
ENCODING EFFICIENT ATTRIBUTES USING PRIME MODULO METHOD FOR

 ANONYMOUS CREDENTIALS

A Thesis

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Sayantica Pattanayak

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Department:

 Electrical and Computer Engineering

January 2015

Fargo, North Dakota

North Dakota State University

Graduate School

Title

Encoding Efficient Attributes Using Prime Modulo Method for

Anonymous Credentials

 By

Sayantica Pattanayak

 The Supervisory Committee certifies that this disquisition complies with North Dakota State

University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

 Dr Debasis Dawn

 Chair

Dr Raj Katti

Dr Kenneth Magel

 Approved:

 January 29, 2015 Dr Scott Smith

 Date Department Chair

iii

ABSTRACT

The thesis explains a new method of encoding binary and finite set attributes in the

anonymous credential system. To encode each binary and finite set attribute, we used the

Chinese remainder theorem instead of using prime numbers [1].We then used the divisibility and

coprime properties to efficiently prove the presence and absence of the attributes. The system is

built on strong RSA assumptions. The new method can incorporate large numbers of binary and

finite set attributes as compared to the Camenisch-Groβ credential system.Our new method can

be used in electronic cards, health insurance cards and also in small devices like smart cards and

cell phones.

iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Dr. Raj Katti for his

continuous support, patience, motivation and immense knowledge. I could not have imagined

having a better advisor and mentor for my Master Program. Besides my advisor I would like to

thank Dr. Debasis Dawn for being my coadvisor.I would also like to thank Dr. Kenneth Magel to

be in my Supervisory committee. Thanks to Seyed for helping me in writing my thesis.

I would also like to thank my husband and my three-year-old son. They were always there

cheering me up and encouraging me with their best wishes. Thanks to the faculty and staff of the

Electrical and Computer Engineering department of NDSU for providing such an excellent

environment to learn and progress.

v

TABLE OF CONTENTS

ABSTRACT……………………………………………………………………………………...iii

ACKNOWLEDGEMENTS………………………………………………………………………iv

LIST OF FIGURES………………………………………………………………………...........vii

CHAPTER 1. INTRODUCTION………………………………………………………................1

CHAPTER 2. PRELIMINARIES………………………………………………………................6

 2.1. Assumptions….……………………………………………………………………...6

 2.2. Integer Commitments...………………………………………………………...........6

 2.3. Sigma Protocol...…………………………………………………………….............7

 2.4. Zero Knowledge Proofs Based on Discrete Logarithm (DL)..……………………...7

CHAPTER 3.CAMENISCH –LYSYANAKAYA SIGNATURE………………………………..9

 3.1. Description of Camenisch-Lysyankaya Signature (CL signature)…………………9

 3.2. Proving the Knowledge of the Signature…………………………………………...9

CHAPTER 4. PRIME ENCODING METHOD…………………………………………………11

 4.1. Setup…………………………………………………………………………………11

 4.2. Attribute Encoding...…………………………………………………………………11

 4.3. Proofs about Attributes...…………………………………………………………….12

vi

CHAPTER 5. PRIME MODULO ENCODING METHOD………………………………. ……15

 5.1. Attribute Encoding...…………………………………………………………………15

 5.2. Proofs about Attributes using Prime Modulo Method.………………………………15

CHAPTER 6.COMPARISONS BETWEEN PRIME AND PRIME MODULO ENCODING…28

 6.1. Binary Set Attributes……………………………………………………………….28

 6.2. Finite Set Attributes...………………………………………………………………29

7. CONCLUSION..……………………………………………………………………………...31

8. REFERENCES……………………………………………………………………………….32

vii

 LIST OF FIGURES

Figure Page

1. Number of bits required to encode binary attributes……………………………………….. ..29

2. Number of bits required to encode finite set attributes………………………………………30

1

CHAPTER 1. INTRODUCTION

As new technology is radically advancing our freedom, it is also helping our adversaries

to invade our data privacy. Privacy concerns exist wherever our personal and sensitive

information is collected and stored in digital form. Improper or nonexistent disclosure control

can be the root cause of privacy issues. Data privacy issues can be found in a wide range of

sources, such as electronic identity cards, medical records, transactions in financial institutions

and privacy breaches. There is a need to defend our own information from unauthorized access,

use, disclosure, disruption, modification, perusal, recording, inspection and destruction.

The challenge in data privacy is to share data while protecting personally identifiable

information. The field of data security design utilizes software, hardware and human resources to

address these issues. As the laws and regulations related to data protection are constantly

changing, it is important to keep abreast of any changes in the law and continually reassess our

compliance with data privacy and security. In order not to give away too much personal

information, e-mails should be encrypted and browsing of webpages as well as other online

activities should be done traceless. Nowadays a major issue with privacy relates back to social

networking. For example, there are millions of users on Facebook. People may be tagged in

photos or have valuable information exposed about themselves either by choice or, most of the

time, unexpectedly by others. It is important to be cautious of what is being said over the Internet

and what information is being displayed, as well as photos, because this all can be searched

across the Web and used to access private databases, making it easy for anyone quickly to go

online and look at a person’s profile. To raise awareness among people about data privacy,

January 28 is celebrated as Data Privacy Day.

2

Since the early days of communication, diplomats and military commanders have

understood that it is necessary to provide some mechanism to protect the confidentiality of

correspondence and to have some means of detecting tampering. Julius Caesar, who is credited

with the invention of the Caesar Cipher c. 50 B.C., created the cipher in order to prevent his

secret messages from being read if they fell into the wrong hands, but for the most part

protection was achieved through the application of procedural handling controls. Sensitive

information was marked up to indicate that it should be protected and transported by trusted

persons, guarded and stored in a secure environment or strong box. As postal services expanded,

governments created official organizations to intercept, decipher, read and reseal letters.

Electronic Identity cards (eID) have been widely used to authorize access to buildings,

web services, use of facilities, etc. The eID cards are government issued identity cards for offline

and online identification and are used by trusted organizations (government, company or

university) for services provided by the organization. Belgium is the first European country to

start using the eID cards. The eID cards contain several attributes of the user which are highly

privacy-sensitive. By attributes we mean nationality, sex, civil status, hair and eye color, and

applicable minority status, such as blind, partially sighted, wearing corrective lenses or hearing

impaired. One of the serious issues in eID cards is the user’s privacy, and many people are

unaware of their pitfalls. Careless use of eID cards can cause economic and psychosocial

damage. Each person is given a separate national registry number (NRN) for their eID cards.

Once the NRN is known, then the user’s different attributes can be revealed. Hence, there is a

need for strong security and privacy protection.

Similarly as medical records are converted into an electronic format, the risk of

compromising a patient’s data is increasing. A person may not wish his or her medical records to

3

be revealed to others. This may be because they are concerned that it might affect their

employment, or it may be because they would not wish for others to know about medical or

psychological conditions or treatments which would be embarrassing; a pharmacist doesn’t need

to know the medical history of a patient to give medicine. Revealing medical data could also

reveal other details about one's personal life. There are three major categories of medical

privacy: informational (the degree of control over personal information), physical (the degree of

physical inaccessibility to others), and psychological (the extent to which the doctor respects

patients’ cultural beliefs, inner thoughts, values, feelings, and religious practices and allows them

to make personal decisions). Physicians and psychiatrists in many cultures and countries have

standards for doctor-patient relationships which include maintaining confidentiality. In some

cases, the physician-patient privilege is legally protected. These practices are in place to protect

the dignity of patients and to ensure that patients will feel free to reveal complete and accurate

information required for them to receive the correct treatment. The United States has laws

governing privacy of private health information: HIPAA and the HITECH. The authors in [24]

describe how the credential system is important in the health care industry. However if the

credential is used more than once, the anonymity of the user is revoked.

At the same time the move to the electronic or digital approach in eID, medical records,

etc. gave us an opportunity to improve data privacy by enhancing cryptographic techniques.

Using a credential system, an organization can verify a person’s information without revealing

any secret data or attributes to the organization. In the paper-based world, a credential is like a

passport, driver’s license, or voter’s identity card. However, in the digital world a credential is in

the form of digital signature. A credential system is anonymous if the user is allowed to show the

credential to the verifier without revealing any other information to the verifier. A verifier can

4

infer nothing about which the user is other than that the user has the right credential. This system

allows users to selectively prove statements about their identity attributes. In [2] Camenisch and

Lysyankaya proposed a signature scheme based on RSA (Rivest Shamir Adleman) assumptions.

The authors have shown how to issue a signature on the committed value and how to prove the

knowledge of the signature on the committed value. The authors in [20] proposed a method so

that a credential cannot be copied and shared. The Scheme is based on DAA (Direct Anonymous

Attestation)[21]. DAA is an anonymous digital signature scheme which provides the signers

privacy and authentication. Canard and Lescuyer [22] uses sanitizable signatures to alter some

parts of the signed message in such a way that the message can still be verified without the actual

signer. The authors in [22] not only proposed an anonymous credential system but also a way to

revoke the credential if someone misuses the credential.

Camenisch and Lysyankaya [3] proposed a credential system which is anonymous and

based on the signature scheme these authors proposed in [2]. With anonymous credentials the

user has to randomize the credential before sending it to the verifier in order to prevent revealing

data in the credential [19]. The authors in [3] were the first to propose a solution where the users

are allowed to demonstrate the credential as many times as they want without showing the actual

credential. However, the complexity of credentials is linear by the total number of attributes.

Camenisch and Groβ [1] used the signature scheme proposed by Camenisch and

Lysyankaya[2] and extended the credential system introduced by Camenisch and Lysyankaya[3]

to incorporate finite set attributes in one base. The idea behind the work is to encode all the

binary and finite set attributes as prime numbers and prove the presence and absence of the

attributes without showing the attributes to the verifier. The computational complexity of the

proofs does not depend on the number of attributes present in the credential.

5

Here, we propose a new solution to incorporate the finite and binary set attributes in one

base using the Chinese remainder theorem. For each attribute set i we choose a prime moduli ei.

All the attributes are assigned to E where Emod 𝑒𝑖= the encoding of the attribute value and

E<Πi=1
t𝑒𝑖 (t is the total number of attribute sets).Our proofs provide a highly efficient toolkit of

attribute proofs, as well as AND, NOT and OR proofs over binary or finite set attributes. Our

proof shows that the number of bits required to encode the binary or finite set attributes is much

less than the one proposed by Camenisch and Lysyankaya [1].

The thesis contains five chapters. Chapter two includes the definitions and assumptions

which are required in our work. Chapter three explains the Camenisch-Lysyankaya signature and

proving the knowledge of the signature. Chapter four describes the prime encoding method by

Groβ-Camenisch [1]. Chapter five includes our method of encoding the credential i.e. the Prime

Modulo Encoding Method and detailed proof of the credential. Chapter six includes comparisons

of our method with the prime encoding method.

6

CHAPTER 2. PRELIMINARIES

2.1. Assumptions

Special RSA Modulus: We call a modulus n a special RSA modulus if it has the form

pq, where p=2q’+1 and q=2q’+1 are safe primes. We call this setup special RSA (SRSA) setting.

Hardness of Factoring: This is a Strong RSA based Assumption. This assumption states

that the RSA problem is intractable even when the solver is allowed to choose the public

exponent e (for e>1). More precisely, given a modulus n of unknown factorization, and gЄ Zn
*, it

is hard to compute hЄ Zn
* and e, such that he ≡ gmod n.The strong RSA assumption implies that

the factoring is hard. The strong RSA assumption was first used for constructing signature

schemes provably secure against existential forgery without resorting to a random oracle.

Discrete Logarithm (DL) Assumption [4]:This is a computational difficulty assumption

based on cyclic groups. Let G be a cyclic group of order n with g Є G be a generator of discrete

logarithm (DL) in G is

Given a Є G, compute x (0≤ x <|G|) such that h=gx .

x is called the discrete logarithm of a with respect to base; here we assume that the discrete

logarithm problem is hard; given the above set up it is hard to find the integer x.

2.2. Integer Commitments

The receiver chooses two large primes; p and q .The receiver also chooses a generator g

from group G of prime order q. Here p,q,g,g0 are public parameters. To commit to the value v Є

Zq, sender picks a random r Є Zq and set C=Com(v,r)=g0
r *gv. The commitment schemes are best

described by the authors in [4] [5].

7

2.3. Sigma Protocol [12]

 Common Input: P (prover) and V (verifier) both have x

 Private input: P has w such that (x, w) Є relations

 V sends a random string e

 P sends a reply Z

 V accepts based solely on (x,a,e,z)

2.4. Zero Knowledge Proofs based on Discrete Logarithm (DL)

In the following we assume that group G=<g> of large known order Q and second

generator h whose DL to the base g is not known. We define the DL y to the base g as y=gx. The

following is a brief review of different types of proof of knowledge that we are going to use.

Proving the knowledge of DL x of group element y to the base g [7] [8]. The prover

chooses a random r from Zq and compute t=gr and sends it to the verifier. The verifier picks a

random challenge c and sends it to the prover. The prover computes s=r-cx and sends it to the

verifier. The verifier accepts if and only if gsyc=t.

Proving the knowledge of representation of an element y to the bases {g1, g2….gl} [9]

[10], i.e. proving the knowledge of representation of {x1, x2….xl}. The prover chooses a random

{r1, r2…rl} from Zq and computes t=∏ 𝑔𝑗𝑟
𝑗=1 rj and sends it to the verifier. The verifier picks a

random challenge c and sends it to the prover. The prover computes sj=rj-cxj and sends it to the

verifier. The verifier accepts if gsyc=t.

Proving the equality of the discrete logarithms of the elements y1 and y2 to the bases g and

h, respectively [13]. Let y1 =gx and y2 =hx . The prover chooses a random r Є Zq
*, computes t1 =

gr, t2=hr, and sends t1 and t2 to the verifier. The verifier picks a random challenge c and sends it

8

to the prover. The prover computes s =r-cx and sends s to the verifier. The verifier accepts if

gs1y1
c =t1 and gs2y1

c =t2 holds. This protocol is denoted by PK{(α) : y1 =gα Λ y2 = y1
α}

Proving that the discrete logarithm lies in a given range [14]. Here we have to prove that

the discrete logarithm x of y to the base g satisfies 2𝑙1-2𝑙2<x<2𝑙1+2𝑙2 for a given parameter l1

and l2.The parameter 2𝑙1 acts as an offset and can be taken as Zero. The authors in [4] [18]

describe the protocol in detail. A brief overview of the protocol is given below. The protocol is

denoted as

 PK {(α): y=gα Λ 2𝑙1- 2∈𝑙2+2<α<2𝑙1+2∈𝑙2+2}

Prover Verifier

(g,Q,y,x) (g,Q,y)

r ϵr {-2∈𝑙2……..2∈𝑙2}

t:=gr sends t → t

←c{0,1}

s:=r-c(x-2𝑙1) sends s→ s

 −2∈𝑙2+1 < 𝑠<−2∈𝑙2+1

 t =𝑔^(𝑠 − 𝑐2𝑙1) yc

When repeated a number of times, the prover can convince the verifier that the secret x

lies with the given range 2𝑙1- 2∈𝑙2+2<x<2𝑙1+ 2∈𝑙2+2< for given parameters ϵ l1,l2.

9

CHAPTER 3. CAMENISCH-LYSYANKAYA SIGNATURE

3.1. Description of Camenisch-Lysyankaya Signature (CL Signature)

Let lm,le,ln,lr, and L be the system parameter and Lr be the security parameter.

Message space: This is the set {(m0 and m1): mi ϵ ± {0, 1}lm }

Signing Algorithm: On input of m0 and m1 choose a random prime number e of length le>lm +2

and a random number v of length lv = ln +lm +lr . Compute

 A= (z/R0
m0Rm1

1S
v)1/e mod n

The signature consists of (e,A,v)

Verification Algorithm: To verify that the tuple (e,A,v) is a signature on message (m0 and m1),

check that the following statement holds.

 Z≡ ±R0
m0 R1

m1AeSv (mod n) , mi ϵ ±{0,1}lm and 2le> e>2le-1

3.2. Proving the Knowledge of the Signature

In CL signature, if we make A public that would destroy privacy, as that would make all

transactions linkable. Hence, A was randomized. Given a signature (A,e,v), the tuple (A’=AS-r

modn, e,v’=v+er) is also a valid signature, provided that A Є <S> and r is chosen uniformly at

random from {0,1}ln+lΦ . Thus, the user could compute a fresh A’ each time, reveal it and then

run the following protocol with the verifier.

PK {(ε,v’,µ0,….µL):

Z ≡±R0
µ0 R1

µ1 A’εSv’(mod n) Λ

Λ µi ϵ ±{0,1}lm Λ ε ϵ [2le-1 +1, 2le-1]}

The secret µi and Є should actually lie in the small interval, i.e. the signer needs to

choose e from [2le-1 -2le’+1, 2le-1+2le’-1] with le’<le-lΦ-lH-3 where lΦ and lH are security

parameters (the first controlling statistical zero knowledge and the second being the size of the

10

challenge message in the PK protocol). Also the messages should lie in the small interval, i.e. mi

is limited by ±{0,1}lm –lΦ-lH-2

11

CHAPTER 4. PRIME ENCODING METHOD

We now discuss how attributes are typically encoded in the CL credential system using

Prime Encoding Method[1]. The CL credential system provides the means to efficiently encode a

number of attributes into an anonymous credential. Each finite set attribute is represented by

prime numbers. The product of the prime number is included in the CL credential system.

4.1. Setup

The three parties who are involved in the credential system are Issuer, User and Verifier:

Issuer: This party knows the secret key of the CL signature scheme, and this party has the

authority to issue credentials to other parties.

User: User engages in the signature scheme protocol with the issuer and possesses a signature

(e,A,v). As the attributes are included in the signature, the signature works as user credential and

the user uses this credential to engage in proofs of knowledge with the verifier.

Verifier: This party uses proofs of knowledge to check the presence or absence of the attributes

in the credential.

4.2. Attribute Encoding

We assume the CL credential system includes t finite set attributes. The attribute vector

(a1….at) represents the finite set attributes, where ai Є (1…..ni) shows different values of ith

attribute set. Let e1…eh be h distinct prime numbers where h=∑ 𝑛𝑖𝑡
𝑖=1 . We assign each prime

number to each element of the attribute and label them as e(1,1),….. e(1,n1)….. e(i,ni),…… e(t,ni).

The attributes are encoded into E as E=∏ 𝑒(𝑖, 𝑎𝑖).𝑡
𝑖=1 After computing E, user gets a

signature (e,A,v) on the messages m0, E, where m0 denotes the secret key of the user (CL) and E

encodes all the finite set attributes.

12

4.3. Proofs about Attributes

For all the following proofs, user has to prove that

-He possess a valid credential on m0, E

-He is able to prove the logical relations explained in the proofs

AND Relation:

Let us say that user wants show to the verifier that his credential contains one or more

attributes without revealing the attributes. Let us assume that the list (e1…ek) denotes the

encoding of the attributes. The user has to prove to the verifier that the list is present in the

credential. To do this, the user shows to the verifier that ∏ 𝑒𝑗𝑘
𝑗=1 |E. To convince the verifier, he

shows to the verifier that he knows µ’ such that E= (∏ 𝑒𝑗𝑘
𝑗=1)µ’ and runs the following with the

verifier.

PK{(ε,v’,µ0,µ’):

Z Ξ ±R0
µ0 (R1

Пj=1 ej)µ’ A’εSv’(mod n) Λ

Λ µi ϵ ±{0,1}lm Λ ε ϵ [2le-1 +1, 2le-1]} Λ µ’ ϵ ±{0,1}lm-lk

lk=
 ∏ 𝑒𝑗𝑘

𝑗=1

NOT Relation:

Here the user wants to prove to the verifier that the given list (e1…ek) is not present in the

credential. In other words for 1≤ j≤k,ej † E. This is equivalent to showing that that the product

∏ 𝑒𝑗𝑘
𝑗=1 is relatively prime to E or the GCD (∏ 𝑒𝑗𝑘

𝑗=1 ,E)=1.To do this, the user convinces the

verifier that he knows two integers, a and b, such that aE+b ∏ 𝑒𝑗𝑘
𝑗=1 =1. Note that a and b do not

exist if GCD (∏ 𝑒𝑗𝑘
𝑗=1 , E)>1 and they can be efficiently proved using a Euclidian algorithm [15].

13

The prover commits to an integer commitment to the value of E in D=gEhr and sends D to the

verifier and proves the knowledge of a and b with the following protocol.

PK{(ε,v’,µ0,µ ,α,β,ρ,ρ’)}:

 Z≡±R0
µ0R1

µ A’εSv’(mod n) Λ

D≡ ±gµhρ (modn) Λ g≡± Dα g (Пej)β hρ’ (modn)

 Λ µ0….µl,µ ϵ ±{0,1}lm Λ ε ϵ [2le-1 +1, 2le-1]

Note: α and β are representing a and b respectively

From D≡ ±gµhρ (modn) and g≡ ± Dα g (Пej)β hρ’ (modn), we get g≡± gµα g (Пej)β hρ’ (modn).

Assuming the user doesn’t know the value of loggh, the above statement shows that the user

knows a α and β such that 1=αµ + β∏ 𝑒𝑗𝑘
𝑗=1 . It is obvious that α and β exist if and only if GCD

(∏ 𝑒𝑗𝑘
𝑗=1 ,E)=1 and from the first proof the verifier is convinced that µ=E is present in the

credential. Hence, the list (e1…ek) of attributes is not present in the credential.

OR Relation:

In the OR relation, the user wants to prove to the verifier that one of the attributes present

in the list (e1…ek) is contained in the credential. For example, the user has to prove a statement

such as “I’m a student, a retiree, or unemployed” as might be the case if one is eligible for a

reduced entrance fee to a museum. More specifically, the “set membership” [14] proof is realized

over encoded value. In order to do so, the user should be able to compute a such that ae=∏ 𝑒𝑗𝑘
𝑗=1 .

As we know that all the ej’s are prime, and if e Ɇ (e1…ek) then such a does not exist. Also he has

to show that the same e is present in E. To do this he has to prove the knowledge of b such that

eb=E. The following proof is used to prove the OR relation:

PK{(ε,v’,µ0,µ ,α,β,ρ,ρ’,δ,ρ’’,ψ,ϒ,ϕ,σ,ξ)}:

Z≡±R0
µ0Rl

µ A’εSv’(mod n) Λ

14

D≡ ±gαhρ (modn) Λ g Пej≡ ± Dδ hρ’ (modn)Λ 1≡± Dβ gµ hρ’’ (modn) Λ

Ď=ĝα ĥϕ Λ ĝ=(Ď/ĝ)ϒĥψ Λ ĝ=(Ďĝ)σ ĥξ

Λ µ0….µl,µ ϵ ±{0,1}lm Λ ε ϵ [2le-1 +1, 2le-1]

From D≡ ±gαhρ (modn) Λ g Пej≡ ± Dβ hρ’ (modn), we get g Пej≡ ± g αδ hρ’ hδρ (modn).

Assuming the user doesn’t know loggh, these statements show that the user knows α and δ such

that αδ=∏ 𝑒𝑗𝑘
𝑗=1 , which means the user is committing to α, which divides the list of attributes.

That is, the attribute e is present in the list.

D≡±gαhρ (modn) and 1≡ ± Dβ gµ hρ’’ (modn) we get 1≡± g αβ+µ hρ’’+ρβ (modn). Again by

assuming the user doesn’t know loggh, these statements show that the user knows α and β such

that -αβ= µ, which means the user is committing to α, which divides E. That is, the attribute e is

present in the credential.

Now we have to see that α is not equal to ±1. As 1 divides both E and∏ 𝑒𝑗𝑘
𝑗=1 . To do this

we need an additional group of prime order q and two generators ĝ and ĥ. Ď=ĝα ĥϕ and

ĝ=(Ď/ĝ)ϒĥψ we get ĝ=(ĝ α/ĝ)ϒĥψ. Assuming the hardness of computing logĝĥ, the user knows α

and ϒ such that 1≡ϒ(α-1)mod so α is not equal to 1. Similarly from Ď=ĝα ĥϕ and ĝ=(Ďĝ)σ ĥξ .we

get 1≡(α+1)σ modq. Hence, α is not equal to -1.

15

CHAPTER 5. PRIME MODULO ENCODING METHOD

Here we provide a new method of encoding attributes in CL signatures using the same

setup as used in the prime encoding method but using the Chinese remainder theorem (CRT) in

Prime Modulo Encoding Method.

5.1. Attribute Encoding

 Suppose we want to encode t finite set or integer attributes into a CL credentials. Each of

this set as n number of attributes. Each of this attribute are encoded as a1….an where ai ϵ (1…..ni)

shows different value of ith attribute set.For each i we pick a prime moduli ei such that ei>ni .

Using the Chinese Remainder Theorem, we find an integer E, where 0≤E≤ Πi=1
tei , using

ei’s as moduli and ai’s as remainders such that E ≡ ai (mod ei),where ai is the encoding of the

attribute corresponding to the ith attribute set.

5.2. Proofs about Attributes using Prime Modulo Encoding Method

In this section, we assume all the binary and finite set attributes are encoded into one

message, namely mo and E, where E represents the encoding of the attributes and m0 includes the

user’s secret key.

AND Relation:

Here the user wants to show to the verifier that the subset {(a1’, e1’)…. (ak’,ek’)} of the

attribute vector {(a1,e1)….(at, et)} is present in the credential E. Since the user has to show that

all k attributes are encoded both in E and E’, the user forms an integer E’ such that E’≡ ai’ (mod

ei’) and 1≤i≤k.E’ can be found out by using the Chinese remainder theorem and E is the solution

of Emod e1=a1; Emod e2=a2….Emod et =at. Hence, using the congruence property of the Chinese

remainder theorem [18] we know ∏ 𝑒𝑗𝑘
𝑗=1 divides E-E’. In order to show this as E is not known

to the verifier, the user can prove the knowledge of an integer P such that E-E’ =P*∏ 𝑒𝑗𝑘
𝑗=1 or

16

E = E’ +P.Πi=1
kei.

To convince the verifier that he was issued a credential that contains subset

{(a1’,e1’)….(ak’,ek’)} of the attribute vector {(a1,e1)….(at, et)}, the user engages in the following

proof with the verifier:

PK{(ε,v’,μ0,π)}:

Z ≡ ±R0
μ0 R1

E’ (R1
Πei)π A’eSv’(mod n) Λ

Λ μ0 ϵ ± {0,1}lm Λ π ± {0,1}lm-lk

Λ ε ϵ [2le-1 +1, 2le-1]

Where lk is the size of ∏ 𝑒𝑖𝑘
𝑖=1 in bits.

Note: As E’ is known both to the user and verifier R1
E’ can be computed.

We require that the size of the message input into the signature scheme be limited: μi ϵ

{0,1}lm-lᴓ-lH-2; also, we require that ε should lie in a small interval [2le-1-2le-lᴓ-lH-4, 2le-1-2le-lᴓ-lH-4].

Protocol in detail: Z ≡ ±R0
μ0 R1

E’ (R1
Πei)π A’εSv’(mod n)

Common inputs: z,R0,R1,A’,S,N with parameters lm,lᴓ,le. Public keys g,h

Prover’s inputs: μ0, π, ε, v’, A, μ0 is of length [-2lm-lᴓ-lH-2, 2lm-lᴓ-lH-2], π is of length

 [-2lm-lᴓ-lH-lk-2, 2lm-lᴓ-lH-lk-2] and ε is of length [2le-1-2le-lᴓ-lH-4, 2le-1+2le-lᴓ-lH-4]

A’,ε,v’ is a valid signature.

prover→verifier: µ0’ ϵr {[-2lm-2……. 2lm--2 } ,π’ ϵr {[-2lm-lk-2……. 2lm-lk--2 } , ϵ’ ϵR {-2le-4

…………2le-4} computes Z’ = R0
µ0’ R1

π’ A’ε’Sv1(mod n) and sends Z’ to the verifier.

Prover ←verifier: The verifier chooses uniformly at random the challenge c from {0,1}lH and

sends it to the prover.

Prover→ verifier: The prover calculates

S1= µ0’ –cμ0

17

S2 = π’ –cπ

S3 = ϵ’ -c(ε-2le-1)

S4 = v1 –cv’

Sends S1, S2, S3, and S4 to the verifier. The verifier checks. -2lm-1< S1<2lm-1

 -2lm-lk-1< S2<2lm-lk-1

 -2le-3 <S3<2le-3

 R0
s1 R1

s2 A’s3-c{ (2^le)-1}Ss4zc =Z’

PROOF:

Completeness:

 If the prover and the verifier act as described in the AND relation, then

 R0
s1 R1

s2 A’s3-c (2le-1)Ss4

 = (R0)
µo’-cµo (R1)

Π’-cΠ (A’)ϵ’-c{ϵ-2^(le)-1}-c {(2^le)-1}Sv1-cv’

 = (R0)
µo’ (R1)

Π’ (A’)ϵ’Sv1Z-c

 = Z’Z-c

Soundness:

 R0
s1 R1

s2 A’s3-c{ (2^le)-1}Ss4 = Z’Z-c

 R0
s1’ R1

s2’ A’s3’-c’{ (2^le)-1}Ss4’ = Z’Z-c’

 R0
s1-s1’ R1

s2-s2’ A’s3-c{ (2^le)-1}-s3’+c’{(2le)-1}Ss4-s4’ = Z-c+c’

 R0
s1-s1’/c’-c R1

s2-s2’/c’-c A’s3-c {(2le)-1}-s3’+c’{(2^le)-1}/c’-cSs4-s4’/c’-c = Z

Proof of Knowledge: The knowledge extractor Kp* works as follows:

 1. Run KP* and receive message Z from P*

 2. A c=0 is sent to P* and we received s1
0, s2

0 , s3
0, s4

0

 3. We rewind P* before step 2, sent c=1 and received s1
1, s2

1, s3
1, s4

1

18

 4. Output s1
1- s1

0, s2
1-s2

0, s3
1-s3

0, s4
1- s4

0

 If s1
1,s1

0, s2
1,s2

0, s3
1,s3

0, s4
1, s4

0 are all correct answers to the respective challenges then the Kp*

output correct witnesses.

 Here we have R1
E ≡ R1

E’ (R1
Πei)π from which we can conclude E≡E’ + ∏ 𝑒𝑗𝑘

𝑗=1 where E’

can be computed both by the verifier and the user. Therefore, we can say that the subset of the

attribute vector is present in E.

 NOT Relation:

Here the user wants to show that his credential does not contain the subset

{(a1’,e1’)….(ak’,ek’)} of the attribute vector {(a1,e1)….(at,et)}. To prove this the user will find an

E’ using the Chinese remainder theorem. E’ encodes all the attributes {(a1’,e1’)….(ak’,ek’)} such

that for all 1≤i≤k, E’≡ai’(mod ei’) where ei is a prime number corresponding to the ith attribute set

of the vector.

Furthermore, the attributes of the user are encoded in E and the user has to show that E ≠

E’(modei’). In other words, it means that ei’ ɫ E-E’. This is equivalent to showing that the

products of ei’s are coprime with E-E’, or GCD (E-E’, ∏ 𝑒𝑖𝑘
𝑖=1 ′) = 1. Then according to the

extended Euclidian algorithm, there exist two integers, a and b, such that a(E-E’)+b(∏ 𝑒𝑖𝑘
𝑖=1

′
)=1.

Note: a and b do not exist if the GCD (E-E’, ∏ 𝑒𝑖𝑘
𝑖=1) > 1.

The user commits to the integer commitment to E by sending D=gEhr to the verifier and

then engages with the following proof with the verifier, where α and β represent the integers a

and b.

PK {(ε,v’,µ0,µ1 ,α,β,ρ,ρ’)}:

Z≡±R0
µ0 R1

µ1 A’εSv’(mod n) Λ

D≡ ±gµ1hρ (modn) Λ g ≡± Dα g(-E’)α g(Πei’)βhρ’ (modn)

19

 Λ µ0, µ1ϵ ± {0,1}lm

Λ ε ϵ [2le-1 +1, 2le-1]

Protocol in detail:

Common inputs: z,R0,R1,A’,S,D with parameters lm,lᴓ,le .Public keys g,h

Prover’s inputs:μ0,μ1,ε,α,β,ρ,ρ’,v’,μ0 ,μ1 is of length [-2lm-lᴓ-lH-2, 2lm-lᴓ-lH-2] and ε is of length

[2le-1-2le-lᴓ-lH-4, 2le-1+2le-lᴓ-lH-4]

A’,ε,v’ is a valid signature.

prover→verifier: The prover then chooses uniformly at random v1,α1,β1,ρ1,ρ2, µ0’,μ1’ ϵr {[-2lm-

2……. 2lm--2 } ,ϵ’ ϵR {-2 le-4 …………2 le-4} compute D’≡ ±gμ1 hρ1 and Z’ ≡

R0
μ0’R1

μ1’A’ε’Sv1(mod n) ,

g’ ≡ ± D’α1 g (-E’)α1(gΠei’)β1hρ2 (modn) and sends D’, Z’, g’ to the verifier.

Prover ←verifier: The verifier chooses uniformly at random the challenge c from {0,1}lH and

sends it to the prover.

Prover→ verifier: The prover calculates

S1= µ0’ –cμ0

S2= µ1’ –cμ1

S3 = ϵ’ -c(e-2le-1)

S4 = v1 –cv’

S5 =α1-cα

S6 = β1-cβ

S7 =ρ1 –cρ

S8 = ρ2 –cρ’ and sends S1, S2, S3, S4, S5, S6, S7, S8 to the verifier. The verifier checks

 -2lm-1< S1,S2<2lm-1

20

 -2le-3 <S3<2le-3

 ±R0
s1 R1

s2A’s3-c{(2^le)-1)}Ss4zc ≡Z’

 ±g s2 hs7Dc ≡D’

 ± D’s5 g(-E’)s5 (gΠei’)s6hs8 gc≡g’

PROOF:

Completeness: If the prover and the verifier act as described in the NOT relation, then

 R0
s1 R1

s2 A’s3-c{ (2^le)-1}Ss4

 = (R0)
µo’-cµo (R1)

Π’-cΠ (A’)ϵ’-c{ϵ-(2^le)-1}-c{ (2^le)-1}Sv1-cv’

 = (R0)
µo’ (R1)

Π’ (A’)ϵ’Sv1Z-c

 = Z’Z-c

 g s2 hs7

 = gµ1’-cµ1 hρ’-cρ

 = gµ1’ hβ1D-c

 = D’D-c

D’s5 g(-E’)s5 (gΠei)s6hs8

=(gμ1 hρ1)α1-cα g(-E’)α1-cα (gΠei)β1-cβhρ2-cρ’

=(gμ1-E’)α1 (gΠei)β1hρ1α1hρ2(gμ1-E’)-cα(gΠei)-cβh -cp1αh –cρ’

=g’g-c

Soundness:

R0
s1 R1

s2A’s3-c{2^(le)-1}Ss4 =Z’Z-c

R0
s1’ R1

s2’A’s3’-c’{2^(le-1)}Ss4’ =Z’Z-c’

R0
s1-s1’ R1

s2-s2’ A’s3-c’{(2^le)-1}-s3’+c’{(2^le)-1}Ss4-s4’ = Z-c+c’

R0
s1-s1’/c’-c R1

s2-s2’/c’-c A’s3-c {(2^le)-1}-s3’+c’{(2^le)-1}/c’-cSs4-s4’/c’-c = Z

21

g s2 hs7 =D’ D-c

g s2’ hs7’ =D’ D-c’

gs2- s2’ h s7-s7’ = D-c+c’

gs2- s2’/c’-c h s7-s7’/c’-c = D

D’s5 g(-E’)s5 (gΠei’)s6hs8 ≡g’g-c

D’s5’ g(-E’)s5’ (gΠei’)s6’hs8’ ≡g’g-c’

D’s5-s5’ g(-E’)s5-s5’ (gΠei’)s6-s6’hs8-s8’ ≡g-c+c’

D’s5-s5’/-c+c’ g(-E’)s5-s5’/-c+c’ (gΠnj)s6-s6’/-c+c’hs8-s8’/-c+c’ ≡g

Proof of Knowledge: The knowledge extractor Kp* works as follows:

 1. Run KP* and receive message Z,D from P*

 2. A c=0 is sent to P* and we received s1
0, s2

0 , s3
0, s4

0, s5
0, s6

0, s7
0, s8

0

 3. We rewind P* before step 2, sent c=1 and received s1
1, s2

1, s3
1, s4

1, s5
1, s6

1, s7
1, s8

1

 4. Output s1
1- s1

0, s2
1-s2

0, s3
1-s3

0, s4
1- s4

0, s5
1- s5

0, s6
1- s6

0, s7
1- s7

0, s8
1- s8

0

 If s1
1,s1

0, s2
1,s2

0, s3
1,s3

0, s4
1, s4

0, s5
1, s5

0, s6
1, s6

0, s7
1, s7

0, s8
1, s8

0 are all correct answers

to the respective challenges then the Kp* output correct witnesses.

As both the user and the verifier can compute (g-E’) from D≡ ±gµ1hρ (modn) and

 g ≡ ± Dα g(-E’)α g(Πei’)βhρ’ (modn) , the user is proving the knowledge of α and β such that

g ≡ ± gαµ1 g(-E’)α g(Πei’)βhρ’ hαρ. Assuming the hardness of computing loggh, the statements D≡

±gµ1hρ (modn) and g ≡ ± Dα g(-E’)α g(Πei’)βhρ’ (modn) are enough to show that α(E-

E’)+β(Πi=1
kei)=1 which implies GCD(E-E’, ∏ 𝑒𝑖′𝑘

𝑗=1) = 1, and it means none of the attributes of

the vector {(a1,e1)….(ak,ek)} are present in E.

22

OR Relation:

 Let us now show how we implement the existence of one of the attribute vectors in the

credential without revealing the attribute to the verifier. We assume we are given the encodings

of the attribute vector {(a1’,e1’)….(ak’,ek’)} belonging to different attribute sets. We encode all the

attributes in E’. The user has to show that e ϵ {e1’,e2’….ek’} is present both in E and E’. The idea

we use here is that if the credential contains e that is present in E’, then e | E-E’ or there exists an

s.t ae =E-E’. If e is not in the credential, then no such a exists. Also the user has to show that the

same e is present in {(a1’,e1’)….(ak’,ek’)}. To do this, the user has to show that there exists a b

such that be =∏ 𝑒𝑖′𝑘
𝑗=1 . If e is not present in {e1’, e2’….ek’}, then no such b exists.

To prove that his credential contains one of the attribute’s values, the user employs the

following protocol: First the user computes a commitment D to the attribute present in her

credential (in the same way as for the other protocols), sends it to the verifier and then runs the

following protocol with the verifier.

However we must see that the commitment does not contain ±1, as 1 divides both E and

∏ 𝑒𝑖′𝑘
𝑗=1 . To do this we need an additional group of prime order q and two generators ĝ and ĥ.

The user also computes the commitment Ď and runs the following protocol with the verifier:

PK{(ε,v’,µ0,µ1 ,α,β,ρ,ρ’,δ,ρ’’,ψ,ϒ,ϕ,σ,ξ)}:

Z≡±R0
µ0R1

µ1 A’εSv’(mod n) Λ

D≡ ±gδhρ (modn) Λ g Пei’≡ ± Dβ hρ’ (modn)Λ 1≡± Dαgµ1 g-E’ hρ’’ (modn) Λ Ď=ĝδ ĥϕ Λ

ĝ=(Ď/ĝ)ϒĥψ

 Λ ĝ=(Ďĝ)σ ĥξ

Λ µ0,µ ϵ ±{0,1}lm Λ ε ϵ [2le-1 +1, 2le-1]

Note: Here δ, β and α represents e,b and a respectively.

23

Protocol in detail:

Common inputs: z,R0,R1,A’,S,D with parameters lm,lᴓ,le .Public keys g,h

Prover’s inputs: μ0,μ1,ε,α,β,ρ,ρ’,v’,μ0 ,μ1 is of length [-2lm-lᴓ-lH-2, 2lm-lᴓ-lH-2] and ε is of length

[2le-1-2le-lᴓ-lH-4, 2le-1+2le-lᴓ-lH-4]

A’,ε,v’ is a valid signature.

prover→verifier: The prover then chooses uniformly at random v1,α1,β1,ρ1,ρ2, µ0’,μ1’ ,

 ϵr {[-2lm-2……. 2lm--2 } ,ϵ’ ϵR {-2le-4…………2le-4} computes Z’ = R0
μ0’R1

μ1’A’ε’Sv1(mod n) ,

D’≡ gδ1hρ1 (modn) , g’Пei’≡ Dβ1 hρ2 (modn), g’’≡ Dα1gµ1 g-E’ hρ3(modn) Ď’=ĝδ1 ĥϕ’ Λ

ĝ’=(Ď/ĝ)ϒ’ĥψ’ Λ ĝ=(Ďĝ)σ’ ĥξ’ and sends D’, Z’, g’, Ď’ to the verifier.

Prover ←verifier: The verifier chooses uniformly at random the challenge c from {0,1}lH and

sends it to the prover.

Prover→ verifier: The prover calculates

S1= µ0’ –cμ0

S2= µ1’ –cμ1

S3 = ϵ’ -c(e-2le-1)

S4 = v1 –cv’

S5 =α1-cα

S6 = β1-cβ

S7 =ρ1 –cρ

S8=ρ2-cρ’

S9=ρ3-cρ’’

S10=φ’-cφ

24

S11=ɣ’-cɣ

S12=ψ’-cψ

S13=Ϭ’-cϬ

S14=ξ’-cξ

S15=δ1-cδ

and sends S1, S2, S3, S4, S5, S6, S7, S8,S9,S10,S11,S12,S13,S14 and S15 to the verifier. The

verifier checks

 -2lm-1< S1,S2<2lm-1

 -2le-3 <S3<2le-3

 R0
s1 R1

s2A’s3-c{2^(le)-1Ss4zc ≡Z’

 gS15 hS7 Dc≡D’

 Ds6hs8(gΠej)c = (g’Πej)

 Ds5 gs1 g-E’ hs9 =g’’

 ĝs5 ĥs10 Ďc= Ď’

 (Ď/ĝ)s11ĥs12 ĝc= ĝ’

 (Ďĝ)s13 ĥ14 ĝc= ĝ’

PROOF:

Completeness: If the prover and the verifier act as described in the OR relation, then

 R0
s1 R1

s2 A’s3-c{ (2^le)-1}Ss4

 = (R0)
µo’-cµo (R1)

Π’-cΠ (A’)ϵ’-c(ϵ-2le-1)-c (2le-1)Sv1-cv’

 = (R0)
µo’ (R1)

Π’ (A’)ϵ’Sv1Z-c

gS15 hS7

= gδ1-cδ hρ1-cρ

25

 = gδ1 hρ1 (gδ hρ)-c

 = D’D-c

Ds6hs8

=Dβ1-cβ hρ2-cρ

 = (g’Πej) (gΠej)-c

 Ds5 gs1 g-E’ hs9

= Dα1-cα gµ1’-cµ1 g-E’ hρ3-cρ’’

 =Dα1 gµ1’ g-E’ hρ3 (Dα gµ1 g-E’ hρ’’)-c

 = g’’(1)-c

Soundness:

 R0
s1 R1

s2A’s3-c2(le-1)Ss4 =Z’Z-c

 R0
s1’ R1

s2’A’s3’-c’2(le-1)Ss4’ =Z’Z-c’

R0
s1-s1’ R1

s2-s2’ A’s3-c{ (2^le)-1}-s3’+c’{(2^le)-1}Ss4-s4’ = Z-c+c’

R0
s1-s1’/c’-c R1

s2-s2’/c’-c A’s3-c{ (2^le)-1}-s3’+c’{(2^le)-1)/c’-cSs4-s4’/c’-c = Z

gS15 hS7 = D’D-c

gS15’ hS7’ = D’D-c’

gS15-s15’ hS7-s7’ = D-c+c’

gS15-s15’/c’-c hS7-s7’/c’-c = D

 Ds6hs8 = (g’Πei’) (gΠei’)-c

 Ds6’hs8’ = (g’Πei’) (gΠei’)-c’

 Ds6-s6’hs8-s8’ = (gΠei’)-c+c’

 Ds6-s6’/c’-chs8-s8’/c’-c = (gΠei’)

 Ds5 gs1 g-E’ hs9 =g’’

26

 Ds5’ gs1’ g-E’ hs9’ =g’’

 Ds5-s5’ gs1-s1’ hs9-s9’ =1

 Ds5-s5’/c’-c gs1-s1’/c’-c hs9-s9’/c’-c =1

Proof of Knowledge: The knowledge extractor Kp* works as follows:

 1. Run KP* and receive message Z,D, gПei’, Ď from P*

 2. A c=0 is sent to P* and we receive s1
0, s2

0 , s3
0, s4

0, s5
0, s6

0, s7
0, s8

0, s9
0, s10

0, s11
0, s12

0, s13
0,

s14
0 and s15

0

 3. We rewind P* before step 2, sent c=1 and received s1
1, s2

1, s3
1, s4

1, s5
1, s6

1, s7
1, s8

1, s9
1, s10

1,

s11
1, s12

1, s13
1, s 14

1 and s 15
1

 4. Output s1
1- s1

0, s2
1-s2

0, s3
1-s3

0, s4
1- s4

0, s5
1- s5

0, s6
1- s6

0, s7
1- s7

0, s8
1- s8

0, s9
1-s9

0, s10
1-s10

0, s11
1-

s11
0, s12

1- s12
0, s13

1- s13
0, s14

1- s14
0 and s15

1- s15
0.

 If s1
1,s1

0, s2
1,s2

0, s3
1,s3

0, s4
1, s4

0, s5
1, s5

0, s6
1, s6

0, s7
1, s7

0, s8
1, s8

0 , s9
1, s9

0 , s10
1, s10

0 , s11
1, s11

0, s12
1,

s12
0, s13

1, s13
0, s14

1, s14
0 and s15

1, s15
0 are all correct answers to the respective challenges, then the

Kp* output correct witnesses.

First from D≡ ±gδhρ (modn) Λ g Пei’≡ ± Dβ hρ’ (modn) ,we get g Пei’≡ ± g βδ hρ’ hδρ

(modn). Assuming the user doesn’t know log gh, these statements show that the user knows β

and δ such that βδ= ∏ 𝑒𝑖′𝑘
𝑗=1 and this implies that δ| ∏ 𝑒𝑖′𝑘

𝑗=1 , which means δ is one of the ei’s.

Second, D≡ ±gδhρ (modn) and 1≡ ± Dα gµ1 g-E’ hρ’’ (modn) we get 1≡± g αδ+µ1-E’ hρ’’+ρβ (modn).

Again by assuming the user doesn’t know log gh, these statements show that the user knows δ

and α such that αδ=µ1-E’, which means that δ is present in the credential; therefore, δ is present

both in E and E’.

 Now we have to see that α is not equal to ±1, as the above two statements hold for ± 1.

To do this, first we consider Ď=ĝδ ĥϕ Λ ĝ=(Ď/ĝ)ϒĥψ . As loggh is difficult to compute we have

27

1≡ɣ(δ-1) from which we can say δ ‡ 1. Similarly from Ď=ĝδ ĥϕ and ĝ=(Ďĝ)σ ĥξ . As loggh is hard

to compute we get 1≡(δ+1)Ϭ from which δ is not equal to -1. Hence δ is present both in E and

E’ and also it is ±1.

28

CHAPTER 6. COMPARISONS BETWEEN PRIME AND PRIME MODULO

ENCODING

In this section we investigate the number of bits required to encode binary as well as

finite set attributes both for the prime and prime modulo methods. We plot the graphs to show

our comparisons. We claim that with the Prime Modulo Encoding method we can encode more

attributes in 256-bit messages than with the prime encoding method. We compare the number of

attributes needed to encode 256 bits of binary attributes as well as the number of bits required to

encode five finite attributes

6.1. Binary Set Attributes

 Let us assume that we want to encode t binary attributes. Each attribute αi (1≤ i≤ t) can

take two values, either 0 or 1. In order to encode the binary attributes by the Camenisch-Groβ

prime encoding method, we need 2t prime numbers. They are e1,……e2t. In Prime Modulo

Encoding method, to encode the attributes we need t prime numbers. They are e1’,……et’. In order

to minimize the size of E, we start with the smallest prime number, i.e. e1 =e1’=2. So the number

of bits needed to encode binary attributes through the Prime Modulo Encoding method is much

less than that by Camenisch –Groβ. We plot a graph to compare the number of bits required to

encode binary attributes starting with e1 =e1’=2 and extend it to show how many attributes 256

bits can incorporate. The graph shows that almost 35 attributes for the Prime Modulo Encoding

and around 43 attributes for the prime modulo encoding method can be incorporated in 256 bits.

29

Figure 1. Number of bits required to encode binary attributes

6.2. Finite Set Attributes

 Let us assume that we want to encode t attributes α1,….. αt where αi ϵ {0,….,t-1} for i ϵ

{1…t}. In the prime encoding method we need t2 prime numbers while in Prime Modulo

Encoding method we need t prime numbers, all greater than or equal to t. We plot a graph

starting with e1 =e1’=2 . We can see that the number of bits required to plot four attributes in the

prime encoding method is around 22 bits, whereas for the Prime Modulo Encoding method it is

only around 13 bits.

30

Figure 2. Number of bits required to encode finite set attributes

31

7. CONCLUSION

 From the plots we can surely say that our Prime Modulo Encoding method incorporates

more attributes than does the Camenisch-Groβ encoding method. Prime Modulo Encoding

method facilitates proofs of possession, equality, as well as AND, NOT and OR proofs very

efficiently. The new method also overcomes the fundamental limitation of all credential systems,

namely their complexity is linear in total number of attributes, and it allows us to incorporate

many finite-set attributes into a single attribute base and therefore boosts the performance of all

proofs of possession. The Prime Modulo method used Chinese Remainder Theorem to encode

the attributes. Prime Modulo Encoding requires no additional cryptographic assumptions apart

from strong RSA, it targets the major attribute classes of credential systems, and it can be used in

real applications, such as electronic identity cards and complex forms of professional and

medical credentials. Further research should focus on string attributes though minority of the

attributes requires string attributes like name and birthdays.

32

8. REFERENCES

[1] Camenisch, Jan, and Thomas Groß. "Efficient attributes for anonymous

credentials." Proceedings of the 15th ACM conference on computer and communications

security. ACM, 2008.

[2] Camenisch, Jan, and Anna Lysyankaya. "A signature scheme with efficient

protocols." Security in communication networks. Springer Berlin Heidelberg, 2003. 268-289.

[3] Camenisch, Jan, and Anna Lysyankaya. "An efficient system for non-transferable anonymous

credentials with optional anonymity revocation. “Advances in Cryptology—EUROCRYPT 2001.

Springer Berlin Heidelberg, 2001. 93-118.

[4] Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge protocols to prove

modular polynomial relations. In Burton S. Kaliski Jr., editor, Proc. CRYPTO ’97, volume 1294

of LNCS, pages 16–30. Springer-Verlag, 1997

[5] Damgård, Ivan. "Commitment schemes and zero-knowledge protocols. “Lectures on Data

Security. Springer Berlin Heidelberg, 1999. 63-86.

[6] Damgård, Ivan, and Eiichiro Fujisaki. "A statistically-hiding integer commitment scheme

based on groups with hidden order." Advances in Cryptology—ASIACRYPT 2002. Springer

Berlin Heidelberg, 2002. 125-142.

[7] Chaum, David, et al. "Demonstrating possession of a discrete logarithm without revealing

it." Advances in Cryptology—CRYPTO’86. Springer Berlin Heidelberg, 1987.

33

[8] Schnorr, Claus-Peter. "Efficient signature generation by smart cards." Journal of

Cryptology 4.3 (1991): 161-174.

[9] Brands, Stefan. "Electronic cash systems based on the representation problem in groups of

prime order." Preproceedings of Advances in Cryptology—CRYPTO’93 (1993): 26-1.

[10] Chaum, David, Jan-Hendrik Evertse, and Jeroen Van De Graaf. "An improved protocol for

demonstrating possession of discrete logarithms and some generalizations." Advances in

Cryptology—EUROCRYPT’87. Springer Berlin Heidelberg, 1988.

[11] Fujisaki, Eiichiro, and Tatsuaki Okamoto. "A practical and provably secure scheme for

publicly verifiable secret sharing and its applications." Advances in Cryptology—

EUROCRYPT'98. Springer Berlin Heidelberg, 1998. 32-46.

[12] Camenisch, Jan, and Markus Michels. "Proving in zero-knowledge that a number is the

product of two safe primes." Advances in Cryptology—EUROCRYPT’99. Springer Berlin

Heidelberg, 1999.

[13] Hazay, Carmit, and Yehuda Lindell. "Sigma Protocols and Efficient Zero-

Knowledge1." Efficient Secure Two-Party Protocols. Springer Berlin Heidelberg, 2010. 147-

175.

[14] Chaabouni, Rafik. Efficient Protocols for Set Membership and Range Proofs. No. LASEC-

STUDENT-2007-004. 2007.

 [15] www-math.ucdenver.edu/~wcherowi/courses/m5410/exeucalg.html

 [16] www-math.ucdenver.edu/~wcherowi/courses/m5410/crt.pdf

34

 [17] www.math-cs.ucmo.edu/~curtisc/math4741/lectures/Chapter4.pdf

 [18] Chan, Agnes, Yair Frankel, and Yiannis Tsiounis. "Easy come—easy go divisible

cash." Advances in Cryptology—EUROCRYPT'98. Springer Berlin Heidelberg, 1998. 561-575.

 [19] Belenkiy, Mira, et al. "Randomizable proofs and delegatable anonymous

credentials." Advances in Cryptology-CRYPTO 2009. Springer Berlin Heidelberg, 2009. 108-

125.

[20] Wachsmann, Christian, et al. "Lightweight anonymous authentication with TLS and DAA

for embedded mobile devices." Information Security. Springer Berlin Heidelberg, 2011. 84-98.

[21] Chen, Liqun, Dan Page, and Nigel P. Smart. "On the design and implementation of an

efficient DAA scheme." Smart Card Research and Advanced Application. Springer Berlin

Heidelberg, 2010. 223-237.

[22] Canard, Sébastien, and Roch Lescuyer. "Protecting privacy by sanitizing personal data: a

new approach to anonymous credentials." Proceedings of the 8th ACM SIGSAC symposium on

Information, computer and communications security. ACM, 2013.

[23] Hajny, Jan, and Lukas Malina. "Anonymous credentials with practical revocation." Satellite

Telecommunications (ESTEL), 2012 IEEE First AESS European Conference on. IEEE, 2012.

[24]Chase, Melissa, and Kristin Lauter. "An Anonymous Health Care System." IACR Cryptology

ePrint Archive 2011 (2011): 16.

http://www.math-cs.ucmo.edu/~curtisc/math4741/lectures/Chapter4.pdf

