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ABSTRACT 
 

Dietary intake may cause variable bacterial prevalence in the gastrointestinal tract. The 

objective of this research was to determine the prevalence of Enterobacteriaceae in the cecum 

and feces following flaxseed and buckwheat supplemented diets. Seventy-two C57BL/6J male 

mice were randomly assigned to a diet group and fed for eight weeks: high fat (45% Kcal fat); 

10% whole flaxseed (45% Kcal fat); 6% defatted flaxseed (45% Kcal fat); 4% flaxseed oil (45% 

Kcal fat); 10% buckwheat (45% Kcal fat); and low fat (16% Kcal fat). Significant differences in 

the prevalence of Enterobacteriaceae in the cecum (p < 0.0348) and feces post treatment  

(p < 0.0033) were observed. The groups with the highest prevalence of Enterobacteriaceae were 

whole flaxseed, buckwheat, and defatted flaxseed. The groups with the lowest prevalence were 

flaxseed oil and high fat. Our results indicated that a positive relationship exists between high 

fermentable fiber diets and Enterobacteriaceae proliferation.  
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CHAPTER 1. INTRODUCTION 

 The United States is experiencing an obesity epidemic that is continuing to threaten the 

future health and wellness of our society and is exhausting our medical system (Centers for 

Disease Control and Prevention, 2014). Researchers continue to investigate a variety of theories 

to better understand the complex etiology of obesity in order to target and eliminate the risk 

factors and behaviors contributing to obesity. While the most commonly understood factors 

related to obesity are a sedentary lifestyle, excessive consumption of energy dense food, and 

genetic predisposition, other concepts as to the cause of obesity are still being explored (Harris et 

al., 2011).  

 One emerging theory for the cause of obesity suggests that some microorganisms, 

whether present or absent in the gastrointestinal (GI) tract, correlates with overweight and obese 

status. Researchers have observed that during weight loss, bacterial species that are considered 

beneficial in the body increase, while there is a decrease in detrimental species (Ley et al., 2005). 

Although a complete mechanism for this shift in microorganisms in obesity is not yet identified, 

there is evidence to support that the species of bacteria present in the colon correlate with weight 

changes and improvements in energy expenditure in obesity (Santacruz et al., 2009, 2010).  

The GI tract is composed of a normal bacterial flora necessary for activities such as the 

fermentation of carbohydrates and short chain fatty acid production (Karlsson et al., 2012). 

While some species of bacteria such as Lactobacillus and Bifidobacteria are known for their 

roles in the prevention of infections and immunity, others belonging to Enterobacteriaceae 

including Salmonella, Escherichia coli, and Shigella are known for being detrimental when 

overgrown within the GI tract (Santacruz et al., 2010). Higher prevalence of Enterobacteriaceae 
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in the GI tract may be more prevalent in those who are obese compared to those who are normal 

weight. 

 Prebiotics are becoming a commonly used method to maintain the colon’s microflora 

(Hijova, Chmelarova, & Bomba, 2009). Prebiotics assist with the growth of GI bacterial species 

that improve the health of the host. These types of bacteria enhance the immune response in the 

gut and alter the pH concentration of the colon. These activities inhibit the growth of harmful 

bacteria and encourage the growth of health-promoting bacterial populations. 

 Fermentable fibers exhibit a prebiotic function by stimulating the growth of health-

promoting bacteria (Bertkova, et al., 2010). Fermentable fiber properties exist in a variety of 

natural fibrous food products. Two examples of plants with high fermentable fiber content are 

flaxseed and buckwheat, which indicates they have potential to function as a prebiotic 

(Kristensen et al., 2012). The supplementation of these into the diet could lead to an increase of 

beneficial bacteria and also a decrease in detrimental bacterial species (Skrabanja et al., 2001). 

Statement of the Problem 

 Obesity is a highly complex and chronic medical condition that requires serious attention. 

While science does not completely understand the mechanism of obesity, it is important to 

continue efforts to determine what factors contribute to the presence or absence of the condition. 

One emerging concept within obesity research is the effect of microbial prevalence within the GI 

tract in relation to the occurrence of obesity. Researchers have observed a correlation between 

weight loss and a corresponding increase of beneficial bacteria as well as a decrease of 

detrimental strains of bacteria in the colon. An imbalance of microbial populations within the GI 

tract between those that are beneficial and those that are detrimental may increase the risk for 

obesity (Ley et al., 2005; Santacruz et al., 2009, 2010). The focus of this research was to 
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contribute to the conceptualization of the mechanism between bacterial species in the GI tract 

and their effect on weight maintenance and the development of obesity.  

Purpose of the Study  

The purpose of this research was to identify the potential variations in 

Enterobacteriaceae prevalence in the cecum and feces of mice when fed diets supplemented 

with flaxseed or buckwheat. Enterobacteriaceae are often considered detrimental species of 

bacteria when found in excess in the human colon. These particular species, however, are able to 

proliferate in the colon in low prevalence without causing immediate harm or distress such as 

vomiting or diarrhea (Janda & Abbott 2006). However, Enterobacteriaceae may also be related 

to other conditions, such as obesity. (Santacruz et al., 2010; Karlsson et al., 2012).    

Our goal was to determine whether supplementation promotes the growth or reduction of 

Enterobacteriaceae in the colon and presence of Enterobacteriaceae shed in the feces. The 

potential variability of microbial species present in the GI tract of obesity model animals in 

relation to body weight, specifically caused by the supplementation of flaxseed and buckwheat in 

the diet was evaluated.  

Hypotheses 

 The first hypothesis was that flaxseed and buckwheat supplementation would proliferate 

Enterobacteriaceae both in the cecum and shed in the feces. The second hypothesis was that we 

would observe increased weight gain among the high fat groups. However, the groups fed with 

fiber from flaxseed and buckwheat would have lower overall weight gain. The third hypothesis 

was that the groups with the most bacterial proliferation would be the groups with the lowest 

overall weight gain.  
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Definition of Key Terms 

Buckwheat (Fagopyrum esculentum). A pseudocereal containing large amounts of   

protein, starch, and vitamins as well as antioxidant properties (Kim, Son, & Lee, 2012). 

Cecum. The first part of the large intestine, forming a dilated pouch distal to the ileum  

and proximal to the colon (Mahan et al., 2012). 

Dietary Fiber. Nondigestible (by human digestive enzymes) carbohydrates and lignin that are  

intact and intrinsic in plants (Gropper & Smith, 2012). 

Fermentable Fiber. Stimulate the production of bacteria in the digestive tract and can also  

generate short chain fatty acids. It includes fructans, pectin, gums, psyllium,  

polydextrose, and resistant starch. Some cellulose and hemicellulose are also included 

(Gropper & Smith, 2012). 

Flaxseed (Linum usitatissimum). An oilseed crop for industrial, food, and fiber purposes. The 

seed provides oil rich in omega-3 fatty acids, digestible proteins, and lignans (Singh et 

al., 2011). 

Functional Fiber. Nondigestible carbohydrates that have been isolated, extracted, or 

 manufactured, and have been shown to have beneficial physiological effects in

 humans (Gropper & Smith, 2012).  

Gastrointestinal Tract. Extends from the mouth to the anus and includes the    

oropharyngeal structures, esophagus, stomach, small intestine, large intestine, rectum, 

and anus. Primary roles are to (1) extract micronutrients, protein, carbohydrates, lipids, 

water, and ethanol from ingested foods and beverages; (2) absorb necessary 

micronutrients; and (3) serve as a physical and immunologic barrier to microorganisms, 

foreign material, and potential antigens consumed with food or formed during the 
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passage of food. Participates in regulatory, metabolic, and immunologic functions that 

affect the entire body (Mahan et al., 2012). 

Groats. Hulled kernels of cereal grains (Skrabanja et al., 2001). 

Lignan. A woody fiber found in the stems and seeds of fruits and vegetables and in the bran layer 

of cereals; because of conjugated double bonds, is an excellent antioxidant; some, such as 

that found in flaxseed, have phytoestrogen activity (Mahan et al., 2012).  

Microbiota. The totality of microorganisms associated with a given environment (Scott et al.,  

2008).  

Obesity. A body mass index of ≥ 30 kg/m2 and characterized by low-grade inflammation  

(Centers for Disease Control and Prevention, 2014.)  

Pathogenic Bacteria. Organisms capable of causing disease in humans, animals, plants, or  

other microorganisms (Mahowald et al., 2009). 

Prebiotic. A nondigestible food ingredient that beneficially affects the host by selectively 

 stimulating the growth and/or activity of one or a limited number of bacteria in the colon,  

and thus improves host health (Gibson et al., 2004). 

Probiotic. A live microorganism which beneficially affects the host by improving  intestinal  

   microbial content to inhibit gram negative enteric bacterial growth (Quigley 2010).  

Pseudocereal. Plants that do not belong to the grass family but produce fruits and seeds used as  

 flour for bread and other staples (Mikulikova & Kraic, 2006). 

Resistant Starch. Starch that resists digestive enzyme action and reaches the colon; a starch  

 encased in a nondigestible plant seed coat or modified by cooking or  

 processing can be resistant (Mahan et al., 2012). 
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CHAPTER 2. LITERATURE REVIEW 

Obesity 

 Obesity occurs when energy intake is greater than energy expenditure and is classified as 

having a Body Mass Index (BMI) of ≥ 30 kg/m2 and an excess percentage of body fat; over 24% 

in males and over 35% in females (Centers for Disease Control and Prevention, 2014). Results 

from the National Health and Nutrition Examination Survey (NHANES) conducted in 2009-

2010 revealed that 35.7% of adults and almost 17% of youth in the United States are obese 

(Ogden et al., 2012).  

 The prevalence of obesity continues to rise in the United States and has become a major 

public health concern. Between 1980 and 2000, obesity rates doubled among adults. This 

increase appears to occur among all age groups, genders, and racial/ethnic groups. In addition, 

according to The Behavioral Risk Factor Surveillance System (BRFSS) of 2011, all states 

reported an obesity prevalence of 20% or greater. Locally, the state of North Dakota had a 29.1% 

prevalence rate of obesity (Centers for Disease Control and Prevention, 2014). 

Obesity is the leading risk factor for medical conditions such as hypertension, high 

cholesterol, type two diabetes, coronary heart disease, stroke, gallbladder disease, osteoarthritis, 

respiratory disorders, and certain cancers including epithelial, breast, and colon cancers. While 

most of the diseases related to obesity are considered preventable, most people do not practice 

health behaviors that prevent obesity (Centers for Disease Control and Prevention, 2014).   

Microbial Content in the Gastrointestinal Tract 

Medical researchers continue to investigate the factors that contribute to obesity 

including diet, physical activity, genetic composition, and the microbial content of the 

gastrointestinal (GI) tract (Harris et al., 2011). Optimal function of the human GI tract is crucial 
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for digestion and efficient utilization of nutrients. The large intestine is responsible for activities 

such as the fermentation of carbohydrates as well as short chain fatty acid production by bacteria 

(Macfarlane & Macfarlane, 2011). The large intestine has the highest density of microorganisms 

compared to all other organs of the body, with the most common microorganisms belonging to 

the phyla Bacteriodetes, Firmicutes, Actinobacteria, and Enterobacteriaceae. Depending on the 

host’s dietary intake, these bacterial populations can vary in abundance and how influential they 

can be (Eckburg et al., 2005). 

The microbial content in the GI tract of obese individuals contained species belonging to 

Bacteroidetes decreased, while those belonging to Firmicutes are increased (Ley et al., 2005; 

Santacruz et al., 2009, 2010). After diet therapy and subsequent weight loss, researchers have 

found that Bacteroidetes populations increased while Firmicute populations decreased. 

Furthermore, scientists observed an increase in the variety of beneficial Actinobacteria and a 

decrease in detrimental Enterobacteriaceae (Ley et al., 2005; Santacruz et al., 2009, 2010). 

 Bacteriodetes include species from the genus Bacteroides, which are the most commonly 

found bacteria in the colon (Wexler, 2007). Bacteroides ferment carbohydrates to provide energy 

for the host. Bacteroides that reside in the colon have also been shown to interact with the 

immune system by supporting the development of gut-associated lymphoid tissues. 

 Firmicutes that are beneficial to health in the human GI tract are the Lactobacillus 

species, which help to relieve conditions such as diarrhea and irritable bowel syndrome (Quigley, 

2010). They are also known for contributing to the maintenance of gut mucosa immunity by 

generating SCFA. The energy generated from SCFA is used in the colonic mucosa for the 

growth of healthy intestinal epithelial cells. SCFA may also cause tonic contractions, which 
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inhibit peristaltic intestinal activity and result in an overall increase in the fluid flow through the 

large intestine causing a reduction in fecal transit time (Cherbut, 2003). 

 The most common genus of Actinobacteria is Bifidobacterium. Bifidobacterium ferment 

complex carbohydrates including oligosaccharides in the GI tract (Ventura et al., 2007). Their 

proliferation acts as protection against other detrimental bacterial pathogens. Species including 

Bifidobacterium breve and Bifidobacterium longum have been identified for their roles in 

stimulating beneficial bacterial growth and carbohydrate fermentation. 

Enterobacteriaceae include normal flora species that are protective against incoming GI 

pathogens (Janda & Abbott 2006).  Salmonella, Escherichia coli, and Shigella are commonly 

known for causing GI upset. Enterobacteriaceae is commonly found in the human colon in low 

prevalence, however, as these species become overgrown in the colon or infect the host, they can 

cause severe cases of vomiting and diarrhea.  

Enterobacteriaceae in the GI Tract 

Enterobacteriaceae are often considered detrimental species of bacteria when found in 

excess in the human colon. These particular species, however, are able to proliferate in the colon 

in low prevalence without causing immediate harm or distress such as vomiting or diarrhea 

(Janda & Abbott 2006). Enterobacteriaceae may also be related to other conditions, such as 

obesity, due to a mechanism which may increase intestinal permeability (Santacruz et al., 2010; 

Karlsson et al., 2012).  

The balance of Enterobacteriaceae in the GI tract is affected by high fat intake, as this 

may cause an inflammatory response (Cani et al., 2008). Lipopolysaccharides exist on the outer 

membrane of Enterobacteriaceae and may also act as an inflammatory agent. High fat diet 

intake may compromise the integrity of the intestinal epithelial cell tight junction regulation, 
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which can then lead to the lipopolysaccharides leaking out from the GI tract into the blood 

stream (Amar et al., 2011). Lipopolysaccharides in the blood can cause further inflammation as 

well as metabolic endotoxemia. Enterobacteriaceae may be translocated from the GI tract into 

other body tissues, such as adipose tissue, which may then be released into the blood stream and 

cause further chronic tissue inflammation. 

Higher prevalence of Enterobacteriaceae in the GI tract may be more prevalent in those 

who are obese compared to those who are normal weight. Santacruz et al., (2010) observed 

potential relationships between gut microbiota and body weight in pregnant women. Fifty 

pregnant women were recruited for the study. Thirty-four of the women were classified as 

normal weight per pre pregnancy BMI, while sixteen of the women were classified as 

overweight. Fecal samples were collected at 24 weeks of pregnancy. Using real-time quantitative 

polymerase chain reaction (RT-qPCR) to analyze the bacteria present, the results showed that 

Enterobacteriaceae were found at an increased rate in the women classified as obese when 

compared to the women classified as normal weight, specifically Escherichia coli (p = 0.045) in 

those with excess weight gain. They concluded that gut microbiota composition was related to 

body weight during pregnancy, which might be of relevance to the management of the health of 

women and infants. The researchers suggested that the possibility for management of body 

weight and of the nutritional status of pregnant women through modification of the intestinal 

microbiota may warrant further investigation (Santacruz et al., 2010).    

Karlsson et al., (2012) collected fecal samples from twenty male and female children 

classified as overweight or obese by their BMI (17.6-25.8 kg/m2). Twenty male and female 

children with a normal BMI (13.6-17.2 kg/m2) had fecal samples collected and served as a 

control group. The ages of the children ranged between about 4-5 years. Using RT-qPCR, 
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Enterobacteriaceae were found to be significantly higher in obese and overweight children (p = 

0.036) when compared to children with a BMI within the normal range (Karlsson et al., 2012).  

Xiao et al., (2013) found that a decrease in Enterobacteriaceae in the GI tract and 

changes in the gut microbiota through dietary intervention may enhance intestinal integrity. A 

total of 89 male (57) and female (32) Chinese participants aged 25-55 years with a BMI of 28 or 

greater completed a self-controlled clinical trial consisting of a 9-week diet intervention followed 

by a 14 week maintenance period. The participants were asked to consume a diet based on whole 

grains, traditional Chinese medicinal foods, and prebiotics. The average weight loss was 5.79 ± 

4.64 kg with significant reductions in Enterobacteriaceae prevalence, as well as improvements 

in lipid profiles, blood pressure, and insulin sensitivity. Gut permeability was also decreased 

compared to the participants baseline measurements using a lactulose/mannitol ratio (Xaio et al., 

2013). 

Weight Loss in Obesity Related to Bacterial Content in the GI Tract  

 During weight loss, the ratio of beneficial bacteria compared to pathogenic bacteria 

appears to shift. Researchers have observed an increase in beneficial bacteria and a decrease in 

pathogenic bacteria directly related to weight loss (Ley et al, 2005; Santacruz et al, 2009).  

 A study performed by Ley et al. (2006) found that Bacteroidetes populations are lower in 

obese individuals, but increase as weight loss continues on low-calorie diets. For one year, the 

researchers followed 12 obese subjects participating in a weight-loss program, which included 

both men and women from 21-65 years of age. The participants were randomly assigned to either 

a fat restriction group (30% calories from fat) or a carbohydrate restriction group (25% calories 

from carbohydrates). Over the course of the year, the researchers monitored gut microbes by 

sequencing 16S ribosomal RNA genes from morning stool samples at 0 week, 12 weeks, 26 
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weeks, and 52 weeks. Prior to the diet interventions, the subjects had fewer Bacteroidetes and 

more Firmicutes than a lean control group. As weight loss progressed, the researchers observed 

an increase in Bacteroidetes, while the number of Firmicutes decreased in both diet-restriction 

types. The observed changes in bacterial populations also correlated with loss of body weight. 

The researchers suggest that manipulation of the gut microbial communities could be an 

approach to obesity treatment (Ley et al., 2006).  

 Santacruz (2009) found that an intervention with a reduction in energy intake and an 

increased energy expenditure impacts microbial composition in the colon. Participants included 

36 adolescents (18 female, 18 male, mean age 14.5 years) classified as overweight or obese. For 

ten weeks, subjects were asked to consume a 10-40% calorie restricted diet with an increase in 

physical activity (15-23 kcal/kg body weight/week), established according to degree of obesity 

and regular physical activity prior to the study to promote weight loss. The subjects kept food 

diaries and also provided a fecal sample prior to their participation in the study and also at the 

completion of the study for bacterial analysis. After the intervention was completed, the 

researchers divided the subjects into two groups for statistical analysis based on the amount of 

weight each subject lost during the course of the study. The low weight loss group consisted of 

13 subjects that demonstrated a weight loss of less than 2 kg after ten weeks of study 

intervention. The high weight loss group consisted of 23 subjects that lost over 4 kg of weight 

after 10 weeks of study intervention. Results of the microbial analysis performed on the fecal 

samples using a quantitative real-time polymerase chain reaction method (RT-qPCR) found that 

all participants had significantly increased beneficial bacterial populations such as Bacteroides 

fragilis and Lactobacillus spp. in the colon. Researchers concluded that the reduction of energy 

intake and the increase of energy expenditure positively correlated with the body weight loss in 
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adolescents. They also observed a positive correlation between weight loss and the composition 

of beneficial microbial content (Santacruz et al., 2009). 

Fiber and the Fiber Content of Flaxseed and Buckwheat  

 Fiber is recognized for its role in promoting satiety by decreasing gastric emptying rate 

and increasing fecal bulk (Brownawell et al., 2012). Fiber is classified as dietary fiber or 

functional fiber. Both categories of fiber consist of carbohydrates that are not digestible by 

enzymes of the GI tract. 

 Functional fiber in particular has been shown to have beneficial physiological effects in 

humans (Bengmark & Martindale 2005).  Many functional fiber sources are also fermentable 

including inulin, pectin, gums, ß-glucan, and resistant starch (RS). As fermentation in the colon 

occurs, the growth of beneficial bacteria species increase and pathogenic populations decrease. 

 Skrabanja et al. (2001) performed research to identify the nutritional properties of 

buckwheat products, including post-prandial satiety, resistant starch analysis, and starch 

hydrolysis involving ten healthy human subjects aged 23-53 years. Following an overnight fast, 

the subjects were given a breakfast on three separate occasions that would include one of the diet 

treatments in a random selective order. The treatments included boiled buckwheat groats, bread 

baked with 50% buckwheat groats, and bread made from white wheat flour. The highest 

proportion of resistant starch was found in the boiled buckwheat groats followed by the 50% 

buckwheat groat bread product. Subject’s satiety scores for buckwheat products compared to 

processed white flour products were reported to be significantly higher. Researchers concluded 

that the high resistant starch contents of dietary fiber found in buckwheat resulted in high post-

prandial satiety (Skrabanja et al., 2001). 
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 Fiber in flaxseed was examined using flaxseed in a bread product and in a drink mixture. 

The drink mixture included water, blackberry syrup, and flaxseed fiber powder, which was 

consumed 30 minutes prior to breakfast. Subjects included 17 young human subjects, both men 

and women, to follow three separate diet protocols for seven days with a greater than one week 

washout between each diet. The treatments included a diet low in fiber, a diet including a 

flaxseed fiber drink three times per day, and a diet with flaxseed fiber bread three times per day. 

Each treatment was accompanied by a standardized daily diet provided from the treatment 

center. The flaxseed fiber diet treatments provided 7.5 g/10 megajoules of dietary fiber per 

treatment, while the low fiber diet provided 12 g/10 megajoules of modified corn starch per 

treatment. Fecal excretion of fat and blood lipid concentration was compared in each treatment 

group. Daily consumption of dietary fiber from flaxseed significantly increased fecal excretion 

of fat and reduced cholesterol concentrations in the blood when compared to a low fiber diet 

(Kristensen et al., 2012). The observed affect of flaxseed may be related it’s fiber and prebiotic 

activity.   

Prebiotics 

 A prebiotic is an undigestible food ingredient that beneficially affects the host by 

selectively stimulating growth and/or activity of bacteria in the colon, and improves host health 

(Gibson et al., 2004). The substrate must first demonstrate that it cannot be hydrolyzed in the 

upper GI tract and must resist gastric acidity. Secondly, it must show fermentation by intestinal 

microbiota and selectively stimulate growth or activity of bacteria that are considered beneficial 

to the host’s health and well-being. Lastly, it must alter intestinal microflora towards a healthier 

composition. 
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Wang et al. (2012) tested the potential health promoting effects of fermented milk that 

contained a combination of prebiotic and probiotic substrates. Researchers used both human and 

animal models to observe the changes in intestinal microbiota. One hundred healthy adult 

volunteers (50 male, 50 female, mean age 35 years) were divided randomly into two treatment 

groups in order to analyze fecal bacteria from both the control and test groups. The test group 

consumed 480 g of fermented milk, which was supplemented with the probiotics Lactobacillus 

acidophilus and Bifidobacterium lactis as well as the prebiotic isomaltooligosaccharides for 14 

days. Wang also used 40 male BALB/c mice divided into four treatment groups including a 

control group that received sterile water and three milk fermentation groups; low-dose (0.4 g/10 

g of body weight), medium-dose (0.8 g/10 g of body weight), and high-dose (2.4 g/10 g of body 

weight). The mice received the treatment for 14 days through a gastric tube. Fecal sample 

analysis from the human subjects that consumed the fermented milk showed a significant 

increase in Lactobacillus and Bifidobacteria when compared to the control group. The mice also 

showed a significant increase in Bifidobacteria and Lactobacillus in the medium-dose and high-

dose groups compared to the control group. Wang concluded that the fermented milk treatments 

containing both probiotics and prebiotics may have contributed to the improved intestinal health 

of both human and BALB/c mice. (Wang et al., 2012). 

 In an effort to replace antibiotics in animal feed, prebiotic and probiotic additives have 

been proposed as a treatment for healthy newborn calves. Roodposhti and Dabiri studied the 

effects of feeding whole milk containing prebiotics, probiotics, or a combination to 32 female 

Holstein calves at two weeks of age. The researchers assessed average daily gain of weight in the 

calves relative to Escherichia coli counts and immune status without the use of conventional 

antibiotics. Each of the calves received whole milk treatments with a specific additive. Calves 
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were assigned randomly to one of four treatment groups including a group without additive, a 

probiotic additive, a prebiotic additive, and both probiotic and prebiotic additives. They received 

each treatment twice daily for 60 days. Their goal was to compare each treatment group’s 

response in average daily weight gain, fecal Escherichia coli, white blood cell count, plasma 

immunoglobulin G1 level, and cell-mediated immune response. Although Roodposhti and Dabiri 

did not observe any significant changes in white blood cell count, plasma immunoglobulin G1 

concentrations, or cell-mediated responses between groups, the researchers found that the use of 

probiotic, prebiotic, and probiotic-prebiotic combination reduced Escherichia coli in the feces. 

The average daily gain of weight in the calves that had consumed the prebiotic, probiotic, and 

prebiotic-probiotic combination were significantly higher than the control during the final three 

weeks of the study. The researchers concluded that a decrease in fecal Escherichia coli using 

dietary prebiotics and probiotics had a positive effect on a healthy weight gain and growth 

(Roodposhti & Dabiri, 2012). 

Buckwheat and Prebiotic Activity   

 Buckwheat is a pseudocereal grain that does not contain gluten (Mikulikova & Kraic, 

2006). Additionally, buckwheat has been identified as having exceptional prebiotic capability. In 

a study comparing a variety of pseudocereals including quinoa, millet, and sorghum, it was clear 

that buckwheat contained the highest content of resistant starch (37.9 ± 3.6 g/kg dry weight 

basis) suggesting it has strong prebiotic functionality. 

 Prebiotic activity for buckwheat was measured in a research study using twenty, 12-

week-old Wistar Hannover Rats. The rats were split into two groups of ten. The first group was 

used as the control and was fed generic mouse chow and the second group was fed cooked 

buckwheat. Each group was fed for 30 days. Préstamo identified more Lactobacillus and 
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Bifidobacterium in the intestines of the rats that were fed the buckwheat diet. Furthermore, they 

were unable to identify beneficial bacteria species including Lactobacillus plantarum and 

Bifidobacterium lactis in the control group. The buckwheat group had fewer pathogenic bacteria 

including Enterobacteria. Researchers concluded that buckwheat stimulated the growth of 

beneficial bacteria and altered intestinal microflora towards a healthier composition (Préstamo et 

al., 2003). 

Flaxseed and Prebiotic Potential  

 Flaxseed is an oilseed crop and is recognized for being high in dietary fiber (20-25%) and 

45-52% omega-3 fatty acids (Singh et al., 2011). It is also an excellent source of 

secoisolariciresinol diglucoside (SDG), which is a phytoestrogen lignan with high antioxidant 

activity (Hao & Beta, 2012). Park and Velasquez found the effects of SDG in flaxseed powder 

supplementation to provide beneficial effects including reduced body weight, reduced fat 

accumulation, and blood lipid profile improvement. Eight-week old Sprague-Dawley male rats 

were divided into four groups of eight animals each. The four treatment groups included a 

control diet (NC), a control diet with 0.02% SGD lignan-enriched flaxseed powder (NCL), a 

high-fructose and fat diet (HFD), and a high-fructose and fat diet with 0.02% SGD lignan-

enriched flaxseed powder (HFDL). The average body weight of the high-fructose and fat diet 

group was significantly higher than the other three groups. The lipid profile of the rats in the 

HFDL group had lower concentrations of cholesterol and triglycerides than the HFD group (p < 

0.05).  

 Upon extensive review of literature, there was no research related to flaxseed and 

prebiotics that could be found. The high dietary fiber content of flaxseed indicates flaxseed may 

have prebiotic potential (Kristensen et al., 2012). 
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Summary 

Traditional factors recognized as causes for obesity include high calorie diet, decreased 

physical activity, and genetic predisposition (Harris et al., 2011). However, an emerging factor 

associated with obesity includes the microbial content of the GI tract. Bacterial interactions may 

cause or inhibit obesity depending on the ratio of beneficial to pathogenic bacteria in the colon 

(Ley et al, 2005; Santacruz et al, 2009). Enterobacteriaceae in the GI tract may be more 

prevalent in those who are obese compared to those who are normal weight (Santacruz et al., 

2010). Functional fibers are fermentable in the colon, which stimulates the growth of bacteria 

(Bengmark & Martindale, 2005). Flaxseed and buckwheat are plants with a high fiber content, 

which indicate they may proliferate bacteria in the GI tract (Skrabanja et al., 2001; Kristensen et 

al., 2012).  
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CHAPTER 3. METHODS 

Animals  

 Approval from the Institutional Animal Care and Use Committee (IACUC) of North 

Dakota State University (NDSU) was obtained prior to the initiation of this study (#A13019). 

Seventy-two C57BL/6J male mice from the Jackson Laboratory in Bar Harbor, Maine were 

randomly assigned to one of six treatment groups for a total of 12 mice per group. This animal 

model is prone to developing obesity after being fed a high-fat diet (Wang and Liao, 2012; Rabot 

et al., 2010). Male mice were the chosen subjects due to the SGD contest of flaxseed, which is a 

phytoestrogen lignan that may interfere with the estrogen hormone in female mice (Mahan et al., 

2012, Hao & Beta, 2012). The mice were approximately six weeks old when received, and were 

then acclimated to the laboratory conditions for one week prior to dietary treatment. Each 

experimental diet was fed for a total of eight weeks. 

 Animals were kept individually in plastic-bottom cages at a controlled room temperature 

(22-25ºC) and humidity (42-55%) with a 12-hour light/dark cycle in the Animal Nutrition and 

Physiology Center at NDSU. Fresh food and water was provided daily. Bedding was changed 

weekly. Animals had access to food and water ad libitum, with exception to the pair-fed lean 

treatment group, as described in diet treatment groups. Sterile bedding upon arrival and 

throughout the study tested negative for Enterobacteriaceae. After eight weeks of experimental 

diet feeding, the mice were euthanized using carbon dioxide gas, then exsanguinated by anterior 

cardiac puncture according to IACUC’s approved procedures.  

Treatment Groups  

All mice were randomly assigned to one of six treatment groups; Group 1 (45% Kcal fat, 

control), Group 2 (45% Kcal fat, 10% whole flaxseed), Group 3 (45% Kcal fat, 6% defatted 
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flaxseed), Group 4 (45% Kcal fat, 4% flaxseed oil), Group 5 (45% Kcal fat, 10% buckwheat), 

and Group 6 (control diet, 16% Kcal fat, pair-fed to group 2). The amount of defatted flaxseed 

and flaxseed oil was adjusted based on lignan and n-3 fatty acid content in the whole flaxseed 

supplementation diet. Food consumption of the mice in Group 2 was measured daily by grams 

and the same amount was provided to Group 6 in grams.   

Flaxseed and Buckwheat Diet Formulation 

The flaxseed was obtained from local suppliers in the Fargo, North Dakota area and 

combined to prepare flaxseed supplemented diets. The whole flaxseed was milled  to a particle 

size of 30 mesh. The whole milled flaxseed was subjected to hexane extraction to produce both 

defatted flaxseed and the flaxseed oil. After the hexane was removed, the remaining defatted 

flaxseed was dried at room temperature until all solvent was removed. The remaining hexane 

extracted flaxseed oil was used to prepare served as the flaxseed oil supplemented diet. North 

Dakota grown whole buckwheat was donated by Dr. Darrin Haagenson, in the Department of 

Agricultural and Biosystems Engineering at NDSU.  

 TestDiet® laboratories formulated the experimental diet in the form of pellets for animal 

consumption. Each of the six diet treatments were dyed with a unique color to ensure correct 

group identification for feeding. Vitamin E was not added to any of the diet treatments in order 

to remove any additional antioxidant effects. The nutritional profile of the low fat diet contained 

18.8% kcal from protein, 16.4% kcal from fat, and 64.9% kcal from carbohydrates with 5% from 

fiber. The nutritional profile of the high fat diets contained 18% kcal from protein, 45% kcal 

from fat, and 37% kcal from carbohydrates with 6% from fiber. Pellets from each of the diet 

treatment groups were randomly tested for presence of Enterobacteriaceae prior to treatment. 

All of the food pellets tested negative for presence of Enterobacteriaceae.  
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Body Weight and Diet Consumption 
 
  Body weight in grams of each mouse was measured pre treatment and also on a weekly 

basis throughout the eight weeks of study. Food consumption in grams was measured and 

monitored on a weekly basis to ensure the consumption of each diet. Daily consumption in grams 

was measured from the 10% whole flaxseed treatment group to adequately pair-feed the lean diet 

treatment group.  

Fecal Sample Collection  

 Fecal samples were collected from each mouse at week 0 (pre treatment) with a one week 

acclimation period, and again eight weeks later at week 9 (post treatment). Bedding removal and 

sterilization of cages with 70% ethanol occurred prior to fecal sample collection. Cages were left 

bedding free for 12 hours to allow for fecal sample collection. Collected fecal samples were 

weighed and then processed with 10 mL sterile phosphate based saline (PBS) for content 

homogenization. Collected fecal samples from each mouse were combined with fecal samples 

from another mouse from their treatment group to manage agar plate storage and supply. The 

same combination was used both pre and post treatment. 

Enterobacteriaceae Isolation and Identification 

 A one mL aliquot was removed from each feces homogenate and inoculated onto a sterile 

MacConkey agar plate, then incubated for 48 hours at 37°C to culture Enterobacteriaceae. Plates 

were then streaked for isolation onto a fresh MacConkey agar plate with a sterilized inoculum 

loop. Isolated streaks were incubated for 48 hours at 37°C.  

Another one mL aliquot was also removed from each feces homogenate to undergo a 

serial dilution and was placed into a tube containing 9 mL of PBS. This dilution process was 

repeated up to five times. Post treatment feces serial dilutions also included 104 and 105 due to 
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increased bacterial proliferation following diet supplementation. The colony forming units 

(CFU) were counted on each MacConkey agar plate. Plates were then streaked for isolation onto 

a fresh MacConkey agar plate with a sterilized inoculum loop. Isolated streaks were incubated 

for 48 hours at 37°C.  

Enterobacteriaceae was identified using the Remel RapID ONE System. The Remel 

RapID ONE System uses a tray, which contains multiple cavities. Each of the cavities contains 

individual reactive ingredients. When the cavities are inoculated with an Enterobacteriaceae 

sample of interest, the following reaction allows for the identification of Enterobacteriaceae. 

The resulting color change was used to determine positive or negative identification due to 

change in pH and enzymatic hydrolysis.  

 After eight weeks of diet supplementation, the cecum was removed from each mouse and 

homogenized using a Stomacher® 400 homogenizer with 10 mL PBS. Processing occurred in 

the same manner as fecal sample bacterial isolation for Enterobacteriaceae described above. 

Statistical Analyses 
 

An average was used to compare pre and post weight among treatment groups as well as 

weight gain and food intake among treatment groups. Chi Square for homogeneity was used to 

compare the differences among diet treatment groups including Enterobacteriaceae frequency of 

detection as well as high and low prevalence of Enterobacteriaceae between weeks 0 and 9 of 

treatment. The total of CFU calculation was completed by adding the estimated observed number 

of colonies with the dilution factor for each treatment group. A Dunn’s multiple comparison was 

used to compare the means of CFUs of Enterobacteriaceae among post treatment fecal samples. 

An ANCOVA was used to compare weight at post treatment to the variables including the diet 

treatment groups fed a 45% high fat diet, weight at pre treatment, average weekly intake, 
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Enterobacteriaceae present in pre fecal samples, Enterobacteriaceae present in post fecal 

samples, and Enterobacteriaceae present in the cecum. Any significant results from the analysis 

were reported with an alpha level of 0.05. All data were analyzed using the statistical analysis 

program SAS 9.3. 
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CHAPTER 4. RESULTS AND DISCUSSION 

Weight and Food Intake 

The average pre treatment weight among diet groups was significantly different (p < 

0.013), as well as the average post treatment weight (p < 0.0001). The weight gain between pre 

and post treatments was also significantly different (p < 0.0017) (Table 1). The mice from the 

whole flaxseed (WF), high fat (HF), and buckwheat (BW) groups had the most weight gain after 

the eight-week treatment period. The weight of low fat (LF) treatment group at post treatment 

was significantly lower than all of the treatment groups except the flaxseed oil (FO) group (Table 

1). The difference in weight gain between the LF treatment groups compared to the defatted 

flaxseed (DF), buckwheat (BW), HF, and WF groups is most likely related to the difference in 

percentage of calories from fat between the diets.   

The average weekly food intake was significantly different among treatment groups (p < 

0.007) (Table 1), which may indicate that food intake could have had an effect on the differences 

in weight gain between dietary treatments. However, in an ANCOVA created to compare the 

variables that may impact weight changes, we were unable to conclude weekly intake may have 

an effect on weight change.  

We compared the weight of our C57BL/6J mice at fifteen weeks old to the average 

C57BL/6J mouse at fifteen weeks old from the Jackson laboratories. The average fifteen week 

C57BL/6J mouse fed a standard diet with 10% fat from the Jackson laboratories in their own 

independent study weighed at least 2 g less then the WF mice in this study fed a 45% fat diet at 

fifteen weeks of age (Tables 1 and 2). The difference in calories from fat between the diet 

treatment groups is most likely related to this observation of difference in average weight gain. 

The mice in LF diet group, fed 16% fat, had a lower average weight gain than the C57BL/6J 
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mice from the Jackson laboratories fed a standard 10% fat diet. The mice in our LF diet 

treatment, however, were not fed ad libitum and were instead pair fed to the WF diet treatment, 

which is likely the cause of the difference in average weight gain. The greater percentage of 

weight gain of mice fed a 45% fat diet compared to the LF group indicates that these mice in our 

current study were obese (Table 1). 

Table 1. Weight at pre and post treatments, weight gain, percent weight gain, and weekly food 
intake throughout 8 weeks of treatment* 
 

n Group Weight at Pre 
Treatment (g) 

Weight at Post 
Treatment (g) 

Weight Gain 
(g) 

Weight Gain 
(%) 

Weekly Food 
Intake (g) 

12 High Fat 19.88 ± 1.32 33.80 ± 3.41 13.92 ± 2.37 142.50 25.23 ± 5.81 

12 Whole Flaxseed 21.10 ± 1.08 39.27 ± 5.34 18.17 ± 3.21 165.56 27.53 ± 4.01 

12 Defatted Flaxseed 19.81 ± 1.64 31.55 ± 3.78 11.74 ± 2.71 133.01 21.68 ± 1.54 

12 Flaxseed Oil 20.12 ± 1.07 29.62 ± 2.16 9.50 ± 1.62 124.87 20.25 ± 0.75 

12 Buckwheat 19.81 ± 1.58 32.48 ± 5.02 12.67 ± 3.30 136.93 24.69 ± 3.61 

11 Low Fat 19.61 ± 2.25 23.72 ± 2.51 4.11 ± 2.06 † 27.00 ± 3.91 

P value  0.013 0.0001 0.0017  0.007 

*Data were reported as mean ± standard deviation.  
† The LF diet (16% fat) was used as the comparison for control as the other diet treatment groups 
were fed at 45% fat diet.  
 

Jackson Laboratories, where our mice originated, supplies average body weight 

information for their C57BL/6J mice throughout their lifecycle when fed a 10% fat diet and 60% 

fat diet (The Jackson Laboratories). In our current study, at fifteen weeks of age, the average 

weight gain of the WF mice was greater than the average weight gain of a C57BL/6J mouse of 

the same age fed a 60% high fat diet (Tables 1 and 2). Our C57BL/6J mice fed a 45% high fat 

diet had a similar average weight gain compared to the C57BL/6J mice from the Jackson 

Laboratory (Tables 1 and 2). It is likely to assume that the threshold of weight gain for these 

mice may reach its peak with a 45% fat diet. Both 45% fat and 60% fat diets would induce 
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obesity in this animal model. The similarities between the average weight gain of our HF and 

BW diets compared to the Jackson Laboratory 60% fat diet treatment is also likely related to this 

(Tables 1 and 2).  

Table 2. Average weight of C57BL/6J mice at six and fifteen weeks of age 
 
 Average Weight at Six 

Weeks of Age (g) 
Average Weight at  

Fifteen Weeks of Age (g) 
Average Weight 

Gain (g) 
Jackson Laboratories 

(10% fat diet) 
21.10 ± 1.50 29.70 ± 2.20 8.60 ± 1.85 

Jackson Laboratories 
(60% fat diet) 

21.70 ± 1.50 36.20 ± 4.20 14.50 ± 2.85 

Current Study 
(45% fat diet) 

20.14 ± 1.34 33.34 ± 3.94 13.20 ± 2.24 

 

Enterobacteriaceae in the Feces and Cecum 

The diversity of Enterobacteriaceae identified in the feces homogenate and cecum 

included Escherichia coli, Enterobacter agglomerans, Enterobacter cloacae, Enterobacter 

aerogenes, Enterobacter amnigenus, Serratia marcescens, Serratia liquifaciens, Shigella, 

Cronobacter sakazakii, and Pantoea agglomerans. The post fecal samples with the most 

diversity of Enterobacteriaceae overall were observed to be in the WF with five species and BW 

with four species (Table 3). These results suggest that the high fermentable fiber content of 

flaxseed (Kristensen et al., 2012) led to the increased diversity of Enterobacteriaceae through 

fermentation (Bengmark & Martindale, 2005). Buckwheat supplementation also shed 

Enterobacteriaceae in the feces and cecum, which is in agreement with Prestamo (2003) 

regarding supplementation of buckwheat into the diet and shedding of Enterobacteriaceae.  
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Table 3. Diversity of Enterobacteriaceae in pre fecal, post fecal, and cecum samples between 
treatment groups   
 

Group Pre Fecal Samples Post Fecal Samples Cecum Samples 
High Fat Serratia spp. S. marcescens S. marcescens 

P. agglomerans 
Whole Flaxseed Serratia spp. 

E. amnigenus 
E. cloacae 

S. marcescens 
E. cloacae 

E. aerogenes 
P. agglomerans 

C. sakazakii 

S. marcescens 
P. agglomerans 

Defatted Flaxseed Serratia spp. S. marcescens 
E. cloacae 

P. agglomerans 

S. marcescens 
E. aerogenes 

 
Flaxseed Oil Serratia spp. S. marcencens S. marcescens 
Buckwheat Serratia spp. 

S. liquefaciens 
E. amnigenus 

E. cloacae 
P. agglomerans 

S. marcescens 
E. aerogenes 

P. agglomerans 
E. cloacae 

 

S. marcescens 
E. aerogenes 
E. amnigenus 

P. agglomerans 

Low Fat Serratia spp. 
E. amnigenus 

P. agglomerans 
Shigella 

E. aerogenes 
E. cloacae 

P. agglomerans 

S. marcescens 
E. aerogenes 

E. cloacae 
E. coli* 

*The data of one mouse from the lean diet group with E. Coli has been omitted from the data 
analysis due to displaying characteristics of illness and distress. 
 

There was no significant difference in Enterobacteriaceae prevalence in pre treatment 

fecal samples among treatment groups (p < 0.4418). This indicated that each of the groups had a 

similar frequency of Enterobacteriaceae prevalence in their feces prior to dietary treatment, 

which is favorable (Table 4). The treatment groups with the lowest total CFU pre treatment were 

the HF, WF, and FO groups. The treatment groups with the highest CFU were in the DF, BW, 

and LF groups (Table 5). A low and high prevalence for the pre treatment samples was not 

calculated, as these results did not appear to be approaching significance.  

 

 

 



 

 27 

Table 4. Frequency of detection of Enterobacteriaceae in pre and post treatment fecal samples 

Diet Group Absence of 
Enterobacteriaceae 

Presence of 
Enterobacteriaceae 

Pre Post Pre Post 
High Fat 1 

 
2 
 

5 
 

4 
 

Whole Flaxseed 1 
 

0 
 

5 
 

6 
 

Defatted Flaxseed 1 
 

0 
 

5 
 

6 
 

Flaxseed Oil 3 
 

3 
 

3 
 

3 
 

Buckwheat* 0 
 

0 
 

5 6 
 

Low Fat 1 
 

2 
 

4 
 

3 
 

 
p < 0.4418 probability of homogeneity across treatment groups in the pre treatment fecal 
samples. Fecal samples from each mouse were combined with fecal samples from another mouse 
from their treatment group. The same combination was used both pre and post treatments.  
p < 0.0942 probability of homogeneity across treatment groups in the post treatment fecal 
samples. Fecal samples from each mouse were combined with fecal samples from another mouse 
from their treatment group. The same combination was used both pre and post treatments. 
*1 sample missing due to misplacement. 
 

The presence of Enterobacteriaceae in post treatment fecal samples was also not 

significantly different among dietary treatment groups (p < 0.0942, Table 4). Because the results 

appeared to be approaching significance, the prevalence of Enterobacteriaceae was then 

categorized as either low or high. High prevalence was identified as samples diluted to 101 or 

higher and that continued to grow a species of Enterobacteriaceae. Low prevalence was 

identified as samples with Enterobacteriaceae present only when undiluted or with no 

Enterobacteriaceae detected. The high and low prevalence of Enterobacteriaceae in post 

treatment fecal samples were significantly different among treatment groups (p < 0.0033, Table 

6). The total CFU in the post treatment fecal samples were all significantly different from each 

other between treatment groups (Table 5). HF and FO had the lowest prevalence and CFU in 
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post treatment fecal samples, with 100 CFU and 10 CFU respectively. These were also the 

treatment groups with a low fermentable fiber content. WF, DF, and BW had the highest 

prevalence and CFU in post treatment fecal samples with 105,000 CFU, 102,210 CFU, and 

200,200 CFU respectively (Tables 5 and 6). This indicates that Enterobacteriaceae was most 

often present in fecal samples following the diet treatment with a high fermentable fiber content 

(Singh et al., 2011; Mikulikova & Kraic, 2006; Kristensen et al., 2012; Prestamo et al., 2003). 

Upon extensive review of literature, we were unable to find other research similar to the current 

study using mice as an obesity model comparing the prevalence of Enterobacteriaceae in the GI 

tract. 

Table 5. Total colony forming units (CFU) of Enterobacteriaceae per gram in pre fecal, post 
fecal, and cecum samples  
 

Group Total CFU in  
pre fecal samples 

Total CFU in  
post fecal samples* 

Total CFU in  
cecum samples 

High Fat 120 100 1 x 107 

Whole Flaxseed 230 105,000 4 x 107 

Defatted Flaxseed 1110 102,210 2 x 107 

Flaxseed Oil 120 10 1 x 107 

Buckwheat 2020 200,200 1 x 1010 

Low Fat 3110 2020 3 x 107 

Total CFU completed by adding the estimated observed number of colonies with the dilution 
factor for each treatment group.  
*A Dunn’s multiple comparison test found that the all of the treatment groups were significantly 
different from each other in the post fecal samples (p < 0.05).  
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Table 6. Low or high prevalence of Enterobacteriaceae in the post treatment fecal samples 
 

Diet Group Low Prevalence of 
Enterobacteriaceae 

High Prevalence of 
Enterobacteriaceae 

High Fat 5 
 

1 
 

Whole Flaxseed 0 
 

6 
 

Defatted Flaxseed 0 
 

6 
 

Flaxseed Oil 5 
 

1 
 

Buckwheat 2 
 

4 
 

Low Fat 2 
 

3 
 

p < 0.0033 probability of homogeneity across post treatment fecal treatment groups. Fecal 
samples from each mouse were combined with fecal samples from another mouse from their 
treatment group. The same combination was used both pre and post treatments. High prevalence 
was identified as samples diluted to 101 or higher and that continued to grow an 
Enterobacteriaceae spp. Low prevalence was identified as samples with Enterobacteriaceae 
present only when undiluted or with no Enterobacteriaceae detected. 
 
 Enterobacteriaceae colonization prevalence was also measured in cecum samples as 

Enterobacteriaceae species proliferate in the GI tract (Backhed et al., 2004). Enterobacteriaceae 

present in the cecum among treatment groups was approaching significance (p < 0.0565, Table 

7). However, when using the same method as previously described to determine high and low 

prevalence of Enterobacteriaceae, the results were significant (p < 0.0348, Table 8). Again, the 

groups with the highest prevalence of Enterobacteriaceae were WF and BW, which are the 

treatment groups with a high fermentable fiber content. The groups with the lowest prevalence of 

Enterobacteriaceae were FO and HF, which were also the groups with the lowest fermentable 

fiber content. Our results indicate that a potential relationship exists between high fermentable 

fiber diets and Enterobacteriaceae proliferation.  

The observation can be made that Enterobacteriaceae found in the cecum had a similar 

outcome regarding the prevalence of Enterobacteriaceae in the fecal samples between treatment 
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groups. This consistency between prevalence of Enterobacteriaceae in both the fecal and cecum 

samples indicates that Enterobacteriaceae proliferation in the cecum had an effect on the 

prevalence of Enterobacteriaceae detected in the fecal samples. 

Table 7. Frequency of detection of Enterobacteriaceae in the cecum 
 

Diet Group Absence of Enterobacteriaceae Presence of Enterobacteriaceae 
High Fat 3 

 
3 
 

Whole Flaxseed 1 
 

5 
 

Defatted Flaxseed 3 
 

3 
 

Flaxseed Oil 5 
 

1 
 

Buckwheat 0 
 

6 
 

Low Fat 2 
 

3 
 

p < 0.0565 probability of homogeneity across cecum sample treatment groups. Cecum samples 
from each mouse were combined with cecum samples from another mouse from their treatment 
group. 
 
Table 8. Low or high prevalence of Enterobacteriaceae in the cecum  

Diet Group Low Prevalence of 
Enterobacteriaceae 

High Prevalence of 
Enterobacteriaceae 

High Fat 5 
 

1 
 

Whole Flaxseed 1 
 

5 
 

Defatted Flaxseed 4 
 

2 
 

Flaxseed Oil 5 
 

1 
 

Buckwheat 1 
 

5 
 

Low Fat 2 
 

3 
 

p < 0.0348 probability of homogeneity across treatment groups. Cecum samples from each 
mouse were combined with cecum samples from another mouse from their treatment group. 
High prevalence was identified as samples diluted to 101 or higher and that continued to grow an 
Enterobacteriaceae spp. Low prevalence was identified as samples with Enterobacteriaceae 
present only when undiluted or with no Enterobacteriaceae. 
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Prevalence of Enterobacteriaceae and Effect on Post Treatment Weight 

  The data were analyzed using an ANCOVA test to determine if a covariate existed that 

may affect our dependent variable of post treatment weight. Our original model included the 

covariates weight at pre treatment, diet treatment, and average weekly intake. Our results did not 

find any of significant differences. A second model included the covariates Enterobacteriaceae 

presence in the feces at pre treatment, feces at post treatment, and the cecum samples. These 

results also did not find any significant differences. A third model was created to exclude the LF 

diet treatment group and include only the diet treatment groups fed at 45% high fat diet. This 

indicated a significant difference between the diet treatment groups (p < 0.0019), which 

indicated diet treatment had an effect on post treatment weight. The model indicated a 

relationship existed between the prevalence of Enterobacteriaceae in the post treatment fecal 

samples and post treatment weight among the treatment groups (p < 0.0043). Further analysis 

indicated that the only dietary treatment group to have a significant effect on post treatment 

weight was the WF group (p < 0.05). The WF group was among the treatment groups with the 

highest prevalence of Enterobacteriaceae in post fecal samples (Tables 5 and 6), which may 

indicate a high prevalence of Enterobacteriaceae has an effect on weight gain (Table 1). Our 

results indicate there may be a potential relationship between an increase in Enterobacteriaceae 

prevalence and an increase in weight gain. The weight for the WF group at post treatment 

indicates that these mice were obese. This is similar to Santacruz (2010), Karllson (2012), and 

Xiao (2013), who identified higher prevalence of Enterobacteriaceae in human obese subjects. 

The ANCOVA model did not indicate any significant differences between the average 

weekly food intake variable and post treatment weight. This indicates that the average weekly 

food intake between groups did not affect post treatment weight. The ANCOVA model also did 
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not indicate any significant differences between the presence of Enterobacteriaceae in the cecum 

variable and post treatment weight.  

General Discussion 

The purpose of this research aimed to determine whether or not diets supplemented with 

flaxseed and buckwheat affect the prevalence of Enterobacteriaceae in the feces and colon as 

well as determining a relationship between Enterobacteriaceae and weight.  

Support for our initial hypothesis, that flaxseed and buckwheat supplementation would 

increase shedding of Enterobacteriaceae into the feces and increase proliferation of 

Enterobacteriaceae in the cecum, was demonstrated by the significant differences in high versus 

low Enterobacteriaceae prevalence in the cecum (p < 0.0348) and feces (p < 0.0033), based on 

whether or not Enterobacteriaceae continued to grow when diluted 101 or higher. These findings 

suggest that high and low prevalence of Enterobacteriaceae were significantly different among 

diet treatment groups. WF showed the highest frequency of Enterobacteriaceae prevalence in 

both post treatment fecal and cecum samples, while the FO and HF diet treatment groups were 

among the lowest prevalence of frequency. To our knowledge, this is the first research that 

identified flaxseed having increased Enterobacteriaceae shedding in the feces and proliferation 

in the cecum. These results suggest that the high fermentable fiber content of flaxseed 

(Kristensen et al., 2012), lead to the increase of Enterobacteriaceae through fermentation 

(Bengmark & Martindale, 2005). The results indicated that buckwheat supplementation also 

proliferated Enterobacteriaceae in the feces and colon, which is in agreement with Prestamo 

(2003).  

Support for our second hypothesis, we predicted the most weight gain among the high fat 

groups, while the groups fed with fiber from flaxseed and buckwheat would demonstrate lower 
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overall weight gain, is limited. The average weight gain among treatment groups throughout 

eight weeks of treatment was significantly different (p < 0.0001, Table 1). However, the groups 

with the highest percentage of weight gain post treatment were WF and HF. The group with the 

lowest percentage of weight gain post treatment was the LF treatment. The difference in weight 

gain between the LF treatment group compared to the DF, BW, HF, and WF groups is most 

likely related to the difference in percentage of calories from fat between the diets. The greater 

the percentage of weight gain of our treatment groups fed a 45% fat diet compared to our LF 

group indicates that the mice in our current study were obese (Table 1).  

Support for our final hypothesis was also limited. We hypothesized that the groups with 

the most bacterial proliferation would be the groups with the lowest overall weight gain. 

Throughout eight weeks of dietary treatment, all mice fed a 45% high fat diet (HF, WF, DF, FO, 

and BW) gained significantly more weight than the control, LF fed mice (Table 1). However, the 

only diet treatment group that could be significantly related to post treatment weight was the WF 

group. This group had the highest prevalence of Enterobacteriaceae in both post fecal and 

cecum samples. Our results suggest that WF in relation to its shedding of Enterobacteriaceae in 

the feces had an effect on weight gain over eight weeks of supplementation. Santacruz (2010) 

and Karlsson (2012) found Enterobacteriaceae most prevalent in overweight and obese human 

subjects prior to weight loss, while our study indicates increase in Enterobacteriaceae with 

weight gain. Xiao (2013) also observed changes in GI microbiota following dietary 

supplementation and intervention including whole grains, traditional Chinese foods, and 

prebiotics. However, Xaio (2013) found Enterobacteriaceae to decrease with weight loss while 

our results indicate Enterobacteriaceae increased with weight gain. 
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CHAPTER 5. CONCLUSION 

The WF, HF, and BW groups had the most weight gain after the eight week treatment 

period, while the LF treatment group had the lowest weight gain (Table 1). The greater the 

percentage of weight gain of our treatment groups fed a 45% fat diet compared to the LF group 

indicates that these mice in the current study were obese (Table 1). The average weekly food 

intake was significantly different among treatment groups (p < 0.007) (Table 1); however, we 

were unable to conclude weekly intake may have an effect on post treatment weight.  

The post fecal samples with the most diversity of Enterobacteriaceae overall were 

observed to be in the WF and BW groups (Table 3). The groups with the highest prevalence of 

Enterobacteriaceae were WF, BW, and DF, which had the highest fermentable fiber among the 

treatment groups. The groups with the lowest prevalence of Enterobacteriaceae were FO and 

HF, which were the groups with the lowest fermentable fiber. Our results indicate that a potential 

relationship exists between high fermentable fiber diets and Enterobacteriaceae proliferation.  

A potential relationship was identified between the prevalence of Enterobacteriaceae and 

post treatment weight in the WF group. The WF group was the treatment group with the most 

weight gain post treatment (Table 1) and was also with the highest prevalence of 

Enterobacteriaceae in post fecal samples among the treatment groups (Table 6), which may 

indicate a high prevalence of Enterobacteriaceae has an effect on weight gain (Table 1). Our 

results indicate there may be a relationship between an increase in Enterobacteriaceae 

prevalence and an increase in weight gain. 

Application of Research 

 The results of this study may impact agriculture, microbiology, dietetics, health and 

wellness professionals, the food industry, and to an extent all human beings around the world 
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consuming food for energy. This research indicated that the supplementation of whole flaxseed 

into the diet is related to Enterobacteriaceae shed into the feces, which is related to weight gain. 

The overall interpretation of these findings may be important to increase our knowledge and 

understanding of how Enterobacteriaceae and potentially other microbial species may play a 

role in overweight and obesity (Ley et al, 2005; Santacruz et al, 2009). Health and wellness 

professionals, including dietitians, are interested in promoting information for achieving healthy 

diet and BMI to individuals and communities. Agriculture and food industry professionals may 

find the growth and use of flaxseed and buckwheat for human consumption to benefit health and 

wellness. Further research is encouraged to understand the role of bacteria in the GI tract related 

to obesity prevention and treatment.  

Research Limitations 

 Limitations exist due to the unpredictable challenge of working with live animals as 

research subjects. All efforts have been made to correctly and adequately control the animal 

environment and experimental protocol; however, we cannot account for adverse events such as 

refusal to eat, signs of distress, infection, disease or illness, death, etc. The data of one mouse 

from the lean diet group have been omitted from the analysis due to displaying characteristics of 

illness and distress.  

 With consideration to the maturation of the mice over an eight week treatment period, there 

has not been a standard or completed method involving a suggested time frame for complete 

Enterobacteriaceae growth and turnover in the GI tract of this obesity animal model. Our 

approximation for an appropriate time frame to observe Enterobacteriaceae changes in the GI 

tract was eight weeks. This could be a sufficient amount of time for observable bacterial growth 

and turnover to occur and stabilize; however, further research with varying check points may be 
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beneficial to more deeply understand the microbiota and their overall environment and activity in 

the GI tract. More frequent time point observations, such as an additional four-week 

observational period, may be beneficial to observe changes occurring over time. Our methods 

also did not include PCR results, as other researchers in the literature have used.  

 This research also may not reliably reflect the same outcome in humans. We expect to see 

similar responses; however, the assumption cannot be made that the results will predict the same 

result in humans as it is with C57BL/6J male mice.  
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CHAPTER 6. FUTURE RESEARCH 

 As obesity becomes more prevalent in our society, scientific research will continue to 

develop a complete model to determine the causes of obesity, which will likely include the gut 

microbiota as a component (Harris et al., 2011). Recommendations for future research are based 

upon the limitation of this study, which includes research performed using human subjects rather 

than obesity animal models. A second recommendation would be to include identification of 

other species in the gut microbiota such as Firmicutes, Bacteroides, Actinobacteria, and others 

which may have an effect on overweight and obesity status. A third recommendation would be to 

use PCR and RT-qPCR methods performed by previous researchers Amar et al., 2011, Santacruz 

et al. 2009, Santacruz et al., 2010, and Karlsson et al., 2012. A fourth recommendation would be 

to complete blood sample analysis for the information regarding lipid profiles, and insulin 

resistance as performed by Xaio et al. (2013) and Park and Velasquez (2012). Application of the 

knowledge gained from additional research would be beneficial to multiple groups including 

those involved in agriculture, microbiology, dietetics, health and wellness professionals, the food 

industry, and for human beings for weight maintenance. 
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