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ABSTRACT 

 This dissertation considers the most important aspects of success in the National Football 

League (NFL). Success is defined, for this paper, as winning individual games in the short term, 

and making the playoffs over the course of a season in the long term. Data was collected for 750 

different regular season games over the course of five seasons in the NFL, and used to create 

models that identify those factors which are most significant towards winning at both the short 

term and long term levels.  

A point spread model was developed using an ordinary least squares regression method, 

and stepwise selection technique to reduce the number of variables included. Logistic regression 

models were also created to state the probability a team will win an individual game, and also the 

probability a team will make the playoffs at the end of the season. Discriminant analysis was 

performed to compare the significant variables in our models, and determine which had the largest 

influence. We considered the relationship between offense and defense in the NFL to conclude 

whether or not one area had a significant advantage over the other. We also fit a proportional odds 

model on the data set to categorize blowout games, and those that are close at the end.  

The overwhelming presence of turnover margin, passing efficiency, first down margin, and 

sack yardage in all of our models is clear evidence that there are a handful of statistics that can 

explain success in the NFL. Using the statistics from games, we were able to correctly identify the 

winner around 88% of the time. Finally, we used simulations and historical team performances to 

forecast future game outcomes, our models classified the actual winner with a 71% accuracy rate.  

Analytics are slowly gaining momentum in football, and the advantages are clear. 

Quantifying success in the NFL can benefit both individual teams, and the league as a whole, to 

present the best possible product to their audiences. 
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CHAPTER 1. INTRODUCTION 

 Sports in the United States elicit a passionate and loyal following. In recent years, football 

has taken the place as the most popular sport, both on a professional, and amateur level (Luker 

[2011]). In particular, the National Football League (NFL) is the pinnacle of football talent and 

competition. As a business, the NFL is the most lucrative sports league in the world, with revenue 

of over $9 billion in 2013 (Burke [2013]). As the popularity and income increase, teams look for 

better ways to maximize their investments, and to put the best product on the playing field. This 

has raised the question of how statistics can relate and contribute to the arena of sports. In this 

paper, we will look at different ways to analyze NFL games, find factors that are important to 

winning those games, and create models that can best predict the outcome of future contests based 

on historical performances. 

 The National Football League was founded on August 20, 1920 in Canton, Ohio. The 

league originally consisted of fourteen teams, now almost 100 years later and after many mergers 

with rival associations, there are thirty-two teams across the United States. Currently, every season 

these teams play each other in three types of games; exhibition, regular season, and playoffs. 

Exhibition games start the season and do not count towards a team’s spot in the standings. There 

are sixteen regular season games played by each team over the course of seventeen weeks that 

determine the relative position in the standings based on the win-loss record of the team. After the 

regular season, teams are ranked by record, and participate in a four round, single elimination 

playoff tournament to decide a league champion in the Super Bowl. 

 The league is divided into two conferences, the National Football Conference (NFC), and 

the American Football Conference (AFC). Each conference consists of sixteen teams separated 

into four divisions of four teams. At the end of the regular season schedule, the top team in every 
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division secures a playoff berth. Then, from the remaining teams, the two in each conference with 

the best records, called wildcards, also make the playoffs. Thus, there are six playoff teams from 

both the NFC and AFC, and the seeding are as follows in each league: 

Seed 1: Division winner with best record 

Seed 2: Division winner with second best record 

Seed 3: Division winner with third best record 

Seed 4: Division winner with fourth best record 

Seed 5: Wildcard team with best record 

Seed 6: Wildcard team with second best record 

 For the purposes of this paper, we are focusing on regular season games, and the teams that 

make the playoffs at the end of each season. From 2011 to 2014, all NFL games were recorded for 

our data set. A multitude of commonly collected in-game statistics were kept, along with some 

more obscure measurements. Included in these were home and away team, points scored, total 

yards gained, number of turnovers committed, along with over fifty others. The current format and 

rules for the National Football League have been fairly consistent over this period of time, with 

only minor changes to address the safety of players, not the outcome of games. Therefore, we feel 

that this is a good representation of the current state of play in the league and a reasonable data set 

from which to develop our models. 

 With these data sets, we will set out to examine games in five different ways. First we will 

consider the score margin at the end of games. This tells us who won the game and by how many 

points. We will use ordinary least squares regression to create a model with score margin as the 

response. The model will be created using the first two years of our data set, and tested using the 
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third year. Accuracy in not only identifying the winners of each game, but also the margin they 

won by is the objective with this analysis. 

 Next, we will develop models that can accurately derive the outcomes of games using in 

game statistics. The first two years of NFL games in our data set will again constitute our model 

training data set. Using a logistic regression model, we will report the probability that each team 

will win a matchup by means of the significant covariates chosen by our model selection 

procedure. We will also consider long term success, by the measure of making the playoffs. A 

logistic regression equation will be created to assess the probability of each team making the 

playoffs at the end of the season. Using statistic totals at the end of seasons, we hope to determine 

those that are the best indicators of successfully making the playoffs. 

 Then, we will use a discriminant analysis approach to determine the major factors that go 

into winning individual games, and also making the playoffs at the end of the season. Our goal 

here, is to see if there are certain combinations of in game statistical measurements that aid or 

prevent a team from experiencing success in the league. Once again, we will create models for 

both long term success over the course of a season, and short term success in individual games. 

One hypothesis is that defense is a greater contributor to victory than offense. With our 

discriminant analysis, we will be able to quantify these effects and make relative comparisons to 

see the overall influences from both offensive and defensive statistics. 

 Additionally, we will consider a proportional odds model to forecast the outcome of games, 

along with a general range of the margin of victory. By considering not only which team wins the 

contest, but also whether it was within ten points or decided by more than ten points, we will create 

different categories games can be classified into. These unique categories will represent any 

possible outcome at the end of the game, a large win by the away team, a small win by the away 
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team, a small win by the home team, and a large win by the home team. The proportional odds 

model will assign a probability of the final score margin falling into each of the four categories. 

Whichever one has the largest probability will be cross validated with the actual outcome to check 

accuracy. This method of analysis provides a more or less combination of the logistic regression 

approach with the point spread model.  

The last part of our analysis will be to validate and forecast the outcome of future games. 

With the models developed from the training data sets, we will fit the outcomes of contests from 

the third year of the collected games. Here, we hope to find that the models will work just as well 

when used on games that are outside of the data set they were developed with to validate our 

findings. In the case of the point spread model, we will also attempt to accurately predict the 

difference in scores, along with the winner. 

Simulation will provide a useful tool as well, since there are many sources of underlying 

variation that go into any football game, we will simulate the future performances of teams based 

on the games that they have already played during that season. Each of the significant variables in 

a model will have its own distribution, and together with the data from the opposing team, one 

game can be simulated and the outcome recorded. With enough simulations of each game, we hope 

to get an accurate picture of how we can expect the teams to perform during their upcoming games, 

and check it against the actual results. 

 The goal of this paper is to develop models which emphasize the important areas that 

contribute to winning in the NFL. We would like to know if there are consistent areas that can be 

pointed to as indicators of highly performing teams. If there are consistent factors, we would like 

to quantify them, so as to eliminate any ambiguity a coach or casual fan may have while watching 

a game. We also want to offer evidence for, or against, the long held notion that “defense wins 
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championships”. Finally, we would like to provide models that can forecast the outcome of games 

based solely on recent performances. With all of this analysis, we hope to prove that sports 

analytics has a viable place in the NFL, and that it continues to grow with support and 

implementation.  
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CHAPTER 2. LITERATURE REVIEW 

 Much of the recent literature on the NFL is focused on forecasting professional football 

games with respect to the efficiency of the betting market (see Glickman & Stern [1998] and Stern 

[1991]). Whether or not one can consistently outperform the bookmakers, and the economic impact 

that could have in the market, is a common theme. One example of such research was performed 

by Baker and McHale [2013]. In their paper, they propose to model the overall combined score of 

both teams at the end of the game. This is then compared to a previously determined over-under 

line of total points scored set by bookmakers to test whether they are more accurate in predicting 

scores in NFL games.  

They model scoring as a birth process with a continuous-time Markov chain. Two hazard 

functions are offered, representing the probability of each team, home and away, scoring 

throughout the game. Both of these hazard functions are based on certain variables that are "in 

practice predictors of attacking and defensive strengths derived from previous games." They also 

rely on previous work by Zuber [1985], who develops his own model to predict games, to select 

their significant in game statistics. In the end, the models Baker and McHale propose can be broken 

down into three parts, the in game statistics, the current points scored for each team, and a 

recalibrated point spread. The best model was able to accurately predict the winner in about 67% 

of the contests and also had a mean absolute deviation of 7.7 from the actual point spread, which 

is a measure of how close their predicted score was to the actual score. 

 One of the main issues with the models introduced by Baker and McHale is that they are 

not trying to explain team success in football or even predict the winner of games (although it does 

a good job). They merely are trying to “beat” the over-under, in other words, predict the total 

number of points scored by both teams. Also, to do this, they use information from the book makers 
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as a weight for the amount each team will win. Specifically, the coefficient for home points is 

(Point Spread + Over-Under)/2. Both Point Spread and Over-Under are taken from an online 

betting website, and while these numbers are most likely determined by some formula, ultimately 

they are subject to adjustments by the bookmaker based on the betting volume for each team, so 

as to limit their own financial loss. This leaves many unknown quantities and subjective elements 

which we would like to avoid in our research. 

One nice aspect of the models, is that they do incorporate the current score. This allows 

flexibility for predictions and can produce a more complete picture with the added information, 

such as halftime scores, or quarter by quarter scores. But the authors seem to be more concerned 

with the distribution of scoring as a total measure from both teams, and also in their ability to prove 

or disprove the efficiency of the current betting market. Nowhere is there any mention about what 

leads to scoring during the football games, or what drives the total score values higher or lower in 

any given game. 

 In a paper by Boulier and Stekler [2003] a new approach to predicting NFL outcomes was 

presented. Taking the rankings of teams developed by a power score printed weekly in the New 

York Times, the authors looked at the probability of higher ranked teams winning each game. The 

power scores are meant to summarize the relative performance of each teams’ past games. Since 

these ranks were taken from an independent source, no methodology was given as to how they are 

exactly computed. Boulier and Stekler mainly want to find out if choosing the higher ranked team 

can outperform the betting market, and also a “sports expert”. Over the course of seven NFL 

seasons, this method was able to forecast the correct winner around 61% of the time, slightly better 

than the sports editor at the New York Times, at 60%, but still significantly worse than the 66% 

accuracy of the betting market over that same period of time. 
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 From there, the authors looked a little closer at the individual matchups between the 

different ranks. They present a distribution of all the possible combinations of ranks playing in a 

game and recorded the winning percentages of the higher rank. As one may expect, when the 

difference in rank is larger, for instance twenty-four, the higher ranked team won more often, 75% 

of the time. And when the difference in rank was low, say two, the outcome of the game was less 

certain, the higher ranked team winning about 57% of the time.  

Now, using the difference in ranks as a covariate, along with a dummy variable for the 

home team, they perform a series of recursive probit regressions to predict the outcomes for all 

remaining weeks each season in their data set. As may be expected, the models lose their predictive 

ability the further they get into future games, however, the point is made in the ability to use power 

scores and a ranking system to forecast. 

 It is interesting to observe the differences in the sport of football from its early days and 

the evolution to its current form. Harville [1980] looked at games from the 1970’s to create a 

predictive model and found much more success than most current research. Over the course of 

seven years, he was able to achieve a 70% accuracy rate in predicting games. However, compared 

to the betting market during that time, which was able to correctly predict 72% of games, he still 

underperformed. It is possible that in earlier eras of the game, talent from team to team was less 

equally distributed. This could possibly create more discrepancy in the ability for some teams to 

perform at a high level, and therefore make prediction easier to model with a few very good teams 

playing against many that are mediocre. 

 Stefani [1980], also looked at professional football and developed a point spread model 

using least squares regression. With the 1970-71 season as his training data set, he used his model 

to predict all games over the next nine seasons. The main covariates Stefani used were an adjusted 
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team rank, developed earlier, and an estimated home field advantage. The final accuracy for 

predicting correct games was 64.2%, and the model produced a point spread with an average 

absolute deviation of 10.98 points from the observed game point spread. Our goal is to provide a 

similar model, with improved accuracy and a smaller deviation of final scores from the actual 

games.  

 Of course, these ideas and methods are not constrained to football at the professional level, 

or even solely to the sport of football. Long and Magel [2013] considered football games at the 

collegiate level, analyzing games from the NCAA Division I Football Championship Subdivision. 

Here they used regression techniques to identify significant in game statistics and develop 

prediction models for the outcome of games. They concluded that six factors contribute to wins 

for collegiate teams, difference in turnovers, difference in the probability of pass completion, 

difference in the probability of a 3rd down conversion, difference in the number of sacks, 

difference in the number of punt returns, and difference in the number of offensive yards per play. 

Combining these with a computer ranking of the individual teams playing, they were able to predict 

the correct winner of games around 73% of the time.  

One interesting comparison will be the results of their model with the resulting models 

from our research. We may be able to point out the difference in effect of some in game statistics 

from an amateur level to the professional level. When there are fewer teams with more equal talent, 

as is the case in the NFL, are the effects of these statistics changed in any way? 

In other sports, Roith and Magel [2014] use discriminant analysis to determine the 

difference of offensive and defensive statistics in the National Hockey League (NHL). Similar 

claims exist throughout many sports that defense is more important than offense, and hockey is 

one of those sports. Again, the challenge is to quantify this difference somehow. Looking at teams 
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that made the playoffs compared to those that did not, discriminant analysis was performed on 

goals allowed and goals scored. This is the most basic sense of offense and defense, and it was 

found that the magnitude effect on making the playoffs of allowing one less goal was 41% larger 

than scoring one more goal during the season. 

Roith and Magel [2014] also developed logistic regression models and point spread models 

that consistently showed areas of the game which recorded defensive aspects of hockey, had a 

greater impact on the outcomes of games. Their models were able to forecast the results of future 

games with 65% accuracy, significantly better when compared to a handicapping website with 

55% accuracy. 

Unruh and Magel [2013] considered NCAA Division I basketball games and the important 

influencers that determine the winners of individual games, along with predicting the winners of 

the championship tournament at the end of each season. Ultimately, their models performed with 

around 67% accuracy. So we can see that modeling individual games for most sports seems to 

have some limitations in predictive power regardless of the sport. In each case, the most accurate 

models can correctly predict the winner of the contest around 65-70% of the time. We will use this 

basis as a benchmark for our models, to determine if we can stay consistent with current methods 

of forecasting games, or improve on them. 

 There is not very much literature available today that deals with the underlying reasons for 

teams to have success in the NFL. Most of it deals with finding a way to outdo the current betting 

market. The problem with this approach is that it is hard to take anything away from these models 

to improve the performance of an individual team or organization. Our goal in this paper is to help 

provide a way to optimize decision making and formation of strategy for teams to improve the 

product they put on the field. We would like to propose a more efficient way to evaluate teams by 
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knowing what factors, including which areas of the game, can affect the outcome. We would like 

to even expand upon that by providing the relative degree to which those factors affect the game 

as well. We will also look at the predictive power of our models to see if it can be comparable to 

current research or possibly even surpass current forecasting abilities. 
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CHAPTER 3. DESIGN OF STUDY 

 The main focus of this paper is to identify the key contributors in NFL games that lead to 

both short term and long term success, namely winning individual games and making the playoffs 

at the end of the regular season. As mentioned earlier, we would like to not only identify these 

aspects, but also to quantify them, and will consider five analytical methods for several different 

NFL data sets; ordinary least squares regression, logistic regression, discriminant analysis, a 

proportional odds model, and simulation to forecast games. The data sets are divided into two 

groups, individual game statistics and seasonal total statistics. 

 The individual in game statistics were collected for nearly every regular season game, 

including ties, over three NFL seasons from 2011-2014, a total of 752 games. The values for thirty-

five game statistics for both the home and away team were recorded from the box scores found on 

ESPN.com, creating seventy variables overall. Some of these measurements include total yards 

gained, total passing yards, turnovers, and sacks. A full list of all the initial variables collected can 

be found in Appendix A. 

 The game statistics were further separated into two groups, a model training group, and a 

model testing group. The model training group is comprised of all games played during the first 

two seasons of the collected data, the 2011-12 season and the 2012-13 season. The model testing 

group contains the remaining data from the 2013-14 NFL season. As it implies, the training data 

set will be used for all single game analysis. Each of the different models will be determined from 

these games. The testing data set will be used to forecast games that have not been included in the 

development of the models, therefore providing a more accurate check on validity. All games 

during this timeframe are played under the same rules, with similar players and no major changes 

to overall style of play in the league, so we are confident the samples should be homogenous. 
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 The second type of data are seasonal statistic totals for teams each year. The data set covers 

each of the thirty-two teams for five seasons, from 2009 to 2013, a sum of 160 observations. The 

totals of twenty-seven different statistics were collected for each team, along with whether or not 

they made the playoffs that year. Some examples of the variables collected are; total points, total 

yards, total turnover margin, and total penalties yards. A full list of the initial variables collected 

and considered is available in Appendix B. 

 It should be noted that not every variable collected was initially considered for every 

model. Some of the statistics recorded are a result of the sum of other variables. For instance, 

turnover margin is the sum of interception margin and fumble margin, and first down margin is 

the sum of passing first down, rushing first down, and first down by penalty margins. To avoid 

redundant information, we will consider two sets of variables initially to fit models, one with the 

broader totals, and one that is more specific and includes the breakdown of each category. The 

total measurements and partial measurements of a particular variable will never be considered for 

the same model. Rather, two separate models will be developed and the best one chosen by the 

methods appropriate for each type of analysis. Appendices A and B also indicate which variables 

were considered total measurements and which were considered individual parts of the total. 

 To verify all of these approaches, we will use a combination of forecasting techniques and 

simulation to compare with the real world results and some of the previously researched methods 

mentioned earlier. Hopefully, through our analyses, we will be able to point out and quantify those 

facets of NFL games that players, coaches, and decision makers can look at and isolate to try and 

improve individual, along with team performances. 
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3.1. Ordinary Least Squares Regression 

 The first type of statistical analysis that we will perform on the data set will be Ordinary 

Least Squares (OLS) Regression (Abraham & Ledolter [2006]). The purpose of this technique is 

to develop models that exhibit some sort of underlying linear relationship between our response 

variables and the independent variables. The general form of an OLS regression model is: 

𝑦 = 𝑿𝛽 + 𝜀     (Eq. 1) 

where X is a matrix of the observed values for each of the independent variables (including an 

intercept when appropriate). The vector 𝛽 consists of the coefficients for each of the predictor 

variables included in X. These coefficients represent the net effect that a single unit change in each 

variable has on the expected value of the response, y. Any inherent variation in the data that cannot 

be explained by the included variables is included with the error term, 𝜀. In order to use the OLS 

model, certain assumptions about the error need to be met. Specifically, the error terms must be 

independent from each other, they must follow a Normal distribution, with an expected value of 

zero, and have the same constant variance. These assumptions will need to be checked and met for 

our models to show validity. 

 For our research, we will be using the OLS method to model the final point spread at the 

end of each regular season NFL game. In this case, the response variable is calculated by taking 

the score of the home team and subtracting the score of the away team. The result is our dependent 

variable, score margin. The score margin represents the winner of the game, as determined by the 

sign of the value, and also the number of points the team has won by. A negative value for score 

margin indicates the away team has won, and similarly a positive value that the home team has 

won.  
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 The independent variables will be created in a similar fashion to the score margin. For all 

statistics collected, there is a value for the home team and the away team. Our covariate will be 

the difference between the home team and the away team. For example, a variable included in a 

model may be turnover margin, this is calculated by taking the number of turnovers for the home 

team and subtracting the number of turnovers for the away team.  

 Initially, we will consider all of the collected in game statistics in our regressor matrix, X. 

However, since not all of these predictor variables contribute significantly to the determination of 

score margin, and because some even express multicollinearity between each other, we will use a 

selection process to simplify the model. Appendix A lists all of the variables along with those that 

will not be considered together due to close associations. We will not consider any interactions or 

higher order terms in our OLS model since interpretation is often difficult and the purpose of this 

paper is to clarify and quantify the effects of different statistical measures in the NFL. 

 As mentioned above, when selecting which covariates to include, we first need to eliminate 

those that are redundant. Since some of the variables represent a combination of others, we will 

develop several models for consideration but never include both the total value and the individual 

parts in any one model. If each is significant in its respective model, we can compare the efficiency 

and simplicity of the models to determine which is more appropriate. 

 Once we have pared down the initial variables we would like to include, a stepwise 

selection process will be performed to identify those variables that are most significant (Derksen 

& Kesselman [1992]). As each variable is considered in the model, a simple t-test is performed to 

assess its significance. To be incorporated in the model, a variable will have to be significant at an 

entry level of α = 0.10. To stay in the model, a variable cannot exceed an exit significance level of 

α = 0.15. This procedure will eliminate most of the superfluous predictors.  
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When we have all the variables deemed significant by the stepwise selection, any further 

elimination to simplify the model will be performed based on the value of R-squared, the 

coefficient of determination, and an adjusted coefficient of determination. R-squared is a measure, 

between 0 and 1, of the proportion of total variation in the response variable that can be explained 

by the current model. Every added variable will increase the R-squared value by some amount, so 

adjusted R-squared measures the same variation, but gives a penalty for each extra variable 

included. This prevents variables that contribute a small or negligible amount of extra explanation 

of variance from being included in the model.  

We will also consider the predicted R-squared value, which is a measurement of the ability 

to create a model and fit the response for each individual observation in the training data set one 

at a time using the remaining observations. The purpose of the predicted R-squared value is to 

ensure there is not an over fit of the data with too many variables, in other words, we do not want 

to have an abundance of variables that can explain the variation in the model but perform poorly 

fitting the response values. 

Multicollinearity is also a concern when selecting variables for an OLS regression model. 

This occurs when two or more variables in the model are highly correlated with each other, 

meaning one variable can be linearly predicted with the others. The variance inflation factor (VIF) 

is a measure of multicollinearity for each variable (Liao & Valliant [2012]). As a rule of thumb, 

any VIF value over ten indicates a variable that is highly correlated with other variables, and this 

will be the criteria for our analyses to indicate this problem if it occurs. 

 Once we have established the preferred model for the score margin, we will be ready to 

interpret the coefficients of the covariates, and compare the relative effect each one has towards 

gaining, or losing, points throughout the game. We will also be able to apply this model to our 
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testing data set, trying to fit the score margins of those games not used in model development. If 

the model is able to accurately produce score margins from games outside of the training data set, 

it will be ready for further forecasting of future games using simulations. 

3.2. Logistic Regression 

 The second form of regression analysis we will conduct is logistic regression (Abraham & 

Ledolter [2006]). Logistic regression is a specific technique that is used when the response variable 

consists of two dichotomous outcomes. With only two distinct possibilities that occur, the logistic 

model can provide a probability of each event occurring based on the values of the predictor 

variables. This results in a way to measure the effects independent variables have on the probability 

of an event occurring. Here is the general form of the logistic model: 

log (
𝜋

1−𝜋
) = 𝑿𝛽    (Eq. 2) 

where 𝜋 is the probability of the response being classified into the category of interest. The right 

side of the equation can be defined similarly to the OLS model described in Section 3.1. Since we 

are interested in the estimation of 𝜋, Equation 2 can be solved to get an estimate: 

𝜋 =
𝑒𝑿𝛽

1+𝑒𝑿𝛽
      (Eq. 3) 

Now the estimate, 𝜋, is bounded by 0 and 1, giving a value of the probability that the response will 

fall into our category of interest. And it can easily be seen that the probability of the response 

belonging to the other category is estimated as 1- 𝜋.  

The interpretation of the vector of estimated coefficients, 𝛽, changes as well. Now, with 

one unit increase of the ith individual predictor variable, the odds of observing a response 

belonging to the category of interest changes by a factor of 𝑒𝛽𝑖, 𝛽𝑖 being the coefficient for the ith 

variable. This value is referred to as the odds ratio. 
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 With the NFL data, we will create two logistic regression models. The first will consider 

only the individual games played throughout the regular season. The two categories for the 

response variable will be determined by whether or not the home team won the game, "1" 

represents a home team win, while "0" represents a home team loss. We will not consider ties as a 

possible outcome since, while they do occur, they are not frequent enough to be of interest. Thus 

our logistic model will provide a measure of probability that the home team will win the game in 

question.  

Similarly to the OLS model, we will use the marginal statistics between the home and away 

team. We also want to simplify the number of independent variables included in the logistic model. 

Again, a stepwise selection procedure is applied to narrow the options. The model entry level of 

significance is set at α = 0.10, and the model exit level of significance is set at α = 0.15. A Wald 

test calculated for each variable at every step provides the mechanism to measure significance 

(Agresti [2002]). 

 After the significant variables are determined, any further model adjustments will be 

performed based on the criterion of the max rescaled R-square value and the Receiver Operator 

Characteristic (ROC) curve. The max rescaled R-square value represents the change in the 

likelihood function between the current model, and the baseline “intercept only” model containing 

no independent variables. The ROC curve is a graphical plot that represents the rate of true 

positives classified and false positives classified (Hanley & McNeil [1982]). A model performs 

well when the true positive rate is high while the false positive rate is low. Finally, the model fit 

will be tested using the method proposed by Hosmer and Lemeshow [2000] for the goodness of fit 

for logistic regression models. 



19 
 

 In addition to observing individual games, we will create a logistic regression model to 

provide probabilities of making the playoffs at the end of the season for each NFL team. In this 

case, the dichotomous response will be “1” when a team has made the playoffs, and “0” when a 

team has missed the playoffs. The independent variables for this logistic model will simply be the 

totals of each statistic collected at the end of one season. All of the same selection and diagnostic 

techniques used for the model of single games will be applied to the model of the entire season 

here. We hope to see whether those factors that are significant for winning one game can be 

extrapolated throughout the entire season and relate to long term success in the form of making 

the postseason. Also we would like to know if the quantitative effect of those factors are similar 

in both cases. 

3.3. Discriminant Analysis 

 Next we will approach the data with a multivariate technique called discriminant analysis 

(Rencher [2002]). Discriminant analysis focuses on considering multiple different classes 

separately, and creating a linear function that transforms the original variables so as to best classify 

an observation into one of several groups. The transformation is determined by the linear 

combination that maximizes the difference, or separation between the groups. This simply means 

the technique tries to find some combination of the variables that provides the best differentiation 

between classes, essentially rotating the axes. The general form of the transformed observations is 

called the linear discriminant function and is represented by: 

𝑧𝑖 = 𝑎𝑖′𝑿     (Eq. 4) 

where 𝑎 is the linear combination of the variables for classification into the ith class. The result is 

I different linear combinations, one for each available class, and a new set of transformed data, 𝑧𝑖. 
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This has the added benefit of reducing the dimensionality of the data, particularly useful when 

considering a large number of covariates. 

 The next step is to test the linear discriminant function by classifying the observations 

based on the transformation of the independent variables. This process is called classification 

analysis, and the specific method of classification we will use is referred to as cross validation 

(Rencher [2002]). When performing cross validation, each observation is held out of the data set 

one at a time, then the linear discriminant functions are computed with the remaining observations. 

The held out data point is subsequently plugged into each of the linear discriminant functions and 

the values are ranked from largest to smallest. The classification of the observation is then made 

based on the class associated with the linear discriminant function that produced the largest value. 

This classification can then be checked against the actual class the observation belongs to and the 

accuracy recorded. 

 One of the biggest advantages of discriminant analysis is that when comparing the 

standardized coefficients for each linear combination, the magnitude of the coefficient is directly 

related to the effect that variable has on the final classification. Therefore, the magnitude of every 

standardized coefficient for each function can be ranked and we can directly compare which factors 

are more significant towards classification into that group. To standardize the linear discriminant 

functions, we will multiply them by the square roots of the diagonal elements of the pooled 

covariance matrix. This will provide a means to not only find influential statistics contributing to 

success in the NFL, but also to compare and contrast them. 

 For our NFL data, we will be applying this analysis in several different ways. First, we will 

consider the individual games. In this case, the number of classes we will need a linear discriminant 

function for is two, once again, to represent the home team winning the game, and the other to 
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represent the home team losing the game. We will initially consider all collected variables in our 

model, however, we would still like to simplify it to the point where we can identify only a handful 

of the most important covariates. Consequently, another stepwise selection procedure will be 

performed to narrow down the number of variables considered in the model. A partial F-test is 

conducted on every variable at each step and the model is reevaluated to find the optimal addition. 

The threshold for a variable to enter the model is a significance level of α = 0.20, and the criteria 

to stay in the model is a significance level of at least α = 0.25. 

 The selected model will then be cross validated to see how many home wins and home 

losses were correctly classified and how many were incorrect. This will provide an overall error 

rate that we hope is relatively low. With a successful model, we can compare the standardized, or 

normalized, magnitudes of the significant variables to see which are most important. We will then 

relate the effects of these variables for both the linear function associated with the "Home Win" 

class and the linear function associated with the "Home Loss" class, noting any obvious 

differences. 

 We will also perform this analysis on the seasonal data. The two classes will be determined 

by whether a team makes the playoffs versus misses the playoffs. The same type of selection 

process will be performed on this model as was used for individual games. The resulting linear 

discriminant functions will be cross validated, counting the number of correctly classified playoff 

or non-playoff teams and the misclassified teams. In this case, the error rate is calculated using a 

weight of prior probabilities. Since we know that twelve out of thirty-two teams make the playoffs 

and twenty out of thirty-two teams miss them, the prior probabilities will be set at 37.5% and 

62.5% respectively. 
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 Once we have validated the model, the coefficients can be compared for importance in long 

term success in the NFL. Again, this is possible despite the difference in the scale of measurement 

for each variable because the coefficients can be standardized. Since the same data sets for both 

games and seasons are used here as they are with the logistic regression models, we can start to 

note if there are any consistencies in the variables being selected for the models. If we start seeing 

the same covariates regularly in each of these models, we can begin building an idea of reliable 

areas significant to winning in the NFL. 

 A third discriminant analysis will also be conducted, focusing on individual games once 

again. However, this time we will not consider the marginal variables, but the original variable 

measurements of the value gained, and the value allowed by each team. Home and away teams 

will be mixed as our team of interest, instead of simply using the home team as a reference in the 

previous marginal data sets. The classes for the analysis will be “Win” and “Lose”, and the 

interpretation of the variables now has a different meaning as well, namely a change in each 

variable represents a change in the total amount gained or allowed, not a difference over the 

opponent.  

A stepwise selection procedure will be performed, not necessarily to choose our significant 

variables, but to see if they agree with our models already created. We will directly compare the 

effects of offense and defense by considering the variables that were found to be significant for 

our earlier models. With the standardized discriminant functions, we will relate the effect sizes of 

both, but the connection will be between pairs of variables, with a greater concern for providing 

evidence of offensive or defensive preference. For example, if yards gained has a smaller 

coefficient than yards allowed, we can conclude that defense is a stronger indicator of winning in 

that particular area since giving up more yards has the larger effect. The same cross validation 
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performed earlier will be implemented to ensure the model accurately classifies winning and 

losing. 

3.4. Proportional Odds Model 

 The final model that we will fit to the data is a proportional odds model (Faraway [2006]). 

This type of model is similar to the logistic regression model in the fact that the response is 

qualitative. The difference is that there are more than two categories the response can be classified 

into, and they are ordinal. The general form for a proportional odds model with J ordered 

categories, and with a logit link function is: 

log
𝑃𝑗

1−𝑃𝑗
= 𝑿𝛽     (Eq. 5) 

for j = 1, 2, …, (J-1). This implies that there are J-1 different log odds ratios to be calculated. The 

interpretation of each of these is the change in odds of moving from one lower class to the next 

higher one. 

 Using the game data from the NFL, we will fit a proportional odds model. The score margin 

response variable, 𝑦𝑖, will be separated into four different ordered categories based on the winner 

of the game, and also the point difference at the end, to create a new response variable that has a 

multinomial distribution, 𝑤𝑖. 

𝑤𝑖 = 

{
 

 
𝑆𝑡𝑟𝑜𝑛𝑔 𝐴𝑤𝑎𝑦 𝑉𝑖𝑐𝑡𝑜𝑟𝑦       𝑦𝑖 = [−∞,−10)

𝑊𝑒𝑎𝑘 𝐴𝑤𝑎𝑦 𝑉𝑖𝑐𝑡𝑜𝑟𝑦         𝑦𝑖 = [−10, 0)    

𝑊𝑒𝑎𝑘 𝐻𝑜𝑚𝑒 𝑉𝑖𝑐𝑡𝑜𝑟𝑦        𝑦𝑖 = [0, 10)       

𝑆𝑡𝑟𝑜𝑛𝑔 𝐻𝑜𝑚𝑒 𝑉𝑖𝑐𝑡𝑜𝑟𝑦       𝑦𝑖 = [10,∞)       

 

The goal here is to create a more specific interpretation of modeling for the winner of each game. 

Now, we can also include information about whether the game was close, within ten points for 

either side, or the game was a blowout, more than ten points for either side. The cutoff of ten points 

was selected to represent one touchdown and one field goal, in this scenario, the team behind 
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cannot tie the game in just one possession, nor do they need to score two consecutive touchdowns 

to catch their opponent. In theory, the cutoff point of the categories can be set at any level, but for 

our purposes, we will set it at ten points. Hopefully this proportional odds model can provide an 

alternate way to view the analysis of both the logistic and OLS regression models described earlier. 

 Now that we know we will have four distinct ordinal categories for our response, the log 

odds ratios implied in Equation 5 can be defined: 

 𝑙𝑜𝑔
𝑃𝑠𝑎

1− 𝑃𝑠𝑎
= 𝜇1 + 𝛼𝑥1 +⋯+ 𝛾𝑥𝑘    (Eq. 6) 

 𝑙𝑜𝑔
𝑃𝑤𝑎

1− 𝑃𝑤𝑎
= 𝜇2 + 𝛼𝑥1 +⋯+ 𝛾𝑥𝑘    (Eq. 7) 

  𝑙𝑜𝑔
𝑃𝑤ℎ

1− 𝑃𝑤ℎ
= 𝜇3 + 𝛼𝑥1 +⋯+ 𝛾𝑥𝑘   (Eq. 8) 

where k is the number of covariates included in the model. Each 𝑃𝑗 is a cumulative probability of 

an observation belonging to class j, or any other previous class. In addition, let 𝑝𝐽 be the probability 

that an observation belongs only to the Jth class. Therefore, 𝑃𝑠𝑎 = 𝑝𝑠𝑎, 𝑃𝑤𝑎 =  𝑝𝑠𝑎 + 𝑝𝑤𝑎, 𝑃𝑤ℎ =

𝑝𝑠𝑎 + 𝑝𝑤𝑎 + 𝑝𝑤ℎ, and 𝑃𝑠ℎ = 𝑝𝑠𝑎 + 𝑝𝑤𝑎 + 𝑝𝑤ℎ + 𝑝𝑠ℎ = 1. Once the model is fit, we can then 

solve for the probability of a response being predicted in any of the classes.  

 One advantage to the proportional odds model is the ability to interpret the parameter 

estimates. In Equations 6, 7, and 8, the coefficients of the variables are constant for each class, and 

can be interpreted in the same fashion as the logistic model. For example, one unit increase in the 

variable 𝑥1, with everything else staying constant, would correspond to a change in the odds of 

moving from one category, say a weak away victory, to the next, a weak home victory, by a factor 

of 𝑒𝛼. The only difference in the three log odds ratio equations are the intercepts, 𝜇𝑗, these 

represent the thresholds of moving into the next class. 
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 When we perform this analysis, to control the number of variables included in the model, 

we will employ a stepwise selection procedure based on the Akaike Information Criterion (AIC) 

of each model, which is a measure of the relative quality of a model for a given data set (Hansen 

[2007]). Once we have a model with a minimum AIC value, we can then apply it to the testing 

data set. For every observation, when the values for the selected variables are entered into the 

model, it will provide probabilities that the game will result in the away team winning by more 

than ten points, less than ten points, and the home team winning by more than ten or less than ten 

points. These classes will at that point be ranked by the most likely outcome to occur, and checked 

with the observed outcome of the game. We can then see how accurate the model is at predicting 

the winning team and the margin of victory. Furthermore, we will still be able to tell if we correctly 

classified the winning team, even if not the correct class for margin of victory. 

3.5. Simulation 

 Each of the models introduced above will be created using the training data set as 

mentioned. This involves fitting or classifying the response based on the actual values of in game 

statistics or season statistic totals for games and seasons already played out. Then, the verification 

of these models is a process that will use the testing data set, as mentioned earlier. Again, this is a 

process that looks at games that have already been played and, using the statistics from that game, 

determining if our models are accurate in correctly classifying the response or, providing a fitted 

score margin close to the actual one observed. If the models are able to perform adequately, then 

we can say they are generalizable to all NFL games and seasons played under the same conditions 

and rules. 

 It is also of interest to test the ability to forecast NFL games without using information 

from the games themselves. One of the most difficult things to do in any sport is to try to predict 
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how teams and players will perform with and against each other. There is so much natural 

variability involved with player and team performances, it is fundamentally challenging to do. In 

addition to that variability, there is also the impact of coaches, weather, crowds, and a myriad of 

other factors that are inherently difficult to include in quantitative models like the ones we propose. 

Much of the literature mentioned in Chapter 2 is concerned with trying to predict the outcome of 

games as best they can, with our research, we are more interested in the effects of measureable 

performances in the game. One fascinating type of analysis we can perform is simulation of games 

without using the observed statistics. 

 For the models that are concerned with individual games in the NFL, the point spread, 

logistic, discriminant analysis, and proportional odds, we would like to see if the historical 

performance of the teams playing can be used to forecast the outcome with some degree of 

accuracy. Using simulation and the models we develop, this is possible to carry out. For most of 

the in game statistics that were collected, the values follow a normal distribution. So for each team, 

throughout the season, we can compute the mean and variance of every statistic with the games 

they have already played. Using these as parameters, we can then simulate a future performance 

against their opponent, based on the normal distribution. We expect that the teams will perform 

within a similar range of their previous games. 

 For example, say we find that total yards is a significant factor, and we want to simulate 

the outcome of a game between two teams during Week 9 of the NFL season. Then, for each team 

we can find their mean and variance for total yards from the previous eight weeks and, based on 

those statistics, simulate 10,000 total yard values they might have for the upcoming game. 

Likewise, we can look at how many total yards each team allowed their opponent to have through 

the previous eight weeks, and simulate 10,000 different values of total yards allowed. With all of 
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these numbers, a new marginal statistic can be computed and entered into our models which is a 

difference of the average number of yards gained by one team and allowed by their opponent. Here 

is an example of how we will calculate the new marginal measure using the total yards gained and 

allowed by the home and away teams: 

[
(𝐻𝑜𝑚𝑒 𝑇𝑜𝑡𝑌𝑑𝑠 + 𝐴𝑤𝑎𝑦 𝑇𝑜𝑡𝑌𝑑𝑠 𝐴𝑙𝑙𝑜𝑤𝑒𝑑)

2
] − [

(𝐴𝑤𝑎𝑦 𝑇𝑜𝑡𝑌𝑑𝑠 + 𝐻𝑜𝑚𝑒 𝑇𝑜𝑡𝑌𝑑𝑠 𝐴𝑙𝑙𝑜𝑤𝑒𝑑)

2
] 

Then the fitted results of 10,000 simulated games can be viewed as a whole and we will be able to 

provide an expected result based on these simulations to compare with the observed results from 

the actual game. 

 We will need at least four games played prior to create our values of mean and variance for 

the significant variables, so only games played after Week 4 will be considered. That means we 

will study the 193 games from the testing data set after that point in the season. We will evaluate 

the OLS regression, logistic, discriminant analysis, and proportional odds models for individual 

games only, using the simulations. The offensive statistics simulated for each team will be used 

first to create the marginal variables, for instance, the simulated number of passing yards for the 

home team minus the simulated number of passing yards for the away team. Next, we will use the 

simulated values for each significant variable gained by each team, and allowed by each team to 

create a marginal value in the manner introduced above. This will represent the presence of 

defensive capabilities along with offensive prowess for both teams. 

 The models for making the playoffs using seasonal data will not be considered for this 

simulation analysis since teams change personnel so much from season to season. Not to mention, 

that there are even more chances for teams to have players change and get injured during a single 

season, which would greatly affect the forecasted values. A reliable way to calculate the mean and 
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variance of statistics for season totals for each team across at least four seasons is simply not 

available. 

 We will then compare our simulation results to some of the previous research mentioned 

earlier, and also some different naïve approaches, such as selecting the home team to win, to see 

if it can perform similarly. We do not expect to be able to predict games with any specific amount 

of certainty, but any accuracy we do find should help indicate an idea of the level of consistency 

of performances from week to week. Simulation also provides a way to look at our fitted responses 

for models such as the point spread model, and determine the probability of a range of different 

outcomes. Just because the model provides a fitted value, we also want to know the distribution of 

the outcome, this can tell us if there is a wide variation in the simulated outcome or if we can be 

fairly confident in our predicted value.  
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CHAPTER 4. RESULTS 

4.1. Ordinary Least Squares Regression 

 The goal of the OLS regression model is to develop a way to predict the score margin at 

the end of NFL games. Table 4.1 shows a summary of the stepwise selection procedure on the 

group of covariates for the model that was ultimately chosen. In total, eleven variables were 

selected to enter the model, and all eleven are significant at a level of 𝛼 = 0.05.  

 

Table 4.1. OLS Regression Stepwise Selection Summary 

STEP 

VARIABLE 

ENTERED 

NUMBER 

VARS IN 

PARTIAL 

R-SQUARE 

MODEL 

R-SQUARE F VALUE PR > F 

1 YPPassM 1 0.4309 0.4309 374.82 <.0001 

2 TurnoverM 2 0.2121 0.6430 293.55 <.0001 

3 FirstDownM 3 0.0874 0.7304 159.78 <.0001 

4 TotalPlayM 4 0.0452 0.7756 98.99 <.0001 

5 3DPerM 5 0.0385 0.8140 101.52 <.0001 

6 SackYardsM 6 0.0159 0.8299 45.89 <.0001 

7 AvePRM 7 0.0041 0.8340 12.01 0.0006 

8 YPRushM 8 0.0035 0.8375 10.57 0.0012 

9 PenYardsM 9 0.0046 0.8422 14.23 0.0002 

10 WinPerM 10 0.0019 0.8441 6.01 0.0146 

11 AveKRM 11 0.0016 0.8457 5.17 0.0234 

 

The R-squared value for the model is 0.8457, meaning 84.57% of the variation in score 

margin can be explained by the linear combination of these eleven variables. Typically in most 

real world modeling, any R-squared value over 0.80 is considered a very good percentage for the 

model. However, we would still like to reduce the number of variables we are using to fit the data. 

Considering the last few variables that were entered into the model, you can see that the partial R-

squared values are all under 0.01. This mean that their inclusion in the model increases the 

explanation of the variance of score margin by less than 1%. If we remove all the variables with 
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partial R-squared values under 0.01, we only lose a total of 1.58% in our overall R-squared value, 

but simplify the model by five variables, so they will be excluded. 

 The final model is then recalculated, and Table 4.2 shows a summary of the coefficients. 

It should be noted that the intercept was included in this model since it was also found to be 

significant. The way the variables were derived, marginal values of home team minus away team, 

the intercept can be interpreted as an underlying point advantage for the home team during an NFL 

game. Although it is not very large, we would expect that for any given game, the home team will 

have the benefit of about one extra point in the final score margin. 

 

Table 4.2. OLS Regression Model Summary 

VARIABLE 

PARAMETER 

ESTIMATE 

STANDARD 

ERROR T VALUE PR > |T| 

INTERCEPT 1.00306 0.29165 3.44 0.0006 

FIRSTDOWNM 1.37997 0.07967 17.32 <.0001 

TOTALPLAYM -0.53459 0.04064 -13.15 <.0001 

YPPASSM 1.00567 0.13400 7.50 <.0001 

TURNOVERM -3.88568 0.15333 -25.34 <.0001 

3DPERM 0.17715 0.01802 9.83 <.0001 

SACKYARDSM -0.12464 0.01840 -6.77 <.0001 

 

 The final model has an adjusted R-squared value of 0.8279, and a predicted R-squared 

value of 0.8245, meaning there is no issue with over fitting the data and it can be used to predict 

other games. The variance inflation factors for each of the variables is no higher than 4.36, which 

indicates there are no problems with multicollinearity. The rest of the diagnostics of the model fit 

show no violations in the initial model assumptions. Figure 4.1 provides a summary of these 

diagnostics. The residuals follow a normal distribution, with a mean of zero and a constant 

variance. There are very few observations that might be considered outliers, and even those do not 
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affect the model significantly enough to warrant any additional action. Therefore, we will call this 

our final model and proceed to validation by submitting it to our testing data set. 

  

 

Figure 4.1. OLS Regression Model Diagnostics 
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 The in game statistics for the testing model set will be entered into our model and a fitted 

score margin created. If the fitted margin has a positive value, we would expect the home team to 

win, if it is negative, the away team. Using the model on the testing data set, we were able to 

correctly identify the winner for 220 out of 256 games, an accuracy of 85.9%. Also, the mean 

absolute deviation of the predicted scores from the observed, was 4.83 points. On average, the 

model produced a score margin that was within five points of the actual margin, or less than one 

touchdown. So, our model works just as well for games independent from the ones with which it 

was created. The final point spread equation can be defined as: 

Point Spread = 1.00306 + 1.37997*(First Down Margin) – 0.53459*(Total Play Margin) + 

1.00567*(Yards per Pass Margin) – 3.88568*(Turnover Margin) + 0.17715*(3rd Down 

Conversion Percent Margin) – 0.12464*(Yards Lost to Sacks Margin) 

We can interpret this by saying, for example, with every extra first down the home team gains over 

their opponent, we would expect them to score about 1.4 more points, with everything else held 

constant. This is one of the larger coefficients, so we anticipate first downs to have a more 

significant effect on the game. The coefficient with the largest magnitude is turnover margin. For 

every extra turnover the home team commits over their opponent, they will give up around 3.9 

points in the final score margin. Turnovers are the most costly area where a team can lose points, 

they are more rare, but lead to points for the opposing team more often. 

 We will look at how this model performs without using the in game statistics in Section 

4.5, with simulation. But, here we can get an initial idea of what is important when trying to analyze 

NFL games. Turnovers seem to play a very critical role in the measure of the final score. As we 

perform further analyses, we will note any consistencies between variables chosen as significant 

for the subsequent methods. 
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4.2. Logistic Regression 

4.2.1. Game Analysis 

 The first of our logistic regression models will focus on the outcome of individual games 

as the dependent variable. It will be coded in terms of the home team winning, “1”, or losing, “0”, 

the game. A summary of the initial stepwise selection procedure is presented in Table 4.3. Nine 

variable are included in the model. Upon further inspection, we will remove the last two variables 

entered into the model. The entry and exit levels of significance were set at a higher than usual 

level to ensure at least some variables are allowed into the model. With a p-value of 0.1294, we 

can feel comfortable removing yards per rush margin from the model. Also, average punt return 

margin will be removed to simplify the model, with little affect to the model fit. 

 

Table 4.3. Game Logistic Regression Stepwise Selection Summary 

Step 

Effect Score 

Chi-Square Pr > ChiSq Entered Removed 

1 YPPassM  146.8567 <.0001 

2 TurnoverM  102.1342 <.0001 

3 3DPerM  63.4548 <.0001 

4 PenYardsM  16.1683 <.0001 

5 SackYardsM  16.3217 <.0001 

6 FirstDownM  14.1141 0.0002 

7 TotalPlayM  17.2579 <.0001 

8 AvePRM  3.8950 0.0484 

9 YPRushM  2.3002 0.1294 

 

 The analysis of our selected variables is performed again, and Table 4.4 shows the 

parameter estimates along with their odds ratios. It should be noted that we have included the 

intercept in the model despite the fact that it was tested to be insignificant. The interpretation of 

the intercept is similar to that of the OLS model, it is any inherent advantage the home team 
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exhibits over the away team. Without the intercept, and with both teams at equal levels for each of 

the marginal statistics, the logistic model will give a 50% chance of either team winning. With the 

intercept included, and all other variables at zero, the model gives the home team a 55% chance of 

winning. This is very close to the actual home winning percentage we observed in our data set, 

around 56%. It is also right around the historical value of home winning percentage over the last 

ten years, 57.3%. 

 

Table 4.4. Parameter Estimates and Odds Ratios for Game Model  

Parameter Estimate 

Standard 

Error Pr > ChiSq Odds Ratio 

95% 

Confidence 

 

Limits 

Intercept 0.2128 0.1688 0.2074    

FirstDownM 0.2865 0.0562 <.0001 1.332 1.193 1.487 

TotalPlayM -0.1074 0.0267 <.0001 0.898 0.852 0.947 

YPPassM 0.4646 0.0878 <.0001 1.591 1.340 1.890 

PenYardsM -0.0191 0.0057 0.0008 0.981 0.970 0.992 

TurnoverM -1.3074 0.1524 <.0001 0.271 0.201 0.365 

3DPerM 0.0704 0.0117 <.0001 1.073 1.049 1.098 

SackYardsM -0.0459 0.0112 <.0001 0.955 0.934 0.976 

 

 With the intercept included along with the seven most significant variables, we can check 

the goodness of fit for the model. Using the Hosmer-Lemeshow test, we found a p-value of 0.8758, 

indicating that our model is indeed a good fit for the data. The max rescaled R-squared value for 

this model was 0.7867, indicating a major improvement over the baseline model. Also, checking 

the ROC curve in Figure 4.2, the area under the curve is 0.9621. The highest value for the area 

under an ROC curve is 1.0, meaning the model perfectly classified all observations, so the area for 

our model indicates a high rate of correct classification. 

 The interpretation of the model parameters is best done through the odds ratios. These 

indicate how the odds of the home team winning changes with an adjustment in each individual 
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covariate. For example, with every extra first down over their opponent, the odds of the home team 

winning the game increase by a factor of 1.332, with everything else being constant. Figure 4.3 

illustrates the change in the probability of winning for the home team as first down margin 

increases and everything else is held constant. Clearly, any positive marginal value for the home 

team in first downs will correspond to a high probability of winning the game. The largest negative 

effect for the logistic model is turnovers, for every extra turnover committed the odds of winning 

the game are decreased by a factor of 0.271.  

 

 

Figure 4.2. ROC Curve for Game Model 
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Figure 4.3. Effect of First Down Margin on Probability of Winning 

 

Performing the model validation on the testing data set using in game statistics, we again 

saw 220 out of 256 games (although not the exact same games) correctly classified as home win 

or home loss. This means our model is valid for all games played under the current format. The 

simulation section will determine if we can use this model with historical performances to forecast 

games without the in game statistics. 

The seven variables for this logistic model are the almost identical to the variables selected 

for the point spread model, with the only addition being penalty yards margin. Furthermore, it 

appears that turnover and yards per pass margin have the largest effect in both cases. This is the 

type of consistency that we would like to see throughout all of our different models created for the 

same data set.  
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4.2.2. Season Analysis 

 The second logistic regression model we will create uses the total season statistics for each 

team. The response variable in this model will be coded by whether the team of interest made the 

playoffs at the end of the season, “1”, or missed the playoffs, “0”. It is also important to note that 

the covariates are no longer marginal statistics, but represent simply the totals from sixteen games 

for the team. Table 4.5 shows a summary of the initial stepwise selection procedure for the logistic 

regression model. 

 Five variables are selected to stay in the model, and they are all significant at a level of at 

least α = 0.1. Table 4.6 provides the parameter estimates along with the odds ratio values and 

confidence intervals. For this seasonal model, the intercept was not significant, and unlike the 

previous case for in game marginal statistics, its inclusion does not make any sense in helping to 

explain the data better, so it was not considered necessary. 

 

Table 4.5. Season Logistic Regression Stepwise Selection Summary 

Step 

Effect Score 

Chi-Square 

Wald 

Chi-Square Pr > ChiSq Entered Removed 

1 Sc%  53.6463  <.0001 

2 TO%  17.1587  <.0001 

3 PenaltyYards  3.9641  0.0465 

4 PassYds/TD  2.7534  0.0970 

5 RushYds/TD  4.2557  0.0391 

6 Plays  4.3590  0.0368 

7  Sc%  0.3633 0.5467 

 

 

 

 



38 
 

Table 4.6. Parameter Estimates and Odds Ratios for Season Model 

Parameter Estimate 

Standard 

Error Pr > ChiSq Odds Ratio 

95% 

Confidence 

 

Limits 

TO% -0.3904 0.0956 <.0001 0.677 0.561 0.816 

Plays 0.00993 0.00220 <.0001 1.010 1.006 1.014 

PenaltyYards 0.00301 0.00152 0.0477 1.003 1.000 1.006 

PassYds/TD -0.0360 0.0103 0.0005 0.965 0.945 0.984 

RushYds/TD -0.0184 0.00572 0.0013 0.982 0.971 0.993 

 

 The Hosmer-Lemeshow test for goodness of fit provides a p-value of 0.4186, indicating 

that our model is a good fit for the data. The max rescaled R-square value was 0.6444, 

demonstrating the improvement of the model over the baseline intercept only model, this was the 

highest value of all other models considered. Figure 4.4 shows the ROC curve, and also an area of 

0.9103 under the curve. All of these diagnostics signify that this is a good model for our seasonal 

data set. 

 There was no actual testing data set for this analysis, but it is interesting to use the model 

to check the playoff teams from the most recent NFL season, 2014-15. Inputting the seasonal 

values for the significant variables in our model for the thirty-two teams, we ranked the twelve 

teams with the highest probability of making the playoffs. The rest were classified as missing the 

playoffs. Our model correctly categorized twenty-six out of thirty-two teams for this past season, 

an 81.25% accuracy. Considering the different ways a team can make the playoffs, as mentioned 

earlier, this is a fairly good mark. A team with a good record and respectable statistics in one 

conference can miss the playoffs, while a worse team makes it in the other conference. For 

instance, in 2014, the Carolina Panthers made the playoffs with a record of 7-8-1, while the 

Philadelphia Eagles missed the playoffs with a record of 10-6. 
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Figure 4.4. ROC Curve for Season Model 

 

 The most striking aspect of the season logistic model is the type of variables found to be 

significant. For the most part, statistics that represent efficiency were included, such as turnover 

percentage, and passing yards per passing touchdown. Turnover percentage is a measurement of 

the number of total turnovers committed by a team divided by the number of offensive drives they 

had throughout the season. For every one percent increase in turnover percentage, the odds of a 

team making the playoffs that year decrease by a factor of 0.677. Figure 4.5 illustrates the change 

in the probability of a team making the playoffs as turnover percentage increases while everything 

else is held constant. If a team can keep the turnover percentage below 10%, there is a good chance 

they will make the playoffs. On the other hand, few teams that have a turnover percentage over 

15% will make the playoffs. 
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Figure 4.5. Effect of Turnover Percentage on Probability of Making Playoffs 

 

 Efficiency seems to play a vital role in long term team success over the course of a season. 

Once again, turnovers shows up as a crucial indicator, and the ability to quantify the effects they 

have is very beneficial. We will be comparing the results from our logistic regression model for 

NFL seasons with the analysis in the next section, using linear discriminant functions to classify 

playoff teams. Any agreement in significant variables found, is further evidence of our findings 

here. 

4.3. Discriminant Analysis 

4.3.1. Game Analysis 

 The discriminant analysis technique is one that is very useful, especially when relating and 

ranking the degree to which each variable is contributing to the end results. With the variables 

selected for the linear discriminant function, we will be able to compare the magnitudes of the 
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standardized coefficients directly to each other to determine which has the largest effect. First, we 

will consider the game data, using the classes “Home Win” and “Home Loss” as our categories. 

Table 4.7 shows the stepwise selection process.  

 

Table 4.7. Game Discriminant Analysis Stepwise Selection Summary 

Step Entered Removed 
Partial 

R-Square 
F Value Pr > F 

1 YPPassM  0.2955 207.61 <.0001 

2 TurnoverM  0.2127 133.47 <.0001 

3 3DPerM  0.1361 77.64 <.0001 

4 SackYardsM  0.0350 17.83 <.0001 

5 PenYardsM  0.0336 17.08 <.0001 

6 YPRushM  0.0133 6.58 0.0106 

7 FirstDownM  0.0083 4.12 0.0430 

8 TotalPlayM  0.0161 8.01 0.0048 

9  YPRushM 0.0020 0.98 0.3220 

 

 All of the included variables are significant in the linear discriminant model at a level of at 

least α = 0.05, so we will proceed with these seven covariates. Table 4.8 shows the standardized 

linear discriminant functions for our two groups. In both cases, turnovers contribute the most 

towards an observation being classified into that group. As described in Section 3.3, the 

classification of each observation uses the discriminant function and inserts the value for each of 

the variables associated with that observation. The function that produces the largest value 

determines the group the data point is classified into. For every increase in the turnover margin on 

behalf of the home team, the discriminant function will penalize classification as a home win more 

than for any other category. The conversion percentage for 3rd down is another variable that has a 

large magnitude for both groups.  
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 The sign of the coefficient is also informative, and makes natural sense in most cases. An 

increase in yards per pass margin is beneficial to the home team and increases the classification 

value for a home win, while at the same time, decreasing the classification value for a home loss. 

Total play margin is the only variable that seems to be counter intuitive, but as we will consider 

later on, this may be due to the efficiency of a team throughout the game.  

 

Table 4.8. Standardized Linear Discriminant Functions for Game Model 

Variable Home Loss Home Win 

TurnoverM 0.79468 -0.82641 

FirstDownM -0.34551 0.78191 

TotalPlayM 0.27263 -0.64415 

3DPerM -0.59911 0.52289 

YPPassM -0.45613 0.40363 

SackedM 0.33322 -0.28138 

PenaltyM 0.18074 -0.27553 

 

 With the linear discriminant functions, we can perform cross validation of the training data 

set as a way to assess the ability to correctly classify the two groups. Table 4.9 displays the results 

of the performance of the discriminant functions. With the hold out method, 195 out of 215 home 

losses were correctly classified, and 247 out of 282 home wins were correctly classified. That 

corresponds to an 89% accuracy rate for classifying a home win using these linear discriminant 

functions. So we can be confident in the variables that were chosen to be included. 

When the discriminant functions are applied to the testing data set, 219 out of the 256 

games were correctly grouped, an 85.5% accuracy. This is almost identical to the other models 

when the testing data set was considered. Therefore, the discriminant functions can be generalized 

to include any game played outside of the training data set, while still played under the same set 

of rules and conditions. 
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Table 4.9. Cross Validation Summary of Discriminant Functions for Game Model 

Home Wins Classified Loss Classified Win Total 

Observed Loss 195 20 215 

Observed Win 35 247 282 

Total 230 267 497 

Error Rate 0.0930 0.1241 0.1086 

  

Comparing the variables in the discriminant functions for individual games to those found 

using the previous techniques of OLS and logistic regression, we see a lot of similarities. For the 

most part, the variables are identical, with the exception of the discriminant functions favoring the 

total number of penalties and sacks opposed to the yards lost to both. However, if we compare the 

values of the coefficients for each methods, some of the differences begin to appear. Turnovers 

has the largest coefficient in every case, but the next largest varies from model to model. Yards 

per pass margin and first down margin have large effects in the point spread and win probability 

models, but this is mainly due to the scales of measurements. There are only small deviations in 

the values of yards per pass margin, so an increase has a superficially larger effect in the score 

margin and probability of winning. But, we know from the standardized discriminant coefficients, 

that these do not have as much influence as they may seem to have.  

One area that may be overlooked in the first two models is 3rd down conversion percentage 

margin. It may have a smaller coefficient in the point spread and logistic models, but it is clear 

there is a significant impact on whether or not a team will win the game, based on the ability to 

convert and prevent an opponent from converting 3rd downs opportunities. 
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4.3.2. Season Analysis 

 For the seasonal data, the discriminant analysis approach will classify the response 

similarly to the logistic regression methods. The two different groups considered are “Made 

Playoffs”, and “Missed Playoffs”. Table 4.10 summarizes the results of the variables chosen during 

the stepwise selection.  

 

Table 4.10. Season Discriminant Analysis Stepwise Selection Summary 

Step Entered Removed 
Partial 

R-Square 
F Value Pr > F 

1 TO%  0.2957 66.33 <.0001 

2 Yards  0.1171 20.83 <.0001 

3 RushYds/TD  0.0245 3.93 0.0493 

4 PassYds/TD  0.0255 4.05 0.0459 

5 PenaltyYards  0.0189 2.97 0.0871 

6 Yards/Play  0.0092 1.42 0.2360 

7  Yards/Play 0.0092 1.42 0.2360 

 

 These five variables are almost the exact same as the ones that made up the logistic model 

for this data set. Looking at the standardized discriminant functions, we can compare the 

coefficients and their effect sizes to determine if they also coincide to the previous model. Table 

4.11 shows that indeed, the turnover percentage has the largest magnitude, and therefore 

contributes the most to the separation of the classes. For a team in the NFL, the best way to ensure 

a successful season and making the playoffs is to limit the number of giveaways. The other four 

variables, while significant in their own right, each contribute about the same, and not nearly as 

much as turnover percentage.  
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Table 4.11. Standardized Linear Discriminant Functions for Season Model 

Variable Miss Playoffs Make Playoffs 

TO% 0.50055 -0.83425 

Yards -0.22007 0.36678 

RushYds/TD 0.21499 -0.35832 

PassYds/TD 0.20977 -0.34961 

PenaltyYards -0.14281 0.23801 

 

To validate these discriminant functions, we considered each of the four-team divisions in 

the NFL separately. First, we found the one team most likely to make the playoffs in each division 

as classified them as a playoff team. Next, the two wild card playoff teams from each conference 

were selected as the most likely to make the playoffs from the remaining teams in each conference. 

All remaining teams were classified as missing the playoffs. 

 The cross validation summary in Table 4.12 shows a slightly worse ability to 

categorize teams into the correct groups than the discriminant functions for individual games. 

Overall, 136 out of 160 team were correctly classified. The error rate is calculated with a slight 

adjustment in this case, since we know each season that twelve teams out of thirty-two total will 

make the playoffs, the prior probability of each class is known. Therefore we set these probabilities 

to 62.5% of the teams miss the playoffs, and 32.5% of the teams make them. Each individual error 

rate is multiplied by these proportions before the total rate of 15% is determined. For the most 

recent NFL season, we were able to classify twenty-six teams out of thirty-two correctly, exactly 

the same number when using the logistic model.  
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Table 4.12. Cross Validation Summary of Discriminant Functions for Game Model 

Playoffs 
Classified Miss 

Playoffs 

Classified Make 

Playoffs 
Total 

Observed 

Miss Playoffs 
88 12 100 

Observed Make 

Playoffs 
12 48 60 

Total 100 60 160 

Error Rate 0.1200 0.2000 0.1500 

Prior Probability 0.6250 0.3750  

 

One interesting item of note is the positive effect total penalty yards has on season success. 

The logistic model in Section 4.2.2 also shows more penalties as a slight advantage. This could 

possibly be due to the fact that good teams take more chances on defense to try and increase their 

turnover margin. This aggressive type of play may result in more penalties and penalty yardage 

being called.  

Overall, the variables selected show a consistent preference for measurements that quantify 

efficiency. This would seem to imply that simply racking up numbers during the season, such as 

passing yards and rushing yards, will have little impact if a team is not making use of those yards 

by scoring regularly.  Also, most of the recorded season statistics are related to offensive values, 

with no indication of how preventing an opponent from scoring, passing, and so on, impacts 

success in the NFL. In the next section we will address this issue and observe the difference 

between offensive and defensive variables for winning an individual game. 

4.3.3. Offensive and Defensive Comparison for Games 

 The final type of discriminant analysis we will perform is to compare offensive and 

defensive abilities to determine if either is consistently contributing more to winning individual 
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games. Instead of the marginal data used in earlier models, we will consider just the individual 

team totals for both the home and away team. The two classes will now simply be, "Win" and 

"Lose". However, now we will have a designation of offensive amount gained, or defensive 

amount given up for each covariate. Table 4.13 gives the stepwise selection summary. 

The first six variables selected to enter the model represent three different types of in game 

statistics; turnovers, yards per pass, and 3rd down conversion percentage. This is consistent with 

the variables that we have found significant in our other models. The next group of covariates 

entered into the model are different types of measurements for first downs, sacks, and penalties. 

Again, this is consistent with our findings thus far using alternative methods. 

 

Table 4.13. Offensive vs. Defensive Discriminant Analysis Stepwise Selection Summary 

Step Entered Removed Partial R-Square F Value Pr > F 

1 YPPassGain  0.2162 139.86 <.0001 

2 TurnoverForce  0.1838 113.95 <.0001 

3 Per3DAllow  0.0950 53.03 <.0001 

4 TurnoverCommit  0.1003 56.17 <.0001 

5 Per3D  0.0706 38.24 <.0001 

6 YPPassAllow  0.0406 21.27 <.0001 

7 FDGain  0.0289 14.91 0.0001 

8 TotalPlays  0.0401 20.89 <.0001 

9 SackGain  0.0253 12.93 0.0004 

10 SackYdsLost  0.0209 10.65 0.0012 

11 Penalty  0.0153 7.71 0.0057 

12 OppPenaltyYard  0.0073 3.63 0.0573 

13 YPRushAllow  0.0087 4.33 0.0379 

14 TotalYardAllow  0.0087 4.33 0.0379 

15 FDAllow  0.0040 1.99 0.1593 

16 TotalYard  0.0027 1.33 0.2490 

17  TotalYard 0.0027 1.33 0.2490 
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For our analysis, we would like to reduce the number of variables included, so we will only 

use the offensive and defensive pairs for turnovers, yards per pass, 3rd down conversion 

percentage, sack yards, and first downs. Penalties will be omitted since they don't reveal much 

information about offensive and defensive abilities. Table 4.14 displays the linear discriminant 

functions for the two classes. 

 

Table 4.14. Standardized Linear Discriminant Functions for Offense vs. Defense Model 

Variable Lose Win 

TurnoverCommit 0.51450 -0.50449 

TurnoverForce -0.72730 0.71315 

YPPassGain -0.47315 0.46394 

YPPassAllow 0.31672 -0.31056 

Per3D -0.34140 0.33476 

Per3DAllow 0.46584 -0.45678 

SackYdsLost 0.25987 -0.25481 

SackYdsGain -0.22023 0.21594 

FDGain -0.36894 0.36176 

FDAllow -0.03998 0.03920 

 

 To analyze these functions, we will need to compare the sets of variables. For instance, 

committing a turnover is a measurement of offense, and for every turnover committed, a team will 

move away from a "Win" classification by about 0.504 standardized units. However, if a team 

forces a turnover, which is a defensive measurement, they will move towards a Win classification 

by 0.713 standardized units. Clearly, for turnovers, it is better to force them than commit them, but 

all things being equal, it would be more beneficial to have one more turnover forced than one less 

turnover committed. Defense has the clear advantage for turnovers.  

For the yards per pass variable, we see the opposite effect, the coefficient for the "Win" 

class has a magnitude of 0.464 for the yards per pass gained, while the yards per pass against 
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measure has a magnitude of 0.311. When considering yards per pass, it is advantageous to be more 

efficient on offense than it is to prevent your opponent from having a lot of yards per pass. 

Similarly, for first downs, it seems as though offense is more important, making sure your team is 

moving down the field. 

 The remaining variables all favor the defensive side. A team should focus more on stopping 

their opponent on 3rd downs than converting their own, if they want to maximize their probability 

of winning the game. Sacks are also more significant from the defensive side, giving up sack 

yardage is not as critical as is sacking the opposing quarterback. To be clear, all of these variables 

will affect the game significantly, but the discriminant functions let us see that those effects are 

not necessarily equal. 

 The discriminant functions were able to correctly classify 88.2% of the observations using 

the cross validation method. This shows that the analysis performs well in relation to describing 

the data, but our primary concern in this section was the idea of offense versus defense. Of the 

variables that we are consistently finding significant in our models, it appears that there are 

different ways to maximize the benefits. There is no clear advantage given to the broad idea of 

offense or defense, instead it should be considered on a case by case basis. For areas such as 

turnovers, and 3rd down percentage, a team would be better off with a defensive mindset. As for 

yards per pass, first downs, and preventing sacks, an offensive strategy will help a team take full 

advantage of their chance to win the game. 

4.4. Proportional Odds Model 

 The final model that we will create is an extension of the logistic regression model. Using 

the individual game data set and the marginal variables once again, we can take advantage of the 

fact that score margin can be separated into different ordered groups. We will create four categories 
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that indicate the winner of the game, along with a classification of a close scoring game or a 

blowout, Section 3.4 provides the details of how the new ordinal response variable was created. 

The four categories will be referred to as; "Strong Away Win", "Weak Away Win", "Weak Home 

Win", and "Strong Home Win". It is important to keep in mind that these categories are ordered, 

since the interpretation of the proportional odds model employs the odds of moving from one lower 

category to the next higher one. 

After we have a model, we can calculate the probability that a given observation will fall 

into each of the four categories. Once those probabilities are ranked from most likely to least likely, 

the most likely group will be the fitted value and compared to the actual score margin observed at 

the end of the game. The winner of the game and the score margin category can then be checked 

against the actual outcome of the games. Table 4.15 gives a summary of the proportional odds 

model after a stepwise selection procedure, and the same variables are showing up again in the 

proportional odds model, along with a few others that we did not see earlier. 

 

Table 4.15. Parameter Estimates and Odds Ratios for Proportional Odds Model 

VARIABLE 

PARAMETER 

ESTIMATE 

STANDARD 

ERROR T VALUE PR > |T| 

ODDS 

RATIOS 

INT-SA|WA -3.6261 0.2529 -14.339 <.0001 - 

INT-WA|WH -0.2148 0.1538 -1.396 0.0813 - 

INT-WH|SH 3.4949 0.2399 14.5689 <.0001 - 

FIRSTDOWNM 0.27753 0.038963 7.123 <.0001 1.320 

SACKYARDSM -0.03809 0.007115 -5.353 <.0001 0.963 

TURNOVERM -1.22858 0.089493 -13.728 <.0001 0.293 

3DPERM 0.06562 0.007310 8.977 <.0001 1.068 

RUSHM 0.01497 0.002238 6.689 <.0001 1.015 

PASSINGM 0.01073 0.002028 5.294 <.0001 1.011 

PENYARDSM -0.01301 0.003692 -3.525 0.0004 0.987 

TOTALPLAYM -0.17052 0.017664 -9.654 <.0001 0.843 
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 As described earlier, the proportional odds model actually creates three separate log odds 

models for our data, one for each of the first three classes. The variable coefficients are the same 

in each case and only the intercept changes, marking the boundary of the classes. If we plug in the 

values from the summary table to Equations 6, 7, and 8 on pg. 24 we obtain the cumulative 

probability that an observation will fall into each category or lower. Here are the equations with 

the current values: 

 𝜃𝑠𝑎 = 𝑙𝑜𝑔 
𝑃𝑠𝑎

1− 𝑃𝑠𝑎
= −3.62 +  𝑿𝛽    (Eq. 9) 

𝜃𝑤𝑎 = 𝑙𝑜𝑔
𝑃𝑤𝑎

1− 𝑃𝑤𝑎
= −0.2148 +  𝑿𝛽    (Eq. 10) 

𝜃𝑤ℎ = 𝑙𝑜𝑔
𝑃𝑤ℎ

1− 𝑃𝑤ℎ
=  3.4949 +  𝑿𝛽    (Eq.11) 

where, 𝑿𝛽 = 0.278*(First Down Margin) - 0.038*(Yards lost to Sack Margin) - 

1.229*(Turnover Margin) + 0.066*(3rd Down Conversion Percent Margin) + 0.015*(Rush Yards 

Margin) + 0.011*(Pass Yards Margin) - 0.013*(Penalty Yards Margin) - 0.171*(Total Play 

Margin). 

Now, we can solve for these cumulative probabilities to find the probability that each observation 

will fall into each individual category. The general form of these probabilities is given here: 

𝑝𝑠𝑎 = 
𝑒𝜃𝑠𝑎

1+𝑒𝜃𝑠𝑎
      (Eq. 12) 

𝑝𝑤𝑎 = 
𝑒𝜃𝑤𝑎

1+𝑒𝜃𝑤𝑎
− 𝑝𝑠𝑎     (Eq. 13) 

𝑝𝑤ℎ = 
𝑒𝜃𝑤ℎ

1+𝑒𝜃𝑤ℎ
− (𝑝𝑤𝑎 + 𝑝𝑠𝑎)   (Eq. 14) 

𝑝𝑠ℎ = 1 − (𝑝𝑠𝑎 + 𝑝𝑤𝑎 + 𝑝𝑤ℎ)   (Eq. 15) 

When the model was used to classify the categories in the training data set, it had a 70.6% 

accuracy rate. This means not only did the model have the correct outcome of the game, but it also 
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gave the correct group for the score margin. If we just consider whether or not the model got the 

winner correct, not considering the margin of victory, it was 88.9% accurate. Therefore, our 

proportional odds model is just as accurate as the logistic model in fitting the game winner, and it 

can tell us something about the probability of the final score margin. 

 Using the testing data set with the proportional odds model, we found that 68.8% of the 

games were correctly categorized, and 86.3% were classified correctly as a home win or home 

loss. So, our models are valid for games outside of the training data set. Considering the variables 

that were included with this method, again we can see a lot of similarity to all of the previous 

models. Some extra variables are included, such as total passing yard margin, and for the first time 

we have a rushing statistic found significant.  

Comparing the effect of each variable, turnover margin is once again the most influential, 

along with first down margin. For every increase in the turnover margin, the odds of the home 

team moving from one category to the next, say from weak away win to weak home win, is reduced 

by a factor of 0.293. As first down margin increases one unit, the odds of winning by a larger 

margin (or losing by a smaller margin) increases by a factor of 1.320. 

 One advantage of this model is to consider hypothetical scenarios during a game. For 

example, if we wanted to know the winner and final score of a game where every significant 

marginal variable had a value of zero, we can get an estimate from the point spread model and also 

a probability of the home team winning from the logistic model, but that doesn't tell us anything 

more about what else could possibly occur. Figure 4.6 illustrates the expected probabilities when 

both teams have the exact same performances in the significant variables. The probability that the 

away team will win by more than ten points is 2.59%, and for the home team to win by less than 

ten points is a probability of 52.4%. Overall, with everything equal, the home team has a 55.3% 
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probability of winning the game. This is similar to the logistic model, and reflects the actual 

historical home winning percentage in the NFL over the last ten years.  

 
  StrongAway       WeakAway      WeakHome         StrongHome 

  0.02593016     0.42058704      0.52402625         0.02945656 

 

Figure 4.6. Proportional Odds Probabilities for No Advantage 

 

With this model we can give the theoretical winning probability and score margin for any 

combination of marginal variable values. Another example is illustrated in Figure 4.7, a moderate 

advantage for the away team. If the away team has five more first downs, fifty more rushing yards, 

seventy-five more passing yards, a 3rd down conversion percentage ten points higher than the 

home team, and close values for the other marginal statistics, we can see that the away overall 

probability of winning is around 78.2%, with a 10.7% chance of the game being a blowout by the 

away team.  
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 StrongAway         WeakAway      WeakHome      StrongHome 

 0.10668302       0.67682776   0.20976931      0.00671992 

 

Figure 4.7. Proportional Odds Probabilities for Away Team Advantage 

 

The proportional odds analysis provides a better way to visualize the possible outcomes of 

a game using our models. It also reminds us that there is a lot of variation and uncertainty when 

applying these models to new data sets that should be accounted for. The fitted value should not 

be taken directly as a prediction of how a game will end, but rather as a point estimate that should 

be used along with a range of possible outcomes and their probabilities. This leads us to our next 

section, where we will use simulation to forecast games. 

4.5. Simulation 

 Up until now, all of the model validation that we have performed has been comprised of 

considering games outside of our testing data set and using the statistics collected from those 

games to fit the final score margin or classify the winner. This provides an extra level of confidence 
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that the models we have chosen can work outside of the observations used to create them. While 

we have presented some quantitative analysis of the effects of those areas, such as turnovers and 

passing efficiency, the casual fan may respond with remarks which point to the fact that it is 

common knowledge that anytime a team commits three more turnovers than their opponent, they 

will find it difficult to win the game. What they would really like to know is, what is the probability 

a team will actually commit those turnovers in their next game? Is there any way to forecast the 

outcome of games without using the statistics from that contest? 

 This leads us to our final model evaluations, using simulations from historical 

performances. In our testing data set, all games after Week 4 were selected, 193 in total. For each 

of these games, the two teams involved had the means and standard deviations calculated for each 

of the variables in the models based on all of the games they played leading up to the game of 

interest. Then, from these statistics, 10,000 game simulations were created based on the marginal 

statistics of offensive performance, and also a combination of offense and defense which was 

introduced in Section 3.5. The results for each model were compared to those of the actual game 

results. 

 One example of simulations used to forecast a game outcome is presented here. On 

November 3rd 2013, during Week 9 of the NFL season, the Kansas City Chiefs played at the 

Buffalo Bills. We will illustrate using the point spread regression model on the simulated data. 

Table 4.16 shows the average values and standard deviations for all of the variables used, including 

the average values allowed by each team over the previous eight weeks. These are the numbers 

that were used to simulate 10,000 games being played, and the marginal variables were calculated 

for each one. Next, the marginal values are entered into the model and the average point spread 

for all the simulations is calculated. For this case, the average point spread was -3.7 using only the 
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offensive numbers for each team, and -6.1 using the combination of both offensive and defensive 

statistics. This represents that we would expect the away team, the Chiefs, to win the game by 

somewhere around four to six points. The actual outcome of the game saw the Chiefs win by a 

margin of ten points. So we were correct in selecting the winner using both marginal statistics, and 

it appears that using the combination of offense and defense provided a fitted point spread that was 

a little closer to the actual point spread. 

  

Table 4.16. Averages and Standard Deviations Through Week 8 

Variable Chiefs Chiefs - Allowed Bills Bills - Allowed 

First Downs 
Mean = 19.0 

SD = 1.69 

16.0 

3.93 

18.88 

2.85 

21.38 

3.96 

Total Plays 
Mean = 67.75 

SD = 5.036 

62.25 

6.84 

70.75 

5.83 

71.88 

10.08 

Yards per Pass 
Mean = 5.78 

SD = 1.24 

5.9 

1.94 

5.8 

0.89 

7.10 

2.33 

Turnovers 
Mean = 1.0 

SD = 1.19 

2.5 

1.31 

1.63 

1.06 

1.88 

1.73 

3rd Down 

Percentage 

Mean = 36.02 

SD = 15.47 

25.54 

7.87 

35.97 

9.35 

37.88 

11.99 

Yards Lost to Sack 
Mean = 15.63 

SD = 11.38 

31.75 

20.38 

19.5 

10.60 

21.63 

12.74 

 

Figure 4.8 shows the histogram of the point spreads for all of the simulated games, using 

the offensive and defensive marginal statistics. The overall percentage of simulated games won by 

the Chiefs was 76%, and while the average point spread value was -6.1, clearly there were many 

simulated games that resulted in a point spread close to -10, that of the actual game. 
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Figure 4.8. Histogram of Simulated Point Spreads 

 

 This process was repeated for 193 games, and for each of the individual game models. 

Table 4.17 summarizes the results and accuracy of each model when forecasting the outcome of 

games using historical team performance. Included in the table are the percentages of each model 

correctly choosing the winner based on the actual in game statistics observed, which was our 

previous validation method.  

 For projecting games without any knowledge from the event itself, we start with the naïve 

method of choosing a winner of the game by selecting the home team to win. With this technique, 

57% of the games were correctly selected. For predicting the point spread, using a combination of 

both offensive and defensive statistics for each team resulted in finding the actual winner 67% of 

the time. The mean absolute deviation of the fitted point spread to the observed point spread was 

just under ten points, meaning that is how close our fitted value was to the observed value on 

average. 
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Table 4.17. Summary of Model Forecasting Accuracy 

Model 

Using In Game 

Statistics 

Offense Only 

Forecast 

Offense and 

Defense Forecast 

Naïve (Home Team Wins) 57% 57% 57% 

Point Spread 85.9% 65% 67% 

Logistic 85.9% 63% 66% 

Discriminant Functions 85.5% 63% 67% 

Proportional Odds (Correct Category) 68.8% 37% 35% 

Proportional Odds (Correct Winner) 86.3% 64% 71% 

 

For the models we developed that only try to classify the game as a Win or a Loss, the best 

performing models were the proportional odds models. While they were only around 35% in 

predicting the actual category the final point spread fell into, the correct winner was selected for 

71% of the games. Overall, for each of the models, it seems that simulating games using both 

offensive and defensive statistics provides a more accurate forecast. This would seem to make 

intuitive sense, since when we consider offensive values, we are only looking at half of the picture. 

Simulation seemed to create a lot of conservative average point spreads, with few games being 

classified as blowouts. But those models were just as successful as the others when we considered 

only if they produced the correct winner. 

 Overall, every one of the models we developed had an accuracy of around 63% or higher, 

much better than just choosing the home team to win. The best models we can provide are actually 

able to beat the performance of the others presented in Chapter 2, although by just a slight margin. 

This is further evidence that those variables we have identified as significant in explaining success 

in the NFL are indeed important. Also, this illustrates the capabilities that simulation has when 

looking forward to games that have not yet occurred. 
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CHAPTER 5. CONCLUSIONS 

 The goal of this paper was to determine the most significant variables, collected over the 

course of games and seasons in the NFL, that contribute to success. On a short term basis, success 

can be defined as winning individual games, and over the long term, success can be considered as 

making the playoffs at the end of a season. In both cases, our analyses produced similar results. 

Turnovers, passing efficiency, first downs, and 3rd down conversion percentage consistently 

showed up in each of the models that we formulated. There are certainly other areas that can lead 

to success in the NFL, but these seem to be the ones that offer the most influence. 

 Indicating the parts of football that point to winning is not the final objective though. We 

wanted to quantify those effects. Now, a coach, player, or fan does not have to simply say that 

more first downs for their team is beneficial, they can point to an empirical model and say that 

their team can expect almost three extra points for every two more first downs they acquire. Or 

they can say that their odds of winning the game will decrease by a factor of 0.27 when they have 

one more turnover than their opponent. These are quantitative measurements that teams and 

organizations can use to make decisions on strategy, player personnel, or staff. As a team owner, 

hiring a coach that has a reputation for calling plays that increase passing efficiency may be a 

better choice than one who is more prone to calling running plays. The former maximizes the 

chance of winning, while the latter is focused in an area that is not as crucial. 

 Most of the results we have presented come down to being efficient in football. At the 

season level, the more drives you score on, the more likely you are to make the playoffs. That 

means you are not spending a lot of your offensive possessions moving the ball a little bit, only to 

punt it away and give the ball back to your opponent. Turnovers are another measure of efficiency, 
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the most inefficient play you can have is to immediately forfeit possession of the ball to the 

opponent and end any chance of scoring points.  

 One other variable that was consistently included in our models was total plays. The 

interesting aspect of this statistic is that for all of the models where it was included, it had a negative 

effect as it increased. For the point spread model, every two extra plays over your opponent 

resulted in a loss of about one point in the score margin. One possible explanation for this is 

offensive efficiency. Those teams that are winning and scoring an abundance of points are doing 

so with less total plays. An inefficient team will use more plays to travel the same distance to score 

points than one which is efficient. 

 It is also important to consider the amount that each of these significant variables 

contributes. The question of offense versus defense, or the old axiom that defense wins 

championships, is absolutely something that should be confirmed or discredited. The truth is, there 

are no universal rules that say either offense or defense is better than the other. It needs to be 

examined on a statistic by statistic basis, and once the value of each is quantified, it can be 

exploited to benefit of the teams that are willing to do so. 

 When it comes to turnovers, it is better for your team to create them, than try to prevent 

committing them. Either way, both will affect the outcome of the game, but you can expect a larger 

return for creating a turnover then preventing one. This can lead to different strategies, such as 

being more aggressive on defense by trying to intercept more passes, or trying to cause more 

fumbles.  

On the other hand, when you consider passing productivity, it is more important to have an 

offense that produces more yards per pass than it is to have a defense that prevents a larger yard 

per pass value. So this, along with the fact that offensive turnovers do not hurt as much, would 
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suggest an approach that is more aggressive in passing offense. An example would be calling more 

plays that will result in greater passing yardage, even if the risk of an interception is slightly 

increased. 

 With all of this information available to each team and the public, it is important that NFL 

teams use it effectively. There is still some resistance throughout the league to use analytics for 

improved decision making off the field, and enhanced performance on it. Hopefully, the continued 

analysis and application of statistics in sports will convince those who are in the position of making 

decisions that soon they will be at a disadvantage if they fail to make the most of these underlying 

tendencies in the game of football. 
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APPENDIX A. LIST OF COLLECTED GAME VARIABLES  

 Score 

 Win Percentage in previous games 

 Total First Downs T1 

 Passing First Downs P1 

 Rushing First Downs P1 

 First Downs From Penalties P1 

 Total Yards T2 

 Total Plays P2 

 Yards Per Play P2 

 Total Passing Yards T3 

 Passing Attempts P3 

 Yards Per Pass Attempts P3 

 Total Rushing Yards T4 

 Rushing Attempts P4 

 Yards Per Rush P4 

 Number of Penalties 

 Total Penalty Yards 

 Turnovers T5 

 Fumbles P5 

 Interceptions P5 

 3rd Down Percentage T6 

 3rd Down Conversions P6 

 3rd Down Attempts P6 

 4th Down Percentage T7 

 4th Down Conversions P7 

 4th Down Attempts P7 

 Defensive Touchdowns 

 Time of Possession 

 Times Sacked 

 Yards lost to Sacks 

 Red Zone Percentage T8 

 Red Zone Scores P8 

 Red Zone Attempts P8 

 Average Kick Return 

 Average Punt Return

 

T Indicates a variable that measures the team total in a game 

P Indicates the partial variables combined to calculate the matching total variable 

The corresponding totals and parts are never jointly considered as initial variables for a model, but 

in separate models containing all other total or partial measurements.  
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APPENDIX B. LIST OF COLLECTED SEASON VARIABLES 

 Total Points Scored 

 Total Yards T1 

 Total Plays P1 

 Yards Per Play P1 

 Turnovers T2 

 Fumbles Lost P2 

 Interceptions P2 

 Total First Downs T3 

 Passing First Downs P3 

 Rushing First Downs P3 

 First Downs From Penalties P3 

 Passing Yards T4 

 Passing Attempts P4 

 Yards Per Pass Attempt P4 

 Completions 

 Passing Touchdowns 

 Rushing Yards T5 

 Rushing Attempts P5 

 Yards Per Rush P5 

 Rushing Touchdowns 

 Scoring Percentage 

 Turnover Percentage 

 Passing Yards Per Passing 

Touchdown 

 Rushing Yards Per Rushing 

Touchdown 

 Penalty Yards T6 

 Number of Penalties P6 

 Average Yards Per Penalty P6 

 

T Indicates a variable that measures the team total for a season 

P Indicates the partial variables combined to calculate the matching total variable 

The corresponding totals and parts are never jointly considered as initial variables for a model, but 

in separate models containing all other total or partial measurements. 
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APPENDIX C. SAS CODE 

 
*Collect raw data from ESPN boxscores; 

%macro scrape(season, week, site); 

 

filename football url "http://scores.espn.go.com/nfl/boxscore?gameId=&site"; 

 

* first pass, keep everything; 

data source2; 

 format nfl $2000.; 

 infile football lrecl=3276700 delimiter=">"; 

 input nfl $ @@; 

run; 

 

data win; 

 set source2; 

 if index(nfl,'</p')then temp1 = scan(nfl,1,'<'); 

 if temp1^=''; 

 Win=scan(temp1,1,'-'); 

 Win=compress(Win,'('); 

 Loss=scan(temp1,2,'-'); 

 Loss=scan(Loss,1,','); 

 Tie=scan(temp1,3,'-'); 

 Tie=scan(Tie,1,','); 

 drop temp1; 

run; 

 

data formatted1; 

 set source2; 

 if index(nfl,'</td') then temp = scan(nfl,1,'<'); 

 if index(nfl,'</tr') then temp = scan(nfl,1,'<'); 

 if index(nfl, '</a') then temp = scan(nfl,1,'<'); 

 if index(nfl, '</th') then temp = scan(nfl,1,'<'); 

 if temp = "/td" then delete; 

 if temp = "/th" then delete; 

  if temp = "/tr" then delete; 

  if temp = "/a" then delete; 

  if temp ^= ''; 

  if temp = "Total Drives" then miss=1000; 

   miss+1; 

  if 1000<miss<1004 then delete; 

  if temp = "1st Downs" then ctr=1000; 

  if temp = "Possession" then ctr=2000; 

  ctr+1; 

  drop nfl; 

  if 0<ctr<18 then delete; 

  if 41<ctr<1000 then delete; 

run; 

 

data formatted; 

 set formatted1; 

 find=find(temp, 'Returns'); 

 if find>0 then count=3000; 

 bad=find(temp, 'Kicking'); 

 if bad>0 then count=3500; 

 count+1; 
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 if count>=3500 then delete; 

 if count<3000 then delete; 

run; 

 

data formatted3; 

 set formatted; 

 if temp="Team" then counter=4000; 

  counter+1; 

 if 4000<counter<4007 then temp2=temp; 

 if temp2 ^=''; 

  obs+1; 

 drop find bad counter; 

run; 

 

data reset; 

  merge formatted1 formatted1(firstobs=1 keep=temp rename=(temp=Date)); 

  merge formatted1 formatted1(firstobs=2 keep=temp rename=(temp=Away)); 

  merge formatted1 formatted1(firstobs=3 keep=temp rename=(temp=Home)); 

  merge win win(firstobs=3 keep=Win rename=(Win=AwayWins)); 

  merge win win(firstobs=4 keep=Win rename=(Win=HomeWins)); 

  merge win win(firstobs=3 keep=Loss rename=(Loss=AwayLosses)); 

  merge win win(firstobs=4 keep=Loss rename=(Loss=HomeLosses)); 

  merge win win(firstobs=3 keep=Tie rename=(Tie=AwayTie)); 

  merge win win(firstobs=4 keep=Tie rename=(Tie=HomeTie)); 

  merge formatted1 formatted1(firstobs=8 keep=temp rename=(temp=OT)); 

  merge formatted1 formatted1(firstobs=15 keep=temp rename=(temp=AwayScr)); 

  merge formatted1 formatted1(firstobs=17 keep=temp rename=(temp=AwayScrOT)); 

  merge formatted1 formatted1(firstobs=24 keep=temp rename=(temp=HomeScrOT)); 

  merge formatted1 formatted1(firstobs=21 keep=temp rename=(temp=HomeScr)); 

  merge formatted1 formatted1(firstobs=26 keep=temp rename=(temp=AwayFD)); 

  merge formatted1 formatted1(firstobs=27 keep=temp rename=(temp=HomeFD)); 

  merge formatted1 formatted1(firstobs=28 keep=temp rename=(temp=AwFDPass)); 

  merge formatted1 formatted1(firstobs=29 keep=temp rename=(temp=HoFDPass)); 

  merge formatted1 formatted1(firstobs=30 keep=temp rename=(temp=AwFDRun)); 

  merge formatted1 formatted1(firstobs=31 keep=temp rename=(temp=HoFDRun)); 

  merge formatted1 formatted1(firstobs=32 keep=temp rename=(temp=AwFDPen)); 

  merge formatted1 formatted1(firstobs=33 keep=temp rename=(temp=HoFDPen)); 

  merge formatted1 formatted1(firstobs=34 keep=temp rename=(temp=Aw3Dwn)); 

  merge formatted1 formatted1(firstobs=35 keep=temp rename=(temp=Ho3Dwn)); 

  merge formatted1 formatted1(firstobs=36 keep=temp rename=(temp=Aw4Dwn)); 

  merge formatted1 formatted1(firstobs=37 keep=temp rename=(temp=Ho4Dwn)); 

  merge formatted1 formatted1(firstobs=39 keep=temp                                                                                                              

        rename=(temp=AwTotalPlay)); 

  merge formatted1 formatted1(firstobs=40 keep=temp  

      rename=(temp=HoTotalPlay)); 

  merge formatted1 formatted1(firstobs=42 keep=temp  

      rename=(temp=AwTotalYard)); 

  merge formatted1 formatted1(firstobs=43 keep=temp  

      rename=(temp=HoTotalYard)); 

  merge formatted1 formatted1(firstobs=45 keep=temp rename=(temp=AwYPPlay)); 

  merge formatted1 formatted1(firstobs=46 keep=temp rename=(temp=HoYPPlay)); 

  merge formatted1 formatted1(firstobs=48 keep=temp rename=(temp=AwPassing)); 

  merge formatted1 formatted1(firstobs=49 keep=temp rename=(temp=HoPassing)); 

  merge formatted1 formatted1(firstobs=52 keep=temp rename=(temp=AwYPPass)); 

  merge formatted1 formatted1(firstobs=53 keep=temp rename=(temp=HoYPPass)); 

  merge formatted1 formatted1(firstobs=56 keep=temp rename=(temp=AwSack)); 

  merge formatted1 formatted1(firstobs=57 keep=temp rename=(temp=HoSack)); 
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  merge formatted1 formatted1(firstobs=59 keep=temp rename=(temp=AwRush)); 

  merge formatted1 formatted1(firstobs=60 keep=temp rename=(temp=HoRush)); 

  merge formatted1 formatted1(firstobs=61 keep=temp  

rename=(temp=AwRushAtmpt)); 

  merge formatted1 formatted1(firstobs=62 keep=temp  

rename=(temp=HoRushAtmpt)); 

  merge formatted1 formatted1(firstobs=63 keep=temp rename=(temp=AwYPRush)); 

  merge formatted1 formatted1(firstobs=64 keep=temp rename=(temp=HoYPRush)); 

  merge formatted1 formatted1(firstobs=66 keep=temp rename=(temp=AwRedZone)); 

  merge formatted1 formatted1(firstobs=67 keep=temp rename=(temp=HoRedZone)); 

  merge formatted1 formatted1(firstobs=69 keep=temp rename=(temp=AwayPen)); 

  merge formatted1 formatted1(firstobs=70 keep=temp rename=(temp=HomePen)); 

  merge formatted1 formatted1(firstobs=72 keep=temp rename=(temp=AwayTurn)); 

  merge formatted1 formatted1(firstobs=73 keep=temp rename=(temp=HomeTurn)); 

  merge formatted1 formatted1(firstobs=74 keep=temp rename=(temp=AwFumble)); 

  merge formatted1 formatted1(firstobs=75 keep=temp rename=(temp=HoFumble)); 

  merge formatted1 formatted1(firstobs=76 keep=temp rename=(temp=AwInt)); 

  merge formatted1 formatted1(firstobs=77 keep=temp rename=(temp=HoInt)); 

  merge formatted1 formatted1(firstobs=79 keep=temp rename=(temp=AwDefTD)); 

  merge formatted1 formatted1(firstobs=80 keep=temp rename=(temp=HoDefTD)); 

  merge formatted1 formatted1(firstobs=82 keep=temp rename=(temp=AwPoss)); 

  merge formatted1 formatted1(firstobs=83 keep=temp rename=(temp=HoPoss)); 

  merge formatted3 formatted3(firstobs=4 keep=temp2 rename=(temp2=AwAveKR)); 

  merge formatted3 formatted3(firstobs=10 keep=temp2 rename=(temp2=HoAveKR)); 

  merge formatted3 formatted3(firstobs=16 keep=temp2 rename=(temp2=AwAvePR)); 

  merge formatted3 formatted3(firstobs=22 keep=temp2 rename=(temp2=HoAvePR)); 

  merge formatted3 formatted3(firstobs=1 keep=obs); 

run; 

 

data first; 

 set reset; 

 if obs>1 then delete; 

 drop temp ctr obs temp2 count Win Loss Tie nfl; 

run; 

 

data test1; 

 set first; 

 if (OT = "OT") then AwayScr=AwayScrOT; 

 if (OT = "OT") then HomeScr=HomeScrOT; 

 AwayWins=input(AwayWins, 2.); 

 AwayLosses=input(AwayLosses, 2.); 

 HomeWins=input(HomeWins, 2.); 

 HomeLosses=input(HomeLosses, 2.); 

 drop AwayScrOT HomeScrOT; 

run; 

 

data test2; 

 set test1; 

 AwPen=scan(AwayPen,1, '-'); 

 AwPenYard=scan(AwayPen,2,'-'); 

 HoPen=scan(HomePen,1, '-'); 

 HoPenYard=scan(HomePen,2,'-'); 

 AwSacked=scan(AwSack,1,'-'); 

 AwSackYds=scan(AwSack,2,'-'); 

 HoSacked=scan(HoSack,1,'-'); 

 HoSackYds=scan(HoSack,2,'-'); 

 AwRZScr=scan(AwRedZone,1,'-'); 
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 AwRZAtt=scan(AwRedZone,2,'-'); 

 HoRZScr=scan(HoRedZone,1,'-'); 

 HoRZAtt=scan(HoRedZone,2,'-'); 

 AwRZPer=round(AwRZScr/AwRZAtt,0.0001); 

 HoRZPer=round(HORZScr/HoRZAtt,0.0001); 

 Aw3DCon=scan(Aw3Dwn,1,'-'); 

 Aw3DAtt=scan(Aw3Dwn,2,'-'); 

 Aw4DCon=scan(Aw4Dwn,1,'-'); 

 Aw4DAtt=scan(Aw4Dwn,2,'-'); 

 Ho3DCon=scan(Ho3Dwn,1,'-'); 

 Ho3DAtt=scan(Ho3Dwn,2,'-'); 

 Ho4DCon=scan(Ho4Dwn,1,'-'); 

 Ho4DAtt=scan(Ho4Dwn,2,'-'); 

 Aw3DPer=round(Aw3DCon/Aw3DAtt,0.0001); 

 Aw4DPer=round(Aw4DCon/Aw4DAtt,0.0001); 

 Ho3DPer=round(Ho3DCon/Ho3DAtt,0.0001); 

 Ho4DPer=round(Ho4DCon/Ho4DAtt,0.0001); 

 Date=substr(Date,12,12); 

 Date=compress(Date, ','); 

 AwayScr=input(AwayScr, 2.); 

 HomeScr=input(HomeScr, 2.); 

 if AwayTie^=1 then AwayTie=0; 

 if HomeTie^=1 then HomeTie=0; 

 if AwayScr>HomeScr then AwayWins=AwayWins-1; 

 if AwayScr>HomeScr then HomeLosses=HomeLosses-1; 

 if AwayScr<HomeScr then AwayLosses=AwayLosses-1; 

 if AwayScr<HomeScr then HomeWins=HomeWins-1; 

 if AwayScr=HomeScr then AwayTie=AwayTie-1; 

 if AwayScr=HomeScr then HomeTie=HomeTie-1; 

  

run; 

 

* write output to text file, append; 

data _null_; 

 set test2; 

 file "C:\Users\joseph.roith\Desktop\Code\Data\&season\&week..csv"  

dlm=',' mod; 

 put Date Away Home AwayWins AwayLosses AwayTie HomeWins HomeLosses  

HomeTie AwayScr HomeScr AwayFD HomeFD AwFDPass HoFDPass AwFDRun 

HoFDRun AwFDPen HoFDPen AwTotalPlay HoTotalPlay AwTotalYard 

HoTotalYard AwYPPlay HoYPPlay AwPassing HoPassing AwYPPass HoYPPass 

AwRush HoRush AwRushAtmpt HoRushAtmpt AwYPRush HoYPRush AwPen 

AwPenYard HoPen HoPenYard AwayTurn HomeTurn AwFumble HoFumble AwInt 

HoInt Aw3DCon Aw3DAtt Aw3DPer Aw4DCon Aw4DAtt Aw4DPer Ho3DCon 

Ho3DAtt Ho3DPer Ho4DCon Ho4DAtt Ho4DPer AwDefTD HoDefTD AwPoss 

HoPoss AwSacked AwSackYds HoSacked HoSackYds AwRZScr AwRZAtt 

AwRZPer HoRZScr HoRZAtt HoRZPer AwAveKR HoAveKR AwAvePR HoAvePR; 

run; 

 

%mend; 

 

*OLS Regression SAS Code; 

 

proc import 

datafile='C:\Users\joseph.roith\Dropbox\Code\Data\Marginals\train_margins_cle

an.xlsx'  

 out=nflmargins replace dbms=xlsx; 
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run; 

 

proc import datafile=  

  'C:\Users\Joe Roith\Dropbox\Code\Data\Marginals\train_margins_clean.xlsx'  

  out=nflmargins replace dbms=xlsx; 

run; 

 

 ods graphics on; 

 

proc univariate; 

 histogram; 

run; 

 

/*Stepwise with stat totals */; 

proc reg data=nflmargins; 

  model ScoreM = WinPerM--TotalYdM PassingM--PenaltyM TurnoverM  

       _3DPerM--SackedM 

     /selection=stepwise 

   slentry=0.10 

   slstay=0.15 

   rsquare; 

  output p=p r=r; 

  plot residual.*predicted. / cmallows cookd; 

run; 

 

/*Stepwise with per play stats*/; 

proc reg data=nflmargins; 

  model ScoreM = WinPerM FirstDownM--YPPassM YPRushM PenYardsM--TurnoverM  

       SackYardsM--AvePRM 

     /selection=stepwise 

   slentry=0.10 

   slstay=0.15 

   rsquare; 

  output p=p r=r; 

  plot residual.*predicted. / cmallows cookd; 

run; 

 

/*Final Point Spread Model*/; 

proc reg data=nflmargins plot=all; 

  model ScoreM = FirstDownM TotalPlayM YPPassM TurnoverM _3DPerM  

       SackYardsM; 

  output p=p r=r; 

run; 

*Logistic Regression SAS Code; 

/*logistic regression game*/; 

proc logistic data=nflmargins outest=betas covout plots=all; 

  model win(event='1')= WinPerM FirstDownM--FDPenM TotalYdM--AvePRM 

      / selection=s 

    slentry=0.25 

    slstay=0.20 

    details lackfit scale=none rsquare; 

  output out=pred p=phat lower=lcl upper=ucl 

  predprob=(individual crossvalidate); 

run; 
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/*Final Game Logistic Model*/; 

proc logistic data=nflmargins covout plots=all; 

  model win(event='1')= FirstDownM TotalPlayM YPPassM PenYardsM TurnoverM  

_3DPerM SackYardsM 

    / details rsquare lackfit; 

  output out=pred p=phat; 

run; 

/*NFL seasons logistic regression*/; 

proc import datafile= 

  'C:\Users\Joe Roith\Dropbox\Code\Data\Marginals\nfl_seasons.xlsx'  

 out=nflseason replace dbms=xlsx; 

run; 

data newseason; 

  set nflseason; 

  PassYds_TD=PassYds/PassTD; 

  RushYds_TD=RushYds/RushTD; 

run; 

 

proc logistic data=newseason; 

  model Playoffs(event='1')= Yds--Y_P Y_A TO_--AveragePenalty PassYds_TD  

     RushYds_TD / selection=s 

         slentry=0.25 

         slstay=0.20 

         details lackfit scale=none rsquare; 

  output out=pred p=phat lower=lcl upper=ucl 

  predprob=(individual crossvalidate); 

run; 

 

proc logistic data=newseason covout plots=all; 

  model Playoffs(event='1')= TO_ Ply PenaltyYards PassYds_TD RushYds_TD /  

           noint details rsquare lackfit; 

  output out=pred p=phat; 

run; 

 
*Discriminant Analysis SAS Code; 

/* Individual Game Analysis*/; 

 

proc import datafile= 

  'C:\Users\Joe Roith\Dropbox\Code\Data\Marginals\train_margins_clean.xlsx'  

 out=nflmargins replace dbms=xlsx; 

  run; 

proc stepdisc data=nflmargins slentry=0.25 slstay=0.20; 

 class Homewin; 

 var WinPerM FirstDownM--TotalYdM PassingM--TurnoverM SackedM; 

run; 

 

proc stepdisc data=nflmargins slentry=0.25 slstay=0.20; 

 class Homewin; 

 var FirstDownM TotalPlayM--YPRushM PenYardsM SackYardsM--AveKRM; 

run; 
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/*Final Game Discrim Model*/; 

proc discrim data=nflmargins crossvalidate pool=yes method=normal;  

 class Homewin;  

 var YPPassM TurnoverM _3DPerM PenaltyM SackedM TotalPlayM FirstDownM;  

run; 

 

/*Season Analysis*/; 

proc import datafile= 

  'C:\Users\Joe Roith\Dropbox\Code\Data\Marginals\nfl_seasons_std.csv'  

 out=nflseasons replace dbms=csv; 

  run; 

 

data newseason; 

  set nflseasons; 

  PassYds_TD=pptd; 

  RushYds_TD=rptd; 

run; 

 

proc stepdisc data=newseason slentry=0.25 slstay=0.20; 

 class Playoffs; 

 var Yds--Y_P TO_--AveragePenalty PassYds_TD RushYds_TD; 

run; 

 

/*Final Season Discrim Model*/; 

proc discrim data=newseason crossvalidate pool=yes;  

 class Playoffs;  

 var TO_ Yds RushYds_TD PassYds_TD PenaltyYards;  

 priors '0'=0.625 '1'=0.375; 

run; 

 

/*No margins Analyze Offense vs Defense*/; 

proc import datafile= 

  'C:\Users\Joe Roith\Dropbox\Code\Data\nomargins_ind_train.xlsx'  

 out=nflgames_ind replace dbms=xlsx; 

run; 

 

proc stepdisc data=nflgames_ind slentry=0.25 slstay=0.20; 

 class Win; 

 var FDGain--SackYdsGain; 

run; 

 

proc import datafile= 

  'C:\Users\joseph.roith\Dropbox\Code\Data\nomargins_ind_std.csv'  

 out=newgames_ind replace dbms=csv; 

run; 

 

/*Final Model Off vs Def*/; 

proc discrim data=newgames_ind crossvalidate pool=yes;  

 class Win;  

 var TurnoverCom--FDGive;  

run; 
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APPENDIX D. R CODE 
 

### Mixed home and away data set ### 

 

mix<-read.csv("C:\\Users\\joseph.roith\\Dropbox\\Code\\  

Data\\nomargins_ind_train.csv",header=T) 

attach(mix) 

names(mix) 

v<-mix[,c(21,22,13,14,23,24,26,28,5,6)] 

 

ave.v<-apply(v,2,mean) 

sd.v<-apply(v,2,sd) 

v.std<-matrix(nrow=nrow(v),ncol=ncol(v)) 

 

for(i in 1:ncol(v)){ 

  v.std[,i]<-(v[,i]-ave.v[i])/sd.v[i]} 

 

v.std<-as.data.frame(v.std) 

names(v.std)<-names(v) 

v.std<-cbind(Win,v.std) 

 

write.csv(v.std,"C:\\Users\\joseph.roith\\Dropbox\\Code\\Data\\nomargins_ind_

std.csv") 

 

### Proportional Odds Model   ### 

 

data<-read.csv("C:\\Users\\joseph.roith\\Dropbox\\Code\\Data\\Marginals\\  

train_margins_clean.csv", header=T) 

attach(data) 

 

library(MASS) 

library(faraway) 

library(nnet) 

 

fact<-cut(ScoreM,breaks=c(-60,-10,0,10,60),  

labels=c("StrongAway","WeakAway","WeakHome","StrongHome")) 

 

##Proportional Odds ## 

pomod<-step(polr(fact~WinPerM+FirstDownM+FDPassM+FDRunM+FDPenM+TotalPlayM  

+TotalYdM+YPPlayM+PassingM+YPPassM+RushM+YPRushM+ 

PenaltyM+PenYardsM+TurnoverM+FumbleM+IntM+X3DPerM+ 

SackedM+SackYardsM+AveKRM+AvePRM,data)) 

 

pmod1<-step(polr(fact~FirstDownM+SackYardsM+TurnoverM+X3DPerM+RushM+ 

PassingM+PenYardsM+TotalPlayM,data)) 

summary(pmod1) 

pmod1$deviance;pmod1$edf 

pchisq(deviance(pmod1)-deviance(mult),mult$edf-pmod1$edf,lower=F) 

 

##Examples of In-Game Marginals ## 

awayadv<-data.frame(FirstDownM=-5,SackYardsM=-10,TurnoverM=-1, 

  X3DPerM=-10,RushM=-50,PassingM=-75,PenYardsM=15, 
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  TotalPlayM=-4) 

homeadv<-data.frame(FirstDownM=10,SackYardsM=15,TurnoverM=2, 

  X3DPerM=20,RushM=-50,PassingM=125, 

  PenYardsM=-30,TotalPlayM=-5) 

noadv<-data.frame(FirstDownM=0,SackYardsM=0,TurnoverM=0, 

X3DPerM=0,RushM=0,PassingM=0,PenYardsM=0,TotalPlayM=0) 

home<-predict(pmod1,homeadv,type="probs");home 

away<-predict(pmod1,awayadv,type="probs");away 

neutral<-predict(pmod1,noadv,type="probs");neutral 

 

par(mfrow=c(3,1)) 

t<-seq(-5,5,0.05) 

plot(t,dlogis(t),type="l",xlab="",ylab="Density",main="No Advantage") 

abline(v=c(-3.6261,-0.2148,3.4949)) 

plot(t,dlogis(t),type="l",xlab="",ylab="Density",main="Away Team Small  

Advantage") 

abline(v=c(-3.6261,-0.2148,3.4949)-as.numeric(awayadv)%*%pmod1$coef) 

plot(t,dlogis(t),type="l",xlab="",ylab="Density",main="Home Team Moderate  

Advantage") 

abline(v=c(-3.6261,-0.2148,3.4949)-as.numeric(homeadv)%*%pmod1$coef) 

 

##Fitted values and New data Predictions ## 

newdata<-read.csv("C:\\Users\\joseph.roith\\Dropbox\\Code\\Data\\2013- 

14\\Season13.csv",header=T) 

predict(pmod1,newdata[1:4,],type="probs") 

 

pred<-predict(pmod1,newdata,type="probs") 

 

fact.new<-cut(newdata$ScoreM,breaks=c(-60,-10,0,10,60),labels=c(-2,-1,1,2)) 

 

##Selects the Level with the highest probability of occuring## 

index<-vector() 

for(i in 1:nrow(pred)){ 

 index[i]<-which(pred[i,]==max(pred[i,]))} 

 

##New Category Level Classification## 

levels<-function(x){ 

  for(i in 1:length(x)){ 

 if (x[i]==1) x[i]<-(-2)  

 if (x[i]==2) x[i]<-(-1)  

 if (x[i]==3) x[i]<- 1  

 if (x[i]==4) x[i]<- 2} 

 return(x)} 

 

real<-as.numeric(fact.new)  ##Actual Level observed 

diff<-real-index    

diff 

sum(diff==0)/length(diff) ##Proportion of correct categories predicted 

sum(abs(diff)<=1)/length(diff) 

prod<-levels(real)*levels(index) 

prod 

sum(prod>0)/length(prod) ##Proportion of correct game outcomes 
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##Split graph of probabilities ## 

colorgraph<-function(x){ 

t<-seq(-5,5,0.05) 

a<-c(qlogis(x[1]),qlogis(x[1]+x[2]),qlogis(x[1]+x[2]+x[3]),qlogis(1-x[4])) 

q1<-dlogis(t,0,1) 

q2<-0.000001*dlogis(t,0,1) 

shade1<-seq(-5,a[1],0.01) 

shade2<-seq(a[1],a[2],0.01) 

shade3<-seq(a[2],a[3],0.01) 

shade4<-seq(a[3],6,0.01) 

r<-as.numeric(rank(x)) 

 

plot(t,q1,type="l",xlab="",ylab="Density",main="Proportional Odds Model") 

points(t,q2,type="l",col="black") 

polygon(c(shade1,rev(shade1)),c(dlogis(shade1,0,1),0.000001*dlogis(rev(shade1 

),0,1)),col="gray") 

polygon(c(shade2,rev(shade2)),c(dlogis(shade2,0,1),0.000001*dlogis(rev(shade2 

),0,1)),col="gray40") 

polygon(c(shade3,rev(shade3)),c(dlogis(shade3,0,1),0.000001*dlogis(rev(shade3 

),0,1)),col="gray30") 

polygon(c(shade4,rev(shade4)),c(dlogis(shade4,0,1),0.000001*dlogis(rev(shade4 

),0,1)),col="gray20")} 

 

noadv<-data.frame(FirstDownM=0,SackYardsM=0,TurnoverM=0, 

X3DPerM=0,RushM=0,PassingM=0,PenYardsM=0,TotalPlayM=0) 

noadvpred<-predict(pmod1,noadv,type="probs"); 

colorgraph(noadvpred) 

 

awayadv<-data.frame(FirstDownM=-5,SackYardsM=-10,TurnoverM=-1,X3DPerM=-

10,RushM=-50,PassingM=-75,PenYardsM=15,TotalPlayM=-4) 

awayadvpred<-predict(pmod1,awayadv,type="probs") 

colorgraph(awayadvpred) 

 

### Simulations     ### 

 

## Chose first 50 games 

 

i<-sample(65:257,50,replace=F) 

 

library(TTR) 

library(faraway) 

 

##get for and against for all teams## 

teams<-read.csv("C:\\Users\\Joe Roith\\Dropbox\\Code\\Data\\2013- 

14\\allteams.csv",header=T) 

attach(teams) 

 

season<-function(data,team){ 

  out<-data.frame(Team=numeric(),Opp=numeric(),Week=numeric(), 

Game=numeric(),Score=numeric(),FirstDown=numeric(),TotalPlay=numeric(), 

YPPass=numeric(),YPRush=numeric(),PenaltyYards=numeric(), 

Turnover=numeric(),X3DPer=numeric(),SackYards=numeric(), 
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Rush=numeric(),Pass=numeric(),OScore=numeric(),OFirstDown=numeric(), 

OTotalPlay=numeric(),OYPPass=numeric(),OYPRush=numeric(), 

OPenaltyYards=numeric(),OTurnover=numeric(),OX3DPer=numeric(), 

OSackYards=numeric(),ORush=numeric(),OPass=numeric(), 

stringsAsFactors=T) 

  a<-data[Away==team,] 

  h<-data[Home==team,] 

 for(i in 1:8){ 

 out[i,]<-

a[i,c(2,3,4,5,16,18,26,34,40,43,46,54,69,36,32,17,19,27,35,41,45,47,60,71,37,

33)] 

} 

 for(i in 1:8){ 

 out[i+8,]<-

h[i,c(3,2,4,5,17,19,27,35,41,45,47,60,71,37,33,16,18,26,34,40,43,46,54,69,36,

32)] 

} 

  total<-rbind(a,h) 

  return(out) 

 

} 

 

Niners<-season(teams,"49ers");Niners<-Niners[order(Niners$Week),] 

Bears<-season(teams,"Bears");Bears<-Bears[order(Bears$Week),] 

Bengals<-season(teams,"Bengals");Bengals<-Bengals[order(Bengals$Week),] 

Bills<-season(teams,"Bills");Bills<-Bills[order(Bills$Week),] 

Broncos<-season(teams,"Broncos");Broncos<-Broncos[order(Broncos$Week),] 

Browns<-season(teams,"Browns");Browns<-Browns[order(Browns$Week),] 

Buccaneers<-season(teams,"Buccaneers");Buccaneers<-

Buccaneers[order(Buccaneers$Week),] 

Cardinals<-season(teams,"Cardinals");Cardinals<-

Cardinals[order(Cardinals$Week),] 

Chargers<-season(teams,"Chargers");Chargers<-Chargers[order(Chargers$Week),] 

Chiefs<-season(teams,"Chiefs");Chiefs<-Chiefs[order(Chiefs$Week),] 

Colts<-season(teams,"Colts");Colts<-Colts[order(Colts$Week),] 

Cowboys<-season(teams,"Cowboys");Cowboys<-Cowboys[order(Cowboys$Week),] 

Dolphins<-season(teams,"Dolphins");Dolphins<-Dolphins[order(Dolphins$Week),] 

Eagles<-season(teams,"Eagles");Eagles<-Eagles[order(Eagles$Week),] 

Falcons<-season(teams,"Falcons");Falcons<-Falcons[order(Falcons$Week),] 

Giants<-season(teams,"Giants");Giants<-Giants[order(Giants$Week),] 

Jaguars<-season(teams,"Jaguars");Jaguars<-Jaguars[order(Jaguars$Week),] 

Jets<-season(teams,"Jets");Jets<-Jets[order(Jets$Week),] 

Lions<-season(teams,"Lions");Lions<-Lions[order(Lions$Week),] 

Packers<-season(teams,"Packers");Packers<-Packers[order(Packers$Week),] 

Panthers<-season(teams,"Panthers");Panthers<-Panthers[order(Panthers$Week),] 

Patriots<-season(teams,"Patriots");Patriots<-Patriots[order(Patriots$Week),] 

Raiders<-season(teams,"Raiders");Raiders<-Raiders[order(Raiders$Week),] 

Rams<-season(teams,"Rams");Rams<-Rams[order(Rams$Week),] 

Ravens<-season(teams,"Ravens");Ravens<-Ravens[order(Ravens$Week),] 

Redskins<-season(teams,"Redskins");Redskins<-Redskins[order(Redskins$Week),] 

Saints<-season(teams,"Saints");Saints<-Saints[order(Saints$Week),] 

Seahawks<-season(teams,"Seahawks");Seahawks<-Seahawks[order(Seahawks$Week),] 

Steelers<-season(teams,"Steelers");Steelers<-Steelers[order(Steelers$Week),] 
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Texans<-season(teams,"Texans");Texans<-Texans[order(Texans$Week),] 

Titans<-season(teams,"Titans");Titans<-Titans[order(Titans$Week),] 

Vikings<-season(teams,"Vikings");Vikings<-Vikings[order(Vikings$Week),] 

 

 

##Parameters function ## 

 

simulate<-function(x,week,n){ 

mean<-as.data.frame(matrix(NA,nrow=16,ncol=ncol(x))) 

sd<-as.data.frame(matrix(NA,nrow=16,ncol=ncol(x))) 

sim<-as.data.frame(matrix(NA,nrow=n,ncol=ncol(x))) 

 for(i in 1:ncol(x)){ 

 mean[,i]<-runMean(x[,i],n=1,cumulative=T) 

 sd[,i]<-runSD(x[,i],n=1,cumulative=T) 

} 

names(mean)<-names(x);names(sd)<-names(x) 

p<-list(mean=mean,sd=sd) 

 for(j in 1:ncol(x)){ 

 sim[,j]<-rnorm(n,mean[week-1,j],sd[week-1,j]) 

} 

names(sim)<-names(x) 

return(sim) 

} 

 

##Create mix of Offense and Defense Margins## 

offndef<-function(a,b){ 

  d<-matrix(ncol=10,nrow=nrow(a)) 

  for(i in 1:10){ 

 d[,i]<-((a[,i+5]+b[,i+16])/2)-((b[,i+5]+a[,i+16])/2) 

} 

d<-as.data.frame(d) 

names(d)<-names(a[6:15]) 

return(d) 

} 

 

##Simulate model outcomes ## 

game_sim<-function(home,away,week,n){ 

  h<-simulate(home,week,n) 

  a<-simulate(away,week,n) 

  m<-h-a 

  d<-offndef(h,a) 

  z<-m[,c(6,13,11,12,14,15,10,7)] 

  names(z)<-

c("FirstDownM","SackYardsM","TurnoverM","X3DPerM","RushM","PassingM","PenYard

sM","TotalPlayM") 

  v<-d[,c(1,8,6,7,9,10,5,2)] 

  names(v)<-

c("FirstDownM","SackYardsM","TurnoverM","X3DPerM","RushM","PassingM","PenYard

sM","TotalPlayM") 

  ptsprd<-1.00306+1.37997*m$FirstDown-0.53459*m$TotalPlay+1.00567*m$YPPass- 

3.88568*m$Turnover+17.715*m$X3DPer-0.12464*m$SackYards 

  odps<-1.00306+1.37997*d$FirstDown-0.53459*d$TotalPlay+1.00567*d$YPPass- 

3.88568*d$Turnover+17.715*d$X3DPer-0.12464*d$SackYards  
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  logis<-.2128+.2865*m$FirstDown-.1074*m$TotalPlay+.4646*m$YPPass- 

.0191*m$PenaltyYards-1.3074*m$Turnover+7.04*m$X3DPer- 

.0459*m$SackYards 

  odlog<-.2128+.2865*d$FirstDown-.1074*d$TotalPlay+.4646*d$YPPass- 

.0191*d$PenaltyYards-1.3074*d$Turnover+7.04*d$X3DPer- 

.0459*d$SackYards 

  discrim0_off<-(-0.66717)-.19287*m$YPPass+.46682*m$Turnover- 

.03388*m$X3DPer+.05034*m$Penalty+.14643*m$Sacked+.01927* 

m$TotalPlay-.04828*m$FirstDown  

  discrim1_off<-(-.70289)+.17067*m$YPPass-.48546*m$Turnover+.02957*m$X3DPer- 

.07674*m$Penalty-.12365*m$Sacked-

.04553*m$TotalPlay+.10926*m$FirstDown 

  discrim0_od<-(-0.66717)-.19287*d$YPPass+.46682*d$Turnover- 

.03388*d$X3DPer+.05034*d$Penalty+.14643*d$Sacked+.01927* 

d$TotalPlay-.04828*d$FirstDown  

  discrim1_od<-(-.70289)+.17067*d$YPPass-.48546*d$Turnover+.02957*d$X3DPer- 

.07674*d$Penalty-.12365*d$Sacked-

.04553*d$TotalPlay+.10926*d$FirstDown 

  prop_off<-predict(pmod1,z,type="probs") 

  prop_od<-predict(pmod1,v,type="probs") 

  mean_po_off<-apply(prop_off,2,mean) 

  mean_po_od<-apply(prop_od,2,mean) 

out<-c(mean(ptsprd),(sum(ptsprd>0)/n),mean(odps),(sum(odps>0)/n),  

 mean(ilogit(logis)),mean(ilogit(odlog)),mean(discrim0_off),    

 mean(discrim1_off),mean(discrim0_od),mean(discrim1_od)) 

names(out)<-c("Est PS Off","Home Prob PS Off","Est PS Both","Home Prob  

   PS Both","Logist Off","Logist Both","D0 Off","D1     

   Off","D0 OD","D1 OD") 

 out<-cbind(t(out),mean_po_off[1],mean_po_off[2],mean_po_off[3],  

mean_po_off[4],mean_po_od[1],mean_po_od[2],mean_po_od[3], 

mean_po_od[4]) 

 return(out) 

} 

 

## Sim set 1## 

g1<-game_sim(Niners,Rams,13,10000) 

g2<-game_sim(Bills,Chiefs,9,10000) 

  ... 

g49<-game_sim(Vikings,Eagles,15,10000) 

g50<-game_sim(Vikings,Packers,8,10000) 

 

total<-rbind(g1,g2,g3,g4,g5,g6,g7,g8,g9,g10,g11,g12,g13,g14,g15,  

 g16,g17,g18,g19,g20,g21,g22,g23,g24,g25,g26,g27,g28,  

 g29,g30,g31,g32,g33,g34,g35,g36,g37,g38,g39,g40,g41, 

 g42,g43,g44,g45,g46,g47,g48,g49,g50) 

total 

 

write.csv(total,"C:\\Users\\joseph.roith\\Dropbox\\Code\\Data\\2013-

14\\team\\simulations.csv") 

 

 

 

 



80 
 

## Sim set 2## 

 

g1<-game_sim(Bengals,Patriots,5,10000) 

g2<-game_sim(Falcons,Jets,5,10000) 

  ... 

g50<-game_sim(Saints,Buccaneers,17,10000) 

 

total<-rbind(g1,g2,g3,g4,g5,g6,g7,g8,g9,g10,g11,g12,g13,g14,g15,  

 g16,g17,g18,g19,g20,g21,g22,g23,g24,g25,g26,g27,g28,  

 g29,g30,g31,g32,g33,g34,g35,g36,g37,g38,g39,g40,g41, 

 g42,g43,g44,g45,g46,g47,g48,g49,g50) 

total 

 

write.csv(total,"C:\\Users\\joseph.roith\\Dropbox\\Code\\Data\\2013-

14\\team\\simulations2.csv") 

 

##Example in Section 4.5### 

  

cumtot<-function(x,week,n){ 

mean<-as.data.frame(matrix(NA,nrow=16,ncol=ncol(x))) 

sd<-as.data.frame(matrix(NA,nrow=16,ncol=ncol(x))) 

sim<-as.data.frame(matrix(NA,nrow=n,ncol=ncol(x))) 

 for(i in 1:ncol(x)){ 

 mean[,i]<-runMean(x[,i],n=1,cumulative=T) 

 sd[,i]<-runSD(x[,i],n=1,cumulative=T) 

} 

names(mean)<-names(x);names(sd)<-names(x) 

p<-list(mean=mean,sd=sd) 

 for(j in 1:ncol(x)){ 

 sim[,j]<-rnorm(n,mean[week-1,j],sd[week-1,j]) 

} 

names(sim)<-names(x) 

return(p) 

} 

 

##Simulate point spread using offense only Example ## 

game_ps_off<-function(home,away,week,n){ 

  h<-simulate(home,week,n) 

  a<-simulate(away,week,n) 

  m<-h-a 

  d<-offndef(h,a) 

  ptsprd<-1.00306+1.37997*d$FirstDown-0.53459*d$TotalPlay+1.00567*d$YPPass-

3.88568*d$Turnover+17.715*d$X3DPer-0.12464*d$SackYards  

      h<-hist(ptsprd,breaks=75,plot=F) 

 divide<-cut(h$breaks, c(-Inf,-.00001,Inf)) 

 plot(h, col=c("gray","gray40")[divide],main="Point Spread (Off and Def 

Marginals)",xlab="Points") 

 out<-c((sum(ptsprd>0)/n),mean(ptsprd),(sum(ptsprd<=-10)/n)) 

 names(out)<-c("Home Probability","Estimated Point Spread","Actual") 

 return(out)} 

 

game_ps_off(Bills,Chiefs,9,10000) 

  


