the 

WWTP. Total six sets of samples were collected from May 2013 to December 2014 and average 

values were presented in this study. Before performing any analysis, all the samples were filtered 

twice through 0.2 m fiber filter (Pull Scientific, USA) in about one hour after collection.  

3.2.2 Algal and Bacterial Bioassay Preparation  

Algal and/or bacterial inoculum were used to inoculate the wastewater samples. Three 

different algal species, which were S. capricornutum, C. reinhardtii, and C. vulgaris were used. 

The algae strains were obtained from UTEX (University of Texas Culture Collection of Algae, 

Austin, TX) and cultured in the laboratory as needed. The strains were grown in Bristol Medium 

containing: 2.94 mM NaNO3, 0.17 mM CaCl2·2H2O, 0.3 mM MgSO4·7H2O, 0.43mM K2HPO4, 

1.29 mM KH2PO4, and 0.43 mM NaCl. Stock S. capricornutum, C. reinhardtii, and C. vulgaris 

strains were cultivated in 500 ml clear bottles at 25℃ under aerobic conditions. Algae were 

illuminated under fluorescent lamp (5400 Lm) for 12 hours light / dark cycle. All the glassware, 

media, and double de-ionized water (DDI) were autoclaved at 121℃ for 30 min before used in 
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each experiment. Stock S. capricornutum, C. reinhardtii, and C. vulgaris strains were cultivated 

in 500 ml clear bottles at 25℃  under aerobic conditions. Algae were illuminated under 

fluorescent lamp (around 5400 lm) for a 12 hrs. light/dark cycle. Cultured algal bioassay were 

harvested by centrifuging at 3000 rpm for 5 min and washed with DDI water twice before 

inoculation. Initial cell density in each sample was controlled around 1×105 cells/mL to achieve 

supplemental growth. Bacterial bioassay was prepared from influent (raw wastewater) of the city 

of Fargo WWTP, which contained returned bacteria from intermediate clarifier. Bacterial 

bioassay was also centrifuged at 3000 rpm for 5 min and rinsed with DDI water before using. S. 

capricornutum, C. reinhardtii, and C. vulgaris, bacteria were abbreviated as S, R, V, and B, 

respectively, in entire study.  

3.2.3. Analytical Methods, ABDON and BDON Procedures 

About 50 ml filtered samples were used to analyze the initial parameters, which were 

DNH3-N, DNO2-N, DNO3-N, and TDN. DON was calculated from the mass balance equation 

(Simsek et al., 2013). All the measurements were carried out in duplication or triplication for 

each sample. The diazotization, second derivative ultraviolet spectrophotometric (SDUS) 

method, and salicylate method were used to test nitrite, nitrate, and ammonia, respectively. TDN 

was converted to nitrate after digestion and measured with SDUS method using UV-Visible 

spectrophotometer (APHA et al., 2005). 

After determining initial parameters, all the samples were placed in 250 ml bottles for 14 

and 21 days of consecutive incubation using algae-only, algae + algae, algae + bacteria, and 

bacteria-only seeds. Amber bottles were used to incubate the samples using bacterial-only 

inoculum, while clear bottles were used to inoculate the samples using algae-only, algae + algae, 

or algae + bacteria inoculum. The same parameters as in initial samples were measured and 
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finally ABDON and BDON were determined for both 14 and 21 days of incubation periods, 

respectively. The ABDON and BDON calculations relied on the change between initial DON 

(DONi, DON before incubation) and final DON (DONf, DON after incubation) values. The 

details of the ABDON and BDON methods were explained elsewhere (Simsek et al., 2012, 

2013).  

ABDON experiments in this study were divided into 8 portions based on the type of 

inoculum as; pure cultured algae (S, R, or V), algae + algae (R + V), and algae + bacteria (S + B, 

R + B, V + B, or R + V + B) inoculum. BDON experiment was presented in only one portion, 

which was bacteria-only seeded sample. For the inoculation, 1.5 ml of algae and/or 1.5 ml of 

bacteria were used and all the bottles were agitated on an orbital shaker at 100 rpm (VWR 

standard orbital shaker) with caps were tightly closed. However, all the bottles were aerated daily 

by opening the caps one or twice a day for 3-4 minutes during the incubations to maintain the 

oxygen in the samples. After the incubation, wastewater samples were centrifuged with 3000 

rpm for 5 min to separate either algae or bacteria from the samples before measurements. Control 

samples were also carried out throughout the experiments for each bioassay (S, R, V, and 

bacteria) by adding the inoculum to DDW. All the necessary corrections were made using the 

results obtained from control samples.  

Cell density was measured during by using algae counting method during the incubation 

to evaluate algal growth. Samples were observed by ZEISS LSM microscope using 1ml 

haemacytometer chamber.  

3.2.4. Statistical Analyses 

Minitab 17 was used in this study for all statistical analyses. Sample means and standard 

derivations were calculated from the duplication for each treatment. One way analysis of 
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variance (ANOVA) table was conducted at p ≤ 0.05 to evaluate the effects caused by three algal 

species with the presence and absence of bacteria.  

3.3. Results and Discussions 

Initial dissolved inorganic nitrogen, initial TDN, and initial DON were determined in the 

samples collected from all three locations in Fargo WWTP. Afterward, all the samples were 

seeded and incubated to determine final DON, ABDON, and BDON and all the results were 

presented in the Figures 4.1 to 4.4.  

3.3.1. After Primary Clarifier 

3.3.1.1. Dissolved Inorganic Nitrogen and TDN  

The samples collected from after primary clarifier contained 33.74 mg-N/L of DNH3-N 

(77% of TDN) and less than 0.5 mg-N/L of DNO2-N + DNO3-N (<3% of TDN). Average initial 

TDN measured as 42.53 mg-N/L. After 14 days of incubation, about 4.23 mg-N/L ammonia 

remained in the samples seeded with algae S while about 14.10 and 9.22 mg-N/L ammonia 

remained in the samples seeded with R and V, respectively. After 21 days of incubation, more 

than 99% of ammonia in all the samples were nitrified. In addition to ammonia already exist in 

the primary effluent samples, some portion of ammonia released through ammonification of 

DON and this portion of ammonia was also consequently nitrified. Figure 1a and b expressed 

that the big portion of ammonia was converted to nitrite and a certain portion of it was converted 

to following nitrate in algae and/or bacteria seeded samples. 

Dissolved nitrite after 14 and 21 days of incubation was high in all algae and/or bacteria 

seeded samples (Figure 3.1a). Nitrite in all the samples after 14-day of incubation was varied 

between 21.55 and 35.00 mg-N/L, while it reduced to between 15.40 and 26.00 mg-N/L after 21-

day of incubation. High nitrite accumulation in the samples possible occurred due to lack of air 
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during the incubation. González et al. (2008) conducted a study in wastewater using algal-

bacterial enclosed system, and found that 65-72% of inorganic N existed as NO2-N form after the 

incubation. However, NO2-N accumulation phenomenon was hardly reported under other field 

studies and in lagoon or pond systems.   
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Figure 3.1. Algae [S. capricornutum (S), C. reinhardtii (R), and C. vulgaris (V)] and/or bacteria 

(B) inoculum for: (a) DNO2-N, (b) DNO3-N, (c) TDN, (d) DON in Fargo WWTP primary 

effluent after 14-day and 21-day incubation.   
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Additional experiments were conducted to monitor air influence on the partial 

nitrification by diluting the influent samples about 50% to reduce nitrogen loading and remained 

same volume/air ratio in the incubation bottle. The ammonia and TDN concentrations in these 

diluted samples were measured as average 15.6 and 23.41 mg-N/L, respectively. Diluted samples 

were incubated for 21 days and the results showed that between 72 and 91% of ammonia was 

nitrified into nitrate, while the nitrite level is extremely low (NO2-N < 0.50 mg-N/L). This 

outcome proved that lower ammonia concentration required less air and mitigated the effect of 

partial nitrification. Furthermore, results showed that high nitrite concentration in the samples 

did not affect either algal growth or ABDON and BDON levels (Simsek et al., 2013).  

Dissolved nitrate was low in all the samples seeded with algae and/or bacteria for both 14 

and 21 days of incubation because of high nitrite level in the samples (Figure 3.1b). The highest 

nitrate value was recorded on the sample seeded with R+V+B, which was less than 3.0 mg-N/L. 

TDN levels were reduced in all the samples compare to the initial TDN value indicating that that 

algae and/or bacteria utilized nitrogen for their growth. (Figure 3.1c). However, this reduction 

was minimal for bacteria-only seeded samples (about 2 mg-N/L reduction). Previous studies also 

proved that algal-bloom intensity were declined in watershed ecosystem by reducing nitrogen 

load (Nuzzi and Waters, 2004; Gobler et al., 2005). After incubation, magnitude of TDN 

reductions in the samples inoculated using each pure cultured algae were as follows; R (%50.79 

reduction) > V (%43.14 reduction) > S (%32.74 reduction). The highest TDN reduction was 

observed in the sample seeded with algae R (TDN reduced to 20.67 mg-N/L). These results 

showed that algae C. reinhardtii and C. vulgaris could be used as a test species similar to algae 

S. capricornutum. 
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3.3.1.2. DON, ABDON, and BDON  

Initial DON after primary clarifier sample was 8.96 mg-N/L, which comprised of 20% of 

initial TDN. After incubation, DON concentration was reduced in all the samples (Figure 3.2a). 

DON reductions in algae-only (S, R, and V) and algae + algae (R + V) seeded samples were not 

significant and the reduction was varied between 20.5 and 35.3% of initial DON. However, DON 

was reduced more in algae + bacteria (A+B, R+B, V+B, and S+R+V+B) seeded samples, which 

varied between 56.6 and 72.3% of initial DON after 21-day of incubation. These results proved 

that symbiotic relationship between algae and bacteria enhanced DON biodegradability and 

following bioavailability. The magnitude of DON reduction in the samples after 14 and 21 days 

of incubation was similar in algae + bacteria seeded samples indicating that algae and bacteria 

interactions were essentially shorten the incubation period (Sattayatewa, et al., 2009; Simsek et 

al, 2013). DON reduction in bacteria-only seeded sample was recorded as 50.9%, which was 

higher compare to the same reduction in algae-only seeded samples indicating that bacteria-only 

seed reduced at least 15.6% more DON than algae-only seed did.  

Bioavailable and biodegradable DON for 14 and 21 days of incubations were presented 

in Figure 3.2b. Bioavailability of DON was low in pure cultured algae S. capricornutum, C. 

reinhardtii, and C. vulgaris, varied between 3.5 and 5.9 mg-N/L. However, when those algae 

mixed with bacteria (S + B, R + B, and V + B), ABDON was increased significantly (P≤0.05) 

because of symbiotic relationship between algae and bacteria. In those algae + bacteria data, S. 

capricornutum + bacteria had the lowest ABDON value (6.5 mg-N/L) compare to other two 

types of algae, even though statistically was not different. The maximum attainable ABDON 

value could be the value of influent DON (average 8.96 mg-N/L). However, none of the results 

in Figure 2b achieved this ABDON value explained that a certain portion of DON remained as 
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recalcitrant DON in the sample. The highest ABDON value in Figure 3.2b observed in R + V + 

B inoculated sample as 8.27 mg-N/L, which was very close to the maximum average initial DON 

values of 8.96 mg-N/L. These results showed that about 92% of DON was possible to be 

bioavailable to algae + bacteria in primary effluent samples when the optimum conditions were 

met. Previous studies also explained that maximum (100%) ABDON production through algae + 

bacteria was not attainable during the 14, 21, or 28 days of incubation period by using algae S. 

capricornutum as a test species. Other studies were also explained that wastewater derived DON 

comprised various forms of DON that cannot be bioavailable to algae and/or bacteria because of 

the complex structure of DON (Pehlivanoglu and Sedlak, 2004; Pehlivanoglu-Mantas and 

Sedlak, 2006; Sattayatewa et al., 2009; Simsek et al., 2013). Furthermore, Figure 2b proved that 

the ABDON results for bacteria involved samples (algae + bacteria and algae + algae + bacteria) 

were not very different from 14 to 21 days of incubation results even though 21 days of 

incubation results were always slightly higher (<2%) than 14 days of incubation results in all the 

location. BDON result (biodegradability to bacteria-only) after 14 and 21 days of incubation 

showed that about 66.3 and 77.3% of initial DON was biodegradable to bacteria, which was 

significantly higher than algae-only inoculated sample. On the contrary, BDON was lower than 

ABDON seeded algae + bacteria explained that certain portion of DON was degraded by bacteria 

and subsequently used by algae.   
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Figure 3.2. (a) DON, (b) ABDON and BDON, and (c) ABDON or BDON as a fraction of DONi 

after 14 and 21 days of incubation using algae [S. capricornutum (S), C. reinhardtii (R), and C. 

vulgaris (V)] and/or bacteria (B) inoculum in Fargo WWTP primary effluent.  
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Initial DON fraction of ABDON and BDON were presented in the Figure 3.2c. For the 

algae-only seeded samples, the minimum ABDON fraction of DON in 14 and 21 days of 

incubations were 28.23% (S. capricornutum) and 36.80% (C. vulgaris), respectively. In general, 

the bioavailability of DON to pure culture algae (S, R, or V) increased from 12.0% in 14-day of 

incubation to 16.9% in 21-day of incubation. However, algae + bacteria seeded samples showed 

very minimal increment (1-2%) of ABDON to DON ratio between 14 and 21 days incubation for 

this location. These results expressed that 14 days of incubation for algae + bacteria is 

appropriate to attain the maximum ABDON level (Urgun-Demirtas et al, 2008; Pehlivanoglu, E. 

and Sedlak, D.L., 2004), while 21 days of incubation is more appropriate for algae-only seeded 

samples. Algae + bacteria results showed that 20 to 31% more ABDON were achieved 

comparing to ABDON in algae-only seeded samples because of symbiotic relationship between 

algae and bacteria (Simsek et al. 2013; Huo et al.; 2013). For bacteria-only seeded sample, 

around 52 and 58% of DON were biodegradable to bacteria in 14 and 21 days of incubation, 

respectively. These results showed that, even though 14-day of incubation for algae + bacteria 

seeded sample was sufficient to utilize the certain amount of DON, this incubation time was not 

sufficient for bacteria-only seeded samples.  

3.3.2. After BOD Trickling Filter 

3.3.2.1. Inorganic Nitrogen and TDN 

Wastewater samples collected after BOD TF location consisted of average: 20.5 mg-N/L 

of initial DNH3-N, 0.16 mg-N/L of initial DNO2-N, and 8.65 mg-N/L of initial DNO3-N. In this 

location, about 40% of ammonia from primary effluent (average 33.74 mg-N/L) was nitrified 

into nitrite and subsequently to nitrate in the WWTP. Results from after 21-day incubation 

showed that, more than 97% of ammonia was either nitrified or used by algae and bacteria to 
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support algal and bacterial growth. Nitrite concentrations after 14-day of incubation varied 

regardless of the type of inoculum between 10.08 and 21.58 mg-N/L in all the samples. For 21-

day of incubation, all the nitrite values reduced and varied between 9.48 and 16.08 mg-N/L 

except nitrite value in bacteria-only seeded sample, which was recorded as 0.25 mg-L/N. On the 

contrary to high nitrite value in after primary clarifier location, the bacteria-only seeded samples 

in after BOD TF location had sufficient dissolved oxygen to complete nitrification in the samples 

(Figure 3.3a).  

Nitrate values varied between 5.01 and 27.88 mg-N/L after 14 and 21 days of incubation 

and the values were more or less similar for 14 and 21 days of incubations (Figure 3.3b). Nitrate 

in the sample might be originated from nitrification of nitrite and ammonium or ammonification 

of DON. Nitrate in algae-only inoculated samples were lower (<9.45 mg-N/L), compare to 

bacteria-only inoculated samples (27.88 mg-N/L) explained that algae utilized dissolved nitrate 

to support their growth, while bacteria was mostly responsible to convert ammonia and nitrite to 

nitrate (Figure 3.3b). Previous studies showed that more nitrates were utilized by algae compare 

to nitrate utilized by bacteria (Sattayatewa et al., 2009; Simsek et al., 2013). Overall results 

showed that when ammonia, nitrite, and nitrate were all existed in the water ecosystem, ammonia 

was utilized first. Cai et al. (2013) concluded that ammonia was more favorable to algae during 

algal assimilation process since utilization of ammonia requires less enzyme and energy. 

Bacteria-only inoculated samples showed that all ammonia was nitrified into nitrate after 21 days 

of incubation.    
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Figure 3.3. (a) DNO2-N, (b) DNO3-N, and (c) TDN after 14 and 21 days of incubation using 

algae [S. capricornutum (S), C. reinhardtii (R), and C. vulgaris (V)] and/or bacteria (B) 

inoculum  in Fargo WWTP BOD trickling filter effluent.   
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Average initial TDN (before incubation) was recorded as 36.27 mg-N/L, which was 

lower than initial TDN after primary clarifier samples expressed that WWTP itself removed 

about 14.7% of TDN in the BOD TF process. After 14 and 21 days of incubation, the trend for 

TDN after BOD TF samples (Figure 3.3c) were similar to the TDNs after primary clarifier 

samples. TDN reduction in algae inoculated samples increased with the presence of bacteria. The 

lowest TDN was recorded as 22.4 mg-N/L in C. Vulgaris + bacteria inoculated sample. In 

bacteria-only inoculated sample, TDN before and after incubation was quite similar since only 

about 6.5% reduction in TDN was observed.  

3.3.2.2 DON, ABDON, and BDON  

Average initial DON after BOD TF samples was recorded as 6.59 mg-N/L (Figure 3.4a) 

which was lower than DON after primary effluent (36.5% reduction in the treatment plant). 

However, DON/TDN ratio in BOD TF samples (18.23%) was comparable to DON/TDN ratio in 

primary effluent location (20.24%). Westgate and Park (2010) determined DON/TDN ratio after 

secondary treatment locations in five different WWTPs, which employed either activated sludge 

with diffused or mechanical aeration process or the Ludzack-Ettinger process and found the ratio 

between 7 and 29%. These results indicated that the organic fraction of the TDN in the effluent 

were quite high and in some critical areas regulatory agencies may require WWTPs to remove 

DON in order to reduce TDN discharge concentration. Therefore, knowledge on the structural 

characterization of DON becoming increasingly important.  

After 14 and 21 days of incubation, DON reduction in all the samples showed that some 

portion of DON was bioavailable to algae-only and bacteria-only seeds while some portion of 

DON was bioavailable to both algae + bacteria seeds (Figure 3.4a). Furthermore, some portion   
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Figure 3.4. (a) DON, (b) ABDON and BDON, and (c) ABDON or BDON as a fraction of DONi 

after 14 and 21 days of incubation using algae [S. capricornutum (S), C. reinhardtii (R), and C. 

vulgaris (V)] and/or bacteria (B) inoculum in Fargo WWTP BOD trickling filter effluent.   
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of DON neither bioavailable to algae nor bacteria seeds, which was considered as non-

bioavailable or recalcitrant DON. After 21 days of incubation, the lowest DON was determined 

in R + V + B seeded sample as average 1.33 mg-N/L, which was about 20% of initial DON. 

ABDON and BDON data were presented in Figure 3.4b. For pure algae samples, 

ABDON for S, R, and V after 21 days incubation were ranged from 2.97 to 3.37 mg-N/L, which 

were lower than ABDON level in primary effluent. ABDON and BDON in BOD TF effluent 

showed similar trends with previous location (after primary clarifier) that bacteria addition was 

always increased DON degradability and availability. To have more insight on ABDON, initial 

DON fraction of ABDON and BDON were calculated and presented in Figure 3.4c DONi 

fraction of ABDON for algae-only inoculated samples ranged from 46 – 53% for all three types 

of algae, while the same fraction in algae + bacteria samples ranged from 72 to 76%. These 

results showed that bioavailability of DON after BOD TF location in both algae-only and algae + 

bacteria inoculated samples was high compare to bioavailability of DON after primary location 

indicating that DON became more bioavailable to algae and bacteria in this (after BOD TF) 

location. This phenomenon could be explained that both bioavailable and refractory of DON 

were reduced during the BOD TF treatment process. Studies also suggested that most refractory 

forms of DON were mainly hydrophobic and easy to remove by adsorption process (Sattayatewa 

et al., 2009; Liu et al., 2012). Soluble microbial products (SMPs) is a portion of refractory DON 

which generally is considered resist to degrade (non-bioavailable/non-biodegradable) during 

bioassay. The decreased level of refractory DON indicated that SMPs was not produced during 

the BOD TF treatment. Released from the dead cells, SMPs is more likely to produce under 

anoxic and anaerobic conditions (Sattayatewa et al., 2009). 
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3.3.3. After Nitrification Trickling Filter 

3.3.3.1. Inorganic Nitrogen and TDN  

Initial DNH3-N, DNO2-N, and DNO3-N after nitrification trickling filter were 1.19, 0.21, 

and 31.90 mg-N/L, respectively. About 95% of ammonia was transformed into nitrite and 

following to nitrate in the treatment train of the plant itself. Therefore, ammonia values after 

incubation in all the samples were under detection limit. Similarly, nitrite values after 14 and 21 

days of incubation were under 0.96 mg-N/L in all the samples (Figure 3.5a). Nitrite was 

increasing in the samples from 14 to 21 days of incubation and the highest nitrite increment was 

observed in bacteria-only seeded sample with 89% of increment. This outcomes indicated that 14 

days of incubation was not adequate for bacteria to complete biological degradation of nitrogen 

(Khan et al., 2009, Sattayatewa et al., 2009; Simsek et al., 2012).  

Initial nitrate after 14 and 21 days of incubation was reduced in algae and algae + bacteria 

seeded samples while it was more or less the same in bacteria-only seeded samples (only slight 

reduction, 6.20%, was observed) (Figure 3.5b). The lowest nitrate in after nitrification TF 

location was measured in C. reinhardtii + C. vulgaris + bacteria seeded samples as 19.43 mg/L, 

which expressed 39.9% reduction on nitrate compared to the initial nitrate. This means algae + 

bacteria can be able to remove 39.9% of nitrate from treated wastewater without advanced 

treatment (denitrification) application. Initial TDN was measured as 36.35 mg-N/L, which was 

reduced in all the inoculum conditions except TDN in bacteria-only seeded sample (33.87 mg-

N/L). TDN in bacteria-only seeded samples was almost in balance with TDN before incubation 

(Figure 3.5c). The lowest TDN was determined in C. reinhardtii + C. vulgaris + bacteria seeded 

samples as (21.63 mg/L) since the nitrate reduction was higher in this sample.   
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Figure 3.5. (a) DNO2-N, (b) DNO3-N, and (c) TDN after 14 and 21 days of incubation using 

algae [S. capricornutum (S), C. reinhardtii (R), and C. vulgaris (V)] and/or bacteria (B) 

inoculum in Fargo WWTP nitrification trickling filter effluent.   
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3.3.3.2. DON, ABDON, and BDON 

Average initial DON (before incubation) in after nitrification was recorded as 3.76 mg-

N/L, which comprised of 8.7% of initial TDN in after nitrification location. In fact, this DON 

value was more or less the same as the effluent DON value that was discharged to the river. In 

some environmentally critical areas, 3.76 mg-N/L of DON is quite high because of stringent 

TDN effluent discharge limits, which is typically under 5 mg-N/L. Therefore, finding a method 

to reduce DON in treated effluent is crucial. In this study, DON was reduced significantly in all 

the samples seeded with algae and/or bacteria (Figure 3.6a). Algae + bacteria seeded samples for 

all three types of algae in this location reduced DON under 1.12 mg-N/L. R + V + B seeded 

samples showed the highest DON reduction, which comprised of 78.7% of initial DON. Algae-

only and bacteria-only seeded samples achieved only between 44.7 and 58.8% of DON 

reduction, which were higher compare to the case in algae + bacteria seeded samples. 

ABDON and BDON data was presented in Figure 3.6b. ABDON or BDON to DONi ratio 

were presented in Figure 3.6c. ABDON was low in algae-only seeded samples compare to 

ABDON in algae + bacteria seeded samples, which was the similar trends were observed in other 

two locations (after primary clarifier and after BOD TF locations). DIN, DON and TDN levels 

were different in all three locations, however ABDON and BDON trends were similar. All these 

results indicated that the differences in DIN levels in three locations did not significantly affect 

the bioavailability and biodegradability of DON. The average ABDON level for C. reinhartti 

was slightly higher (statistically not significant) than other two algal species in all three locations 

(after primary, after BOD and nitrification TFs). Previous studies explained that on the cell wall 

of C. reinhartti, aminopeptidase (apase) enzyme was found to work functionally to hydrolyze 

proteins and peptides which can best explain the phenomenon of higher ABDON in the bioassay   
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Figure 3.6. (a) DON, (b) ABDON and BDON, and (c) ABDON or BDON as a fraction of DONi 

after 14 and 21 days of incubation using algae [S. capricornutum (S), C. reinhardtii (R), and C. 

vulgaris (V)] and/or bacteria (B) inoculum in Fargo WWTP nitrification trickling filter effluent.   
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experiment. Additionally, a strong correlation between organic N and protein molecules such as 

peptides were investigated (Langheinrich, 1995; Westgate and Park. 2010). 

Similar ABDON/DONi and BDON/DONi trends were observed in after nitrification TF 

location compare to two previous locations (after primary and BOD TFs). The highest ABDON 

after 21 days of incubation was observed in R + V + B seeded samples as 73.1% of initial DON 

in this location. This results explained that 26.9% of initial DON in after nitrification location 

was recalcitrant DON, which was not removed in this study using algae C. reinhardtii, C. 

Vulgaris and mixed culture bacteria. Overall, R + V + B inoculated samples demonstrated the 

maximum bioavailability of DON in all three locations. The magnitude of BDON was less than 

ABDON in this location and about 50.9% of initial DON was recorder as BDON. This result 

confirmed that algae addition in the sample increased DON utilization.  

3.4. Summary 

This study provides important insight on bioavailability of DON using three different 

algal species (S. capricornutum, C. reinhartti and C. vulgaris) with/without bacteria addition in 

wastewater samples collected from three different locations in a two-stage TF WWTP.  

For the overall treatment train, the initial ABDON was around 6.48 mg-N/L and the final 

ABDON was reduced to 2.84 mg-N/L indicating that 64% of ABDON was reduced in the 

biological treatment. Similarly, around 66% of bioavailable BDON was removed in TF.  

In all the locations, about 70 to 80% of DON was bioavailable to mix-cultured algae + 

bacteria system. ABDON in algae-only seeded samples were quite low compare to algae + 

bacteria seeded samples proved the symbiotic relationship between algae and bacteria. Among 

all species, C. reinhartti + bacteria achieved the highest ABDON value even though statistically 

it was not significant compare to S. capricornutum + bacteria and C. vulgaris + bacteria 
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inoculum. Similarly, there was no significant difference on ABDON between 14 and 21 days of 

incubation for all three algae + bacteria seeded samples. However, ABDON values in all three 

single culture algae seeded samples for 14 days of incubation were significantly lower than in the 

case of 21 days of incubation.  
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CHAPTER 4. DISSOLVED ORGANIC NITROGEN IN ANIMAL WASTEWATER: 

BIODEGRADABILITY AND BIOAVAILABILITY  

4.1. Introduction  

Nutrient enrichment originated from livestock operations in aquatic ecosystems 

stimulates overabundance of algal growth and causes a wide range of problems including oxygen 

depletion (hypoxia and anoxia), fish kills, harm or death to other aquatic organisms, and 

subsequent habitat loss (Knight et al., 2000; Kadlec and Knight, 1996; Hunt and Poach, 2001; 

Gilley et al., 2010). Nitrogen is usually the primary growth-limiting nutrient in a water 

environment where it presents in water as organic and inorganic nitrogen (NO3
-, NO2

-, NH4
+, and 

NH3). The most dominant N forms in surface waters are nitrate and DON (Bushaw-Newton and 

Moran, 1999; Vahatalo and Zepp, 2005; Wiegner et al., 2006).  

Livestock wastewaters generated from concentrated animal feeding operations are a 

crucial agricultural point source containing suspended solids, nutrients, organic matter, pathogen, 

steroidal hormones, ectoparasiticides, mycotoxins, heavy metals, dioxins and antibiotics 

(Purdom et al., 1994; Khan et al., 2008; Chadwick et al., 2008; Wei et al., 2011). Some of the 

chemicals mentioned here are used to improve the reproductive performance of the dairy cattle. 

Transportation of these chemicals to surface waters cause contamination and may responsible 

abnormalities (alteration of endocrine function) in aquatic organisms. Proper wastewater 

management should be implemented to protect human and environmental health from exposure 

of these chemicals originated from natural and synthetic steroidal hormones (Purdom et al., 

1994; Khan et al., 2008).  

Livestock wastewaters have high nutrient (particularly nitrogen and phosphorous) values 

compare to domestic wastewaters because of high concentrations of animals in a very limited 



 

46 

area. Some parameters in livestock wastewaters are several times higher than in domestic 

wastewater. For instance, some parameters in the piggery wastewaters can be ranged of: 

biochemical oxygen demand (BOD) 500-8000, volatile solids (VS) 5000-8000, total nitrogen 

(TN) is 900-2000, and total phosphorous (TP) is 80-400 as mg/L. (Cronk et al., 1996; Gonzalez 

et al., 2008; Prajapati et al., 2014). Ammonia-N values can be reached up to 8000 mg/L in 

piggery wastewaters depending on the size and operational characteristics of the feedlots (Bernet 

et al., 1996).  

Animal wastewater has been considerable used as a growth medium of algal biomass for 

biogas production (Budiyono et al., 2010; Abou-Shanab et al., 2013). Wastewater treatment 

systems that integrated with algal biomass production are a cost effective way to produce algal 

biofuel. Abou-Shanab et al., (2013) examined six different microalgal species to treat piggery 

wastewaters and to determine their biodiesel production capacity. They expressed that 

microalgal-based treatment systems can significantly reduce nutrient concentrations in piggery 

wastewater at a minimal cost when the optimum conditions are met. C. Vulgaris was one of the 

species they used as a potential microalgal species to remove nutrients from piggery wastewater 

and quantify biomass production in their study. After 20 days of C. Vulgaris cultivation, TN was 

reduced from 53 to 27 mg/L. They concluded that TN can be utilized as NO3
-, NO2

-, NH4, and 

N2, however they overlooked organic nitrogen in their study (Abou-Shanab et al., 2013).  

Prajapati et al., (2014) used four different algal strains to determine biomass production 

potential of dairy cattle wastewaters. Along with the other physiochemical parameters, they 

measured nitrate-nitrogen and total ammonia nitrogen before and after algal treatment. DON has 

not been evaluated in their study. Initial value of total ammonia and nitrate nitrogen were 

recorded as about 160 and 75 mg/L, respectively. After algal treatment using four different algae, 
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nitrate-N removal efficiency varied between 78 and 83% while ammonia-N removal efficiency 

varied between 74 and 98%. These high removal efficiencies showed that animal dairy cattle 

wastewater is an important nutrient sources for algal species.  

Even though total nitrogen (TN) and inorganic nitrogen determination are well 

documented in livestock wastewaters, data for DON is limited. Obaja et al., (2003) determined 

TN (1700 mg/L) and inorganic species (NH4
+-N = 1650 mg/L, NO3

--N and NO2
--N were not 

detected) in piggery wastewater, however they did not mention about organic nitrogen (ON) in 

their study though from the mass balance equation, ON can be calculated as 50 mg/L, which is 

quite high.  

Previous studies indicate that some portions of DON in aquatic system is biodegradable 

and bioavailable to bacteria and algae over the time scale and it is an important nutrient source in 

nitrogen limited surface waters (Liu et al., 2011, Wiegnet et al., 2006). Biodegradable DON 

(BDON) is a portion of DON that is mineralized by bacteria. Bioavailable DON (ABDON) is a 

portion of DON that is utilized by bacteria and/or algae. There is no method to measure BDON 

and ABDON directly; however, they can be calculated from the difference between initial and 

final DON values using bioassay procedures (Khan et al., 2009, Simsek et al., 2012, 2013). 

Removing BDON and ABDON in livestock wastewaters before final discharging could reduce 

eutrophication potential.  

In this study, DON, BDON, and ABDON were evaluated in livestock wastewaters that 

collected from an animal feedlot and a sheep wastewater storage lagoon. For BDON and 

ABDON bioassays, two different pure culture algal species, C. reinhardtii and C. vulgaris, 

mixed culture bacteria, and their combinations were tested. Previous studies showed that green 

microalgae Chlamydomonas reinhardtii (C. reinhardtii) and Chlorella vulgaris (C. vulgaris) 
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have demonstrated their ability to remove nitrogen species in domestic wastewater, however 

these two species have not been used to test DON bioavailability in livestock wastewaters (Kim 

et al., 2007; Kong et al., 2010; Lee et al., 2006). 

4.2. Material and Methods 

4.2.1. Sample Preparation and Sampling Locations  

Grab animal wastewater samples were collected from two different sources: Animal 

Nutrition and Physiology Center (ANPC) and ii) a sheep wastewater storage lagoon. Wastewater 

samples were filtered first through 1.2 µm pore-size glass fiber filters and subsequently filtered 

through 0.45 m pore-size glass fiber filters (Whatman Inc. Kent, UK) within one hour after the 

collection. Six sets of samples were collected from April 2014 to October, 2014. 

4.2.1.1. Wastewater Samples Collected from Animal Feedlot 

In the first part of the study, the animal wastewater samples were collected from animal 

feedlot, which is an animal research facility belongs to North Dakota State University (NDSU) in 

Fargo, North Dakota. Varies types of animals have been raised in this facility and the number 

and types of animals at a certain time varies depends on the research need. During the sample 

collection time, there were sheep, pig, and mostly cattle (about 100-head cattle) in the feedlot. 

About 60,000 gal/day wastewater was generated in the facility. The wastewater flows through a 

solid separator unit for hay separation and then the liquid portion (wastewater) flows to a liquid 

storage tank for about three days of storage prior to final discharging into the City of Fargo 

sewage system. The samples were collected from the storage tank.  

4.2.1.2. Wastewater Samples from Sheep Wastewater Storage Lagoon 

In the second part of the study, the animal wastewater samples were collected from a 

storage lagoon that receives animal wastewater and runoff from a sheep research feedlots, which 
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is also belongs to NDSU. There were about 200 head of sheep available during the sample 

collection period. The lagoon received rain water as well in some of the sampling time frame. 

When it was needed, the lagoon wastewater was pumped out to nearby crop field. The 

wastewater samples were collected at 0.4 m depth from the lagoon surface.  

4.2.2. Algal and Bacterial Inoculum Preparation 

Two algal species, C. reinhardtii and C. vulgaris, were used in this study to inoculate the 

wastewater samples. Both algae were obtained from University of Texas Culture Collection of 

Algae, Austin, TX. The algal strains were grown in Bristol Medium containing: 2.94 mM NaNO3, 

0.17 mM CaCl2·2H2O, 0.3 mM MgSO4·7H2O, 0.43mM K2HPO4, 1.29 mM KH2PO4, and 0.43 

mM NaCl. Both algae were cultured in 500 ml clear bottles with continuous aeration at 20℃. 

Bottles were illuminated for 12 hr light/dark cycle by artificial lights (six fluorescent tube lamps, 

15 inches long and 15 W each). The stock C. reinhardtii and C. vulgaris solutions were 

centrifuged at 3000 rpm for 5 min and rinsed with DI water twice before inoculated in the 

samples. The initial algal cell density was measured around 105 cells mL-1 by using a ZEISS 

LSM microscope to achieve supplemental growth during ABDON incubation. As bacterial 

inoculum, approximately 10% diluted MLSS were prepared, which initially obtained from the 

City of Moorhead WWTP (Moorhead, MN) (initial MLSS was about 2,500 mg suspended 

solids/L). In this study, C. reinhardtii, C. vulgaris, and bacteria were abbreviated as R, V, and B, 

respectively. All the glassware, including double de-ionized water (DDI) were sterilized by 

autoclaving at 121℃ for 20 - 30 min before conducting any experiment. 

4.2.3. Experimental Design 

All the samples were inoculated using algae and/or bacteria and incubated for 21 days to 

determine DON, ABDON and BDON. The 21 days of incubation period in the experiment was 
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proceeded from previous studies (Pehlivanoglu and Sedlak, 2004; Urgun-Demirtas et al., 2008; 

Sattayatewa et al., 2010; Simsek et al., 2012) and preliminary results of this study. To determine 

ABDON, the samples were inoculated using algae-only (R-only or V-only), algae + algae (R + 

V), algae + bacteria [(R-only or V-only) + B], or algae + algae + bacteria (R + V + B) inoculum. 

To determine BDON, the samples were inoculated using bacteria-only (B) inoculum.  

For each experiment, a 100 ml of wastewater sample was placed in a 250 ml of clear 

bottle and seeded with 1.5 ml pure culture algal species and 1.5 ml of bacteria based on design of 

the experiment. The sample volume to air volume in the bottle did not exceed to 50% ratio to 

ensure sufficient air contact to maintain oxygen level (Miller et al., 1978). Control samples were 

prepared for each bioassay by adding the algae and/or bacterial inoculum to DDI water and 

treating it the same way as the sample. Bacteria seeded samples were incubated in amber bottle 

in dark while algae seeded samples were placed in clear bottles with 12hr dark/ light cycle of 

artificial light illumination. All the experiments were conducted on a continuous shaker (VWR 

orbital standard shaker) at the rate of 100 rpm to maintain the complete mixing during the 

incubation. After 21 days incubation, wastewater samples were centrifuged at 3000 rpm for 5 

min to separate algae and/or bacteria from the sample before measurement. After 21-day of 

incubation, algal growth in each algal and/or bacterial bioassays were evaluated by measuring 

dry cell weight (Miller et al., 1978). Based on the procedure, 50 ml samples were filtered through 

0.2m micro pore filter (Pall Life Scientific), while the retentate on the filter (algal biomass) was 

dried at 80°C for 24 hr. 

4.2.4. Determination of DON, ABDON, and BDON 

There is not a method available to measure DON directly. Therefore, DON was 

calculated as the difference between TDN and total dissolved inorganic nitrogen (TDIN). The 



 

51 

details of inorganic nitrogen and TDN measurements and following DON, BDON, and ABDON 

determinations were explained elsewhere in detail (Simsek et al., 2012, 2013).  

4.2.5. Statistical Analyses 

Minitab 17 was used in this study for all the statistical analyses. Sample means and 

standard derivations were calculated from the duplication or triplication of each treatment. One 

way analysis of variance (ANOVA) was performed at P ≤ 0.05 to evaluate the statistical 

difference between BDON or ABDON under different inoculation conditions.  

4.3. Result and Discussion  

Animal feedlot and storage lagoon samples were analyzed before and after incubation to 

determine dissolved nitrite, dissolved nitrate, and dissolved ammonia, TDN, DON, ABDON, and 

BDON. The results were presented in the Figures 1 through 4.  

4.3.1. Animal Feedlot Wastewaters 

4.3.1.1. Inorganic Nitrogen and TDN  

Average values of inorganic nitrogen concentrations before incubation (raw wastewater) 

and following 21 days of incubation results for animal feedlot samples were presented in Figure 

4.1. After 21-day of incubation, about 51 and 57% of ammonia were removed in R-only or V-

only seeded samples, respectively. In the R + B and V + B seeded samples, about 90 and 92% of 

ammonia were available to algae + bacteria inoculum, respectively. Furthermore, about 99% of 

ammonia was removed in bacteria-only seeded sample. These results indicated that bacteria 

addition to the samples increased ammonia reduction since bacteria was mainly responsible to 

convert ammonia in the wastewater to first nitrite and subsequently to nitrate.  

Nitrate after incubation was low in algae-only seeded samples while it was quite high in 

bacteria and bacteria-only seeded samples. The similar results were obtained in previous studies 
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(Urgun-Demritas et al., 2008; Simsek et al., 2013) that nitrate was high in bacteria involved 

samples while it was low in algae-only seeded samples. 

Nitrate after incubation was low in all the samples regardless of the type of the seeds 

except it was high in bacteria-only seeded samples. These results indicated that algae utilize 

nitrate for their growth while bacteria was increasing the nitrate through nitrification process. In 

general, either ammonia or nitrite were quite high in all inoculum conditions after incubation for 

animal feedlot samples (Figure 4.1). This outcome expressed that partial nitrification was 

occurred in the samples during the incubation. Inadequate respiration during the incubation 

because of lack of DO might be reduced the nitritation efficiency in the samples as similar results 

were obtain in a previous study conducted for domestic wastewater (Simsek et al., 2012). To 

understand the effect of high nitrite accumulation in the samples, the pH values were monitored 

every three days during the incubation. It was recorded that pH increased to 8.13- 8.30 in algae-

only seeded samples on 3rd incubation day, compare to initial (before incubation) pH values 

(ranged from 7.40 to 7.69). In algae + bacteria seeded samples, pH reached to the highest value 

(9.04 -9.47) at 11th day of incubation. However, the high pH values were not affected the life of 

algae and/or bacteria. Similarly, additional two sets of experiments were conducted to address 

oxygen depletion effect on nitritation by diluting the initial wastewater by 1:3 portions to reduce 

nutrient loading in the samples. TDN became about 15 mg-N/L in diluted animal feedlot and all 

other parameters in the samples reduced proportionally. More than 99% of ammonia (<0.5 mg-

N/L left) was nitrified all the way to nitrate after 21 days of incubation in both algae + bacteria 

seeded samples. These results indicated that higher initial N loading needs extra oxygen to 

support algae and/or bacteria for their assimilation and metabolism activities.  
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Figure 4.1. TDN, NH3-N, NO2-N, and NO3-N in animal feedlot samples for different algae 

and/or bacteria inoculum: Algae [S. capricornutum (S), C. reinhardtii (R), and C. vulgaris (V)] 

and/or bacteria (B).  

 

Average initial TDN (before incubation) mostly constituted of ammonia and DON since 

the wastewater sample from animal feedlot was fresh (about 3 days of residence time in storage 

tank). Average TDN values after incubation for samples seeded with either single cultured (R, V) 

or mixed cultured (R + V) algae were substantially lower than TDN before incubation since 

algae utilized nitrogen species (mainly ammonia) for their growth. The TDN values after 

incubation reduced to for the samples seeded with R (46% reduction) and V (44% reduction), 

respectively. The reduction of TDN was observed since algae utilized nitrogen during the 

incubation. Adding bacteria seed into the samples seeded with R and V was not significantly 

reduced TDN. TDN before and after incubation in bacteria-only seeded ample was in balance 

and only minor TDN reduction (9%) was recorded after incubation. The similar reduction in 

TDN in bacteria-only seeded sample was observed in a previous study conducted by Simsek et 

al. (2012).  
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4.3.1.2. DON, BDON, and ABDON 

Average DON concentration before incubation was recorded as 7.71 ± 0.18 mg-N/L, 

which comprised of about 18.4% of TDN before incubation (Figure 4.2a). The magnitude of 

DON in ANPC effluent and typical DON in domestic wastewater (raw wastewater) were quite 

similar. DON after incubation in algae and/or bacteria seeded samples was varied between 1.63 

and 4.54 mg-N/L. These results showed that between 21.1 and 58.9% of initial DON was utilized 

by either algae and/or bacteria. DON after incubation (DON residue in the sample) to initial 

TND ratio was calculated and results showed that between 3.9 and 10.8% of DON in initial TDN 

were remained in this samples, which consider as refractory (unbiodegradable and 

unbioavailable) DON (Figure 4.2a). DON reduction was the lowest in C. reinhardtii seeded 

samples while it was the highest in algae + algae + bacteria seeded sample. The highest reduction 

in DON after incubation to initial TDN was observed in C. reinhardtii + C. vulgaris + bacteria 

seeded sample. DON residue in the sample to TDN after incubation in each bioassay was also 

calculated and found that between 6.9 and 19% of TDN after incubation in each samples were 

DON. This indicated that while DON was reducing in each bioassay sample, TDN was also 

reducing because of algal and bacterial utilization of nitrogen species.  

BDON results showed that, average 3.97 mg-N/L of initial DON, which was 54.8% of 

initial DON was biodegradable to bacteria-only inoculum. Similar results were obtained in 

previous studies (43-65% of BDON removal efficiency) for domestic wastewaters (Urgun-

Demirtas et al., 2008; Simsek et al., 2013).  

Bioavailability of DON in both algae C. reinhardtii and C. vulgaris and their 

combination with bacteria was determined and presented in Figure 4.2b. DON bioavailability 

was significantly higher (P ≤ 0.05) in C. reinhardtii inoculum compare to in C. vulgaris 
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inoculum. As a result of symbiotic relationship between algae and bacteria, the bioavailability of 

DON increased in both types of algal species with bacteria addition. Dong et al. (2014) explained 

that urea in DON is more favorable to nitrate and nitrate-urea mixture media. Further they 

explained that more encoding proteins were involved in urea assimilation process rather than 

nitrate transport process. Hence, urea in animal wastewater could enhance the bioavailability of 

DON in both two algal species. 

Results showed that initial DON bioavailability that obtained in this study for animal 

wastewater was higher than in municipal wastewater studies conducted earlier (Urgun-Demirtas 

et al., 2008; Simsek et al., 2013). ABDON in algae (R or V) and bacteria seeded samples were 

not statistically different (P ≤ 0.05). However, the presence of bacteria promoted bioavailability 

of initial DON in both types of algae. ABDON in mixed cultured algae and bacteria (C. 

reinhardtii + C. vulgaris + bacteria) seeded sample was significantly greater (P ≤ 0.05) than all 

other combinations since the majority of DON (81%) was bioavailable to algae and bacteria in 

this sample. Increased DON bioavailability to algae with the presence of bacteria was also 

concluded in previous studies (Urgun-Demirtas et al., 2008; Simsek et al., 2013).The mutual 

relationship between algae and bacteria was benefited from nutrient interactions of carbon 

dioxide, oxygen, vitamin B12, and organic carbon source (Santos and Reis. 2014).   
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Figure 4.2. (a) DON and DON/TDN, (b) BDON, ABDON, and their initial DON fraction in 

animal feedlot samples for different algae and/or bacteria inoculum: Algae [S. capricornutum (S), 

C. reinhardtii (R), and C. vulgaris (V)] and/or bacteria (B).   
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The fractions of BDON/DONi and ABDON/DONi represent the biodegradability and 

bioavailability of DON in the samples, respectively. Results showed that certain portion of DON 

was biodegradable and/or bioavailable to bacteria, algae, and algae + bacteria in wastewaters 

from ANPC effluent (Figure 4.2b).  

As explained earlier, two sets of samples were diluted to investigate nutrient loading and 

DO relationship. Therefore, BDON and ABDON was determined in 1:3 portion of diluted 

sample to observe oxygen deficiency effect on DON. Results showed that biodegradability and 

bioavailability of DON was not changed significantly (P < 0.05) between non-diluted and 1:3 

diluted samples from animal feedlot, which proved that the magnitude of inorganic nitrogen 

(including high NO2-N accumulation because of partial nitrification) didn’t greatly affect DON 

utilization by algae and bacteria. The bioavailability of influent DON to C. reinhardtii in 1:3 

diluted samples was slightly higher (about 11%) than in C. vulgaris. However, DON 

bioavailability of influent DON was increased at least 4% with the presence of bacteria.   

Overall results from both types of algae and/or bacteria inoculum showed that some 

portions of DON was both biodegradable and bioavailable, which was overlapping, while some 

portions of DON was only bioavailable or only biodegradable. In other words, some portions of 

DON were determined as refractory to both algae and/or bacteria. The overlapping portion of 

DON is more critical in aquatic systems since there is a high possibility to breakdown DON by 

either algae or bacteria to increase nutrient availability to algal and microbial species.  

4.3.2. Lagoon Wastewater 

4.3.2.1. Inorganic Nitrogen and TDN  

Dissolved nitrate and TDN results before and after incubation for the samples collected 

from the sheep feedlot lagoon are presented in Figure 4.3. Nitrate, ammonia, and nitrite before 
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incubation were detected in very low concentrations, which were NO3-N <0.23 mg-N/L, NH3-N 

= 2.33 mg-N/L, and NO2-N <0.30 mg-N/L. These results showed that TDIN was about 2.86 mg-

N/L, which was quite lower than TDIN in animal feedlot sample. The reason for low inorganic 

nitrogen in the lagoon is that the residence time of the wastewater was long enough to complete 

nitrification and following nitrate utilization by bacteria and algae in the lagoon. After 

incubation, ammonia and nitrite were under detection limit as well in the samples seeded both 

algae and/or bacteria. However, nitrate concentration after incubation increased in each location, 

explained that nitrate was occurred because of bioavailable DON in the samples.  

Average TDN before incubation was about 12.00 mg-N/L, which consisted of mostly 

DON since TDIN was very low in the samples. After incubation, ammonia and nitrite were 

completely removed in all the samples (Figure 4.3). However, nitrate concentration after 

incubation increased in each location, explained that nitrate was produced after the degradation 

of ABDON in the samples. These results showed that initially DON degraded to lower weight 

molecular compounds by bacteria and consequently utilized by algae and/or bacteria (Urgun-

Demirtas et al., 2008; Simsek et al., 2013). Overall, the TDN trends observed in lagoon samples 

were similar with samples from animal feedlot. The average TDN concentrations before and 

after incubation in bacteria seeded samples were similar. About 13% of TDN reduction was 

observed during the incubation in bacteria-only seeded sample. TDN in bacteria-only seeded 

sample was very high compare to algae-only inoculated samples explained that bacteria did not 

utilize TDN as much as algae did. Bacteria was mainly responsible for nitrification in these 

samples.  
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Figure 4.3. TDN, NH3-N, NO2-N, and NO3-N in storage lagoon samples for different algae 

and/or bacteria inoculum: Algae [S. capricornutum (S), C. reinhardtii (R), and C. vulgaris (V)] 

and/or bacteria (B).  

 

4.3.2.2. DON, BDON, and ABDON 

DON was an important component of the sheep feedlot lagoon samples, which was 

measured as 8.50 mg-N/L and comprised of 70.8% of TDN. Previous studies showed that DON 

in lagoon samples can be derived from N enriched underground water, agricultural ground water, 

and sediment-water column fluxes across a nutrient gradient (Anderson et al. 2003; Tyler et al. 

2001). Additionally, a small portion of DON can be released from soil during runoff. DON 

release rate in lagoon were influenced by biological processes, hydrometeorlogical factors, 

rainfall, and surface discharge (Scully et al., 2007). Similar to animal feedlot sample, the 

minimum DON value after incubation was recorded as average 1.06 mg-N/L, which was a 

recalcitrant DON in R + V + B seeded sample (Figure 4.4a).  

TDN reduction rates during the incubation in lagoon samples were closely related to the 

bioavailability of DON. Results showed that more DON reduction was appeared in the samples 

inoculated with algae + bacteria. C. reinhardtii + bacteria demonstrated higher DON removal 
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compare to C. reinhadtii + bacteria samples. DON to TDN ratios after incubation ranged from 

13.2% to 41.2%, which were quiet low compare to the same ratio before incubation (initial 

sample). The ratios in algae-only seeded samples were higher than algae + bacteria seeded 

samples indicated that the symbiotic association between algae and bacteria increased DON 

utilization.  

ABDON, BDON, and their ration to initial DON data are presented in Figure 4.4b. Even 

though the residence time of the lagoon was very high compare to animal feedlot fresh samples, 

ABDON values in the lagoon samples and in animal feedlot samples were very close each other 

in all the inoculum conditions. This outcome indicated that, suitable environmental conditions 

were not occurred in the lagoon to increase biodegradability and bioavailability of DON. 

However, during the 21 days of incubation, the presence of bacteria enhanced the bioavailability 

of DON to both C. reinhardtii and C. vulgaris. The difference of ABDON between sample 

inoculated with C. reinhardtii only and C. vulgaris only was not significant (P<0.05). The 

samples inoculated with C. reinhardtii + bacteria showed slightly more bioavailability of DON 

than in the case of C. vulgaris + bacteria (P ≤ 0.05). Similarly, the samples seeded with algae + 

algae + bacteria demonstrated that approximately 81% of DON was bioavailable to both type o 

algae + bacteria (mixed culture). The bioavailability of DON to initial DON ration showed 

similar trend with ABDON data in all the inoculum condition.   
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Figure 4.4. (a) DON and DON/TDN, (b) BDON, ABDON, and their initial DON fraction in 

storage lagoon samples for different algae and/or bacteria inoculum: Algae [S. capricornutum (S), 

C. reinhardtii (R), and C. vulgaris (V)] and/or bacteria (B). 
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BDON incubation results showed that average 3.78 mg-N/L of DON was degraded by 

bacteria in the lagoon sample. Algae and algae + bacteria data showed that some portion of this 

BDON was utilized by algae. Furthermore, the BDON to initial DON ratio proved that about 

48.6% of DON was biodegraded to lower molecular weight compounds by bacteria. Even though 

some portions of DON was biodegraded by bacteria, some portions of it remained as recalcitrant, 

which was non-biodegradable in the sample.  

4.3.3. Dry Cell Weight in ANPC and Lagoon Samples 

Measuring and quantifying dry cell weight of algal and bacterial biomasses in the 

samples is critically important to monitor algae-nutrient relationship and furthermore to evaluate 

ABDON and BDON potential in the samples. Dry cell weight in both type of animal wastewater 

was measured after 21 days of incubation period to examine how the presence of bacteria and N 

concentration affected the growth of C. reinhardtii and C. vulgaris species. Results showed that 

C. reinhardtii + bacteria inoculum demonstrated the highest biomass productivity in wastewater 

from animal feedlot (Table 4.1). With the presence of bacteria + algae, more biomass was 

produced than either inoculated algae-only or bacteria-only samples, indicating that bacteria 

involvement promoted algal growth in both wastewater samples collected from animal feedlot 

and lagoon. ABDON and BDON incubation experiments in this study supported this outcome 

since algae + bacteria samples always reduced DON concentration in the samples. The biomass 

production inoculated with bacteria was only slightly increased in animal feedlot wastewater 

contained higher TDN than wastewater from lagoon, while it was significantly increased 

inoculated with algae or algae + bacteria.  
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Table 4.1. Biomass density in animal feedlot and lagoon samples inoculated using different 

combination of algal and/or bacterial inoculum. 

ANPC samples 

Type of inoculum Biomass Density, g/L 

R 0.48 ± 0.04 

V 0.37 ± 0.05 

R+B 0.77 ± 0.08 

V+B 0.62 ± 0.02 

B 0.12 ± 0.02 

Lagoon samples 

Type of inoculum Biomass Density, g/L 

R 0.15 ± 0.02 

V 0.12 ± 0.01 

R+B 0.30 ± 0.03 

V+B 0.25 ± 0.02 

B 0.09 ± 0.02 

4.4. Summary 

The vast majority of the available information in animal wastewater studies are not 

explain biodegradability and bioavailability of DON and its impact on natural environment. 

DON, BDON, and ABDON data were collected from two different animal wastewaters sources, 

which were animal feedlot and sheep lagoon. Samples were inoculated using C. reinhardtii and 

C. vulgaris and bacteria (MLSS). The results showed that from 3.21 to 5.87 mg-N/L of DON 

(comprised about 51.3% to 78.9% of initial DON) from ANPC effluent and from 3.44 to 7.54 

mg-N/L of DON (comprised about 40.5% to 80.9% of initial DON) from lagoon samples were 

bioavailable to any combination of algae and bacteria. ABDON and BDON trends in both types 

of wastewater sources were similar. C. reinhardtii + C. vulgaris+ bacteria seeded samples 

utilized initial DON more than other combination of algae and/or bacteria. In both sample 

sources, at least 20% of initial DON was recorded as recalcitrant DON. This portion of DON 

could be degraded in longer incubation conditions, which could be in receiving water.  
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CHAPTER 5. CONCLUSIONS 

5.1. Conclusions 

This research was conducted under batch conditions with controlled temperature, 

aeration, and illumination to investigate bioavailability and biodegradability of DON. The study 

reveals important findings and provides information to increase the quality of receiving waters. 

In municipal wastewater, ABDON efficiencies for all three algae were not significantly different, 

which indicated that C. reinhardtii and C. vulgaris can be used as a test species for nitrogen 

determination similar to S. capricornutum. Short incubation period (14-day) was adequate to 

complete ABDON exertion for algae + bacteria inoculum. However, DON was still available for 

algae after 14 days (until 21 days) which can imply that effluent DON in aquatic system have 

more profound environmental impacts over the time scale. 

BDON and ABDON in two different animal wastewater sources were thoroughly 

investigated in this study. Along with the algae, bacteria addition into the samples produced high 

ABDON value indicated that there was a symbiotic relationship between bacteria and all three 

types of algae. In an animal operation center and animal waste lagoon, DON comprised about 

18.4 and 70.8% of TDN, respectively. High ABDON level (40 to 81%) in animal wastewater 

indicated the potential need to remove animal DON before discharge. Overall, results from this 

study showed that DON from anthropogenic sources is highly bioavailable to algae and bacteria. 

Future works are required to analyze the characterization of DON. 

5.2. Recommendations 

To have a comprehensive understanding on the research, there are topics that can be 

further addressed: 
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 It is necessary to investigate different operational conditions, such as in continuous 

stirred tank reactors or pilot scale reactors, to promote DON degradation rate and 

enhance ABDON removal in a shorter incubation period.  

 A proteomic analysis of protein profiles can be conducted before and after bioassay 

tests to provide more information on molecular weight and properties of 

bioavailable, recalcitrant, and newly generated DON (if any).  

 Detecting extracellular and intracellular enzyme activity of algae and bacteria are 

recommended to understand the mechanism of the symbolic relationship of algae and 

bacteria to remove DON. 

 Levels of different forms of DON, such as urea and amino acids, in municipal 

wastewater and animal wastewater can be determined via chemical analysis before 

and after incubation to understand the bioavailability and biodegradability of specific 

nitrogen forms.  

 Further experiments can be conducted by incubating river water and animal 

wastewater samples to monitor the effects of ABDON in receiving waters.   
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