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ABSTRACT 

Models of ventricular-arterial coupling (VAC) have historically described the heart as a 

function of its energetic interaction with the arterial system. However, these models either 

represent the dynamic, adaptive cardiovascular system (CVS) in isolation or sacrifice cardiac 

mechanics to use simplified, time-averaged values across the cardiac cycle. In this thesis a 

facsimile CVS is constructed that characterizes ventricular-arterial interactions with intact 

cardiac mechanics as a function of whole-body thermo-fluid homeostatic regulation. 

Simulation results indicate proportional-integral (PI) control of heart rate and arterial 

resistance is conditionally sufficient to maintain body temperature during square-wave 

exercise, but further elements may be required to mimic genuine physiological responses. 

These simulations of the primitive model lay the framework of capillary-centric VAC through 

the perspective of coupling-as-thermodynamics. 
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INTRODUCTION 

Ventricular-arterial coupling (VAC) describes the heart as a function of its interaction 

with the arterial system and is quintessential to exploring the behavior of the cardiovascular 

system (CVS). Current models provide significant insight into many important aspects of the 

CVS such as energetic expenditure, ventricular loading sequences and pulse-wave velocities 

in the proximal aorta, all of which play an integral role in discovering or describing many CVS 

dysfunctions. Ultimately, treatments to these dysfunctions depend on understanding the role 

VAC plays in the CVS. 

However, current models represent the dynamic, adaptive CVS in isolation and fail to 

describe coupling in terms of system level interactions—namely regulating temperature, 

balancing fluids at the capillary and supplying adequate metaboloids to the tissues [10], [25], 

[45]. By contrast, models of integrated physiology can illustrate these three functions well 

even over the course of simulation-years, but their effectiveness comes at the expense of 

cardiac mechanic transparency [1], [22], [29], [30], [35]. Nonetheless, a balance between 

usefulness and complexity may be achieved by applying a proportional-integral (PI) controller 

to emulate lumped body parameters and processes [12], [17], [41], [47]. 

In this thesis a facsimile CVS is constructed that characterizes ventricular-arterial 

interactions with intact cardiac mechanics as a function of whole-body thermo-fluid 

homeostatic regulation, shifting the source-load coupling paradigm of the left ventricle and 

arteries to the capillary and tissues. The model is then used to explore the question of whether 

PI control of heart rate and arterial resistance is sufficient to maintain body temperature 

during square-wave exercise under the assumptions that fluid balance is maintained at the 

capillary level and that there is adequate supply of metaboloids to the tissues. These 

simulations of the primitive model lay the framework of capillary-centric VAC through the 

perspective of coupling-as-thermodynamics.  
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BACKGROUND 

Ventricular-arterial coupling 

Traditionally, investigations of ventricular-arterial coupling have worked towards 

characterizing the interplay between the left ventricle of the heart and the arterial system 

[10], [25], [45]. This coupling is most often described as a source-load problem, where the 

heart is modeled as a power supplier and the arterial system as a power dissipater, allowing 

for the application of familiar engineering tools to a complex biological structure. The CVS has 

historically been analyzed in the pressure-volume (PV) domain, enabling indices for cardiac 

efficiency and energetics to be classified by analogy to a heat engine. PV domain analysis was 

born from experiments under A. C. Guyton and his colleagues in the 1950s that demonstrated 

cardiac output was a function of right atrial pressure [14], [15], [16]. Dissection of the CVS 

continued both literally and metaphorically for another thirty years as the advent of personal 

computing gave rise to complicated mathematical models.  

These models led directly to the foundation of ventricular-arterial coupling. Building 

on a concept published in 1980 by Piene that described right ventricular mechanical 

properties, Sunagawa et al. derived an equation that bridged the dimensional gap left open 

by Piene [33], [45]. In Piene’s model, the ventricle was characterized by its PV relationship 

while the pulmonary arterial system was defined by its impedance. Conversely, the work of 

Sunagawa et al. focused on the left ventricle and was predicated on treating both ventricle 

and arterial system as elastic elements. This formulation led directly to the creation of 

effective arterial elastance, the first “coupling index” used in describing VAC [46]. 

Effective arterial elastance, or EA, has remained a popular method for describing 

coupling because of its intuitiveness—its units are directly translatable to indices of energy 

utilization and is commonly paired with the end-systolic elastance EES [5], [6], [7], [10], [11], 

[25], [26], [37], [40]. By using the Jacobian expression of efficiency it was predicted that at 
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EA/EES = 1 maximum stroke work had been reached, whereas at EA/EES = 0.5 maximum 

efficiency would be achieved [48]. However, at any given time it is more likely that the 

cardiovascular system is controlled somewhere between these two extremes, and it has been 

shown that this coupling ratio EA/EES has a normal range between 0.62 and 0.82 [11]. 

Furthermore, this same work reveals that both stroke work and efficiency are maintained at 

optimal values across a wide range of coupling ratios. 

Although useful as a non-invasive measurement, these findings showed EA and its 

couple EES have several limitations to their usefulness as diagnostic tools. Additionally, the 

accuracy of EA is highly susceptible to errors in the pulsatile load characteristics of the ejected 

blood, since in its most common form (R/T) the index is averaged over a whole beat. This is 

very apparent in studies in which steady beats are not observed, such as with a venal caval 

occlusion where the pulsatile component of cardiac output changes with respect to time. 

Furthermore, heart rate has a strong influence on EA and in those studies using paced 

specimens EA is not preserved [40], [47], [52]. 

To address these issues, research turned towards the pressure-flow (PQ) domain have 

become increasingly more common. The two primary failings of PV analysis that PQ 

assessments attempt to rectify are its disregard for the loading sequence that takes place 

during a cardiac cycle and the PV-domain emphasis on energetic “optimization” [2], [3], [10], 

[23], [31], [42], [46], [44], [49], [50]. Time-domain analysis has been an important step 

forward in the characterization of cardiac coupling.  

While PV analyses wash out inter- and intrabeat mechanics, PQ analyses can discern 

not only the ventricular loading sequence but also arterial load, pulse wave velocity, aortic 

and arterial stiffness and others [9], [10], [28]. Essentially, it brings cardiac coupling into the 

demesne of time-domain reflectometry (TDR), a technique for analyzing electrical 

transmission lines that is commonly used for characterizing commercial coaxial cable lines. 

Incorporating TDR into measures of the cardiovascular system offers extensive insight into 

its organization, and can even be used to calibrate therapies for pacing and CVS rehabilitation 
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[36]. For example, in the 60 years that separate ages 25 and 85, the pulse wave velocity 

down the aorta doubles, so using time-domain analysis can improve quality of life in patients 

using cardiac resynchronization therapy by tuning the pulse wave generated from the assist 

device such that its reflecting waves return at a more opportune time, i.e. after ejection.  

This same idea can be applied to coupling: by measuring the generated and reflected 

waves, an index of workload and efficiency can be produced that characterizes how well the 

left ventricle ejects blood into the proximal aorta. As conduction speeds increase, reflected 

waves will return to the aortic root more and more quickly, which corresponds to less volume 

ejected due to higher afterload. Although this phenomenon can be seen in the PV domain, its 

cause is much more apparent in the PQ domain. Furthermore, there is evidence that heart 

failure in the presence of elevated afterload is actually a symptom caused by the impact these 

early-returning wave reflections have on the loading sequence in the ventricle, which, as 

mentioned before, is neglected in the PV domain [8], [19], [20], [27], [51]. However, even 

as insightful as PQ domain analysis can be, as a system-level model it still fails to describe 

many facets of cardiovascular dysfunction such as those from the metabolic syndrome or 

depression, both of which can have significant implications for coupling. 

Models of integrated physiology 

Although VAC had been discussed only since the mid-1980s, a complete model of 

cardiovascular regulation was constructed well before in 1972 [17]. Published by Guyton et 

al. following a seven year effort, the model was the first to define coupling at the systems 

level, an innovation that became the prime antecedent to the field of integrative physiology 

[22]. Resembling an integrated circuit schematic, the aptly named model of “overall 

regulation of circulation” ramified the circulatory system into 18 different subdivisions that 

included both nervous and endocrine components. While each subdivision has a specific 

purpose, everything in the model is connected via feedback such that each physiological 

module is dependent, implicitly or explicitly, upon each and every other one. 
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Initially encapsulated as a system of equations, Guyton’s model was translated in 1983 

to the digital domain by a team that included one of the original authors. Dubbed “Human”, 

this physiome program contained only the 150 variables from the original model, but since 

then has been transformed into a free, online computational analysis package termed 

Quantitative Circulatory Physiology (QCP) which has itself been succeeded by HumMod. QCP 

kept the core of Guyton’s original model, but expanded the integrated physiome to become 

one of the most complete since Guyton’s original production and its successor HumMod 

includes over 4000 variables [1], [22]. Like its predecessors, HumMod features all the 

feedback loops that governed the original architecture and has been used to simulate 

pathophysiology [22], [29].  

While Guyton’s model and its descendants are incredibly thorough and complex, they 

are all founded on a framework that emphasizes simulation of chronic regulation. By using 

time-averaged values for inputs and outputs not only reduces the intricacy of the model to a 

manageable level but also allows the models to be computationally feasible over a simulation 

time-scale of years. Nonetheless, employing time-averaged variables has the deleterious side 

effect of washing out intrabeat mechanics; thus, just as with PV analysis, these models may 

omit critical information [35]. 

Classic control theory 

The foundation of VAC is predicated upon the cardiovascular system’s response to 

stimulus. Feedback to the CVS is mediated through a multitude of methods ranging from the 

expression of NO2 by red blood cells at the arteriole to neurohumoral activation of adrenergic 

receptors to the length of the sarcomere prior to ejection. Each of these examples are like an 

individual tuning knob on a vast physiological stereo mixer that contrives the body electric. 

However, the CVS is able to adapt to changes in each of these tuning knobs through its 

complex and adaptive feedback network. 
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The concept of feedback is an integral component of classic control theory, which 

compares the actual value of an output to its expected value and adjusts the system’s input(s) 

to compensate. For instance, weightlifting causes some of the muscle fibers to become 

damaged so the body compensates by rebuilding the muscle with even more fibers, increasing 

strength. Similarly, when the heart needs to pump harder due to elevated blood pressure, it 

too increases in size. However, while the hypertrophy in skeletal muscle is generally positive, 

hypertrophy of cardiac muscle is generally negative: the larger the ventricular wall is, the less 

efficient it is at pumping blood, thus requiring more energy to perform the same task. This 

can potentially lead to a positive-feedback loop, where the cardiac muscle can’t meet the 

pumping needs of the body and remodels itself—increasing in size—which in turn reduces its 

ability to pump blood. As predicted by control theory, this instability leads to the collapse of 

the system. 
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METHODS 

Several assumptions were made to facilitate the development of the model in the 

interests of reducing it to a manageable scale. First, the human body was simplified to a 

“block of humanity,” which represents a lumped parameter model of the body with a lumped 

capillary, artery, vein and heart as shown in Figure 1. Additionally, this model assumes that 

skin temperature is equal to core temperature both at rest and during stress, i.e. the human 

body has an infinite conductance and no ability to redistribute blood flow between the core 

and the periphery, although this mechanism should be noted as being a significant 

determinant in the body’s ability to cool or warm itself [37]. It is also assumed that fluid 

losses are replaced on a time-scale that does not affect blood volume significantly. 

 

Figure 1. Expanded windkessel model for the “block of humanity.” Four categories of heat 
pass through this control surface: QL, the latent heat of vaporization of sweat; C, convective 
heat, such as wind; R, heat due to radiation, such as incident sunlight; and W, the external 
work produced by the body upon another object. 

In the block of humanity, CA and RA represent the arterial compliance and resistance 

respectively, and similarly CV and RV represent the venous compliance and resistance. RC is 

the capillary resistance. AV and MV denote the aortic and mitral valves, while the left ventricle 

is represented by a variable capacitor E which produces the inverse elastance waveform [43]. 
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The thick red line encapsulating the austere cardiovascular system denotes the control surface 

of the model—the block of humanity’s skin. Across this boundary four types of energy are 

catalogued: the latent heat QL, which is generated by the evaporation of sweat, the convective 

heat C, which occurs when moving air carries away heat from the skin’s surface, the radiative 

heat R, representing the skin’s absorption of radiation, and the external work W produced by 

the body. Note, however, that simulation conditions reduce the variables C and R to zero. 

The remainder of this section is broken down into the constituent components 

organized by anatomy and function. These sections are arranged as such: 1) left ventricle; 

2) arterial system; 3) control system; 4) simulation parameters; 5) model validation. Figures 

and flow charts detailing the order of operation within the model can be found at the end of 

the section on pages 15 and 16. 

Left ventricle 

Initial conditions along with myocardial and arterial properties are fed into an ODE 

solver (Figure 4) that takes a normalized elastance waveform (Figure 2) and conforms it to a 

given Emin, Emax and heart rate. This new elastance waveform is used in conjunction with given 

arterial properties to simultaneously calculate nine ventricular and arterial parameters over a 

single cardiac cycle: LV in- and out-flow, LV volume, LV pressure, filling pressure, aortic 

pressure, elastic pressure and a new diastolic elastance. An example elastance curve is shown 

in Figure 2, normalized with respect to time at 72 beats per minute. 
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Figure 2: Normalized time-varying elastance of the left ventricle. Minimum and maximum 
elastance are set at 0.097 and 2.3 mmHg / mL, respectively. The curve is generated by the 
getk function, shown in the Appendix. 

Arterial system 

The complete cardiac cycle generated by the ODE solver is shunted into an energetic 

tabulation routine that calculates AVO2 as well as filtration rates through, into and out of the 

lumped capillary (Figure 4). Unless stated otherwise, the values in the following sub-section 

were taken from [18]; net filtration pressure is given as Pnet in equation (1). 

 ���� = ���
� − ���� + (∏�� − ∏�) (1) 

 ��
� =

��� + ���

2
 (2) 
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The mean capillary pressure P�
�  was calculated from (2), where Pca is the capillary 

pressure at the arteriolar junction and Pcv is the pressure on the venous end of the capillary; 

Pif is the pressure of the interstitial fluid and is given a value of -3 mmHg; Π�� is the osmotic 

pressure in the interstitial space and is given a value of 8 mmHg; the osmotic pressure from 

the plasma Π� due to albumin, fibrinogen and globulins is given a value of 28 mmHg. Note 

that positive terms indicate a contribution towards outward flow whereas negative terms 

contribute to the inward flow, thus the negative pressure of Pif acts to abstract fluid from the 

capillary into the interstitial spaces.  

The filtration pressure was then multiplied by the filtration coefficient of 6.67 
��

���∗����
 

and averaged, yielding the net volumetric filtration rate across the capillary wall. The 

lymphatic filtration rate is held constant at 1/30 mL/s. 

 ���� =
�� + ����

�� ∙ ��
���

 (3) 

Arterial-venous oxygen differences were calculated from equation (3), which relates the 

energy used in metabolic processes to the energy delivered by blood. In the numerator, MQ 

is the metabolic rate of the body, which is roughly 100 W for a person consuming an average 

of 2000 kcal per day. Wext is the external work performed by the block of humanity on its 

environment. K1 and Q�
���� denote the energy equivalent of oxygen and the mean volumetric 

flow rate through the capillary, respectively. 

Control system 

If the net outward filtration flow rate Ifilt is less than the lymphatic filtration rate, the 

net outward filtration rate is taken to be zero. Otherwise, a constant, approximate lymphatic 

filtration rate (below) is subtracted from the net outward filtration rate. This new filtration 

flow rate ISW is assumed to be converted to sweat completely, allowing as there are no 

interstitial spaces between cells or tissues within the block of humanity. 
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 ��� = ����� −
1 mL

30 s
  (4) 

The rate of latent heat dissipated by the evaporation of sweat is calculated as shown in (5) 

using the density of blood per mL and the enthalpy of water, given as 1.060 x 10-3 
��

��
 and 

2.257 x 106 
�

��
 respectively. 

 ��̇ = ��� ∗ ��� ∗ ∆ℎ��� (5) 

The temperature change ΔTCC for a given beat is calculated as the difference in latent heat QL 

dissipated by the sweat rate to the heat generated by the current metabolic load MQ as shown 

in (6). The mass of the body �� was given as 100 kg and the specific heat of the body cp-body 

is given as 3470 
�

��∗℃
. The change in body temperature is then added to the initial body 

temperature. 

 Δ��� =
�� − ��

�� ∗ �������

 (6) 

 �� = Δ��� ∗ ��� + �� (7) 

The relative difference between the nominal body temperature of 37 °C and the end-of-cycle 

body temperature TF is the input error signal TErr to a PI control system (Figure 5) that 

regulates heart rate and arterial resistance; note TErr is directly proportional to heart rate and 

inversely proportional to arterial resistance, see skunkworks.m in the Appendix. These 

relationships are given in (8) and (9). 

 ΔHR = ����� ∗ ���� + �����  � ���� (8) 

 ΔR� = �����
∗ ���� + �����

 � ���� (9) 

The proportional (Kp) and integral (Ki) coefficients were selected at the beginning of a given 

trial; the calculation of the respective change in heart rate and arterial resistance was the last 
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calculation made during a single cycle. The heart rate and arterial resistance values were then 

fed back into the initial conditions for the next cardiac cycle. 

Simulation parameters 

Two separate sets of simulations were run in this experiment. In the first, a “shotgun” 

simulation method using values of 0, 1, 10, 50 and 100 for HR Kp, HR Ki and RA Kp are run to 

create a map of output parameters; RA Ki is set at a constant 0.1 for all trials. In the second, 

only 25 trials are generated with values of 0, 1, 10, 50 and 100 for HR Ki and RA Kp while HR 

Kp is set at 10 and RA Ki is maintained at 0.1. All trials are run for 3000 cardiac cycles. 

Additionally, there exist some differences in the initial conditions between the two sets 

of trials. For the first set of trials, the external work performed by the block of humanity is 

set at 80 W but is increased to 228 W for the second and third sets. Mass also changes from 

100 kg in the first set to 77 kg for the second. These changes are made to accommodate a 

comparison to those values found in [12], in which a 77 kg averaged participant exerts 228 

W on an exercise ergometer. 

Model validation 

To validate the model, a baseline was established by running the simulation open-loop 

(with each control variable Kp and Ki set to zero, see Figure 5) for 3000 beats at 72 beats per 

minute (2500 s). The initial parameters for this simulation are detailed below in Table 1. These 

initial conditions resulted in steady beats with the following parameters: systolic aortic 

pressure 114.6 mmHg; diastolic aortic pressure 60.15 mmHg; peak LVP 114.8 mmHg; mean 

LV filling pressure 10.09 mmHg; stroke volume 63.78 mL; ejection fraction 55.56%; cardiac 

output 4.592 L/min; peak aortic flow 978.2 mL/s. Additionally, the simulated body reached a 

final body temperature of 37.88 °C with zero sweat produced. A representative beat is shown 

in Figure 3. 
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Table 1. Initial conditions for the open-loop simulation. LV refers to the left ventricle; LA refers 
to the left atrium. Note that these values are preserved for closed-loop simulations. 

Parameter name Initial Unit 

LV Emin 0.097 mmHg/mL 

LV Emax 2.300 mmHg/mL 

Arterial resistance 0.928 PRU 

Capillary resistance 0.072 PRU 

Venous resistance 0.020 PRU 

Arterial compliance 1.000 mL/mmHg 

Venous compliance 30.00 mL/mmHg 

Heart rate 72.00 BPM 

Basal metabolic rate 100.0 W 

External work 80.00 W 

Efficiency 0.250 - 

Mass 77.00 kg 

Body temperature 37.30 °C 

LV volume 120.0 mL 

LV pressure 11.64 mmHg 

LA pressure 10.00 mmHg 

Aortic pressure 90.00 mmHg 

Coronary flow 30.00 mL/s 

Filtration pressure 0.300 mmHg 

Sweat filtration rate 0.000 mL/s 

Capillary pressure 25.00 mmHg 
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Figure 3: Pressure, flow and volume in the left ventricle. The plot represents a single beat at 
72 BPM during an open-loop simulation of the model.  LVV is the dotted-dashed line; LVP is 
the solid line; AoP is the dashed line; in- and outflow are shown as dotted lines. *Flow is 
scaled by 1/20. Additionally, magnitude of these two flows is shown here, but inflow occurs 
only during relaxation and outflow occurs only during ejection. 
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Figure 4: Program flow chart. The initial conditions for a beat are fed into an ODE solver, 
which produces a normalized elastance curve to compute pressures and flows in the left 
ventricle. These data are used to calculate metabolic changes and flows across the capillary 
wall as well as temperature changes during the beat. The temperature error between target 
and actual determines the magnitude of change the dual PI controller exerts on arterial 
resistance and heart rate. 
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Figure 5: PI controller used in the program. At the end of any given cardiac cycle, the total 
heat dissipated by the block of humanity is compared to the total heat produced and the 
difference (����) is used to adjust heart rate and arterial resistance. The new �� and �� are 
then used for the next iterative cardiac cycle. 

 

�����
∗ � ������ 

����� ∗ � ������ 

�����
∗ ���� 

�����
∗ ���� 

Δ�� 

Δ�� 

���� 

���� 

Initial Conditions 
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RESULTS 

The results of this experiment are split into two sub-sections, one for each set of 

simulation data as described in simulation parameters. In the first sub-section, the “shotgun” 

simulation method using values of 0, 1, 10, 50 and 100 for HR Kp, HR Ki and RA Kp are run to 

create a map of output parameters. In the second, only 25 trials are generated with values 

of 0, 1, 10, 50 and 100 for HR Ki and RA Kp while HR Kp is set at 10. (As noted in the sub-

sections below, the settling and rise time profiles were not significantly affected by changes 

in HR Kp with one exception; thus, one value suffices to be representative.) However, note 

that in these trials the external workload of the block of humanity has increased to 228 W to 

match the profiles in [12].  

Note that when settling or rise time is referenced, it is assumed to be the settling or 

rise time of the temperature in the block of humanity unless otherwise indicated. Additionally, 

“quintets” refer to the 5-trial sequence for the HR Kp control variable in which the other two 

variables are held constant, e.g. “the quintet at HR Ki = 0 & RA Kp = 10” references the five 

trials where HR Ki = 0, RA Kp = 10 and HR Kp = 0, 1, 10, 50 and 100 consecutively. Similarly, 

triplets refer to 3-trial sequences for HR Ki and quartets refer to 4-trial sequences of RA Kp. 

The “Shotgun” Method of Parameter Estimation 

In this sub-section, the “shotgun” simulation method using values of 0, 1, 10, 50 and 

100 for HR Kp, HR Ki and RA Kp are analyzed to create a map of output parameters. Of these 

125 trials, 75 corrected body temperature towards setpoint, but only 60 of these 75 trials 

reached the setpoint envelope of 37 ± 0.75 °C within the simulation’s timeframe of 3000 

cardiac cycles. The 65 trials that did not reach setpoint within the time allotted are not 

considered for the statistical settling time analysis. 
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Relationship between settling time and proportional control of heart rate 

With some exceptions, increases in HR Kp caused an increase in settling time; a 100-

fold increase (from HR Kp = 1 to HR Kp =100) averaged a 7.61% increase in settling time 

across all quintets. Among these data lies an interesting outlier at HR Ki = 1 & RA Kp = 10 

where the 100-fold increase in HR Kp results in a 50.58% increase in settling time, from 505 

s to 762 s, a difference of 256 seconds. Without including this outlier, the per-quintet 100-

fold mean increase in HR Kp was 3.71%. Both of these figures are in contrast to a 5.23% 

increase in settling time across all quintets from HR Kp = 0 to HR Kp =100. This trend can be 

most easily seen in Figure 6 below. Additionally, two quintets at HR Ki =10 & RA Kp = 1 and 

at HR Ki =10 & RA Kp = 10 actually showed a decrease in settling time with a 100-fold increase 

in HR Kp, which correspond to a 0.31% and 3.67% respective decrease in settling time. 

Interestingly, analysis of 10-fold increases on intervals between both HR Kp =1 to HR 

Kp = 10 and HR Kp =10 to HR Kp = 100 yield much different results, especially between each 

pairing. Between the 1-10 interval, average settling time increased 2.43% contrary to an 

average settling time increase of 4.75% in the 10-100 interval. Excluding the same outlier at 

HR Ki = 1 & RA Kp = 10, average settling time increases for the 1-10 and 10-100 interval 

instead become 0.18% and 3.51%, respectively. These differences signify that the 

relationship of ∆Ts to changes in HR Kp are not exponential. Relationships between incremental 

changes in HR Kp and the commensurate percent change in settling time (∆Ts) are described 

in Table 2 below. The outlier trial at HR Ki = 1 & RA Kp = 10 is highlighted. Notably, this table 

shows how small changes in HR Kp have little effect on settling time, but neither do large 

changes have as much an influence as do either HR Ki or RA Kp which can be seen in the 

following two sub-sections. In addition, the correlation between ∆Ts for each change in control 

variable and a straight line shows that ∆Ts represent a strong linear pattern (|r| > 0.50) for 

ten of the twelve sets. This indicates that changes in HR Kp induce a linear change in settling 

time. Of the remaining two trial quintets, one set of ∆Ts correlates to a straight line moderately 
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(0.30 < |r| < 0.50) and the other weakly (|r| < 0.3); this last, the weakest, corresponds to 

the aforementioned outlier trial. 

 

 

Figure 6. Settling time as a function of proportional control of heart rate. Mean values are 
represented by triangles. The dashed line represents the trend. Generally, settling time 
increased as a function of HR Kp; the average increase between the mean settling times taken 
at HR Kp = 0 and HR Kp = 100 was 5.23%. Two of the twelve total quintets had lower settling 
times at HR Kp = 100 than HR Kp = 0. 
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Table 2. Percent differences in settling time for selected intervals of a quintet. For example, 
percent difference in settling time between HR Kp = 1 to HR Kp =10 would be tabulated in the 
column “+9”. Magnitude of linear correlation (|r|) for each quintet is also included. Highlighted 
is the outlier at HR Ki = 1 and RA Kp = 10. 

HR 

Ki 

RA 

Kp 

∆Ts (%) |r| 

+1 +10 +40 +50 +100 +9 +90 +99  

0 0 0.05 0.53 2.01 2.27 4.87 0.47 4.32 4.82 0.94 

1 0 0.09 0.64 4.68 4.17 9.74 0.55 9.04 9.64 0.90 

10 0 0.00 0.06 0.13 -0.17 0.02 0.06 -0.04 0.02 0.46 

0 1 0.05 0.53 2.00 2.27 4.87 0.47 4.32 4.81 0.96 

1 1 0.10 0.98 4.20 5.17 10.66 0.87 9.59 10.54 0.97 

10 1 0.01 0.03 0.00 -0.34 -0.31 0.02 -0.34 -0.31 0.78 

0 10 0.10 1.19 4.04 2.85 8.28 1.09 7.01 8.17 0.84 

1 10 0.20 27.42 8.95 8.69 50.88 27.16 18.41 50.58 0.23 

10 10 -0.03 -0.29 -1.07 -2.37 -3.69 -0.26 -3.42 -3.67 0.96 

0 50 0.04 -0.38 -0.94 5.05 3.66 -0.42 4.06 3.62 0.67 

1 50 -0.31 -1.25 0.43 2.49 1.64 -0.95 2.93 1.95 0.84 

10 50 0.00 0.08 0.40 0.70 1.19 0.08 1.11 1.19 0.97 

 

Relationship between settling time and integral control of heart rate 

Of the five trial variable settings for HR Ki, only three produced solutions that reached 

setpoint: 0, 1 and 10. Generally, increases in HR Ki resulted in a decrease of settling time, 

which is somewhat contrary to the expectations of a control system. However, as shown in 

Figure 7, this trend is true for increases on the interval HR Ki = 0 to HR Ki = 1 as well as HR 

Ki = 0 to HR Ki = 10 but not for the interval HR Ki = 1 to HR Ki = 10. 

Incrementing HR Ki generally caused a change in settling time significantly larger than 

those produced by similar increments HR Kp. However, trial values of HR Ki = 50 and HR Ki = 

100 shaped curves that were too slow to yield sweat and thus cool the block of humanity. 

Perhaps most interestingly in this data is the finding that there is a marked contrast in how 

HR Ki affects ∆Ts that is strongly dependent on the value of RA Kp. Additionally, while 

increasing HR Ki from 0 to 10 generally decreases settling time, on the interval from 1 to 10 

there is a general increase in settling time. This can be seen most easily in Figure 7. Between 

the first and second values of HR Ki, there is a 25.97% decrease in mean settling time; 



21 

similarly, between HR Ki = 0 and HR Ki = 10 there is a 22.23% decrease in mean settling 

time. Conversely, the mean settling time increases by 4.92% between HR Ki = 1 and HR Ki = 

10. Contrary to increments of HR Kp, the relationship between ∆Ts and HR Ki is not generally 

linear, though in a few trials it is specifically linear. Notably, as RA Kp increases there is a 

corresponding trend in HR Ki’s linear relationship to ∆Ts. It is also interesting to note two 

trends expressed in Table 3. The first is that at HR Kp = 50 there is an “explosive” effect on 

incrementing HR Ki from 0 to 1: on the interval RA Kp = 0 to RA Kp = 50, this corresponds to 

a 12.05%, 15.33%, 80.40% and 7.87% increase in percent change in ∆Ts. 

This last number points to the other trend that RA Kp alters the behavior of incremental 

changes to HR Ki, a trend that can be easily seen at RA Kp = 50 when small changes in HR Ki 

affect ∆Ts very little whereas larger increments have a correspondingly larger effect, which is 

in contrast to ∆Ts at smaller values of RA Kp. In both cases of RA Kp = 10 and RA Kp = 50, the 

response of the settling time is underdamped and the acceleration of RA Kp is such that sweat 

begins to be produced rapidly following the onset of exercise. However, it is at the intersection 

HR Ki = 10 and RA Kp = 50 that the fastest and most stable system is produced, a system 

that has a fast enough heart rate response that RA does not bottom out, and conversely a fast 

enough arterial resistance response that HR does not reach dangerous levels.  
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Table 3. Percent differences in settling time for selected intervals of a quartet. For example, 
HR Ki = 1 to HR Ki = 10 would be tabulated in the column “+9”. Magnitude of linear correlation 
for each quartet is also included.  

HR 

Kp 

RA 

Kp 

∆Ts (%) |r| 

+1 +10 +9 

0 0 -20.87  -16.18  5.93  0.17 

1 0 -20.84  -16.22  5.84  0.17 

10 0 -20.79  -16.57  5.32  0.16 

50 0 -23.02  -22.12  0.74  0.03 

100 0 -17.20  -20.06  -3.46  0.16 

0 1 -22.11  -18.15  5.08  0.14 

1 1 -22.07  -18.19  4.97  0.14 

10 1 -21.76  -18.56  4.09  0.12 

50 1 -25.11  -25.24  -0.11  0.00 

100 1 -17.81  -22.19  -5.33  0.24 

0 10 -69.24  1.38  229.58  0.50 

1 10 -69.21  1.25  228.82  0.50 

10 10 -61.27  -0.09  157.93  0.50 

50 10 -146.55  -5.27  57.30  0.48 

100 10 -57.14  -9.83  110.37  0.45 

0 50 0.25  -62.64  -62.73  0.86 

1 50 -0.10  -62.65  -62.62  0.87 

10 50 -0.63  -62.46  -62.23  0.87 

50 50 0.74  -162.84  -164.81  0.86 

100 50 -1.71  -63.53  -62.90  0.88 
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Figure 7. Settling time as a function of integral control of heart rate. Values of HR Ki = 50 and 
100 are not shown as no trials with these values reached setpoint within the simulation 
timeframe. Mean values are represented by triangles. The dashed line represents the trend. 
Generally, settling time decreased as a function of HR Ki; the average decrease between the 
mean settling times taken at HR Ki = 0 and HR Ki = 10 was 22.23%. 

Relationship between settling time and proportional control of arterial resistance 

Of the five trial variable settings for RA Kp, only four produced solutions that reached 

setpoint: 0, 1, 10 and 50. Generally, increasing RA Kp resulted in a decrease in settling time, 

which is keeping with the expectations of a control system. In those incidences where this 

convention does not hold, it is attributable to competing resources in the system, e.g. arterial 

resistance falls faster than heart rate increases, thus providing a net reduction in arterial 

pressure which in turn retards production of sweat and by extension cooling. 

Incrementing RA Kp generally caused a change in settling time significantly larger than 

those produced by similar increments of HR Kp. Much like with HR Ki, trial values of RA Kp = 

100 shaped curves that were too slow to yield sweat and thus cool the block of humanity. 
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Additionally, the interplay between HR Ki and RA Kp is very apparent when looking at changes 

in settling time; these effects can be seen in Table 4 and Figure 8. In the plot specifically it is 

easy to observe that for every trial quintet RA Kp decreases absolutely, but the five trials at 

HR Ki = 1 & RA Kp = 10 reveal this trend is true globally but not explicitly true locally. This 

distinction can be seen more clearly in the table: excepting the five trials where ∆Ts was zero 

(or near zero) the only variations for which ∆Ts is positive were between RA Kp = 10 and RA 

Kp = 50 with HR Kp = 0 to 100 and HR Ki = 1. Notably, this trial is the outlier highlighted from 

the section relationship between settling time and proportional control of heart rate where 

these trials are the only ones in which HR Kp plays a significant role in altering settling time. 

In all other cases increases to RA Kp result in reduced settling time, but at some point 

between RA Kp = 10 and RA Kp = 50 the critical damping point is reached, causing temperature 

response to transition from underdamped to overdamped behavior within the quartet. Due to 

this interaction between HR Ki and RA Kp, there is an average increase in settling times 

between RA Kp = 10 and RA Kp = 50 of 7.09%. On all other intervals, however, average 

change in settling time for increments to RA Kp remain negative at 1.27%, 41.50% and 

53.87% for increments of 1, 10 and 50 RA Kp respectively. Another facet of the interaction 

between HR Ki and RA Kp is the corresponding linearity of ∆Ts as each variable increases. 

When RA Kp was held constant (Table 3) a clear progression from weak to strong linearity can 

be seen for each triplet. Conversely, Table 4 shows strong linearity when HR Ki = 0, very 

strong linearity when HR Ki = 10 but very weak linearity when HR Ki = 1 due to the 

aforementioned transition between under- and overdamped responses. 
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Table 4. Percent differences in settling time for selected intervals of a triplet. For example, 
RA Kp = 1 to RA Kp = 10 would be tabulated in the column “+9”. Magnitude of linear correlation 
for each triplet is also included. 

HR 

Kp 

HR 

Ki 

∆Ts (%) |r| 

+1  +10  +40  +50  +9 

0 0 0.00% -34.33% -20.86% -48.03% -34.33% 0.60 

1 0 0.00% -34.30% -20.91% -48.04% -34.30% 0.60 

10 0 0.00% -33.90% -22.09% -48.50% -33.90% 0.62 

50 0 -0.01% -32.58% -25.82% -49.99% -32.58% 0.70 

100 0 0.00% -32.20% -24.24% -48.63% -32.20% 0.68 

0 1 -1.56% -74.47% 157.90% -34.16% -74.07% 0.14 

1 1 -1.54% -74.44% 156.59% -34.42% -74.04% 0.13 

10 1 -1.23% -67.68% 99.87% -35.40% -67.28% 0.10 

50 1 -1.68% -66.36% 84.25% -38.02% -65.79% 0.07 

100 1 -0.73% -64.90% 73.73% -39.02% -64.64% 0.05 

0 10 -2.35% -20.57% -70.84% -76.84% -18.66% 0.92 

1 10 -2.34% -20.60% -70.83% -76.84% -18.69% 0.92 

10 10 -2.38% -20.85% -70.73% -76.83% -18.92% 0.92 

50 10 -2.50% -21.80% -70.29% -76.77% -19.79% 0.93 

100 10 -2.67% -23.52% -69.36% -76.56% -21.42% 0.94 

 

 



26 

 

Figure 8. Settling time as a function of integral control of arterial resistance. Values of RA Kp 
= 100 are not shown since no trials with this value reached the temperature setpoint within 
the simulation timeframe. Mean values are represented by triangles. The dashed line 
represents the trend. Generally, settling time decreased as a function of RA Kp; the average 
decrease between the mean settling times taken at RA Kp = 0 and RA Kp = 50 was 53.87%. 
All quintets had lower settling times at RA Kp = 50 than at RA Kp = 0. 

Sweat production 

Using the sweat rates published by Godek et al. [13] for American football players, an 

upper bound of 0.81 mL/s can be established. Although the exercises producing the sweat 

rates from Godek’s experiment and this one differ significantly, Godek’s research highlights a 

reasonable upper bound for sweat rates in the present study. 

Given these boundaries, the lowest sweat rate was at 0.20 mL/s and the highest at 

0.43 mL/s, well under the maximum. There was a very weak correlation (|r| = 0.08) between 

the maximum sweat rate and settling time, due as much in part to many variable 

combinations being unable to swiftly and adequately induce a large enough pressure 
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difference in the arterial vessel to begin countering the build-up of heat from exercise as it is 

from variable combinations introducing oscillations outside the settling envelope. A more 

fitting comparison between rise time and maximum sweat rate instead exhibits a very strong 

correlation (|r| = 0.85). Additionally, there was a strong correlation (|r| = 0.78) between the 

total amount of sweat produced (mL) and settling time. This last figure is not surprising, given 

that the production of heat within the block of humanity was constant at 320 W but simulation 

time was not, so for trials that shed heat more quickly through higher heart rates the total 

amount of sweat would be similarly reduced. More telling is the moderate correlation (|r| = 

0.61) between the time-averaged sweat rate and settling time. 

Control variables 

Heart rate was bounded between 40 and 200, but in all 60 trials neither bound was 

reached. Minimum BPM did however go as low as 41.24, while maximum was 175.38. 

Likewise, arterial resistance was bounded between 0.1 and 4.0 peripheral resistance units 

(PRU), and in nearly every quintet where HR Ki = 0 or 1 the lower bound was reached. There 

exists one exception for the quintet at HR Ki = 1 and RA Kp =50, when the minimum arterial 

resistance reached only 0.18. 

Fast settlers and risers 

Among all 60 trials, only two quintets had trials with settling times below 1000 

seconds: the quintet at HR Ki = 1 & RA Kp = 10 and the quintet at HR Ki = 10 & RA Kp = 50. 

Representative samples from HR Kp = 10 are shown in Figure 9 and Figure 10. These two 

quintets are also evident as the 10 lowest data points in Figure 6. One quintet of particular 

note is that with HR Ki = 50 and RA Kp = 50. This quintet remains singular in this data set as 

one where sweat filtration was positive but body temperature increased. While the sweat 

produced was not nearly enough to counteract the build-up of heat within the body, it 

nonetheless remains the set of trials that most closely mimic actual physiological responses.  
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Figure 9. Time courses for HR Kp = 10, HR Ki = 1 and RA Kp = 10. Sweat filtration, arterial-
venous oxygen difference, body temperature and the two control variables heart rate 
(dashed) and arterial resistance (solid) are shown. Settling time for this trial was 643 s and 
rise time was 278 s. Note that RA bottoms out for roughly 99 s until heart rate rises far enough 
to compensate. This trial is an excellent example of control variable combinations that met 
the success criteria but are not physiologically possible. 
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Figure 10. Time courses for HR Kp = 10, HR Ki = 10 and RA Kp = 50. Sweat filtration, arterial-
venous oxygen difference, body temperature and the two control variables heart rate 
(dashed) and arterial resistance (solid) are shown. Settling time for this trial was 486 s and 
rise time was 419 s, and the control variable combination is very close to reaching the critical 
damping point. Note that heart rate rises fast enough that RA does not bottom out, which 
occurred in 35 trials. This trial is an excellent example of control variable combinations that 
met the success criteria but do not represent a real physiological response. However, it 
remains the fastest settling trial within this simulation data set. 

Increased workload and physiological considerations 

 In this sub-section, the simulation set using values of 0, 1, 10, 50 and 100 for HR Ki 

and RA Kp with HR Kp = 10 are analyzed to create a map of output parameters with a vastly 

increased external workload (228 W). Of these 25 trials, 16 corrected body temperature 

towards setpoint and all 16 trials reached the setpoint envelope of 37 ± 0.75 °C within the 

simulation’s timeframe of 3000 heart beats. Note here that the 9 trials that did not reach 

setpoint had either HR Ki = 50 or HR Ki = 100, a similar pattern as those described in the 

previous sub-section; the trial HR Kp = 50, HR Ki = 50 and RA Kp = 100 did reach the setpoint 
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envelope, however. Of those 9 trials that did not reach setpoint, the trial with HR Ki = 50 and 

RA Kp = 50 yet again is the only one that had positive sweat filtration and, thus, cooling. This 

data is compared to [12] in Figure 11. 

As shown by the experiment in [12], body temperature does not decrease during 

exercise of this magnitude (228 W, 60% �̇�����
),. This data is shown in Table 5, and it should 

be noted that the discrepancy in the final temperature Tf can be explained by different 

simulation run times: in general, trials with HR Ki = 50 ran for an average of 245 seconds 

shorter than trials at HR Ki = 100 due to differences in heart rate.  

  

 

Figure 11. Temperature comparison between reported data and model. Trial HR Kp = 10, HR 
Ki = 50 and RA Kp = 50 is plotted against interpolated data from [12]. Coefficient of 
determination R2 = 0.995 between the model fit and reported data.  
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Table 5. Sweat production, final temperature and correlation coefficient between these 
variables for each trial of the second data set. In all trials, HR Kp = 10. Differences in sweat 
production between trials that converged to setpoint are due wholly or in part to differences 
in simulation run time; as noted, each trial was run for 3000 cardiac cycles, so simulation 
time decreases as average heart rate increases. R denotes the correlation between a trial’s 
body temperature to that of the average participant in [12].  

HR Ki RA Kp Sweat (mL) Tf (°C) r 

0 0 391.36  36.98 -0.85  

1 0 275.57  37.07 -0.43  

10 0 256.99  37.20 -0.05  

50 0 0.00  38.66 1.00  

100 0 0.00  38.95 1.00  

0 1 390.43  36.99 -0.85  

1 1 283.50  36.97 -0.46  

10 1 264.55  37.09 -0.05  

50 1 0.00  38.66 1.00  

100 1 0.00  38.95 1.00  

0 10 389.41  37.00 -0.85  

1 10 274.81  37.00 -0.56  

10 10 249.74  37.00 -0.28  

50 10 0.00  38.66 1.00  

100 10 0.00  38.95 1.00  

0 50 389.39  37.00 -0.86  

1 50 236.74  37.01 -0.88  

10 50 190.12  36.98 -0.86  

50 50 42.89  38.27 1.00  

100 50 0.00  38.95 1.00  

0 100 388.00  37.01 -0.91  

1 100 220.13  37.06 -0.97  

10 100 177.15  37.04 -0.98  

50 100 136.67  37.38 -0.72  

100 100 0.00  38.95 1.00  
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DISCUSSION 

Comparing only the temperature responses, the trial of HR Kp = 10, HR Ki = 50 and 

RA Kp = 50 most closely matches the data from [12], but two significant exceptions exist. 

First, while the block of humanity is powered by a time-changing elastance, i.e. the left 

ventricle, the properties Emin and Emax are constant. However, these two values are highly 

susceptible to inotropic effects and strongly correlated to both LV mass and LV end-diastolic 

volume (preload) [24], [41]. The range of Emin to Emax used in these simulations (detailed in 

simulation parameters) embodies normal cardiac function, but under stress—in this case, 

exercise—these values are no longer representative. In fact, [41] shows that at high values 

of preload, Emax may increase twenty-fold from the value utilized in these simulations. This 

incongruity results in a major shortfall of stroke volume—and by extension cardiac output—

relative to that seen in the human body: with respect to the data in [12], there is a 55% and 

59% difference between reported and simulated cardiac output and stroke volume. 

Second, the time course of body temperature in the block of humanity can be seen to 

be concave up, indicating that given enough time body temperature would reach a maximum 

and then, albeit slowly, begin decreasing. This phenomenon is rooted in the fact that the block 

of humanity has been designed to value its temperature above all else—including survival. If 

we assume that there exists a physiological analog to this lumped parameter control system, 

then it follows from the comparison in Figure 11 that under some conditions maintaining 

thermo-fluid homeostasis is not in fact the primary goal of the human body. Else, the model’s 

output would more closely resemble that of physiology. Although thermoregulation is 

important, there still exists a range of heat storage the body deems acceptable in order to 

maximize its useful work; this is likely a mechanism in which useful may be defined as 

“increasing survival.” The premise of exchanging future hyperthermia for present work is quite 

evident from a comparison of the data shown in [12] to that of Table 5, where each living 

participant was able to leverage heat storage towards the performance of work whereas the 
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block of humanity instead leveraged its available resources towards decreasing core 

temperature, even in the cases where it could not generate a large enough pressure difference 

across the capillary to generate sweat. 

A simple difference quotient is taken for the block of humanity to maintain body 

temperature, expressed in equation (6). When the cooling exceeds the heat generated by the 

block of humanity, temperature naturally decreases. All variables in these two equations are 

held constant with the exception of ISW, so body temperature depends solely on the pressure 

difference at the capillary: the greater the net outward (tissue-ward) pressure, the greater 

the flow and the greater the cooling. Effectively, the lumped parameter control system 

emulates the hypothalamus but is constrained to a physiological setpoint described by the 

coded conditions (Emax, BMR, control variable coefficients, etc.) and this setpoint can change 

due to effectors ranging from ventilation or stress to minutia like the time of day or 

psychosomatic beliefs [4], [21], [32]. Rather, the setpoint is more likely an emergent property 

of a system attempting to minimize local entropy production, as posited by Ilya Prigogene in 

his work on dissipative structures. 

Schaible [38] posits that there exists a thermodynamic spectrum a living body falls 

along at any given time. Along the abscissa, the negative direction indicates efficiency and 

the positive direction indicates survival reserve. Similarly along the ordinate, the negative 

direction indicates equilibrium while the positive indicates work. For the participants of [12], 

evidence of fatigue suggests they are operating somewhere in the first quadrant: each 

participant is exerting a fraction of their maximum available external work (60%) which 

eventually leads to fatigue, i.e. the consumption of available resources outstrips the 

generation (short-term) or accumulation (long-term) of resources. Conversely, the block of 

humanity has innumerably fewer resources to consume; in fact, the only finite resources the 

block of humanity can control are the setpoints of its two control variables HR and RA—and, 

once these two knobs have been fully turned, the block of humanity is left to whatever fate 

this “maximized” state evokes.  
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CONCLUSION 

In this thesis a model CVS was built to emulate the thermodynamic responses 

observed at the capillary during exercise. A comprehensive evaluation was also performed to 

assess the contribution each control variable coefficient had in any given permutation to the 

model’s response. Furthermore, the results of these permutative trials were evaluated under 

conditions that could be compared to literature. 

It was found that while the model’s responses could not replicate the responses in 

literature, the discrepancy was likely due to the assumptions made during the creation of the 

model that affected the target setpoint; in effect the model attempted to accomplish a task 

different from the living participants it was compared to. In the first, the model aimed 

exclusively to reduce body temperature through its control of heart rate and arterial 

resistance, whereas in the latter the participants aimed exclusively to maintain a constant 

external workload. However, while the primitive feedback loops in the model may not 

accurately portray in vivo performance of the human body, the simulation results highlight 

the potential of the capillary-centric, coupling-as-thermodynamics model to explore the 

emergent properties of the dynamic, adaptive and complex cardiovascular system. 
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APPENDIX. MATLAB CODE 

In this section, the code used to run the simulations is reported. Note that the 

sections hemodynamics.m, odesolver.m and getk.m, marked with a superscript 

cross, are co-authored materials. These functions, routines or methods were originally 

written by Andrew McNally, Mattew Korpela, Erin Lamke and Matthew Hudson of Iron Range 

Engineering in the unpublished work titled “Computational Model of a Left Ventricle: Showing 

the Effects of Inertia on Cardiac Dyssynchrony.” The last known revision of this work occured 

Feb. 2012. The code has been revised such that the original functions are altered significantly, 

or it has been optimized in such a way that the original functions remain intact but are 

significantly improved over the original version.  

capinator.m 

 
%% 
% ----------------------------------- % 
% 
% Author:   Drew Taylor 
% Date:     May 16, 2012 
% Last Rev: Sep 21, 2015 
% Title:    capinator.m 
%            
% ----------------------------------- % 
  
clear all 
%% Log file creation 
  
logmode = 0; 
  
if logmode == 1 
    vdate = clock; 
  
    if datenum(vdate(2)) < 10 
        month = ['0' num2str(datenum(vdate(2)))]; 
    else 
        month = num2str(datenum(vdate(2))); 
    end 
  
    if datenum(vdate(3)) < 10 
        day = ['0' num2str(datenum(vdate(3)))]; 
    else 
        day = num2str(datenum(vdate(3))); 
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    end 
  
    if datenum(vdate(4)) < 10 
        hour = ['0' num2str(datenum(vdate(4)))]; 
    else 
        hour = num2str(datenum(vdate(4))); 
    end 
  
    if datenum(vdate(5)) < 10 
        minute = ['0' num2str(datenum(vdate(5)))]; 
    else 
        minute = num2str(datenum(vdate(5))); 
    end 
  
    filecount1 = 1; 
    filecount2 = 1; 
    filedate = [num2str(datenum(vdate(1))) '.' month '.' day '.']; 
    filetime = [hour minute]; 
    filename1 = [filedate filetime '.waveforms_' num2str(filecount1) '.txt']; 
    filename2 = [filedate filetime '.heatstuff_' num2str(filecount2) '.txt']; 
  
    % A = [vAoP vI1 vIi vIo vLAP vLVP vPE1 vQc vV1 vVi vVo]; 
    waveformhead = ['AoP', 'I1', 'Ii', 'Io', 'LAP','LVP','PE1','Qc', 'V1', 
'Vi', 'Vo']; 
    wfheadformat = '%9s   %9s   %9s   %9s   %9s   %9s   %9s   %9s   %9s   %9s   
%9s\r\n'; 
    wfformatSpec = '%3.4f %3.4f %3.4f %3.4f %3.4f %3.4f %3.4f %3.4f %3.4f 
%3.4f %3.4f\r\n'; 
  
    % B = [vAVO2'; vBodTemp'; vIsweat'; vMQ'; vPca'; vQlat'; vRa'; vRaErr'; 
vTemperr'; vbpm']; 
    % heatstuffhead = ['vAVO2', 'vBodTemp', 'vIsweat', 'vMQ', 
'vPca','vQlat','vRa','vRaErr', 'vTemperr', 'vbpm']; 
    hsheadformat = '%10s   %8s   %8s   %8s   %8s   %8s   %8s   %8s   %8s   
%8s\r\n'; 
    hsformatSpec = '%10.4f %10.4f %10.4f %10.4f %10.4f %10.4f %10.4f %10.4f 
%10.4f %10.4f\r\n'; 
  
    fileID1 = fopen(filename1,'w'); 
    fprintf(fileID1,wfheadformat,'AoP', 'I1', 'Ii', 'Io', 
'LAP','LVP','PE1','Qc', 'V1', 'Vi', 'Vo'); 
    % fprintf(fileID,wfformatSpec,A); 
    % fclose(fileID1); 
  
    fileID2 = fopen(filename2,'w'); 
    fprintf(fileID2,hsheadformat,'vAVO2', 'vBodTemp', 'vIsweat', 'vMQ', 
'vPca','vQlat','vRa','vRaErr', 'vTemperr', 'vbpm'); 
    % fprintf(fileID,hsformatSpec,B); 
    % fclose(fileID2); 
end 
  
val_run = false; 
  
runspecHRKp = [0, 1, 10, 50, 100]; 
runspecHRKi = [0, 1, 10, 50, 100]; 
runspecRAKp = [0, 1, 10, 50, 100]; 
tic 
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for loopdex3 = 1:length(runspecRAKp) 
for loopdex2 = 1:length(runspecHRKi) 
for loopdex1 = 1:length(runspecHRKp) 
  
clear PE1 I1 Ii Io LVP V1 Vi Vo LAP AoP e_1 Ea_RC Ea_EQ Ea_SG beatendtime; 
%% Declare initial conditions 
  
r1      = 0.0005;   %0.0005 
e1min   = 0.097;     %0.02 
e1max   = 2.3;        %5 
m1      = 0.00045;   %0.00045 
t1      = 0;        %0 
  
% Arterial parameters 
% Ra = 0.7*17*60/1000;       %1.5 
Ra = 0.90933*17*60/1000;  
Rc = 0.07067*17*60/1000;       %0.1 
Rv = 0.02*17*60/1000;   
Cv = 30;                    %15 
Ca = 1; 
  
% bpm = beats per minute; MQ = metabolism (W);  
% EWork = external power (J/s) 
bpm       = 72;       %de Cort 
MQinit    = 100; % watts 
Work      = 512; % watts 
Effnc     = 0.25; % 25% efficiency 
EWork     = Work*Effnc; 
heat_rad  = 0; % watts, heat due to radiation 
heat_conv = 0; % watts, heat due to convection 
  
% K1 = energy equivalent of oxygen (J/mL O2) 
K1        = 20; 
  
% mass = N * s^2 / m (kg) 
mass = 77; % kg 
  
age = 20; 
  
bpmmax = 220 - age; 
  
% degrees C 
BodTemp     = 35.9; 
BodTempTgt  = 37; 
  
% step = dt, cycle = secs to run 
step     = 0.001; 
cycle    = 2500; 
  
%if truncating values, this sets the decimate resample rate at 1/resample, 
%e.g. resample = 2 would halve the number of data points. must be integer. 
resample = 1; 
  
% defines total runtime samples length & index of end of first beat 
% beats finds the number of beats in run time (assuming steady state BPM) 
t_beat      = 0:step:cycle; 
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pbeatdex    = 0; 
nbeatdex    = ceil((60/bpm) / step + 1); 
beats       = cycle / (60 / bpm); 
  
% E in mmHg / mL; V in mL; P in mmHg 
volume = 120; 
pressure = volume*e1min; 
  
% Initialization parameters for the hemodynamics 
init_hemo = ... 
[pressure ...   % 01 PE1 
0 ...           % 02 I1 net flow into ventricle 
0 ...           % 03 Ii inlet flow 
0 ...           % 04 Io outlet flow 
pressure ...    % 05 LVP 
volume ...      % 06 V1 intial volume 
0 ...           % 07 Vi integral Ii 
0 ...           % 08 Vo integral Io 
10 ...          % 09 LAP mmHg 
90 ...          % 10 AoP mmHg 
e1min ...       % 11 e_1 diastolic elastance 
bpm]; ...       % 12 bpm 1 / s     
  
% Initialization parameters for the thermodynamics and flows 
init_therm = ... 
[30 ...         % 01 Qc mL/s coronary flow 
0.1 ...        % 02 AVO2 mL/100 mL 
0.3 ...         % 03 net filt pres mmHg 
0 ...           % 04 sweat filtration mL/s 
25 ...          % 05 Pca mmHg  
0 ...           % 06 latent heat J / s 
BodTemp ...     % 07 body temp (degrees Celsius) 
0.3 ...         % 08 temperature error 
MQinit ...      % 09 metabolism (watts) 
EWork]; ...     % 10 external work dot (watts) 
  
init_time = ... 
[step ...       % 1 step size 
pbeatdex ...    % 2 first beat start index 
nbeatdex ...    % 3 first beat end index 
1];             % 4 beat number 
  
ctrl_bits = ... 
[1 ...          % Heart rate control bit; on = 1 
1];             % Arterial resistance control bit; on = 1 
  
art_props  = [Ra, Rc, Rv, Cv, Ca];  
vent_props = [r1,e1min,e1max,m1,t1]; 
  
% Temperrdex = zeros(floor(beats),1);7 
TempErrdex = BodTemp - BodTempTgt; 
RaErrdex = 0; 
  
%% Run X beats 
for beatnum = 1:beats 
     
    if val_run == true 
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        if beatnum >= 0 
            MQinit = 80; 
        end 
    end 
     
    endofbeat(1,beatnum) = nbeatdex; 
     
    if beatnum ~= beats+1 
    % Displays beat number on main screen 
    disp(['beatnum = ' num2str(beatnum)]); 
%     disp(['bpm = ' num2str(bpm)]); 
     
    % Generate elastance waveform using ode23 solver 
    [PE1, I1, Ii, Io, LVP, V1, Vi, Vo, LAP, AoP, e_1] = odesolver(init_hemo, 
init_time, vent_props, art_props, bpm); 
     
    % Solve for Ea 
    ts=pbeatdex*step; 
    te=nbeatdex*step; 
    BigT = ts:step:te; 
     
    ejecting = find(Io>0); 
     
    Ea_RC = AoP(ejecting(end))/max(V1); 
    Ea_EQ = (1 - Ca * (AoP(ejecting(1)) - AoP(ejecting(end))) ./ max(Vo)) * 
(Ra) ./ (te-ts)'; 
    Ea_SG = -0.127 + 1.023 * (Ra)./(te-ts) + 0.314 / Ca; 
     
%     disp(['Ea_RC = ' num2str(Ea_RC)]); 
%     disp(['Ea_EQ = ' num2str(Ea_EQ)]); 
%     disp(['Ea_SG = ' num2str(Ea_SG)]); 
%     fprintf(' \r'); 
     
    hemoform    = [PE1, I1, Ii, Io, LVP, V1, Vi, Vo, LAP, AoP, e_1]; 
     
    % Compute flows and thermodynamic quantities 
    [Qc, AVO2, filtnet, filtrate, lymphfilt, Pca, Ii, dAoP] ... 
        = thermoflow(hemoform, init_therm, init_time, art_props); 
     
    hemoform    = [PE1, I1, Ii, Io, LVP, V1, Vi, Vo, LAP, AoP, e_1]; 
%     thermoform  = [Qc, AVO2, filtnet, lymphfilt, Pca]; 
  
    if beatnum == 1 
        formstep = 60/bpm/(length(PE1)-1); 
        beatendtime = [1:beats]'; 
        beattime = [0:formstep:60/bpm]'; 
    else 
        formstep = 60/bpm/(length(PE1)); 
        beattime = [formstep:formstep:60/bpm]' + beatendtime(beatnum-1,1); 
    end 
     
    beatendtime(beatnum,1) = beattime(end); 
     
%     beattime         = [0:formstep:60/bpm]'; 
%     beatendtime(beatnum) = beattime(end); 
%     beattimex        = 
[beatendtime(end)+formstep:formstep:60/bpm+beatendtime(end)]'; 
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    %% Send error signal to controller 
    MQE = MQinit + EWork; 
    heatgen = MQE + heat_conv + heat_rad; 
     
    %oscar - HRKp, boyd - HRKi, ike - RAKp 
    % Controller variables 
    HRKp = runspecHRKp(loopdex1); 
    HRKi = runspecHRKi(loopdex2); 
    RAKp = runspecRAKp(loopdex3); 
    RAKi = 0.1; 
  
    [bpm, delHR, Qlat, BodTemp, sweatfilt, Ra, RaErr, Isweat] = 
skunkworks(filtrate, bpm, beatnum, heatgen, TempErrdex, BodTemp, art_props, 
... 
                                                                                    
RaErrdex, BodTempTgt, step, mass, ctrl_bits, beatendtime, ... 
                                                                                    
bpmmax, HRKp, HRKi, RAKp, RAKi); 
    TempErrdex(beatnum,1) = BodTemp - BodTempTgt;  
    RaErrdex(beatnum,1) = RaErr;  
  
    art_props  = [Ra, Rc, Rv, Cv, Ca];  
         
 %% Assign values to vectors 
      
    if beatnum == 1 || logmode == 1; 
        vPE1         = decimate(PE1,resample); 
        vI1          = decimate(I1,resample); 
        vIi          = decimate(Ii,resample); 
        vIo          = decimate(Io,resample); 
        vLVP         = decimate(LVP,resample); 
        vV1          = decimate(V1,resample); 
        vVi          = decimate(Vi,resample); 
        vVo          = decimate(Vo,resample); 
        vLAP         = decimate(LAP,resample); 
        vAoP         = decimate(AoP,resample); 
        ve_1         = decimate(e_1,resample); 
        vQc          = decimate(Qc,resample); 
        vAVO2        = AVO2(end); 
        vfiltnet     = filtnet(end); 
        vfiltrate    = filtrate(end); 
        vlymphfilt   = lymphfilt(end); 
        vsweatfilt   = sweatfilt(end); 
        vPca         = Pca(end); 
        vQlat        = Qlat(end); 
        vBodTemp     = BodTemp(end); 
        vTempErr     = TempErrdex(end); 
        vMQ          = MQE(end); 
        vEWork       = EWork(end); 
        vbpm         = bpm(end); 
        vdAoP        = dAoP(end); 
        vdelHR       = delHR(end); 
        vIsweat      = Isweat(end); 
        vRa          = Ra(end); 
        vRaErr       = RaErr(end); 
        vbeattime    = decimate(beattime,resample); 
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        vEa_RC       = decimate(Ea_RC,resample); 
        vEa_EQ       = decimate(Ea_EQ,resample); 
        vEa_SG       = decimate(Ea_SG,resample); 
    else 
        vPE1         = [vPE1; decimate(PE1,resample)]; 
        vI1          = [vI1; decimate(I1,resample)]; 
        vIi          = [vIi; decimate(Ii,resample)]; 
        vIo          = [vIo; decimate(Io,resample)]; 
        vLVP         = [vLVP; decimate(LVP,resample)]; 
        vV1          = [vV1; decimate(V1,resample)]; 
        vVi          = [vVi; decimate(Vi,resample)]; 
        vVo          = [vVo; decimate(Vo,resample)]; 
        vLAP         = [vLAP; decimate(LAP,resample)]; 
        vAoP         = [vAoP; decimate(AoP,resample)]; 
        ve_1         = [ve_1; decimate(e_1,resample)]; 
        vQc          = [vQc; decimate(Qc,resample)]; 
        vbeattime    = [vbeattime; decimate(beattime,resample)]; 
         
        vAVO2        = [vAVO2; AVO2(end)]; 
        vfiltnet     = [vfiltnet; filtnet(end)]; 
        vfiltrate    = [vfiltrate; filtrate(end)]; 
        vlymphfilt   = [vlymphfilt; lymphfilt(end)]; 
        vsweatfilt   = [vsweatfilt; sweatfilt(end)]; 
        vPca         = [vPca; Pca(end)]; 
        vQlat        = [vQlat; Qlat(end)]; 
        vBodTemp     = [vBodTemp; BodTemp(end)]; 
        vTempErr     = [vTempErr; TempErrdex(end)]; 
        vMQ          = [vMQ; MQE(end)]; 
        vEWork       = [vEWork; EWork(end)]; 
        vbpm         = [vbpm; bpm(end)]; 
        vdAoP        = [vdAoP; dAoP(end)]; 
        vdelHR       = [vdelHR; delHR(end)]; 
        vIsweat      = [vIsweat;Isweat(end)]; 
        vRa          = [vRa; Ra(end)]; 
        vRaErr       = [vRaErr;RaErr(end)]; 
         
        vEa_RC       = [vEa_RC; Ea_RC(end)]; 
        vEa_EQ       = [vEa_EQ; Ea_EQ(end)]; 
        vEa_SG       = [vEa_SG; Ea_SG(end)]; 
     end 
  
 %% Pull out end of beat values 
  
%     PE1         = getlast(PE1); 
%     I1          = getlast(I1); 
%     Ii          = getlast(Ii); 
%     Io          = getlast(Io); 
%     LVP         = getlast(LVP); 
%     V1          = getlast(V1); 
%     Vi          = getlast(Vi); 
%     Vo          = getlast(Vo); 
%     LAP         = getlast(LAP); 
%     AoP         = getlast(AoP); 
%     e_1         = getlast(e_1); 
%     Qc          = getlast(Qc); 
%     AVO2        = getlast(AVO2); 
%     filtnet     = getlast(filtnet); 
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%     lymphfilt   = getlast(lymphfilt); 
%     sweatfilt   = getlast(sweatfilt); 
%     Pca         = getlast(Pca); 
%     Qlat        = getlast(Qlat); 
%     BodTemp     = getlast(BodTemp); 
%     Temperr     = getlast(Temperr); 
%     MQinit      = getlast(MQdex); 
%     EWork       = getlast(EWork); 
%     bpm         = getlast(bpm); 
  
    PE1         = PE1(end); 
    I1          = I1(end); 
    Ii          = Ii(end); 
    Io          = Io(end); 
    LVP         = LVP(end); 
    V1          = V1(end); 
    Vi          = Vi(end); 
    Vo          = Vo(end); 
    LAP         = LAP(end); 
    AoP         = AoP(end); 
    e_1         = e_1(end); 
    Qc          = Qc(end); 
    AVO2        = AVO2(end); 
    filtnet     = filtnet(end); 
    lymphfilt   = lymphfilt(end); 
    sweatfilt   = sweatfilt(end); 
    Pca         = Pca(end); 
    Qlat        = Qlat(end); 
    BodTemp     = BodTemp(end); 
    TempErr     = TempErrdex(end); 
%     MQinit      = MQdex(end); 
    EWork       = EWork(end); 
    bpm         = bpm(end); 
  
%% Reinitialize arrays 
     
    beatrat = ceil(60/bpm * 100) / 100; 
    pbeatdex = nbeatdex; 
    nbeatdex = ceil(pbeatdex + (beatrat) / step); 
    beatmod = cycle / (60 / bpm); 
%     beats = floor(beatmod); 
     
%     if beatnum == cycle/2 
%         MQinit = 100; 
%     end 
        
   init_hemo = ... 
    [PE1 ...   % 01 PE1 
    I1 ...     % 02 I1 net flow into ventricle 
    Ii ...     % 03 Ii inlet flow 
    Io ...     % 04 Io outlet flow 
    LVP ...    % 05 LVP 
    V1 ...     % 06 V1 initial volume 
    Vi ...     % 07 Vi integral Ii 
    Vo ...     % 08 Vo integral Io 
    LAP ...    % 09 LAP mmHg 
    AoP ...    % 10 AoP mmHg 
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    e_1 ...    % 11 e_1 diastolic elastance 
    bpm]; ...  % 12 bpm 1 / s     
  
    % Initialization parameters for the thermodynamics and flows 
    init_therm = ... 
    [Qc ...         % 01 Qc mL/s coronary flow 
    AVO2 ...        % 02 AVO2 mL/100 mL 
    filtnet ...     % 03 net filt pres mmHg 
    sweatfilt ...   % 04 sweat filtration mL/s 
    Pca ...         % 05 Pca mmHg  
    Qlat ...        % 06 latent heat J / s 
    BodTemp ...     % 07 body temp (degrees celsius) 
    TempErr ...     % 08 temperature error 
    MQinit ...      % 09 metabolism watts 
    EWork]; ...     % 10 external work dot watts 
  
    init_time = ... 
    [step ...       % 1 step size 
    pbeatdex ...    % 2 first beat start index 
    nbeatdex ...    % 3 first beat end index 
    beatnum];       % 4 beat number 
    else 
        break 
    end 
     
    if logmode == 1 
        A = [vAoP'; vI1'; vIi'; vIo'; vLAP'; vLVP'; vPE1'; vQc'; vV1'; vVi'; 
vVo';]; 
        B = [vAVO2'; vBodTemp'; vIsweat'; vMQ'; vPca'; vQlat'; vRa'; vRaErr'; 
vTempErr'; vbpm']; 
  
        fileInfo = dir(filename1); 
        fileSize = fileInfo.bytes; 
  
    %     if fileSize > 100000 
    %         fclose(fileID1); 
    %         filecount1 = filecount1 + 1; 
    %         filename1 = [filedate filetime '.waveforms_' 
num2str(filecount1) '.txt']; 
    %         fileID1 = fopen(filename1,'w'); 
    %     end 
  
        fprintf(fileID1,wfformatSpec,A); 
  
        fileInfo = dir(filename2); 
        fileSize = fileInfo.bytes;     
  
    %     if fileSize > 100000 
    %         fclose(fileID2); 
    %         filecount2 = filecount2 + 1; 
    %         filename2 = [filedate filetime '.waveforms_' 
num2str(filecount2) '.txt']; 
    %         fileID2 = fopen(filename2,'w'); 
    %     end 
  
        fprintf(fileID2,hsformatSpec,B); 
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        clear vAoP vI1 vIi vIo vLAP vLVP vPE1 vQc vV1 vVi vVo vAVO2 vBodTemp 
vIsweat vMQ vPca vQlat vRa vRaErr vTemperr vbpm 
    end 
end 
  
fclose all; 
  
% fileID = fopen(fileID1,'a'); 
% fclose(fileID); 
%  
% fileID = fopen(fileID2,'a'); 
% fclose(fileID); 
  
%% 
beatdex = 1:beats; 
  
close all 
[~, name] = system('hostname'); 
name = strtrim(name); 
  
if strcmp('ilikeike',name) == 1 
    dbxpath = 'C:\Users\Drew\Dropbox\Thesis\Figures'; 
    subpath = '\ike\'; 
elseif strcmp('phenomenaloscar',name) == 1 
    dbxpath = 'I:\Dropbox\Thesis\Figures'; 
    subpath = '\oscar\'; 
elseif strcmp('savvyboyd',name) == 1 
    dbxpath = 'R:\Dropbox\Thesis\Figures'; 
    subpath = '\boyd\'; 
elseif strcmp('gregariousfrank',name) == 1 
    dbxpath = 'C:\Dropbox\Thesis\Figures'; 
    subpath = '\frank\'; 
end 
  
if val_run == true 
    mat_filename = [dbxpath,'\Ki-Ra 
',num2str(RAKi),subpath,num2str(beatnum),' beats GLF - HR Kp 
',num2str(HRKp),' Ki ',num2str(HRKi),' - Ra Kp ',num2str(RAKp),' Ki 
',num2str(RAKi),' VAL.mat']; 
else 
    mat_filename = [dbxpath,'\Ki-Ra 
',num2str(RAKi),subpath,num2str(beatnum),' beats GLF - HR Kp 
',num2str(HRKp),' Ki ',num2str(HRKi),' - Ra Kp ',num2str(RAKp),' Ki 
',num2str(RAKi),'.mat']; 
end 
  
save(mat_filename); 
  
% if logmode ~= 1; 
%     t_tot = length(vAoP); 
% t_tot2 = interp1(vQc,0:step:beats); 
  
%% plotting 
  
     
    h1 = figure(1); 
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    subplot(2,2,1) 
    plot(beatendtime, vsweatfilt) 
    title('Sweat Filtration Rate') 
    xlabel('Time (s)') 
    ylabel('Filtration rate (mL / s)') 
    % figure 
    subplot(2,2,2) 
    % figure 
    plot(beatendtime, vAVO2,'b'); 
    title('AVO_2') 
    xlabel('Time (s)') 
    ylabel('Concentration (mL / 100 mL)') 
    % figure 
    subplot(2,2,3) 
    plot(beatendtime, vBodTemp) 
    title('Body Temperature') 
    xlabel('Time (s)') 
    ylabel('Temperature (deg C)') 
    % figure 
    subplot(2,2,4) 
% this set of instructions plots Ra and BPM on one plot 
    x1 = beatendtime; 
    y1 = vbpm; 
  
    x2 = beatendtime; 
    y2 = vRa; 
     
    [hax,hL1,hL2] = plotyy(x1,y1,x2,y2); 
     
    set(hax(1),'XColor',[.8 0 0],'YColor',[.8 0 0]) 
    set(hax(2),'XColor','k','YColor','k') 
    set(hL1,'Color','red') 
    set(hL2,'Color','black') 
  
    title('Heart Rate & Arterial Resistance') 
    ylabel(hax(1),'Heart Rate (BPM)') 
    ylabel(hax(2),'Resistance (PRU)') 
    xlabel('Time (s)') 
     
    % plot EA 
    h2 = figure(2); 
    plot(beatendtime, vEa_RC, 'r', beatendtime, vEa_EQ, 'k', beatendtime, 
vEa_SG, 'c') 
    title('Effective Arterial Elastances') 
    xlabel('Time (s)') 
    ylabel('Ea (mL / s)') 
    legend('E_A (P_E_S/SV)','E_A (Eqn)','E_A (Segers)') 
  
  
%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
    % figure 
    % plot(vbpm) 
    % ylabel('BPM') 
    % % fprintf('\n') 
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    figure 
    plot(vbeattime, vAoP,'b'); hold on; 
    plot(vbeattime, vLVP,'g');  
    plot(vbeattime, vIo/10,'r');  
    plot(vbeattime, vIi/10,'k-');  
    plot(vbeattime, vV1,'k-.');  
    plot(beatendtime, vPca,'c');  
    plot(vbeattime, vLAP, 'm');hold off; 
    
legend('AoP','LVP','Io','Ii','V1','Pca','LAP','Location','NorthEastOutside') 
    title('AoP / LVP') 
    xlabel('Time') 
    ylabel('Pressure (mmHg)') 
  
    % figure 
    % plot(vIi) 
    % xlabel('Time (ms)') 
    % ylabel('Ii ml/s') 
    % title('Cardiac Output') 
  
    % figure 
    % plot(vAoP) 
    % xlabel('Time (ms)') 
    % ylabel('Aop (mmHg)') 
    % title('Blood Pressure') 
  
    % figure 
    % plot(vV1,vLVP) 
    % xlabel('Volume (mL)') 
    % ylabel('Pressure (mmHg)') 
    % title('PV Loop') 
% end 
  
%% 
pause on 
  
if val_run == true 
    fig_filename = [dbxpath,'\Ki-Ra 
',num2str(RAKi),subpath,num2str(beatnum),' beats GLF - HR Kp 
',num2str(HRKp),' Ki ',num2str(HRKi),' - Ra Kp ',num2str(RAKp),' Ki 
',num2str(RAKi),' VAL.fig']; 
    saveas(h1,fig_filename); 
  
    fig_filename = [dbxpath,'\Ki-Ra 
',num2str(RAKi),subpath,num2str(beatnum),' beats GLF - HR Kp 
',num2str(HRKp),' Ki ',num2str(HRKi),' - Ra Kp ',num2str(RAKp),' Ki 
',num2str(RAKi),' EA VAL.fig']; 
    saveas(h2,fig_filename); 
else 
    fig_filename = [dbxpath,'\Ki-Ra 
',num2str(RAKi),subpath,num2str(beatnum),' beats GLF - HR Kp 
',num2str(HRKp),' Ki ',num2str(HRKi),' - Ra Kp ',num2str(RAKp),' Ki 
',num2str(RAKi),'.fig']; 
    saveas(h1,fig_filename); 
  
    fig_filename = [dbxpath,'\Ki-Ra 
',num2str(RAKi),subpath,num2str(beatnum),' beats GLF - HR Kp 
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',num2str(HRKp),' Ki ',num2str(HRKi),' - Ra Kp ',num2str(RAKp),' Ki 
',num2str(RAKi),' EA.fig']; 
    saveas(h2,fig_filename); 
end 
  
pause(3) 
pause off 
  
% fig_filename = ['D:\Dropbox\Thesis\Figures\Variable Kp-Ra, Ki-Ra 
',num2str(RAKi),'\6000 beats GLF - HR Kp ',num2str(HRKp),' Ki 
',num2str(HRKi),' - Ra Kp ',num2str(RAKp),' Ki ',num2str(RAKi),' EA.fig']; 
% saveas(h2,fig_filename); 
toc 
fprintf(1,'%c',7); 
  
end 
end 
end 
toc 
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thermoflow.m 

 
function [Qc, AVO2, filtnet, filtrate, lymphfilt, Pca, Ii, dAoP] ... 
    = thermoflow(hemoform, init1, init2, art_props) 
  
%% Initializations 
Ii  = hemoform(:,3); 
Io  = hemoform(:,4); 
LAP = hemoform(:,9); 
AoP = hemoform(:,10); 
  
MQ      = init1(:,9); 
EWork   = init1(:,10); 
  
step    = init2(:,1); 
  
% [Qc, AVO2, filtnet, Isweat, Pca, Qlat, BodTemp, Temperr, MQ, EWork] 
  
% Arterial parameters 
Ra = art_props(:,1); 
Rc = art_props(:,2);       %0.1 
Rv = art_props(:,3);       %0.5 
Cv = art_props(:,4);       %15 
Ca = art_props(:,5); 
  
% pressures in mmHg 
% mPAC ref = 17.3; 
Pflu = -3; 
Piflu = 8; 
Piplas = 28;%!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!chenged this 
  
% energy equivalent of oxygen J/mL 
K1      = 20; 
  
% enthalpy of water J / kg 
delh_h2o = 2257000; 
  
% specific heat J / kg / degC 
cp_body  = 3470; 
  
% density of blood = kg / m^3 
rho_bl   = 1060; 
rho_blml = 1060 / 10^6; 
  
%% Calculate flows 
dAoP = ezdiff(AoP, step); 
% dAoP = [dAoP;2*dAoP(end)-dAoP(end-1)]; % tack on last point 
dAoP = [dAoP(1);dAoP]; % tack on first point 
% plot(dAoP,AoP) 
  
% Qc is the volumetric flow through the capillary, mL/s 
Qc = Io - Ca * dAoP; 
  
Pca = (AoP - Qc*Ra); 
Pcv = (Pca - Qc*Rc); 



55 

% mPAC = (Pca + LAP) / 2; 
mPAC = (Pca + Pcv) / 2; 
filtnet = (mPAC - Pflu) + (Piflu - Piplas); 
filtratev = filtnet * 6.67/60;    % 6.67 mL / (min * mmHg) * (1 min / 60 sec) 
  
% filtratev(find(filtratev < 0)) = 0; 
  
filtrate = mean(filtratev); 
  
lymphfilt = 1/30 * zeros(length(filtrate)); 
  
% Isweat = zeros(length(lymphfilt),1); 
% for j = 1:length(filtrate) 
%     if lymphfilt(j,1) %> (1/60) 
%         Isweat(j,1) = (filtrate(j,1) - (1/60)); 
%     end 
% end 
% Ii = Ii - lymphfilt; 
  
% Qlat = 0; 
  
AVO2 = (MQ + EWork) / (K1 * mean(Qc)); 
AVO2(find(AVO2 >= 0.2)) = 0.2; 
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skunkworks.m 

 
% Awesome script to run arterial properties 
function [bpm, delHR, Qlat, BodTempFinal, sweatfilt, Ra, delRa, Isweat] = 
skunkworks(filtrate, bpm, beatnum, MQ, Temperr, BodTemp, art_props, ... 
                                                                                                        
~, BodTempTgt,step, mass, ctrl_bits, ... 
                                                                                                        
beatendtime, bpmmax, HRKp, HRKi, RAKp, RAKi) 
  
%% variable assignment 
  
ctrl_BPM = ctrl_bits(:,1); 
ctrl_Ra = ctrl_bits(:,2); 
  
% Arterial parameters 
Ra = art_props(:,1); 
Rc = art_props(:,2);       %0.1 
Rv = art_props(:,3);       %0.5 
Cv = art_props(:,4);                    %15 
Ca = art_props(:,5); 
  
% % time constants, seconds (Richard 2004, Yoshida 1994) 
% tauAVO2 = 39; 
% tauVO2on = 33.88; 
% tauVO2off = 37.22; 
% tauCOon = 29.43; 
% tauCOoff = 44.28; 
  
% enthalpy of water J / kg 
delh_h2o = 2257000; 
  
% specific heat J / kg / degC 
cp_body = 3470; 
  
% density of blood = kg / m^3 
rho_bl = 1060; 
% rho_bl = 0; 
rho_blml = rho_bl / 10^6; 
% Temperr 
  
if beatnum == 1 
    beatdt = beatendtime(beatnum,1); 
else 
    beatdt = beatendtime(beatnum,1) - beatendtime(beatnum-1,1); 
end 
%% Calculate body temperature & its error 
Isweat = ((MQ / rho_blml / delh_h2o) + (BodTemp - BodTempTgt) * cp_body * 
mass) / rho_blml / delh_h2o; % plus body heat 
  
% Mdot - mdot_s* delh_h20 = mass * cp * dBodTemp 
  
% Mdot - mass * cp *dT / delh_h2o = sweat_mass_flow 
  
% if mean(Isweat) > mean(filtrate)*0.98 
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    if mean(filtrate) < 1/30 
        sweatfilt = 0; 
    else 
        sweatfilt = filtrate - 1/30; 
    end 
%     disp(['Isweat ' num2str(mean(Isweat),2) ', filtrate ' 
num2str(mean(filtrate),2)]) 
% else 
%     sweatfilt = Isweat; 
%     disp(['Isweat ' num2str(mean(Isweat),2) ' < filtrate ' 
num2str(mean(filtrate),2)]) 
% end 
  
Qlat = sweatfilt * rho_blml * delh_h2o; 
  
dBodTemp = (MQ - Qlat) / (mass * cp_body); 
  
BodTempFinal = dBodTemp*beatdt + BodTemp; 
  
dBodTempAvg = mean(dBodTemp); 
% disp(['BodTemp = ' num2str(BodTemp,4)]); 
% disp(['BodTempTgt = ' num2str(BodTempTgt)]); 
% disp(['BodTempFin = ' num2str(BodTempFinal)]); 
% disp(['Temperr = ' num2str(mean(Temperr))]); 
% disp(['dBodTemp = ' num2str(dBodTempAvg)]); 
  
%% Calculate bear stuffs 
  
if beatnum >= 3 
    iHRErr = trapz([Temperr(beatnum-2:beatnum-1);dBodTempAvg]);   
else 
    iHRErr = trapz([Temperr(1:beatnum-1);dBodTempAvg]);   
end 
  
if ctrl_BPM == 1 
    Kp1 = HRKp;  
    Ki1 = HRKi;  
else 
    Kp1 = 0;  
    Ki1 = 0;  
end 
  
delHR = Kp1 * dBodTempAvg + Ki1 * iHRErr; % trapz([iTemperr;Temperr]); 
bpmtemp = bpm + delHR;  
  
% if bpm > 200 
%     bpm = 200; 
% end 
  
A = 40; 
K = bpmmax; 
B = 13; 
v = 1; 
Q = 1; 
M = 0.5; 
  
t = bpmtemp/bpmmax; 
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[dlogibpm, logibpm] = genlogfcn(A, K, B, v, Q, M, t, step); 
  
bpm = bpm + delHR*dlogibpm;  
  
% disp(['delHR = ' num2str(delHR)]); 
% disp(['bpm = ' num2str(bpm)]); 
% fprintf(' \r'); 
  
%% Why did the capacitor kiss the diode? Because it couldn't resistor. 
% delRa = 0; 
  
% dRa = -0.000; 
  
% if beatnum >= 3 
%     iRaErr = trapz([RaErr(beatnum-2:beatnum-1);dRa]);   
% else 
%     iRaErr = trapz([RaErr(1:beatnum-1);dRa]);   
% end 
  
if beatnum >= 3 
    iRaErr = trapz([Temperr(beatnum-2:beatnum-1);dBodTempAvg]);   
else 
    iRaErr = trapz([Temperr(1:beatnum-1);dBodTempAvg]);   
end 
  
% Temperr = mean(BodTemp) - 37.5; 
  
if ctrl_Ra == 1 
    Kp2 = RAKp;  
    Ki2 = RAKi; 
else 
    Kp2 = 0;  
    Ki2 = 0; 
end 
  
% Qstored = mass * cp_body * (trapz(dBodTemp) + BodTemp - 37); 
% dRa = trapz(Qstored) - (Isweat - lymphfilt) 
  
delRa = Kp2 * dBodTempAvg + Ki2 * iRaErr; % trapz([iTemperr;Temperr]); 
Ra = Ra - delRa*dlogibpm; 
% *dlogibpm/4; 
  
if Ra < 0.1 
    Ra = 0.1; 
end 
  
% disp(['delRa = ' num2str(delRa)]); 
% disp(['Ra = ' num2str(Ra)]); 
% fprintf(' \r'); 
end 
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hemodynamics.m† 
 
%This is ejecting stacked model 
  
function [dy] = hemodynamics(t,y,z) 
  
%defining variables 
pe1     = y(1); 
I1      = y(2); 
Ii      = y(3); 
Io      = y(4); 
LVP     = y(5); 
V1      = y(6); 
Vi      = y(7); 
Vo      = y(8); 
LAP     = y(9); 
AoP     = y(10); 
e_1     = y(11); 
  
%resistance dyssynchrony for each section of the heart 
r1      = z(1); 
  
%elastance dyssynchrony for each section of the heart 
e1min   = z(2); 
e1max   = z(3); 
  
%mass dyssynchrony for each section of the heart 
m1      = z(4); 
  
%timing dyssynchrony for each section of the heart 
t1      = z(5); 
bpm     = z(6); 
  
% start and end of beat times from midboss 
ts = z(7); 
te = z(8); 
  
% Defining constants 
k1 = r1;         % This is really resistance 1 
Ri = 0.005;      % orig 0.005 
Ro = 0.01;      % valve resistance 
mi = 0.0001;     %0.0002 
mo = 0.0001; 
Clvp = 0.0001; 
m1 = m1;    %just for completeness 
  
% Arterial parameters 
Ra = z(9); 
Rc = z(10); 
Rv = z(11); 
Cv = z(12); 
Ca = z(13); 
  
% Ra = 0.90933*17*60/1000;       %1.5 
Rc = 0.07067*17*60/1000;       %0.1 
Rv = 0.02*17*60/1000;       %0.5 
Cv = 30;                    %15 
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Ca = 1; 
  
% Attain time varying parameters 
[e1 de1] = getk(t+t1,e1min,e1max,bpm, ts, te); 
  
%% Heart Chamber Differential Equations 
dpe1 = e1*(I1+pe1*(1/(e1)^2*de1)); 
  
dI1 = (1/m1)*(LVP-pe1-(k1*LVP)*I1); 
  
Do = 20*(-(.15/(.15+exp(-6*Io)))+1); % diode equation 
  
%if (LVP > AoP) Do = 0.5; else Do = 1000000; 
%end 
  
dIo = (1/mo)*(LVP-AoP-(Ro+Do)*Io); 
  
Di = 20*(-(.15/(.15+exp(-6*Ii)))+1); % diode equation 
  
dIi = (1/mi)*(LAP-LVP-(Ri+Di)*Ii); 
  
Ilvp = Ii-Io-I1;        % flow balance 
dLVP = (1/Clvp)*Ilvp;   % for the capacitor 
  
dLAP=(Ii-((AoP-LAP)/(Ra + Rc + Rv)))/-Cv; 
dAoP=(Io-((AoP-LAP)/(Ra + Rc + Rv)))/Ca; 
% disp(['Ra = ' num2str(Ra)]); 
  
  
%% 
dy = [dpe1;dI1;dIi;dIo;dLVP;I1;Ii;Io;dLAP;dAoP;de1]; 
end 
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odesolver.m† 
 
function [PE1, I1, Ii, Io, LVP, V1, Vi, Vo, LAP, AoP, e_1] = 
odesolver(init1,init2,vent_props, art_props, bpm) 
  
PE1     = init1(:,1); 
I1      = init1(:,2); 
Ii      = init1(:,3); 
Io      = init1(:,4); 
LVP     = init1(:,5); 
V1      = init1(:,6); 
Vi      = init1(:,7); 
Vo      = init1(:,8); 
LAP     = init1(:,9); 
AoP     = init1(:,10); 
e_1     = init1(:,11); 
  
r1      = vent_props(:,1); 
e1min   = vent_props(:,2); 
e1max   = vent_props(:,3); 
m1      = vent_props(:,4); 
t1      = vent_props(:,5); 
  
Ra = art_props(:,1); 
Rc = art_props(:,2);       %0.1 
Rv = art_props(:,3);       %0.5 
Cv = art_props(:,4);                    %15 
Ca = art_props(:,5); 
  
step        = init2(:,1); 
pbeatdex    = init2(:,2); 
nbeatdex    = init2(:,3); 
  
%% beat length 
  
ts=pbeatdex*step; 
te=nbeatdex*step; 
t = ts:step:te; 
  
%% ODE Solver 
OPTIONS=odeset('MaxStep',1e-4); 
  
[a2, b2]=ode23s(@hemodynamics,t,[PE1    ...    % 1 PE1 
                             I1     ...     % 2 I1 
                             Ii     ...     % 3 Ii 
                             Io     ...     % 4 Io 
                             LVP    ...     % 5 LVP 
                             V1     ...     % 6 V1 
                             Vi     ...     % 7 Vi 
                             Vo     ...     % 8 Vo 
                             LAP    ...     % 9 LAP 
                             AoP    ...     % 10 AoP 
                             e_1]    ...     % 11 e_1 
                             ,OPTIONS, ... 
                            [r1     ...     % 1  
                             e1min  ...     % 2 
                             e1max  ...     % 3 
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                             m1     ...     % 4 
                             t1     ...     % 5 
                             bpm    ...     % 6 
                             ts     ...     % 7 
                             te     ...     % 8 
                             Ra     ...     % 9 
                             Rc     ...     % 10 
                             Rv     ...     % 11 
                             Ca     ...     % 12 
                             Cv]);  ...     % 13 
                         
%% Output 
PE1  = b2(:,1); 
I1   = b2(:,2); 
Ii   = b2(:,3); 
Io   = b2(:,4); 
LVP  = b2(:,5); 
V1   = b2(:,6); 
Vi   = b2(:,7); 
Vo   = b2(:,8); 
LAP  = b2(:,9); 
AoP  = b2(:,10); 
e_1  = b2(:,11); 
 
  



63 

getk.m† 
function [k,dk] = getk(t2,Emin,Emax,bpm, ts,te) 
  
t1 = t2 - ts; 
a=1; %scales normal distribution to 1 
b=.5*60/bpm; % centers the mean at 1/2 of the cycle 
c=.13*b;% .23=50% duty cycle, .13= 1/3 duty cycle 
  
%makes the spread of curve to 50% duty cycle 
k=(Emax-Emin)*a*exp(-(t1-b).^2 /(2*c.^2))+Emin; 
dk=(Emax-Emin)*a*exp(-(t1-b).^2 /(2*c.^2)).*(-2*(t1-b)/(2*c.^2)); 
  
end  
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genlogfcn.m 

 
% ----------------------------------- % 
% 
% Author:   Drew Taylor 
% Date:     Feb 09, 2015 
% Last Rev: Feb 09, 2015 
% Title:    genlogfcn.m 
%            
%   Growth is never by mere chance; it is 
%   the result of forces working together. 
% ----------------------------------- % 
% 
%% Richards' Curve 
function [dy,y] = genlogfcn(A, K, B, v, Q, M, t, step) 
  
% A is the lower asymptote (horizontal) 
% K is the upper asymptote (horizontal) 
% B is the growth rate; higher values increase max(dy) 
% v shifts max(dy) along the abscissa 
% Q changes the curviness of the sigmoid; higher values have lower max 
% growth 
% M shifts max(dy) along the abscissa 
  
if length(t) >= 2 
    dt = t(2) - t(1); 
elseif (exist('step','var')) 
    dt = step; 
end 
  
y = A + (K-A)./(1 + Q*exp(-B*(t-M)).^(1/v)); 
  
dy = B*Q*(K-A)*exp(-B*(t-M)).^(1/v)./(v*(1+Q*exp(-B*(t-M)).^(1/v)).^2)*dt; 
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refigurator.m 

 
runspec = [0, 1, 10, 50, 100]; 
loop_num = 0; 
  
for loopdex3 = 1:length(runspec) 
for loopdex2 = 1:length(runspec) 
for loopdex1 = 1:length(runspec) 
  
% for loopdex3 = 5 
% for loopdex2 = 2 
% for loopdex1 = 1 
  
%% load matfiles 
clear  HRKp ... 
       HRKi ... 
       RAKp ... 
       RAKi ... 
       beatendtime(end) ... 
       absOS ... 
       cpRiseTime_actl ... 
       cpRiseTime_calc ... 
       cpRiseTimeFull_calc ... 
       cpSetlTime_actl ... 
       cpSetlTime_calc ... 
       cpsigma ... 
       cpzeta ... 
       cpf_damp ... 
       cpw_damp ... 
       cpf_natr ... 
       cpw_natr ... 
       sweat_rate_max ... 
       sweat_total ... 
       bpm_max ... 
       bpm_final ... 
       bpm_osc ... 
       Ra_max ... 
       Ra_final ... 
       Ra_osc ... 
       cpComment 
  
% poll hostname from computer 
[~, hostname] = system('hostname'); 
hostname = strtrim(hostname); 
  
% set dropbox path to the figure root directory 
if strcmp('ilikeike',hostname) == 1 
    dbxpath = 'C:\Users\Drew\Dropbox\Thesis\Figures\'; 
    subpath = '\ike\'; 
elseif strcmp('PHENOMENALOSCAR',hostname) == 1 
    dbxpath = 'D:\Dropbox\Thesis\Figures\'; 
    subpath = '\oscar\'; 
elseif strcmp('savvyboyd',hostname) == 1 
    dbxpath = 'R:\Dropbox\Thesis\Figures\'; 
    subpath = '\boyd\'; 
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end 
  
% For debugging, this if statement creates a faux runspec to test 1 
% variable 
runspec_debug = exist('runspec', 'var'); 
if runspec_debug == 0 
    loopdex1 = 5; 
    loopdex2 = 2; 
    loopdex3 = 4; 
    runspec = [0, 1, 10, 50, 100]; 
    loop_num = 0; 
end 
  
loop_num = loop_num+1; 
  
strbeatnum = '3000'; 
strHRKp = num2str(runspec(loopdex1)); 
strHRKi = num2str(runspec(loopdex2)); 
strRAKp = num2str(runspec(loopdex3)); 
strRAKi = '0.1'; 
  
  
% sims are separated into folders with the structure Sim X-###-###-#.# 
if length(strHRKp) < 3 
    strHRKp_3dig = strHRKp; 
    for h = 1:3-length(strHRKp) 
        strHRKp_3dig = ['0',strHRKp_3dig]; 
    end 
else 
    strHRKp_3dig = strHRKp; 
end 
  
if length(strHRKi) < 3 
    strHRKi_3dig = strHRKi; 
    for i = 1:3-length(strHRKi) 
        strHRKi_3dig = ['0',strHRKi_3dig]; 
    end 
else 
    strHRKi_3dig = strHRKi; 
end 
  
if length(strRAKp) < 3 
    strRAKp_3dig = strRAKp; 
    for g = 1:3-length(strRAKp) 
        strRAKp_3dig = ['0',strRAKp_3dig]; 
    end 
else 
    strRAKp_3dig = strRAKp; 
end 
  
subfolder1 = ['Ki-Ra ', strRAKi, '\']; 
subfolder2 = ['Sim X-', strHRKi_3dig, '-', strRAKp_3dig, '-', ... 
                strRAKi, '\']; 
filename_fig1   = [strbeatnum, ' beats GLF - HR Kp ', strHRKp, ' Ki ', ... 
                strHRKi, ' - Ra Kp ', strRAKp, ' Ki ', strRAKi, '.mat']; 
  
mat_filepath = [dbxpath, subfolder1, subfolder2, filename_fig1]; 
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load(mat_filepath, 'beatendtime', 'vsweatfilt', 'vAVO2', 'vBodTemp', ... 
    'vbpm', 'vRa', 'vEa_RC', 'vEa_SG', 'vEa_EQ') 
%% 
  
close all 
  
% if logmode ~= 1; 
%     t_tot = length(vAoP); 
% t_tot2 = interp1(vQc,0:step:beats); 
  
%% plotting 
  
     
    h1 = figure(1); 
    subplot(2,2,1) 
    plot(beatendtime, vsweatfilt) 
    title('Sweat Filtration Rate') 
    xlabel('Time (s)') 
    ylabel('Filtration rate (mL / s)') 
    % figure 
    subplot(2,2,2) 
    % figure 
    plot(beatendtime, vAVO2,'b'); 
    title('AVO_2') 
    xlabel('Time (s)') 
    ylabel('Concentration (mL / 100 mL)') 
    % figure 
    subplot(2,2,3) 
    plot(beatendtime, vBodTemp) 
    title('Body Temperature') 
    xlabel('Time (s)') 
    ylabel('Temperature (deg C)') 
    % figure 
    subplot(2,2,4) 
% this set of instructions plots Ra and BPM on one plot 
    x1 = beatendtime; 
    y1 = vbpm; 
  
    x2 = beatendtime; 
    y2 = vRa; 
     
    [hax,hL1,hL2] = plotyy(x1,y1,x2,y2); 
     
    set(hax(1),'XColor',[.8 0 0],'YColor',[.8 0 0]) 
    set(hax(2),'XColor','k','YColor','k') 
    set(hL1,'Color','red') 
    set(hL2,'Color','black') 
  
    title('Heart Rate & Arterial Resistance') 
    ylabel(hax(1),'Heart Rate (BPM)') 
    ylabel(hax(2),'Resistance (PRU)') 
    xlabel('Time (s)') 
     
    % plot EA 
    h2 = figure(2); 
    plot(beatendtime, vEa_RC, 'r', beatendtime, vEa_EQ, 'k', beatendtime, 
vEa_SG, 'c') 
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    title('Effective Arterial Elastances') 
    xlabel('Time (s)') 
    ylabel('Ea (mL / s)') 
    legend('E_A (P_E_S/SV)','E_A (Eqn)','E_A (Segers)') 
  
  
%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
    % figure 
    % plot(vbpm) 
    % ylabel('BPM') 
    % % fprintf('\n') 
  
%     figure 
%     plot(vbeattime, vAoP,'b'); hold on; 
%     plot(vbeattime, vLVP,'g');  
%     plot(vbeattime, vIo/10,'r');  
%     plot(vbeattime, vIi/10,'k');  
%     plot(vbeattime, vV1,'k');  
%     plot(beatendtime, vPca,'c');  
%     plot(vbeattime, vLAP, 'm');hold off; 
%     legend('AoP','LVP','I1','V1','Pca','LAP','Location','NorthEastOutside') 
%     title('AoP / LVP') 
%     xlabel('Time') 
%     ylabel('Pressure (mmHg)') 
  
    % figure 
    % plot(vIi) 
    % xlabel('Time (ms)') 
    % ylabel('Ii ml/s') 
    % title('Cardiac Output') 
  
    % figure 
    % plot(vAoP) 
    % xlabel('Time (ms)') 
    % ylabel('Aop (mmHg)') 
    % title('Blood Pressure') 
  
    % figure 
    % plot(vV1,vLVP) 
    % xlabel('Volume (mL)') 
    % ylabel('Pressure (mmHg)') 
    % title('PV Loop') 
% end 
pause on 
  
filename_fig1   = [strbeatnum, ' beats GLF - HR Kp ', strHRKp, ' Ki ', ... 
                strHRKi, ' - Ra Kp ', strRAKp, ' Ki ', strRAKi, '.fig']; 
  
fig1_filename = [dbxpath, subfolder1, subfolder2, filename_fig1]; 
saveas(h1,fig1_filename); 
  
filename_fig2   = [strbeatnum, ' beats GLF - HR Kp ', strHRKp, ' Ki ', ... 
                strHRKi, ' - Ra Kp ', strRAKp, ' Ki ', strRAKi, ' EA.fig']; 
  
fig2_filename = [dbxpath, subfolder1, subfolder2, filename_fig2]; 
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saveas(h2,fig2_filename); 
  
pause(3) 
pause off 
end 
end 
end 
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plotter.m 

 
rayHRKp=cell2mat(csv_array(:,1)); 
rayHRKi=cell2mat(csv_array(:,2)); 
rayRAKp=cell2mat(csv_array(:,3)); 
rayRAKi=cell2mat(csv_array(:,4)); 
rayBeatEndTime=cell2mat(csv_array(:,5)); 
raySettlingTimeActl=cell2mat(csv_array(:,10)); 
  
xrayHRKp=zeros(length(rayHRKp),1); 
xrayHRKi=zeros(length(rayHRKi),1); 
xrayRAKp=zeros(length(rayRAKp),1); 
% xrayRAKi=zeros(length(rayRAKi),1); 
xrayBeatEndTime=zeros(length(rayBeatEndTime),1); 
xraySettlingTimeActl=zeros(length(raySettlingTimeActl),1); 
  
% axis([0 100 0 2800]); 
% xtick = [0,1,10,50,100]; 
% xtick_label = ['0 ';'1 ';'10 ';'50 ';'100 ']; 
% % set(gca','XTick',xtick,'XTicklabel',xtick_label,'xscale','log');  
  
runspec = [0, 1, 10, 50, 100]; 
xrayMeanSettlingTime = zeros(length(runspec),1); 
  
for k = 1:length(runspec) 
    A = runspec(k); 
     
    xrayHRKp(find(rayHRKp==runspec(length(runspec)-k+1)),1) ... 
        = length(runspec)-k+1; 
    xrayHRKi(find(rayHRKi==runspec(length(runspec)-k+1)),1) ... 
        = length(runspec)-k+1; 
    xrayRAKp(find(rayRAKp==runspec(length(runspec)-k+1)),1) ... 
        = length(runspec)-k+1; 
end 
  
xset = [xrayHRKp xrayHRKi xrayRAKp rayBeatEndTime raySettlingTimeActl]; 
  
xrayHRKp_n0 = xrayHRKp; 
xrayHRKp_n0(raySettlingTimeActl==0) = []; 
xrayHRKi_n0 = xrayHRKi; 
xrayHRKi_n0(raySettlingTimeActl==0) = []; 
xrayRAKp_n0 = xrayRAKp; 
xrayRAKp_n0(raySettlingTimeActl==0) = []; 
raySettlingTimeActl_n0 = raySettlingTimeActl(raySettlingTimeActl~=0); 
  
for j = 1:length(runspec) 
    xrayMeanSettlingTimeHRKp_n0(j,1) = ... 
        mean(raySettlingTimeActl_n0(find(xrayHRKp_n0==j))); 
    xrayMeanSettlingTimeHRKi_n0(j,1) = ... 
        mean(raySettlingTimeActl_n0(find(xrayHRKi_n0==j))); 
    xrayMeanSettlingTimeRAKp_n0(j,1) = ... 
        mean(raySettlingTimeActl_n0(find(xrayRAKp_n0==j))); 
end 
  
xrayMeanLength = 1:length(runspec); 
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figure(1) 
plot(xrayHRKp_n0,raySettlingTimeActl_n0,'k.', ... 
        xrayMeanLength,xrayMeanSettlingTimeHRKp_n0,'k^--') 
title('Settling Time as a Function of HR K_p') 
xlabel('HR K_p') 
ylabel('Settling Time (s)') 
axis([0.9 5.1 0 2800]) 
set(gca,'XTick',[1 2 3 4 5]) 
set(gca,'XTickLabel',[0 1 10 50 100]) 
set(groot, 'DefaultTextFontSmoothing', 'off'); 
set(groot, 'DefaultAxesFontSmoothing', 'off'); 
  
figure(2) 
plot(xrayHRKi_n0,raySettlingTimeActl_n0,'k.', ... 
        xrayMeanLength,xrayMeanSettlingTimeHRKi_n0,'k^--') 
title('Settling Time as a Function of HR K_i') 
xlabel('HR K_i') 
ylabel('Settling Time (s)') 
axis([0.9 5.1 0 2800]) 
set(gca,'XTick',[1 2 3 4 5]) 
set(gca,'XTickLabel',[0 1 10 50 100]) 
set(gca, 'DefaultTextFontSmoothing', 'off'); 
set(gca, 'DefaultAxesFontSmoothing', 'off'); 
  
figure(3) 
plot(xrayRAKp_n0,raySettlingTimeActl_n0,'k.', ... 
        xrayMeanLength,xrayMeanSettlingTimeRAKp_n0,'k^--') 
title('Settling Time as a Function of RA K_p') 
xlabel('RA K_p') 
ylabel('Settling Time (s)') 
axis([0.9 5.1 0 2800]) 
set(gca,'XTick',[1 2 3 4 5]) 
set(gca,'XTickLabel',[0 1 10 50 100]) 
set(gca, 'DefaultTextFontSmoothing', 'off'); 
set(gca, 'DefaultAxesFontSmoothing', 'off'); 
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analyzer.m 

 
% ----------------------------------- % 
% 
% Author:   Drew Taylor 
% Date:     Mar 16, 2015 
% Last Rev: Oct 20, 2015 
% Title:    analyzer.m 
%            
%           
% ----------------------------------- % 
%  
% This script has been built to load .mat files generated by capinator and 
% calculate several new variables: overshoot, settling time, rise time, 
% damping ratio, etc. 
%% 
  
clear all 
  
%% This small cell just has the start of three for loops that loop through 
% all 125 iterations of the current simspace 
  
temp_match = 1; 
  
%These are the values of the control variables 
runspec = [0, 1, 10, 50, 100]; 
loop_num = 0; 
  
% % RAKp 
% for loopdex3 = 1:length(runspec) 
% % HRKi 
% for loopdex2 = 1:length(runspec) 
% % HRKp 
% for loopdex1 = 1:length(runspec) 
  
for loopdex3 = 1:length(runspec) 
for loopdex2 = 1:length(runspec) 
for loopdex1 = 3 
  
%% load matfiles 
clear  HRKp ... 
       HRKi ... 
       RAKp ... 
       RAKi ... 
       beatendtime(end) ... 
       absOS ... 
       cpRiseTime_actl ... 
       cpRiseTime_calc ... 
       cpRiseTimeFull_calc ... 
       cpSetlTime_actl ... 
       cpSetlTime_calc ... 
       cpsigma ... 
       cpzeta ... 
       cpf_damp ... 
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       cpw_damp ... 
       cpf_natr ... 
       cpw_natr ... 
       sweat_rate_max ... 
       sweat_total ... 
       bpm_max ... 
       bpm_final ... 
       bpm_osc ... 
       Ra_max ... 
       Ra_final ... 
       Ra_osc ... 
       cpComment 
  
% poll hostname from computer 
[~, hostname] = system('hostname'); 
hostname = strtrim(hostname); 
  
% set dropbox path to the figure root directory 
if strcmp('ilikeike',hostname) == 1 
    dbxpath = 'C:\Users\Drew\Dropbox\Thesis\Figures\'; 
    subpath = '\ike\'; 
elseif strcmp('phenomenaloscar',hostname) == 1 
    dbxpath = 'I:\Dropbox\Thesis\Figures\'; 
    subpath = '\oscar\'; 
elseif strcmp('savvyboyd',hostname) == 1 
    dbxpath = 'R:\Dropbox\Thesis\Figures\'; 
    subpath = '\boyd\'; 
elseif strcmp('gregariousfrank',hostname) == 1 
    dbxpath = 'C:\Dropbox\Thesis\Figures\'; 
    subpath = '\frank\'; 
end 
  
% For debugging, this if statement creates a faux runspec to test 1 
% variable 
runspec_debug = exist('runspec', 'var'); 
if runspec_debug == 0 
    loopdex1 = 3; 
    loopdex2 = 2; 
    loopdex3 = 4; 
    runspec = [0, 1, 10, 50, 100]; 
    loop_num = 0; 
end 
  
strbeatnum = '3000'; 
strHRKp = num2str(runspec(loopdex1)); 
strHRKi = num2str(runspec(loopdex2)); 
strRAKp = num2str(runspec(loopdex3)); 
strRAKi = '0.1'; 
  
  
% sims are separated into folders with the structure Sim X-###-###-#.# 
if length(strHRKp) < 3 
    strHRKp_3dig = strHRKp; 
    for h = 1:3-length(strHRKp) 
        strHRKp_3dig = ['0',strHRKp_3dig]; 
    end 
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else 
    strHRKp_3dig = strHRKp; 
end 
  
if length(strHRKi) < 3 
    strHRKi_3dig = strHRKi; 
    for i = 1:3-length(strHRKi) 
        strHRKi_3dig = ['0',strHRKi_3dig]; 
    end 
else 
    strHRKi_3dig = strHRKi; 
end 
  
if length(strRAKp) < 3 
    strRAKp_3dig = strRAKp; 
    for g = 1:3-length(strRAKp) 
        strRAKp_3dig = ['0',strRAKp_3dig]; 
    end 
else 
    strRAKp_3dig = strRAKp; 
end 
  
if temp_match == 0 
    subfolder1 = ['Ki-Ra ', strRAKi, '\']; 
else 
    subfolder1 = ['Ki-Ra ', strRAKi, '\Temp Match\']; 
end 
  
% subfolder2 = ['Temp Match Over X-', strHRKi_3dig, '-', strRAKp_3dig, '-', 
... 
%                 strRAKi, '\']; 
subfolder2 = ['Sim X-', strHRKi_3dig, '-', strRAKp_3dig, '-', ... 
                strRAKi, '\']; 
filename   = [strbeatnum, ' beats GLF - HR Kp ', strHRKp, ' Ki ', ... 
                strHRKi, ' - Ra Kp ', strRAKp, ' Ki ', strRAKi, '.mat']; 
  
mat_filepath = [dbxpath, subfolder1, subfolder2, filename]; 
  
if exist(mat_filepath,'file') == 2 
    loop_num = loop_num+1; 
else 
    continue 
end 
  
if temp_match == 1 
    load(mat_filepath, 'vBodTemp',    ... 
                       'BodTempTgt', ... 
                       'beatendtime', ... 
                       'beatnum', ... 
                       'HRKp', ... 
                       'HRKi', ... 
                       'RAKp', ... 
                       'RAKi', ... 
                       'step', ... 
                       'vsweatfilt', ... 
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                       'vbpm', ... 
                       'vRa'); 
else 
    load(mat_filepath, 'vBodTemp',    ... 
                       'BodTempTgt', ... 
                       'beatendtime', ... 
                       'beatnum', ... 
                       'HRKp', ... 
                       'HRKi', ... 
                       'RAKp', ... 
                       'RAKi', ... 
                       'step', ... 
                       'vsweatfilt', ... 
                       'vbpm', ... 
                       'vRa', ... 
                       'vtempestN', ... 
                       'vBodTempFit'); 
end 
  
%% Will it oscillate? Presented by Drewtec 
  
vtempestNx=[0 300 600 900 1200 1500 1800 2300]; 
vtempestNy=[37.35 38.2 38.35 38.6 39.0 39.4 39.6 40.2]; 
  
m1 = polyfit(vtempestNx,vtempestNy,1); 
  
vtempestN=m1(1).*beatendtime+vtempestNy(1); 
  
m2 = polyfit(beatendtime,vBodTemp,1); 
vBodTempFit = m2(1).*beatendtime+m2(2); 
  
% Set error band to 2% of BodTempTgt 
err_ss = 0.02; 
temp0 = vBodTemp(1); 
err_min = BodTempTgt-abs(temp0 - BodTempTgt)*(err_ss); 
err_max = BodTempTgt+abs(temp0 - BodTempTgt)*(err_ss); 
trc_min = BodTempTgt-abs(temp0 - BodTempTgt)*(0.1); % unused since bias>sp 
trc_max = BodTempTgt+abs(temp0 - BodTempTgt)*(0.1); 
  
% calculate constants from sim 
sweat_rate_max = max(vsweatfilt); 
sweat_total = trapz(beatendtime,vsweatfilt); 
  
% record bpm stats 
bpm_max = max(vbpm); 
bpm_min = min(vbpm); 
bpm_final = vbpm(end); 
  
% check if bpm oscillates 
[bpmMinY,bpmMinX] = findpeaks(-vbpm); 
bpmMinY = -bpmMinY; 
  
if isempty(bpmMinX) 
    bpm_osc = 'no'; 
elseif length(bpmMinX)<2 
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    bpm_osc = 'no'; 
else 
    bpm_osc = 'yes'; 
end 
  
% record Ra stats 
Ra_max = max(vRa); 
Ra_min = min(vRa); 
Ra_final = vRa(end); 
  
% check if Ra oscillates 
[Ra_minY,Ra_minX] = findpeaks(vRa); 
  
if isempty(Ra_minX) 
    Ra_osc = 'no'; 
elseif length(Ra_minX)<2 
    Ra_osc = 'no'; 
else 
    Ra_osc = 'yes'; 
end 
  
% Test if body temp ever decreases during the trial 
decdex = find(vBodTemp<vBodTemp(1)); 
test1 = isempty(decdex); 
  
T_final = vBodTemp(end); 
  
[tempMaxY,tempMaxX] = findpeaks(vBodTemp); 
[tempMinY,tempMinX] = findpeaks(-vBodTemp); 
tempMinY = -tempMinY; 
  
if test1 == 0 
    % Overshoot/undershoot test 
    absOS = BodTempTgt - min(vBodTemp); 
     
    if absOS > 0 % case: underdamped 
        %find local extrema 
        cpComment = 'underdamped'; 
                
        if length(tempMinY) >= 2 
            pt1_mag = tempMinY(1); 
            pt2_mag = tempMinY(2); 
            period = (beatendtime(tempMinX(2)) - ... 
                beatendtime(tempMinX(1))); 
             
            cpsigma = log(pt2_mag/pt1_mag); 
            cpzeta = (1+(2*pi/cpsigma)^2)^(-1/2); 
  
            cpf_damp = 1/period; 
            cpf_natr = cpf_damp*(1-cpzeta^2)^(-1/2); 
  
            cpw_damp = 2*pi*cpf_damp; 
            cpw_natr = 2*pi*cpf_natr; 
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            cpSetlTime_calc = -log(err_ss)/(cpzeta*cpw_natr); 
            cpRiseTime_calc = (2.23*cpzeta^2 - 0.078*cpzeta + 1.12)/cpw_natr; 
            cpRiseTimeFull_calc = (1/cpw_natr)*(1-cpzeta^2)^(-1/2)* ... 
                (pi-atan(sqrt(1-cpzeta^2)/cpzeta)); 
             
            % determine if the signal converges or oscillates "forever" 
            tempMinY_err = zeros(length(tempMinY)-1,1); 
  
            for k = 1:length(tempMinY)-1 
                tempMinY_err(:,k) = abs(tempMinY(k)-
tempMinY(k+1))/tempMinY(k); 
  
                if tempMinY_err(k) < 0.02 
                    inf_osc = 0; 
                elseif tempMinY_err(k) > 0.02 
                    inf_osc = 1; 
                end 
            end 
             
            % find the last value outside error tolerance 
            if inf_osc == 0 
                setl_ubound_dex = find(vBodTemp>err_max,1,'last')+1; 
                setl_lbound_dex = find(vBodTemp<err_min,1,'last')+1; 
             
                if setl_ubound_dex > length(beatendtime) 
                    setl_ubound_time = beatendtime(length(beatendtime)); 
                else 
                    setl_ubound_time = beatendtime(setl_ubound_dex); 
                end 
  
                if setl_lbound_dex > length(beatendtime) 
                    setl_lbound_time = beatendtime(length(beatendtime)); 
                else 
                    setl_lbound_time = beatendtime(setl_lbound_dex); 
                end 
  
                if isempty(setl_ubound_time) && isempty(setl_lbound_time) 
                cpSetlTime_actl = 0; 
                elseif setl_ubound_time >= setl_lbound_time 
                    cpSetlTime_actl = setl_ubound_time; 
                else 
                    cpSetlTime_actl = setl_lbound_time; 
                end 
            else 
                % checks if overshoot is within tolerance 
                tempMinY_osc_within_tol = true; 
                if isempty(tempMinY) == 0 
                    if tempMinY(1) < err_min 
                        tempMinY_osc_within_tol = false; 
                        break 
                    end 
                end 
                 
                if tempMinY_osc_within_tol == true; 
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                    cpSetlTime_actl = 
beatendtime(find(vBodTemp<err_max,1,'first')); 
                else 
                    cpSetlTime_actl = 0; 
                    cpComment = [cpComment, '; osc. to inf.']; 
                end 
            end 
  
            cpRiseTime_actl = beatendtime(find(vBodTemp<trc_max,1,'first')); 
  
             
        else % if fewer than 1 full period are produced, this fork 
            cpComment = [cpComment, '; too slow to calc pt1/pt2']; 
            pt1_mag = 0; 
            pt2_mag = 0; 
            period = 0; 
            cpRiseTime_actl = beatendtime(find(vBodTemp<trc_max,1,'first')); 
            cpSetlTime_actl = beatendtime(find(vBodTemp<err_max,1,'first')); 
            cpSetlTime_calc = 0; 
            cpRiseTime_calc = 0; 
            cpRiseTimeFull_calc = 0; 
            cpsigma = 0; 
            cpzeta = 0; 
            cpf_damp = 0; 
            cpf_natr = 0; 
            cpw_damp = 0; 
            cpw_natr = 0; 
        end 
                    
    elseif absOS <= 0 %case: over/critical 
         
        cpComment = 'overdamped'; 
  
        cpSetlTime_actl = beatendtime(find(vBodTemp<err_max,1,'first')); 
        if isempty(cpSetlTime_actl) 
            cpSetlTime_actl = 0; 
        end 
         
        cpRiseTime_actl = beatendtime(find(vBodTemp<trc_max,1,'first')); 
        if isempty(cpRiseTime_actl) 
            cpRiseTime_actl = 0; 
        end 
         
        cpSetlTime_calc = 0; 
        cpRiseTime_calc = 0; 
        cpRiseTimeFull_calc = 0; 
        cpsigma = 0; 
        cpzeta = 0; 
        cpf_damp = 0; 
        cpf_natr = 0; 
        cpw_damp = 0; 
        cpw_natr = 0; 
  
    end 
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%     extremaX = sort([tempMaxX;tempMinX]); 
%     extremaY = sort([tempMaxY;tempMinY]); 
  
    if runspec_debug == 0; 
        decimalpts = 2; 
  
        xmin = 0; 
        xmax = max(beatendtime); 
        ymin = floor(min(vBodTemp)*10^(decimalpts)) / 10^decimalpts; 
        ymax = ceil(max(vBodTemp)*10^(decimalpts-1)) / 10^(decimalpts-1)+10^-
(decimalpts+10); 
  
        close all 
        hold on 
        plot(beatendtime,vBodTemp) 
        plot(beatendtime(tempMaxX),tempMaxY,'k*') 
        plot(beatendtime(tempMinX),tempMinY,'k*') 
        plot(beatendtime,linspace(err_max,err_max,length(beatendtime)),'r--') 
        plot(beatendtime,linspace(err_min,err_min,length(beatendtime)),'r--') 
        axis([xmin xmax ymin ymax]) 
        hold off 
    end 
  
else % for this case, BodTemp never goes down 
    absOS = BodTempTgt - min(vBodTemp); 
    cpRiseTime_actl = 0; 
    cpRiseTime_calc = 0; 
    cpRiseTimeFull_calc = 0; 
    cpSetlTime_actl = 0; 
    cpSetlTime_calc = 0; 
    cpsigma = 0; 
    cpzeta = 0; 
    cpf_damp = 0; 
    cpw_damp = 0; 
    cpf_natr = 0; 
    cpw_natr = 0; 
    cpComment = ['Body temperature never decreases within ', ... 
        num2str(beatnum),' beats.']; 
    if runspec_debug == 0 
        plot(beatendtime,vBodTemp) 
    end 
end 
  
disp([strHRKp_3dig,'-',strHRKi_3dig,'-',strRAKp_3dig,'-',strRAKi,' (', 
num2str(loop_num),')']) 
  
[r1, p1] = corrcoef(vtempestN,vBodTemp); 
[r2, p2] = corrcoef(vtempestN,vBodTempFit); 
  
R_real = r1(1,2); 
R_fit = r2(1,2); 
  
temp_match = 1; 
  
if temp_match == 0 



80 

    cp_array = [HRKp, ... 
                HRKi, ... 
                RAKp, ... 
                RAKi, ... 
                beatendtime(end), ... 
                absOS, ... 
                cpRiseTime_actl, ... 
                cpRiseTime_calc, ... 
                cpRiseTimeFull_calc, ... 
                cpSetlTime_actl, ... 
                cpSetlTime_calc, ... 
                cpsigma, ... 
                cpzeta, ... 
                cpf_damp, ... 
                cpw_damp, ... 
                cpf_natr, ... 
                cpw_natr, ... 
                sweat_rate_max, ... 
                sweat_total, ... 
                bpm_min, ... 
                bpm_max, ... 
                bpm_final, ... 
                {bpm_osc}, ... 
                Ra_min, ... 
                Ra_max, ... 
                Ra_final, ... 
                {Ra_osc}, ... 
                T_final, ... 
                {cpComment}]; 
else 
    cp_array = [HRKp, ... 
                HRKi, ... 
                RAKp, ... 
                RAKi, ... 
                beatendtime(end), ... 
                cpRiseTime_actl, ... 
                cpSetlTime_actl, ... 
                sweat_rate_max, ... 
                sweat_total, ... 
                bpm_min, ... 
                bpm_max, ... 
                bpm_final, ... 
                {bpm_osc}, ... 
                Ra_min, ... 
                Ra_max, ... 
                Ra_final, ... 
                {Ra_osc}, ... 
                T_final, ... 
                R_real, ... 
                R_fit, ... 
                {cpComment}]; 
end 
  
if loop_num == 1 
    csv_array = cp_array; 
else 
    csv_array = [csv_array;cp_array]; 
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end 
  
%% these three end statements terminate the for loops 
        end 
    end 
end 
  
%% write the variables to a csv 
  
% this array contains the labels for each column 
  
if temp_match == 0 
    csv_headings = [{'HRKp'}, ... 
                    {'HRKi'}, ... 
                    {'RAKp'}, ... 
                    {'RAKi'}, ... 
                    {'beatendtime(end)'}, ... 
                    {'absOS'}, ... 
                    {'cpRiseTime_actl'}, ... 
                    {'cpRiseTime_calc'}, ... 
                    {'cpRiseTimeFull_calc'}, ... 
                    {'cpSetlTime_actl'}, ... 
                    {'cpSetlTime_calc'}, ... 
                    {'cpsigma'}, ... 
                    {'cpzeta'}, ... 
                    {'cpf_damp'}, ... 
                    {'cpw_damp'}, ... 
                    {'cpf_natr'}, ... 
                    {'cpw_natr'}, ... 
                    {'sweat_rate_max'}, ... 
                    {'sweat_total'}, ... 
                    {'bpm_min'}, ... 
                    {'bpm_max'}, ... 
                    {'bpm_final'}, ... 
                    {'bpm_osc'}, ... 
                    {'Ra_min'}, ... 
                    {'Ra_max'}, ... 
                    {'Ra_final'}, ... 
                    {'Ra_osc'}, ... 
                    {'T_final'}, ... 
                    {'cpComment'}]; 
else 
     csv_headings = [{'HRKp'}, ... 
                    {'HRKi'}, ... 
                    {'RAKp'}, ... 
                    {'RAKi'}, ... 
                    {'beatendtime(end)'}, ... 
                    {'cpRiseTime_actl'}, ... 
                    {'cpSetlTime_actl'}, ... 
                    {'sweat_rate_max'}, ... 
                    {'sweat_total'}, ... 
                    {'bpm_min'}, ... 
                    {'bpm_max'}, ... 
                    {'bpm_final'}, ... 
                    {'bpm_osc'}, ... 
                    {'Ra_min'}, ... 



82 

                    {'Ra_max'}, ... 
                    {'Ra_final'}, ... 
                    {'Ra_osc'}, ... 
                    {'T_final'}, ... 
                    {'R real'}, ... 
                    {'R fit'}, ... 
                    {'cpComment'}]; 
end 
  
csv_export = [csv_headings;csv_array]; 
xlswrite([dbxpath, subfolder1,'temp match HR Kp ', strHRKp, 
'.xlsx'],csv_export) 
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ezdiff.m 

function y = ezdiff(func,step) 
  
y = 1 / step * diff(func); 
  
end 
 


