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ABSTRACT 

Field experiments were conducted to determine the efficacy of current Bt traits in maize 

(Zea mays L.) hybrids and soil-applied insecticide for corn rootworm (Diabrotica spp.) 

management. Experiments were conducted as a randomized complete block design with a split-

plot arrangement. The whole plot was no insecticide or soil-applied insecticide. The subplots 

were different Bt maize hybrids and treatments: non-Bt (untreated control), seed-applied 

insecticide, Cry3Bb1, Cry34/35Ab1, and Cry3Bb1 + Cry34/35Ab1.  Root injury was evaluated 

using the Iowa State University rating system. Hybrids expressing any Cry protein averaged 0.12 

nodes pruned. Hybrids without Cry proteins averaged 0.37 nodes pruned. Seed-applied 

insecticide reduced root pruning compared to the untreated control. Both had greater root injury 

than hybrids with Cry proteins. Soil-applied insecticide did not always reduce root pruning. 

Hybrid yield and test weight were highly variable, depending on the hybrid’s genetics. This 

research indicates the Bt-traits tested are effective in managing corn rootworm. 
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INTRODUCTION 

Corn rootworms (CRWs), Diabrotica spp., comprise a major insect pest complex of 

maize (Zea mays L.) in the United States. Crop losses and control interventions associated with 

CRW cost U.S. maize producers $1 billion annually (Metcalf, 1986). For this reason, CRW has 

been referred to as “the billion dollar pest”. Prior to 2003, CRW was controlled by using foliar 

and soil-applied insecticides, and crop rotation. In 2003, genes from Bacillus thuringiensis (Bt) 

were transgenically inserted into maize hybrids to induce the production of a crystalline (Cry) 

protein in the plants, that when ingested, is lethal to CRW (Sanahuja et al., 2011). This 

technology has helped alleviate yield reduction from root feeding by rootworm larvae. It also has 

reduced the amount of conventional insecticide applied by producers and the number of pesticide 

applications that are made (Fernandez-Cornejo et al., 2014). This has resulted in fuel savings, 

reduced exposure to pesticides, and safer working environments for producers (Marra et al., 

2012).  

Maize has a large economic impact on the economy of North Dakota and the U.S. The 

United States Department of Agriculture reports that maize is grown on 32 million hectares in 

the U.S. (Fernandez-Cornejo et al., 2014). Maize expressing Cry proteins for CRW control were 

estimated to involve 52% of all hybrids planted in 2012 (Marra et al., 2012). Because of its 

widespread adoption and use, recent research indicates that western corn rootworm (WCR), 

Diabrotica virgifera virgifera LeConte, has developed resistance to this technology in Iowa, 

Illinois, Nebraska, and Minnesota (Brooks, 2014). It is not known if resistant populations have 

developed in North Dakota.  



2 
 

 The research reported here was conducted to determine the effectiveness of different Bt 

traits commonly used in maize hybrids and seed-applied insecticide, combined with soil-applied 

insecticides, against CRW in North Dakota.  

 By evaluating the effectiveness of soil insecticide, seed-applied insecticide, and different 

Bt-trait combinations, best pest management recommendations can be developed to help 

producers achieve acceptable control. Knowing which combinations of control strategies reduce 

the producer’s risk to CRW damage will help minimize the risk of yield loss.  
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OBJECTIVE 

 Western corn rootworm resistance to the Cry3Bb1 protein has been confirmed in Iowa in 

2011 and in Illinois, Minnesota, and Nebraska in 2012 (Gassmann et al., 2011; Brooks, 2014). In 

2012, increasing WCR populations were observed in southeastern North Dakota, prompting 

concern that this may have occurred in North Dakota (Knodel, 2012). The objective of this study 

was to evaluate the efficacy of maize hybrids with differing Bt traits, including the Cry3Bb1. 

Hybrids expressing different Bt proteins were combined with an in-furrow soil insecticide 

treatment to determine if there is a benefit to including insecticides with Bt hybrids in fields with 

a known history of CRW pressure. Data from these experiments were used to help develop an 

Integrated Pest Management recommendation that producers can use to manage CRW in maize 

in North Dakota. 
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LITERATURE REVIEW 

Maize was grown on only 2% of North Dakota’s total crop hectares in 1970 (Taylor and 

Koo, 2013). Today, maize accounts for 10% of the cropland with most of this growth occurring 

in the last 10 years (NASS, 2014). The economic impact of maize production to the state of 

North Dakota is approximately $1.42 billion per year (Taylor and Koo, 2013). Maize hectares 

are continuing to expand into areas that historically have not produced maize. Maize production 

is expanding west and north in North Dakota, and along with the crop, CRW populations appear 

to be increasing.      

The maize industry in North Dakota has recently expanded to support ethanol and high 

fructose maize syrup production, in addition to animal feed and export markets. Government 

programs supporting the production of renewable fuels with mandates such as the 2005 Energy 

Policy Act have increased the profitability of ethanol (Capehart, 2014). Import fees, duties, and 

import quotas for sugar have made domestically produced high fructose maize syrup 

economically attractive. This increased demand has influenced the northern and western 

expansion of maize hectares. Improved genetics and other production technologies have also 

greatly increased the yield potential of maize and the number of hybrids available to producers. 

Western and northern corn rootworms (NCRs), Diabrotica barberi Smith and Lawrence, 

are the two main CRW species that can be found in North Dakota (Knodel, 2012). Western corn 

rootworm and NCR are commonly found in the same fields, and both are known to cause root 

pruning injury to maize plants. Together, they are the most serious insect pests that cause 

damage to maize fields in the north central corn-producing states and Canada (Levine and 

Oloumi-Sadeghi, 1991). Producers in all areas use similar strategies to control both species. 
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Western Corn Rootworm                    

Western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is a common 

insect pest of maize (Sutter, 1999). It is distributed throughout maize growing regions in the U.S. 

and southeastern Canada. It is not typically found in areas in the southeastern U.S., or west of the 

Rocky Mountains however, WCR was not considered a major pest until the 1950s, when 

continuous maize production became a more common practice. At that time, it began expanding 

its distribution at a rate of 64 to 80 km per year (Sutter, 1999).  

Western corn rootworm adults, both male and female, are beetles that are ¾-cm long, 

yellow in color with three black stripes on their elytra (Sutter, 1999). Males have a more solid 

marking on their elytra. Western corn rootworms only produce one generation per year and eggs 

overwinter in the soil. Eggs are oval, creamy white, and measure 0.3- by 0.5-mm in diameter. 

Eggs are deposited in the top 10 cm of soil, but can be deposited as deep as 30 cm. Females will 

lay eggs deeper if cracks are present in the soil. Soil cracks form during dry conditions when soil 

moisture is low. Cold soil temperatures during the winter can reduce egg viability. Temperatures 

of -7.5 to -10°C for 2 to 3 weeks will generally have a negative impact on the viability of eggs 

the following spring (Sutter,1999).  

Larvae hatch when the soil temperature rises, typically from late-May to early June. The 

development of WCR is fastest when air temperatures are 21 to 24 °C, and soil temperatures are 

between 18 and 27°C (Sutter, 1999). Research suggests that 50 percent of the larval hatch will 

occur after the accumulation of between 684 and 767 degree days, using 11 °C as the base soil 

temperature (Hodgson and Sission, 2011). Larvae range from 0.3-cm to 1.25-cm in length, 

depending on instar. They are creamy white with a brown head and brown spot on top of the 

terminal end of their body. Larvae feed for 30 to 45 days and develop through three instars 
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before pupating, and later emerge as adults. Larval feeding generally takes place until late-July, 

but it is heavily influenced by seasonal fluctuations in temperature and soil conditions, and can 

also be influenced by latitude (Tinsley et al., 2012).  

Feeding by newly hatched larvae primarily occurs on root hairs and small roots. As 

larvae mature, they may tunnel into large roots and cause root pruning. Damaged roots are 

pruned with brown feeding scars on the tips. Pruning is normally the most noticeable and severe 

on the secondary root system (Sutter, 1999).  

After larval root feeding occurs, the larvae pupate for 6 to 13 days, depending on soil 

temperature. Thereafter, adult beetles emerge between early July and emergence can continue 

through October. Adults mate and females lay 300 to 400 eggs in the soil from late-summer to 

fall. During this time, the adults feed on silks, leaves, and pollen of the maize plant (Drees et al., 

1999). Pollination can be inhibited if adult feeding injury reduces silk length to less than 1.25 cm 

protruding from the husk.  

Late-maturing maize fields are the most susceptible to damage by adults migrating to 

feed and lay eggs. These fields are still in the pollination phase and provide fresh silks as a food 

source for the CRW beetles. Feeding damage on silks potentially inhibits pollination that 

growing season. Economically significant silk feeding is not generally observed in North Dakota 

(Knodel, 2012). This makes management very difficult from year to year, as producers may not 

realize that eggs have been laid in their field. As a result, some producers do not plant maize with 

Bt traits or use a soil insecticide the following growing season to control a potential CRW 

infestation. 

Western corn rootworm larvae can cause severe damage to maize plants already under 

stress caused by poor fertility, drought, or soil compaction. The weakened root system often 
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leads to plant lodging. The likelihood of lodging after root pruning occurs is increased with moist 

soil conditions and strong winds (Drees et al., 1999). Lodging reduces the plant’s ability to 

photosynthesize efficiently, leading to yield losses. Lodged plants also create difficult harvest 

conditions, resulting in many cobs not being harvested. This contributes to additional yield losses 

for producers. Tinsley et al. (2012) estimated that for every node of maize roots that is pruned 

back within 3.8 cm of the stalk or soil line, there is a 15% reduction in yield. Severe plant 

lodging can contribute additional yield losses of 11 to 34%. 

Controlling WCR is difficult because the adult beetles can travel long distance. 

Depending on the growth stage of the maize, adults may migrate to a different field than the one 

from which they emerged (Drees et al., 1999). Beetles will travel to a new field in search of a 

food source or to lay their eggs.  

In some areas of the U.S. Corn Belt, producers have seen an increase in the number of 

WCR eggs deposited in soybean (Glycine max L. Merr.) fields (Levine et al., 2002). Western 

corn rootworm adults emerge in maize fields after larval root feeding and pupation have 

occurred, and continue to feed on silks and pollen until they need to oviposit. Female WCR then 

travel to neighboring soybean fields to lay their eggs. This causes major issues for unsuspecting 

producers the following year, since viable WCR eggs are in the soil where soybeans have been 

previously planted and will have the correct host crop available for feeding after larval hatch 

(Levine et al., 2002). It can pose an increased risk to producers where there is a long history of 

maize-soybean rotations. This is an example of CRW’s adapted behavior and its potential to 

overcome Integrated Pest Management (IPM) strategies that producers commonly use. Integrated 

pest management is defined as “the continuum of pest management practices that provide for the 

evaluation, decision making, and managing of insect pests” (Knodel and McMullen, 2012). 
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Soil-applied insecticides became popular to control CRW in the 1950s (Drees et al., 

1999). Most soil insecticide products need a 6 to 10-week residual to be effective against CRW. 

Larval hatch occurs 4 to 6-weeks after planting, and feeding takes place for another 3 to 4-weeks 

after hatch. Generally, insecticides can reduce the extent of larval root feeding injury, but adult 

beetle survival is observed even when insecticides are used (Boetel et al., 2003, Gray et al., 

1992). Soil insecticide efficacy can be attributed to insects not coming in contact with the 

insecticide, exposure to a sub lethal dose of the active ingredient, or insect resistance to the 

active ingredient.  

Insecticides only protect a portion of the root system. Feeding damage can occur beyond 

the insecticide-treated band, but generally the main root system and brace roots have protection 

from larval feeding. This can help prevent lodging and major yield losses. Soil-applied 

insecticides are not used as an adult population management tool, but they can help lessen root 

damage and yield losses associated with feeding under heavy CRW pressure (Boetel et al., 2003, 

Gray et al., 1992). 

 Control of WCR depends heavily on an IPM system. The system should include crop 

rotation, soil-applied insecticides, and foliar-applied insecticides. Foliar-applied insecticides 

were used to control adults prior to the introduction of the Bt trait (Drees et al., 1999). These 

foliar applications would reduce adult populations in the field, resultantly reducing the number of 

eggs that could be laid in the field. This reduced the number of potential larvae the following 

year, but did not offer any control of larval root pruning in the current production year. These 

practices were paired with cultural methods, such as adjusting planting and harvesting dates. 

Producers also chose hybrids with large root systems and the ability to initiate new root growth 

after larval feeding (Drees et al., 1999).  
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Scouting fields is also a critical element of the IPM system. Producers can sample for 

larvae by digging up maize plants starting at 684 to 767 GDD (based on an 11 °C base soil 

temperature) and washing the roots in a bucket (Fisher et al., 1990, Hodgson and Sisson, 2011). 

Generally, larvae will float to the water surface. Sampling plants from different areas of the field 

can give producers an estimation of the infestation in the field. Rescue applications of foliar-

applied insecticides are often ineffective or impractical, but being aware of infestation levels can 

help determine the need for an effective management plan the following year (Hodgson and 

Sisson, 2011). All of these practices are still considered effective when paired with the use of Bt 

traits to create an IPM strategy for effectively managing CRW and delaying resistance to Cry 

proteins. 

Northern Corn Rootworm 

The northern corn rootworm (NCR), Diabrotica barberi Smith and Lawrence, is native to 

North America, and can be found from the Rocky Mountains to the east coast of the U.S., south 

into Tennessee and as far north as Ontario, Canada (Tollefson and Levine, 1999). Northern corn 

rootworms are frequently found in the same fields as WCR. Control methods for NCR are very 

similar to WCR, and are based on IPM principles. Generally, NCR completes one generation per 

year, but some populations have been shown to exhibit extended diapause (French et al., 2012). 

When extended diapause occurs, eggs pass through two or more winters before hatching (Drees 

et al., 1999).  It was first documented in 1965, and was not a common occurrence until the 

1980s, when it became more prevalent in Minnesota, South Dakota, and Iowa. Extended 

diapause is very variable, and can range from 1 to 4 years. It has also been found to depend on 

genetics, suggesting that only certain populations are able to undergo extended diapause to 

overcome annual crop rotation (French et al., 2012). This phenomenon is not responsible for 



10 
 

serious widespread economic damage, but causes problems annually in areas inhibited by these 

populations. Extended diapause has not yet been observed in North Dakota. 

 Adult NCR beetles lay eggs 20- to 30-cm deep in the soil in late-August to September 

(Tollefson and Levine, 1999). Eggs begin hatching in late-May to early June. Larvae generally 

feed on maize roots for three weeks followed by a two week pupation period. This time period is 

temperature-dependent. Adults will begin to emerge from the soil in late-July or early August. 

 Northern corn rootworm larvae are white with brown heads and a brown plate on the last 

abdominal segment. The larvae are approximately 1.6-mm long when they hatch, growing to 16-

mm in length at maturity. Adults are approximately 7 mm long and are oval shaped and vary in 

color from pale to dark green. The beetles do not have any distinct markings on their elytra 

(Tollefson and Levine, 1999).  

Seed Treatments 

Commercially applied neonicotinoid seed treatments have replaced older, persistent, 

contact synthetics and inorganic insecticidal seed treatments (Van Rozen and Ester, 2010). They 

have become more widely used on maize hybrids since 2004 (Jarvi et al., 2006).  

The three main active ingredients of neonicotinoid seed treatments applied on maize 

seeds are clothianidin, thiamethoxam, and imidacloprid (Van Rozen and Ester, 2010).  

Neonicotinoids work on the insect’s central nervous system by binding nicotinic acetylcholine 

receptors, which causes paralysis and death (Jarvi et al., 2006).  

Imidacloprid was introduced in 1991. It offered producers photostability and residual 

activity. It also has high intrinsic insecticidal potency against a broad spectrum of insects, as well 

as excellent systemic properties, plant compatibility, and low mammalian toxicity (Van Rozen 

and Ester, 2010). Thiamethoxam was introduced as a seed treatment in 1997 and clothianidin in 
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2003. These materials are effective as contact and stomach poison insecticides, and are 

systemically translocated in the plant. Together, they are the most common seed treatments used 

on maize to protect plants against insects in the U.S. and Europe (Van Rozen and Ester, 2010). 

Some common insect pests of maize seedlings that are controlled by neonicotinoid seed 

treatments include: black cutworm (Agrotis ipsilon Hufnagel), wireworm (Melanotus spp., 

Agriotes mancus Say, and Limonius dubitans LeConte), white grub (Phyllophaga spp.), seedcorn 

maggot (Delia platura Meigen), and various others. 

Increasing the amount of active ingredient of the chemical per kernel can provide some 

control of CRW larvae in the soil (Jarvi et al., 2006). The use of seed treatments to control CRW 

can result in erratic root protection (Jarvi et al., 2006). They are viewed as good supplemental 

products to use in an IPM strategy, but not as the primary control strategy in high-pressure 

conditions (Gassmann et al., 2011). Neonicotinoid seed treatments are recommended for use 

when the CRW population is expected to be low, and are considered a root protection method 

and not a population reduction tool (Van Rozen and Ester, 2010) 

 Commercially applied seed treatments have some additional advantages. They ensure 

uniform product coverage on the seed. They also help lower human exposure to insecticides 

because the product is already on the seed, and there is no need to mix or measure the product. 

Seed treatments also have low rates of active ingredients compared with soil-applied 

insecticides, and can be systemic in the plant to increase insect control in the foliage. However, 

seed treatments do not provide season long protection. They also do not protect plants from all 

insects (Jarvi et al., 2006).  
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Bt Trait 

 The Bt trait is derived from Bacillus thuringiensis, a gram-positive, soil-borne bacterium 

that forms spores (Jurat-Fuentes, 2013). The B. thuringiensis produces crystalline proteins, 

commonly referred to as Cry proteins. Cry proteins have insecticidal properties that are lethal to 

certain insect orders and species (Sanahuja et al., 2011). Scientists were able to transgenically 

insert the gene that controls the expression of these proteins into the DNA of plants to enable the 

control of specific insect pests. 

 The segment of DNA that is known to produce the protein of interest is inserted into the 

maize plant’s DNA (Witkowski et al., 2013). The primary components of the inserted DNA 

include a protein gene, a promoter, and a genetic marker. The protein gene contains the Bt genes 

that express the production of the Cry proteins. The promoter controls the amount of Cry protein 

that is produced by the plant and where in the plant the protein will be produced. The genetic 

marker allows scientists to identify if the transformation is successful (Witkowski et al., 2013).  

 When susceptible insects ingest the plant material from plants expressing the Bt trait, the 

protein travels down the peritrophic matrix and binds to specific cadherin receptors in the gut of 

the insect (Sanahuja et al., 2011). The toxin is released when an insect feeds on plant tissue. The 

toxin accumulates in the gut of the insect after feeding. Accumulation of the toxin within the 

insect results in osmotic cell shock, as well as pore formation and tumor development. The 

combination of these effects results in insect death after consumption. 

Utilization of the Bt protein for insect control dates back to the early 1900s and was 

commonly used by producers in granular and sprayable liquid formulations (Sanahuja et al., 

2011). These pesticides were safe to mammals and beneficial insects, pest specific, potent to 

target insects, and biodegradable when compared with traditional insecticides. However, the 
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effectiveness of these pesticides was inconsistent. Applications were only effective if the insect 

pest ingested plant tissue that had been treated with the protein. In the 1980s, the Bt trait was 

introduced into tobacco (Nicotiana tabacum L.) and tomato (Solanum lycopersicum L.). Results 

were not favorable, prompting a modification to the sequence to be inserted in 1991. 

Modifications lead to the introduction of the Cry1Ab and Cry1Ac proteins that would later be 

used as traits in commercial transgenic crops.  

Transgenic maize, potato (Solanum tuberosum L.), and cotton (Gossypium hirsutum L.) 

with Bt traits were first introduced to the marketplace in 1995 by Monsanto™ (Sanahuja et al., 

2011). The first maize hybrids were only resistant to the European corn borer (Ostrinia nubilalis 

L.) (Fernandez-Cornejo et al., 2014). Transgenic potatoes were very effective in controlling the 

Colorado potato beetle (Leptinotarsa decemlineata L.), but were removed from the market in 

2002 due to human consumption safety concerns. A second generation of Bt in maize was 

released in 2002 consisting of a synthetic variant of the Cry3Bb1 gene, targeted at controlling 

CRW.  

In 2003, Monsanto™ released maize hybrids that combined the Cry1Ab1 and Cry3Bb1 

traits to control against the European corn borer and CRW (Tabashnik and Gould, 2012). In 

2005, a new trait was released for control of CRW. Monsanto released Cry34/35Ab1, followed 

by mCry3A from Syngenta in 2006, which offered producers additional options for CRW 

management. The Cry34/35Ab1 toxin was combined with the Cry3Bb1, creating hybrids 

referred to as “pyramid” trait packages. A trait pyramid is defined as a combination of two toxins 

that act independently to kill the same pest (Tabashnik and Gould, 2012). Pyramiding the traits is 

also a strategy for reducing the risk of pests developing resistnace to a single trait (Sanahuja et 

al., 2011). A fourth CRW Bt trait, eCry3.1Ab, was deregulated by the USDA and registered by 

http://www.ars-grin.gov/cgi-bin/npgs/html/taxon.pl?25309
http://www.ars-grin.gov/cgi-bin/npgs/html/taxon.pl?103137
http://www.ars-grin.gov/cgi-bin/npgs/html/taxon.pl?17917
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the EPA in 2013 for commercial launch by Syngenta in 2014 (Cullen et al., 2013). This Bt trait is 

currently only available as a pyramid with mCry3A.  

Utilization of hybrids with Bt traits for CRW has resulted in major reductions in 

insecticide use by U.S. producers. Producers in the U.S. used an average of 0.24 kg of insecticide 

per planted hectare of maize in 1995 (Fernandez-Cornejo et al., 2014). After the introduction of 

Bt-traited hybrids, the amount decreased to 0.07 kg in 2005 and 0.02 kg in 2010. Use of Bt-

traited crops also reduced the number of pesticide applications, resulting in fuel savings for 

producers (Marra et al., 2012). It has also resulted in a safer working environment for producers, 

with reduced exposure to soil- and foliar- applied insecticides, while offering convenience and 

simplicity at planting (Ostlie, 2001). Previously, producers would delay planting dates to avoid 

the larval hatch, but Bt-traits for CRW allowed them to plant as soon as conditions are optimal 

for germination and crop growth. This technology has also reduced mortality of beneficial 

insects from broad-spectrum soil-applied and foliar insecticides (Ostlie, 2001). 

Resistance to Bt 

 Field-evolved resistance is defined as “a genetically-based decrease in susceptibility of a 

population to a toxin caused by exposure of the population to the toxin in the field” (Tabashnik 

et al., 2009, 2011). Field-evolved resistance to the Cry3Bb1 protein by WCR populations has 

been confirmed in Iowa (Gassmann et al., 2011). Resistance to Cry3Bb1 has also been confirmed 

in Nebraska, Illinois, and Minnesota (Brooks, 2014). Colorado, Kansas, Missouri, New York, 

South Dakota, North Dakota, and Wisconsin have reported significant damage to fields planted 

to Bt-traited maize, and analysis is being done to evaluate if Bt resistant CRW populations are 

present. Cry3Bb1 has been the most dominant Bt trait used to control CRW in the U.S. (Cullen et 

al., 2013). It was planted on 200,000 ha in 2003 and increased to 12 million ha by 2008. This 
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widespread use has likely contributed to the selection of target insects to develop resistance to 

this control tool (Cullen et al., 2013).  

 Gassmann et al. (2011) were able to conclude that WCR survival was three times higher 

in the problem fields when compared to control fields. This indicated resistance was present to 

the Cry3Bb1 protein, even though in non-traited maize, WCR survival was much higher than in 

fields with this Bt trait. When the Cry34/35Ab1 traits were present in the field, there was 

significantly lower larval survival. They concluded that the longer a field was planted to the 

Cry3Bb1 trait, the higher the level of WCR survival. They discovered this resistance to the 

Cry3Bb1 trait was common in some populations and in localized areas in Iowa. They attributed 

this to the Cry3Bb1 protein acting as a low-dose event, making resistance a more heritable trait 

in CRWs.                                   

Delaying Resistance 

 Another major contribution to the evolution of resistance could be producers planting 

insufficient refuge (Tabashnik and Gould, 2012). A refuge is defined as an area without the Bt 

traits planted in it. This area is usually within the same field when using Bt-traited hybrids. This 

refuge can be planted in a block adjacent to or inside the field, or interplanted with the traited 

hybrid within the same field. The goal of a refuge is to ensure the survival of Bt-susceptible 

CRW individuals. This would provide resistant insects a susceptible insect to mate with and 

increase the likelihood of susceptibility persisting in localized populations, thus avoiding 

resistance development (Tabashnik and Gould, 2012). When planting a single Bt-traited hybrid, 

producers are required to plant 20% of an untraited refuge on their farm.  

Refuge in the bag (RIB) was federally approved and made commercially available as an 

insect resistance management strategy soon after the introduction of pyramided traits (Cry3Bb1 
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+ Cry34/35Ab1). Previously, producers had to purchase separate hybrids to be planted in their 

refuge acres. Now, they can simply purchase a RIB hybrid and have their refuge and Bt-traited 

hybrids blended to the correct percentage in the same bag. Pyramiding traits lowered the required 

refuge area from 20% to 5% of non-traited area for some Bt-traited products. Refuge 

incorporation guarantees that the refuge will be planted in the same field and improves producer 

compliance with the regulations. The goal of the introduction of RIB was to delay resistance by 

pyramiding, paired with a built-in refuge requirement that producers cannot avoid (Tabashnik 

and Gould, 2012). 

 When producers purchase Bt-traited hybrids, they sign an agreement with the company 

providing the technology stating that they will comply and plant a refuge to help reduce the risk 

of resistant population development (Fernandez-Cornejo et al., 2014). The company is required 

to monitor and enforce grower compliance. However, this requirement is not always followed. 

Producer failure to comply with refuge requirements was found to be the likely cause of 

resistance formation in the three best-documented cases of confirmed insect resistance to the Bt 

trait (Tabashnik and Gould, 2012).  

 While the new traits and built-in refuge implement a system to delay resistance, recent 

research suggests refuge areas are not large enough. Tabashnik and Gould (2012) suggest single 

trait mode of action should be planted with a 50% refuge, and pyramided traits should have a 

20% refuge. Modeling of this proposed increase showed that a 50% refuge requirement would 

double the time for WCR to develop resistance. They cite the primary reason for the proposed 

increase in the refuge requirement to the fact that Cry3Bb, Cry34/35Ab1, and mCry3A 

producing maize hybrids do not meet a high-dose strategy standard against WCR. 
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A high-dose strategy is defined as the use of plants that produce a substantially higher 

toxin concentration to delay resistance by reducing survival of insects heterozygous for 

resistance, which are expected to carry most of the resistance alleles when resistant homozygotes 

are rare (Tabashnik and Gould, 2012). The Environmental Protection Agency (EPA) guidelines 

for high-dose specificity are that the Bt-traited plant must kill 99.99% of susceptible insects in 

the field, based on the survival of ≤0.01% on Bt-traited plants compared with non-Bt-traited 

plants (EPA, 1998). A low-dose strategy plant would have substantially lower toxin 

concentrations and delay resistance by increasing survival of susceptible homozygotes, 

maintaining susceptible alleles in the population (Tabashnik and Gould, 2012). 

Plants expressing the Cry3Bb1 toxin only had mortality rates of 98.5, 97.5, and 96.2 

percent in three different observations. These percentages are not much lower than the high-dose 

standard, but the failure to kill hybrid progeny indicates an inheritance of the non-recessive 

resistance. This inheritance, paired with the continued use of single toxins in hybrids, is expected 

to accelerate the development of Bt-resistant WCR populations.  

Maize hybrids producing both Cry3Bb1 and Cry34/35Ab1 proteins do not meet the high-

dose standard either. Populations of WCR resistant to Cry3Bb1 are not effectively controlled by 

pyramids with Cry34/35Ab1 because of the reduced efficacy of Cry3Bb1. Because of the high 

risk of evolution of resistance, Tabashnik and Gould (2012) proposed increasing the refuge 

requirements of producers to 50 and 20%, respectively, to help delay resistance. The authors also 

noted that one of the best approaches producers can use is IPM (Tabashnik and Gould, 2012). 

The authors discussed how before the introduction of the Bt technology producers were able to 

control WCR with insecticides and crop rotations. They suggest that producers should increase 

refuge acres and utilize insecticides, in addition to the Bt technology, to delay the buildup of 
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resistance. This does create a problem, however. The market supply has shifted to offering more 

hybrids with Bt traits. This means there may not be enough hybrids without Bt traits to meet the 

increased refuge demand of the growing number of maize hectares. The article did suggest IPM 

could be implemented in areas with the highest risk of developing resistance, or in those with 

resistance already occurring (Tabashnik and Gould, 2012). 
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MATERIALS AND METHODS 

 

This study was conducted at four different locations in North Dakota in 2013: Arthur, 

Forman, Lidgerwood, and Wyndmere. In 2014, three North Dakota locations were used: Arthur, 

Page, and Hope. Locations were selected based on previously observed CRW feeding pressure. 

The past use of Bt traits and crop rotation were also considered when selecting the field 

locations. All of the locations were planted on fields with a history of continuous maize with the 

same Bt trait and previous CRW infestations.  

Treatments were laid out in a randomized complete block design with a split-plot 

arrangement, with four replications at each location. The whole plot was insecticide (2 levels), 

either with insecticide or without soil-applied insecticide in-furrow. The subplots consisted of 

different maize hybrids and five treatments: non-Bt (untreated control), clothianidin insecticide 

seed treatment, Cry3Bb1, Cry34/35Ab1, and Cry3Bb1 + Cry34/35Ab1.  

The five different hybrids planted in 2013 were: a hybrid expressing no Cry proteins 

(Pioneer 9675R, DuPont Pioneer, Johnston, IA); a hybrid expressing Cry3Bb1 (Event MON-

88Ø17-3, DKC43-27, Monsanto Co., St. Louis, MO); a hybrid expressing Cry34/35Ab1 (Event 

DAS-59122-7, Pioneer 9675AMRW, DuPont Pioneer); a pyramided hybrid expressing both 

Cry3Bb1 and Cry34/35Ab1 (Events MON-88Ø17-3 and DAS-59122-7, DKC44-13, Monsanto 

Co.); and the non-Bt hybrid (Pioneer 9675R, DuPont Pioneer) treated with clothianidin (Poncho 

1250®,Bayer CropScience, Durham, NC) at the rate of 1.25 mg a.i. kernel
-1

 (DiFonzo and Cullen, 

2013). Hybrids with RIB had all refuge kernels removed prior to planting. They were easily 

distinguishable, as they were dyed a different color. This was done to ensure that all seeds 

planted for evaluation contained the Bt trait for CRW and the plots contained no refuge (non-Bt 

seed). All of the hybrids were glyphosate-resistant. 
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The five different hybrids planted in 2014 varied from those selected in 2013 because 

some hybrids were discontinued and no longer available from the seed companies. Some of the 

2013 hybrids were discontinued for the 2014 growing season. While the hybrids were different, 

they included the same Bt traits as those planted in 2013. The hybrids planted in 2014 were: a 

hybrid expressing no Cry proteins (Pioneer P8640R, DuPont Pioneer, Johnston, IA); a hybrid 

expressing Cry3Bb1 (Event MON-88Ø17-3, DKC43-48, Monsanto Co., St. Louis, MO); a 

hybrid expressing Cry34/35Ab1 (Event DAS-59122-7, Pioneer  P9526AMX, DuPont Pioneer); a 

pyramided hybrid expressing both Cry3Bb1 and Cry34/35Ab1 (Events MON-88Ø17-3 and 

DAS-59122-7, DKC44-13, Monsanto Co.); and the non-Bt hybrid (Pioneer P9526AM, DuPont 

Pioneer) treated with clothianidin (Poncho 1250
®
 Bayer CropScience, Durham, NC) at the rate 

of 1.25 mg a.i. kernel
-1

, (DiFonzo and Cullen, 2013). The same previously mentioned procedure 

was used to remove the refuge kernels from the RIB hybrids.  

The soil applied insecticide used in both years was tefluthrin (Force3G
®
, Syngenta Crop 

Protection, Greensboro, NC) placed in-furrow with the seed at planting at a rate of 0.19 kg a.i. 

ha
-1

. The plots were planted using a two-row vacuum Monosem NG Plus 4, 5x5-mounted planter 

(Seed Research Equipment Solutions [SRES], Hutchinson, Kansas). 

Herbicides were applied to manage the weed population in all plots during both study 

years. In 2013, an application of a tank mix consisting of: 0.8 kg a.e. ha
-1 

of glyphosate 

(Roundup Powermax
®
, Monsanto Co., St. Louis, MO), tembotrione and isoxadifen safener, 

(Laudis
®
, Bayer CropScience, Durham, NC) at 4 g  of a.i. ha

- 1 
and a non-ionic surfactant (NIS), 

(ammonium sulfate, corn syrup, alkyl polyglucoside, Class Act NG
®
, Winfield Solutions, St. 

Paul, MN) at 2.5% v/v was made with a total water volume of 141 L ha
-1 

on 12 June. In 2014, all 
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locations received one application of glyphosate at 0.8 kg a.e. ha
-1 

and a non-ionic surfactant at 

2.5% v/v with a total water volume of 141 L ha
-1 

on 9 June.  

Each main plot was a minimum of 38 m long and 7 m wide, depending on location and 

the amount of land available. Four rows of each hybrid were planted using 76 cm row spacing. 

Plot lengths were 6 m, with 1.5-m alleys between replicates. Experiments were planted at a plant 

density of 86,100 plants ha
-1

 with 15.2 cm within-row seed spacing. All plots were fertilized for 

a yield potential of 10 Mg ha
-1

. Application rates varied based on soil test results obtained from 

the individual cooperators at each of the locations. Fertilizer applications were spread as granular 

urea at the V4 stage in the plots that had not been fertilized completely before planting.  

Maize roots were evaluated for rootworm larval feeding injury after the feeding period 

had ceased. Plants were dug up when the CRW adults began emerging from the soil. This 

ensured that the highest percentage of feeding damage had already occurred to maize plants, but 

minimal root regrowth had occurred. Scoring plants before the majority of feeding has occurred 

can create a false representation of the efficacy of the treatments, but waiting too long after 

feeding can allow for increased regrowth and root compensation (Gray and Steffey, 2000). This 

stage normally occurs from late-July to early August, but is variable depending on accumulated 

degree days. In 2013, root digs were conducted on August 1, and in 2014 digs took place on 

September 8. 

 Ten plants were selected from the outside rows of each plot. Five plants were randomly 

selected, at least 1 m apart, from rows one and four of each plot. Allowing space between plants 

helps to decrease potential damage from digging into the root mass and maintain the integrity of 

the roots for accurate scoring. Two people, one on each side of the plant, dug a 15-cm diameter 
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circle around the stalk to a depth of 30 cm and then carefully removed a complete root ball. 

Before scoring took place, the roots were washed to remove all soil and other debris.  

Once roots were cleaned, the complete root ball was evaluated using the Iowa State 

University 0 to 3 node-injury scale (Oleson et al., 2005). This scale quantifies the amount of 

cumulative root pruning of the total root mass. An individual root is considered pruned back if it 

is within 3.8 cm of the stalk or soil lines, depending on which node is being rated (Oleson et al., 

2005). The number of pruned roots in each node was counted and divided by the total number of 

roots in that node to get an accurate root feeding score in each of the treatments. An injury score 

of zero signified there was no feeding damage to the roots. A score of one indicates one node had 

been pruned back to within 3.8 cm of the stalk or soil line, depending on its origin. A score of 

two indicates that two nodes were pruned back and a score of three describes a root that had 

three nodes pruned back completely. For example, if one node is completely damaged, it would 

receive a score of one. The second node would then be evaluated and added to the first. If the 

second node has six of 12 roots pruned (0.5), the cumulative root score (node one score added to 

node two score) would equal 1.5. This method results in a linear relationship between the 

numerical value and the amount of root pruning.  The economic threshold for insect feeding is a 

score of 0.25 (Oleson et al., 2005).  

The previous scoring scales were qualitative or less linear in nature, while the Iowa State 

University node injury scale is a more linearly quantitative index. This has been very helpful to 

evaluate minor root injury, especially in evaluating transgenic maize hybrids, and quantifying 

differences in feeding among treatments (Oleson et al., 2005).   

In the locations where severe root feeding took place, lodging notes were taken before 

harvest on the different treatments. Plants were considered lodged if they had an incline greater 
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than 45 degrees from the upright position of 90 degrees in relation with the soil line. The number 

of lodged plants in the inner two rows was divided by the total number of plants in those rows to 

determine the percentage of lodged plants.  

Because lodging creates very difficult harvest conditions, plots with severe lodging were 

hand-harvested and harvested ears were manually placed in to a combine to obtain the total 

harvested yield.  

Plot lengths and number of harvestable ears in each harvested row of every plot were 

obtained and recorded before harvest took place. Plots were harvested mechanically with a 

Wintersteiger Classic™ plot combine (Wintersteiger Ag, Ried, Austria) with a two-row 

Geringhoff™ corn header (Geringhoff, Minot, ND) when severe lodging was not present. The 

two center rows were harvested and used for yield, and a subsample was taken to measure the 

moisture and test weight of the grain for each plot. Yield, percent moisture, and test weight for 

each plot were recorded using a Harvest Master™ (Juniper Systems, Logan, UT) yield monitor 

on the combine. Subsample grain was dried to 15.5 g hg
-1

 moisture before measuring test weight 

to compare treatments.  Plots with severe lodging were hand-harvested, and then threshed using 

the combine, ensuring all recorded data was obtained the same way.  

In Forman, in 2013, maize was not harvested, and data were not recorded because of poor 

stand establishment and development. The Lidgerwood and Wyndmere sites did not have 

sufficient root pruning to record, but plots were still harvested for yield to determine if there 

were any significant differences among the hybrids and insecticide treatments.  

Root ratings for the 10 plants were averaged and tested for normality. If the data were 

found to be normal they were analyzed statistically to determine if the treatments were 

effectively protecting plants from CRW injury and associated yield losses.  
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Data were subjected to an ANOVA using the general linear models (GLM) procedure in 

SAS 9.3 (SAS Institute Inc.; Cary, NC, USA). The node injury scale used to evaluate roots is a 

continuous scale; therefore it can be statistically analyzed using ANOVA. Comparisons were 

made between hybrids and treatments based on the means for root pruning and yield using F-

protected least significant differences (LSDs) at a 0.10 level of confidence.  

An evaluation on the estimated economic return on investment for hybrids with and 

without Bt traits was also completed. The cost of hybrids is calculated based on a bag of maize 

containing 80,000 kernels and a planting population of 86,100 plants ha
-1

 (Table 1). The average 

cost of a hybrid with no Bt traits for resistance to CRW was $293 per bag. Average hybrid cost 

with a single Bt trait was $358 per bag. Hybrids expressing pyramid Bt traits cost $369 per bag. 

The insecticide application was applied to the trial at a rate of 6.25 kg ha
-1

. The product cost on 

average $3 kg
-1

 costing the producer around $18 ha
-1

. These data were not subject to statistical 

analysis.  

Table 1. Estimated cost per hectare of hybrids (80,000 kernel bag) and insecticide (per kilogram) 

for the 2015 season as of December 1, 2014. 

Product Trait  2015 Price† Cost ha
-1

 

P8640 None 276 298 

P9526AM None  + Poncho 1250 310 335 

DKC 43-48 Cry3Bb1 357 386 

P9526AMX Cry34/35Ab1 360 389 

DKC 44-13 Cry3Bb1 + Cry34/35Ab1 369 399 

    

Force3G Tefluthrin 3 18 

† Estimated price is suggested retail price for hybrids, and does not include discounts. 

(D. Anderson, personal communication, 2014) (J. Ehlers, personal communication, 2014) (B. 

Frolek, personal communication, 2014)  

 

 Yields from the Arthur location in 2013 and 2014 were used to compare yields under 

heavy and low CRW infestations (Table 1 and 2). Profit was based on a market price of 

$157/metric ton of maize, and the 2015 prices for maize hybrids. Net return of each hybrid with 
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and without insecticide in-furrow was compared to the hybrid with no Cry proteins and no seed 

or soil-applied insecticide. 
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RESULTS AND DISCUSSION 

Weather Conditions 

 The weather data, as recorded by automated weather stations near the various locations, 

from September 2012 to June 2013, showed the winter air temperatures were slightly colder than 

average, along with extended low bare soil temperatures (NDAWN, 2014). Precipitation in June 

2013 was also above average, which could have increased larval mortality during hatch at some 

locations (Tables 3 and 4). The fall of 2013 had above average rainfall going into the winter. 

Research has shown that saturated topsoil can reduce larval establishment on host plant roots, 

and reduce beetle emergence by 50 percent (Riedell and Sutter, 1995). 

 Corn rootworm populations were greatly reduced in 2014 across the U.S., as well in 

North Dakota (Table 2) (Potter and Ostlie, 2014). The weather data from North Dakota supports 

that the winter of 2013-2014 had colder than normal minimum air temperatures, as well as very 

cold bare soil temperatures (Table 3 and 4) (NDAWN, 2014). These factors, paired with minimal 

snow coverage (Figure 1), resulted in suboptimal overwintering conditions for CRW eggs (Potter 

and Ostlie, 2014). Poor overwintering conditions were followed by above-average rainfall in the 

spring of 2014 at the time of larval hatch. Saturated topsoil conditions could have attributed to a 

reduction in larval establishment on the plant roots, and a reduction in the emergence of adult 

beetles (Riedell and Sutter, 1995). 
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Figure 1. Total snowfall in North Dakota during the winter of 2013-2014 (Data from National 

Weather Service Cooperative Network; Image from ND State Climate Office). 

 

Northern corn rootworms have been found to have better survival under sub-zero 

temperatures than WCR (Ellsbury and Lee, 2004). This is consistent with the fact that NCR are 

indigenous to the tall grass prairies of North America. Northern corn rootworm eggs are able to 

better resist freezing and chilling injury than WCR eggs. Western corn rootworm eggs 

experience significant mortality when exposed to temperatures below -10 °C to -13 °C for a time 

period of 5 weeks or longer (Ellsbury and Lee, 2004). The NCR population was higher than that 

of the WCR in 2014, supporting that NCR are usually better able to survive cold winter 

conditions (Table 2) (Potter and Ostlie, 2014). This is likely what impacted the CRW populations 

that were observed in emergence traps from the experimental plots.    

Table 2. Combined total capture of adult CRWs from emergence traps in all treatment plots, 

Arthur and Wyndmere, ND (2013) and Arthur and Hope, ND (2014). 

Year Northern corn rootworm Western corn rootworm Total 

2013 1277 1163 2440 

2014 554 12 566 

Total 1831 1175 3006 

(V. Calles Torrez, unpublished data).  

 

There were no significant differences in the amount of root pruning injury in the presence 

or absence of soil-applied insecticide in 2014.There are multiple factors that could have 
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contributed to the lack of efficacy of the soil-applied insecticide. June rainfall in 2014 was above 

average (Table 4). Studies have shown that heavy rainfall can reduce the concentration of 

insecticide at seeding depth by leaching through the soil profile (Levine and Oloumi-Sadeghi, 

1991). Degradation of soil-applied insecticide can increase with warm temperatures. June 

temperatures were above normal (Table 4). Larval emergence in 2014 was observed 

approximately 45 days after planting, and feeding occurred for approximately another 30 days 

(Drees et al., 1999). The residual effects of soil-applied insecticides generally only last 30 to 90 

days. This would have put stress on the residual effects of the soil insecticide, and may have 

impacted its effectiveness in preventing root pruning injury.  
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Table 3. Monthly average temperatures and rainfall recorded by automated weather stations near 

Prosper and Wyndmere, ND. 

Month Year 

Min. air 

temp. 

Normal min. air 

temp. Bare† soil temp. Rainfall Avg. rainfall 

  °C °C °C mm mm 

Prosper 

Sept. 2012 

 

5.1 7.6 17.0 14.7 65.5 

Oct. 2012 0.3 0.8 7.3 44.5 61.7 

Nov. 2012 -6.3 -7.2 1.3  23.4 

Dec. 2012 -14.7 -15.2 -1.7  15.7 

Jan. 2013 -18.6 -18.7 -2.4  15.2 

Feb. 2013 -16.4 -15.7 -2.7  14.2 

Mar. 2013 -15.3 -7.7 -1.7  29.5 
April 2013 -3.9 -0.5 0.8 2.8 36.8 
May 2013 7.5 6.3 13.3 105.2 77.5 
June 2013 14.0 12.1 20.5 192.5 100.3 

Wyndmere 

Sept. 2012 

 

4.8 8.6 18.3 9.6 62.2 

Oct. 2012 0.3 1.7 9.0 46.0 55.6 

Nov. 2012 -5.8 -6.2 1.8  22.9 

Dec. 2012 -15.2 -14.4 -0.4  16.3 

Jan. 2013 -18.0 -17.5 -1.3  16.3 

Feb. 2013 -17.0 -14.6 -1.1  16.5 

Mar. 2013 -15.0 -7.4 -0.8  30.7 
April 2013 -4.7 0.2 0.4 37.3 43.2 
May 2013 7.5 7.3 13.3 66.2 74.9 
June 2013 13.9 13.0 19.0 149.3 98.6 
† Bare soil temperature is the temperature of bare soil with no vegetation or cover as measured at 

a depth of 10 cm below the soil surface. 
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Table 4. Monthly average temperatures and rainfall recorded by automated weather stations near 

Galesburg and Prosper, ND. 

Month Year 

Min. air 

temp. 

Normal air 

min. temp. 

Bare† soil 

temp. Rainfall Avg. rainfall 

  °C °C °C mm mm 

Galesburg 

Sept. 2013 9.8 7.1 18.0 83.1 62.2 

Oct. 2013 1.5 -0.4 6.9 96.0 46.2 

Nov. 2013 -9.6 -8.7 -0.6  17.5 

Dec. 2013 -21.2 -17.0 -4.0  14.2 

Jan. 2014 -21.7 -20.4 -4.9  10.9 

Feb. 2014 -21.3 -17.6 -7.1  18.8 

Mar. 2014 -11.5 -9.5 -2.8  19.6 
April 2014 -2.2 -1.2 3.3 58.7 23.9 
May 2014 6.4 6.0 12.0 34.8 71.4 
June 2014 13.0 12.8 19.3 141.5 80.5 

Prosper 

Sept. 2013 10.5 7.6 17.4 92.5 65.5 

Oct. 2013 2.0 0.8 7.7 84.3 61.7 

Nov. 2013 -8.7 -7.2 0.4  23.4 

Dec. 2013 -21.1 -15.2 -1.2  15.7 

Jan. 2014 -22.3 -18.7 -1.8  15.2 

Feb. 2014 -21.5 -15.7 -2.2  14.2 

Mar. 2014 -10.6 -7.7 -1.2  29.5 
April 2014 -0.8 -0.5 4.0 79.9 36.8 
May 2014 7.2 6.3 13.5 52.1 77.5 
June 2014 13.7       12.1 20.5 107.2 100.3 
† Bare soil temperature is the temperature of bare soil with no vegetation or cover as measured at 

a depth of 10 cm below the soil surface. 

 

Root Pruning Injury 

 

 Plants from the check plots containing hybrids without Cry proteins and soil- or seed-

applied insecticide for root protection were dug to evaluate root injury at the Lidgerwood, 

Wyndmere, and Arthur sites in 2013, and at the Arthur, Hope, and Page sites in 2014.  

Insufficient root injury was observed at the following field locations and years, and thus, those 

sites were not scored: Lidgerwood in 2013, Wyndmere in 2013, and Page in 2014. The Arthur 

location in 2013 and Arthur and Hope locations in 2014 had sufficient CRW populations present 
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that resulted in sufficient root pruning injury. Hybrid roots were dug, washed, and evaluated to 

determine the amount of root pruning present. 

At the Arthur location in 2013, the hybrid x insecticide interaction for root pruning injury 

was statistically significant (Table 5). The significant interaction was likely the result of the 

hybrid with Cry3Bb1 having significantly more root pruning injury when insecticide was present 

in-furrow, while in the hybrid with Cry34/35Ab1, the opposite effect was observed. The injury 

score was increased from 0.13 nodes pruned without soil-applied insecticide to 0.5 nodes pruned 

with soil-applied insecticide. The hybrid with Cry34/35Ab1 had an opposite result, showing a 

significant decrease in root pruning injury when insecticide was applied in-furrow. The hybrid 

had 0.45 nodes pruned without insecticide and only 0.15 nodes pruned when insecticide was 

applied in-furrow. The other hybrids had similar root pruning injury regardless of in-furrow 

insecticide application.  

Table 5. Hybrid x insecticide interaction comparing subplot treatment means and whole plot 

treatment for root pruning injury, Arthur, ND, 2013.  

Hybrid Node injury scale (0-3) 

 Without insecticide With insecticide 

P9675R (No Cry proteins) 1.07 0.91  

P9675 (No Cry proteins + Poncho 1250) 0.75 0.77  

DKC43-27 (Cry3Bb1) 0.13 0.50  

P9675AMRW(Cry34/35Ab1) 0.45  0.15 

DKC44-13 (Cry3Bb1 + Cry34/35Ab1) 0.16  0.02  

     LSD1 (p≤0.1)† 0.28 

     LSD2 (p≤0.1)‡ 0.29 

†LSD1 was calculated to compare two subplot treatment means for the same whole plot 

treatment. 

‡LSD2 was calculated to compare two whole plot treatments at the same or different sub plot 

treatments.  

 

 These results support in-furrow insecticide application can have erratic root protection, 

and should not be used as the primary method of protection against CRW (Head et al, 2014). The 

results indicate that soil-applied insecticide does not always decrease the amount of root pruning 
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observed. Overall, hybrids with Bt-traits had less root pruning injury than those without Bt-traits 

in the presence or absence of insecticide in-furrow. These results indicate that all traits were 

effective in controlling CRW.  

Root scores in 2014 reflected the lower CRW populations that were present. In Hope in 

2014, there was significantly more root pruning in the hybrid with no Cry protein than in the 

other hybrids either expressing a Cry protein, or treated with Poncho 1250 (Table 6). There were 

no significant differences among the treatments expressing Cry3Bb1, Cry34/35Ab1, and 

Cry3Bb1 + Cry34/35Ab1 and the treatment with no Cry proteins + Poncho 1250. This indicates 

that under low CRW feeding pressure, seed-applied insecticides can provide some protection 

against larval feeding.  

 In Arthur, in 2014, root injury scores were very low. There were no significant 

differences between the hybrid with no Cry proteins and the hybrid with no Cry proteins + 

Poncho 1250. Both treatments did have significantly more root pruning than the hybrids 

expressing some form of Cry protein, but again the amount of pruning was still below the 

economic threshold associated with yield losses. The hybrids expressing Cry proteins in the form 

of Cry3Bb1, Cry34/35Ab1, and Cry3Bb1 + Cry34/35Ab1 did not differ significantly from each 

other, but had significantly less root pruning when compared to the hybrids expressing no Cry 

proteins or no Cry proteins + Poncho 1250.    

 The combined analysis across locations and years indicated the hybrid with no Cry 

proteins had significantly more root pruning than all other treatments, with an average of 0.42 

nodes pruned (Table 6). The hybrid with no Cry proteins + Poncho 1250 was also significantly 

different from all other treatments, and had an average of 0.32 roots pruned. It was significantly 

lower than the hybrid with no Cry proteins, but was still significantly higher than the hybrids 
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expressing some form of Cry proteins. The hybrid expressing Cry3Bb1 and the hybrid 

expressing Cry34/35Ab1 were not significantly different from each other, but they did have 

significantly more root pruning then the hybrid with Cry3Bb1 + Cry34/35Ab1. The hybrid with 

both traits, Cry3Bb1 + Cry 34/35Ab1, had significantly less root pruning than the other 

treatments, and had the least amount of root pruning injury overall with an average of 0.06 nodes 

pruned.   

Table 6. Effect of different treatments on the average amount of root pruning injury based on the 

Iowa State University node injury scale averaged across hybrids Arthur, ND (2013) and Hope 

and Arthur, ND (2014) and combined locations. 

Hybrid 

Arthur 

2013 

Hope   

2014 

Arthur 

2014 Combined 

 Node injury scale (0-3) 

P8640 (No Cry proteins) 0.99 0.12 0.16 0.42 

P9526AM (No Cry proteins + Poncho 1250) 0.76 0.07 0.14 0.32 

DKC43-48 (Cry3Bb1) 0.32 0.06 0.06 0.15 

P9526AMX (Cry34/35Ab1) 0.30 0.05 0.05 0.14 

DKC44-13 (Cry3Bb1 + Cry34/35Ab1) 0.09 0.07 0.03 0.06 

     LSD (p≤0.1)† 0.20 0.03 0.04 0.06 

     CV % 47.1 72.7 55.7 63.6 

†LSD (p≤0.1) is a Fisher’s Protected LSD. 

 

 The combined analysis of the locations with root pruning injury resulted in the hybrid x 

insecticide interaction being statistically significant. When insecticide was not present, the 

hybrid with Cry3Bb1 + Cry34/35Ab1 had the least root pruning injury with a score of 0.08, but it 

was not significantly different from the hybrid with Cry3Bb1 or the hybrid with Cry34/35Ab1 

(Table 7). The hybrid with Cry34/35Ab1 was not statistically different from the hybrid with no 

Cry proteins + Poncho 1250, but it did have less root pruning injury with a score of 0.19, 

compared to 0.31 nodes pruned in the hybrid with no Cry proteins. The hybrid with no Cry 

proteins + Poncho 1250 was not statistically different from the hybrid with no Cry proteins. This 

shows that hybrids with Cry proteins had less damage than those hybrids without Cry proteins. 
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The hybrids with Cry proteins remained below the economic threshold for damage under varying 

levels of CRW infestations.  

 In the presence of soil-applied insecticide, the hybrid with Cry3Bb1 + Cry34/35Ab1 was 

not statistically different from the hybrid with Cry34/35Ab1 or the hybrid with Cry3Bb1. The 

hybrid with Cry3Bb1 was not statistically different from the hybrid with no Cry proteins + 

Poncho 1250. The hybrid with no Cry protein + Poncho 1250 was not statistically different from 

the hybrid with no Cry proteins, but did have less root pruning injury. The hybrid with no Cry 

proteins and no seed-applied insecticide had the highest amount of root pruning injury with 0.40 

nodes pruned.  

 There were no statistical differences between the any of the hybrids when compared with 

and without soil-applied insecticide.  

 These results do not support the application of insecticide in-furrow to reduce the amount 

of root pruning injury for any of the hybrids tested. Under high populations of corn rootworms, it 

might be beneficial to apply insecticide in-furrow to help reduce the amount of root pruning 

injury, but these data are not sufficient to support that conclusion since the reduction of CRW 

due to insecticide was observed only in one hybrid at one location. Under low populations like 

those observed in 2014, there was no obvious reduction in root pruning injury when insecticide 

was applied in-furrow. In the combined analysis, the hybrids with traits had root pruning injury 

below 0.25, which is the economic threshold for insect feeding. The hybrids with no Cry proteins 

were above this level, even when insecticide was applied on seed or in-furrow at planting. 

 The reduction in root pruning injury was not significantly different from the hybrid with 

no Cry proteins, however. Seed-applied insecticide provided inconsistent root protection for 

hybrids, and did not perform as well as Bt-traits in reducing root pruning injury.   
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Head et al. (2014) had similar results. They observed that hybrids with Cry protein had 

significantly less root pruning injury than hybrids with no Cry proteins. They also observed that 

Cry3Bb1 + Cry34/35Ab1 had less root pruning injury when compared to hybrids with only 

Cry3Bb1 or Cry34/35Ab1 alone. They also reported an increase in CRW efficacy when Cry 

proteins were pyramided when compared to hybrids with single proteins. Overall, however, their 

study concluded that hybrids containing any Cry protein had better root protection and CRW 

efficacy than the control hybrid with no Cry proteins (Head et. al., 2014). The authors also 

reported inconsistencies with soil-applied insecticide. They attributed their results to 

environmental conditions at planting that may not have activated the insecticide. These results 

are consistent with the findings of this study.  

Obopile et al. (2013) reported that hybrids with insecticide seed treatment had 

significantly higher root pruning injury then those hybrids with Bt traits. The hybrids with 

insecticide seed treatment still had significantly less root pruning injury then the untreated 

hybrids, however (Obopile et al., 2013). The reduction in root pruning injury did not always 

translate into a yield advantage for the treated hybrids. This supports that Bt traits provide the 

most root protection, but using a seed treatment can also reduce the amount of root pruning 

injury when compared to a hybrid with no traits or seed treatment. However, there is not always 

a yield advantage when there is a reduction in root pruning injury (Obopile et al., 2013). 
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Table 7. Hybrid x insecticide interaction comparing subplot treatment means for root pruning 

injury without and with insecticide, Arthur, ND (2013) and the Hope and Arthur, ND (2014) and 

combined locations.  

Hybrid Node injury scale (0-3) 

 Without With 

No Cry 0.44 0.40 

No Cry + Poncho 1250 0.31 0.33 

Cry3Bb1 0.09 0.20 

Cry34/35Ab1 0.19 0.08 

Cry3Bb1 + Cry34/35Ab1 0.08 0.05 

     LSD1 (p≤0.1)† 0.16 

     LSD2 (p≤0.1)† 0.17 

†LSD1 was calculated to compare two subplot treatment means for the same whole plot 

treatment. 

‡LSD2 was calculated to compare two whole plot treatments at the same or different sub plot 

treatments. 

 

Yield 

 

Having insecticide applied in-furrow did significantly increase the average yield and test 

weight of the hybrids in Arthur in 2013 (Table 8). This location had high populations of CRW 

and root pruning that exceeded threshold numbers. Hybrids with insecticide applied in-furrow 

yielded 1.1 Mg ha
-1

 greater than those same hybrids in the absence of soil-applied insecticide. 

This may be the result of the high levels of corn rootworm pressure that were observed at this 

location, and the substantial amount of root pruning injury that was recorded for the hybrids at 

this location.  

Table 8. Effect of insecticide application on yield and test weight of hybrids, Arthur, ND (2013).  

Insecticide Yield Test weight 

 Mg ha
-1

 kg/hL 

Without 7.1 62.7 

With 8.2 64.9 

     LSD (p≤0.1)† 0.3 1.5 

† LSD (p≤0.1) is a Fisher’s Protected LSD.   

There were statistical differences between the hybrids at the different locations. This was 

to be expected because of different genetics and yield potential of the various hybrids. The 



37 
 

environments at the various locations the hybrids were placed in may have also favored the yield 

potential of some hybrids more than others.  

 In Lidgerwood in 2013, the hybrid x insecticide interaction for yield was statistically 

significant (Table 9). When insecticide was not applied in-furrow, there were no differences 

between the different hybrids. When insecticide was present in-furrow, the hybrids with 

Cry3Bb1 and with Cry3Bb1+ Cry34/35Ab1 were the highest yielding.  

Table 9. Hybrid x insecticide interaction comparing subplot and whole plot treatments for yield 

Lidgerwood, ND (2013).  

Hybrid Without insecticide With insecticide 

 Mg ha
-1

 

P9675R (No Cry proteins) 7.2  6.0  

P9675R (No Cry proteins + Poncho 1250) 7.6  6.6  

DKC43-27 (Cry3Bb1) 6.6  8.0  

P9675AMRW (Cry34/35Ab1) 7.2  5.4  

DKC44-13 (Cry3Bb1 + Cry34/35Ab1) 6.9  7.7  

     LSD1 (p≤0.1)† 1.5 

     LSD2 (p≤0.1)‡ 1.8 

†LSD1 was calculated to compare two subplot treatment means for the same whole plot 

treatment.  

‡LSD2 was calculated to compare two whole plot treatments at the same or different sub plot 

treatments.  

 

The only hybrid with a significantly different yield with and without soil-applied 

insecticide was the hybrid with Cry34/35Ab1 (Table 9). The yield was significantly higher when 

insecticide was not applied in-furrow. All of the other hybrids were not significantly different 

with or without insecticide applied in-furrow.  

 These results could be variable because CRW root pruning was not present at this 

location. The use of soil-applied insecticide did not show the same benefit for the hybrids with 

no Cry proteins that it did when high CRW populations were present, like those observed at the 

Arthur location in 2013.  
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At Arthur in 2013 the CRW feeding pressure resulted in substantial root pruning. The 

root feeding may have resulted in the significant differences observed in grain yield among the 

different hybrids (Table 10). There was no statistical significance in yield between the hybrids 

expressing Cry3Bb1 only, Cry34/35Ab1 only, and Cry3Bb1 + Cry34/35Ab1. These hybrids 

yielded significantly higher than the hybrid with no Cry proteins and the hybrid with no Cry 

proteins + Poncho 1250. There was no significant difference in yield between the hybrid with no 

Cry proteins and the hybrid with no Cry proteins + Poncho 1250. The hybrid with no Cry 

proteins or seed-applied insecticide had the lowest yield of 5.7 Mg ha
-1

. 

Under the heavy infestations of CRW at the Arthur location in 2013, yields were 

decreased with an increase of root pruning injury, both with and without insecticide applied in-

furrow (Figure 2). Individual hybrids did not always show a reduction in root pruning injury 

when insecticide was applied in-furrow. The overall trend from this location, however, is a 

reduction in yield as the amount of root pruning injury is increased, without or with insecticide 

applied in-furrow. These data illustrate the potential for yield reduction associated with the 

severity level of root pruning injury observed in the field.  

The regression model for the data in Hope and Arthur in 2014 was not as predictive for 

the yield loss associated with increased root pruning injury (data not shown). The average root 

pruning injury score for the hybrids at Arthur was 0.09, and 0.07 at Hope, resulting in injury 

below the economic threshold. 
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Figure 2. Comparison of CRW injury and yield for hybrids with and without soil insecticide at 

Arthur, ND 2013 location.  

 

Gray and Steffey (1998) conducted a similar study on hybrids with no Cry proteins and 

soil-applied insecticide in-furrow. They had similar results when CRW feeding was present. 

They recorded a significant increase in yield for the insecticide treated plots when compared to 

the untreated plots. Insecticide also reduced the amount of root pruning injury observed (Gray 

and Steffey, 1998).  

A regression analysis for the impact of CRW feeding injury on yield from the Urbana, 

Illinois location had similar coefficients of determination as those calculated for the Arthur 2013 

location (Gray and Steffey, 1998). This can be attributed to the heavy CRW feeding that resulted 

in severe root pruning injury. Gray and Steffey (1998) found that about 30 percent of yield loss 

still could not be attributed to CRW feeding damage. Our study found that approximately 15 

percent of yield loss could not be attributed to root pruning injury. This could be caused by 
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advancements in hybrid genetics and environmental conditions that may have increased or 

reduced stress on the hybrids.  

At the Wyndmere location, in the absence of CRW feeding, hybrids did not differ 

significantly in yield (Table 10).   

Table 10. Effect of traits on yield averaged over treatment at Wyndmere, Lidgerwood, and 

Arthur, ND and combined locations (2013). 

Hybrid Wyndmere Lidgerwood Arthur Combined 

 Mg ha
-1

 

P9675R (No Cry proteins) 9.2 6.6 5.7 7.2 

P9675R (No Cry proteins + Poncho 1250) 9.8 7.1 6.7 7.9 

DKC43-27 (Cry3Bb1) 9.5 7.3 8.3 8.4 

P9675AMRW (Cry34/35Ab1) 9.9 6.3 8.8 8.4 

DKC44-13 (Cry3Bb1 + Cry34/35Ab1) 10.2 7.3 8.7 8.6 

     LSD (p≤0.1)† ns ns  1.2       0.7 

     CV % 16.0 18.2 18.1 17.7 

†LSD (p≤0.1) is a Fisher’s Protected LSD.  

 Combined yield results for the 2013 growing season resulted in significant differences in 

yield among the treatments (Table 10). The hybrid with Cry3Bb1 + Cry34/35Ab1 had the 

highest yield of 8.6 Mg ha
-1

, but was not statistically different from the hybrid with Cry3Bb1 or 

the hybrid with Cry34/35Ab1. It was significantly different from both the hybrid with no Cry 

proteins + Poncho 1250 and the hybrid with no Cry proteins.  

Our results show that under heavy CRW infestations, like those observed in 2013, the 

hybrids with Bt traits for CRW exceeded those without Bt traits in yield, even when seed-applied 

insecticide was used in Lidgerwood and Arthur only. When CRW populations were below 

economic threshold or absent, the hybrids with Bt traits had no yield advantage. 

Significant differences in yield among the hybrids were detected in Arthur in 2014 (Table 

11). The hybrid with no Cry proteins had a yield of 8.6 Mg ha
-1

, but it did not differ significantly 

from those with Cry proteins. It was significantly greater than the hybrid with no Cry proteins + 

Poncho 1250.  
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 In Hope in 2014 significant differences in yield among the hybrids were observed (Table 

11). The hybrid with no Cry proteins + Poncho 1250 had a yield of 9.5 Mg ha
-1

, but it was not 

significantly different from the hybrid with Cry3Bb1 and the hybrid with Cry34/35Ab1. Those 

hybrids had significantly higher yields than the hybrid with no Cry proteins and the hybrid with 

Cry3Bb1 + Cry34/35Ab1. The hybrid with Cry3Bb1 + Cry34/35Ab1 had the lowest yield of 7.7 

Mg ha
-1

. 

Table 11. Effects of traits on yield averaged over treatment at Arthur, Hope, and Page, ND and 

combined locations (2014). 

Hybrid Arthur Hope Page Combined 

 Mg ha
-1

 

P8640 (No Cry proteins) 8.6 8.3 8.5 8.5 

P9526AM (No Cry proteins + Poncho 1250) 7.7 9.5 8.5 8.6 

DKC43-48 (Cry3Bb1) 8.0 9.4 9.0 8.8 

P9526AMX (Cry34/35Ab1) 8.0 9.3 8.8 8.7 

DKC44-13 (Cry3Bb1 + Cry34/35Ab1) 8.3 7.7 8.8 8.3 

     LSD (p≤0.1)† 0.7 0.6 ns ns 

     CV % 10.7 8.5 14.8 11.8 

†LSD (p≤0.1) is a Fisher’s Protected LSD. 

 

 In Page in 2014 and in the combined analysis across locations, significant differences in 

yield were not observed (Table 11).  

 In 2014, the Bt traits did not provide clear yield benefits as observed in the previous 

year’s study when the target insects were above economic threshold levels (Potter and Ostlie, 

2014). Obopile et al. (2013) also reported that hybrids with Bt traits or insecticidal seed 

treatments did not always translate into a yield advantage when root pruning injury levels were 

low. At high levels of root pruning injury, the Bt hybrids and seed treatments had a significant 

yield advantage over the untreated hybrids (Obopile et al., 2013). 

Test Weight 

In 2013, in Wyndmere statistical significance for test weight was observed (Table 12). 

The hybrid with Cry3Bb1 + Cry34/35Ab1 had a test weight of 63.2 kg/hL and have significantly 
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higher test weight than the hybrid with Cry34/35Ab1 and the hybrid with no Cry proteins + 

Poncho 1250. In Lidgerwood, in 2013, there were no statistical differences in test weight (Table 

12). In Arthur, in 2013, the hybrid with Cry3Bb1 + Cry34/35Ab1 had a significantly higher test 

weight than the hybrid with Cry3Bb1 and the hybrid with no Cry proteins + Poncho 1250 (Table 

12). In 2013, the combined analysis for test weights across locations did not detect significant 

differences among hybrids (Table 12).  

Table 12. Effect of traits on test weight averaged over treatment at Wyndmere, Lidgerwood, and 

Arthur, ND and combined locations (2013). 

Hybrid Wyndmere Lidgerwood Arthur Combined 

 kg/hL 

P9675R (No Cry proteins) 62.1 65.6 63.6 63.8 

P9675R (No Cry proteins + Poncho 1250) 61.6 66.8 63.3 63.9 

DKC43-27 (Cry3Bb1) 62.3 66.4 63.0 63.9 

P9675AMRW (Cry34/35Ab1) 61.8 65.3 64.2 63.8 

DKC44-13 (Cry3Bb1 + Cry34/35Ab1)   63.2 66.3 64.8 64.8 

     LSD (p≤0.1)† 1.3 ns 1.3 ns 

     CV % 2.5 3.5 2.3 9.8 

†LSD (p≤0.1) is a Fisher’s Protected LSD. 

 

 In 2014, in Arthur and Hope statistical differences in test weight between hybrids were 

not observed (Table 13). In 2014, the statistical analysis for test weights detected significant 

differences among hybrids (Table 13). The hybrid with no Cry proteins had a test weight of 66.7 

kg/hL, and was not statistically different from the hybrid with Cry3Bb1 + Cry34/35Ab1 and the 

hybrid with Cry3Bb1. The hybrid with Cry34/35Ab1 had the lowest test weight of 63.1 kg/hL. In 

2014, the combined analysis across locations of average test weights at the 2014 locations 

showed significant differences between the hybrids (Table 13). The hybrid with no Cry proteins 

had a test weight of 63.9 kg/hL. It was significantly greater than the hybrid with no Cry proteins 

+ Poncho 1250 and the hybrid with Cry34/35Ab1. 

 The results did not show a clear test weight advantage to hybrids with or without Bt 

traits. The test weights from trials were variable among location and years.  
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 Stress from disease, environment, fertility, and insect damage can cause some reductions 

in test weight (Rankin, 2009). This occurs because the movement of nutrients is impacted during 

grain fill or the quality of the kernel is compromised once it is filled. In this experiment, the 

results do not show that under heavy CRW root pruning test weight values were always 

decreased when compared to locations with no CRW root pruning.  

Table 13. Effects of traits on test weight averaged over treatment at Arthur, Hope, and Page, ND 

and combined locations (2014). 

Hybrid Arthur Hope Page Combined 

 kg/hL 

P8640 (No Cry proteins) 59.9 65.1 66.7 63.9 

P9526AM (No Cry proteins + Poncho 1250) 60.5 63.6 64.2 62.8 

DKC43-48 (Cry3Bb1) 61.0 64.1 65.9 63.7 

P9526AMX (Cry34/35Ab1) 60.0 64.1 63.1 62.4 

DKC44-13 (Cry3Bb1 + Cry34/35Ab1) 60.5 63.7 66.1 63.4 

     LSD (p≤0.1)† ns ns 1.0 0.9 

     CV % 4.1 2.9 1.9 3.0 

†LSD (p≤0.1) is a Fisher’s Protected LSD. 

 

Economics 

 

 Under heavy CRW infestations, there was an increased return on investment for hybrids 

with Bt traits when compared with those without Bt traits (Table 14). There was also an 

economic advantage when insecticide was applied in-furrow for all of the hybrids. Insecticide 

applied in-furrow had the greatest return on investment for the hybrids without Bt traits.  
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Table 14. Estimated return on investment for hybrids with and without Bt traits in the presence 

and absence of soil insecticide based on hybrid yields, Arthur, ND (2013). 

Hybrid Yield 

$157/

metric 

ton 

Control 

cost ha
-1

 

Net 

return 

Net 

return 

vers 

check 

 Without  insecticide 

P9697R (No Cry proteins) 4.9 772 298 474  

P9675R (No Cry proteins + Poncho 1250) 5.7 898 335 563 +89 

DKC 43-27 (Cry3Bb1) 8.0 1260 386 874 +400 

P9675AMRW (Cry34/35Ab1) 8.4 1323 389 934 +460 

DKC 44-13 (Cry3Bb1 + Cry34/35Ab1) 8.5 1339 399 940 +466 

 With insecticide 

P9697R (No Cry proteins) 6.6 1039 316 723 +249 

P9675R (No Cry proteins + Poncho 1250) 7.8 1228 353 875 +401 

DKC 43-27 (Cry3Bb1) 8.6 1354 404 950 +476 

P9675AMRW (Cry34/35Ab1) 9.2 1449 407 1042 +568 

DKC 44-13 (Cry3Bb1 + Cry34/35Ab1) 9.0 1417 417 1000 +526 

 

 When CRW infestations were low, the advantage to Bt traits in hybrids was lost (Table 

15). Based on the yields from the Arthur 2014 location, there is a net loss to planting hybrids 

with Bt traits. The advantage to using insecticide in-furrow was much more variable in 2014. Not 

all of the hybrids had a positive yield response to applying insecticide in-furrow like they had in 

2013.   

These results support that producers need to be aware of the risk of having high 

populations of CRW in their fields. Planting hybrids with Bt traits offered a large economic gain 

when heavy amounts of root pruning took place. When populations were lower and root pruning 

was minimal, the yield advantage of hybrids with Bt traits was reduced and became an economic 

loss for producers. 
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Table 15. Estimated return on investment for hybrids with and without Bt traits in the presence 

and absence of soil insecticide based on hybrid yields, Arthur, ND (2014).  

Hybrid Yield 

$157/

metric 

ton 

Control 

cost ha
-1

 

Net 

return 

Net 

return 

vers 

check 

 Without  insecticide 

P8640R (No Cry proteins) 8.8 1386 298 1088  

P9526AM (No Cry proteins + Poncho 1250) 7.4 1165 335 830 -258 

DKC 43-48 (Cry3Bb1) 7.3 1150 386 764 -324 

P9526AMX (Cry34/35Ab1) 7.9 1244 389 855 -233 

DKC 44-13 (Cry3Bb1 + Cry34/35Ab1) 8.3 1307 399 908 -180 

 With insecticide 

P8640R (No Cry proteins) 8.3 1307 316 991 -97 

P9526AM (No Cry proteins + Poncho 1250) 8.1 1276 353 923 -165 

DKC 43-48 (Cry3Bb1) 8.6 1354 404 950 -138 

P9526AMX (Cry34/35Ab1) 7.9 1244 407 837 -251 

DKC 44-13 (Cry3Bb1 + Cry34/35Ab1) 8.2 1291 417 874 -214 
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CONCLUSIONS 

 

 Corn rootworm pressure varied at the different locations during the two years this study 

took place. Despite having varying amounts of pressure, we could conclude that all the Bt traits 

currently available still have efficacy against CRW. We observed less root pruning injury in the 

hybrids with Bt traits verses the hybrids with no Bt traits and those with no Bt traits treated with 

insecticide on seed. Soil-applied insecticide did not always reduce the amount of root pruning 

injury that the hybrids had, even under high levels of CRW pressure. There was also no clear 

advantage to planting Bt-traited hybrids in addition to applying insecticide in-furrow.  

Yield or test weight was not consistently increased with the use of Bt-traited hybrids. 

When heavy CRW infestation is observed, hybrids with Bt traits had a yield advantage over 

those hybrids without Bt traits.  Results from the Arthur 2013 location support that hybrids with 

Bt traits will have higher yields than non-Bt hybrids when the target insect is present, and insect 

populations are above economic threshold levels. When CRW populations were low or 

nonexistent, the yield advantage was not observed. This is the result of the variability in the 

individual hybrids yield potential and response to environmental conditions when the target pest 

is not present.  

Efficacy of current Bt traits tested were still effective against CRWs; however, it is 

important to use this tool with other pest management strategies. Producers should scout fields 

for CRW and plan accordingly the next production season. Our results show that planting 

hybrids with Bt traits does not always offer a yield or test weight advantage over hybrids without 

Bt traits when CRW populations are low or nonexistent. The cost per hectare to plant hybrids 

with Bt traits is much higher than planting hybrids without Bt traits and using seed or soil-

applied insecticide if the protection is not necessary in the field.  
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 Scouting fields, in addition to crop rotation, controlling volunteer corn in fields, and 

rotating modes of action of Bt traits and insecticide to manage CRW creates a more solid IPM 

strategy that will help delay CRW resistance to the Bt trait. 
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APPENDIX 

 

Table A1.  Expected mean squares for the ANOVA for a single location. 

SOV    df     Observed                         Expected                               F-ratio 

Rep 3    M1                                    σ
2
 + hσ

2
γ + ihσ

2
R                             M1/M5 

 

 

Insecticide 1 M2                                    σ
2
 + hσ

2
γ + rσ

2
IH + rhσ

2
I             M2/M3 

Error (a) 3     M3                                    σ
2
 + hσ

2
γ                                                

Hybrid 4    M4                                    σ
2
 + rσ

2
IH + riσ

2
H                   M4/M6 

Insecticide X Hybrid 12    M5                                    σ
2
 + rσ

2
IH                                             M5/M6 

Residual error 16     M6                                    σ
2
 

 Total     39  

Table A2.  Expected mean squares for the ANOVA for combined locations. 

SOV    df    Observed       Expected                                    F-ratio 

Location 2 M1 

Rep(Location) 9 M2 

Insecticide 1 M3                   σ
2
 + hσ

2
γ +hrσ

2
IL + hlrσ

2
I           M3/M4 

Insecticide X Location 

 

2 M4                          σ
2
 + hσ

2
γ + hrσ

2
IL                                M4/ M5 

Error (a) 9    M5                 σ
2
 + hσ

2
γ                                   M5/ M11 

Hybrid 4    M6                    σ
2
 + iσ

2
γ +irσ

2
HL                                 M6/ M7 

Hybrid X Location 8 M7                  σ
2
 + iσ

2
γ                                   M7/ M11 

Insecticide X Hybrid 4 M9                  σ
2
 + rσ

2
IHL + lrσ

2
IH                   M9/ M10 

Insecticide X Hybrid X Location 8    M10                 σ
2
 + rσ

2
IHL                              M10/ M11 

Residual error 72    M11                   σ
2
  

Total 119  
 

Table A3. ANOVA for average yield and test weight, Wyndmere, ND, 2013. 

  Yield Test Weight 

SOV df MS F Value MS F Value 

Rep 3 4092794.34 1.69 3.92 1.66 

A [Insecticide] 1 759270.77 0.42 1.04 0.14 

Error a 3 1786684.22 0.74 7.62 3.23 

B [Hybrid] 4 1227783.24 0.51 3.32 1.41 

A x B 4 3377708.59 1.39 3.02 1.28 

Error 24 2427643.58  2.36  

Total 39     
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Table A4. ANOVA for average yield and test weight, Lidgerwood, ND, 2013.  

  Yield Test Weight 

SOV df MS F Value MS F Value 

Rep 3 7483131.88 4.67 10.17 1.93 

A [Insecticide] 1 1141753.54 0.30 3.74 1.43 

Error a 3 3869496.81 2.42 2.61 0.49 

B [Hybrid] 4 1411525.99 0.88 3.34 0.63 

A x B 4 3688335.42 2.30 1.81 0.34 

Error 23 1601445.25  5.28  

Total 38     

 

Table A5. ANOVA for average root pruning injury, Hope, ND, 2014.  

SOV df MS F Value 

Rep 3 0.0019787 1.32 

A [Insecticide] 1 0.0000004 0.00 

Error a 3 0.00175907 1.18 

B [Hybrid] 4 0.00621440 4.16 

A x B 4 0.00126778 0.85 

Error 24 0.00149419  

Total 39   

 

Table A6. ANOVA for average root pruning injury, Arthur, ND, 2014.  

SOV df MS F Value 

Rep 3 0.00435156 1.81 

A [Insecticide] 1 0.00069722 0.24 

Error a 3 0.00291149 1.21 

B [Hybrid] 4 0.02396523 9.95 

A x B 4 0.00173285 0.72 

Error 24 0.00240784  

Total 39   

 

Table A7. ANOVA for average yield and test weight, Page, ND, 2014.  

  Yield Test Weight 

SOV df MS F Value MS F Value 

Rep 3 10439502.20 6.23 11.19 7.51 

A [Insecticide] 1 189817.69 0.16 0.16 0.74 

Error a 3 1169594.43 0.70 0.21 0.14 

B [Hybrid] 4 370154.89 0.22 17.49 11.74 

A x B 4 917736.49 0.55 0.37 0.25 

Error 24 1674432.80  1.49  

Total 39     
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Table A8. ANOVA for average yield, Hope, ND, 2014.  

SOV df MS F Value 

Rep 3 8050790.82 14.47 

A [Insecticide] 1 2920834.99 5.05 

Error a 3 578524.15 1.04 

B [Hybrid] 4 4760174.16 8.55 

A x B 4 542458.66 0.97 

Error 23 556545.92  

Total 38   

 

Table A9. ANOVA for average yield, Arthur, ND, 2014.  

SOV df MS F Value 

Rep 3 7767690.67 1.03 

A [Insecticide] 1 589205.95 0.40 

Error a 3 1479408.12 1.96 

B [Hybrid] 4 728548.78 0.97 

A x B 4 1020607.57 1.35 

Error 21 754223.57  

Total 36   

 

Table A10. ANOVA for average yield, root pruning injury, and test weight, Arthur, ND, 2013. 

  Yield Root Pruning Injury Test Weight 

SOV df MS F Value MS F Value MS F Value 

Rep 3 1724897.84 0.90 0.05 0.85 5.29 2.39 

A [Insecticide] 1 12751863.55 103.60 0.02 0.28    46.87 10.82 

Error a 3 123084.30 0.06 0.06 1.06 4.33 1.96 

B [Hybrid] 4 14838995.20 7.74 1.09 20.39 4.30 1.95 

A x B 4 1147754.08 0.60 0.13 2.50 0.67 0.30 

Error 24 1916334.40  0.05  2.21  

Total 39       

 

Table A11. ANOVA for average test weight, Arthur, ND, 2014.  

SOV df MS F Value 

Rep 3 0.81 0.13 

A [Insecticide] 1 6.01 0.99 

Error a 3 6.08 1.00 

B [Hybrid] 4 1.69 0.28 

A x B 4 6.93 1.14 

Error 24 6.09  

Total 39   
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Table A12. ANOVA for average test weight, Hope, ND, 2014.  

SOV df MS F Value 

Rep 3 4.49 1.32 

A [Insecticide] 1 0.17 0.13 

Error a 3 1.37 0.41 

B [Hybrid] 4 2.71 0.80 

A x B 4 5.37 1.58 

Error 24 3.40  

Total 39   

 

Table A13. ANOVA for average yield and test weight of combined locations, Arthur, 

Wyndmere, and Lidgerwood, ND, 2013.  

  Yield Test Weight 

SOV df MS F Value MS F Value 

Location 2 87982733.7 43.04 54.38 1.41 

Rep (Location) 9 5745106.2 2.81 25.82 0.67 

Insecticide 1 4955361.0 2.44 66.73 1.66 

Insecticide x Location 2 4449983.7 2.18 25.22 0.65 

Error (a) 9 2030575.6 0.99 40.32 1.05 

Hybrid 4 7628941.5 3.73 13.95 0.36 

Hybrid x Location 8 4797444.8 2.35 42.42 1.18 

Insecticide x Hybrid 4 2076795.2 1.02 36.33 0.94 

Insecticide x Hybrid x Location 8 3697111.3 1.81 42.14 1.09 

Residual error 72 2044197.5  38.55  

Total 119     

 

Table A14. ANOVA for average yield of combined locations, Arthur, Hope, and Page, ND, 

2014.  

  Yield 

SOV df MS F Value 

Location 2 5640934.0 5.57 

Rep (Location) 9 6422354.2 6.35 

Insecticide 1 568782.2 0.53 

Insecticide x Location 2 1502288.3 1.48 

Error (a) 9 1075842.2 1.06 

Hybrid 4 1053015.4 1.04 

Hybrid x Location 8 2384751.4 2.36 

Insecticide x Hybrid 4 755442.9 0.75 

Insecticide x Hybrid x Location 8 850683.5 0.84 

Residual error 68 1012141.7  

Total 115   
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Table A15. ANOVA for average test weight of combined locations, Arthur, Hope, and Page, 

ND, 2014.  

  Test Weight 

SOV df MS F Value 

Location 2 259.7 70.95 

Rep (Location) 9 5.5 1.50 

Insecticide 1 2.0 0.77 

Insecticide x Location 2 2.2 0.60 

Error (a) 9 2.6 0.70 

Hybrid 4 9.2 2.51 

Hybrid x Location 8 6.4 1.74 

Insecticide x Hybrid 4 4.9 1.33 

Insecticide x Hybrid x Location 8 3.9 1.07 

Residual error 72 3.7  

Total 119   

 

Table A16. ANOVA for average root pruning injury and test weight of combined locations 

Arthur, ND, 2013 and Arthur and Hope, ND, 2014.  

  Root Pruning Injury Test Weight 

SOV df MS F Value MS F Value 

Location 2 2.24 117.24 173.51 44.50 

Rep (Location) 9 0.02 0.91 3.53 0.91 

Insecticide 1 0.003 0.16 7.71 1.96 

Insecticide x Location 2 0.007 0.35 22.67 5.81 

Error (a) 9 0.02 1.07 3.93 1.01 

Hybrid 4 0.53 27.76 0.90 0.23 

Hybrid x Location 8 0.29 15.41 3.89 1.00 

Insecticide x Hybrid 4 0.04 2.16 4.46 1.14 

Insecticide x Hybrid x Location 8 0.05 2.49 4.26 1.09 

Residual error 72 0.02  3.90  

Total 119     
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Table A17. ANOVA for average yield of combined locations, Arthur, ND, 2013 and Arthur and 

Hope, ND, 2014.  

  Yield 

SOV df MS F Value 

Location 2 13143556.90 11.98 

Rep (Location) 9 3517486.11 3.20 

Insecticide 1 2198403.81 3.02 

Insecticide x Location 2 6924577.63 6.31 

Error (a) 9 727005.52 0.66 

Hybrid 4 5003960.86 4.56 

Hybrid x Location 8 7495050.88 6.83 

Insecticide x Hybrid 4 1217905.18 1.11 

Insecticide x Hybrid x Location 8 687524.56 0.63 

Residual error 68 1097518.8  

Total 115   

 

 
 


