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ABSTRACT 
 

 Serving the needs efficiently for a wide gamut of cloud users is a challenge. One way to 

address this challenge is to decompose SaaS (Software as a Service) into application components 

and then consider them as loosely coupled processes that achieve higher functionality. 

Optimization occurs in efficiently pairing virtual machines to application components in order to 

lower operating costs for cloud service providers and to lower subscription costs for customers.  

This thesis explores utilizing an immune network algorithm that mimics antibody activation and 

antigen and antibody suppression for resource optimization.  Experiments are conducted with a 

series of SaaS configurations, application components placed with virtual machines. Results 

generated by the proposed algorithm are compared with a previously proposed grouping genetic 

algorithm. This data reveals that the immune network algorithm outperforms the grouping 

genetic algorithm in time taken to calculate a resource distribution strategy. 
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1. INTRODUCTION 

Cloud computing is the provisioning of computer processing, networks, data, and 

applications to a consumer over the Internet [1]. This is becoming the preferred way for 

businesses to provision resources so they may outsource part of their workload to reduce costs in 

labor and in maintaining hardware [2] [3]. These resources are delivered on demand and are 

scalable in a pay-as-you-go approach.  

Cloud computing can also be comprised of a large quantity of physical machines with 

heterogeneous computing resources distributed around different geographic locations [3]. The 

consumer is unaware of the infrastructure or platform details of the system, but expects that the 

service is always operational and that the service performs as if it always has the optimal amount 

of resources available for it on-demand.  

The scalability of cloud computing must address the scaling up or the scaling down of 

resources. In addition, the balance between proactively scaling resources and reactively scaling 

resources has to be achieved [3]. For example, when a consumer no longer requires a service, the 

resources are quickly relinquished. Or, when a consumer requires a service, resources are 

allocated quickly. These operations must be implemented in a manner that is non-disruptive.  

Although cloud computing by definition is still evolving [4] [5], cloud computing usually 

falls into one or a hybrid of three service models: Infrastructure as a Service (IaaS), Platform as a 

Service (PaaS), and Software as a Service (SaaS).  

IaaS is the provisioning of computer processing, networks, and storage to the consumer 

so that their operating systems and software applications may utilize them. An example of IaaS is 

Amazon’s EC2 (Elastic Cloud Computing) [6]. However, consumers must still manage the 

services that run on IaaS. For example, operating systems must be updated.  
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Databases must be administered. And, if consumers are administering a web service traffic must 

be managed by them.  

PaaS hides infrastructure details from the consumer that are visible in IaaS: database 

administration; load balancing; and server configuration. The PaaS provider manages 

infrastructures for customers. The consumer may then deploy on top of this service applications, 

libraries, and other tools [6]. A well-known example of PaaS is Google’s App Engine.  

SaaS, the service that is the focus of this paper, is applications that are available to a 

consumer via a client. Clients that connect to SaaS are usually browsers [6]. Examples of SaaS 

are Microsoft’s Office 365 and Google Drive.  

Optimally provisioning resources for cloud computing services is a difficult problem, 

because the physical machines that deploy the resources can be in different geographic locations 

yet together must sufficiently deliver them to the consumer. In addition, Virtual Machines (VMs) 

that run atop these physical machines appear to be uniform, but usually they are not [7]. The 

machines that comprise the infrastructure are heterogeneous with storage disks that read/write at 

different rates or the VMs are sharing physical machine resources with other VMs servicing 

other consumers. Load balancing is also a difficult problem in cloud computing. Migrating VMs 

to different physical machines without negatively affecting Quality of Service (QoS) is 

problematic [8]. 

Applications that demand resources should be provisioned enough to fulfill the Service 

Licensing Agreement (SLA), yet no more then is required. Then, service providers can distribute 

resources economically. There are many methods for determining the best placement for an 

application among a selection of VMs.  
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Summarizing a short list of these existing methods, which are later described in greater 

detail in Related Work, propositions such as genetic algorithm implementations, resource auction 

systems, ant colony algorithm implementations, service deployment architecture systems, and 

scheduling tasks in the cloud for timely resource distribution. 

Nature inspired algorithms feature prominently in the short list of solutions for complex 

optimization problems, such as genetic algorithms and ant colony algorithms, and for other 

problems that exist in engineering and computer science [9]. They are used because nature 

provides abundant examples of solving complex problems efficiently and effectively.  

In this thesis, a nature inspired algorithm is investigated to optimize resource distribution 

for composite SaaS in a cloud computing environment. An Immune Network algorithm is 

applied to this task. It is inspired by natural immune systems using the idea of activation, 

suppression, and memory when antibodies interact with antigens.  

The organization of this thesis is as follows: Related Work describes other solutions for 

resource optimization applied to cloud computing; Problem Formulation; Proposed Approach 

introduces and describes this thesis’s proposed approach as well as a comparison algorithm; 

Experiments and Results; Conclusions and Future Work.  
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2. RELATED WORK 

Related work in the area of optimization in a Cloud environment includes the following. 

One approach uses the genetic algorithm for distributing resources by focusing on obtaining near 

optimal quality of service from infrastructures rather than finding optimal placement for VMs 

[10]. SaaSs are modeled as a cell. The cell is composed of application requirements: processing, 

memory, storage, network latency, and read/write times. These constraints must be fulfilled. 

VMs that satisfy these requirements are randomly paired with the application components. After 

the pairings, the roulette wheel selection of the genetic algorithm, the probabilistic application of 

the crossover operation and the mutation operation are applied. Once these operations finish, if 

new cells were generated they are added to the population. Then, each cell’s fitness is 

determined. The fitness calculation is the distance from constraints to constraint satisfaction, so 

the smaller the difference the better the fitness. Thus, the fitness function is to be minimized. The 

cell with the best fitness is employed and should have near optimal quality of service for its 

application components.  

Another approach is based on an auction system. Markets are considered efficient 

distributers of resources. Therefore, modeled after market resource allocation, VMs are 

distributed via an auction system. Traditionally, cloud providers bundle together homogenous 

VMs that remain static, and then they sell these to the highest bidder. However, this is not always 

the most efficient use of the infrastructure [11]. This is because customer requirements and the 

VMs that they require are not homogeneous. Consequently, a method that takes into account the 

heterogeneous requirements of customers was proposed [12].  

For example, for each customer the cloud provider builds a number of VMs from a set of 

combinations of attributes. Customers bid on these VMs and the top bidder wins.  
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Yet, this method is susceptible to shill bidding. Shill bidding occurs when a customer 

impersonates multiple customers to lower the price of VMs. In addition, customers may conspire 

to bid at lower prices to bring down the overall cost. These problems lead to low profits for the 

service provider. To make VM auction systems shill bidding proof and to maximize cloud 

provider revenue, a variation of the previously proposed method was proposed in [13], [14].  

Another novel method for efficiently distributing resources in a cloud-computing 

environment is via the ant colony algorithm [12]. The cloud is modeled as an undirected graph. 

The vertexes are clusters of VMs, and the edges connect these resources in a cloud-computing 

environment. The clusters of VMs have boundary conditions on the load that they can accept for 

processing, memory, storage, and bandwidth. If these boundaries are broken k times out of n, k 

and n are set arbitrarily, that vertex or rather that cluster of nodes is identified as a hotspot, 

meaning it is overloaded. To find avail- able resources to offset the overloaded hotspot, the ant 

colony algorithm is employed to find a node in the undirected graph representing the cloud that 

can provision more resources.  

For example, in the hotspot, VMs belonging to the cluster are searched for idle resources. 

Idle resources are the minimum amount of resources that are available from all VMs in that 

cluster. This constraint is enforced so other VMs are not overloaded. If none are found, then 

neighboring clusters are searched on a path from the hotspot. As neighboring clusters of VMs are 

searched for idle resources the following operations are performed: the pheromone density is 

calculated for each node visited on the path from the hotspot, the nodes are added to an 

avoidance list, and the pheromone evaporation rates are calculated for previously visited nodes. 

Eventually, a path to a node with idle resources obeying the constraints converges.  
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Else, there are no nodes that satisfy the constraints to alleviate overloaded hotspots in the cloud-

computing environment. One benefit for using this method is that the search process for finding 

idle resources in node clusters may utilize parallel processing.  

For large-scale cloud computing, service deployment architectures may aid in efficiently 

provisioning resources. In [15], the cloud-computing environment is engineered to be SLA 

aware. Content Delivery Networks (CDN), like Akamai, contain edge servers that are physically 

close to clients and deliver content to them. The problem with this architecture is that all content 

is considered equal and unexpected bottlenecks can occur at these edge servers. For example, 

data in cloud environments can be active or passive. Active and passive data have different 

read/write requirements. Thus, [15] suggests providing different tiers of servers for different 

types of content and the resources that they require. First, the CDN is a tree of service resource 

providers. The leaf nodes are the edge servers that deliver content to customers.  

Next, each Named Node Server (NNS) and its corresponding Block Servers (BS), 

together they act as the edge servers, have multiple Resource Monitors (RM) and Resource 

Allocators (RA), the inner nodes of the tree. The RMs monitor the rates of data moving uplink 

and downlink from the BSs. As needed, the delta of the rate of data transfer that is bottlenecking 

and overloading the constraints set for the tiered BS can be sent to parent RAs in the CDN, 

ameliorating the breach in the SLA. The MiniMax algorithm strictly regulates the rates of 

resource transfer sent from children to parent nodes and from parent to children nodes. These 

methods coupled with h tiers of service in the BS servers also mitigate overloading the BSs, 

because each tier can be allotted its required resources that are usually expected for the type of 

content that they are holding.  
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The Hadoop Yarn system is commonly used for administering resources for scheduled 

tasks [16]. Resource managers assign application managers to worker nodes that monitor how 

many resources the worker nodes are using. The application managers also negotiate with the 

resource managers for resources to complete their scheduled tasks. Then, the resource managers 

will deliver the requirements according to the set policies. For example, one simple policy is 

queue based (FIFO). The tasks are scheduled for resources and Worker Nodes in the order of 

their arrival. Fair policies evaluate all the tasks and the resource managers attempt to distribute 

equal amounts of resources to all of the tasks in the job queue or the average equal share of the 

dominant resource requirements. The last common policy is the capacity policy. For each task 

the resource manager attempts to schedule an equal share of the resources for each task in the 

queue. The leftover resources that are still free are given to tasks that are using more than what 

was scheduled for them. And, some tasks within the queue are prioritized and provisioned 

resources accordingly. However, according to [16] these policies are not optimal.  
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3. PROBLEM FORMULATION 

 Composite SaaSs are composed of application components, ACs, and virtual machines, 

VMs. The ACs are placed within VMs, and the VMs are placed within cloud architectures, such 

as computing servers and data storage servers. Resource requirements can vary over time, so 

scheduled reconfigurations of AC and VM pairings are required. However, every time a 

reconfiguration is triggered, the optimal placement of ACs with the appropriate VMs is 

desirable. VMs may derive their resources from heterogeneous hardware so it is not always 

optimal to place one AC with one VM in each composite SaaS. In many cases it can be optimal 

to place multiple ACs with one VM. Because, a particular VM might have more processing-, 

memory-, and storage resources that it is provisioned from its hardware than what other VMs are 

provisioned from their hardware. In Figure 1 ACs are in the top row and VMs are in the bottom 

row. In this example some VMs are used for more than one AC. 

 

 

Figure 1. An Arrangement of ACs and VMs. 

We can ascribe a fitness metric to an assortment of SaaSs, a cell, in a cloud-computing 

environment. Ideally, ACs are always placed with VMs that have the least amount of processing, 

memory-, and storage- resources used to avoid overloading VMs. Thus, VMs are measured by 

the load they are bearing. In addition, since ACs are placed with VMs they may also need to be 

shifted to other VMs as deemed by some schedule.  



	 9 

ACs also require processing resources, data storage, and memory. A metric is applied to 

them, too. For example, the data storage transfer requires bandwidth. The larger the data store, 

the more bandwidth is required to do the transfer for optimal placement. And, the process of 

moving the application component itself has a memory requirement. Ideally, only ACs that are 

the least burdensome to move to other VMs are shifted so as not to overload the resources that 

are available in the cloud-computing environment. Based on these heuristics we may use this 

formula to ascribe a fitness value to an assortment of SaaSs, or what is known as a cell. 

 
(1) 

w1 is the weight applied to VMs, and w2 is the weight applied to ACs. TC is the total cost 

of the SaaSs’ VMs in a cell. This is the formula used to normalize the fitness of TC: 

 

(2) 

Cinit is the initial cost of the VMs before the cost is recalculated for subsequent 

reconfigurations. VM is the set of all VMs used by the SaaSs in a cell and TC is calculated with 

the following formula:  

 

(3) 

A single VM’s cost is the sum of its processing-, memory-, and storage- resources used 

divided by the sum of the VM’s processing-, memory-, and storage- resources provisioned, as 

demonstrated in the following formula.  

!"#$%&&#"	(&%) ++%,#"-	(&%) + ./#"01%	(&%)
(!"#$%&&#"	34056076% + +%,#"-	34056076% + ./#"01%	34056076%) 

(4) 
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MC is the migration cost of ACs. It is normalized with the following formula: 

 

(5) 

N(AC) is the number of ACs that are in the cell. The formula for determining the MC is 

as follows: 

 
(6) 

Sac is the storage requirement of the AC, its size, and Mac is the memory requirement of 

the AC. SAC and MAC both refer to the set of all ACs in a SaaS.  

 To demonstrate example calculations using Equations 1 – 6, Table 1 is an example cell 

that will be ascribed a fitness.  

Table 1. Example Cell Arrangement of AC and VM Pairings. 

 SaaS 1  SaaS 2 

AC 1 2 AC 3 4 

VM 2 2 VM 3 4 
 

For each AC and VM identified in Table 1, Table 2 shows processing-, memory-, and 

storage resources each VM provides. 

Table 2. Example VM Resources Provisioned. 

VM 1 2 3 4 

Processor 2 4 6 8 

Memory 3 5 7 9 
Storage 4 8 12 16 
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Table 3 shows each AC’s requirements. 

Table 3. Example AC Resources Required. 

AC 1 2 3 4 

Processor 1 2 3 4 

Memory 2 3 4 5 

Storage 3 4 5 6 
 

Based upon the AC and VM pairings displayed in Table 1, Table 4 shows how the 

resources provisioned are used. 

Table 4. Example VM Resources Used. 

VM 1 2 3 4 
Processor Used 0 3 3 4 
Memory Used 0 5 4 5 
Storage Used 0 7 5 6 

 

Using Table 2 for resources provisioned, Table 3 for what resources are required, and 

Table 4 for how the resources provisioned are used, it is now possible to calculate the cost for 

each VM using Equation 4. Arithmetic for VM 2 is shown in Equation 7. 

 

9%&#:"$%&	(&%) =
3 + 5 + 7
(4 + 5 + 8) = 0.7083333 (7) 

Table 5. Example VM Cost Calculation. 

VM 1 2 3 4 

Cost 0 0.88235294 0.48 0.45454545 
 



	 12 

Now that the VM costs are calculated, Table 5, the cost per SaaS can be calculated, 

Figure 2 shows the VMs per SaaS, and subsequently, the Total Cost, TC. 

Table 6. Example Total Cost Calculation. 

SaaS 1 2 Total Cost 

Cost 0.88235294 0.93454545 1.8168984 

 

Using Table 5, it it easy to determine the final cost of a cell, which is the sum of the cost 

per SaaS in Table 6. 

Next, to determine the migration cost, MC, in Equation 6, AC and VM pairings per SaaS 

in Figure 2 are used. Arithmetic for AC 1’s cost is shown in Equation 8. In the denominators in 

Equation 8, the AC with the max storage resource for the SaaS, AC 2 is used, and the AC with 

the max memory for the SaaS, AC 2 is used again, which determines the values of 4 and 3.  

+C =
3
4×2 +

2
3×2 = 0.7083333 (8) 

	

Table 7. Example AC Cost Calculations and Example Migration Cost Calculation. 

AC Costs 1 2 3 4 Sum Migration 
Cost 

Storage 0.375 0.5 0.4166667 0.5 1.7916667 
3.525 

Memory 0.333333 0.5 0.4 0.5 1.7333333 
 

After both the Total Cost and Migration Cost values are calculated, they must both be 

normalized to calculate the fitness of the cell. First, the Total Cost from Table 6 is normalized 

with Equation 2. For the initial Total Cost value, an arbitrary Total Cost of 1.91345 is used. 

FC =
1.91345 − 1.8168984

1.91345 = 0.05046 (9) 

Then, the Migration Cost must also be normalized with Equation 5. 
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+C = 1 −
3.525
4 = 0.11875 (10) 

Finally, with both the normalized Total Cost and Migration Cost, and weights of 0.5, 

Equation 1 is used to ascribe a fitness to the cell. 

K5/L%&& = 0.5×0.05046×0.5×0.11875 = 	0.00149803 (11) 

A fitness with a value of 0.00149803 is ascribed to this cell. 
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4. PROPOSED APPROACH 

Artificial Immune Systems (AIS) [17] [18] are already used to solve problems in 

computer science and in engineering [19]. What makes them useful are their inherent features of 

learning-, recognition-, and memory of patterns. For example, AIS has been applied to security 

systems [20] [21], robotics [22] [23] [24] [25], and towards clustering and classification [26] [27] 

[28] [29] [30]. For the SaaS cloud resource optimization problem, the Immune Network 

algorithm is considered. 

 

4.1. Immune Network Algorithm 

Neils K. Jerne [17] proposed that antibodies in invertebrates not only regulated foreign 

antigens inside an immunological system, but also other antibodies that are a part of the body’s 

“self”, not only the body’s “non-self”. Regulatory reactions depend on responses received from 

the immunological system. When the immunological system reacts positively, it generates new 

antibodies. When it reacts negatively, it suppresses antibodies. Hoffman [18] states that 

antibodies are capable of recognizing an almost unlimited amount of substances. This indicates 

that B-lymphocytes and T-lymphocytes can recognize each other by their variable regions, 

allowing regulation of production and suppression of antibodies. This is known as Immune 

Network theory. The properties of Immune Networks, such as pattern recognition, memory, the 

construction and the destruction of specific biological configurations can be utilized for solving 

cloud computing resource allocation problems. 

The immune network algorithm pseudo-code is provided in Algorithm 1. 
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Algorithm 1. Immune Network Algorithm. 

1. Input: populationSize p, numberOfClones n, randomRatio r, affinityThreshold a,  
2. mutationParameter m 
3. Output: bestCell b 
4. population ⇐ InitializePopulation(p) 
5. while (stoppingCriterion not met) do 
6. EvaluatePopulation(population) 
7. b ⇐ GetBestCell(population) 
8. initialAverageFitness ⇐ CalculateAverageFitness(population) 
9. do 
10.  for (cell ∈ population) do   
11.   clones ⇐ GenerateClones(cell, n) 
12.   for (clone ∈ clones) do 
13.          clone ⇐ Mutate(clone, m) 
14.   end for 
15.   EvaluatePopulation(clones) 
16.   descendent ⇐ GetBestCell(clones) 
17.                                if descendent is more fit than cell 
18.                                      replace cell with descendent in population 
19.                                end if 
20.  end for 
21. while (CalculateAverageFitness(population) > initialAverageFitness) 
22. SuppressLowAffinityCells(population, a) 
23. cells ⇐ CreateRandomCells(r) 
24. population ⇐ cells 
25. end while 
26. return b 

 

The algorithm begins its main iterative process by randomly initializing a population of 

cells. Next, a secondary iterative process begins. First, each cell in the population is evaluated 

and ascribed a fitness. At this step the cell with the best fitness can be selected and recorded. 

Then, each cell in the population is cloned to create an additional cloned cell population. Each 

cloned cell is mutated and then evaluated. Original cells are replaced in the population by the 

mutated ones if the mutated cloned cells have a better fitness. These steps continue in the 

secondary iterative process until a stopping criterion is met. 
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After the stopping criterion is met, the immune network interactions described in immune 

network theory occur. During the network interactions, cells with the lowest affinity are removed 

from the population. At this point, an extra set of cells is randomly initialized and added to the 

population. This continues until a stopping criterion for the main iterative process is met. Once 

the main iterative process terminates, the fittest cell in the population is returned. 

 

4.2. Immune Network Algorithm Applied to the SaaS Optimization Problem 

 The implemented algorithm based on Immune Network theory is applied to the SaaS 

optimization problem as follows: First, sets of cells are randomly initialized. Each cell has a 

configuration of VM and AC pairings from the available pool of VMs and ACs to satisfy the 

requirements of existing SaaSs. This set will be referred to as the population. Next, the affinity, 

the fitness, is calculated. The fitness per cell is calculated with Equations 1 – 6. Then, for each 

cell in the population an arbitrary number of clones per cell are generated. Each cloned cell is 

passed to a mutation function that randomly alters the cell. This process is explained in the next 

section and shown in Figure 10. After the mutation operation, if any cell among the clones has a 

better fitness as a result of the mutation operation than the cell it was cloned from originally is 

replaced by the mutated cell in the population.  

After the clonal selection operations, the network regulatory operations, or as the 

algorithm refers to as network suppression, occurs. For each cell in the population, if the cell’s 

fitness compared with the population’s average fitness is worse than the average by a 

predetermined threshold, then the cell is removed from the population. If the cell is better than 

the average by at least the threshold factor it is allowed to remain in the population.  

 



	 17 

After the network suppression operations, an arbitrary number of randomly generated cells are 

added to the population.  

 All of these operations repeat in an iterative fashion until the stopping criterion is met. 

Once the stopping criterion is met, the fittest cell of the population is returned. Please refer to the 

pseudo-code in Algorithm 1.  

 

4.3. Immune Network Algorithm Implementation 

In the SaaS composition problem, randomly configured SaaSs are grouped together to 

model a cell. The SaaSs are composed of many application components (ACs), each with their 

own processing-, memory-, storage-, and read/write requirements. The sum of these 

requirements is the SLA for the SaaS. VMs rest atop distributed physical machines that may 

reside in different physical locations. These VMs can be paired with any of the application 

components. VMs may also be the sole resource provider for an application component or the 

resource provider for many application components. Arbitrary amounts of cells are created with 

the same SaaSs, ACs, and VMs, each with different pairings and placements.  

A fitness evaluation is ascribed to each cell. The lower the fitness the better, so the fitness 

function minimizes. Costs for VMs are determined by the amount of resources that are being 

used. The more resources that are used, the more the fitness degrades since then a VM has a 

larger workload. Therefore, it is better for an AC to be paired with a VM that has a lower 

workload. Thus, it is more likely the SLA for the AC is adhered to. The fitness is also 

determined by the storage and memory requirements of ACs. This is because ACs with larger 

memory and storage requirements are costlier to move to different VMs over a network.  
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Therefore, the larger the memory and storage requirements are, the more fitness degrades in the 

cell.  

The IN implementation closely follows the algorithm description in Algorithm 1. First 

populations of cells, assortments of composite SaaSs, are randomly initialized. Refer to Figure 1. 

After initialization, Step 4, each cell is first inspected to determine if any ACs’ resources are not 

being met, Step 6. Resources not being met imply ACs do not have enough processing-, or 

enough memory-, or enough storage resources provisioned. If so, then the SLA for the composite 

SaaS is not being met. The implementation attempts to find a VM with a minimized load of ACs 

for the purposes of avoiding overloading any one VM. And, the VM must not be a VM the AC is 

already paired with to avoid duplicate pairings. If there are no more VMs available to satisfy 

SLAs, then the cloud service provider must provide more VMs for the cloud-computing 

environment.  

After the repair process, for each cell in the population, a fitness metric is ascribed to the 

cell using Equations 1 through 6. An average fitness of the entire population is also calculated, in 

Step 8.  

Next, each cell in the population is cloned an arbitrary number of times, in Steps 10 and 

11, which is set by a variable in Step 1. The cloned cells undergo a mutation operation, Step 13, 

to add diversity to the search space for finding the fittest cell. In this implementation of the 

Immune Network algorithm, mutation is the process of randomly selecting an AC in a SaaS and 

removing its VM. A random search is performed to find any VM in the pool of VMs that 

satisfies the ACs’ requirements. If there is one, it is paired with the AC. If there is no other VM 

that satisfies the ACs’ requirements then the mutation operation is skipped, because the SLA 

takes precedence over the mutation operation. 
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Figure 2. Mutation Operation for IN and GGA. 

	

The new VM may or may not improve the fitness of the cell. This mutation operation is 

performed an arbitrary number times set by the mutation parameter in Step 2 of Algorithm 1.  

After the cloning- and mutation operations complete, the clone is checked to determine 

that all of its ACs have enough resources to satisfy the SaaS SLAs, Step 15, and if not it is 

repaired. Next, the clone is evaluated using the fitness equations 1 through 6. From the set of 

clones per cell, if the clone with the best fitness of the set of clones has a better fitness than the 

original cell it was cloned from, then the clone replaces the original cell in the population, Steps 

16 through 18. 

In Step 9 of Algorithm 1, if the predefined average fitness remains greater than the 

average fitness after Step 10 through Step 17 then the while loop is repeated until a stopping 

criterion is met.  

Determining a cell’s affinity with the population of cells, for network suppression, Step 

22, is calculated as follows. First, the mean average fitness of the cell population is calculated. 
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The absolute value of the best fitness, in the cell population, minus the average fitness multiplied 

by an arbitrary support threshold, set in Step 1, is the affinity threshold. 

AffinityThreshold = 	SupportThreshold ∗ BestFitness − 	AverageFitness  (12) 

For each cell in the population, if its fitness is greater than the best fitness plus the 

affinity threshold, the cell is removed from the population.  

 

Algorithm 2. Suppress Low Affinity Cells 

1.     if cellFitness ≥ (AffinityThreshold + BestFitness) 
2.             Remove cell from population 
 

The count of cells to randomly generate is determined with the following formula: 

NumberOfCellsToAdd = Round 	Count cellPopulation ∗ 	α :		0 < α ≤ 1 (13) 

Alpha is set in Step 1. 

  

4.4. Immune Network Algorithm Implementation: Java Code Snippets 

In this section snippets of Java code implementing primary processes of Algorithm 1 are 

presented. Figure 3 implements the main iterative loop, steps 5 to 26 in Algorithm 1. Sub 

processes are abstracted into separate methods for software readability. Cell cloning, described in 

4.1 and in 4.3 occurs within method clonalSelection(). And, cell suppression occurs within 

method networkInteractions(). Cell fitness calculations described in Equations 1 – 11 are 

executed in the cell object’s method evaluate: cell.evaluate(). 
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Figure 3. Immune Network Main Loop. 

 

Figure 4 and Figure 5 cover steps 8 to 21 of Algorithm 1. Figure 4 controls the inner 

iterative process in Algorithm 1, which sets and controls the stopping criterion on Step 9 of 

Algorithm 1.  
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Figure 4. Immune Network Inner Loop. 

	

Steps 10 to 20 are abstracted into the method cloneCells(), which is represented in Figure 

5. Also in Figure 5, the mutate operation executed on cloned cells is shown in Figure 9. To 

reiterate the cloning and mutation processes described in prior sections, Figure 5 shows when 

each cell in the population is cloned, mutated, and then evaluated. Then, out of the population of 

cloned cells, the cloned cell with the best fitness is selected. If that selected cloned cell has a 

better fitness than the cell it was cloned from, it replaces the original cell in the population. The 

cloneCells() method terminates when all the cells in the population have been cloned and 

evaluated for possible replacement. Cloning of cell objects in the population was done via a copy 

constructor. 
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Figure 5. Clone Cells. 

 

 

 

 

 

 

 

 



	 24 

Finally, Figure 6 covers step 22 of Algorithm 1 and it covers Algorithm 2. Calculating 

the double value for variable affinityThreshold closely resembles Equation 12. And, cell 

suppression resembles the pseudo-code in Algorithm 2.  

 

	

Figure 6. Network Interactions. 

	

For constraints set by Java SE 6, the cell population is copied to an array so that cells can 

be removed from the population as the population is iterated through. Lists in Java SE 6 are 

immutable during iteration. 
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5. EXPERIMENTS AND RESULTS 

This section describes how the Immune Network implementation was prepped for its 

experimental runs: programming language used, parameters set for the experimental runs, SaaS 

configurations, and the experimental runs’ server environment. After listing and explaining these 

items, the results from the experimental runs are explained. For comparison purposes, results 

from an existing solution, a Grouping Genetic Algorithm implementation, are also explained. For 

a proper understanding of the compared results, the Grouping Genetic Algorithm must also be 

understood. 

 

5.1. Comparison Algorithm: Grouping Genetic Algorithm 

To determine how the Immune Network (IN) algorithm fares it was compared with an 

implemented version of the Genetic Grouping Algorithm (GGA) [1].  

 

Algorithm 3. Grouping Genetic Algorithm. 

1. bestFitness = 0 
2. initialize(Population) 
3. while (stoppingCriterion not met) do 
4. foreach cell in Population do 
5.         if cell violates SaaS resource requirements then 
6.        Repair(cell) 
7. end if 
8. Calculate new VMs’ costs 
9. Calculate new ACs’ costs 
10. Calculate cell fitness 
11. if fitness(cell) > bestFitness then 
12.         Replace bestFitness 
13. end if 
14. Select individuals from the Population based on roulette wheel selection 
15. Probabilistically apply the crossover operator to generate new individual 
16. Probabilistically select individuals for mutation 
17.       Use the new individuals to replace the old individuals in the Population 
18. end        
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The GGA is similar to a standard Genetic Algorithm (GA). What is different between GA 

and GGA is that the GGA algorithm evaluates a chromosome’s fitness based on a composite set 

of elements. In this case the VMs and ACs inner components comprise the overall quality of the 

chromosome and its ability to fulfill service license agreements (SLAs). For example, VMs in a 

chromosome might contribute to a good fitness for the chromosome. But, enough ACs could 

weigh the chromosome’s fitness towards less quality. The overall composite chromosome must 

be measured. Thus the algorithm derives its name Grouping Genetic Algorithm.  

And, GGA adds an additional operation to the standard steps in the GA. In addition to 

initialization, selection, crossover and mutate operations, the GGA iterates through the 

population and determines if all the chromosomes are fulfilling their SLAs. If any of them are 

not adhered to, then the cells are repaired by pairing additional VMs with ACs that are bearing 

the least volume. It is after this operation that the cells are evaluated and the selection, crossover 

and mutate operations are performed.  

To quickly summarize how the crossover operation was implemented for this thesis’s 

research, and to show the crossover operation visually, Figure 7 was taken directly from [1].  
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Figure 7. Crossover Operation [1]. 

	

For the parent cells, two cells are randomly selected at Step 14 of Algorithm 3. During 

Step 15, each parent cell is cloned to generate the offspring cells. Then, a SaaS is randomly 

selected per offspring cell. Next, their AC and VM pairing configurations are swapped, but if and 

only if the swapping does not break the cells’ SLAs. The offspring cells are returned to the 

population if the SLAs are adhered to. 
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5.2. Experimental Setup 

Table 8 shows the configuration used for the experiments. 

Table 8. A Configuration of AC and VM Specifications. 

 

For this setup, a configuration of resources varies for both the ACs and for the VMs. In 

Table 8 the ranges for resources are iterated through and repeated in a VM and AC initialization 

method. The iteration control loops’ sentinels are set by the count of VMs and ACs set for the 

experiments in declared parameters, which are explained shortly. The characteristics of the AC 

and VM instances in terms of CPU (number of cores; 2.6-2.8GHz), memory (measured in GiB), 

and storage (measured in GB) were obtained from the Amazon website [31].  

Parameters set for the implementation of the IN algorithm were set as follows: 

• Number of chromosomes = 100 

• Number of clones per iteration = 30 

• Number of ACs = 50 

• Number of VMs = 50 

• Number of SaaSs = 10 

• Number of iterations = 50 

• Mutation Parameter = 10 

 

AC VM 

CPU Memory Storage CPU Memory Storage 

6-12 (incr. 
of 2)  

12-32 (incr. 
of 2)  

200-1000 (incr. 
of 50)  

12-6 (decr. 
of 2) 

32-12 (decr. 
of 2) 

1000-200 (decr. 
of 50) 
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• Affinity threshold = alpha * abs(bestFitness-averageFitness), where alpha was set 

in ranges 0.1 – 0.9 in increments of 0.1. 

Parameters set for the comparison GGA algorithm were set as follows: 

• Number of chromosomes = 100 

• Number of ACs = 50 

• Number of VMs = 50 

• Number of SaaSs = 10 

• Number of iterations = 50 

• Crossover probability = 0.7 

• Mutation probability = 0.1 

• Mutation Parameter = 10 

Both the IN and GGA implementations were run 30 times each for every configuration in 

Table 8. And, for each alpha used to determine the Affinity Threshold in IN, 0.1 – 0.9 in 

increments of 0.1, each configuration in Table 1 was run with each alpha increment 30 times. 

From all of these configurations averages of the results are reported. 

 The algorithms were implemented with Java SE 6. And, they were run with the OpenJDK 

Runtime Environment (IcedTea6) with the OpenJDK 64-Bit Server VM. OpenJDK was installed 

on a virtual machine running Debian version 3.2.0-4-amd64. There was one 64-bit CPU with 

2,793 MHz. And, the virtual machine running the Debian server was provisioned 15 GB of 

memory. 
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5.3. Results 

 Results are presented and explained based on the configuration in Table 8. First, in the 

conducted experiment the threshold factor is observed. A threshold factor is used to determine 

the affinity threshold described in Equation 12. In Table 9 it is discernable that the fitness stops 

improving at a threshold factor of 0.6. This is so if the associated standard deviation is 

considered with the fitness values for higher threshold factors. Thus, subsequent results utilizing 

a threshold factor of 0.6 in this thesis are presented for the IN implementation. 

Table 9. Threshold Factor and Achieved Fitness. 

Threshold Factor Fitness and StdDev 

0.1 
 

0.0179150276864746±0.010686925 

0.2 
 

0.0180501679338058±0.009170124 

0.3 
 

0.009715845024539±0.009316006 

0.4 
 

0.0102096112172823±0.008126578 

0.5 
 

0.00732991875659623±0.007332595 

0.6 
 

0.00551042911392754±0.007320064 

0.7 
 

0.00183202761733134±0.004094568 

0.8 
 

0.00192065387041332±0.004157237 

0.9 
 

0.00267278292279459±0.004328752 
 

The second part of the experiment demonstrates how the IN algorithm compares with the 

GGA algorithm regarding fitness calculation.  
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Figure 8. IN and GGA Comparison. 

	

It is clear in Figure 8 that the GGA implementation converges on a fitness in less 

iterations than the IN implementation. It is also clear in Figure 8 and in Figure 9 that the GGA 

implementation converges on a more optimal fitness than the IN implementation. The difference 

between the average achieved fitness obtained from the IN and GGA implementations, after 

convergence, is 0.004558851.  

On average, the fitness recorded during the first iteration for both implementations, 

before convergence, is 0.098425178.  
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Comparing the GGA implementation’s fitness during initialization with the recorded fitness 

when the implementation terminates and has converged, there is a 99% improvement. 

Comparing the IN implementation’s fitness when it initiates with the recorded fitness when it 

terminates and has converged, there is a 94% improvement.   

 

 

Figure 9. Fitness Optimization. 

	

In Figure 10 the difference, between the IN and GGA, in achieved fitness per iteration is 

observed. 
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Figure 10. Difference in Achieved Fitness. 

	

It is clear that the GGA implementation will achieve a better fitness on average, yet, at 

times, it is possible for the IN implementation to converge on a better fitness than the GGA 

implementation. Figure 11 demonstrates a single run from both the IN implementation and the 

GGA implementation. 
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Figure 11. A Single Run Comparison. 

	

However, depending on SaaS SLA requirements the GGA’s average achieved fitness 

may not be enough of an improvement over the IN’s average achieved fitness to merit using the 

GGA instead of the IN. Therefore, the time taken for the GGA and IN implementations is 

examined next. 

By first appearances, when comparing the pseudo code of the IN algorithm to the GGA 

algorithm it appears as though the IN algorithm will take more time to calculate a fitness than the 

GGA’s runtime. It appears so because with the GGA algorithm a fitness evaluation for each cell 

occurs only once per iteration.  
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Examining the IN algorithm, a fitness evaluation occurs once for each cell in the population per 

iteration on line 6 of Algorithm 1. However, additional fitness evaluations occur in the clonal 

selection operations of the IN algorithm. In Algorithm 1 starting at line 15, each cell is cloned an 

arbitrary amount of times, and then each clone is mutated for the possibility of rendering a better 

fitness. The mutation process is shown in Figure 2. For this experiment each cell in the 

population was cloned 30 times. After the cloning process, the resulting clones are evaluated. 

This is an additional 30 evaluation operations per cell in the population per iteration. If one of the 

evaluated cloned cells has a better fitness than the original cell in the population that it was 

cloned from, the cloned cell replaces the original.   

 What keeps the IN algorithm from taking more time to converge on a fitness than the 

GGA algorithm is the SuppressLowAffinityCells operation on line 22 of Algorithm 1. The 

operation demonstrated with Equation 12, Algorithm 3, and Figure 6, reduces the population 

count of cells each iteration. Therefore, during each iteration the count of evaluation functions 

occur at a diminishing rate. On line 23 of Algorithm 1, after the SuppressLowAffinityCells 

operation additional cells are added to the population. For this experiment the count of cells in 

the population was multiplied by 0.6. This calculation is visible in Figure 3 and also shown in 

Equation 13. The product is then rounded to the closest integer. The rounded result is the number 

of new cells that are generated and added to the population for subsequent iterations.  

Based on the conducted experiment’s results, cells that are added after the 

SuppressLowAffinityCells operation never exceed the count of cells removed. Since these 

operations occur each iteration, the count of new cells added to the population each iteration also 

decreases as shown in Figure 12. The cell count shown is the mean average calculated from 30 

runs.  
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Figure 12. Immune Network’s Average Count of Cells. 

	

Both the GGA implementation and the IN implementation are initialized with the same 

100 cells, they have the exact same properties, such as VMs and ACs with their attributed 

specifications, so it is clear that the IN algorithm is efficient in suppressing cells. The IN 

suppresses 84 cells in the first iteration. Cell counts in the GGA implementation average to a 

static count as demonstrated in Figure 13. 
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Figure 13. Average Cell Count. 

 
Thus, each subsequent iteration in the IN implementation takes a reduced amount of time 

to derive a fitness as shown in Figure 14.  
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Figure 14. Average Time. 

	

In Figure 15, the overall time taken in seconds for the IN implementation and the GGA 

implementation are compared.  
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Figure 15. Overall Average Time. 

	

It is clear that the IN implementation takes substantially less time to converge on a fitness 

if the overall time taken is considered. In fact, it takes 75% less time. To further this point, 

Figure 16 demonstrates the GGA implementation’s additional time taken in seconds per iteration 

if compared with the IN implementation. 
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Figure 16. GGA’s Average Additional Time. 

	

It is clear in Figures 14, 15, and 16 that the IN implementation takes less time to 

converge on a fitness than the GGA implementation. However, the GGA implementation on 

average achieves a better fitness than IN. Cloud service providers must take care in balancing the 

tradeoffs between using the established GGA algorithm and the IN algorithm for SaaS resource 

optimization, balancing between optimal fitness achieved and time taken to calculate fitness. 
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6. CONCLUSIONS AND FUTURE WORK 

 This thesis examined the possibility of utilizing the Immune Network algorithm to 

dynamically and optimally manage resources for SaaS in cloud data centers. SaaS are comprised 

of application components, each having their own requirements, such as processing-, memory-, 

and storage needs. If any one of these components are not provisioned enough resources to fulfill 

their requirements, then the cloud SaaS that contains an application component without its 

required resources is unable to fulfill its service licensing agreement. Resources provided for 

SaaS are virtual machines with attributed processing-, memory-, and storage capabilities. This 

thesis demonstrates that the Immune Network algorithm can be applied to dynamically 

provisioning resources for SaaS in an optimized manner. The algorithm was compared with an 

existing solution, the Grouping Genetic algorithm. What was discovered was that the Immune 

Network algorithm implementation does not on average produce better resource strategies than 

the Grouping Genetic algorithm. However, the Immune Network algorithm does produce 

resource optimization strategies that are close, fitness wise. The Immune Network algorithm 

produces a 94% improvement in resource optimization from initialization and the Grouping 

Genetic algorithm produces a 99% improvement in resource optimization. And, the research 

conducted for this thesis revealed that the Immune Network algorithm will calculate a resource 

strategy faster than the Grouping Genetic algorithm by as much as 75%, because the Immune 

Network algorithm suppresses cells in its population and the Grouping Genetic algorithm does 

not, which reduces the count of fitness evaluation functions executed. 

 This thesis’s findings provide SaaS providers a tradeoff between calculating a better 

resource strategy at a cloud data center, but then they are penalized in time taken to do so. Or, a 

SaaS provider may choose the Immune Network algorithm to generate a resource strategy in less 
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time, but then the provider is penalized in that the resource strategy is not as optimal as the one 

that is provided by the Grouping Genetic algorithm.  

 For future work, both the Immune Network algorithm and the Grouping Genetic 

algorithm take significant time to calculate a resource strategy. To improve the compute time 

parallel processing might be a solution. The population of cells could be segmented and 

processed in parallel. Then, subsequently a MapReduce process could merge the results. 
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