
  

 
 

COMPARATIVE CLASSIFICATION OF PROSTATE CANCER DATA USING THE 

SUPPORT VECTOR MACHINE, RANDOM FOREST, DUALKS AND K-NEAREST 

NEIGHBOURS 

 

 

 

 

A Thesis 

Submitted to the Graduate Faculty 

of the  

North Dakota State University 

of Agriculture and Applied Science 

 

 

 

 

By 

 

Kekoura Sakouvogui 

 

 

 

 

In Partial Fulfillment of the Requirements 

for the Degree of 

MASTER OF SCIENCE  

 

 

 

 

Major Department: 

Statistics 

 

 

 

 

July 2015 

 

 

 

 

Fargo, North Dakota 

 



  

 
 

North Dakota State University 

Graduate School 
 

Title 

 

 

 COMPARATIVE CLASSIFICATION OF PROSTATE CANCER DATA 

USING THE SUPPORT VECTOR MACHINE, RANDOM FOREST, 

DUALKS AND K-NEAREST NEIGHBOURS 

  

  

  By   

  

Kekoura Sakouvogui 

  

     

    

  The Supervisory Committee certifies that this disquisition complies with North Dakota State 

University’s regulations and meets the accepted standards for the degree of 

 

  MASTER OF SCIENCE  

    

    

  SUPERVISORY COMMITTEE:  

    

  
Dr. Yarong Yang 

 

  Chair  

  
Dr. Rhonda Magel 

 

  
Dr. Ying Huang 

 

  
  

 

    

    

  Approved:  

   

 7/10/2015   Dr. Rhonda Magel   

 Date  Department Chair  



  

iii 
 

ABSTRACT 

This paper compares four classifications tools, Support Vector Machine (SVM), Random 

Forest (RF), DualKS and the k-Nearest Neighbors (kNN) that are based on different statistical 

learning theories. The dataset used is a microarray gene expression of 596 male patients with 

prostate cancer. After treatment, the patients were classified into one group of phenotype with 

three levels: PSA (Prostate-Specific Antigen), Systematic and NED (No Evidence of Disease). 

The purpose of this research is to determine the performance rate of each classifier by selecting 

the optimal kernels and parameters that give the best prediction rate of the phenotype.  The  

paper  begins with  the  discussion  of  previous  implementations of  the  tools  and  their 

mathematical  theories. The results showed that three classifiers achieved a comparable 

performance that was above the average while DualKS did not.  We also observed that SVM 

outperformed the kNN, RF and DualKS classifiers.  

 

 

 

 

 

 

 

 

 

 

 



  

iv 
 

ACKNOWLEDGMENTS 

I would like to express my special gratitude and appreciation to Dr. Yarong Yang for her 

time, advice, support and most importantly for being able to work with me.  I am greatly thankful 

to her for giving me the idea of the thesis.   

Special thanks and appreciation go to Aurora Manley for her feedback.  I am more than 

appreciative for her comment and her help.  

I would like to thank my family.  Without their help, I would not be where I am today.  

Their support and encouragement is making a huge difference. Special thanks go to God for 

protecting and always being with me.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

v 
 

TABLE OF CONTENTS 

ABSTRACT……………………………………………………………………………………...iii 

ACKNOWLEDGMENTS………………………………………………………………………..iv 

LIST OF TABLES…………………………………………………………………….………..viii 

LIST OF FIGURES…………………………………………………………………………........ix 

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW……………..………………..1 

CHAPTER 2. SUPPORT VECTOR MACHINE CLASSIFICATION..…….….………….……..3 

 2.1. Introduction of the SVM..….……………….………………………………………...3 

2.2. Support Vector Machine..……………..……………………………………………...3 

2.3. Separation of the Hyperplanes………………………………………………………..4 

2.4. Optimal Separation of the SVM...…………………….……………………………...6 

2.5. SVM Software...………………………………….……………………………….….8 

2.6. Brief Introduction of SVM to the Multiclass..…………..……………………………8 

2.6.1. One-versus-The Rest Classification………………………………………...8 

CHAPTER 3. k- NEAREST NEIGHBOURS………...…………………………………............10 

3.1. Introduction of the kNN …………………………………………………………….10 

3.2. Distance or Similarity of kNN……………………………………………………....10 

3.3. Classification of the kNN Algorithm………………………………………………..11 

3.4. Estimating the number of neighbours k of the kNN……………………………..….12 

3.5. kNN Software ……...………………………………………………………………..12 

CHAPTER 4. RANDOM FOREST……………………………………………………...………13 

4.1. Introduction of the Random Forest………………………………………………….13 

4.2. Classification of RF…………………………………………………………………13 



  

vi 
 

4.3. Estimating the Error Rate of RF…..………………………………………………...14 

4.4. RF Software…………………………………………………………………………14 

CHAPTER 5. DUALKS………………………………………………………………………....16 

5.1. Introduction of DualKS……………………………………………………………...16 

5.2. Classification of DualKS.………………………………………...............................16  

5.3. Identification of the Discriminant Genes.…………………………………………...17 

5.4. Limitation of the Scoring Functions………………………………………………...18 

5.4.1. Rescaling DualKS Score…………………………………………………..18 

5.4.2. Weight of DualKS Score………………………………………………….18 

5.5. DualKS Software……………………………………………………………………19 

CHAPTER 6. METHODOLOGY AND DATASET..…………………………………………..20 

6.1. Methods for the DualKS…………………………………………………………….21 

6.2. Methods for the SVM....…………………………………………………………….21 

6.3 Methods for the kNN………………………………………………………………...22 

6.4. Methods for the RF………………………………………………………………….23 

CHAPTER 7. RESULTS………………………………………………………………………...24 

7.1. Results using the DualKS Classification…………………………………………....24 

7.2. Results using the SVM Classification ...……..……………………………………...28 

7.3. Results using the kNN Classification.……………………………………………….29 

7.4. Results using the RF Classification ………………………………………………...32 

CHAPTER 8. MISCLASSIFICATION ASSESSMENT OF DUALKS…………………….......35 

8.1 0.632 plus Bootstrap Method …………………………………….………………….35 

CHAPTER 9. DISCUSSION …………………………………………………………………....37 



  

vii 
 

CHAPTER 10. CONCLUSION …..…………………………………….……………………....38 

REFERENCES…………………………………………………………………………………..39 

APPENDIX A. TRAINING THE ALGORITHMS……………………………………………...42 

APPENDIX B. MISCLASSIFICATION ALGORITHM…………………..………..………….47 

 

 

 

 

  



  

viii 
 

LIST OF TABLES 

Table                Page 

1. Prediction using DualKS…………………………………………………………………24 

2. Predicted class frequencies………………………………………………………...….…25 

3. P-value of the first nine genes……………………………………………………............27 

4. Performance of SVM kernels.………...……………………………………………….....28 

5. Prediction of the phenotype using SVM....……………………………………………....29 

6. Determination of the optimal kernels of kNN……………………………….…………...30 

7. Finding the optimal k values with kmax=24 of kNN……………………………….........30 

8. Prediction using kNN………………………………………………………………….....31 

9. Prediction using RF……………………………………………………………………...32 

10. Out-of-bag error rate for each class...…………………………………………………....33 

11. Bootstrap method………………………………………………………………………...36 



  

ix 
 

LIST OF FIGURES 

Figure                Page 

1. Linear separation of two classes -1 and +1 with SVM classifier………………...……..…6 

2. Plot of samples of upregulated genes…..………………………………………...............26 

3. Plot of samples of downregulated genes ….…………………………………………......27 

4. Finding the optimal k-value..………………………………………………………...…..31 

5. Variables of importance………………………………………………………………….33 

6. Plot of important genes per phenotype…………………..……………………………....34 

 

 

 



  

1 
 

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 

Gene expression is a series of step by which information from gene is used to unify gene 

products.  Nowadays, the challenge is no longer obtaining the profiles of gene expressions but in 

somehow being able to explain the important results in order for society to gain some insights.  

Scientists are only able to perform genetic analyses not only on a few genes and cells in the 

human brains, but on thousand to billions of cells or genes that make the structure of our internal 

biological system by using DNA Microarray. 

DNA Microarray can be used to measure the changes in genes expression’s levels.    

Some techniques, such as microarrays, allow us to study genomes and their wide associations of 

gene expression with diseases, such as prostate cancer. This important change has been 

motivated biologically, as many diseases such as prostate cancer are believed to be associated 

with modest regulation in a set of related genes rather than a strong increase in a single gene 

(Subramanian et al., 2005). 

Cancer cells exhibit a common phenotype of uncontrolled cell growth, but this phenotype 

may arise from many different combinations of mutation by inferring how cells evolve in 

individual tumors, a process called cancer progression (Park et al., 2009). We may then be able 

to identify important mutational events for different tumor types, which could potentially lead to 

new therapeutics and diagnostics (Kumar et al., 2012). It is possible to infer frequent progression 

pathways by using gene expression profiles to estimate “distances” between any kinds of tumors 

(Park et al., 2009).  

In the United States, prostate cancer remains the principal malignancy in African 

American men and the leading cause of cancer-related death in this group (Ries et al., 2000). 

Cancer has now become the second leading cause of death in the U.S, and it accounts for 1 in 4 



  

2 
 

deaths (Jemal et al, 2009). Racial disparities in cancer mortality persist in the U.S, but however 

the survival has improved in virtually all ethnic groups (Ries et al., 2000).  As such, survival 

after a cancer diagnosis still remains poorer among African Americans than White Americans 

(Clegg et al, 2002).  

Prostate cancer mortality has been approximately twice higher among Black Americans 

than White Americans in recent decades (Bach et al., 2002), and current global comparisons 

confirm worse mortality outcomes in African American men (Delancey et al., 2008). Vital 

statistics from the United Kingdom briefly state that prostate cancer mortality rates among men 

born in West Africa and the West Indies are two to three times higher than overall rates in the 

worldwide population (Wild et al., 2006).  The limitation of the data also confirm that there is a 

lower 5-year survival among African American than White men following a prostate cancer 

diagnosis (Coleman et al., 2008).  In 2009, approximately 192,000 men from the USA were 

diagnosed with prostate cancer, with an estimate of 27,000 of those men dying from the same 

disease (Jemal et al, 2009).  

This paper focuses on the classification of patients with prostate cancer using three 

different phenotypes: PSA, Systematic and NED.  The classification was done using the Support 

Vector Machine, the k-Nearest Neighbour, Random Forest and the DualKS.  The goal of the 

classification is to sort the 596 patients by the three levels of phenotype.  The paper is organized 

as follows: Chapter 2 deals with the Support Vector Machine classification.  Chapter 3 gives the 

k-Nearest-Neighbours classification.  Chapter 4 talks about the DualKS classification, and 

chapter 5 discusses the Random Forest classification.  A description of the methodology and 

dataset is given in Chapter 6 and the results in Chapter 7.  Chapter 8 deals with the performance 

of the DualKS.  A brief discussion and a conclusion are given in Chapter 9 and 10 respectively. 



  

3 
 

CHAPTER 2. SUPPORT VECTOR MACHINE CLASSIFICATION  

2.1. Introduction of the SVM 

The Support Vector Machine (SVM) is a biologically inspired method used to model 

information processing.  It is a relatively young classification technique that was previously 

proposed by Vapnick (Xu et al., 2006) which has become more popular nowadays since its 

introduction in the late 1990s.  During that time, SVM was largely unnoticed due to its non-

relevance in the practical applications.  Since then, SVM has been developed and used in many 

practical applications such as in bioinformatics, chemistry and other applications and fields.   

SVM, a supervised machine learning technique, is shown to perform well in multiple 

areas of biological analysis including evaluating microarrays expression data (Terrence et al., 

2006).  SVM was the first mathematical models that does not assume any specific probability 

distribution but it tends to learn the distribution from the experimental data (Vojislav, 2001).  

The simplest and first introduced SVM model is the Maximum Margin classifier.  This model is 

only suitable for data that are linearly separable without any overlapping samples.   

2.2. Support Vector Machine 

SVM is a supervised learning algorithm capable of solving linear and nonlinear binary 

classification problems (Stefan et al., 2006). In the binary classification, let’s f defines a real 

valued function such as f : X ⊆ ℝ𝑛 → ℝ  and the input x= (𝑥1, 𝑥2, … … 𝑥𝑛  )𝑇 .  For now, let’s 

consider the case where f(x) is a linear function of x ∈ X and 𝑥𝑖 ∈  ℝ𝑛 then: 

f(x)= 〈𝑤 . 𝑥〉 + 𝑏 

= ∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1 +b, 



  

4 
 

 where (w, b) ∈ ℝ𝑛 →  ℝ are the parameters and the decision  rule is given by sign of (f(x)) with 

w being the weight that defines a direction that is perpendicular to the hyperplane, b is the bias 

term that moves the hyperplane parallel to itself and x is the support of the support machine.  

In the binary classification, we then define 𝑥𝑖 ∈ ℝ𝑛 as the input and  𝑦𝑖 ∈ {-1,+1} being 

the class  label of 𝑥𝑖 .  In that case, the function margin that is defined as the margin measured by 

the function output of f(x) implies that:   

〈w . 𝑥+ 〉 + 𝑏 = +1 

〈w . 𝑥− 〉 + 𝑏 = -1, 

with 𝑥+ being the positive point and 𝑥− being the negative point. The positive example points 

(+1) should lie on or above the first supporting hyperplane. The negative example points (-1) 

should lie on or below the second supporting hyperplane.   

2.3. Separation of the Hyperplanes 

The goal of SVM classification is to separate examples by means of a maximal margin 

hyperplane (Nello and John, 2000).  A training set, S, is defined to be a collection of training 

examples and it is denoted by:  

S= ((𝑥1, 𝑦1), … … (𝑥𝑙, 𝑦𝑙)) ⊆ (𝑋 × 𝑌)𝑙, 

where l is the number of examples. The goal of the algorithm is to maximize the distance 

between examples that are closest to the decision boundary.  The margin of separation is related 

to the so called Vapnik-Chervonenkis dimension (VC dim) which measures how complex the 

learning machine is (Vapnick, 1998). 

The Vapnik-Chervonenkis dimension, used in several bounds for the generalization error 

of a learner and known as the margin maximization is beneficial for the generalization ability of 



  

5 
 

the resulting classifier (Vapnik, 1995).  Given a linearly separable training sample S, with S= 

((𝑥1, 𝑦1), … … (𝑥𝑙 , 𝑦𝑙)), the hyperplane (w, b) that solves the optimization problem  

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒𝑤,𝑏   〈𝑤 . 𝑤〉 

Subject to 𝑦𝑖(〈𝑤. 𝑥𝑖〉 + 𝑏) ≥ 1  for ∀𝑖, 

realizes  the  maximal  margin  hyperplane with a geometric margin 𝛾 =  
1

‖𝑤‖2
  which is the  

minimal  distance  between  two classes.  The transforming of the optimization problem above 

into the corresponding dual problem give us the primal Lagrangian:  

                             L(w, b,𝛼) = 
1

2
〈w. w〉 − ∑ 𝛼𝑖[𝑦𝑖(〈w𝑖 . 𝑥𝑖〉

𝑙
𝑖=1 + 𝑏) − 1].                   

This dual is found by differentiation with respect to the weight w and the bias b, and it is only 

dependable on the Lagrange multipliers  𝛼𝑖,     

∑ 𝛼𝑖 −𝑙
𝑖=1

1

2
∑ 𝑦𝑖𝑦𝑗

𝑙
𝑖,𝑗=1 𝛼𝑖𝛼𝑗〈xi. xj〉, 

where 𝛼𝑖 ≥ 0  ∀𝑖  and the one linear constraint  ∑ 𝑦𝑖
𝑙
𝑖=1 𝛼𝑖 = 0,and l is  the  number  of  training 

and 𝑦𝑖 is the correct output for the 𝑖𝑡ℎ training examples. Once the Lagrange multipliers are 

determined, the normal weight vector w and the bias b be can be derived from the Lagrange 

multipliers (John, 1998) where: 

w= ∑ 𝑦𝑖
𝑙
𝑖=1 𝛼𝑖𝑥𝑖 

b = w𝑘 . 𝑥𝑘 − 𝑦𝑘  , for  some 𝛼𝑘 ≥ 0  ∀𝑘  . 

Therefore, the amount of computation required to evaluate a linear SVMs is constant in the 

number of non-zero support vectors. The construction of the SVM classifier is done by 

minimizing the norm of the weight vector w under the constraint that the training patterns of each 

class reside on opposite sides of the separating surface (Stefan et al., 2006).  An example is 

illustrated below in Figure 1. 



  

6 
 

 

Figure 1. Linear separation of two classes -1 and +1 with SVM classifier 

Figure 1 is the easiest classification problem in which the data are linearly separable 

without any overlapping samples (Chang and Lin, 2001).  The maximal distance is highlighted.  

Lagrange multipliers are calculated from the weight vector w.  The points that are not on the 

support vector have no influence at all. 

2.4. Optimal Separation of the SVM 

The first concept of an optimal hyperplane regarding the support vector machine was first 

proposed by Vapnick (Karatzoglou and Meyer, 2006).  A decision surface for a binary 

classification is optimal if the separation of the hyperplane is done without an error but it also 

has to maximize the distance between the hyperplane and the decision surface.  Because the 

decision surface f(x) has a maximum margin’s distance, then we have two supporting 

hyperplanes equidistant satisfying:   

〈w . 𝑥 〉 + 𝑏 = +1 for the positives 

〈w . 𝑥− 〉 + 𝑏 = -1 for the negatives, 

with w being the weight  vector of  the data points. 



  

7 
 

So far, we have assumed the training data is linearly separable. However, in real world 

applications studies, many datasets are not linearly separable and sometimes there might not be a 

hyperplane that splits the positive examples from negative examples in the binary cases.  In the 

formulation above, the non-separable case would correspond to an infinite solution (John, 1998).  

However, in 1995, Cortes and Vapnick suggested a modification to the original optimization 

statement that will penalize the failure of an example to reach the correct margin. The proposed 

modification is done by introducing the slack variable that is defined to be the “Soft Margin”: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝜀,w,b 〈w . w〉 + C∑ 𝜀𝑖
𝑙
𝑖=1                         

Subject to  𝑦𝑖(〈𝑤. 𝑥𝑖〉 + 𝑏) ≥ 1 − 𝜀𝑖  for i=1,….,l and  𝜀𝑖 ≥ 0, 𝑖 = 1, . . 𝑙  and C>0. 

Any point 𝑥𝑖 can satisfy the constraint even if it is located on the wrong side of the decision 

surface as long as the slack variable (𝜀𝑖) is large enough. C is cost.  The introduction of the slack 

variables will account for any examples that were wrongly misclassified.  If the slack variable 

𝜀𝑖 → ∞ then the classification of SVM becomes the nonlinear.  In that case, the algorithm could 

be generalized to a nonlinear classification by mapping the input data into a high-dimensional 

feature space by the chosen nonlinear mapping function ∅ (Stefan et al., 2006).  Therefore, SVM 

can be even further generalized to nonlinear classifiers (Vapnik, 1982). The output of a non-

linear SVM is explicitly computed from the Lagrange multipliers: 

∑ 𝛼𝑖
𝑙
𝑖=1 𝑦𝑖𝐾( 𝑥, 𝑧  ) + 𝑏, 

K (x, z) = ⟨∅(𝑥). ∅(𝑧)⟩   = ⟨∅(𝑥). ∅(𝑧)⟩   = K (z, x),         

where K a  kernel function, such that for all x, z ∈ X.  The functions associated with the output of 

the nonlinear SVM transformations are called kernel functions and the process of moving these 

function move from linear to a nonlinear Support Vector Machines is referred to as: “kernel 

trick”.     



  

8 
 

2.5. SVM Software 

 

The first implementation of SVM using the software R was developed by “R Development 

Core Team in 2005” and was introduced in the package e1071 (Dimitriadou et al., 2005). The 

SVM function in the package e1071 provides a rigid interface to the library svm (libsvm) along 

with visualization and parameter tuning methods (Alexandors et al., 2006).  The libsvm is faster 

and easier to use for most popular SVM formulations featuring one of the following: 

 𝑜𝑛𝑒 class classification: the idea behind this model is that it tries to find 

the support of a distribution that is resulted by allowing for outlier/novelty 

detection (David, 2014). 

2.6. Brief Introduction of SVM to the Multiclass 

Previously, we talked about the Support Vector Machine only supporting the binary 

classification. Meaning, we have presented and discussed only two classes since the introduction 

of this paper.  However, as we all know, the real world problems deal generally with classifying 

objects in more than two classes.  The same idea will still work as in the binary classification 

with some minor modifications.   

2.6.1. One-versus-The Rest Classification 

The binary classification of SVM can be extended into multiclass classifications. The 

most popular techniques for multiclass classification, using the binary Support Vector Machine, 

is referred as “The-one-versus-The Rest classification”, also known as “The- one-versus-all”.  To 

illustrate this, let’s consider the training set: 

    S= ((𝑥1, 𝑦1), … … (𝑥𝑙, 𝑦𝑙)) ⊂  ℝ𝒏 × {1, 2, 3,...F},           

where the label 𝑦𝑖 for each observation can take on any value  in  { 1,2,3,….F} with F being the 

number of classes greater than two.  In “one-versus-all”, the construction of F binary support 



  

9 
 

vector is based on decision surfaces (𝑘1, 𝑘2, … 𝑘𝑀).  Each individual decision surface is trained 

to separate one class from the rest.  The classification of an unknown sample is done using the 

voting scheme that is based on the largest value of the F decision surfaces for this unknown 

sample.  As a result, this unknown sample is assigned to the class that return the largest value of 

the decision surface.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

10 
 

CHAPTER 3. k-NEAREST NEIGHBOURS 

3.1. Introduction of the kNN 

The k-Nearest Neighbours machine, one of the oldest machine algorithm, is a 

nonparametric classification method which does not rely on any assumption concerning the 

structure of the density function and is one of the most commonly used methods for pattern 

recognition (Moreno et al., 2002).  Previously applied in a variety of cases (Khan et al., 2002), 

kNN has been used in statistical estimation and pattern recognition since in the beginning of the 

1970s. A k-Nearest Neighbours (kNN) classifier (Belur, 1991) is a typical example of the latter 

category As a lazy learning, kNN’s algorithm is instance-based and used in many applications 

for statistical pattern recognition, data mining, image processing and many others (Quansheng 

and Lei, 2009)  

3.2. Distance or Similarity of kNN 

 The behavior of k-Nearest Neighbours depends mainly on the definition of similarity or 

distance. There are many ways to define the distance between two points 𝑝𝑖 𝑎𝑛𝑑 𝑞𝑖  in a 

multidimensional space. One such way is the 𝐿𝑛 Norm distance that is also defined as:   

𝐿𝑛 Norm =   √∑ |𝑝𝑖 − 𝑞𝑖|𝑛𝑑𝑖𝑚
𝑖=1

𝑛
 . 

The Manhattan distance is a special case of the 𝐿𝑛 norm distance when n is 1 and when n is equal 

to 2, the 𝐿𝑛 norm becomes the Euclidean distance. 

If all the features are numeric, the Manhattan and Euclidean distance could be used.  The 

Manhattan Distance is a simple similarity measure compared to the Euclidean and square-

Euclidean distance measure, which takes the summation of the absolute difference among 

individual elements of the vector and it is defined as:   

Manhattan distance =∑ |𝑝𝑖 − 𝑞𝑖|
1𝑑𝑖𝑚

𝑖=1 . 



  

11 
 

The Euclidean distance on the other hand is defined as the length of the line segment between 

𝑝𝑖 𝑎𝑛𝑑 𝑞𝑖   in a multidimensional space 

Euclidean distance =√∑ |𝑝𝑖 − 𝑞𝑖|𝑛=2𝑑𝑖𝑚
𝑖=1 . 

However if the features are not numeric, then the Hamming distance should be used.  The 

Hamming distance between two vector points 𝑝𝑖 𝑎𝑛𝑑 𝑞𝑖   in a multidimensional space is defined 

as the number of places where the two elements of a vector differ.  The hamming distance is also 

used for symbolic feature and it is defined as: 

Hamming distance =∑ |𝑝𝑖 − 𝑞𝑖|
1𝑑𝑖𝑚

𝑖=1 . 

3.3. Classification of the kNN Algorithm 

One important aspect regarding the Manhattan, Euclidean and 𝐿𝑛 norm distances above is 

the fact that these models are only valid for continuous variables.  In order to classify an 

unknown dataset point to a new class, we must first calculate either the Euclidean or Manhattan 

distance for numeric feature, dataset, or the Hamming distance for categorical or symbolic 

feature but now the question still remains: How to choose the best value for the parameter k?  A 

case is classified by a majority vote of its neighbours.  Consequently, if we have equal closest 

samples from each class, then the unknown sample will be classified randomly.   

 A training dataset with accurate classification labels should be known at the beginning of 

the algorithm. Then for a query data 𝑀𝑖 , whose label is not known and is presented by a vector 

in the feature space, the kNN will calculate the similarities between the unknown label and every 

point in the training data set (Quansheng and Lei, 2009).  After sorting, the distances calculation 

results in a decision of the given class labeling of the test point 𝑚𝑖 can be made according to the 

label of the k nearest points in the examples (Quansheng and Lei, 2009). 

 



  

12 
 

3.4. Estimating the number of neighbours k of the kNN 

 The optimal choice of the parameter k can be estimated using the bootstrap method and 

also by cross–validation technique.  The quality of the training examples affects directly the 

prediction rate of the classification. At the same time, the choice of parameter k is also very 

important, for different k could result in different classification labels (Quansheng and Lei, 

2009). The aim is to provide an optimal estimator of the parameter k that is less variable. It has 

also been said the estimate of the parameter k could be chosen by taking the square root of the 

sample which also brings completely different problems. Therefore for a small value of the 

parameter of k, the kNN algorithm becomes more sensitive to noise points and lead to a small 

bias.  For a large value of the parameter k, the kNN algorithm includes some points from 

different classes.  

3.5. kNN Software 

The implementation of the kNN package using the software R was developed by Klaus 

Schliep and Klaus Hechenbichler in 2004.  The link of the package is available on: http://cran.r-

project.org/web/packages/kknn/kknn.pdf. The package contains many functions.  The package 

“kknn” is used for kNN classification, regression and clustering.  The function “kknn” performs 

the kNN classification of the training set.  For each individual row of the testing set, the k nearest 

training set vectors (according to Minkowski distance) are calculated, and the classification is 

done by using the maximum of summed kernel densities.  By using the Minkowski distance, 

ordinal and continuous variables could also be predicted.   

 

 

 

 



  

13 
 

CHAPTER 4. RANDOM FOREST  

4.1. Introduction of the Random Forest 

The Random Forest (RF) is a popular machine-learning algorithm that has recently been 

successfully used when dealing with various biological prediction problems (Zhang et al., 2012).  

RF was developed by Loe Breiman and Adele Cutler (Breiman, 2001).  Random Forest is a 

classifier consisting of an ensemble of classification and regression tree-structured classifiers 

(Jian-Hua et al., 2013).  All trees in the forest are unpruned. The algorithm has two powerful 

advantages: bagging and random feature selection (Jian-Hua et al., 2013).   

4.2. Classification of RF 

The techniques of the RF are based on a combination of a set of decision trees.  There are 

three parameters that need to be defined in the Random Forest algorithm: 𝑁𝑡𝑟𝑒𝑒, which is defined  

as  the number of bootstrap samples for the original data;  𝑀𝑡𝑟𝑦, is the number of different 

predictors; and node size is the minimal size of the terminal nodes of the trees.  Each tree is 

constructed using the following algorithm (Breiman, 2001): 

o We define the number of bootstrap samples cases 𝑁𝑡𝑟𝑒𝑒  𝑡𝑜  𝑏𝑒 𝑁, and the number 

of variables or predictors in the classifier 𝑀𝑡𝑟𝑦, 𝑡𝑜  𝑏𝑒  𝑀  . 

o We will let m be the number of input variables to be used and m should be much 

less than M  

o Decide a training set for this tree by choosing 𝑛𝑖 times with replacement from all 

N available training cases containing two-third of the data.  The one-third will use 

to estimate the error of the tree, by predicting their classes.  The elements not 

present in n are referred to as “out-of-bag”data (oob) for that bootstrap sample. 



  

14 
 

o For each individual node of the tree, we randomly choose m variables then the 

best split based on these m variables in the training set is calculated. 

o Individual tree is fully grown and not pruned. 

4.3. Estimating the Error Rate of RF 

 

In random forests, there is no point for a cross-validation technique to get an unbiased 

estimate prediction rate (Breiman, 2001).  The process of estimation is done internally, during 

the run, as follows (Breiman, 2001):  

1. Each individual tree is constructed using a different bootstrap sample from the training N 

and about one-third of the data are left out of the bootstrap and they would not be used in 

the construction of the 𝑘𝑡ℎ tree.   

2. For prediction, a new sample is pushed down the tree and is assigned the label of the 

training sample in the terminal node it ends up in. This procedure is done all over all trees 

in the ensemble, and the average vote of all trees is reported as random forest prediction. 

For the 𝑘𝑡ℎelement (𝑦𝑖) of the training set, all the trees are taking into account in which 

the 𝑖𝑡ℎelement is out-of-bag (Simone et al., 2011). On the basis of the random trees, an 

aggregated prediction is developed  on  average and it is defined as : 𝑔𝑜𝑜𝑏.  And each 

element of N is out-of-bag in one-third of 𝑁𝑡𝑟𝑒𝑒iterations (Simone et al., 2011). The out-

of-bag estimate is computed as the following: 

𝐸𝑟𝑟𝑜𝑟𝑜𝑜𝑏 = (
1

𝑁𝑡𝑟𝑒𝑒
) ∑ [𝑦𝑖 − 𝑔𝑜𝑜𝑏 ]2𝑁𝑡𝑟𝑒𝑒

𝑖=1 . 

4.4. RF Software  

The package “Random Forest” was implemented by Breiman’s random forest algorithm 

(based on Breiman and Cutler’s original FORTRAN code) for classification and regression. It 

can also be used in unsupervised mode for assessing proximities among data points.  The link of 



  

15 
 

the package is available on: http://statwww.berkeley.edu/users/breiman/RandomForests.  In the 

package, we have a formula interface and a prediction of the Random Forest that could be 

specified using the structure of a matrix or a data frame via an x argument.  As long as the 

response variable is a factor, then the Random Forest will perform the classification.  If the 

response variable is a continuous one, the Random Forest will perform the regression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

16 
 

CHAPTER 5. DUALKS 

5.1. Introduction of DuaKS 

Another kind of nonparametric classification is the Dual Kolmogorov –Smirnov 

classification also called the DualKS.  The DualKS was developed by Dr. Yarong Yang and her 

collaborators: Eric J. Kort, Ebarhim Nader, Zhang Zhongfa and Bin T in 2014 (Kort and Yang, 

2014). This test is based on the KS statistic that measure the greatest distance between the 

empirical distribution function of a univariate data and the comparison step function of the 

second dataset (Feigelson and G.Joseph, 2012).   

5.2. Classification of DualKS 

In order for a classification to occur using the DualKS algorithm, a gene signature which 

matches the gene expression must primarily be found (Kort et al., 2010).  Then, the sample from 

the gene signature will be classified based on their unique instance of  representation  values  z 

with (𝑧1, 𝑧2, 𝑧3, … 𝑧𝑛) defined as the instance representation values of the upregulated gene 

signatures and  the downgraded gene signatures are defined  to be the instances representation 

values of (𝑧𝑛+1, 𝑧𝑛+2, 𝑧𝑛+3, … 𝑧2𝑛) .  The sample instance representation value of z is then 

denoted by ((𝑧1, 𝑧2, 𝑧3, … 𝑧𝑛); (𝑧𝑛+1, 𝑧𝑛+2, 𝑧𝑛+3, … 𝑧2𝑛)).  The enrichment score of each specific 

class is then calculated and the sample is will belong to the class whose signature achieves the 

highest score (Kort et al., 2008). The n upregulated and downregulated genes expression are 

defined in decreasing and increasing order respectively such as: 

𝑎′
𝑖𝑙 = {

𝑛

𝑛𝑙
   𝑖𝑓 𝑔𝑒𝑛𝑒 𝑖 ∈ 𝑢𝑝 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 𝑔𝑒𝑛𝑒𝑠

−𝑛

𝑛−𝑛𝑙
                       𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

where 𝑛𝑙 is the number  of  upregulated genes in decreasing order in the signature of class l. 



  

17 
 

𝑏′
𝑖𝑙 = {

𝑛

𝑛𝑙
   𝑖𝑓 𝑔𝑒𝑛𝑒 𝑖 ∈ 𝑑𝑜𝑤𝑛 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 𝑔𝑒𝑛𝑒𝑠

−𝑛

𝑛−𝑛𝑙
                       𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

where 𝑛𝑙 is  the  number of  downregulated genes in increasing order in the signature of class l,  

with n=t *K, where t is found empirically . 

5.3. Identification of the Discriminant Genes 

The package DualKS is applied to perform the discriminant analysis of the training set 

and classification analysis.  Therefore, given a G X N expression matrix X for G genes and N 

being the total sample size and a classification vector 𝑦1 … . 𝑦𝑁 with 𝑦𝑗being the classification for 

the sample j, then for each individual gene we sort its N expressions in a decreasing order to 

identify the degree of increasing cellular component in each of the individual genes (Kort et al., 

2010). After, for each of the sample N ordered from the highest to lowest based on their 

expression values in each row of individual genes (Kort et al., 2010).  The scoring function is:  

                           𝑢𝑖𝑘 = 𝑚𝑎𝑥 ∑ 𝑎𝑖𝑘𝑗
𝑁
𝑗=1  ,                                                                   

where 𝑎𝑖𝑗𝑙 = {

𝑁

𝑁𝑘
   𝑖𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑗 𝑖𝑠 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑘

−𝑁

𝑁−𝑁𝑘
                       𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

and j is the index of  the ordered  list of  the N expressions values for gene i, and k is the class 

among the K unique classes in Y.  𝑁𝑘 is defined to be the number of samples of class k in the 

complete set of  N samples. By sorting the genes based on decreasing 𝑢𝑖𝑘 for a given class, we 

are capable of detecting the most upwardly biased in a given class in terms of their ordered 

expression levels (Kort et al., 2010).  On the other hand, by sorting the genes based on 

decreasing order 𝑑𝑖𝑘 for a given class, we could target those genes that are downwardly biased in 

a specific class (Kort et al., 2010). 

𝑑𝑖𝑘 = 𝑚𝑎𝑥 ∑ 𝑏𝑖𝑘𝑗
𝑁
𝑗=1  , 



  

18 
 

where 𝑏𝑖𝑗𝑙 = {

𝑁

𝑁𝑘
   𝑖𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑗 𝑖𝑠 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑘

−𝑁

𝑁−𝑁𝑘
                       𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

5.4. Limitation of the Scoring Functions 

Scoring functions, a class of computational methods, are widely applied in computational 

statistics and learning methodology.  Even though scoring functions are important in statistical 

principal, it has some limitations in its application of the DualKS algorithm (Kort et al., 2010).  

One of those limitations is when the scoring function gets an elevated value for both certain 

samples of a given class ordered early and late in the ordered lists which lead to an elevated 

value of the scoring function u and an elevated value for the scoring function d for the late 

samples (Kort et al., 2010). The two scoring functions are defined to be: 

                                       𝑎′
𝑖 = 𝑚𝑎𝑥 ∑ 𝑎′

𝑖𝑙
𝑛
𝑖=1   for Upregulated genes                                           

                                        𝑑′
𝑖 = 𝑚𝑎𝑥 ∑ 𝑏′

𝑖𝑙
2𝑛
𝑖=1   for Downregulated genes.                                                 

5.4.1. Rescaling DualKS Score 

The enrichment (E) for each class l is defined as: 

𝐸𝑙 = 𝑎′
𝑖

+ 𝑏′
𝑖                                                           

                                    𝐸𝑙 =
𝑎′

𝑖+𝑏′
𝑖

𝑟𝑙
  , for the rescaled case, 

where  𝑟𝑙 is the scaling factor of that class. 

5.4.2. Weighted DualKS Score 

The genes are weighted according to each gene’s average expression in a given class.  

The weight of gene i in class l is defined as: 

𝑊𝑖𝑙 = −𝑙𝑜𝑔
�̅�𝑖𝑙

𝐺
  , 



  

19 
 

where G is the total numbers of genes and  �̅�𝑖𝑙 is the numerical rank of gene i’s average  

expression in class l among the  G genes’ average values in class l. 

5.5. DualKS Software 

The implementation of the DualKS package using the software R was developed by Dr. 

Yarong Yang and Eric in 2008 (Kort and Yarong, 2008) and used for classification and 

discrimination analysis.  The link of the package is available on: 

http://www.bioconductor.org/packages/release/bioc/manuals/dualKS/man/dualKS.pdf. The 

package contains many functions.  In the package, we have a formula interface and a prediction 

of the DualKS that could be specified using the structure of a matrix or a data frame containing 

the gene expression.  As long as the response variable is a factor, then the DualKS will perform 

the classification.  One of the algorithm’s features is the function “type” which must be as one of 

"up", "down", or "both" indicating whether one wants to analyze and classify based on 

upregulated or downregulated genes, or both.  The package contains a function “dksTrain” that 

returns on object of class “DKSGeneScore” to hold the analysis results for classifier extraction 

and classification. 

 

 

 

 

 

 

 

 



  

20 
 

CHAPTER 6. METHODOLOGY AND DATASET 

The cancer dataset used for this experiment is downloaded from Gene Expression 

Omnibus (GEO) website (Edgar et al., 2002).  GES10645 was used for this research and it is a 

microarray genes expressions consisting of 596 men patients with prostate cancer.  After 

treatment, the 596 men patients were classified into one class of phenotype with three different 

levels: Systematic, Prostate-Specific Antigen (PSA), and No Evidence of Disease (NED).   

A systematic cancer is an initial cancer, called primitive, which developed metastases that 

migrated to different parts of the body.  NED is the term most often used to describe a patient's 

status after treatment. Unfortunately, we can never truly say a patient is cured of cancer - the best 

we can do is to say that we find no evidence of disease.  Prostate-Specific Antigen, or PSA, is a 

protein produced by cells of the prostate gland.  Of the 596 men patients, 200 of them were 

patients with systemic disease progression, 201 patients had PSA recurrence and 195 patients 

had no evidence of disease groups. 

Four widely methods were used for prediction, aiming to obtain high quality of genes in 

each class.  In recent years, many methods have been provided to perform the gene expression 

analysis.  The measurements for these experiments could provide genes expression’s levels.   

For classification, we need two types of datasets: the training dataset and the testing datasets.  

Besides dividing the datasets into half or using a cross-validation technique to split the dataset, 

the whole dataset was used as a training set and testing set for classification for the four different 

algorithms.  The training set was prepared by selecting every other points from the genes 

expressions of 596 men patients other than the phenotype.  

 

 



  

21 
 

6.1. Methods for the DualKS 

The “DualKS” package is applied to the KS algorithm in different ways: First, it can be 

used to perform the discriminant analysis then second, it is used for the classification analysis.  

The first step is to rank each gene based on how biased its expression is in each class.  We then 

have the option on focusing on the upregulated or downregulated genes in each class by using 

the function “dksTrain”.   

Later, we extracted a classifier of five genes per class from the training data by using the 

function “dksSelectGenes”.  We then apply this classifier to a testing data by running it against 

the training set to check for the internal consistency using the function “dksClassify”.  After the 

classification, we then used the function “summary” by defining the actual classes of samples.  

By doing so, the percent correspondence rate will be calculated and displayed along with the 

summary and keep the correspondence predicted sample. After trying to classify the training set, 

we computed the classification rate of the DualKS algorithm.  In order to do this, we had to 

slightly modify the function “dksPerm” of the package DualKS.   

6.2. Methods for the SVM 

In order to test the SVM algorithm, the training was done using the function “svm” in R.  

This function also provided the choice of many kernel functions. Since the kernel is the most 

important feature of the algorithm, then we decided to get a generic function which tunes hyper-

parameters of statistical methods using a grid search over supplied parameter ranges to get the 

classification rate of each kernel.   

One of the features of the function “svm” is the ability to define the margin failures or 

cost parameter.  Different cost values were tuned in because determining the best cost C 

correctly is a vital step for best practice in the use of SVM, as structural risk minimization.  By 



  

22 
 

running the function “svm” without defining any parameters such as the cost and distribution of 

the kernel, the “svm” outputs are the number of support vectors, the support vector type, the 

number  of classes and their respective levels, the estimate of  the cost and gamma and the type 

of  kernel that  best fit  the dataset.  These outputs defined the classifier at the earlier stage of the 

analysis.  After determining the optimal kernels over a given set of kernels and the best cost, it 

was imperative to estimate the prediction of that kernel.  After, we then computed its 

classification rate.   

6.3. Methods for the kNN 

The training of the prostate cancer was done using the function “knn” in R.  kNN has 

many useful characteristics, one of which being its non-sensitivity to outliers making it resilient 

to any errors in the classification dataset.  The knn function is housed in the class package and it 

neighbours classification for test set from training set. For each row of the test set, the k nearest 

training set vectors are found, and the classification is decided by majority vote, with ties broken 

at random. If there are ties for the 𝑘𝑡ℎ nearest vectors, all candidates are included in the vote.  

This function also provided the choice of many kernels functions.  When using kNN, it is 

very necessary to find the optimal kernel over different sets of kernels by using the function 

“tune.kknn”.  As one of the main features of the algorithm, it is really important to determine the 

best value of k.  We then  trained the data by using the  function “train.kknn” over different set of 

kernels and by letting the  maximum k  to be  the  square  root  of  the  total  sample size and in 

our case kmax=24. Training the dataset in such a way, does not just only gives us the optimal 

kernel but also provides the best value for k.  After that, we plot a graphical optimal k value by 

using the bootstrapping method of the function “tune.knn” and k ranging from 1 to 24.  We, then 

computed the classification rate using the kNN algorithm.   



  

23 
 

6.4. Methods for the RF 

The Random Forest algorithm is a very unique machine learning of its genre. It is very 

simple and it does not need any cross-validation technique to determine its respective parameters 

since it is done internally.  In order to test for the classification of the prostate cancer data using 

the RF algorithm, the package “Random Forest” in R was used which had many options.  The 

function random forest is unique  in its genre  because it has  the option  of  selecting the  

variables  that  are  mostly important.  The two main parameters in this packages are the number 

of input variables randomly chosen at each split “ mtry” and the number of trees in the random  

forest “ ntree”.  After, we then computed its prediction rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

24 
 

CHAPTER 7. RESULTS 

7.1. Results using the DualKS Classification 

The DualKS is an algorithm that performs discriminant analysis based on the tissue to 

gene set enrichments that are used for the classification analysis.  The most important step for 

using this algorithm is to rank each of the 596 patients and 53 genes based on its biasness 

expression in each of the three classes of phenotype. Table 1 summarizes the percent predcition 

rate calculated for the scoring options of  genes. 

Table 1. Prediction using DualKS 

Scoring options of  gene Prediction  rate 

Upregulated   40.10 percent 

Downregulated  39.10 percent 

Both 40.10 percent 

 

In Table 1, the prediction rate for the upregulated genes is 40.10 percent.  DualKS 

successfully predicted  the  up regulated  genes 40.10  percent  of  patients,  whereas, it 

successfully  predicted the downregulated 39.10 percent  of  the  patients.  

Table 2 summarizes the frequency of genes that were displayed from the three classes of 

phenotype.  In the scoring option of the upregulated genes, 186 men patients were classified 

having no evidence of disease (NED), whereas 231 patients still had the protein produced by 

cells of the prostate glands (PSA) and 179 patients had the presence of the initial cancer cells.  

Furthermore, in the scoring option of the downregulated genes, 245 patients were classified in 

the phenotype of patients presenting no evidence of disease, 168 patients with proteins produced 

by cells of the prostate gland and 183 patients had the presence of cancer in their bodies.  In  the 

scoring option of upregulated genes, the patients with  the  proteins produced by cells of  the  



  

25 
 

prostate gland account for 63.3 percent of the total patients whereas in the downregulated option, 

they only account for 39.3 percent of  the total patients. 

Table 2. Predicted class frequencies 

Scoring Option of Genes 

Class of  Genes Upregulated Downregulated Without  an  

option 

NED 186 245 186 

PSA 231 168 231 

SYSTEMATIC 179 183 179 

 

As we have seen from Table 1, the classification for any of the option was about 40 

percent; which was low for any classification algorithm.  In order to gain insights, the prediction 

object was plotted to visualize how the samples of each phenotype class compared to the other 

samples in terms of the KS scores for the individual signature. To visualize this distinction, a 

separate panel is created for each signature. 

From Figures 2 and 3, a color bar is plotted below each sample that indicates its predicted 

and actual class for ready identification of outliers and misclassified samples.  The data is plotted 

by using the three scoring options and sorted by each class signature so that the relationship 

between the upregulated and downregulated in each class could be observed.  The plot does not 

tell us the reason our prediction rate is low.  The first, second, and third panel in Figure 2 

correspond, respectively, to the signatures of the patients with no evidence of  disease, initial 

cancer patients and the patients with the protein produced by cells of the  prostate gland.  In 

Figure 2, the first panel shows the sorted patients according to the upregulated score.  The 

patients with no evidence of disease (red bar) are clustered to the left with almost the same 



  

26 
 

scores as the patients with the initial prostate cancer and the patients that had protein produced 

by cells of the prostate gland.  As we move to the right, the red line of the first panel decreases 

and the lines of the other signatures (blue line=Systematic signature score, green line=PSA 

signature score) increase following no discernable pattern.  The other two panels in the figure 

behave in the same manner with the systematic signature and PSA signature sorted in a 

decreasing manner.   

In order to correct this problem of low prediction rate, we slightly looked at three 

different methods: scaling the score of each of the signature so that they fall between 0 and 1, 

ranking the signatures by weighting the genes, and by converting the samples using a ratio.  

None of these three methods did improve our classification rate.   

 

Figure 2. Plot of samples of upregulated genes 

samples ordered by :

NED signature

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||ACTUAL:

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||PREDICTED:

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

KS
 S

CO
RE

samples ordered by :

PSA signature

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||ACTUAL:

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||PREDICTED:

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

KS
 S

CO
RE

samples ordered by :

Systemic signature

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||ACTUAL:

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||PREDICTED:

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

KS
 S

CO
RE

SIGNATURE KEY:

NED

PSA

Systemic



  

27 
 

 

 

 

 

Figure 3. Plot of samples of downregulated genes 

The best prediction rate for this dataset is approximately 40 percent, so it is important to 

localize which signature has the maximum score.  The distribution of KS scores using this 

package follows a gamma distribution with shape =3.2041 and rate=0.11935.  Both shape and 

rate are parameters of the gamma distribution, and they depend on the signature size and the total 

number of genes.  The first nine estimated p-values for our predicted classes are given in the 

Table 3.  Table 3 summarizes the random variation that resulted from the predicted classes. 

These high p-values were expected since the number of genes from each phenotype was low. 

Table 3. P-values of the first nine genes 

predicted p-value 

041 0.2909539 

058 0.8881518 

067 0.4082878 

077 0.3005362 

085 0.6032476 

017 0.5019659 

024 0.7794827 

032 0.6378167 

041 0.6032476 



  

28 
 

 

7.2. Results using the SVM Classification 

 

The classification using the Support Vector Machine requires the determination of the 

optimal kernel over the given set of kernels and its optimal cost.  The effect of the cost C on the 

classification error was done by permitting C to range from 10 to 1000.  A10 fold cross-

validation technique was done on our training set using five different kernels including the 

polynomial kernel, the linear kernel, the radial basic function kernel, the gamma kernel, and the 

sigmoid kernel in order to determine the optimal kernel.    

The 10 fold cross-validation involves for every set of 11 samples of the dataset, use 10 

fold for the training and the remaining one will be used for testing.  This technique is performed 

until all of the examples in the dataset are used for both training and testing.  The results are 

shown in the Table 4.    

Table 4. Performance of SVM kernels 

Kernels Cost Sampling method Best 

Performance 

Best Value 

Polynomial 100 10 fold cross 

validation 

0.683  

Radial basic 

Function 

100 10 fold cross 

validation 

0.692 gamma=0.012 

Gamma 100 10 fold cross 

validation 

0.66 0.01 

Linear 100 10 fold cross 

validation 

0.67  

Sigmoid 100 10 fold cross 

validation 

0.68  

 

After tuning each kernel to the training set using the 10 fold cross-validation technique, 

the radial basic function kernel was selected because of its high accuracy of 69.2 percent and a 

cost of 100.  Model selection is also an important aspect in the Support Vector Machine. Its 



  

29 
 

success depends on the tuning of several parameters such as cost and kernels that affect the 

generalization error.  

After using the grid-search method in k-fold cross-validation to select the best kernel and 

cost, we applied this parameter set to the training dataset and then obtained a classifier.  Then, 

the obtained classifier was used to classify from the training by allocating the testing dataset in 

order to get the generalization accuracy.  The prediction model from the radial basic function 

kernel is given the Table 5. 

Table 5. Prediction of the phenotype using SVM 

NED PSA Systematic 

195 201 200 

 

After inputting 596 patients into the classifier, the number of supports set was 588 and 

195 patients were predicted to have no evidence of disease (NED), whereas 201 patients had 

protein produced by cells of the prostate gland (PSA) and 200 patients had the presence of the 

initial cancer in their cells (Systematic).  The accuracy rate of the prediction using SVM is 100 

percent which is statistically significant. It perfectly classified the genome prostate cancer 

dataset. 

7.3. Results using the kNN Classification 

 

The aim of the kNN classification algorithm is to predict the testing sample’s category 

according to the k training samples which are the nearest to the testing sample.  As it is with the 

SVM, the determination of the best kernels is one of the main features of the algorithm in 

addition to finding the optimal k values.  In Table 6, we have a list of different kernels and their 

respective optimal minimal misclassification. This classification problem seems to be too simple 



  

30 
 

to produce significant differences between the different kernels and their corresponding kernel 

values.   

The optimal kernel is determined to be the rectangular kernels which is defined as the 

standard unweighted of the kNN since it has the smallest minimal misclassification.  Its 

misclassification rate is 66.9 percent. 

Table 6. Determination of the optimal kernels of kNN 

optimal 

kernels 

Best  k 

values 

Minimal 

misclassification 

rectangular 6 0.669 

triangular 10 0.672 

Gaussian 4 0.6812 

rank 6 0.6812 

optimal 12 0.676 

epanechnikov 10 0.673 

 

Table 7. Finding the best optimal k values with kmax=24 for kNN 

k values   Best  k  values   Minimal  misclassification 

5 3 0.676 

6 6 0.669 

7 6 0.669 

8 6 0.669 

9 6 0.669 

10 6 0.669 

11 6 0.669 

12 6 0.669 

13 6 0.669 

24 6 0.669 

 

A small kernel value and a small misclassification seems is the best choice.  As the k 

values increase, the misclassification increases by a small margin of error.  No matter which k 

value is used in the rectangular kernel, the results for a higher k reach the optimal results of 6.  

To avoid problems with the choice of the parameter k values which is a key feature of the kNN,  



  

31 
 

a bootstrap sampling method was used in order to check if the optimal k value found from the 

Table 7 was exactly the correct k value.  

  

Figure 4. Finding the optimal k-value 

We choose k= 6 as the best number of neighbors for kNN in this sample since it yields the 

smallest test error rates.  The classification result based on k = 6 is shown in the scatter plot of 

Figure 4.  After selecting the best value of k, one could make prediction based on this algorithm.  

In our case, the prediction rate is 54.4 percent.   

Table 8. Prediction using kNN 

NED PSA SYSTEMATIC 

202 171 223 

 

In Table 8, using the kNN algorithm, 202 men patients were classified to have no 

evidence of disease (NED), whereas 171 patients had protein produced by cells of the prostate 

gland (PSA) and 223 patients had the presence of the initial cancer in their cells (Systematic).   

 



  

32 
 

7.4. Results using the RF Classification 

 

One of the key features of the Random Forest is the idea that there is no need to do a 

cross-validation to get an unbiased estimator of the testing set since it is estimated internally.  As 

a result, after running the RF package, 500 trees were constructed from three phenotypes of the 

patient conditions from seven parameters with their class errors.  The error rate for the algorithm 

with the out-of-bag data is 69.3 percent. The result is displayed in the Table 9.  

Table 9. Prediction using RF 

Random Forest Record 

Number of Tree 500 

Number of variables at each split 7 

OOB prediction accuracy 69.3percent 

Type  of  Random  Forest Classification 

 

The score of the out-of-bag error rate is high.  This score means that the cluster of the 

random forest calculated with the classifier did score 69.3 percent by using the original dataset as 

the training set and testing set. It is important to note that RF does not just waste those “out-of-

bag” observations, it uses them to see how well each tree performs on unseen data. It is used as a 

testing set to determine the performance on the model.  The Random Forest produces the three 

different classes of phenotype when asked too.  The conditions of each patient are decided by the 

type of phenotype he or she processes.  Table 10 indicates the out-of- bag error rate for each 

class of phenotype.   

 



  

33 
 

Table 10. Out-of-bag error rate for each class 

  ntree   oob                NED                PSA           SYSTEMATIC 

  100:   71.98%           72.31%           72.14%              71.50% 

  200:   71.31%            72.82%          72.14%               69.00% 

  300:   69.46%            71.28%           71.64%              65.50% 

  400:   69.13%            67.69%           72.14%              67.50% 

  500:   69.63%             70.26%          71.14%               67.50% 

 

Another feature of the RF is the importance that it plays with the variable. Using 500 

trees, the prediction rate is 68.3 percent. We then wanted to see how the important variables 

affected the out-of-bag error.  The variable importance by the Random Forest can be useful in 

order to reduce the number of variable.  There are two types of importance measures in Figure 5. 

The accuracy one tests to see how worse the model performs without each variable, so a high 

decrease in accuracy would be expected for very predictive variables. The Gini one digs into the 

mathematics behind decision trees, but essentially measures how pure the nodes are at the end of 

the tree.  Again it tests to see the result if each variable is taken out and a high score means the 

variable was important. 

 
 

Figure 5. Variables of importance 

ETS1
IGFBP5
TRPS1
RAP1A
CCND1
RASA1
YWHAZ
VEGFA
MPP7
HMGCR
NRP1
ANXA2
PTPRG
MLLT3
CBL
PLAG1
MET
AFF4
TIMP3
PDGFA
JUND
CDK9
CDK6
TFE3
NGFR
MTPN
DLC1
FZD7
TBP
SMARCA4

-1.0 0.0 0.5 1.0 1.5

MeanDecreaseAccuracy

CDK6
CCND2
MTPN
TBP
TGFBR3
COL4A3
GNPTAB
GNB1
CRK
JUNDc
TGFBR3c
JUND
IGF1
NGFR
ITGB3
CBL
CCND1
YWHAZ
SMARCA4
TFE3
PTPRG
PLAG1
VEGFA
SLC44A1
TIMP3
RASA1
DLC1
CDK9
PDGFA
FZD7

0 2 4 6 8

MeanDecreaseGini

 Class= Yes Importance plots



  

34 
 

 
Figure 6.  Plot of important genes per phenotype 

 

 

 

 

 

 

  

0 10 20 30 40 50

-0
.0

04
-0

.0
02

0.
00

0
0.

00
2

Pheno 1

Index

so
rt

(v
ic

to
r$

im
po

rt
an

ce
[,

 i]
, 

de
c 

=
 T

R
U

E
)

0 10 20 30 40 50

-0
.0

02
0.

00
2

0.
00

6

Pheno 2

Index

so
rt

(v
ic

to
r$

im
po

rt
an

ce
[,

 i]
, 

de
c 

=
 T

R
U

E
)

0 10 20 30 40 50

-0
.0

02
0.

00
0

0.
00

2

Pheno 3

Index

so
rt

(v
ic

to
r$

im
po

rt
an

ce
[,

 i]
, 

de
c 

=
 T

R
U

E
)



  

35 
 

CHAPTER 8. MISCLASSIFICATION ASSESSMENT OF DUALKS 

 

8.1. 0.632 plus Bootstrap Method  

 

Bootstrap resampling is used to estimate the sampling distribution of any statistic. It is an 

alternative cross-validation that generates new samples by drawing instances from the original 

samples with replacement. If we define the training data as   x= ( 𝑥1, 𝑥2, 𝑥3, …𝑥𝑁), then B 

bootstrap samples from the set of  𝑧1, 𝑧2, 𝑧3, …𝑧𝐵 with 𝑧𝑖 being a set of samples N.  The 

estimated extra sample prediction error for the bootstrap is (Bradley &Robert, 1997): 

𝐸𝑟𝑟𝑏𝑜𝑜𝑡 =  
1

𝐵
∑

1

𝑁

𝐵

𝑏=1

∑ 𝐿(𝑦𝑖, 𝑓𝑏(𝑥𝑖

𝑁

𝑖=1

)), 

where 𝑓𝑏(𝑥𝑖) is the predicted value at 𝑥𝑖  from the model fit to the 𝑏𝑡ℎ bootstrap. This estimate by 

itself is not very accurate because the bootstrap samples used 𝑓𝑏(𝑥𝑖) may have contained 𝑥𝑖.  

The leave-one-out bootstrap estimator improves the estimate by mimicking cross-validation and 

is defined as (Efron  and Tibshirani, 1997):  

𝐸𝑟𝑟𝑏𝑜𝑜𝑡(1) =  
1

𝑁
∑

1

|𝐶−𝑖|

𝐵
𝑖=1 ∑ 𝐿(𝑦𝑖, 𝑓𝑏(𝑥𝑖

𝑁
𝑏∈𝐶−𝑖 )),                                                           

where 𝐶−𝑖 the set of indices is for the bootstrap samples that do not contain observation i, and 

|𝐶−𝑖| is the number of such samples.  𝐸𝑟𝑟𝑏𝑜𝑜𝑡(1) solves the overfitting problem, but is still 

biased. The average number of distinct observations in each sample is about 0.632N. To solve 

the bias problem, Efron and Tibshirani proposed the 0.632 estimator in 1997:  

𝐸𝑟𝑟0.632 = 0.368𝑒𝑟𝑟𝑜𝑟̅̅ ̅̅ ̅̅ ̅̅  + 0.632𝐸𝑟𝑟𝑏𝑜𝑜𝑡(1) 

 

𝑒𝑟𝑟𝑜𝑟̅̅ ̅̅ ̅̅ ̅̅ = 
1

𝑁
∑ 𝐿(𝑦𝑖 , 𝑓𝑏(𝑥𝑖

𝑁
𝑖=1 )) 

 

is the naïve estimate of prediction error often called training error. This bootstrap technique will 

be used to estimate the extra-sample prediction error. In order to gain more insights about the 



  

36 
 

poor performance of the DualKS classifier, we calculated the misclassification rate using the 

0.632 plus estimators. 

Table 11. Bootstrap  method 

Algorithms Parameters Misclassification rate 

using 0.632plus bootstrap 

 

DualKS 

 

 

B=100 

n=4 0.6666 

n=7 0.6589 

n=2 0.6631 

n=1 0.6665 

 

Table 11 summarizes the misclassification rate using the 0.632 plus bootstrap method.  

As we see, the number of boot is constant whereas the number of selected genes from each class 

of phenotype associated with the DualKS classifier varies.  The average performance is about 66 

percent.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

37 
 

CHAPTER 9. DISCUSSION 

The aim of this research was to examine the different classifier learning abilities and also 

to compare the prediction rate of each algorithm.  We observed that SVM classification 

outperformed kNN classification, RF classification, and DualKS classification.  Although the 

performance of DualKS was low compared to SVM, kNN, RF, this was because the DualKS 

classifier needs more genes per class in order for its prediction to improve and it is a new 

classifier that needs more implementations, whereas SVM, kNN, RF are somehow effective in 

classifying small data.  If the number of genes per class is not large enough, the prediction rate of 

the DualKS tends to be low.  By comparing each classifier, we saw that SVM outperformed kNN 

by 45.6 percent, and 30.7 percent for RF and about 60 percent for the DualKS.   

Furthermore, the average misclassification rate of the DualKS using the 0.632 plus 

bootstrap is about 66 percent which is very high but in this case it is acceptable since its 

classification was about 40.10 percent.  With regards to the features of the DualKS algorithm and 

its low prediction rate, we could foresee that the misclassification rate will be very high.  

Therefore for every classification, this classifier will only classify about one-third of time and it 

will wrongly classify about two-third.  

Trying to improve the performance of the DualKS, we investigated the reason of the low 

performance compared to the other three classifiers. We concluded that the size of the data and 

the number of genes per phenotype play an important role in the performance of the package.  

Since every dataset has its own features and characteristics, it is consistently impossible to 

foresee which algorithm will perform best.  For future work, we could create a new version that 

combines both DualKS and kNN and compare the combination to the performance of SVM using 

the same dataset.   

 



  

38 
 

CHAPTER 10. CONCLUSION 

 

The goal of this research was to evaluate the performance of SVM, kNN, RF and DualKS 

as learners and to better understand the idea behind each algorithm in order to determine the best 

classifier for the prostate cancer data.  In order to get the optimal classification rate for each 

algorithm, the prostate cancer data has been analyzed using different parameters over the ranges 

and their associated plots were created in order to get a better understanding of the individual 

effect of each algorithm.   

We observed that SVM classification outperformed kNN classification, RF classification, 

DualKS classification.  It is important to note that all four algorithms represent different 

approaches of machine learning.  The Random Forest, DualKS, and k-Nearest Neigbours all 

assume the underlying distribution of the prostate cancer dataset in a nonparametric manner, 

whereas SVM assumes that there is a hyperplane separating the three classes of phenotype.   

Therefore, the performance of an algorithm and learning machine such as kNN, RF, 

SVM, DualKS depends on the characteristics or features of the dataset.  Since every dataset has 

its own features, it is important to note that some classifiers might fall below the prediction rate 

of the DualKS whereas, another one might perform well in the case of SVM and RF.  As a result, 

it is important to understand the features of the data before applying a classifier.  Some 

classifiers might do well while others might do poorly.   

 

 

 

 

 

 



  

39 
 

REFERENCES 

Alexandros Karatzoglou, David Meyer, and Kurt Hornik, “Support Vector Machines in 

R,”Journal of Statistical Software 15.9, Vol. 15, Iss 9, 2006.  

 

Bach Peter B, Deborah Schrag, Otis W Brawley, Aaron Galaznik, Sofia Yakren, and Colin B 

Begg, “Survival of Blacks and Whites after a Cancer Diagnosis” Journal of the American 

Medical Association 287.16, pages 2106-2113, 2002. 

 

Efron Bradley, and Robert Tibshirani, “Improvements on Cross-Validation: The 632+ Bootstrap 

Method,” Journal of the American Statistical Association 92.438, pages 548-60, 1997.  

 

Breiman Leo, “Random Forests,” Machine Learning 45.1, pages 5-32, 2001.  

 

Belur.V. Dasarathy, “Nearest Neighbor Norms: NN Pattern Classification Techniques,” IEEE 

Computer Society Press, 1991. 

 

Chang Chih-chung, and Lin Chih-jen, “libsvm: A Library for Support Vector Machines,”2001.  

 

Clegg Limin X, Frederick P Li, Benjamin F Hankey, Kenneth Chu, and Brenda K Edwards, 

“Cancer survival among US whites and minorities: a SEER (surveillance, epidemiology, 

and end results) program population-based study,” Archives of Internal Medicine162(17), 

pages 1985–1993, 2002. 

 

Coleman MP, Quaresma M, Berrino F, et al. “Cancer survival in five continents: a worldwide 

population-based study (CONCORD),” The Lancet Oncology 9(8), pages 730–756, 2008. 

 

Cortes C., Vapnik V., “Support Vector Networks,” Machine Learning 20, pages 273-297, 1995. 

 

David Meyer, “Support Vector Machines _The Interface to libsvm in package e1071,” 

September 1, 2014. 

 

Delancey John Oliver L, Michael J Thun, Ahmedin Jemal, and Elizabeth M Ward, “Recent 

Trends in Black-White Disparities in Cancer Mortality,” Cancer Epidemiology, 

Biomarkers & Prevention : A Publication of the American Association for Cancer 

Research, Cosponsored by the American Society of Preventive Oncology 17.11 , pages 

2908-2912, 2008. 

 

Dimitriadou E, Hornik K, Leisch F, Meyer D, Weingessel A, “e1071: Misc Functions of the 

Department of Statistics (e1071),” TU Wien, Version 1.5-11, 2005. 

 

Edgar Ron, Michael Domrachev, and Alex E Lash, “Gene Expression Omnibus: NCBI Gene 

Expression and Hybridization Array Data Repository,” Nucleic Acids Research 30.1, 

pages 207-10, 2002. 

 



  

40 
 

Feigelson Eric and G. Jogesh Babu, “Beware the Kolmogorov-Smirnov test!,” Center for 

Astrostatistics, Penn State University, USA 2012. 

 

Hechenbichler K. and Schliep K.P, “Weighted k-Nearest-Neighbor Techniques and Ordinal 

Classification,” Discussion Paper 399, SFB 386, Ludwig-Maximilians University 

Munich, 2004. 

 

Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ, “Cancer statistics,” CA Cancer Journal for 

Clinicians 59(4), pages 225–249, 2009. 

 

Jian-Hua Huang, Hua-Lin Xie, Jun Yan, Hong-Mei Lu, Qing-Song Xu, Yi-Zeng Liang, “Using 

random forest to classify T-cell epitopes based on amino acid properties and molecular 

features,” Analytica Chimica Acta, Volume 804, pages 70-75,December 4th,2013. 

 

John C. Platt, “Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector 

Machines,” April 21st, 1998. 

 

Khan, M., Ding, Q. and Perrizo, W, “K-Nearest Neighbors Classification of Spatial Data Streams 

using P-trees,” Proceedings of the PAKDD, pages 517-528, 2002. 

 

Kort Eric.J., Yarong Yang, Z. Zhang, B.T. Teh, and N. Ebrahimi, “Gene selection and 

classification of microarray data by twins kolmogorov-smirnov analysis,” Technical 

Report, 2008. 

 

Kort Eric.J., Yarong Yang, “Using DualKS,” October 13 2014. 

 

Kort Eric.J., Yarong Yang, Z. Zhang, B.T. Teh, and N. Ebrahimi, “Dual KS: Defining Gene Sets 

with Tissue Set Enrichment Analysis,” Cancer Informatics, Vol. 2010(9), 2010.  

 

Kumar, Rajnish, Anju Sharma, and Rajesh Kumar Tiwari, “Application of Microarray in Breast 

Cancer: An Overview,” Journal of Pharmacy & Bioallied Sciences 4.1, pages 21-26, 

2012.  

 

Moreno-Seco, F., Mico, L. and Oncina, J, “A Modification of the LAESA Algorithm for 

Approximated k-NN Classification,” Pattern Recognition Letters 24, pages 47–53, 2003. 

 

Nello Cristianini and John. Shawe-Taylor, “An introduction to support vector machines and 

other kernel-based learning methods,” Cambridge University Press, 2000. 

 

Park Y, Shackney S, Schwartz R, “Network-based inference of cancer progression from 

microarray Data,” Computational Biology and Bioinformatics, IEEE/ACM Transactions 

on 6.2, pages 200-212, 2009. 

 

Quansheng Kuang, and Lei Zhao, “A Practical GPU Based KNN Algorithm,” School of 

Computer Science and Technology, Soochow University, Suzhou 215006, Huangshan, P. 

R. China, pages 151-155, December. 2009. 



  

41 
 

 

R Development Core Team, “R: A Language and Environment for Statistical Computing,” 2005. 

 

Ries Lag, Eisner MP, Kosary CL, Hankey BF “SEER Cancer Statistics Review,” Bethesda, Md, 

USA: National Cancer Institute, pages 1973-1997, 2000. 

 

Simone Vincenzi, Matteo Zucchetta, Piero Franzoi, Michele Pellizzato, Fabio Pranovi, Giulio A. 

De Leo, Patrizia Torricelli, “Application of a Random Forest algorithm to predict spatial 

distribution of the potential yield of Ruditapes philippinarum in the Venice lagoon, Italy, 

Ecological Modelling,” Volume 222, Issue 8, pages 1471-1478, April 24th, 2011. 

 

Subramanian A, Tamayo P, Mootha VK, et al., “Gene set enrichment analysis: a knowledge-

based approach for interpreting genome-wide expression profiles,” Proc Natl Acad Sci 

USA 102(43), pages 15545-1550, 2005. 

 

Stefan Lessmann, Robert Stahlbock, Sven F. Crone, “Genetic Algorithms for Support Vector 

Machine Model Selection,” International Joint Conference on Neural NetworksSheraton 

Vancouver Wall Centre Hotel, Vancouver,  Canada, pages 16-21, July 2006. 

 

Vapnik Vladimir N., “Estimation of Dependences Based on Empirical Data,” New York: 

Springer, 1982. 

 

Vapnik Vladimir N., “The Nature of Statistical Learning Theory,” New York: Springer, 1995.  

 

Vojislav .Kecman, “Learning and soft computing,” The MIT PRESS, Cambridge, MA, 2001. 

 

Wild SH, Fischbacher CM, Brock A, Griffiths C, Bhopal R, “Mortality from all cancers and 

lung, colorectal, breast and prostate cancer by country of birth in England and Wales 

2001–2003,” British Journal of Cancer 94(7), pages 1079-1085, 2006. 

 

Xu, Yun, Simeone Zomer, and Richard G. Brereton. “Support Vector Machines: A Recent 

Method For Classification In Chemometrics,” Critical Reviews In Analytical Chemistry 

36.3/4, pages 177-188, 2006. 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

42 
 

 

APPENDIX A. TRAINING THE ALGORITHMS 

### Preparing  the  dataset 

Load(“Expression.RData”) 

source("dksPerm.r.R") 

names(Exp) 

str(Exp)  #  getting  to know  the  data very  well 

Exp_new=Exp[,-which(colnames(Exp)=="MET")[2]] #  eliminate the 2nd duplicate variable  

class(Exp_new) 

length(Exp_new) 

names(Exp_new) 

str(Exp_new) 

ks<-as.matrix(Exp_new)  # changing  it  to  a  matrix 

ks 

ks<-t(ks) 

ks 

Pheno<-Exp_new$Pheno  # creating  the   classes of the  phenotypes 

duplicated(ks)  #  checking  for  duplicate 

duplicated(names(Exp_new))  #  checking  for  duplicate 

 

###DUALKS algorithm 

source("http://bioconductor.org/biocLite.R")  # installing  the  package  into  R 

biocLite("dualKS") # installing  the  package  into  R. 

library(dualKS) 

library("BiocInstaller") 

ks<-as.matrix(Exp_new)  # changing  it  to  a  matrix 

ks<-t(ks) 

ks 

Pheno<-Exp_new$Pheno   

tr<-dksTrain(ks,class=Pheno,  type="up")  # training for  the  upregulated genes 

cl<-dksSelectGenes(tr,n=5) # extract  5 genes  per  class from  the  training  data 

pr<- dksClassify(ks, cl) 

summary(pr, actual=Pheno) # getting  the  classification  rate of  the  training  set 

show(pr) 

plot(pr, actual=Pheno, main=" upregulated") 

dv<- dksClassify(ks, cl, rescale=TRUE) 

summary(dv, actual=Pheno) 

plot(dv, actual=Pheno, main=" upregulated") 

 

tr<-dksTrain(ks,class=Pheno,  type="down")# training for  the  downregulated genes 

cl<-dksSelectGenes(tr,n=5) # extract  5 genes  per  class from  the  training  data 

pr<- dksClassify(ks, cl) 

summary(pr, actual=Pheno) # getting  the  classification  rate of  the  training  set 

plot(pr, actual=Pheno) 



  

43 
 

dv<- dksClassify(ks, cl, rescale=TRUE) 

summary(dv, actual=Pheno) 

plot(dv, actual=Pheno) 

 

tr<-dksTrain(ks,class=Pheno) # training for  the  genes 

cl<-dksSelectGenes(tr,n=5) # extract  5 genes  per  class from  the  training  data 

pr<- dksClassify(ks, cl) 

summary(pr, actual=Pheno) # getting  the  classification  rate of  the  training  set 

show(pr) 

plot(pr, actual=Pheno) 

dv<- dksClassify(ks, cl, rescale=TRUE) 

summary(dv, actual=Pheno) 

source("dksPerm.r.R") 

p.value <- dksPerm.r(ks, type="both", Pheno,m=5) 

p.value 

b=p.value(pr@predictedScore)  #  estimated p-values  

b 

a= data.frame(pr@predictedScore, pr@scoreMatrix) #  constructing  the  table 

a 

summary(a) 

plot(b) 

plot(a) 

 

###SVM algorithm 

install.packages("e1071", dep=T)   

install.packages("kernlab", dependencies = TRUE)  

install.packages("rpart", dependencies = TRUE)  

install.packages("RColorBrewer", dependencies = TRUE)  

library(rpart)  #  loading  packages  from  R 

library(kernlab) #  loading  packages  from  R 

library(e1071) #  loading  packages  from  R 

 

x <- subset(Exp_new, select = -Pheno) 

y <- Pheno #  y  is  factor  for  the  classification  task 

 

# finding  the  best  kernels  for  SVM. 

tuned <- tune.svm(x,y, polynomial = 10^(-6:-1), cost = 10^(1:3))  #  give  the  best  performance 

plot(tuned, data=x, main=" polynomial performance") 

v <- tune.svm(x,y, rbf = 10^(-6:-1), cost = 10^(1:3))  #  give  the  best  performance 

plot(v, data=x, main= "rbf performance") 

tuneds <- tune.svm(x,y, gamma = 10^(-6:-1), cost = 10^(1:3))  #  give  the  best  performance 

plot(tuned, main="gamma performance") 

obj <- tune.svm(x,y, linear = 10^(-6:1), cost = 10^(1:3)) 

plot(obj, data=x, main="linear performance") 

objS <- tune.svm(x,y, sigmoid = 10^(-6:1), cost = 10^(1:3)) 

plot(objS, data=x, main="linear performance") 



  

44 
 

 

#  training  the  best  kernel to  find  the  cost  and  the  prediction  rate 

model <- svm(x, y,probability = TRUE, kernel="radial",cost = 100, data= Exp_new) 

model 

summary(model) 

pred <- predict(model, x) #  Getting  the  prediction 

pred 

summary(pred) 

summary(table(pred, y))  #  check  for  accuracy 

r=table(y, pred)  #  check  for  accuracy 

 classAgreement(r) #check  for  accuracy 

 

### K-Nearest Neighbour algorithm 

install.packages("RWeka", dependencies = TRUE) # loading   

install.packages("kknn", dependencies = TRUE) 

library(class) 

library(kknn) 

library(RWeka) 

library(rpart) 

library(kernlab) 

library(e1071) 

x <- subset(Exp_new, select = -Pheno) 

y <- Pheno #  y  is  factor  for  the  classification  task 

train=Exp_new  # training  data  is  the  whole  dataset 

test= Exp_new #  test data  is  the  whole  dataset 

 

# determining  the  best  kernels 

  

(j<- train.kknn(Pheno~., train,test, kmax = 24,kernel= "rectangular", distance=2))  

(j<- train.kknn(Pheno~., train,test, kmax = 24,kernel= "triangular", distance=2))  

(j<- train.kknn(Pheno~., train,test, kmax = 24,kernel= "gaussian", distance=2))  

(j<- train.kknn(Pheno~., train, test, kmax = 24,kernel= "rank", distance=2)) 

(j<- train.kknn(Pheno~., train, test, kmax = 24,kernel= "optimal", distance=2))  

(j<- train.kknn(Pheno~., train,test, kmax = 24,kernel= "epanechnikov", distance=2))  

 

#Using  the  best  kernel ( rectangular kernel)  to find  the  best  k value 

 

(j<- train.kknn(Pheno~., train,test, kmax = 5,kernel= "rectangular", distance=2)) 

(j<- train.kknn(Pheno~., train,test, kmax = 24,kernel= "rectangular", distance=2) ) 

(j<- train.kknn(Pheno~., train,test, k= 6,kernel= "rectangular", distance=2)) 

(j<- train.kknn(Pheno~., train,test, kmax = 7,kernel= "rectangular", distance=2) ) 

(j<- train.kknn(Pheno~., train,test, kmax = 8,kernel= "rectangular", distance=2))  

(j<- train.kknn(Pheno~., train,test, kmax = 9,kernel= "rectangular", distance=2))  

(j<- train.kknn(Pheno~., train,test, kmax = 10,kernel= "rectangular", distance=2))  

(j<- train.kknn(Pheno~., train,test, kmax = 11,kernel= "rectangular", distance=2))  

(j<- train.kknn(Pheno~., train,test, kmax = 12,kernel= "rectangular", distance=2))  



  

45 
 

(j<- train.kknn(Pheno~., train,test, kmax = 13,kernel= "rectangular", distance=2))  

 

# using  the  sampling method to find  the  best  k values 

 

set.seed(26) # reproduces the same graph 

tunes <- tune.knn(x,y,k=1:24, tunecontrol = tune.control(sampling = "boot"))  #  give  the  best  

performance 

summary(tunes) 

plot(tunes, main=" finding best  k  values") 

 

# training the knn with  best parameters 

 

v<- train.kknn(Pheno~., train,test, k= 24,kernel= "rectangular", distance=2) # provides best k 

summary(v) 

par(mfrow=c(1,1)) 

plot(v, type="l") 

# computing  the  prediction  accuracy 

pred <- predict(v, x) 

summary(pred) 

sum(pred==y)/length(y) #  check  for  accuracy 

 

##Random Forest algorithm 

install.packages("randomForest", dependencies = TRUE) # loading   

install.packages("rpart", dependencies = TRUE) # loading   

install.packages("RColorBrewer", dependencies = TRUE) # loading   

library(randomForest) 

library(rpart) 

library(RColorBrewer) 

library(randomForest) 

x <- subset(Exp_new, select = -Pheno) 

y <- Pheno #  y  is  factor  for  the  classification  task 

 

#training  the  rf 

 

p3 <- randomForest(Pheno ~ ., data = Exp_new) # CLASSIFICATION ERROR RATE 

print(p3) 

summary(p3) 

plot(p3) 

pred <- predict(p3, x, type="prob")  # prediction 

summary(pred) 

victor <- randomForest(Pheno ~ ., Exp_new, proximity=TRUE,keep.forest=FALSE, 

na.action=na.omit, rsq=TRUE, mtry=7, do.trace=100, ntree=500,importance = TRUE) 

victor 

summary(victor) 

plot(victor, main="Error rate over trees")  #  plotting  the  regression 

 



  

46 
 

 

#  looking  at important  variables 

 

importance(victor)   #  important  variable 

l=varImpPlot(victor)  #  important  varaiable 

varImpPlot(victor,class="Yes",main=" Class= Yes Importance plots") # plot  of  important 

variable 

par(mfrow = c(2, 2)) 

for (i in 1:3) 

 plot(sort(victor$importance[,i], dec = TRUE), type = "h", main = paste("Pheno" , i)) 

plot(outlier(victor), type="h",col=c("red", "green", "blue")[as.numeric(Pheno)]) 

v=MDSplot(victor, Pheno) #Plot the scaling coordinates of the proximity matrix from 

randomForest 

kl=MDSplot(victor, Pheno, palette=rep(1, 3), pch=as.numeric(Pheno)) # Using different symbols 

for the classes 

margins.rf=margin(victor,Pheno) 

plot(margins.rf) 

hist(margins.rf,main="Margins of Random Forest for churn dataset") 

boxplot(margins.rf~Pheno, 

main="Margins of Random Forest for churn dataset by class") 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

47 
 

APPENDIX B. MISCLASSIFICATION ALGORITHM 

 

### DUALKS   

library(dualKS) 

library(bootstrap) 

load("Exp.Rdata") 

CL<-Exp[,1] 

data<-t(Exp[,2:54]) 

B=100  # ADDED  B=100  

# selecting four  samples 

boot_dualKS<-function(x=data,y=CL,nboot=B) { 

    n<-length(y) 

    saveii<-NULL 

    miss.clas<-function(y,yhat) {1*(yhat!=y)} 

    tr<-dksTrain(eset=x,class=y,type="up",method="yang") 

    GS<-dksSelectGenes(data=tr,n=4) 

    CL_pred<-dksClassify(eset=data, classifier=GS)@predictedClass 

    app.err<-mean(miss.clas(y,CL_pred)) 

    err1<-matrix(0,nrow=nboot,ncol=n) 

    err2<-rep(0,nboot) 

    for(b in 1:nboot) { 

        ii<-sample(1:n,replace=TRUE) 

        saveii<-cbind(saveii,ii) 

        tr_fit<-dksTrain(eset=x[,ii],class=y[ii],type="up",method="yang") 

        GS_fit<-dksSelectGenes(data=tr_fit,4) 

        CL_pred_1<-dksClassify(eset=x[,ii],classifier=GS_fit)@predictedClass 

        CL_pred_2<-dksClassify(eset=x,classifier=GS_fit)@predictedClass 

        err1[b,]<-miss.clas(y,CL_pred_2) 

        err2[b]<-miss.clas(y[ii],CL_pred_1) 

    } 

    optim<-mean(apply(err1,1,mean)-err2) 

    junk<-function(x,i) sum(x==i) 

     

    e0 <- 0 

    for (i in 1:n) { 

        o <- apply(saveii, 2, junk, i) 

        if (sum(o == 0) == 0)  

            cat("increase nboot for computation of the .632 estimator",  

                fill = TRUE) 

        e0 <- e0 + (1/n) * sum(err1[o == 0, i])/sum(o == 0) 

    } 

    err.632 <- 0.368 * app.err + 0.632 * e0 



  

48 
 

 

    gamma <- sum(outer(y, CL_pred, function(x1, y) ifelse(x1==y, 0, 1) ))/ 

                 (length(y)^2) 

    r <- (e0 - app.err)/(gamma - app.err) 

    r <- ifelse(e0 > app.err & gamma > app.err, r, 0) 

    errprime <- min(e0, gamma) 

    err <- err.632 + (errprime - app.err)*(0.368*0.632*r)/(1-0.368*r) 

    return(list(err632=err.632,err632plus=err)) 

} 

kk=boot_dualKS(x=data,y=CL,nboot=B) 

kk 

` # selecting seven samples 

boot_dualKS<-function(x=data,y=CL,nboot=B) { 

    n<-length(y) 

    saveii<-NULL 

    miss.clas<-function(y,yhat) {1*(yhat!=y)} 

    tr<-dksTrain(eset=x,class=y,type="up",method="yang") 

    GS<-dksSelectGenes(data=tr,n=7) 

    CL_pred<-dksClassify(eset=data, classifier=GS)@predictedClass 

    app.err<-mean(miss.clas(y,CL_pred)) 

    err1<-matrix(0,nrow=nboot,ncol=n) 

    err2<-rep(0,nboot) 

    for(b in 1:nboot) { 

        ii<-sample(1:n,replace=TRUE) 

        saveii<-cbind(saveii,ii) 

        tr_fit<-dksTrain(eset=x[,ii],class=y[ii],type="up",method="yang") 

        GS_fit<-dksSelectGenes(data=tr_fit,4) 

        CL_pred_1<-dksClassify(eset=x[,ii],classifier=GS_fit)@predictedClass 

        CL_pred_2<-dksClassify(eset=x,classifier=GS_fit)@predictedClass 

        err1[b,]<-miss.clas(y,CL_pred_2) 

        err2[b]<-miss.clas(y[ii],CL_pred_1) 

    } 

    optim<-mean(apply(err1,1,mean)-err2) 

    junk<-function(x,i) sum(x==i) 

     

    e0 <- 0 

    for (i in 1:n) { 

        o <- apply(saveii, 2, junk, i) 

        if (sum(o == 0) == 0)  

            cat("increase nboot for computation of the .632 estimator",  

                fill = TRUE) 

        e0 <- e0 + (1/n) * sum(err1[o == 0, i])/sum(o == 0) 

    } 



  

49 
 

    err.632 <- 0.368 * app.err + 0.632 * e0 

 

    gamma <- sum(outer(y, CL_pred, function(x1, y) ifelse(x1==y, 0, 1) ))/ 

                 (length(y)^2) 

    r <- (e0 - app.err)/(gamma - app.err) 

    r <- ifelse(e0 > app.err & gamma > app.err, r, 0) 

    errprime <- min(e0, gamma) 

    err <- err.632 + (errprime - app.err)*(0.368*0.632*r)/(1-0.368*r) 

    return(list(err632=err.632,err632plus=err)) 

} 

kk=boot_dualKS(x=data,y=CL,nboot=B) 

kk 

 

# selecting two  samples 

boot_dualKS<-function(x=data,y=CL,nboot=B) { 

    n<-length(y) 

    saveii<-NULL 

    miss.clas<-function(y,yhat) {1*(yhat!=y)} 

    tr<-dksTrain(eset=x,class=y,type="up",method="yang") 

    GS<-dksSelectGenes(data=tr,n=2) 

    CL_pred<-dksClassify(eset=data, classifier=GS)@predictedClass 

    app.err<-mean(miss.clas(y,CL_pred)) 

    err1<-matrix(0,nrow=nboot,ncol=n) 

    err2<-rep(0,nboot) 

    for(b in 1:nboot) { 

        ii<-sample(1:n,replace=TRUE) 

        saveii<-cbind(saveii,ii) 

        tr_fit<-dksTrain(eset=x[,ii],class=y[ii],type="up",method="yang") 

        GS_fit<-dksSelectGenes(data=tr_fit,4) 

        CL_pred_1<-dksClassify(eset=x[,ii],classifier=GS_fit)@predictedClass 

        CL_pred_2<-dksClassify(eset=x,classifier=GS_fit)@predictedClass 

        err1[b,]<-miss.clas(y,CL_pred_2) 

        err2[b]<-miss.clas(y[ii],CL_pred_1) 

    } 

    optim<-mean(apply(err1,1,mean)-err2) 

    junk<-function(x,i) sum(x==i) 

     

    e0 <- 0 

    for (i in 1:n) { 

        o <- apply(saveii, 2, junk, i) 

        if (sum(o == 0) == 0)  

            cat("increase nboot for computation of the .632 estimator",  

                fill = TRUE) 

        e0 <- e0 + (1/n) * sum(err1[o == 0, i])/sum(o == 0) 



  

50 
 

    } 

    err.632 <- 0.368 * app.err + 0.632 * e0 

 

    gamma <- sum(outer(y, CL_pred, function(x1, y) ifelse(x1==y, 0, 1) ))/ 

                 (length(y)^2) 

    r <- (e0 - app.err)/(gamma - app.err) 

    r <- ifelse(e0 > app.err & gamma > app.err, r, 0) 

    errprime <- min(e0, gamma) 

    err <- err.632 + (errprime - app.err)*(0.368*0.632*r)/(1-0.368*r) 

    return(list(err632=err.632,err632plus=err)) 

} 

kk=boot_dualKS(x=data,y=CL,nboot=B) 

kk 

 

# selecting one  sample 

boot_dualKS<-function(x=data,y=CL,nboot=B) { 

    n<-length(y) 

    saveii<-NULL 

    miss.clas<-function(y,yhat) {1*(yhat!=y)} 

    tr<-dksTrain(eset=x,class=y,type="up",method="yang") 

    GS<-dksSelectGenes(data=tr,n=1) 

    CL_pred<-dksClassify(eset=data, classifier=GS)@predictedClass 

    app.err<-mean(miss.clas(y,CL_pred)) 

    err1<-matrix(0,nrow=nboot,ncol=n) 

    err2<-rep(0,nboot) 

    for(b in 1:nboot) { 

        ii<-sample(1:n,replace=TRUE) 

        saveii<-cbind(saveii,ii) 

        tr_fit<-dksTrain(eset=x[,ii],class=y[ii],type="up",method="yang") 

        GS_fit<-dksSelectGenes(data=tr_fit,4) 

        CL_pred_1<-dksClassify(eset=x[,ii],classifier=GS_fit)@predictedClass 

        CL_pred_2<-dksClassify(eset=x,classifier=GS_fit)@predictedClass 

        err1[b,]<-miss.clas(y,CL_pred_2) 

        err2[b]<-miss.clas(y[ii],CL_pred_1) 

    } 

    optim<-mean(apply(err1,1,mean)-err2) 

    junk<-function(x,i) sum(x==i) 

     

    e0 <- 0 

    for (i in 1:n) { 

        o <- apply(saveii, 2, junk, i) 

        if (sum(o == 0) == 0)  

            cat("increase nboot for computation of the .632 estimator",  



  

51 
 

                fill = TRUE) 

        e0 <- e0 + (1/n) * sum(err1[o == 0, i])/sum(o == 0) 

    } 

    err.632 <- 0.368 * app.err + 0.632 * e0 

 

    gamma <- sum(outer(y, CL_pred, function(x1, y) ifelse(x1==y, 0, 1) ))/ 

                 (length(y)^2) 

    r <- (e0 - app.err)/(gamma - app.err) 

    r <- ifelse(e0 > app.err & gamma > app.err, r, 0) 

    errprime <- min(e0, gamma) 

    err <- err.632 + (errprime - app.err)*(0.368*0.632*r)/(1-0.368*r) 

    return(list(err632=err.632,err632plus=err)) 

} 

kk=boot_dualKS(x=data,y=CL,nboot=B) 

kk 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


