
THE CAPILLARY-CENTRIC MODEL OF CARDIAC COUPLING-AS-THERMODYNAMICS

A Thesis
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Andrew James David Taylor

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Electrical and Computer Engineering

November 2015

Fargo, North Dakota

North Dakota State University

Graduate School

Title

The Capillary-centric Model of Cardiac Coupling-as-thermodynamics

 By

Andrew James David Taylor

 The Supervisory Committee certifies that this disquisition complies

with North Dakota State University’s regulations and meets the accepted

standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

Dan L. Ewert

 Chair

Jacob S. Glower

Mark J. Schroeder

Kyle J. Hackney

 Approved:

 11/5/15 Scott C. Smith

 Date Department Chair

iii

ABSTRACT

Models of ventricular-arterial coupling (VAC) have historically described the heart as a

function of its energetic interaction with the arterial system. However, these models either

represent the dynamic, adaptive cardiovascular system (CVS) in isolation or sacrifice cardiac

mechanics to use simplified, time-averaged values across the cardiac cycle. In this thesis a

facsimile CVS is constructed that characterizes ventricular-arterial interactions with intact

cardiac mechanics as a function of whole-body thermo-fluid homeostatic regulation.

Simulation results indicate proportional-integral (PI) control of heart rate and arterial

resistance is conditionally sufficient to maintain body temperature during square-wave

exercise, but further elements may be required to mimic genuine physiological responses.

These simulations of the primitive model lay the framework of capillary-centric VAC through

the perspective of coupling-as-thermodynamics.

iv

ACKNOWLEDGEMENTS

I would like to thank my classmates as well as the faculty and staff of the department

for their continued support. I would like to especially thank my wonderful committee members

Drs. Dan Ewert, Jake Glower, Kyle Hackney and Mark Schroeder for their insights,

encouragements and criticisms. Their professionalism (and lack thereof!) has made graduate

school a merry adventure.

I would also like to give my most heartfelt thanks to my friends and family—Amy,

Ashley, Brian, Cassie, Charla, Dan, Dave, Dona, Doug, Jim, John, Liz, Lyle, Martin, Martin,

Missy, Molly, Regina, Richard, Sylvia, Tim and Toby—to whom I owe my success and blame

my character. Finally, above all: thank you, Mom!

v

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES .. vi

LIST OF FIGURES ... vii

LIST OF EQUATIONS .. viii

INTRODUCTION ... 1

BACKGROUND ... 2

METHODS ... 7

RESULTS ... 17

DISCUSSION ... 32

CONCLUSION .. 34

REFERENCES ... 35

APPENDIX. MATLAB CODE ... 41

vi

LIST OF TABLES

Table Page

1. Initial conditions for the open-loop simulation. ... 13

2. Percent differences in settling time for selected intervals of a quintet.................. 20

3. Percent differences in settling time for selected intervals of a quartet. 22

4. Percent differences in settling time for selected intervals of a triplet. 25

5. Sweat production, final temperature and correlation coefficient between these
variables for each trial of the second data set. ... 31

vii

LIST OF FIGURES

Figure Page

1. Expanded windkessel model for the “block of humanity.” 7

2. Normalized time-varying elastance of the left ventricle. 9

3. Pressure, flow and volume in the left ventricle. .. 14

4. Program flow chart. .. 15

5. PI controller used in the program. .. 16

6. Settling time as a function of proportional control of heart rate. 19

7. Settling time as a function of integral control of heart rate. 23

8. Settling time as a function of integral control of arterial resistance. 26

9. Time courses for HR Kp = 10, HR Ki = 1 and RA Kp = 10. 28

10. Time courses for HR Kp = 10, HR Ki = 10 and RA Kp = 50. 29

11. Temperature comparison between reported data and model. 30

viii

LIST OF EQUATIONS

Equation Page

1. Net filtration pressure. .. 9

2. Mean capillary pressure. ... 9

3. Arterial-venous oxygen difference. ... 10

4. Sweat filtration flow rate. .. 11

5. Rate of vaporization of latent heat. ... 11

6. Interbeat temperature change. .. 11

7. End of beat body temperature. .. 11

8. End of beat change in heart rate. ... 11

9. End of beat change in arterial resistance. .. 11

1

INTRODUCTION

Ventricular-arterial coupling (VAC) describes the heart as a function of its interaction

with the arterial system and is quintessential to exploring the behavior of the cardiovascular

system (CVS). Current models provide significant insight into many important aspects of the

CVS such as energetic expenditure, ventricular loading sequences and pulse-wave velocities

in the proximal aorta, all of which play an integral role in discovering or describing many CVS

dysfunctions. Ultimately, treatments to these dysfunctions depend on understanding the role

VAC plays in the CVS.

However, current models represent the dynamic, adaptive CVS in isolation and fail to

describe coupling in terms of system level interactions—namely regulating temperature,

balancing fluids at the capillary and supplying adequate metaboloids to the tissues [10], [25],

[45]. By contrast, models of integrated physiology can illustrate these three functions well

even over the course of simulation-years, but their effectiveness comes at the expense of

cardiac mechanic transparency [1], [22], [29], [30], [35]. Nonetheless, a balance between

usefulness and complexity may be achieved by applying a proportional-integral (PI) controller

to emulate lumped body parameters and processes [12], [17], [41], [47].

In this thesis a facsimile CVS is constructed that characterizes ventricular-arterial

interactions with intact cardiac mechanics as a function of whole-body thermo-fluid

homeostatic regulation, shifting the source-load coupling paradigm of the left ventricle and

arteries to the capillary and tissues. The model is then used to explore the question of whether

PI control of heart rate and arterial resistance is sufficient to maintain body temperature

during square-wave exercise under the assumptions that fluid balance is maintained at the

capillary level and that there is adequate supply of metaboloids to the tissues. These

simulations of the primitive model lay the framework of capillary-centric VAC through the

perspective of coupling-as-thermodynamics.

2

BACKGROUND

Ventricular-arterial coupling

Traditionally, investigations of ventricular-arterial coupling have worked towards

characterizing the interplay between the left ventricle of the heart and the arterial system

[10], [25], [45]. This coupling is most often described as a source-load problem, where the

heart is modeled as a power supplier and the arterial system as a power dissipater, allowing

for the application of familiar engineering tools to a complex biological structure. The CVS has

historically been analyzed in the pressure-volume (PV) domain, enabling indices for cardiac

efficiency and energetics to be classified by analogy to a heat engine. PV domain analysis was

born from experiments under A. C. Guyton and his colleagues in the 1950s that demonstrated

cardiac output was a function of right atrial pressure [14], [15], [16]. Dissection of the CVS

continued both literally and metaphorically for another thirty years as the advent of personal

computing gave rise to complicated mathematical models.

These models led directly to the foundation of ventricular-arterial coupling. Building

on a concept published in 1980 by Piene that described right ventricular mechanical

properties, Sunagawa et al. derived an equation that bridged the dimensional gap left open

by Piene [33], [45]. In Piene’s model, the ventricle was characterized by its PV relationship

while the pulmonary arterial system was defined by its impedance. Conversely, the work of

Sunagawa et al. focused on the left ventricle and was predicated on treating both ventricle

and arterial system as elastic elements. This formulation led directly to the creation of

effective arterial elastance, the first “coupling index” used in describing VAC [46].

Effective arterial elastance, or EA, has remained a popular method for describing

coupling because of its intuitiveness—its units are directly translatable to indices of energy

utilization and is commonly paired with the end-systolic elastance EES [5], [6], [7], [10], [11],

[25], [26], [37], [40]. By using the Jacobian expression of efficiency it was predicted that at

3

EA/EES = 1 maximum stroke work had been reached, whereas at EA/EES = 0.5 maximum

efficiency would be achieved [48]. However, at any given time it is more likely that the

cardiovascular system is controlled somewhere between these two extremes, and it has been

shown that this coupling ratio EA/EES has a normal range between 0.62 and 0.82 [11].

Furthermore, this same work reveals that both stroke work and efficiency are maintained at

optimal values across a wide range of coupling ratios.

Although useful as a non-invasive measurement, these findings showed EA and its

couple EES have several limitations to their usefulness as diagnostic tools. Additionally, the

accuracy of EA is highly susceptible to errors in the pulsatile load characteristics of the ejected

blood, since in its most common form (R/T) the index is averaged over a whole beat. This is

very apparent in studies in which steady beats are not observed, such as with a venal caval

occlusion where the pulsatile component of cardiac output changes with respect to time.

Furthermore, heart rate has a strong influence on EA and in those studies using paced

specimens EA is not preserved [40], [47], [52].

To address these issues, research turned towards the pressure-flow (PQ) domain have

become increasingly more common. The two primary failings of PV analysis that PQ

assessments attempt to rectify are its disregard for the loading sequence that takes place

during a cardiac cycle and the PV-domain emphasis on energetic “optimization” [2], [3], [10],

[23], [31], [42], [46], [44], [49], [50]. Time-domain analysis has been an important step

forward in the characterization of cardiac coupling.

While PV analyses wash out inter- and intrabeat mechanics, PQ analyses can discern

not only the ventricular loading sequence but also arterial load, pulse wave velocity, aortic

and arterial stiffness and others [9], [10], [28]. Essentially, it brings cardiac coupling into the

demesne of time-domain reflectometry (TDR), a technique for analyzing electrical

transmission lines that is commonly used for characterizing commercial coaxial cable lines.

Incorporating TDR into measures of the cardiovascular system offers extensive insight into

its organization, and can even be used to calibrate therapies for pacing and CVS rehabilitation

4

[36]. For example, in the 60 years that separate ages 25 and 85, the pulse wave velocity

down the aorta doubles, so using time-domain analysis can improve quality of life in patients

using cardiac resynchronization therapy by tuning the pulse wave generated from the assist

device such that its reflecting waves return at a more opportune time, i.e. after ejection.

This same idea can be applied to coupling: by measuring the generated and reflected

waves, an index of workload and efficiency can be produced that characterizes how well the

left ventricle ejects blood into the proximal aorta. As conduction speeds increase, reflected

waves will return to the aortic root more and more quickly, which corresponds to less volume

ejected due to higher afterload. Although this phenomenon can be seen in the PV domain, its

cause is much more apparent in the PQ domain. Furthermore, there is evidence that heart

failure in the presence of elevated afterload is actually a symptom caused by the impact these

early-returning wave reflections have on the loading sequence in the ventricle, which, as

mentioned before, is neglected in the PV domain [8], [19], [20], [27], [51]. However, even

as insightful as PQ domain analysis can be, as a system-level model it still fails to describe

many facets of cardiovascular dysfunction such as those from the metabolic syndrome or

depression, both of which can have significant implications for coupling.

Models of integrated physiology

Although VAC had been discussed only since the mid-1980s, a complete model of

cardiovascular regulation was constructed well before in 1972 [17]. Published by Guyton et

al. following a seven year effort, the model was the first to define coupling at the systems

level, an innovation that became the prime antecedent to the field of integrative physiology

[22]. Resembling an integrated circuit schematic, the aptly named model of “overall

regulation of circulation” ramified the circulatory system into 18 different subdivisions that

included both nervous and endocrine components. While each subdivision has a specific

purpose, everything in the model is connected via feedback such that each physiological

module is dependent, implicitly or explicitly, upon each and every other one.

5

Initially encapsulated as a system of equations, Guyton’s model was translated in 1983

to the digital domain by a team that included one of the original authors. Dubbed “Human”,

this physiome program contained only the 150 variables from the original model, but since

then has been transformed into a free, online computational analysis package termed

Quantitative Circulatory Physiology (QCP) which has itself been succeeded by HumMod. QCP

kept the core of Guyton’s original model, but expanded the integrated physiome to become

one of the most complete since Guyton’s original production and its successor HumMod

includes over 4000 variables [1], [22]. Like its predecessors, HumMod features all the

feedback loops that governed the original architecture and has been used to simulate

pathophysiology [22], [29].

While Guyton’s model and its descendants are incredibly thorough and complex, they

are all founded on a framework that emphasizes simulation of chronic regulation. By using

time-averaged values for inputs and outputs not only reduces the intricacy of the model to a

manageable level but also allows the models to be computationally feasible over a simulation

time-scale of years. Nonetheless, employing time-averaged variables has the deleterious side

effect of washing out intrabeat mechanics; thus, just as with PV analysis, these models may

omit critical information [35].

Classic control theory

The foundation of VAC is predicated upon the cardiovascular system’s response to

stimulus. Feedback to the CVS is mediated through a multitude of methods ranging from the

expression of NO2 by red blood cells at the arteriole to neurohumoral activation of adrenergic

receptors to the length of the sarcomere prior to ejection. Each of these examples are like an

individual tuning knob on a vast physiological stereo mixer that contrives the body electric.

However, the CVS is able to adapt to changes in each of these tuning knobs through its

complex and adaptive feedback network.

6

The concept of feedback is an integral component of classic control theory, which

compares the actual value of an output to its expected value and adjusts the system’s input(s)

to compensate. For instance, weightlifting causes some of the muscle fibers to become

damaged so the body compensates by rebuilding the muscle with even more fibers, increasing

strength. Similarly, when the heart needs to pump harder due to elevated blood pressure, it

too increases in size. However, while the hypertrophy in skeletal muscle is generally positive,

hypertrophy of cardiac muscle is generally negative: the larger the ventricular wall is, the less

efficient it is at pumping blood, thus requiring more energy to perform the same task. This

can potentially lead to a positive-feedback loop, where the cardiac muscle can’t meet the

pumping needs of the body and remodels itself—increasing in size—which in turn reduces its

ability to pump blood. As predicted by control theory, this instability leads to the collapse of

the system.

7

METHODS

Several assumptions were made to facilitate the development of the model in the

interests of reducing it to a manageable scale. First, the human body was simplified to a

“block of humanity,” which represents a lumped parameter model of the body with a lumped

capillary, artery, vein and heart as shown in Figure 1. Additionally, this model assumes that

skin temperature is equal to core temperature both at rest and during stress, i.e. the human

body has an infinite conductance and no ability to redistribute blood flow between the core

and the periphery, although this mechanism should be noted as being a significant

determinant in the body’s ability to cool or warm itself [37]. It is also assumed that fluid

losses are replaced on a time-scale that does not affect blood volume significantly.

Figure 1. Expanded windkessel model for the “block of humanity.” Four categories of heat
pass through this control surface: QL, the latent heat of vaporization of sweat; C, convective
heat, such as wind; R, heat due to radiation, such as incident sunlight; and W, the external
work produced by the body upon another object.

In the block of humanity, CA and RA represent the arterial compliance and resistance

respectively, and similarly CV and RV represent the venous compliance and resistance. RC is

the capillary resistance. AV and MV denote the aortic and mitral valves, while the left ventricle

is represented by a variable capacitor E which produces the inverse elastance waveform [43].

8

The thick red line encapsulating the austere cardiovascular system denotes the control surface

of the model—the block of humanity’s skin. Across this boundary four types of energy are

catalogued: the latent heat QL, which is generated by the evaporation of sweat, the convective

heat C, which occurs when moving air carries away heat from the skin’s surface, the radiative

heat R, representing the skin’s absorption of radiation, and the external work W produced by

the body. Note, however, that simulation conditions reduce the variables C and R to zero.

The remainder of this section is broken down into the constituent components

organized by anatomy and function. These sections are arranged as such: 1) left ventricle;

2) arterial system; 3) control system; 4) simulation parameters; 5) model validation. Figures

and flow charts detailing the order of operation within the model can be found at the end of

the section on pages 15 and 16.

Left ventricle

Initial conditions along with myocardial and arterial properties are fed into an ODE

solver (Figure 4) that takes a normalized elastance waveform (Figure 2) and conforms it to a

given Emin, Emax and heart rate. This new elastance waveform is used in conjunction with given

arterial properties to simultaneously calculate nine ventricular and arterial parameters over a

single cardiac cycle: LV in- and out-flow, LV volume, LV pressure, filling pressure, aortic

pressure, elastic pressure and a new diastolic elastance. An example elastance curve is shown

in Figure 2, normalized with respect to time at 72 beats per minute.

9

Figure 2: Normalized time-varying elastance of the left ventricle. Minimum and maximum
elastance are set at 0.097 and 2.3 mmHg / mL, respectively. The curve is generated by the
getk function, shown in the Appendix.

Arterial system

The complete cardiac cycle generated by the ODE solver is shunted into an energetic

tabulation routine that calculates AVO2 as well as filtration rates through, into and out of the

lumped capillary (Figure 4). Unless stated otherwise, the values in the following sub-section

were taken from [18]; net filtration pressure is given as Pnet in equation (1).

 ���� = ���
� − ���� + (∏�� − ∏�) (1)

 ��
� =

��� + ���

2
 (2)

10

The mean capillary pressure P�
� was calculated from (2), where Pca is the capillary

pressure at the arteriolar junction and Pcv is the pressure on the venous end of the capillary;

Pif is the pressure of the interstitial fluid and is given a value of -3 mmHg; Π�� is the osmotic

pressure in the interstitial space and is given a value of 8 mmHg; the osmotic pressure from

the plasma Π� due to albumin, fibrinogen and globulins is given a value of 28 mmHg. Note

that positive terms indicate a contribution towards outward flow whereas negative terms

contribute to the inward flow, thus the negative pressure of Pif acts to abstract fluid from the

capillary into the interstitial spaces.

The filtration pressure was then multiplied by the filtration coefficient of 6.67
��

���∗����

and averaged, yielding the net volumetric filtration rate across the capillary wall. The

lymphatic filtration rate is held constant at 1/30 mL/s.

 ���� =
�� + ����

�� ∙ ��
���

 (3)

Arterial-venous oxygen differences were calculated from equation (3), which relates the

energy used in metabolic processes to the energy delivered by blood. In the numerator, MQ

is the metabolic rate of the body, which is roughly 100 W for a person consuming an average

of 2000 kcal per day. Wext is the external work performed by the block of humanity on its

environment. K1 and Q�
���� denote the energy equivalent of oxygen and the mean volumetric

flow rate through the capillary, respectively.

Control system

If the net outward filtration flow rate Ifilt is less than the lymphatic filtration rate, the

net outward filtration rate is taken to be zero. Otherwise, a constant, approximate lymphatic

filtration rate (below) is subtracted from the net outward filtration rate. This new filtration

flow rate ISW is assumed to be converted to sweat completely, allowing as there are no

interstitial spaces between cells or tissues within the block of humanity.

11

 ��� = ����� −
1 mL

30 s
 (4)

The rate of latent heat dissipated by the evaporation of sweat is calculated as shown in (5)

using the density of blood per mL and the enthalpy of water, given as 1.060 x 10-3
��

��
 and

2.257 x 106
�

��
 respectively.

 ��̇ = ��� ∗ ��� ∗ ∆ℎ��� (5)

The temperature change ΔTCC for a given beat is calculated as the difference in latent heat QL

dissipated by the sweat rate to the heat generated by the current metabolic load MQ as shown

in (6). The mass of the body �� was given as 100 kg and the specific heat of the body cp-body

is given as 3470
�

��∗℃
. The change in body temperature is then added to the initial body

temperature.

 Δ��� =
�� − ��

�� ∗ �������

 (6)

 �� = Δ��� ∗ ��� + �� (7)

The relative difference between the nominal body temperature of 37 °C and the end-of-cycle

body temperature TF is the input error signal TErr to a PI control system (Figure 5) that

regulates heart rate and arterial resistance; note TErr is directly proportional to heart rate and

inversely proportional to arterial resistance, see skunkworks.m in the Appendix. These

relationships are given in (8) and (9).

 ΔHR = ����� ∗ ���� + ����� � ���� (8)

 ΔR� = �����
∗ ���� + �����

 � ���� (9)

The proportional (Kp) and integral (Ki) coefficients were selected at the beginning of a given

trial; the calculation of the respective change in heart rate and arterial resistance was the last

12

calculation made during a single cycle. The heart rate and arterial resistance values were then

fed back into the initial conditions for the next cardiac cycle.

Simulation parameters

Two separate sets of simulations were run in this experiment. In the first, a “shotgun”

simulation method using values of 0, 1, 10, 50 and 100 for HR Kp, HR Ki and RA Kp are run to

create a map of output parameters; RA Ki is set at a constant 0.1 for all trials. In the second,

only 25 trials are generated with values of 0, 1, 10, 50 and 100 for HR Ki and RA Kp while HR

Kp is set at 10 and RA Ki is maintained at 0.1. All trials are run for 3000 cardiac cycles.

Additionally, there exist some differences in the initial conditions between the two sets

of trials. For the first set of trials, the external work performed by the block of humanity is

set at 80 W but is increased to 228 W for the second and third sets. Mass also changes from

100 kg in the first set to 77 kg for the second. These changes are made to accommodate a

comparison to those values found in [12], in which a 77 kg averaged participant exerts 228

W on an exercise ergometer.

Model validation

To validate the model, a baseline was established by running the simulation open-loop

(with each control variable Kp and Ki set to zero, see Figure 5) for 3000 beats at 72 beats per

minute (2500 s). The initial parameters for this simulation are detailed below in Table 1. These

initial conditions resulted in steady beats with the following parameters: systolic aortic

pressure 114.6 mmHg; diastolic aortic pressure 60.15 mmHg; peak LVP 114.8 mmHg; mean

LV filling pressure 10.09 mmHg; stroke volume 63.78 mL; ejection fraction 55.56%; cardiac

output 4.592 L/min; peak aortic flow 978.2 mL/s. Additionally, the simulated body reached a

final body temperature of 37.88 °C with zero sweat produced. A representative beat is shown

in Figure 3.

13

Table 1. Initial conditions for the open-loop simulation. LV refers to the left ventricle; LA refers
to the left atrium. Note that these values are preserved for closed-loop simulations.

Parameter name Initial Unit

LV Emin 0.097 mmHg/mL

LV Emax 2.300 mmHg/mL

Arterial resistance 0.928 PRU

Capillary resistance 0.072 PRU

Venous resistance 0.020 PRU

Arterial compliance 1.000 mL/mmHg

Venous compliance 30.00 mL/mmHg

Heart rate 72.00 BPM

Basal metabolic rate 100.0 W

External work 80.00 W

Efficiency 0.250 -

Mass 77.00 kg

Body temperature 37.30 °C

LV volume 120.0 mL

LV pressure 11.64 mmHg

LA pressure 10.00 mmHg

Aortic pressure 90.00 mmHg

Coronary flow 30.00 mL/s

Filtration pressure 0.300 mmHg

Sweat filtration rate 0.000 mL/s

Capillary pressure 25.00 mmHg

14

Figure 3: Pressure, flow and volume in the left ventricle. The plot represents a single beat at
72 BPM during an open-loop simulation of the model. LVV is the dotted-dashed line; LVP is
the solid line; AoP is the dashed line; in- and outflow are shown as dotted lines. *Flow is
scaled by 1/20. Additionally, magnitude of these two flows is shown here, but inflow occurs
only during relaxation and outflow occurs only during ejection.

15

Figure 4: Program flow chart. The initial conditions for a beat are fed into an ODE solver,
which produces a normalized elastance curve to compute pressures and flows in the left
ventricle. These data are used to calculate metabolic changes and flows across the capillary
wall as well as temperature changes during the beat. The temperature error between target
and actual determines the magnitude of change the dual PI controller exerts on arterial
resistance and heart rate.

16

Figure 5: PI controller used in the program. At the end of any given cardiac cycle, the total
heat dissipated by the block of humanity is compared to the total heat produced and the
difference (����) is used to adjust heart rate and arterial resistance. The new �� and �� are
then used for the next iterative cardiac cycle.

�����
∗ � ������

����� ∗ � ������

�����
∗ ����

�����
∗ ����

Δ��

Δ��

����

����

Initial Conditions

17

RESULTS

The results of this experiment are split into two sub-sections, one for each set of

simulation data as described in simulation parameters. In the first sub-section, the “shotgun”

simulation method using values of 0, 1, 10, 50 and 100 for HR Kp, HR Ki and RA Kp are run to

create a map of output parameters. In the second, only 25 trials are generated with values

of 0, 1, 10, 50 and 100 for HR Ki and RA Kp while HR Kp is set at 10. (As noted in the sub-

sections below, the settling and rise time profiles were not significantly affected by changes

in HR Kp with one exception; thus, one value suffices to be representative.) However, note

that in these trials the external workload of the block of humanity has increased to 228 W to

match the profiles in [12].

Note that when settling or rise time is referenced, it is assumed to be the settling or

rise time of the temperature in the block of humanity unless otherwise indicated. Additionally,

“quintets” refer to the 5-trial sequence for the HR Kp control variable in which the other two

variables are held constant, e.g. “the quintet at HR Ki = 0 & RA Kp = 10” references the five

trials where HR Ki = 0, RA Kp = 10 and HR Kp = 0, 1, 10, 50 and 100 consecutively. Similarly,

triplets refer to 3-trial sequences for HR Ki and quartets refer to 4-trial sequences of RA Kp.

The “Shotgun” Method of Parameter Estimation

In this sub-section, the “shotgun” simulation method using values of 0, 1, 10, 50 and

100 for HR Kp, HR Ki and RA Kp are analyzed to create a map of output parameters. Of these

125 trials, 75 corrected body temperature towards setpoint, but only 60 of these 75 trials

reached the setpoint envelope of 37 ± 0.75 °C within the simulation’s timeframe of 3000

cardiac cycles. The 65 trials that did not reach setpoint within the time allotted are not

considered for the statistical settling time analysis.

18

Relationship between settling time and proportional control of heart rate

With some exceptions, increases in HR Kp caused an increase in settling time; a 100-

fold increase (from HR Kp = 1 to HR Kp =100) averaged a 7.61% increase in settling time

across all quintets. Among these data lies an interesting outlier at HR Ki = 1 & RA Kp = 10

where the 100-fold increase in HR Kp results in a 50.58% increase in settling time, from 505

s to 762 s, a difference of 256 seconds. Without including this outlier, the per-quintet 100-

fold mean increase in HR Kp was 3.71%. Both of these figures are in contrast to a 5.23%

increase in settling time across all quintets from HR Kp = 0 to HR Kp =100. This trend can be

most easily seen in Figure 6 below. Additionally, two quintets at HR Ki =10 & RA Kp = 1 and

at HR Ki =10 & RA Kp = 10 actually showed a decrease in settling time with a 100-fold increase

in HR Kp, which correspond to a 0.31% and 3.67% respective decrease in settling time.

Interestingly, analysis of 10-fold increases on intervals between both HR Kp =1 to HR

Kp = 10 and HR Kp =10 to HR Kp = 100 yield much different results, especially between each

pairing. Between the 1-10 interval, average settling time increased 2.43% contrary to an

average settling time increase of 4.75% in the 10-100 interval. Excluding the same outlier at

HR Ki = 1 & RA Kp = 10, average settling time increases for the 1-10 and 10-100 interval

instead become 0.18% and 3.51%, respectively. These differences signify that the

relationship of ∆Ts to changes in HR Kp are not exponential. Relationships between incremental

changes in HR Kp and the commensurate percent change in settling time (∆Ts) are described

in Table 2 below. The outlier trial at HR Ki = 1 & RA Kp = 10 is highlighted. Notably, this table

shows how small changes in HR Kp have little effect on settling time, but neither do large

changes have as much an influence as do either HR Ki or RA Kp which can be seen in the

following two sub-sections. In addition, the correlation between ∆Ts for each change in control

variable and a straight line shows that ∆Ts represent a strong linear pattern (|r| > 0.50) for

ten of the twelve sets. This indicates that changes in HR Kp induce a linear change in settling

time. Of the remaining two trial quintets, one set of ∆Ts correlates to a straight line moderately

19

(0.30 < |r| < 0.50) and the other weakly (|r| < 0.3); this last, the weakest, corresponds to

the aforementioned outlier trial.

Figure 6. Settling time as a function of proportional control of heart rate. Mean values are
represented by triangles. The dashed line represents the trend. Generally, settling time
increased as a function of HR Kp; the average increase between the mean settling times taken
at HR Kp = 0 and HR Kp = 100 was 5.23%. Two of the twelve total quintets had lower settling
times at HR Kp = 100 than HR Kp = 0.

20

Table 2. Percent differences in settling time for selected intervals of a quintet. For example,
percent difference in settling time between HR Kp = 1 to HR Kp =10 would be tabulated in the
column “+9”. Magnitude of linear correlation (|r|) for each quintet is also included. Highlighted
is the outlier at HR Ki = 1 and RA Kp = 10.

HR

Ki

RA

Kp

∆Ts (%) |r|

+1 +10 +40 +50 +100 +9 +90 +99

0 0 0.05 0.53 2.01 2.27 4.87 0.47 4.32 4.82 0.94

1 0 0.09 0.64 4.68 4.17 9.74 0.55 9.04 9.64 0.90

10 0 0.00 0.06 0.13 -0.17 0.02 0.06 -0.04 0.02 0.46

0 1 0.05 0.53 2.00 2.27 4.87 0.47 4.32 4.81 0.96

1 1 0.10 0.98 4.20 5.17 10.66 0.87 9.59 10.54 0.97

10 1 0.01 0.03 0.00 -0.34 -0.31 0.02 -0.34 -0.31 0.78

0 10 0.10 1.19 4.04 2.85 8.28 1.09 7.01 8.17 0.84

1 10 0.20 27.42 8.95 8.69 50.88 27.16 18.41 50.58 0.23

10 10 -0.03 -0.29 -1.07 -2.37 -3.69 -0.26 -3.42 -3.67 0.96

0 50 0.04 -0.38 -0.94 5.05 3.66 -0.42 4.06 3.62 0.67

1 50 -0.31 -1.25 0.43 2.49 1.64 -0.95 2.93 1.95 0.84

10 50 0.00 0.08 0.40 0.70 1.19 0.08 1.11 1.19 0.97

Relationship between settling time and integral control of heart rate

Of the five trial variable settings for HR Ki, only three produced solutions that reached

setpoint: 0, 1 and 10. Generally, increases in HR Ki resulted in a decrease of settling time,

which is somewhat contrary to the expectations of a control system. However, as shown in

Figure 7, this trend is true for increases on the interval HR Ki = 0 to HR Ki = 1 as well as HR

Ki = 0 to HR Ki = 10 but not for the interval HR Ki = 1 to HR Ki = 10.

Incrementing HR Ki generally caused a change in settling time significantly larger than

those produced by similar increments HR Kp. However, trial values of HR Ki = 50 and HR Ki =

100 shaped curves that were too slow to yield sweat and thus cool the block of humanity.

Perhaps most interestingly in this data is the finding that there is a marked contrast in how

HR Ki affects ∆Ts that is strongly dependent on the value of RA Kp. Additionally, while

increasing HR Ki from 0 to 10 generally decreases settling time, on the interval from 1 to 10

there is a general increase in settling time. This can be seen most easily in Figure 7. Between

the first and second values of HR Ki, there is a 25.97% decrease in mean settling time;

21

similarly, between HR Ki = 0 and HR Ki = 10 there is a 22.23% decrease in mean settling

time. Conversely, the mean settling time increases by 4.92% between HR Ki = 1 and HR Ki =

10. Contrary to increments of HR Kp, the relationship between ∆Ts and HR Ki is not generally

linear, though in a few trials it is specifically linear. Notably, as RA Kp increases there is a

corresponding trend in HR Ki’s linear relationship to ∆Ts. It is also interesting to note two

trends expressed in Table 3. The first is that at HR Kp = 50 there is an “explosive” effect on

incrementing HR Ki from 0 to 1: on the interval RA Kp = 0 to RA Kp = 50, this corresponds to

a 12.05%, 15.33%, 80.40% and 7.87% increase in percent change in ∆Ts.

This last number points to the other trend that RA Kp alters the behavior of incremental

changes to HR Ki, a trend that can be easily seen at RA Kp = 50 when small changes in HR Ki

affect ∆Ts very little whereas larger increments have a correspondingly larger effect, which is

in contrast to ∆Ts at smaller values of RA Kp. In both cases of RA Kp = 10 and RA Kp = 50, the

response of the settling time is underdamped and the acceleration of RA Kp is such that sweat

begins to be produced rapidly following the onset of exercise. However, it is at the intersection

HR Ki = 10 and RA Kp = 50 that the fastest and most stable system is produced, a system

that has a fast enough heart rate response that RA does not bottom out, and conversely a fast

enough arterial resistance response that HR does not reach dangerous levels.

22

Table 3. Percent differences in settling time for selected intervals of a quartet. For example,
HR Ki = 1 to HR Ki = 10 would be tabulated in the column “+9”. Magnitude of linear correlation
for each quartet is also included.

HR

Kp

RA

Kp

∆Ts (%) |r|

+1 +10 +9

0 0 -20.87 -16.18 5.93 0.17

1 0 -20.84 -16.22 5.84 0.17

10 0 -20.79 -16.57 5.32 0.16

50 0 -23.02 -22.12 0.74 0.03

100 0 -17.20 -20.06 -3.46 0.16

0 1 -22.11 -18.15 5.08 0.14

1 1 -22.07 -18.19 4.97 0.14

10 1 -21.76 -18.56 4.09 0.12

50 1 -25.11 -25.24 -0.11 0.00

100 1 -17.81 -22.19 -5.33 0.24

0 10 -69.24 1.38 229.58 0.50

1 10 -69.21 1.25 228.82 0.50

10 10 -61.27 -0.09 157.93 0.50

50 10 -146.55 -5.27 57.30 0.48

100 10 -57.14 -9.83 110.37 0.45

0 50 0.25 -62.64 -62.73 0.86

1 50 -0.10 -62.65 -62.62 0.87

10 50 -0.63 -62.46 -62.23 0.87

50 50 0.74 -162.84 -164.81 0.86

100 50 -1.71 -63.53 -62.90 0.88

23

Figure 7. Settling time as a function of integral control of heart rate. Values of HR Ki = 50 and
100 are not shown as no trials with these values reached setpoint within the simulation
timeframe. Mean values are represented by triangles. The dashed line represents the trend.
Generally, settling time decreased as a function of HR Ki; the average decrease between the
mean settling times taken at HR Ki = 0 and HR Ki = 10 was 22.23%.

Relationship between settling time and proportional control of arterial resistance

Of the five trial variable settings for RA Kp, only four produced solutions that reached

setpoint: 0, 1, 10 and 50. Generally, increasing RA Kp resulted in a decrease in settling time,

which is keeping with the expectations of a control system. In those incidences where this

convention does not hold, it is attributable to competing resources in the system, e.g. arterial

resistance falls faster than heart rate increases, thus providing a net reduction in arterial

pressure which in turn retards production of sweat and by extension cooling.

Incrementing RA Kp generally caused a change in settling time significantly larger than

those produced by similar increments of HR Kp. Much like with HR Ki, trial values of RA Kp =

100 shaped curves that were too slow to yield sweat and thus cool the block of humanity.

24

Additionally, the interplay between HR Ki and RA Kp is very apparent when looking at changes

in settling time; these effects can be seen in Table 4 and Figure 8. In the plot specifically it is

easy to observe that for every trial quintet RA Kp decreases absolutely, but the five trials at

HR Ki = 1 & RA Kp = 10 reveal this trend is true globally but not explicitly true locally. This

distinction can be seen more clearly in the table: excepting the five trials where ∆Ts was zero

(or near zero) the only variations for which ∆Ts is positive were between RA Kp = 10 and RA

Kp = 50 with HR Kp = 0 to 100 and HR Ki = 1. Notably, this trial is the outlier highlighted from

the section relationship between settling time and proportional control of heart rate where

these trials are the only ones in which HR Kp plays a significant role in altering settling time.

In all other cases increases to RA Kp result in reduced settling time, but at some point

between RA Kp = 10 and RA Kp = 50 the critical damping point is reached, causing temperature

response to transition from underdamped to overdamped behavior within the quartet. Due to

this interaction between HR Ki and RA Kp, there is an average increase in settling times

between RA Kp = 10 and RA Kp = 50 of 7.09%. On all other intervals, however, average

change in settling time for increments to RA Kp remain negative at 1.27%, 41.50% and

53.87% for increments of 1, 10 and 50 RA Kp respectively. Another facet of the interaction

between HR Ki and RA Kp is the corresponding linearity of ∆Ts as each variable increases.

When RA Kp was held constant (Table 3) a clear progression from weak to strong linearity can

be seen for each triplet. Conversely, Table 4 shows strong linearity when HR Ki = 0, very

strong linearity when HR Ki = 10 but very weak linearity when HR Ki = 1 due to the

aforementioned transition between under- and overdamped responses.

25

Table 4. Percent differences in settling time for selected intervals of a triplet. For example,
RA Kp = 1 to RA Kp = 10 would be tabulated in the column “+9”. Magnitude of linear correlation
for each triplet is also included.

HR

Kp

HR

Ki

∆Ts (%) |r|

+1 +10 +40 +50 +9

0 0 0.00% -34.33% -20.86% -48.03% -34.33% 0.60

1 0 0.00% -34.30% -20.91% -48.04% -34.30% 0.60

10 0 0.00% -33.90% -22.09% -48.50% -33.90% 0.62

50 0 -0.01% -32.58% -25.82% -49.99% -32.58% 0.70

100 0 0.00% -32.20% -24.24% -48.63% -32.20% 0.68

0 1 -1.56% -74.47% 157.90% -34.16% -74.07% 0.14

1 1 -1.54% -74.44% 156.59% -34.42% -74.04% 0.13

10 1 -1.23% -67.68% 99.87% -35.40% -67.28% 0.10

50 1 -1.68% -66.36% 84.25% -38.02% -65.79% 0.07

100 1 -0.73% -64.90% 73.73% -39.02% -64.64% 0.05

0 10 -2.35% -20.57% -70.84% -76.84% -18.66% 0.92

1 10 -2.34% -20.60% -70.83% -76.84% -18.69% 0.92

10 10 -2.38% -20.85% -70.73% -76.83% -18.92% 0.92

50 10 -2.50% -21.80% -70.29% -76.77% -19.79% 0.93

100 10 -2.67% -23.52% -69.36% -76.56% -21.42% 0.94

26

Figure 8. Settling time as a function of integral control of arterial resistance. Values of RA Kp
= 100 are not shown since no trials with this value reached the temperature setpoint within
the simulation timeframe. Mean values are represented by triangles. The dashed line
represents the trend. Generally, settling time decreased as a function of RA Kp; the average
decrease between the mean settling times taken at RA Kp = 0 and RA Kp = 50 was 53.87%.
All quintets had lower settling times at RA Kp = 50 than at RA Kp = 0.

Sweat production

Using the sweat rates published by Godek et al. [13] for American football players, an

upper bound of 0.81 mL/s can be established. Although the exercises producing the sweat

rates from Godek’s experiment and this one differ significantly, Godek’s research highlights a

reasonable upper bound for sweat rates in the present study.

Given these boundaries, the lowest sweat rate was at 0.20 mL/s and the highest at

0.43 mL/s, well under the maximum. There was a very weak correlation (|r| = 0.08) between

the maximum sweat rate and settling time, due as much in part to many variable

combinations being unable to swiftly and adequately induce a large enough pressure

27

difference in the arterial vessel to begin countering the build-up of heat from exercise as it is

from variable combinations introducing oscillations outside the settling envelope. A more

fitting comparison between rise time and maximum sweat rate instead exhibits a very strong

correlation (|r| = 0.85). Additionally, there was a strong correlation (|r| = 0.78) between the

total amount of sweat produced (mL) and settling time. This last figure is not surprising, given

that the production of heat within the block of humanity was constant at 320 W but simulation

time was not, so for trials that shed heat more quickly through higher heart rates the total

amount of sweat would be similarly reduced. More telling is the moderate correlation (|r| =

0.61) between the time-averaged sweat rate and settling time.

Control variables

Heart rate was bounded between 40 and 200, but in all 60 trials neither bound was

reached. Minimum BPM did however go as low as 41.24, while maximum was 175.38.

Likewise, arterial resistance was bounded between 0.1 and 4.0 peripheral resistance units

(PRU), and in nearly every quintet where HR Ki = 0 or 1 the lower bound was reached. There

exists one exception for the quintet at HR Ki = 1 and RA Kp =50, when the minimum arterial

resistance reached only 0.18.

Fast settlers and risers

Among all 60 trials, only two quintets had trials with settling times below 1000

seconds: the quintet at HR Ki = 1 & RA Kp = 10 and the quintet at HR Ki = 10 & RA Kp = 50.

Representative samples from HR Kp = 10 are shown in Figure 9 and Figure 10. These two

quintets are also evident as the 10 lowest data points in Figure 6. One quintet of particular

note is that with HR Ki = 50 and RA Kp = 50. This quintet remains singular in this data set as

one where sweat filtration was positive but body temperature increased. While the sweat

produced was not nearly enough to counteract the build-up of heat within the body, it

nonetheless remains the set of trials that most closely mimic actual physiological responses.

28

Figure 9. Time courses for HR Kp = 10, HR Ki = 1 and RA Kp = 10. Sweat filtration, arterial-
venous oxygen difference, body temperature and the two control variables heart rate
(dashed) and arterial resistance (solid) are shown. Settling time for this trial was 643 s and
rise time was 278 s. Note that RA bottoms out for roughly 99 s until heart rate rises far enough
to compensate. This trial is an excellent example of control variable combinations that met
the success criteria but are not physiologically possible.

29

Figure 10. Time courses for HR Kp = 10, HR Ki = 10 and RA Kp = 50. Sweat filtration, arterial-
venous oxygen difference, body temperature and the two control variables heart rate
(dashed) and arterial resistance (solid) are shown. Settling time for this trial was 486 s and
rise time was 419 s, and the control variable combination is very close to reaching the critical
damping point. Note that heart rate rises fast enough that RA does not bottom out, which
occurred in 35 trials. This trial is an excellent example of control variable combinations that
met the success criteria but do not represent a real physiological response. However, it
remains the fastest settling trial within this simulation data set.

Increased workload and physiological considerations

 In this sub-section, the simulation set using values of 0, 1, 10, 50 and 100 for HR Ki

and RA Kp with HR Kp = 10 are analyzed to create a map of output parameters with a vastly

increased external workload (228 W). Of these 25 trials, 16 corrected body temperature

towards setpoint and all 16 trials reached the setpoint envelope of 37 ± 0.75 °C within the

simulation’s timeframe of 3000 heart beats. Note here that the 9 trials that did not reach

setpoint had either HR Ki = 50 or HR Ki = 100, a similar pattern as those described in the

previous sub-section; the trial HR Kp = 50, HR Ki = 50 and RA Kp = 100 did reach the setpoint

30

envelope, however. Of those 9 trials that did not reach setpoint, the trial with HR Ki = 50 and

RA Kp = 50 yet again is the only one that had positive sweat filtration and, thus, cooling. This

data is compared to [12] in Figure 11.

As shown by the experiment in [12], body temperature does not decrease during

exercise of this magnitude (228 W, 60% �̇�����
),. This data is shown in Table 5, and it should

be noted that the discrepancy in the final temperature Tf can be explained by different

simulation run times: in general, trials with HR Ki = 50 ran for an average of 245 seconds

shorter than trials at HR Ki = 100 due to differences in heart rate.

Figure 11. Temperature comparison between reported data and model. Trial HR Kp = 10, HR
Ki = 50 and RA Kp = 50 is plotted against interpolated data from [12]. Coefficient of
determination R2 = 0.995 between the model fit and reported data.

31

Table 5. Sweat production, final temperature and correlation coefficient between these
variables for each trial of the second data set. In all trials, HR Kp = 10. Differences in sweat
production between trials that converged to setpoint are due wholly or in part to differences
in simulation run time; as noted, each trial was run for 3000 cardiac cycles, so simulation
time decreases as average heart rate increases. R denotes the correlation between a trial’s
body temperature to that of the average participant in [12].

HR Ki RA Kp Sweat (mL) Tf (°C) r

0 0 391.36 36.98 -0.85

1 0 275.57 37.07 -0.43

10 0 256.99 37.20 -0.05

50 0 0.00 38.66 1.00

100 0 0.00 38.95 1.00

0 1 390.43 36.99 -0.85

1 1 283.50 36.97 -0.46

10 1 264.55 37.09 -0.05

50 1 0.00 38.66 1.00

100 1 0.00 38.95 1.00

0 10 389.41 37.00 -0.85

1 10 274.81 37.00 -0.56

10 10 249.74 37.00 -0.28

50 10 0.00 38.66 1.00

100 10 0.00 38.95 1.00

0 50 389.39 37.00 -0.86

1 50 236.74 37.01 -0.88

10 50 190.12 36.98 -0.86

50 50 42.89 38.27 1.00

100 50 0.00 38.95 1.00

0 100 388.00 37.01 -0.91

1 100 220.13 37.06 -0.97

10 100 177.15 37.04 -0.98

50 100 136.67 37.38 -0.72

100 100 0.00 38.95 1.00

32

DISCUSSION

Comparing only the temperature responses, the trial of HR Kp = 10, HR Ki = 50 and

RA Kp = 50 most closely matches the data from [12], but two significant exceptions exist.

First, while the block of humanity is powered by a time-changing elastance, i.e. the left

ventricle, the properties Emin and Emax are constant. However, these two values are highly

susceptible to inotropic effects and strongly correlated to both LV mass and LV end-diastolic

volume (preload) [24], [41]. The range of Emin to Emax used in these simulations (detailed in

simulation parameters) embodies normal cardiac function, but under stress—in this case,

exercise—these values are no longer representative. In fact, [41] shows that at high values

of preload, Emax may increase twenty-fold from the value utilized in these simulations. This

incongruity results in a major shortfall of stroke volume—and by extension cardiac output—

relative to that seen in the human body: with respect to the data in [12], there is a 55% and

59% difference between reported and simulated cardiac output and stroke volume.

Second, the time course of body temperature in the block of humanity can be seen to

be concave up, indicating that given enough time body temperature would reach a maximum

and then, albeit slowly, begin decreasing. This phenomenon is rooted in the fact that the block

of humanity has been designed to value its temperature above all else—including survival. If

we assume that there exists a physiological analog to this lumped parameter control system,

then it follows from the comparison in Figure 11 that under some conditions maintaining

thermo-fluid homeostasis is not in fact the primary goal of the human body. Else, the model’s

output would more closely resemble that of physiology. Although thermoregulation is

important, there still exists a range of heat storage the body deems acceptable in order to

maximize its useful work; this is likely a mechanism in which useful may be defined as

“increasing survival.” The premise of exchanging future hyperthermia for present work is quite

evident from a comparison of the data shown in [12] to that of Table 5, where each living

participant was able to leverage heat storage towards the performance of work whereas the

33

block of humanity instead leveraged its available resources towards decreasing core

temperature, even in the cases where it could not generate a large enough pressure difference

across the capillary to generate sweat.

A simple difference quotient is taken for the block of humanity to maintain body

temperature, expressed in equation (6). When the cooling exceeds the heat generated by the

block of humanity, temperature naturally decreases. All variables in these two equations are

held constant with the exception of ISW, so body temperature depends solely on the pressure

difference at the capillary: the greater the net outward (tissue-ward) pressure, the greater

the flow and the greater the cooling. Effectively, the lumped parameter control system

emulates the hypothalamus but is constrained to a physiological setpoint described by the

coded conditions (Emax, BMR, control variable coefficients, etc.) and this setpoint can change

due to effectors ranging from ventilation or stress to minutia like the time of day or

psychosomatic beliefs [4], [21], [32]. Rather, the setpoint is more likely an emergent property

of a system attempting to minimize local entropy production, as posited by Ilya Prigogene in

his work on dissipative structures.

Schaible [38] posits that there exists a thermodynamic spectrum a living body falls

along at any given time. Along the abscissa, the negative direction indicates efficiency and

the positive direction indicates survival reserve. Similarly along the ordinate, the negative

direction indicates equilibrium while the positive indicates work. For the participants of [12],

evidence of fatigue suggests they are operating somewhere in the first quadrant: each

participant is exerting a fraction of their maximum available external work (60%) which

eventually leads to fatigue, i.e. the consumption of available resources outstrips the

generation (short-term) or accumulation (long-term) of resources. Conversely, the block of

humanity has innumerably fewer resources to consume; in fact, the only finite resources the

block of humanity can control are the setpoints of its two control variables HR and RA—and,

once these two knobs have been fully turned, the block of humanity is left to whatever fate

this “maximized” state evokes.

34

CONCLUSION

In this thesis a model CVS was built to emulate the thermodynamic responses

observed at the capillary during exercise. A comprehensive evaluation was also performed to

assess the contribution each control variable coefficient had in any given permutation to the

model’s response. Furthermore, the results of these permutative trials were evaluated under

conditions that could be compared to literature.

It was found that while the model’s responses could not replicate the responses in

literature, the discrepancy was likely due to the assumptions made during the creation of the

model that affected the target setpoint; in effect the model attempted to accomplish a task

different from the living participants it was compared to. In the first, the model aimed

exclusively to reduce body temperature through its control of heart rate and arterial

resistance, whereas in the latter the participants aimed exclusively to maintain a constant

external workload. However, while the primitive feedback loops in the model may not

accurately portray in vivo performance of the human body, the simulation results highlight

the potential of the capillary-centric, coupling-as-thermodynamics model to explore the

emergent properties of the dynamic, adaptive and complex cardiovascular system.

35

REFERENCES

[1] S. Abram et al., "Quantitative Circulatory Physiology: an integrative mathematical

model of human physiology for medical education," Am J Physiol: Advances in

Physiology Education, vol. 31, no. 2, pp. 202-210, 2007.

[2] D. Burkhoff et al., "Contractile strength and mechanical efficiency of left ventricle are

enhanced by physiological afterload," Am J Physiol, vol. 260, no. 2, pp. H569-H578,

1991.

[3] D. Burkhoff and K. Sagawa, "Ventricular efficiency predicted by an analytical model,"

Am J Physiol, vol. 250, no. 6, pp. R1021-R1027, Jun. 1988.

[4] E. N. Brown et al., “A statistical model of the human core-temperature circadian

rhythm,” Am J Physiol Endocrinol Metab, vol. 279, pp. E669-E683, Mar. 2000.

[5] P. D. Chantler et al., "Arterial-ventricular coupling: mechanistic insights into

cardiovascular performance at rest and during exercise," J Appl Physiol, vol. 105, no. 4,

pp. 1342-1351, Oct. 2008.

[6] P. D. Chantler et al., "Abnormalities in arterial-ventricular coupling in older healthy

persons are attenuated by sodium nitroprusside," Am J Physiol Heart Circ Physiol, vol.

300, no. 5, pp. H1914-H1922, May 2011.

[7] D. Chemla et al., "Contribution of systemic vascular resistance and total arterial

compliance to effective arterial elastance in humans,” Am J Physiol Heart Circ Physiol,

vol. 285, no. 2, pp. H614-H620, Aug. 2003.

[8] J. A. Chirinos et al., "Arterial wave reflections and incident cardiovascular events and

heart failure: MESA (Multiethnic Study of Atherosclerosis),” J Am Coll Cardiol, vol. 60,

no. 21, pp. 2170-2177, Nov. 2012.

36

[9] J. A. Chirinos et al., "Effective arterial elastance is insensitive to pulsatile arterial load,”

Hypertension, vol. 64, no. 5, pp. 1022-1031, Nov. 2014.

[10] J. A. Chirinos, "Ventricular-arterial coupling: invasive and non-invasive assessment,”

Artery Res, vol. 7, no. 1, pp. 2-14, Mar. 2013.

[11] P. P. de Tombe et al., "Ventricular stroke work and efficiency both remain nearly optimal

despite altered vascular loading,” Am J Physiol, vol. 264, no. 6, pp. H1817-H1817, Jun.

1993.

[12] J. Gonzalez-Alonso, “Influence of body temperature on the development of fatigue

during prolonged exercise in the heat,” J Appl Physiol, vol. 86, no. 3, pp. 1032-39, 1999.

[13] S. Godek et al., “Sweat rates, sweat sodium concentrations, and sodium losses in 3

groups of professional football players,” J Athl Train, vol. 45, no. 4, pp. 364-371, 2010.

[14] A. C. Guyton, "Determination of cardiac output by equating venous return curves with

cardiac response curves,” Physiology Rev, vol. 35, no. 1, pp. 123-129, Jan. 1955.

[15] A. C. Guyton et al., "Effect of mean circulatory filling pressure and other peripheral

circulatory factors on cardiac output,” Am J Physiol, vol. 180, no. 3, pp. 463-68, Mar.

1955.

[16] A. C. Guyton et al., "Venous return at various right atrial pressures and the normal

venous return curve,” Am J Physiol, vol. 189, no. 3, pp. 609-615, Jun. 1957.

[17] A. C. Guyton et al., "Circulation: overall regulation,” Annu Rev Physiol, vol. 34, no. 1,

pp. 13-44, 1972.

[18] J. E. Hall, “Guyton and Hall textbook of medical physiology,” Elsevier Health Sciences,

2010.

37

[19] J. Hashimoto et al., "Enhanced radial late systolic pressure augmentation in

hypertensive patients with left ventricular hypertrophy,” Am J Hypertens, vol. 19, no.

1, pp. 27-32, Jan. 2006.

[20] J. Hashimoto et al., "Different role of wave reflection magnitude and timing on left

ventricular mass reduction during antihypertensive treatment,” J Hypertens, vol. 26,

no. 5, pp. 1017-1024, May 2008.

[21] J. G. Henry and C. R. Bainton, “Human core temperature increase as a stimulus to

breathing during moderate exercise,” Resp Phsyiol, vol. 21, pp. 183-191, 1974.

[22] R. L. Hester et al., "Systems biology and integrative physiological modelling,” J Physiol,

vol. 589, no. 5, pp. 1053-1060, Mar. 2011.

[23] S. R. Jones et al., "Optimization of total ventricular efficiency studied in isolated canine

hearts,” Circulation, vol. 82, no. 4, pp. III-695, 1990.

[24] D. A. Kass et al., “Determination of left ventricular end-systolic pressure-volume

relationships in the conductance (volume) catheter technique,” Circulation, vol. 73, no.

3, pp. 586-595, Feb. 1986.

[25] D. A. Kass and R. P. Kelly. "Ventriculo-arterial coupling: concepts, assumptions, and

applications,” Ann Biomed Eng, vol. 20, no. 1, pp. 41-62, 1992.

[26] R. P. Kelly et al., "Effective arterial elastance as index of arterial vascular load in

humans,” Circulation, vol. 86, no. 2, pp. 513-521, Aug. 1992.

[27] S. Kobayashi et al., "Influence of aortic impedance on the development of pressure-

overload left ventricular hypertrophy in rats,” Circulation, vol. 94, no. 12, pp. 3362-

3368, Dec. 1996.

[28] E. D. Lehmann, "Clinical value of aortic pulse-wave velocity measurement,” Lancet, vol.

354, no. 9178, pp. 528-529, Aug. 1999.

38

[29] A. Lerant et al., “Preventing and treating hypoxia: using a physiology simulator to

demonstrate the value of pre-oxygenation and the futility of hyperventilation,” Int J Med

Sci, vol. 12, no. 8, pp. 625-632, 2015.

[30] R. Moss et al., “Virtual patients and sensitivity analysis of the Guyton model of blood

pressure regulation: towards individualized models of whole-body physiology,” PLoS

Comput Biol, vol. 8, no. 6, pp.1-16, Jun. 2012.

[31] E. S. Myhre et al., "Optimal matching between canine left ventricle and afterload,” Am

J Physiol Heart Circ Physiol, vol. 254, no. 6, pp. H1051-H1058, Jun. 1988.

[32] T. D. Noakes, “Time to move beyond a brainless exercise physiology: the evidence for

complex regulation of human exercise performance,” Appl Physiol Nutr Metab, vol. 36,

doi:10.1139/H10-082, Jan. 2011.

[33] H. Piene, "Interaction between the Right Heart Ventricle and Its Arterial Load: A

Quantitative Solution,” Am J Physiol, vol. 238, no. 6, pp. H932-937, Jun. 1980.

[34] M. Reinig et al., "Left ventricular endocardial pacing: a transarterial approach,” Pacing

Clin Electrophysiol, vol. 30, no. 12, pp. 1464-1468, Dec. 2007.

[35] K. Sagawa, “Critique of a large-scale organ system model: Guytonian cardiovascular

model,” J Dyn Sys, Meas, Control, vol. 97, no. 3, pp. 259-265, Jun. 1975.

[36] K. E. Samuelson et al., "Time domain reflectometer impedance sensor method of use

and implantable cardiac stimulator using same,” U.S. Patent 5 361 776, Nov. 8, 1994.

[37] M. V. Savage and G. L. Brengelmann, "Control of skin blood flow in the neutral zone of

human body temperature regulation," J Appl Physiol, vol. 80 no. 4, pp. 1249-1257,

1996.

[38] N. S. Schaible, “Minimum entropy generation in the cardiovascular system,” M.S. thesis,

Elec. And Comp. Engr., North Dakota State University, Fargo, ND, 2011.

39

[39] P. Segers et al., "Relation of effective arterial elastance to arterial system properties,”

Am J Physiol Heart Circ Physiol, vol. 282, no. 3, pp. H1041-H1046, Mar. 2002.

[40] D. A. Self et al., "Beat-to-beat determination of peripheral resistance and arterial

compliance during centrifugation,” Aviat Space Environ Med, vol. 65, no. 5, pp. 396-

403, May 1994.

[41] M. R. Starling et al., “The relationship of various measures of end-systole to left

ventricular maximum time-varying elastance in man,” Circulation, vol. 76, no. 1, pp.

32-43, 1987.

[42] M. R. Starling, "Left ventricular-arterial coupling relations in the normal human heart,”

Am Heart J, vol. 125, no. 6, pp. 1659-1666, Jun. 1993.

[43] H. Suga et al., "Mathematical interrelationship between instantaneous ventricular

pressure-volume ratio and myocardial force-velocity relation." Ann Biomed Eng, vol. 1,

no. 2, pp. 160-181, Dec. 1972.

[44] M. Sugimachi et al., ”Does the canine left ventricle operate at the optimal contractility

and heart rate to minimize oxygen consumption during exercise and left ventricular

dysfunction?” in Proceedings of the 9th International Conference of the Cardiovascular

System Dynamics Society, Halifax, N.S., Canada, 1988, pp. 227-230.

[45] K. Sunagawa et al., "Left ventricular interaction with arterial load studied in isolated

canine ventricle,” Am J Physiol, vol. 245, no. 5, pp. H773-780, Nov. 1983.

[46] K. Sunagawa et al., "Optimal arterial resistance for the maximal stroke work studied in

isolated canine left ventricle,” Circ Res, vol. 56, no. 4, pp. 586-95, Apr. 1985.

[47] G. P. Toorop et al., "Beat-to-beat estimation of peripheral resistance and arterial

compliance during pressure transients,” Am J Physiol Heart Circ Physiol, vol. 252, no.

6, pp. H1275-H1283, Jun. 1987.

40

[48] G. P. Toorop et al., “Matching between feline left ventricle and arterial load: optimal

external power or efficiency,” Am J Physiol Heart Circ Physiol, vol. 254, no. 2, pp. H279-

H285, Feb. 1988.

[49] G. J. van den Horn et al., "Feline left ventricle does not always operate at optimum

power output,” Am J Physiol Heart Circ Physiol, vol. 250, no. 6, pp. H961-H967, Jun.

1986.

[50] G. J. van den Horn et al., "Optimal Power Generation by the Left Ventricle,” Circ Res,

vol. 56, no. 2, pp. 252-261, Feb. 1985.

[51] K. L. Wang et al., "Wave reflection and arterial stiffness in the prediction of 15-year all-

cause and cardiovascular mortalities a community-based study,” Hypertension, vol. 55,

no. 3, pp. 799-805, Mar. 2010.

[52] F. C. Yin and Z. R. Liu, "Estimating arterial resistance and compliance during transient

conditions in humans,” Am J Physiol Heart Circ Physiol, vol. 257, no. 1 , pp. H190-H197,

Jul. 1989.

41

APPENDIX. MATLAB CODE

In this section, the code used to run the simulations is reported. Note that the

sections hemodynamics.m, odesolver.m and getk.m, marked with a superscript

cross, are co-authored materials. These functions, routines or methods were originally

written by Andrew McNally, Mattew Korpela, Erin Lamke and Matthew Hudson of Iron Range

Engineering in the unpublished work titled “Computational Model of a Left Ventricle: Showing

the Effects of Inertia on Cardiac Dyssynchrony.” The last known revision of this work occured

Feb. 2012. The code has been revised such that the original functions are altered significantly,

or it has been optimized in such a way that the original functions remain intact but are

significantly improved over the original version.

capinator.m

%%
% ----------------------------------- %
%
% Author: Drew Taylor
% Date: May 16, 2012
% Last Rev: Sep 21, 2015
% Title: capinator.m
%
% ----------------------------------- %

clear all
%% Log file creation

logmode = 0;

if logmode == 1
 vdate = clock;

 if datenum(vdate(2)) < 10
 month = ['0' num2str(datenum(vdate(2)))];
 else
 month = num2str(datenum(vdate(2)));
 end

 if datenum(vdate(3)) < 10
 day = ['0' num2str(datenum(vdate(3)))];
 else
 day = num2str(datenum(vdate(3)));

42

 end

 if datenum(vdate(4)) < 10
 hour = ['0' num2str(datenum(vdate(4)))];
 else
 hour = num2str(datenum(vdate(4)));
 end

 if datenum(vdate(5)) < 10
 minute = ['0' num2str(datenum(vdate(5)))];
 else
 minute = num2str(datenum(vdate(5)));
 end

 filecount1 = 1;
 filecount2 = 1;
 filedate = [num2str(datenum(vdate(1))) '.' month '.' day '.'];
 filetime = [hour minute];
 filename1 = [filedate filetime '.waveforms_' num2str(filecount1) '.txt'];
 filename2 = [filedate filetime '.heatstuff_' num2str(filecount2) '.txt'];

 % A = [vAoP vI1 vIi vIo vLAP vLVP vPE1 vQc vV1 vVi vVo];
 waveformhead = ['AoP', 'I1', 'Ii', 'Io', 'LAP','LVP','PE1','Qc', 'V1',
'Vi', 'Vo'];
 wfheadformat = '%9s %9s %9s %9s %9s %9s %9s %9s %9s %9s
%9s\r\n';
 wfformatSpec = '%3.4f %3.4f %3.4f %3.4f %3.4f %3.4f %3.4f %3.4f %3.4f
%3.4f %3.4f\r\n';

 % B = [vAVO2'; vBodTemp'; vIsweat'; vMQ'; vPca'; vQlat'; vRa'; vRaErr';
vTemperr'; vbpm'];
 % heatstuffhead = ['vAVO2', 'vBodTemp', 'vIsweat', 'vMQ',
'vPca','vQlat','vRa','vRaErr', 'vTemperr', 'vbpm'];
 hsheadformat = '%10s %8s %8s %8s %8s %8s %8s %8s %8s
%8s\r\n';
 hsformatSpec = '%10.4f %10.4f %10.4f %10.4f %10.4f %10.4f %10.4f %10.4f
%10.4f %10.4f\r\n';

 fileID1 = fopen(filename1,'w');
 fprintf(fileID1,wfheadformat,'AoP', 'I1', 'Ii', 'Io',
'LAP','LVP','PE1','Qc', 'V1', 'Vi', 'Vo');
 % fprintf(fileID,wfformatSpec,A);
 % fclose(fileID1);

 fileID2 = fopen(filename2,'w');
 fprintf(fileID2,hsheadformat,'vAVO2', 'vBodTemp', 'vIsweat', 'vMQ',
'vPca','vQlat','vRa','vRaErr', 'vTemperr', 'vbpm');
 % fprintf(fileID,hsformatSpec,B);
 % fclose(fileID2);
end

val_run = false;

runspecHRKp = [0, 1, 10, 50, 100];
runspecHRKi = [0, 1, 10, 50, 100];
runspecRAKp = [0, 1, 10, 50, 100];
tic

43

for loopdex3 = 1:length(runspecRAKp)
for loopdex2 = 1:length(runspecHRKi)
for loopdex1 = 1:length(runspecHRKp)

clear PE1 I1 Ii Io LVP V1 Vi Vo LAP AoP e_1 Ea_RC Ea_EQ Ea_SG beatendtime;
%% Declare initial conditions

r1 = 0.0005; %0.0005
e1min = 0.097; %0.02
e1max = 2.3; %5
m1 = 0.00045; %0.00045
t1 = 0; %0

% Arterial parameters
% Ra = 0.7*17*60/1000; %1.5
Ra = 0.90933*17*60/1000;
Rc = 0.07067*17*60/1000; %0.1
Rv = 0.02*17*60/1000;
Cv = 30; %15
Ca = 1;

% bpm = beats per minute; MQ = metabolism (W);
% EWork = external power (J/s)
bpm = 72; %de Cort
MQinit = 100; % watts
Work = 512; % watts
Effnc = 0.25; % 25% efficiency
EWork = Work*Effnc;
heat_rad = 0; % watts, heat due to radiation
heat_conv = 0; % watts, heat due to convection

% K1 = energy equivalent of oxygen (J/mL O2)
K1 = 20;

% mass = N * s^2 / m (kg)
mass = 77; % kg

age = 20;

bpmmax = 220 - age;

% degrees C
BodTemp = 35.9;
BodTempTgt = 37;

% step = dt, cycle = secs to run
step = 0.001;
cycle = 2500;

%if truncating values, this sets the decimate resample rate at 1/resample,
%e.g. resample = 2 would halve the number of data points. must be integer.
resample = 1;

% defines total runtime samples length & index of end of first beat
% beats finds the number of beats in run time (assuming steady state BPM)
t_beat = 0:step:cycle;

44

pbeatdex = 0;
nbeatdex = ceil((60/bpm) / step + 1);
beats = cycle / (60 / bpm);

% E in mmHg / mL; V in mL; P in mmHg
volume = 120;
pressure = volume*e1min;

% Initialization parameters for the hemodynamics
init_hemo = ...
[pressure ... % 01 PE1
0 ... % 02 I1 net flow into ventricle
0 ... % 03 Ii inlet flow
0 ... % 04 Io outlet flow
pressure ... % 05 LVP
volume ... % 06 V1 intial volume
0 ... % 07 Vi integral Ii
0 ... % 08 Vo integral Io
10 ... % 09 LAP mmHg
90 ... % 10 AoP mmHg
e1min ... % 11 e_1 diastolic elastance
bpm]; ... % 12 bpm 1 / s

% Initialization parameters for the thermodynamics and flows
init_therm = ...
[30 ... % 01 Qc mL/s coronary flow
0.1 ... % 02 AVO2 mL/100 mL
0.3 ... % 03 net filt pres mmHg
0 ... % 04 sweat filtration mL/s
25 ... % 05 Pca mmHg
0 ... % 06 latent heat J / s
BodTemp ... % 07 body temp (degrees Celsius)
0.3 ... % 08 temperature error
MQinit ... % 09 metabolism (watts)
EWork]; ... % 10 external work dot (watts)

init_time = ...
[step ... % 1 step size
pbeatdex ... % 2 first beat start index
nbeatdex ... % 3 first beat end index
1]; % 4 beat number

ctrl_bits = ...
[1 ... % Heart rate control bit; on = 1
1]; % Arterial resistance control bit; on = 1

art_props = [Ra, Rc, Rv, Cv, Ca];
vent_props = [r1,e1min,e1max,m1,t1];

% Temperrdex = zeros(floor(beats),1);7
TempErrdex = BodTemp - BodTempTgt;
RaErrdex = 0;

%% Run X beats
for beatnum = 1:beats

 if val_run == true

45

 if beatnum >= 0
 MQinit = 80;
 end
 end

 endofbeat(1,beatnum) = nbeatdex;

 if beatnum ~= beats+1
 % Displays beat number on main screen
 disp(['beatnum = ' num2str(beatnum)]);
% disp(['bpm = ' num2str(bpm)]);

 % Generate elastance waveform using ode23 solver
 [PE1, I1, Ii, Io, LVP, V1, Vi, Vo, LAP, AoP, e_1] = odesolver(init_hemo,
init_time, vent_props, art_props, bpm);

 % Solve for Ea
 ts=pbeatdex*step;
 te=nbeatdex*step;
 BigT = ts:step:te;

 ejecting = find(Io>0);

 Ea_RC = AoP(ejecting(end))/max(V1);
 Ea_EQ = (1 - Ca * (AoP(ejecting(1)) - AoP(ejecting(end))) ./ max(Vo)) *
(Ra) ./ (te-ts)';
 Ea_SG = -0.127 + 1.023 * (Ra)./(te-ts) + 0.314 / Ca;

% disp(['Ea_RC = ' num2str(Ea_RC)]);
% disp(['Ea_EQ = ' num2str(Ea_EQ)]);
% disp(['Ea_SG = ' num2str(Ea_SG)]);
% fprintf(' \r');

 hemoform = [PE1, I1, Ii, Io, LVP, V1, Vi, Vo, LAP, AoP, e_1];

 % Compute flows and thermodynamic quantities
 [Qc, AVO2, filtnet, filtrate, lymphfilt, Pca, Ii, dAoP] ...
 = thermoflow(hemoform, init_therm, init_time, art_props);

 hemoform = [PE1, I1, Ii, Io, LVP, V1, Vi, Vo, LAP, AoP, e_1];
% thermoform = [Qc, AVO2, filtnet, lymphfilt, Pca];

 if beatnum == 1
 formstep = 60/bpm/(length(PE1)-1);
 beatendtime = [1:beats]';
 beattime = [0:formstep:60/bpm]';
 else
 formstep = 60/bpm/(length(PE1));
 beattime = [formstep:formstep:60/bpm]' + beatendtime(beatnum-1,1);
 end

 beatendtime(beatnum,1) = beattime(end);

% beattime = [0:formstep:60/bpm]';
% beatendtime(beatnum) = beattime(end);
% beattimex =
[beatendtime(end)+formstep:formstep:60/bpm+beatendtime(end)]';

46

 %% Send error signal to controller
 MQE = MQinit + EWork;
 heatgen = MQE + heat_conv + heat_rad;

 %oscar - HRKp, boyd - HRKi, ike - RAKp
 % Controller variables
 HRKp = runspecHRKp(loopdex1);
 HRKi = runspecHRKi(loopdex2);
 RAKp = runspecRAKp(loopdex3);
 RAKi = 0.1;

 [bpm, delHR, Qlat, BodTemp, sweatfilt, Ra, RaErr, Isweat] =
skunkworks(filtrate, bpm, beatnum, heatgen, TempErrdex, BodTemp, art_props,
...

RaErrdex, BodTempTgt, step, mass, ctrl_bits, beatendtime, ...

bpmmax, HRKp, HRKi, RAKp, RAKi);
 TempErrdex(beatnum,1) = BodTemp - BodTempTgt;
 RaErrdex(beatnum,1) = RaErr;

 art_props = [Ra, Rc, Rv, Cv, Ca];

 %% Assign values to vectors

 if beatnum == 1 || logmode == 1;
 vPE1 = decimate(PE1,resample);
 vI1 = decimate(I1,resample);
 vIi = decimate(Ii,resample);
 vIo = decimate(Io,resample);
 vLVP = decimate(LVP,resample);
 vV1 = decimate(V1,resample);
 vVi = decimate(Vi,resample);
 vVo = decimate(Vo,resample);
 vLAP = decimate(LAP,resample);
 vAoP = decimate(AoP,resample);
 ve_1 = decimate(e_1,resample);
 vQc = decimate(Qc,resample);
 vAVO2 = AVO2(end);
 vfiltnet = filtnet(end);
 vfiltrate = filtrate(end);
 vlymphfilt = lymphfilt(end);
 vsweatfilt = sweatfilt(end);
 vPca = Pca(end);
 vQlat = Qlat(end);
 vBodTemp = BodTemp(end);
 vTempErr = TempErrdex(end);
 vMQ = MQE(end);
 vEWork = EWork(end);
 vbpm = bpm(end);
 vdAoP = dAoP(end);
 vdelHR = delHR(end);
 vIsweat = Isweat(end);
 vRa = Ra(end);
 vRaErr = RaErr(end);
 vbeattime = decimate(beattime,resample);

47

 vEa_RC = decimate(Ea_RC,resample);
 vEa_EQ = decimate(Ea_EQ,resample);
 vEa_SG = decimate(Ea_SG,resample);
 else
 vPE1 = [vPE1; decimate(PE1,resample)];
 vI1 = [vI1; decimate(I1,resample)];
 vIi = [vIi; decimate(Ii,resample)];
 vIo = [vIo; decimate(Io,resample)];
 vLVP = [vLVP; decimate(LVP,resample)];
 vV1 = [vV1; decimate(V1,resample)];
 vVi = [vVi; decimate(Vi,resample)];
 vVo = [vVo; decimate(Vo,resample)];
 vLAP = [vLAP; decimate(LAP,resample)];
 vAoP = [vAoP; decimate(AoP,resample)];
 ve_1 = [ve_1; decimate(e_1,resample)];
 vQc = [vQc; decimate(Qc,resample)];
 vbeattime = [vbeattime; decimate(beattime,resample)];

 vAVO2 = [vAVO2; AVO2(end)];
 vfiltnet = [vfiltnet; filtnet(end)];
 vfiltrate = [vfiltrate; filtrate(end)];
 vlymphfilt = [vlymphfilt; lymphfilt(end)];
 vsweatfilt = [vsweatfilt; sweatfilt(end)];
 vPca = [vPca; Pca(end)];
 vQlat = [vQlat; Qlat(end)];
 vBodTemp = [vBodTemp; BodTemp(end)];
 vTempErr = [vTempErr; TempErrdex(end)];
 vMQ = [vMQ; MQE(end)];
 vEWork = [vEWork; EWork(end)];
 vbpm = [vbpm; bpm(end)];
 vdAoP = [vdAoP; dAoP(end)];
 vdelHR = [vdelHR; delHR(end)];
 vIsweat = [vIsweat;Isweat(end)];
 vRa = [vRa; Ra(end)];
 vRaErr = [vRaErr;RaErr(end)];

 vEa_RC = [vEa_RC; Ea_RC(end)];
 vEa_EQ = [vEa_EQ; Ea_EQ(end)];
 vEa_SG = [vEa_SG; Ea_SG(end)];
 end

 %% Pull out end of beat values

% PE1 = getlast(PE1);
% I1 = getlast(I1);
% Ii = getlast(Ii);
% Io = getlast(Io);
% LVP = getlast(LVP);
% V1 = getlast(V1);
% Vi = getlast(Vi);
% Vo = getlast(Vo);
% LAP = getlast(LAP);
% AoP = getlast(AoP);
% e_1 = getlast(e_1);
% Qc = getlast(Qc);
% AVO2 = getlast(AVO2);
% filtnet = getlast(filtnet);

48

% lymphfilt = getlast(lymphfilt);
% sweatfilt = getlast(sweatfilt);
% Pca = getlast(Pca);
% Qlat = getlast(Qlat);
% BodTemp = getlast(BodTemp);
% Temperr = getlast(Temperr);
% MQinit = getlast(MQdex);
% EWork = getlast(EWork);
% bpm = getlast(bpm);

 PE1 = PE1(end);
 I1 = I1(end);
 Ii = Ii(end);
 Io = Io(end);
 LVP = LVP(end);
 V1 = V1(end);
 Vi = Vi(end);
 Vo = Vo(end);
 LAP = LAP(end);
 AoP = AoP(end);
 e_1 = e_1(end);
 Qc = Qc(end);
 AVO2 = AVO2(end);
 filtnet = filtnet(end);
 lymphfilt = lymphfilt(end);
 sweatfilt = sweatfilt(end);
 Pca = Pca(end);
 Qlat = Qlat(end);
 BodTemp = BodTemp(end);
 TempErr = TempErrdex(end);
% MQinit = MQdex(end);
 EWork = EWork(end);
 bpm = bpm(end);

%% Reinitialize arrays

 beatrat = ceil(60/bpm * 100) / 100;
 pbeatdex = nbeatdex;
 nbeatdex = ceil(pbeatdex + (beatrat) / step);
 beatmod = cycle / (60 / bpm);
% beats = floor(beatmod);

% if beatnum == cycle/2
% MQinit = 100;
% end

 init_hemo = ...
 [PE1 ... % 01 PE1
 I1 ... % 02 I1 net flow into ventricle
 Ii ... % 03 Ii inlet flow
 Io ... % 04 Io outlet flow
 LVP ... % 05 LVP
 V1 ... % 06 V1 initial volume
 Vi ... % 07 Vi integral Ii
 Vo ... % 08 Vo integral Io
 LAP ... % 09 LAP mmHg
 AoP ... % 10 AoP mmHg

49

 e_1 ... % 11 e_1 diastolic elastance
 bpm]; ... % 12 bpm 1 / s

 % Initialization parameters for the thermodynamics and flows
 init_therm = ...
 [Qc ... % 01 Qc mL/s coronary flow
 AVO2 ... % 02 AVO2 mL/100 mL
 filtnet ... % 03 net filt pres mmHg
 sweatfilt ... % 04 sweat filtration mL/s
 Pca ... % 05 Pca mmHg
 Qlat ... % 06 latent heat J / s
 BodTemp ... % 07 body temp (degrees celsius)
 TempErr ... % 08 temperature error
 MQinit ... % 09 metabolism watts
 EWork]; ... % 10 external work dot watts

 init_time = ...
 [step ... % 1 step size
 pbeatdex ... % 2 first beat start index
 nbeatdex ... % 3 first beat end index
 beatnum]; % 4 beat number
 else
 break
 end

 if logmode == 1
 A = [vAoP'; vI1'; vIi'; vIo'; vLAP'; vLVP'; vPE1'; vQc'; vV1'; vVi';
vVo';];
 B = [vAVO2'; vBodTemp'; vIsweat'; vMQ'; vPca'; vQlat'; vRa'; vRaErr';
vTempErr'; vbpm'];

 fileInfo = dir(filename1);
 fileSize = fileInfo.bytes;

 % if fileSize > 100000
 % fclose(fileID1);
 % filecount1 = filecount1 + 1;
 % filename1 = [filedate filetime '.waveforms_'
num2str(filecount1) '.txt'];
 % fileID1 = fopen(filename1,'w');
 % end

 fprintf(fileID1,wfformatSpec,A);

 fileInfo = dir(filename2);
 fileSize = fileInfo.bytes;

 % if fileSize > 100000
 % fclose(fileID2);
 % filecount2 = filecount2 + 1;
 % filename2 = [filedate filetime '.waveforms_'
num2str(filecount2) '.txt'];
 % fileID2 = fopen(filename2,'w');
 % end

 fprintf(fileID2,hsformatSpec,B);

50

 clear vAoP vI1 vIi vIo vLAP vLVP vPE1 vQc vV1 vVi vVo vAVO2 vBodTemp
vIsweat vMQ vPca vQlat vRa vRaErr vTemperr vbpm
 end
end

fclose all;

% fileID = fopen(fileID1,'a');
% fclose(fileID);
%
% fileID = fopen(fileID2,'a');
% fclose(fileID);

%%
beatdex = 1:beats;

close all
[~, name] = system('hostname');
name = strtrim(name);

if strcmp('ilikeike',name) == 1
 dbxpath = 'C:\Users\Drew\Dropbox\Thesis\Figures';
 subpath = '\ike\';
elseif strcmp('phenomenaloscar',name) == 1
 dbxpath = 'I:\Dropbox\Thesis\Figures';
 subpath = '\oscar\';
elseif strcmp('savvyboyd',name) == 1
 dbxpath = 'R:\Dropbox\Thesis\Figures';
 subpath = '\boyd\';
elseif strcmp('gregariousfrank',name) == 1
 dbxpath = 'C:\Dropbox\Thesis\Figures';
 subpath = '\frank\';
end

if val_run == true
 mat_filename = [dbxpath,'\Ki-Ra
',num2str(RAKi),subpath,num2str(beatnum),' beats GLF - HR Kp
',num2str(HRKp),' Ki ',num2str(HRKi),' - Ra Kp ',num2str(RAKp),' Ki
',num2str(RAKi),' VAL.mat'];
else
 mat_filename = [dbxpath,'\Ki-Ra
',num2str(RAKi),subpath,num2str(beatnum),' beats GLF - HR Kp
',num2str(HRKp),' Ki ',num2str(HRKi),' - Ra Kp ',num2str(RAKp),' Ki
',num2str(RAKi),'.mat'];
end

save(mat_filename);

% if logmode ~= 1;
% t_tot = length(vAoP);
% t_tot2 = interp1(vQc,0:step:beats);

%% plotting

 h1 = figure(1);

51

 subplot(2,2,1)
 plot(beatendtime, vsweatfilt)
 title('Sweat Filtration Rate')
 xlabel('Time (s)')
 ylabel('Filtration rate (mL / s)')
 % figure
 subplot(2,2,2)
 % figure
 plot(beatendtime, vAVO2,'b');
 title('AVO_2')
 xlabel('Time (s)')
 ylabel('Concentration (mL / 100 mL)')
 % figure
 subplot(2,2,3)
 plot(beatendtime, vBodTemp)
 title('Body Temperature')
 xlabel('Time (s)')
 ylabel('Temperature (deg C)')
 % figure
 subplot(2,2,4)
% this set of instructions plots Ra and BPM on one plot
 x1 = beatendtime;
 y1 = vbpm;

 x2 = beatendtime;
 y2 = vRa;

 [hax,hL1,hL2] = plotyy(x1,y1,x2,y2);

 set(hax(1),'XColor',[.8 0 0],'YColor',[.8 0 0])
 set(hax(2),'XColor','k','YColor','k')
 set(hL1,'Color','red')
 set(hL2,'Color','black')

 title('Heart Rate & Arterial Resistance')
 ylabel(hax(1),'Heart Rate (BPM)')
 ylabel(hax(2),'Resistance (PRU)')
 xlabel('Time (s)')

 % plot EA
 h2 = figure(2);
 plot(beatendtime, vEa_RC, 'r', beatendtime, vEa_EQ, 'k', beatendtime,
vEa_SG, 'c')
 title('Effective Arterial Elastances')
 xlabel('Time (s)')
 ylabel('Ea (mL / s)')
 legend('E_A (P_E_S/SV)','E_A (Eqn)','E_A (Segers)')

%% %%%

 % figure
 % plot(vbpm)
 % ylabel('BPM')
 % % fprintf('\n')

52

 figure
 plot(vbeattime, vAoP,'b'); hold on;
 plot(vbeattime, vLVP,'g');
 plot(vbeattime, vIo/10,'r');
 plot(vbeattime, vIi/10,'k-');
 plot(vbeattime, vV1,'k-.');
 plot(beatendtime, vPca,'c');
 plot(vbeattime, vLAP, 'm');hold off;

legend('AoP','LVP','Io','Ii','V1','Pca','LAP','Location','NorthEastOutside')
 title('AoP / LVP')
 xlabel('Time')
 ylabel('Pressure (mmHg)')

 % figure
 % plot(vIi)
 % xlabel('Time (ms)')
 % ylabel('Ii ml/s')
 % title('Cardiac Output')

 % figure
 % plot(vAoP)
 % xlabel('Time (ms)')
 % ylabel('Aop (mmHg)')
 % title('Blood Pressure')

 % figure
 % plot(vV1,vLVP)
 % xlabel('Volume (mL)')
 % ylabel('Pressure (mmHg)')
 % title('PV Loop')
% end

%%
pause on

if val_run == true
 fig_filename = [dbxpath,'\Ki-Ra
',num2str(RAKi),subpath,num2str(beatnum),' beats GLF - HR Kp
',num2str(HRKp),' Ki ',num2str(HRKi),' - Ra Kp ',num2str(RAKp),' Ki
',num2str(RAKi),' VAL.fig'];
 saveas(h1,fig_filename);

 fig_filename = [dbxpath,'\Ki-Ra
',num2str(RAKi),subpath,num2str(beatnum),' beats GLF - HR Kp
',num2str(HRKp),' Ki ',num2str(HRKi),' - Ra Kp ',num2str(RAKp),' Ki
',num2str(RAKi),' EA VAL.fig'];
 saveas(h2,fig_filename);
else
 fig_filename = [dbxpath,'\Ki-Ra
',num2str(RAKi),subpath,num2str(beatnum),' beats GLF - HR Kp
',num2str(HRKp),' Ki ',num2str(HRKi),' - Ra Kp ',num2str(RAKp),' Ki
',num2str(RAKi),'.fig'];
 saveas(h1,fig_filename);

 fig_filename = [dbxpath,'\Ki-Ra
',num2str(RAKi),subpath,num2str(beatnum),' beats GLF - HR Kp

53

',num2str(HRKp),' Ki ',num2str(HRKi),' - Ra Kp ',num2str(RAKp),' Ki
',num2str(RAKi),' EA.fig'];
 saveas(h2,fig_filename);
end

pause(3)
pause off

% fig_filename = ['D:\Dropbox\Thesis\Figures\Variable Kp-Ra, Ki-Ra
',num2str(RAKi),'\6000 beats GLF - HR Kp ',num2str(HRKp),' Ki
',num2str(HRKi),' - Ra Kp ',num2str(RAKp),' Ki ',num2str(RAKi),' EA.fig'];
% saveas(h2,fig_filename);
toc
fprintf(1,'%c',7);

end
end
end
toc

54

thermoflow.m

function [Qc, AVO2, filtnet, filtrate, lymphfilt, Pca, Ii, dAoP] ...
 = thermoflow(hemoform, init1, init2, art_props)

%% Initializations
Ii = hemoform(:,3);
Io = hemoform(:,4);
LAP = hemoform(:,9);
AoP = hemoform(:,10);

MQ = init1(:,9);
EWork = init1(:,10);

step = init2(:,1);

% [Qc, AVO2, filtnet, Isweat, Pca, Qlat, BodTemp, Temperr, MQ, EWork]

% Arterial parameters
Ra = art_props(:,1);
Rc = art_props(:,2); %0.1
Rv = art_props(:,3); %0.5
Cv = art_props(:,4); %15
Ca = art_props(:,5);

% pressures in mmHg
% mPAC ref = 17.3;
Pflu = -3;
Piflu = 8;
Piplas = 28;%!!!chenged this

% energy equivalent of oxygen J/mL
K1 = 20;

% enthalpy of water J / kg
delh_h2o = 2257000;

% specific heat J / kg / degC
cp_body = 3470;

% density of blood = kg / m^3
rho_bl = 1060;
rho_blml = 1060 / 10^6;

%% Calculate flows
dAoP = ezdiff(AoP, step);
% dAoP = [dAoP;2*dAoP(end)-dAoP(end-1)]; % tack on last point
dAoP = [dAoP(1);dAoP]; % tack on first point
% plot(dAoP,AoP)

% Qc is the volumetric flow through the capillary, mL/s
Qc = Io - Ca * dAoP;

Pca = (AoP - Qc*Ra);
Pcv = (Pca - Qc*Rc);

55

% mPAC = (Pca + LAP) / 2;
mPAC = (Pca + Pcv) / 2;
filtnet = (mPAC - Pflu) + (Piflu - Piplas);
filtratev = filtnet * 6.67/60; % 6.67 mL / (min * mmHg) * (1 min / 60 sec)

% filtratev(find(filtratev < 0)) = 0;

filtrate = mean(filtratev);

lymphfilt = 1/30 * zeros(length(filtrate));

% Isweat = zeros(length(lymphfilt),1);
% for j = 1:length(filtrate)
% if lymphfilt(j,1) %> (1/60)
% Isweat(j,1) = (filtrate(j,1) - (1/60));
% end
% end
% Ii = Ii - lymphfilt;

% Qlat = 0;

AVO2 = (MQ + EWork) / (K1 * mean(Qc));
AVO2(find(AVO2 >= 0.2)) = 0.2;

56

skunkworks.m

% Awesome script to run arterial properties
function [bpm, delHR, Qlat, BodTempFinal, sweatfilt, Ra, delRa, Isweat] =
skunkworks(filtrate, bpm, beatnum, MQ, Temperr, BodTemp, art_props, ...

~, BodTempTgt,step, mass, ctrl_bits, ...

beatendtime, bpmmax, HRKp, HRKi, RAKp, RAKi)

%% variable assignment

ctrl_BPM = ctrl_bits(:,1);
ctrl_Ra = ctrl_bits(:,2);

% Arterial parameters
Ra = art_props(:,1);
Rc = art_props(:,2); %0.1
Rv = art_props(:,3); %0.5
Cv = art_props(:,4); %15
Ca = art_props(:,5);

% % time constants, seconds (Richard 2004, Yoshida 1994)
% tauAVO2 = 39;
% tauVO2on = 33.88;
% tauVO2off = 37.22;
% tauCOon = 29.43;
% tauCOoff = 44.28;

% enthalpy of water J / kg
delh_h2o = 2257000;

% specific heat J / kg / degC
cp_body = 3470;

% density of blood = kg / m^3
rho_bl = 1060;
% rho_bl = 0;
rho_blml = rho_bl / 10^6;
% Temperr

if beatnum == 1
 beatdt = beatendtime(beatnum,1);
else
 beatdt = beatendtime(beatnum,1) - beatendtime(beatnum-1,1);
end
%% Calculate body temperature & its error
Isweat = ((MQ / rho_blml / delh_h2o) + (BodTemp - BodTempTgt) * cp_body *
mass) / rho_blml / delh_h2o; % plus body heat

% Mdot - mdot_s* delh_h20 = mass * cp * dBodTemp

% Mdot - mass * cp *dT / delh_h2o = sweat_mass_flow

% if mean(Isweat) > mean(filtrate)*0.98

57

 if mean(filtrate) < 1/30
 sweatfilt = 0;
 else
 sweatfilt = filtrate - 1/30;
 end
% disp(['Isweat ' num2str(mean(Isweat),2) ', filtrate '
num2str(mean(filtrate),2)])
% else
% sweatfilt = Isweat;
% disp(['Isweat ' num2str(mean(Isweat),2) ' < filtrate '
num2str(mean(filtrate),2)])
% end

Qlat = sweatfilt * rho_blml * delh_h2o;

dBodTemp = (MQ - Qlat) / (mass * cp_body);

BodTempFinal = dBodTemp*beatdt + BodTemp;

dBodTempAvg = mean(dBodTemp);
% disp(['BodTemp = ' num2str(BodTemp,4)]);
% disp(['BodTempTgt = ' num2str(BodTempTgt)]);
% disp(['BodTempFin = ' num2str(BodTempFinal)]);
% disp(['Temperr = ' num2str(mean(Temperr))]);
% disp(['dBodTemp = ' num2str(dBodTempAvg)]);

%% Calculate bear stuffs

if beatnum >= 3
 iHRErr = trapz([Temperr(beatnum-2:beatnum-1);dBodTempAvg]);
else
 iHRErr = trapz([Temperr(1:beatnum-1);dBodTempAvg]);
end

if ctrl_BPM == 1
 Kp1 = HRKp;
 Ki1 = HRKi;
else
 Kp1 = 0;
 Ki1 = 0;
end

delHR = Kp1 * dBodTempAvg + Ki1 * iHRErr; % trapz([iTemperr;Temperr]);
bpmtemp = bpm + delHR;

% if bpm > 200
% bpm = 200;
% end

A = 40;
K = bpmmax;
B = 13;
v = 1;
Q = 1;
M = 0.5;

t = bpmtemp/bpmmax;

58

[dlogibpm, logibpm] = genlogfcn(A, K, B, v, Q, M, t, step);

bpm = bpm + delHR*dlogibpm;

% disp(['delHR = ' num2str(delHR)]);
% disp(['bpm = ' num2str(bpm)]);
% fprintf(' \r');

%% Why did the capacitor kiss the diode? Because it couldn't resistor.
% delRa = 0;

% dRa = -0.000;

% if beatnum >= 3
% iRaErr = trapz([RaErr(beatnum-2:beatnum-1);dRa]);
% else
% iRaErr = trapz([RaErr(1:beatnum-1);dRa]);
% end

if beatnum >= 3
 iRaErr = trapz([Temperr(beatnum-2:beatnum-1);dBodTempAvg]);
else
 iRaErr = trapz([Temperr(1:beatnum-1);dBodTempAvg]);
end

% Temperr = mean(BodTemp) - 37.5;

if ctrl_Ra == 1
 Kp2 = RAKp;
 Ki2 = RAKi;
else
 Kp2 = 0;
 Ki2 = 0;
end

% Qstored = mass * cp_body * (trapz(dBodTemp) + BodTemp - 37);
% dRa = trapz(Qstored) - (Isweat - lymphfilt)

delRa = Kp2 * dBodTempAvg + Ki2 * iRaErr; % trapz([iTemperr;Temperr]);
Ra = Ra - delRa*dlogibpm;
% *dlogibpm/4;

if Ra < 0.1
 Ra = 0.1;
end

% disp(['delRa = ' num2str(delRa)]);
% disp(['Ra = ' num2str(Ra)]);
% fprintf(' \r');
end

59

hemodynamics.m†

%This is ejecting stacked model

function [dy] = hemodynamics(t,y,z)

%defining variables
pe1 = y(1);
I1 = y(2);
Ii = y(3);
Io = y(4);
LVP = y(5);
V1 = y(6);
Vi = y(7);
Vo = y(8);
LAP = y(9);
AoP = y(10);
e_1 = y(11);

%resistance dyssynchrony for each section of the heart
r1 = z(1);

%elastance dyssynchrony for each section of the heart
e1min = z(2);
e1max = z(3);

%mass dyssynchrony for each section of the heart
m1 = z(4);

%timing dyssynchrony for each section of the heart
t1 = z(5);
bpm = z(6);

% start and end of beat times from midboss
ts = z(7);
te = z(8);

% Defining constants
k1 = r1; % This is really resistance 1
Ri = 0.005; % orig 0.005
Ro = 0.01; % valve resistance
mi = 0.0001; %0.0002
mo = 0.0001;
Clvp = 0.0001;
m1 = m1; %just for completeness

% Arterial parameters
Ra = z(9);
Rc = z(10);
Rv = z(11);
Cv = z(12);
Ca = z(13);

% Ra = 0.90933*17*60/1000; %1.5
Rc = 0.07067*17*60/1000; %0.1
Rv = 0.02*17*60/1000; %0.5
Cv = 30; %15

60

Ca = 1;

% Attain time varying parameters
[e1 de1] = getk(t+t1,e1min,e1max,bpm, ts, te);

%% Heart Chamber Differential Equations
dpe1 = e1*(I1+pe1*(1/(e1)^2*de1));

dI1 = (1/m1)*(LVP-pe1-(k1*LVP)*I1);

Do = 20*(-(.15/(.15+exp(-6*Io)))+1); % diode equation

%if (LVP > AoP) Do = 0.5; else Do = 1000000;
%end

dIo = (1/mo)*(LVP-AoP-(Ro+Do)*Io);

Di = 20*(-(.15/(.15+exp(-6*Ii)))+1); % diode equation

dIi = (1/mi)*(LAP-LVP-(Ri+Di)*Ii);

Ilvp = Ii-Io-I1; % flow balance
dLVP = (1/Clvp)*Ilvp; % for the capacitor

dLAP=(Ii-((AoP-LAP)/(Ra + Rc + Rv)))/-Cv;
dAoP=(Io-((AoP-LAP)/(Ra + Rc + Rv)))/Ca;
% disp(['Ra = ' num2str(Ra)]);

%%
dy = [dpe1;dI1;dIi;dIo;dLVP;I1;Ii;Io;dLAP;dAoP;de1];
end

61

odesolver.m†

function [PE1, I1, Ii, Io, LVP, V1, Vi, Vo, LAP, AoP, e_1] =
odesolver(init1,init2,vent_props, art_props, bpm)

PE1 = init1(:,1);
I1 = init1(:,2);
Ii = init1(:,3);
Io = init1(:,4);
LVP = init1(:,5);
V1 = init1(:,6);
Vi = init1(:,7);
Vo = init1(:,8);
LAP = init1(:,9);
AoP = init1(:,10);
e_1 = init1(:,11);

r1 = vent_props(:,1);
e1min = vent_props(:,2);
e1max = vent_props(:,3);
m1 = vent_props(:,4);
t1 = vent_props(:,5);

Ra = art_props(:,1);
Rc = art_props(:,2); %0.1
Rv = art_props(:,3); %0.5
Cv = art_props(:,4); %15
Ca = art_props(:,5);

step = init2(:,1);
pbeatdex = init2(:,2);
nbeatdex = init2(:,3);

%% beat length

ts=pbeatdex*step;
te=nbeatdex*step;
t = ts:step:te;

%% ODE Solver
OPTIONS=odeset('MaxStep',1e-4);

[a2, b2]=ode23s(@hemodynamics,t,[PE1 ... % 1 PE1
 I1 ... % 2 I1
 Ii ... % 3 Ii
 Io ... % 4 Io
 LVP ... % 5 LVP
 V1 ... % 6 V1
 Vi ... % 7 Vi
 Vo ... % 8 Vo
 LAP ... % 9 LAP
 AoP ... % 10 AoP
 e_1] ... % 11 e_1
 ,OPTIONS, ...
 [r1 ... % 1
 e1min ... % 2
 e1max ... % 3

62

 m1 ... % 4
 t1 ... % 5
 bpm ... % 6
 ts ... % 7
 te ... % 8
 Ra ... % 9
 Rc ... % 10
 Rv ... % 11
 Ca ... % 12
 Cv]); ... % 13

%% Output
PE1 = b2(:,1);
I1 = b2(:,2);
Ii = b2(:,3);
Io = b2(:,4);
LVP = b2(:,5);
V1 = b2(:,6);
Vi = b2(:,7);
Vo = b2(:,8);
LAP = b2(:,9);
AoP = b2(:,10);
e_1 = b2(:,11);

63

getk.m†
function [k,dk] = getk(t2,Emin,Emax,bpm, ts,te)

t1 = t2 - ts;
a=1; %scales normal distribution to 1
b=.5*60/bpm; % centers the mean at 1/2 of the cycle
c=.13*b;% .23=50% duty cycle, .13= 1/3 duty cycle

%makes the spread of curve to 50% duty cycle
k=(Emax-Emin)*a*exp(-(t1-b).^2 /(2*c.^2))+Emin;
dk=(Emax-Emin)*a*exp(-(t1-b).^2 /(2*c.^2)).*(-2*(t1-b)/(2*c.^2));

end

64

genlogfcn.m

% ----------------------------------- %
%
% Author: Drew Taylor
% Date: Feb 09, 2015
% Last Rev: Feb 09, 2015
% Title: genlogfcn.m
%
% Growth is never by mere chance; it is
% the result of forces working together.
% ----------------------------------- %
%
%% Richards' Curve
function [dy,y] = genlogfcn(A, K, B, v, Q, M, t, step)

% A is the lower asymptote (horizontal)
% K is the upper asymptote (horizontal)
% B is the growth rate; higher values increase max(dy)
% v shifts max(dy) along the abscissa
% Q changes the curviness of the sigmoid; higher values have lower max
% growth
% M shifts max(dy) along the abscissa

if length(t) >= 2
 dt = t(2) - t(1);
elseif (exist('step','var'))
 dt = step;
end

y = A + (K-A)./(1 + Q*exp(-B*(t-M)).^(1/v));

dy = B*Q*(K-A)*exp(-B*(t-M)).^(1/v)./(v*(1+Q*exp(-B*(t-M)).^(1/v)).^2)*dt;

65

refigurator.m

runspec = [0, 1, 10, 50, 100];
loop_num = 0;

for loopdex3 = 1:length(runspec)
for loopdex2 = 1:length(runspec)
for loopdex1 = 1:length(runspec)

% for loopdex3 = 5
% for loopdex2 = 2
% for loopdex1 = 1

%% load matfiles
clear HRKp ...
 HRKi ...
 RAKp ...
 RAKi ...
 beatendtime(end) ...
 absOS ...
 cpRiseTime_actl ...
 cpRiseTime_calc ...
 cpRiseTimeFull_calc ...
 cpSetlTime_actl ...
 cpSetlTime_calc ...
 cpsigma ...
 cpzeta ...
 cpf_damp ...
 cpw_damp ...
 cpf_natr ...
 cpw_natr ...
 sweat_rate_max ...
 sweat_total ...
 bpm_max ...
 bpm_final ...
 bpm_osc ...
 Ra_max ...
 Ra_final ...
 Ra_osc ...
 cpComment

% poll hostname from computer
[~, hostname] = system('hostname');
hostname = strtrim(hostname);

% set dropbox path to the figure root directory
if strcmp('ilikeike',hostname) == 1
 dbxpath = 'C:\Users\Drew\Dropbox\Thesis\Figures\';
 subpath = '\ike\';
elseif strcmp('PHENOMENALOSCAR',hostname) == 1
 dbxpath = 'D:\Dropbox\Thesis\Figures\';
 subpath = '\oscar\';
elseif strcmp('savvyboyd',hostname) == 1
 dbxpath = 'R:\Dropbox\Thesis\Figures\';
 subpath = '\boyd\';

66

end

% For debugging, this if statement creates a faux runspec to test 1
% variable
runspec_debug = exist('runspec', 'var');
if runspec_debug == 0
 loopdex1 = 5;
 loopdex2 = 2;
 loopdex3 = 4;
 runspec = [0, 1, 10, 50, 100];
 loop_num = 0;
end

loop_num = loop_num+1;

strbeatnum = '3000';
strHRKp = num2str(runspec(loopdex1));
strHRKi = num2str(runspec(loopdex2));
strRAKp = num2str(runspec(loopdex3));
strRAKi = '0.1';

% sims are separated into folders with the structure Sim X-###-###-#.#
if length(strHRKp) < 3
 strHRKp_3dig = strHRKp;
 for h = 1:3-length(strHRKp)
 strHRKp_3dig = ['0',strHRKp_3dig];
 end
else
 strHRKp_3dig = strHRKp;
end

if length(strHRKi) < 3
 strHRKi_3dig = strHRKi;
 for i = 1:3-length(strHRKi)
 strHRKi_3dig = ['0',strHRKi_3dig];
 end
else
 strHRKi_3dig = strHRKi;
end

if length(strRAKp) < 3
 strRAKp_3dig = strRAKp;
 for g = 1:3-length(strRAKp)
 strRAKp_3dig = ['0',strRAKp_3dig];
 end
else
 strRAKp_3dig = strRAKp;
end

subfolder1 = ['Ki-Ra ', strRAKi, '\'];
subfolder2 = ['Sim X-', strHRKi_3dig, '-', strRAKp_3dig, '-', ...
 strRAKi, '\'];
filename_fig1 = [strbeatnum, ' beats GLF - HR Kp ', strHRKp, ' Ki ', ...
 strHRKi, ' - Ra Kp ', strRAKp, ' Ki ', strRAKi, '.mat'];

mat_filepath = [dbxpath, subfolder1, subfolder2, filename_fig1];

67

load(mat_filepath, 'beatendtime', 'vsweatfilt', 'vAVO2', 'vBodTemp', ...
 'vbpm', 'vRa', 'vEa_RC', 'vEa_SG', 'vEa_EQ')
%%

close all

% if logmode ~= 1;
% t_tot = length(vAoP);
% t_tot2 = interp1(vQc,0:step:beats);

%% plotting

 h1 = figure(1);
 subplot(2,2,1)
 plot(beatendtime, vsweatfilt)
 title('Sweat Filtration Rate')
 xlabel('Time (s)')
 ylabel('Filtration rate (mL / s)')
 % figure
 subplot(2,2,2)
 % figure
 plot(beatendtime, vAVO2,'b');
 title('AVO_2')
 xlabel('Time (s)')
 ylabel('Concentration (mL / 100 mL)')
 % figure
 subplot(2,2,3)
 plot(beatendtime, vBodTemp)
 title('Body Temperature')
 xlabel('Time (s)')
 ylabel('Temperature (deg C)')
 % figure
 subplot(2,2,4)
% this set of instructions plots Ra and BPM on one plot
 x1 = beatendtime;
 y1 = vbpm;

 x2 = beatendtime;
 y2 = vRa;

 [hax,hL1,hL2] = plotyy(x1,y1,x2,y2);

 set(hax(1),'XColor',[.8 0 0],'YColor',[.8 0 0])
 set(hax(2),'XColor','k','YColor','k')
 set(hL1,'Color','red')
 set(hL2,'Color','black')

 title('Heart Rate & Arterial Resistance')
 ylabel(hax(1),'Heart Rate (BPM)')
 ylabel(hax(2),'Resistance (PRU)')
 xlabel('Time (s)')

 % plot EA
 h2 = figure(2);
 plot(beatendtime, vEa_RC, 'r', beatendtime, vEa_EQ, 'k', beatendtime,
vEa_SG, 'c')

68

 title('Effective Arterial Elastances')
 xlabel('Time (s)')
 ylabel('Ea (mL / s)')
 legend('E_A (P_E_S/SV)','E_A (Eqn)','E_A (Segers)')

%% %%%

 % figure
 % plot(vbpm)
 % ylabel('BPM')
 % % fprintf('\n')

% figure
% plot(vbeattime, vAoP,'b'); hold on;
% plot(vbeattime, vLVP,'g');
% plot(vbeattime, vIo/10,'r');
% plot(vbeattime, vIi/10,'k');
% plot(vbeattime, vV1,'k');
% plot(beatendtime, vPca,'c');
% plot(vbeattime, vLAP, 'm');hold off;
% legend('AoP','LVP','I1','V1','Pca','LAP','Location','NorthEastOutside')
% title('AoP / LVP')
% xlabel('Time')
% ylabel('Pressure (mmHg)')

 % figure
 % plot(vIi)
 % xlabel('Time (ms)')
 % ylabel('Ii ml/s')
 % title('Cardiac Output')

 % figure
 % plot(vAoP)
 % xlabel('Time (ms)')
 % ylabel('Aop (mmHg)')
 % title('Blood Pressure')

 % figure
 % plot(vV1,vLVP)
 % xlabel('Volume (mL)')
 % ylabel('Pressure (mmHg)')
 % title('PV Loop')
% end
pause on

filename_fig1 = [strbeatnum, ' beats GLF - HR Kp ', strHRKp, ' Ki ', ...
 strHRKi, ' - Ra Kp ', strRAKp, ' Ki ', strRAKi, '.fig'];

fig1_filename = [dbxpath, subfolder1, subfolder2, filename_fig1];
saveas(h1,fig1_filename);

filename_fig2 = [strbeatnum, ' beats GLF - HR Kp ', strHRKp, ' Ki ', ...
 strHRKi, ' - Ra Kp ', strRAKp, ' Ki ', strRAKi, ' EA.fig'];

fig2_filename = [dbxpath, subfolder1, subfolder2, filename_fig2];

69

saveas(h2,fig2_filename);

pause(3)
pause off
end
end
end

70

plotter.m

rayHRKp=cell2mat(csv_array(:,1));
rayHRKi=cell2mat(csv_array(:,2));
rayRAKp=cell2mat(csv_array(:,3));
rayRAKi=cell2mat(csv_array(:,4));
rayBeatEndTime=cell2mat(csv_array(:,5));
raySettlingTimeActl=cell2mat(csv_array(:,10));

xrayHRKp=zeros(length(rayHRKp),1);
xrayHRKi=zeros(length(rayHRKi),1);
xrayRAKp=zeros(length(rayRAKp),1);
% xrayRAKi=zeros(length(rayRAKi),1);
xrayBeatEndTime=zeros(length(rayBeatEndTime),1);
xraySettlingTimeActl=zeros(length(raySettlingTimeActl),1);

% axis([0 100 0 2800]);
% xtick = [0,1,10,50,100];
% xtick_label = ['0 ';'1 ';'10 ';'50 ';'100 '];
% % set(gca','XTick',xtick,'XTicklabel',xtick_label,'xscale','log');

runspec = [0, 1, 10, 50, 100];
xrayMeanSettlingTime = zeros(length(runspec),1);

for k = 1:length(runspec)
 A = runspec(k);

 xrayHRKp(find(rayHRKp==runspec(length(runspec)-k+1)),1) ...
 = length(runspec)-k+1;
 xrayHRKi(find(rayHRKi==runspec(length(runspec)-k+1)),1) ...
 = length(runspec)-k+1;
 xrayRAKp(find(rayRAKp==runspec(length(runspec)-k+1)),1) ...
 = length(runspec)-k+1;
end

xset = [xrayHRKp xrayHRKi xrayRAKp rayBeatEndTime raySettlingTimeActl];

xrayHRKp_n0 = xrayHRKp;
xrayHRKp_n0(raySettlingTimeActl==0) = [];
xrayHRKi_n0 = xrayHRKi;
xrayHRKi_n0(raySettlingTimeActl==0) = [];
xrayRAKp_n0 = xrayRAKp;
xrayRAKp_n0(raySettlingTimeActl==0) = [];
raySettlingTimeActl_n0 = raySettlingTimeActl(raySettlingTimeActl~=0);

for j = 1:length(runspec)
 xrayMeanSettlingTimeHRKp_n0(j,1) = ...
 mean(raySettlingTimeActl_n0(find(xrayHRKp_n0==j)));
 xrayMeanSettlingTimeHRKi_n0(j,1) = ...
 mean(raySettlingTimeActl_n0(find(xrayHRKi_n0==j)));
 xrayMeanSettlingTimeRAKp_n0(j,1) = ...
 mean(raySettlingTimeActl_n0(find(xrayRAKp_n0==j)));
end

xrayMeanLength = 1:length(runspec);

71

figure(1)
plot(xrayHRKp_n0,raySettlingTimeActl_n0,'k.', ...
 xrayMeanLength,xrayMeanSettlingTimeHRKp_n0,'k^--')
title('Settling Time as a Function of HR K_p')
xlabel('HR K_p')
ylabel('Settling Time (s)')
axis([0.9 5.1 0 2800])
set(gca,'XTick',[1 2 3 4 5])
set(gca,'XTickLabel',[0 1 10 50 100])
set(groot, 'DefaultTextFontSmoothing', 'off');
set(groot, 'DefaultAxesFontSmoothing', 'off');

figure(2)
plot(xrayHRKi_n0,raySettlingTimeActl_n0,'k.', ...
 xrayMeanLength,xrayMeanSettlingTimeHRKi_n0,'k^--')
title('Settling Time as a Function of HR K_i')
xlabel('HR K_i')
ylabel('Settling Time (s)')
axis([0.9 5.1 0 2800])
set(gca,'XTick',[1 2 3 4 5])
set(gca,'XTickLabel',[0 1 10 50 100])
set(gca, 'DefaultTextFontSmoothing', 'off');
set(gca, 'DefaultAxesFontSmoothing', 'off');

figure(3)
plot(xrayRAKp_n0,raySettlingTimeActl_n0,'k.', ...
 xrayMeanLength,xrayMeanSettlingTimeRAKp_n0,'k^--')
title('Settling Time as a Function of RA K_p')
xlabel('RA K_p')
ylabel('Settling Time (s)')
axis([0.9 5.1 0 2800])
set(gca,'XTick',[1 2 3 4 5])
set(gca,'XTickLabel',[0 1 10 50 100])
set(gca, 'DefaultTextFontSmoothing', 'off');
set(gca, 'DefaultAxesFontSmoothing', 'off');

72

analyzer.m

% ----------------------------------- %
%
% Author: Drew Taylor
% Date: Mar 16, 2015
% Last Rev: Oct 20, 2015
% Title: analyzer.m
%
%
% ----------------------------------- %
%
% This script has been built to load .mat files generated by capinator and
% calculate several new variables: overshoot, settling time, rise time,
% damping ratio, etc.
%%

clear all

%% This small cell just has the start of three for loops that loop through
% all 125 iterations of the current simspace

temp_match = 1;

%These are the values of the control variables
runspec = [0, 1, 10, 50, 100];
loop_num = 0;

% % RAKp
% for loopdex3 = 1:length(runspec)
% % HRKi
% for loopdex2 = 1:length(runspec)
% % HRKp
% for loopdex1 = 1:length(runspec)

for loopdex3 = 1:length(runspec)
for loopdex2 = 1:length(runspec)
for loopdex1 = 3

%% load matfiles
clear HRKp ...
 HRKi ...
 RAKp ...
 RAKi ...
 beatendtime(end) ...
 absOS ...
 cpRiseTime_actl ...
 cpRiseTime_calc ...
 cpRiseTimeFull_calc ...
 cpSetlTime_actl ...
 cpSetlTime_calc ...
 cpsigma ...
 cpzeta ...
 cpf_damp ...

73

 cpw_damp ...
 cpf_natr ...
 cpw_natr ...
 sweat_rate_max ...
 sweat_total ...
 bpm_max ...
 bpm_final ...
 bpm_osc ...
 Ra_max ...
 Ra_final ...
 Ra_osc ...
 cpComment

% poll hostname from computer
[~, hostname] = system('hostname');
hostname = strtrim(hostname);

% set dropbox path to the figure root directory
if strcmp('ilikeike',hostname) == 1
 dbxpath = 'C:\Users\Drew\Dropbox\Thesis\Figures\';
 subpath = '\ike\';
elseif strcmp('phenomenaloscar',hostname) == 1
 dbxpath = 'I:\Dropbox\Thesis\Figures\';
 subpath = '\oscar\';
elseif strcmp('savvyboyd',hostname) == 1
 dbxpath = 'R:\Dropbox\Thesis\Figures\';
 subpath = '\boyd\';
elseif strcmp('gregariousfrank',hostname) == 1
 dbxpath = 'C:\Dropbox\Thesis\Figures\';
 subpath = '\frank\';
end

% For debugging, this if statement creates a faux runspec to test 1
% variable
runspec_debug = exist('runspec', 'var');
if runspec_debug == 0
 loopdex1 = 3;
 loopdex2 = 2;
 loopdex3 = 4;
 runspec = [0, 1, 10, 50, 100];
 loop_num = 0;
end

strbeatnum = '3000';
strHRKp = num2str(runspec(loopdex1));
strHRKi = num2str(runspec(loopdex2));
strRAKp = num2str(runspec(loopdex3));
strRAKi = '0.1';

% sims are separated into folders with the structure Sim X-###-###-#.#
if length(strHRKp) < 3
 strHRKp_3dig = strHRKp;
 for h = 1:3-length(strHRKp)
 strHRKp_3dig = ['0',strHRKp_3dig];
 end

74

else
 strHRKp_3dig = strHRKp;
end

if length(strHRKi) < 3
 strHRKi_3dig = strHRKi;
 for i = 1:3-length(strHRKi)
 strHRKi_3dig = ['0',strHRKi_3dig];
 end
else
 strHRKi_3dig = strHRKi;
end

if length(strRAKp) < 3
 strRAKp_3dig = strRAKp;
 for g = 1:3-length(strRAKp)
 strRAKp_3dig = ['0',strRAKp_3dig];
 end
else
 strRAKp_3dig = strRAKp;
end

if temp_match == 0
 subfolder1 = ['Ki-Ra ', strRAKi, '\'];
else
 subfolder1 = ['Ki-Ra ', strRAKi, '\Temp Match\'];
end

% subfolder2 = ['Temp Match Over X-', strHRKi_3dig, '-', strRAKp_3dig, '-',
...
% strRAKi, '\'];
subfolder2 = ['Sim X-', strHRKi_3dig, '-', strRAKp_3dig, '-', ...
 strRAKi, '\'];
filename = [strbeatnum, ' beats GLF - HR Kp ', strHRKp, ' Ki ', ...
 strHRKi, ' - Ra Kp ', strRAKp, ' Ki ', strRAKi, '.mat'];

mat_filepath = [dbxpath, subfolder1, subfolder2, filename];

if exist(mat_filepath,'file') == 2
 loop_num = loop_num+1;
else
 continue
end

if temp_match == 1
 load(mat_filepath, 'vBodTemp', ...
 'BodTempTgt', ...
 'beatendtime', ...
 'beatnum', ...
 'HRKp', ...
 'HRKi', ...
 'RAKp', ...
 'RAKi', ...
 'step', ...
 'vsweatfilt', ...

75

 'vbpm', ...
 'vRa');
else
 load(mat_filepath, 'vBodTemp', ...
 'BodTempTgt', ...
 'beatendtime', ...
 'beatnum', ...
 'HRKp', ...
 'HRKi', ...
 'RAKp', ...
 'RAKi', ...
 'step', ...
 'vsweatfilt', ...
 'vbpm', ...
 'vRa', ...
 'vtempestN', ...
 'vBodTempFit');
end

%% Will it oscillate? Presented by Drewtec

vtempestNx=[0 300 600 900 1200 1500 1800 2300];
vtempestNy=[37.35 38.2 38.35 38.6 39.0 39.4 39.6 40.2];

m1 = polyfit(vtempestNx,vtempestNy,1);

vtempestN=m1(1).*beatendtime+vtempestNy(1);

m2 = polyfit(beatendtime,vBodTemp,1);
vBodTempFit = m2(1).*beatendtime+m2(2);

% Set error band to 2% of BodTempTgt
err_ss = 0.02;
temp0 = vBodTemp(1);
err_min = BodTempTgt-abs(temp0 - BodTempTgt)*(err_ss);
err_max = BodTempTgt+abs(temp0 - BodTempTgt)*(err_ss);
trc_min = BodTempTgt-abs(temp0 - BodTempTgt)*(0.1); % unused since bias>sp
trc_max = BodTempTgt+abs(temp0 - BodTempTgt)*(0.1);

% calculate constants from sim
sweat_rate_max = max(vsweatfilt);
sweat_total = trapz(beatendtime,vsweatfilt);

% record bpm stats
bpm_max = max(vbpm);
bpm_min = min(vbpm);
bpm_final = vbpm(end);

% check if bpm oscillates
[bpmMinY,bpmMinX] = findpeaks(-vbpm);
bpmMinY = -bpmMinY;

if isempty(bpmMinX)
 bpm_osc = 'no';
elseif length(bpmMinX)<2

76

 bpm_osc = 'no';
else
 bpm_osc = 'yes';
end

% record Ra stats
Ra_max = max(vRa);
Ra_min = min(vRa);
Ra_final = vRa(end);

% check if Ra oscillates
[Ra_minY,Ra_minX] = findpeaks(vRa);

if isempty(Ra_minX)
 Ra_osc = 'no';
elseif length(Ra_minX)<2
 Ra_osc = 'no';
else
 Ra_osc = 'yes';
end

% Test if body temp ever decreases during the trial
decdex = find(vBodTemp<vBodTemp(1));
test1 = isempty(decdex);

T_final = vBodTemp(end);

[tempMaxY,tempMaxX] = findpeaks(vBodTemp);
[tempMinY,tempMinX] = findpeaks(-vBodTemp);
tempMinY = -tempMinY;

if test1 == 0
 % Overshoot/undershoot test
 absOS = BodTempTgt - min(vBodTemp);

 if absOS > 0 % case: underdamped
 %find local extrema
 cpComment = 'underdamped';

 if length(tempMinY) >= 2
 pt1_mag = tempMinY(1);
 pt2_mag = tempMinY(2);
 period = (beatendtime(tempMinX(2)) - ...
 beatendtime(tempMinX(1)));

 cpsigma = log(pt2_mag/pt1_mag);
 cpzeta = (1+(2*pi/cpsigma)^2)^(-1/2);

 cpf_damp = 1/period;
 cpf_natr = cpf_damp*(1-cpzeta^2)^(-1/2);

 cpw_damp = 2*pi*cpf_damp;
 cpw_natr = 2*pi*cpf_natr;

77

 cpSetlTime_calc = -log(err_ss)/(cpzeta*cpw_natr);
 cpRiseTime_calc = (2.23*cpzeta^2 - 0.078*cpzeta + 1.12)/cpw_natr;
 cpRiseTimeFull_calc = (1/cpw_natr)*(1-cpzeta^2)^(-1/2)* ...
 (pi-atan(sqrt(1-cpzeta^2)/cpzeta));

 % determine if the signal converges or oscillates "forever"
 tempMinY_err = zeros(length(tempMinY)-1,1);

 for k = 1:length(tempMinY)-1
 tempMinY_err(:,k) = abs(tempMinY(k)-
tempMinY(k+1))/tempMinY(k);

 if tempMinY_err(k) < 0.02
 inf_osc = 0;
 elseif tempMinY_err(k) > 0.02
 inf_osc = 1;
 end
 end

 % find the last value outside error tolerance
 if inf_osc == 0
 setl_ubound_dex = find(vBodTemp>err_max,1,'last')+1;
 setl_lbound_dex = find(vBodTemp<err_min,1,'last')+1;

 if setl_ubound_dex > length(beatendtime)
 setl_ubound_time = beatendtime(length(beatendtime));
 else
 setl_ubound_time = beatendtime(setl_ubound_dex);
 end

 if setl_lbound_dex > length(beatendtime)
 setl_lbound_time = beatendtime(length(beatendtime));
 else
 setl_lbound_time = beatendtime(setl_lbound_dex);
 end

 if isempty(setl_ubound_time) && isempty(setl_lbound_time)
 cpSetlTime_actl = 0;
 elseif setl_ubound_time >= setl_lbound_time
 cpSetlTime_actl = setl_ubound_time;
 else
 cpSetlTime_actl = setl_lbound_time;
 end
 else
 % checks if overshoot is within tolerance
 tempMinY_osc_within_tol = true;
 if isempty(tempMinY) == 0
 if tempMinY(1) < err_min
 tempMinY_osc_within_tol = false;
 break
 end
 end

 if tempMinY_osc_within_tol == true;

78

 cpSetlTime_actl =
beatendtime(find(vBodTemp<err_max,1,'first'));
 else
 cpSetlTime_actl = 0;
 cpComment = [cpComment, '; osc. to inf.'];
 end
 end

 cpRiseTime_actl = beatendtime(find(vBodTemp<trc_max,1,'first'));

 else % if fewer than 1 full period are produced, this fork
 cpComment = [cpComment, '; too slow to calc pt1/pt2'];
 pt1_mag = 0;
 pt2_mag = 0;
 period = 0;
 cpRiseTime_actl = beatendtime(find(vBodTemp<trc_max,1,'first'));
 cpSetlTime_actl = beatendtime(find(vBodTemp<err_max,1,'first'));
 cpSetlTime_calc = 0;
 cpRiseTime_calc = 0;
 cpRiseTimeFull_calc = 0;
 cpsigma = 0;
 cpzeta = 0;
 cpf_damp = 0;
 cpf_natr = 0;
 cpw_damp = 0;
 cpw_natr = 0;
 end

 elseif absOS <= 0 %case: over/critical

 cpComment = 'overdamped';

 cpSetlTime_actl = beatendtime(find(vBodTemp<err_max,1,'first'));
 if isempty(cpSetlTime_actl)
 cpSetlTime_actl = 0;
 end

 cpRiseTime_actl = beatendtime(find(vBodTemp<trc_max,1,'first'));
 if isempty(cpRiseTime_actl)
 cpRiseTime_actl = 0;
 end

 cpSetlTime_calc = 0;
 cpRiseTime_calc = 0;
 cpRiseTimeFull_calc = 0;
 cpsigma = 0;
 cpzeta = 0;
 cpf_damp = 0;
 cpf_natr = 0;
 cpw_damp = 0;
 cpw_natr = 0;

 end

79

% extremaX = sort([tempMaxX;tempMinX]);
% extremaY = sort([tempMaxY;tempMinY]);

 if runspec_debug == 0;
 decimalpts = 2;

 xmin = 0;
 xmax = max(beatendtime);
 ymin = floor(min(vBodTemp)*10^(decimalpts)) / 10^decimalpts;
 ymax = ceil(max(vBodTemp)*10^(decimalpts-1)) / 10^(decimalpts-1)+10^-
(decimalpts+10);

 close all
 hold on
 plot(beatendtime,vBodTemp)
 plot(beatendtime(tempMaxX),tempMaxY,'k*')
 plot(beatendtime(tempMinX),tempMinY,'k*')
 plot(beatendtime,linspace(err_max,err_max,length(beatendtime)),'r--')
 plot(beatendtime,linspace(err_min,err_min,length(beatendtime)),'r--')
 axis([xmin xmax ymin ymax])
 hold off
 end

else % for this case, BodTemp never goes down
 absOS = BodTempTgt - min(vBodTemp);
 cpRiseTime_actl = 0;
 cpRiseTime_calc = 0;
 cpRiseTimeFull_calc = 0;
 cpSetlTime_actl = 0;
 cpSetlTime_calc = 0;
 cpsigma = 0;
 cpzeta = 0;
 cpf_damp = 0;
 cpw_damp = 0;
 cpf_natr = 0;
 cpw_natr = 0;
 cpComment = ['Body temperature never decreases within ', ...
 num2str(beatnum),' beats.'];
 if runspec_debug == 0
 plot(beatendtime,vBodTemp)
 end
end

disp([strHRKp_3dig,'-',strHRKi_3dig,'-',strRAKp_3dig,'-',strRAKi,' (',
num2str(loop_num),')'])

[r1, p1] = corrcoef(vtempestN,vBodTemp);
[r2, p2] = corrcoef(vtempestN,vBodTempFit);

R_real = r1(1,2);
R_fit = r2(1,2);

temp_match = 1;

if temp_match == 0

80

 cp_array = [HRKp, ...
 HRKi, ...
 RAKp, ...
 RAKi, ...
 beatendtime(end), ...
 absOS, ...
 cpRiseTime_actl, ...
 cpRiseTime_calc, ...
 cpRiseTimeFull_calc, ...
 cpSetlTime_actl, ...
 cpSetlTime_calc, ...
 cpsigma, ...
 cpzeta, ...
 cpf_damp, ...
 cpw_damp, ...
 cpf_natr, ...
 cpw_natr, ...
 sweat_rate_max, ...
 sweat_total, ...
 bpm_min, ...
 bpm_max, ...
 bpm_final, ...
 {bpm_osc}, ...
 Ra_min, ...
 Ra_max, ...
 Ra_final, ...
 {Ra_osc}, ...
 T_final, ...
 {cpComment}];
else
 cp_array = [HRKp, ...
 HRKi, ...
 RAKp, ...
 RAKi, ...
 beatendtime(end), ...
 cpRiseTime_actl, ...
 cpSetlTime_actl, ...
 sweat_rate_max, ...
 sweat_total, ...
 bpm_min, ...
 bpm_max, ...
 bpm_final, ...
 {bpm_osc}, ...
 Ra_min, ...
 Ra_max, ...
 Ra_final, ...
 {Ra_osc}, ...
 T_final, ...
 R_real, ...
 R_fit, ...
 {cpComment}];
end

if loop_num == 1
 csv_array = cp_array;
else
 csv_array = [csv_array;cp_array];

81

end

%% these three end statements terminate the for loops
 end
 end
end

%% write the variables to a csv

% this array contains the labels for each column

if temp_match == 0
 csv_headings = [{'HRKp'}, ...
 {'HRKi'}, ...
 {'RAKp'}, ...
 {'RAKi'}, ...
 {'beatendtime(end)'}, ...
 {'absOS'}, ...
 {'cpRiseTime_actl'}, ...
 {'cpRiseTime_calc'}, ...
 {'cpRiseTimeFull_calc'}, ...
 {'cpSetlTime_actl'}, ...
 {'cpSetlTime_calc'}, ...
 {'cpsigma'}, ...
 {'cpzeta'}, ...
 {'cpf_damp'}, ...
 {'cpw_damp'}, ...
 {'cpf_natr'}, ...
 {'cpw_natr'}, ...
 {'sweat_rate_max'}, ...
 {'sweat_total'}, ...
 {'bpm_min'}, ...
 {'bpm_max'}, ...
 {'bpm_final'}, ...
 {'bpm_osc'}, ...
 {'Ra_min'}, ...
 {'Ra_max'}, ...
 {'Ra_final'}, ...
 {'Ra_osc'}, ...
 {'T_final'}, ...
 {'cpComment'}];
else
 csv_headings = [{'HRKp'}, ...
 {'HRKi'}, ...
 {'RAKp'}, ...
 {'RAKi'}, ...
 {'beatendtime(end)'}, ...
 {'cpRiseTime_actl'}, ...
 {'cpSetlTime_actl'}, ...
 {'sweat_rate_max'}, ...
 {'sweat_total'}, ...
 {'bpm_min'}, ...
 {'bpm_max'}, ...
 {'bpm_final'}, ...
 {'bpm_osc'}, ...
 {'Ra_min'}, ...

82

 {'Ra_max'}, ...
 {'Ra_final'}, ...
 {'Ra_osc'}, ...
 {'T_final'}, ...
 {'R real'}, ...
 {'R fit'}, ...
 {'cpComment'}];
end

csv_export = [csv_headings;csv_array];
xlswrite([dbxpath, subfolder1,'temp match HR Kp ', strHRKp,
'.xlsx'],csv_export)

83

ezdiff.m

function y = ezdiff(func,step)

y = 1 / step * diff(func);

end

