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ABSTRACT

We consider a communication network, where two mutually interfering 2-user

MIMO Multiple Access Channels (MAC) operate simultaneously via the same time-

frequency space, and characterize the capacity region of this network when the channel

matrices satisfy a strong interference condition. This interfering MAC (IMAC) with

aforementioned channel matrices is called strongly ordered IMAC in this work. We

characterize the capacity region first using the genie aided approach to find out

several constraints that must be satisfied by any achievable rate tuple. Then we

show that independent Gaussian coding at each transmitter and joint decoding of

the messages at the receivers can achieve all the rate pairs that satisfy all the

aforementioned constraints. In an IMAC, there are two types of tradeoffs between

rates of communication; it is between the rates of users from different MACs and

among rates of users belonging to the same MAC. Result shows two tradeoffs are

homogeneous.
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CHAPTER 1. INTRODUCTION

The goal of any communication system is to transmit information from an

information source to a destination via a communication channel. A communication

engineer usually has very little control over these three components. The engineer’s

role is to design transmitters and receivers that send the source output over the

channel to the destination with high fidelity. In this chapter, we study the other im-

portant component of a communication system; i.e., the communication channel.We

also introduce the concept of coding for protection of messages against channel errors.

A communication channel is any medium over which information can be trans-

mitted or in which information can be stored. Coaxial cable, ionospheric propagation,

free space, fiber optic cables, and magnetic and optical disks are examples of

communication channels. What is common among all these is that they accept

signals at their inputs and deliver signals at their outputs at a later time (storage

case) or at another location (transmission case). Therefore, each communication

channel is characterized by a relation between its input and output. In this sense a

communication channel is a system.

There are many factors that cause the output of a communication channel

to be different from its input. Among these factors are attenuation, nonlinearities,

bandwidth limitations, multipath propagation, and noise. All these factors contribute

to a usually complex input/output relation in a communication channel. Due to the

presence of fading and noise, the input/output relation in a communication channel

is, generally, a stochastic relation.

Channels encountered in practice are generally waveform channels that accept

(continuous-time) waveforms as their inputs and produce waveforms as their outputs.

Because the bandwidth of any practical channel is limited, by using the sampling

theorem, a waveform channel becomes equivalent to a discrete-time channel. In a
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Figure 1. A discrete channel

discrete-time channel both input and output are discrete-time signals.

In a discrete-time channel, if the values that the input and output variables

can take are finite, or countably infinite, the channel is called a discrete channel. An

example of a discrete channel is a binary-input binary-output channel. In general, a

discrete channel is defined by X , the input alphabet, X , the output alphabet, and

p(y|x) the conditional PMF of the output sequence given the input sequence. A

schematic representation of a discrete channel is given in Figure 1. In general, the

output yi does not only depend on the input at the same time xi but also on the

previous inputs, or even previous and future inputs (in storage channels). Therefore,

a channel can have memory. However, if a discrete channel does not have memory, it

is called a discrete-memoryless channel, and for such a channel, for any y ε Yn and

x ε X n,we have

p(y|x) =
n∏
i=1

p(yi|xi) (1.1)

A special case of a discrete- memoryless channel is the binary-symmetric

channel. Figure 2 shows a binary- symmetric channel. In a binary-symmetirc channel,

ε = P (0|1) = P (1|0) is called the crossover probability.

2



Figure 2. The binary-symmetric channel

The most important continuous alphabet channel is the discrete-time additive

white Gaussian noise channel with an input power constraint. In this channel both

X and Y are the set of real numbers, and the input-output relation is given by

Y = X + Z (1.2)

where Z denotes the channel noise, which is assumed to be Gaussian with mean equal

to 0 and variance equal to PN . It is further assumed that inputs to this channel satisfy

some power constraint. For example, for large n, input blocks of length n satisfy

1

n

n∑
i=1

x2
i ≤ P (1.3)

where P is some fixed power constraint. The channel model is shown in Figure 3.

Of course, the main objective when transmitting information over any communi-

cation channel is reliability, which is measured by the probability of correct reception

at the receiver. For that we need to derive the Channel Capacity, for that we need

to understand other important fundamentals which we will see in next sections. In

3



Figure 3. Additive white Gaussian noise channel with power constraint

section 1.5 we will get back to channel capacity .

1.1. Entropy

The development of the idea of entropy of random variables and processes by

Claude Shannon provided the beginning of information theory and of the modern

age of ergodic theory. We shall see that entropy and related information measures

provide useful descriptions of the long term behavior of random processes and that

this behavior is a key factor in developing the coding theorems of information theory.

Suppose now that we have n symbols {a1, a2, ...., an}, and some source is

providing us with a stream of these symbols. Suppose further that the source emits

the symbols with probabilities {p1, p2, ....pn}, respectively. For now, we also assume

that the symbols are emitted independently (successive symbols do not depend in

any way on past symbols).

The average amount of information we get from each symbol can be achieved

from weighted average. If we observe the symbol ai, we will be getting log
(

1
pi

)
infor-

mation from that particular observation. In a long run (say N) of observations, we

will see (approximately) N×pi occurrences of symbol ai.Thus, in the N (independent)

4



observations, we will get total information I of

I =
n∑
i=1

(N × pi)× log

(
1

pi

)
(1.4)

But then, the average information we get per symbol observed will be,

I

N
=

n∑
i=1

pi × log

(
1

pi

)
(1.5)

Note that limx→0 x × log
(

1
x

)
= 0 , so we can, for our purposes, define pi × log

(
1
pi

)
to be 0 when pi = 0.

This brings us to a fundamental definition. This definition is essentially due to

Shannon in 1948, in the seminal papers in the field of information theory. As we have

observed, we have defined information strictly in terms of the probabilities of events.

Definition 1. The entropy of random variable X is a function of its PMF, if it is a

discrete RV it is defined by:

H(X) =
N∑
i=1

pi log

(
1

pi

)
. (1.6)

Another worth while way to think about this is in terms of expected value.

H(X) = −E[logP (x)] (1.7)

In other words, the entropy of a probability distribution is just the expected

value of the information of the distribution. Here, we use the logarithm to the base

2, which is well adapted to digital communication, and the entropy is then expressed

in bits.

5



Intuitively, the entropy gives a measure of the uncertainty of the random

variable. It is sometimes called the missing information: the larger the entropy, the

less a priori information one has on the value of the random variable. This measure

is, roughly speaking, the logarithm of the number of typical values that the variable

can take. For example, A fair coin has two values with equal probability. Its entropy

is 1 bit. A fair dice with M faces has entropy logM .

1.2. Joint and Conditional Entropy

When dealing with two or more random variables, we can introduce joint and

conditional entropies in exactly the same way that joint and conditional probabilities

are introduced. These concepts are especially important when dealing with sources

with memory.

Definition 2. The joint entropy of two discrete random variables (X, Y ) is defined

by,

H(X, Y ) = −
∑
x,y

p(x, y) log p(x, y). (1.8)

For the case of n random variables X = (X1, X2, ......., Xn), we have,

H(X) = −
∑

x1,x2,.....xn

p(x1, x2, .....xn) log p(x1, x2, .....xn). (1.9)

As seen, the joint entropy is simply the entropy of a vector-valued random

variable.

The conditional entropy of the random variable X, given the random variable Y ,

can be defined by noting that if Y = y, then the PMF of the random variables X will

be p(x|y), and the corresponding entropy is H(X|Y = y) = −
∑

x p(x|y) log p(x|y),

which is intuitively the amount of uncertainty in X when one knows Y = y. The

weighted average of the above quantities over all y is the uncertainty in X when Y is

known. This quantity is known as the conditional entropy and defined as follows:

6



Definition 3. The conditional entropy of the random variable X given the random

variable Y is defined by,

H(X|Y ) = −
∑
x,y

p(x, y) log p(x|y) (1.10)

In general, we have

H(Xn|X1, ....., Xn−1) = −
∑

x1,.....,xn

p(x1, ....., xn) log p(xn|x1, ....., xn−1) (1.11)

Using chain rule for PMFs, p(x, y) = p(y)p(x|y), we can show that H(X, Y ) =

H(Y ) +H(X|Y ). Generalizing this result to the case of n random variables to show

the following chain rule for entropies,

H(X) = H(X1) +H(X2|X1) + .....+H(Xn|X1, X2, ...., Xn−1) (1.12)

If the random variable Xn denotes the output of a discrete (not necessarily

memoryless) source at time n, then H(X2|X1) denotes the fresh information provided

by source output X2 to someone who already knows the source output X1. In the

same way, H(Xn|X1, X2, ..., Xn1) denotes the fresh information in Xn for an observer

who has observed the sequence (X1, X2, ..., Xn1). The limit of the above conditional

entropy as n tends to infinity is known as the entropy rate of the random process.

Definition 4. The entropy rate of a stationary discrete-time random process is

defined by

H = lim
n→∞

H(Xn|X1, X2, ..., Xn1) (1.13)

Stationarity ensures the existence of the limit, and it can be proved that an alternative

7



definition of the entropy rate for sources with memory is given by

H = lim
n→∞

1

n
H(X1, X2, ..., Xn1) (1.14)

Entropy rate plays the role of entropy for sources with memory. It is basically

a measure of the uncertainty per output symbol of the source.

1.3. Mutual Information

For discrete random variables, H(X|Y ) denotes the entropy (or uncertainty) of

the random variable X after random variable Y is known. Therefore, if the starting

entropy of the random variable X is H(X), then H(X)−H(X|Y ) denotes the amount

of uncertainty of X that has been removed by revealing random variable Y . In

otherwords, H(X)−H(X|Y ) is the amount of information provided by the random

variable Y about random variable X. This quantity plays an important role in both

source and channel coding and is called the mutual information between two random

variables.

Definition 5. The mutual information between two discrete random variables X and

Y is denoted by I(X;Y ) and defined by

I(X;Y ) = H(X)−H(X|Y ). (1.15)

Mutual information has certain properties that are explored in problems and

summarized here.

1. I(X;Y ) ≥ 0 with equality if and only if X and Y are independent.

2. I(X;Y ) ≤ min(H(X), H(Y )).

3. I(X;Y ) =
∑

x,y p(x, y) log p(x,y)
p(x)p(y)

.

4. I(X;Y ) = H(X) +H(Y )−H(X, Y ).

8



5. I(X;Y |Z) is the conditional mutual information and defined by I(X;Y |Z) =

H(X|Z)−H(X|Y, Z).

6. I(X;Y |Z) =
∑

z p(z)I(X;Y |Z = z).

7. I(XY ;Z) = I(X;Z)+I(Y ;Z|X). This is the chain rule for mutual information.

8. In general, I(X1, ..., Xn;Y ) = I(X1;Y ) + I(X2;Y |X1) + .... +

I(Xn;Y |X1, ..., Xn−1).

Figure 4. Entropy, conditional entropy, and mutual information

Figure 4 represents the relation among entropy, conditional entropy and mutual

information quantities.

1.4. Differential Entropy

So far we have defined entropy and mutual information for discrete sources. If we

are dealing with a discrete-time, continuous-alphabet source whose outputs are real

numbers, nothing exists that has the intuitive meaning of entropy. In the continuous

case, another quantity that resembles entropy, called differential entropy, is defined.

However, it does not have the intuitive meaning of entropy. In fact, to reconstruct the

output of a continuous source reliably, an infinite number of bits/source output are

9



required because any output of the source is a real number and the binary expansion

of a real number has infinitely many bits.

Definition 6. The differential entropy of a continuous random variable X with PDF

fX(x) is denoted by h(X) and defined by

h(X) = −
∫ ∞
−∞

fX(x) log fX(x)dx. (1.16)

where 0 log 0 = 0.

The differential entropy of a Gaussian random variable with mean zero and

variance σ2 can be derived as follows:

The PDF is f(x) = 1√
2πσ2

e−
x2

2σ2 . Therefore, using natural logarithms we find the

differential entropy in nats,

h(X) = −
∫ ∞
−∞

ln

(
1√

2πσ2

)
f(x)dx−

∫ ∞
−∞

ln

(
e−

x2

2σ2

)
f(x)dx (1.17)

= ln
(√

2πσ2
)

+
σ2

2σ2
(1.18)

=
1

2
ln(2πeσ2) nats (1.19)

where we have used
∫∞
−∞ f(x)dx = 1 and

∫∞
−∞ x

2f(x)dx = σ2. Changing the

base of logarithms to 2, we have

h(X) =
1

2
log(2πeσ2)bits (1.20)

Extensions of the definition of differential entropy to joint differential variables

and conditional differential entropy are straightforward. For two random variables,

10



we have

h(X, Y ) = −
∫ ∞
−∞

∫ ∞
−∞

f(x, y) log f(x, y)dxdy (1.21)

and

h(X|Y ) = h(X, Y )− h(Y ) (1.22)

The mutual information between two continuous random variables X and Y is defined

similarly to the discrete case as

I(X;Y ) = h(Y )− h(Y |X) = h(X)− h(X|Y ) (1.23)

Although differential entropy does not have the intuitive interpretation of

discrete entropy, it can be shown that the mutual information of continuous random

variables has basically the same interpretation as the mutual information of discrete

random variables; i.e., the information provided by one random variable about the

other random variable.

1.4.1. Jensen’s Inequality

This inequality is one of the most widely used in mathematics and one that

underlies many of the basic results in information theory. It is called Jensen’s

Inequality.

Theorem 1. If f is a convex function and X is a random variable,

E[f(X)] ≥ f(E[X]) (1.24)

Moreover, if f is strictly convex, the equality in equation (1.24) implies that X = E[X]

with probability 1 (i.e., X is a constant).

The inequallity can be extended to continuous distributions by continuity

arguments. Using these results we can prove some of the properties of entropy and

11



relative entropy. The following theorem is of fundamental importance.

1.4.2. Data Processing Inequality

The data-processing inequality can be used to show that no clever manipulation

of the data can improve the inferences that can be made from the data.

Definition 7. Random variables X, Y, Z are said to form a Markov chain in that

order (denoted by X → Y → Z) if the conditional distribution of Z depends only on

Y and is conditionally independent of X. Specifically, X, Y, and Z form a Markov

chain X → Y → Z if the joint probability mass function can be written as,

p(x, y, z) = p(x)p(y|x)p(z|y) (1.25)

We can now prove an important and useful theorem demonstrating that no

processing of Y , deterministic or random, can increase the information that Y contains

about X.

Theorem 2. If X → Y → Z, then I(X;Y ) ≥ I(X;Z).

We have equality if and only if I(X;Y |Z) = 0 (i.e., X → Z → Y forms a

Markov chain). Similarly, one can prove that I(Y ;Z) ≥ I(X;Z).

The supporting results to this therorem are as follows:

1. In particular, if Z = g(Y ), we have I(X;Y ) ≥ I(X; g(Y )).

2. If X → Y → Z, then I(X;Y |Z) ≤ I(X;Y ).

1.5. Channel Capacity

In this chapter we characterize the channel capacity. The characterization of

the channel capacity (the logarithm of the number of distinguishable signals) as the

maximum mutual information is the central and most famous success of information

theory.

12



1.5.1. Discrete Memoryless Channel Capacity

We define a discrete channel to be a system consisting of an input alphabet X

and output alphabet Y and a probability transition matrix p(y|x) that expresses the

probability of observing the output symbol y given that we send the symbol x. The

channel is said to be memoryless if the probability distribution of the output depends

only on the input at that time and is conditionally independent of previous channel

inputs or outputs. We will first understand the channel capacity of a discrete memory

less channel:

Definition 8. We define the information channel capacity of a discrete memoryless

channel as

C = max
p(x)

I(X;Y ) (1.26)

where the maximum is taken over all possible input distributions p(x).

This definition follows for continuous channel with only difference is that now

the maximization is carried out over the all possible input PDFs instead of PMFs.

Next, we consider few examples of channel capacity for some simplest channels.

Now let us see the example of a Noiseless Binary channel. Suppose that we have

a channel where the binary input is reproduced exactly at the output. In this case,

any transmitted bit is received without error. Intuitively, one error-free bit can be

transmitted per use of the channel, and the capacity should be 1 bit.

We have the rate upper-bound

R ≤ max I(X;Y ) (1.27)

= max
[
H(X)−H(X|Y )

]
(1.28)

= max
[
H(X)

]
(1.29)

≤ 1 bit/channel use, (1.30)

13



Figure 5. Binary noiseless channel.

because for a binary RV X, H(X) ≤ 1.

Now, let us consider the achievable rate for a particular input X∗ with pX∗(x) =

(1
2
, 1

2
). The achieved rate R∗ for that input is

R∗ = I(X∗;Y ) (1.31)

= H(Y )−H(Y |X∗) (1.32)

= H(X∗) (1.33)

Since H(X∗) = 1 bit, the achievable rate

R∗ = H(X∗) = 1 bit/channel use. (1.34)

The upper-bound in (1.30) matches with the achievable rate (1.34). Hence, we

can say the capacity of the noiseless binary channel is 1 bit/per channel use. Now

consider a Binary Symmetric Channel as shown in Figure 2. This is a binary channel

in which the input symbols are complemented with probability ε. This is the simplest

model of a channel with errors, yet it captures most of the complexity of the general

14



problem.

When an error occurs, a 0 is received as a 1, and vice versa. The bits received

do not reveal where the errors have occurred. In a sense, all the bits received are

unreliable. Later we show that we can still use such a communication channel to

send information at a nonzero rate with an arbitrarily small probability of error.

We bound the mutual information by

I(X : Y ) = H(Y )−H(Y |X) (1.35)

= H(Y )−
∑

p(x)H(Y |X = x) (1.36)

= H(Y )−
∑

p(x)H(p) (1.37)

= H(Y )−H(p) (1.38)

≤ 1−H(p) (1.39)

where the last inequality follows because Y is a binary random variable. Equality is

achieved when the input distribution is uniform. Hence, the information capacity of

a binary symmetric channel with parameter p is

C = 1−H(p) bits (1.40)

If we have a message W , drawn from the index set {1, 2, .....,M}, results in the

signal Xn(W ), which is recieved as a random sequence Y n. The receiver then guesses

the index W by an appropriate decoding rule Ŵ = g(Y n). The receiver makes an

error if Ŵ is not the same as the index W that was transmitted. We now define these

ideas formally.
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Definition 9. A discrete channel, denoted by (X, p(y|x), Y ), consists of two finite

sets X and Y and a collection of probability mass functions p(y|x), one for each xεX,

such that for every x and y, p(y|x) ≥ 0, and for every x,
∑

y p(y|x) = 1, with the

interpretation that X is the input and Y is the output of the channel.

Definition 10. The nth extension of the discrete memoryless channel (DMC) is the

channel (X n, p(yn|xn),Yn), where,

p(yk|xk, yk−1) = p(yk|xk), k = 1, 2, ....., n. (1.41)

When we refer to the discrete memoryless channel, we mean the discrete

memoryless channel without feedback unless we state explicitly otherwise.

Now we will define the conditional probability of error.

Definition 11. Let,

λi = Pr(g(Y n) 6= i|Xn = xn(i)) =
∑
yn

p(yn|xn(i))I(g(yn) 6= i) (1.42)

be the conditional probability of error given that index i was sent, where I(.) is the

indicator function.

Now we will define the rate and the achievable rate and then finally the capacity.

Definition 12. The rate R of an (M,n) code is,

R =
logM

n
bits per transmission (1.43)

Definition 13. A rate R is said to be achievable if there exists a sequence of (d2nRe, n)

codes such that the maximal probability of error λ(n) tends to 0 as n→∞.
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Later we write (2nR, n) codes to mean (d2nRe, n) codes. This will simplfy the

notation.

Definition 14. The capacity of a channel is the supremum of all achievable rates.

Thus, rates less than capacity yield arbitrarily small probability of error for

sufficiently large block lengths.

Next we will see the Gaussian Channel Capacity. The results of Gaussian

Channel Capacity is very useful for this thesis work.

1.5.2. Gaussian Channel Capacity

The most important continuous alphabet channel is the Gaussian channel

depicted in Figure 3. This is a time-discrete channel with output Yi at time i, where

Yi is the sum of the input Xi and the noise Zi . The noise Zi is drawn i.i.d. from a

Gaussian distribution with variance N . Thus,

Yi = Xi + Zi, Zi ∼ N (0, N) (1.44)

The noise Zi is assumed to be independent of the signal Xi . This channel

is a model for some common communication channels, such as wired and wireless

telephone channels and satellite links.

The most common limitation on the input is an energy or power constraint. We

assume an average power constraint. For any codeword (x1, x2, ..., xn) transmitted

over the channel, we require that,

1

n

n∑
i=1

x2
i ≤ P (1.45)

We now define the (information) capacity of the channel as the maximum of the

mutual information between the input and output over all distributions on the input

that satisfy the power constraint.
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The information capacity of the Gaussian channel with power constraint P is

I(X;Y ) = h(Y )− h(Y |X) (1.46)

= h(Y )− h(X + Z|X) (1.47)

= h(Y )− h(Z|X) (1.48)

= h(Y )− h(Z) (1.49)

≤ 1

2
log 2πe(P +N)− 1

2
log 2πeN (1.50)

=
1

2
log

(
1 +

P

N

)
(1.51)

since E[Y 2] = P + N and the Gaussian is the maximum entropy distribution for a

given variance. So,

C =
1

2
log

(
1 +

P

N

)
, bits per channel use (1.52)

Definition 15. An (M,n) code for the Gaussian channel with power constraint P

consists of the following:

1. An index set {1, 2, ......,M}.

2. An encoding function x : {1, 2, .....,M} → X n, which maps an input index

into a sequence that is n elements long, xn(1), xn(2), ......., xn(M), such that the

average power constraint is satisfied:

n∑
i=1

(xni (w))2 ≤ nP (1.53)

for w = 1, 2, ......,M .

3. A decoding function g : Yn → {1, 2, .....,M}.
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Definition 16. A rate R is said to be achievable for a Gaussian channel with a power

constraint P if there exists a sequence of (2nR, n) codes with codewords satisfying the

power constraint such that the maximal probability of error λ(n) → 0. The capacity

of the channel is the supremum of the achievable rates.

Theorem 3. The capacity of a Gaussian channel with power constraint P and noise

variance N is

C =
1

2
log

(
1 +

P

N

)
, bits per transmission (1.54)

1.5.3. Multiple Access Channel (MAC)

Multiple Access Channel is the channel in which two (or more) senders send

information to a common receiver. The channel is illustrated in Figure 6. Common

example of this channel is a satellite receiver with many independent ground stations,

or a set of cell phones communicating with a base station. We see that the senders

must contend not only with the receiver noise but with interference from each other

as well.

Definition 17. A discrete memoryless multiple-access channel consists of three

alphabets, X1, X2, and Y, and a probability transition matrix p(y|x1, x2).

Definition 18. A ((2nR1 , 2nR2), n) code for the multiple-access channel consists of

two sets of integers W1 = {1, 2, ..., 2nR1} and W2 = {1, 2, ..., 2nR2}, called the message

sets, two encoding functions,

X1 :W1 → X n
1 (1.55)

and

X2 :W2 → X n
2 (1.56)

and a decoding function,

g : Y → W1 ×W2. (1.57)
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Figure 6. Multiple-access channel

There are two senders and one receiver for this channel. Sender 1 chooses an index

W1 uniformly from the set {1, 2, ..., 2nR1} and sends the corresponding codeword over

the channel. Sender 2 does likewise. Assuming that the distribution of messages

over the product set W1 × W2 is uniform (i.e., the messages are independent and

equally likely), we define the average probability of error for the ((2nR1 , 2nR2), n) code

as follows:

P (n)
ε =

1

2n(R1+R2)

∑
(w1,w2)εW1×W2

Pr {g(Y n) 6= (w1, w2)|(w1, w2)} . (1.58)

Definition 19. A rate pair (R1, R2) is said to be achievable for the multiple access

channel if there exists a sequence of ((2nR1 , 2nR2), n) codes with P
(n)
e → 0.

Definition 20. The capacity region of the multiple-access channel is the closure of

the set of achievable (R1, R2) rate pairs.
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The next theorem states the channel capacity or the capacity region of a Multiple

access channel.

Theorem 4. The capacity of a multiple-access channel (X1 × X2, p(y|x1, x2),Y) is

the closure of the convex hull of all (R1, R2) satisfying

R1 < I(X1;Y |X2), (1.59)

R2 < I(X2;Y |X1), (1.60)

R1 +R2 < I(X1, X2;Y ) (1.61)

for some product distribution p1(x1)p2(x2) on X1 ×X2.

For a particular p1(x1)p2(x2), the region is illustrated in Figure 7.

Figure 7. Achievable region of multiple-access channel for a fixed input distribution
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All the definitions and data in this chapter is reproduced and inspired from [1]

and [2]. The detailed proofs of the theorems and the definitions are mentioned in [1]

and [2].

The knowledge of this chapter is very important to support and to understand

the forth coming topics in this thesis. The interference channel is the very important

topic for this thesis and hence it is discussed in detail in next section. Also the

problem statement is discussed in the next section.
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CHAPTER 2. INTERFERENCE CHANNEL

Interference is the most common problem faced in Wireless Communication.

The effects of interference ranges from being a minor annoyance to making the wireless

system unusable. For example, while talking on phone we experince disturbance

due to interference. The formal definition would be: An Interference Channel

(IC) models the situation where a number (N) of independent transmitters try to

communicate their separate information to N different receivers via a common chan-

nel. There is a strict one-to-one correspondence between transmitters and receivers.

Consequently,the transmission of information from each source to its corresponding

receiver interferes with the communication between the other transmitters and their

receivers. The interference channel can therefore be viewed as being comprised of N

principal links and N(N − 1) interference links. An example of an IC is when far

end cross talk occurs between two twisted pair cables in the same binder in a DSL.

For wirless communication this is more frequent phenomenon, for example, in radio

communications, since the electromagnetic spectrum is a limited resource, frequency

bands are often simultaneously used by several radio links that are not completely

isolated.

The study of the channel similar to the Interference Channel from information

theoretic standpoint was initiated by [3] and the research in this field was pursued

further, inspite of over four decades of research, the capacity region of general IC is

still unsolved. A lot of research on this topic has focused on the two user-two receiver

case.

2.1. Interfering Channels

The interfering channels can be classified according to their environment. The

interfering channel can be a Disccerte Memoryless Channel (DMC) or it can be a

Gaussian Channel as discussed in [4]. The capacity calculation i.e. the achieveability
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and the converse depend on the type of the channel. Also there are different types

of interference i.e. Very strong interference, Strong interference, Aligned Strong

Interference, Weak interference, etc. Let us consider a 2-user interference channel,

which is considered the simplest channel model in which multiple transmit-receive

pairs communicate over a common noisy channel. This model was first mentioned in

[3] and was studied in a series of works in [5], [6], [7], [8], [9], [10], [11] that considered

certain special cases of IC where the capacity regions of the so-called very strong IC,

the strong IC and certain classes of degraded and deterministic ICs, respectively, were

established.

Since most mordern wireless communication systems feature multiple antennas

at some or all terminals it is of interest to study the 2-user Gaussian MIMO IC.

Now as the capacity of the general case of the Interference Channel is not known,

the capacity region of its sub classes are approached to solve. Intuitively, the weak

interference channel is when the direct link channel is better than the cross link

channel. The strong interference channel is when the cross link channel is better

than the direct link channel and the very strong interference channel is where the

cross link is more dominant than the direct link channel. We are accustomed to

thinking of strong interference as a more detrimental effect than weak interference.

From the information theoretic point of view there are number of works that have

shown that strong interference is less harmful than weak interference and very strong

interference is as good as no interference at all [5]. The aligned-strong interference

is when the direct and the cross link channel matrices staisfy a matrix equation i.e.

the direct link’s channel matrix is a matrix multiple of the cross link’s channel, where

the matrix multiple satisfies some particular constraint. In general, the problem of

characterizing the exact capacity of a MIMO IC even for small and special classes

can be challenging.
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In this work, we characterize capacity region for class of strong IC’s. Now if

we consider a simple case of two user MIMO, then it will be 2 user MIMO Gaussian

IC with class of strong ICs. The result for this is derived in paper [12]. Now if we

consider a practical situation of a cellular structure where there are two cells Cell-1

and Cell-2 nearby. Cell-1 has one user, i.e Tx1 with multiple antennas and one Base

Station, ie. Rx1. Similarly Cell-2 has one user,Tx2 with multiple antennas and one

Base Station, ie. Rx2. The cellular structure described is as shown in Figure 8.

Figure 8. Cellular structure for 2-user interference channel

Here let us understand the real problem and what solution is given by [12].

We know that, Cell-1 has one transmitter and one receiver. In the absence of Cell-

2, it will be a simple SISO communication, hence receiver 1 will receive a strong

signal. Now if transmitter 2 is also communicating in Cell-2, then interference will

come in the picture. Now if the transmitter 1 becomes selfless and communicates,

with less power so that there will be less interference at receiver 2, then receiver 1

will not be able to receive the signal properly and hence will face interference from

transmitter 2 signal. And if the transmitter 1 becomes selfish and transmits with

high power then receiver 2 will face interference. Hence there has to be a tradeoff of
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rates at which both the transmitters can communicate simultaneously by providing

least interference. This rate region is the desired capacity region derived in [12].

Now, we reproduce the result of [12] here; the capacity of the 2-user strong

MIMO IC CIC was defined as follows:

The capacity region CIC of an (M1, N1,M2, N2) strong in partial order IC, where

the channel matrices satisfy the following condition:

H†iiHii � H†ijHij,∀i 6= j ε {1, 2}, (2.1)

is given by the set of rate tuples satisfying the following constraints:

R1 ≤ log |(IN1 +H11Kx1H
†
11)|; (2.2)

R2 ≤ log |(IN2 +H22Kx2H
†
22)|; (2.3)

R1 +R2 ≤ log |(IN2 +H12Kx1H
†
12 +H22Kx2H

†
22)|; (2.4)

R1 +R2 ≤ log |(IN1 +H21Kx2H
†
21 +H11Kx1H

†
11)| (2.5)

To understand the physical interpretation and this result, it is first important

to know the channel model. The 2-user IC as shown in Figure 9, where user i (Txi)

has Mi antennas and receiver i (Rxi) has Ni antennas, respectively for i = 1, 2 is

considered. Such a MIMO IC will be referred to as a (M1, N1,M2, N2) MIMO IC

in the sequel. Hij ε CNj×Mi models the channel matrix between Txi and Rxj, which

remain fixed for the entire duration of communication. H = {H11, H12, H21, H22}. At

time t, Txi chose a vector Xit ε CMi×1 and sends
√
PiXit into the channel, where for

the input signals we assume the following power constraint:

n∑
t=1

1

n
E
(
XitX

†
it

)
� Kxi,∀i = 1, 2. (2.6)
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The input and output alphabets are the set of real numbers, and the outputs

are linear combinations of the inputs, plus the Gaussian noise. The received signals

at time t can be written as:

Y1t = H11X1t +H21X2t + Z1t; Y1t ε CN1×1, (2.7)

Y2t = H22X2t +H12X2t + Z2t; Y2t ε CN2×1, (2.8)

where Zit ε CNi×1 are i.i.d as CN (0, INi) across i and t.

Figure 9. The (M1, N1,M2, N2) MIMO IC

Now the Equation (2.1) is the condition which the channel matrices should

satisfy in order to be Strong IC in partial order. For example, for i = 1 and j = 2

we are considering the communication between the Tx1 i.e. user-1 and Rx2 which is

BS-2. In this case the condition will be:

H†11H11 � H†12H12, (2.9)

Hence we can say that the gram matrix of the direct link is less than the gram matrix
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of interference link. Intutively, we can say that the interference link is strong. It is

easier to visualize this using Figure 9.

Now, Equations (2.2), (2.3), (2.4) and (2.5) define the capacity region. Capacity

region is defined in a two- dimensional co-ordinante system where these bounds form

a region where the communication between both the transmitters to their respective

receivers is possible,i.e. the probability of error at the receiver tends to zero at both

the receivers. Let us understand the physical interpretation of each equation. In

equation (2.2), we have rate bound of R1, it means it is the upper bound to the

rate of communication between both the transmitters and receiver 1, where receiver

2 is considered mute. Similarly R2 is the upper bound to the rate of communication

between both the transmitters and receiver 2, where receiver 1 is considered mute.In

Equation (2.3) and (2.4) the sum rate bound of R1 + R2 i.e. both the transmitters

are simultaneously communicating to both the receivers.The difference in equation

(2.3) and (2.4) is, in (2.3) it is assumed that genie provides the side information

(Xn
2 ) to Rx1 and in (2.4) it is assumed that genie provides the side informatioin

(Xn
1 ) to Rx2. The minimum of these two sum rate bounds is the actual R1 + R2

sum rate bound. The capacity region of an IC is defined as the closure of the set

of rate pairs (R1, R2) for which both receivers can decode their own messages with

arbitrarily small positive error probability. Hence, intersection of all these rate bounds

of (R1, R2) characetrize the capacity region for 2-user strong MIMO IC. Each rate

equation will form a plane in two dimensional co-ordinate system and intersection of

all these planes will characterize the capacity region.

The above work was focusing on the strong interference case, since strong

interference is the major focus in this thesis we discussed it in detail. But there has

been a noticeable advance in other class of ICs too. Recent results include the capacity

regions of new and/or more general classes of channels than for which capacity was
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previously known, e.g., the sum capacity of the so-called noisy interference channels

ie., low interference regime, was found in [13], [14], [15]. The common feature of this

line of work is that it focuses on subset of channel parameters but seeks to solve the

challenging problem of obtaining the exact capacity of the SISO channel. In [16],

the capacity region of a class of very strong SIMO ICs was characterized, this paper

also demonstrates that, multiple transmit single receive antenna (MISO) Gaussian

interference channels are much harder to characterize. The class of aligned-strong

ICs are discussed in [17].

Our concentration will now be on Interfering Multiple Access Channels (IMAC).

IMAC address the more typical problem in the practical scenerio. In the next section

we will study IMAC in detail.

2.2. Interfering MAC channels

In the previous section we studied the so called 2-user interference channel

(IC) model is the simplest configuration to analyze and subsequently characterize the

fundamental tradeoff that exists among the communication rates of several transmit-

receive pairs operating via the same time frequency space. For instance, consider the

uplink of two adjacent cells in the cellular network. The IC models the scenario when

each cell contains exactly one user which intend to communicate to its corresponding

base station and in the process causes interference to the other communication link.

The intensive research on IC over the past decade has revealed numerous interesting

and sometime surprising results which promises significant improvement of the overall

performance of the network.

In practice however, the cellular region served by a base station rarely contains

only one user and therefore in practice a scenario where both the adjacent cells have

multiple users and all users in a particular cell is trying to communicate to their

corresponding base station simultaneously and in the process interfering with the

29



communication of the adjacent cell is more typical. The communication within a

single cell can be modelled by the well known Multiple Access Channel (MAC) and

as a result we have two mutually interfering MAC (IMAC). In contrast to IC, the

IMAC model not only captures the tradeoff between the communication rates of users

belonging to different cells, but also simultaneously captures the tradeoff among the

communication rates of users belonging to the same cell. Figure 10 shows the above

mentioned scenario.

Figure 10. Cellular structure for two mutually interfering MIMO MACs

In Figure 10, we consider two mutually interfering MIMO MACs. MAC-1 is

formed between M users and BS-1 and MAC-2 is formed between N users and BS-2.

The dotted lines represents the interference channel and the solid line represents the

direct channel. Now while characterizing the rate region there will be tradeoff between

the rate of users from different MAC and tradeoff among rates of users belonging to

the same MAC.

While there are plethora of research articles on ICs [18], [19], research efforts

on the IMAC is almost non-existing. To the best of our knowledge, the only previous

result on IMAC was reported in [20], where the authors consider an IMAC with
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single antennal (SISO) nodes and finds capacity region where the interfering nodes

have mixed strong [6] and very strong [5] interference, or both the interferers have

stronger than the so called strong interference. They also derive lower and upper

bounds to the sum-capacity of the SISO IMAC for weak interfering links. In next

section, we will define the problem that is addressed in this thesis.

2.3. Problem Statement

This thesis is inspired from our paper [21]. In this work, we consider an IMAC

with multiple antennas (MIMO) at all nodes. In particular we consider an IMAC

with two mutually interfering MIMO MACs as shown in Figure 11, with arbitrary

number of antennas at each transmitter and N antennas at each receiver.

Figure 11. Cellular structure for two mutually interfering MIMO MACs with 4 users

We know that, to characterize the capacity region of two users IC we had to

deal with the tradeoff between the rate of users from different MAC. But in the case

of four users IMAC we have to deal with two different tradeoffs:

• Tradeoff between the rate of users from different MAC.

• Tradeoff among rates of users belonging to same MAC.
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Figure 12. Channel Model for IMAC with 4 users

As shown in Figure 12, Tk is the user or transmitter with Mk antennas for

k = {1, 2, 3, 4} and Rj is the Base Station or the receiver with N antennas for j =

{1, 2}. Hence four users form two different MAC channels with BS-1 and BS-2.

The two MACs for interfering MAC called IMAC. In this work we find the capacity

region of IMAC for special class of channel matrices called Strongly ordered IMAC

as explained in section 3.1. The non-trivial nature of this problem is to deal with

the two communication problems simultaneously. Say for instance user 1 i.e. T1 is

communicating wth BS 1 i.e. R1 in Cell- 1, then it will experience interference from

T3 and T4 from Cell-2 and it will also face MAC channel problem from T2. Hence

it is non trivial to derive the rate for which all the transmitters can communicate

with the corresponding receiver at an optimum rate. The optimum rate would be

the rate of communication at which all the transmitters can communicate such that

both the receivers can decode their own messages with arbitrarily small positive error

probability.
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Our results will eventually prove that while characterizing the capacity region

these two tradeoff will turn out to be unique, i.e. Interference channel problem and

the MAC channel problem are the same. The capacity region of an IMAC is defined

as the closure of the set of rate pairs (R1, R2, R3, R4) for which both the receivers can

decode their messages as probability of error tends to zero. The capacity region for

four user channel model will be intersection of planes in four dimensional co-ordinate

system.

In next section we will describe the channel model in more detail and prove

some preliminary results which will be followed by the derivation of main result i.e

the capacity region.
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CHAPTER 3. MIMO MULTIPLE ACCESS CHANNEL

In this chapter, we characterize the entire capacity region of this channel

assuming a relatively less restrictive strong interference condition. As a special case

when both the MACs have only one user the IMAC turns into a 2-user IC and we can

retrieve the previous result on 2-user MIMO IC derived in [17] and [22]. The different

sections in this chapter address the problem defined in section 2.3. In section 3.1 the

channel model considered is described and some preliminary results are proved, which

is followed by the main result, i.e., the capacity region, in section 3.2. The converse

is proved in subsection 3.2.1 and achievability is proved in subsection

3.2.2.

3.1. Channel Model

Here there’s a communication network with two mutually interfering 2-user

Multiple access channels (IMAC), as shown in Fig.13, where the k-th transmitter have

Mk antennas and both the receivers have N antennas, respectively. The receivers

and the transmitters are denoted by Rx1, Rx2 and Txk with k ∈ Σ = {1, 2, 3, 4},

respectively. Let Hkj represents the channel matrix from transmitter k to receiver j,

where k ∈ Σ and j ∈ {1, 2}. Moreover, these channel matrices are also assumed to be

time-invariant, i.e., the channel coefficients does not change with time. The received

signal at Rxj at the t-th channel use can be expressed as

zjt =
4∑

k=1

Hkjxkt + ujt, (3.1)

where xkt ∈ CMk×1 is the transmit vector from Tk at time t, ujt ∼ CN (0, IN)1

are independent across j ∈ {1, 2} and time. The transmitted signals from each

1We denote the distribution of a Gaussian vector with zero mean and covariance matrix Q by
CN (0, Q).

34



transmitter satisfies the following average covariance constraint

1

n

n∑
t=1

Cov(xkt) � Qk, 1 ≤ k ≤ 4. (3.2)
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Figure 13. The IMAC with 4 MIMO users

On an IMAC, Txk wants to send a message Wk at a rate of Rk, for k ∈ Σ.

Among these messages Rxj is interested only in {Wk : (2j − 1) ≤ k ≤ (2j)}, for

j ∈ {1, 2}. Suppose, given a message set w1, · · ·w4, where wk ∈ {1, · · · , 2nRk}, Txk

chooses a codeword xnk ∈ Ck(n) and sends it through the channel, where Ck(n) is

the codebook of the k-th transmitter containing nMk-length codewords which satisfy

the average covariance constraint in equation (3.2). Also assume that, the receivers

Rx1 and Rx2 recover ŵ1, ŵ2 and ŵ3, ŵ4 from their respective received signals. Then

the probability of detection error can be denoted as Pe(n) = max{Pr1((ŵ1, ŵ2) 6=

(w1, w2)), Pr2((ŵ3, ŵ4) 6= (w3, w4))}. Clearly, since (w3, w4) and (w1, w2) are not

necessary at Rx1 and Rx2, respectively, they do not appear in the error computation

at the corresponding receivers. A rate tuple (R1, R2, R3, R4) - hereafter denoted as R̄

- is said to be achievable if there exists Ck(n), k ∈ Σ such that Pe(n)→ 0, as n→∞.

For a given coding scheme C, the set (RC) of all such achievable rate tuple is called an

achievable rate region. Capacity region is the closure of the union of all such possible

achievable rate regions, i.e.,

CIMAC = ∪CRC. (3.3)
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Here, we characterize the capacity region of the IMAC for a special class of

channel matrices; the corresponding IMAC is called Strongly ordered IMAC.

Definition 21 (Strongly ordered IMAC). A 4-user IMAC, as shown in Fig.13,

is called a strongly ordered IMAC if the channel matrices satisfy the following

constraints:

H†τkkHτkk � H†τkjHτkj, 1 ≤ k 6= j ≤ 2, (3.4)

where τk = {(2k − 1), 2k} and as previously defined Hτkj = [H(2k−1)jH(2k)j] for 1 ≤

k, j ≤ 2.

Remark 1. It can be easily proved using the definition of partial order between two

matrices that equation (3.4) implies the following

H†(2k−1)kH(2k−1)k �H†(2k−1)jH(2k−1)j; (3.5)

H†(2k)kH(2k)k �H†(2k)jH(2k)j, (3.6)

for all 1 ≤ k 6= j ≤ 2.

Proof. We know that, 1 ≤ k 6= j ≤ 2. Hence there are only two cases possible:

Case-1: k = 1 and j = 2.

The physical interpretation of this case would be demonstrating the direct communi-

cation in Cell-1 as discussed in section 2.2 i.e, Users 1 and 2 are communicating with

receiver 1.

In this case,

H†τ11Hτ11 � H†τ12Hτ12, (3.7)

where, τ1 = {1, 2} .

36



Hence,

H†τ11Hτ11 �H†τ12Hτ12 (3.8) H†11

H†21

[ H11 H21

]
�

 H†12

H†22

[ H12 H22

]
(3.9)

H†11H11 H
†
11H21

H†21H11 H
†
21H21

 �
H†12H12 H

†
12H22

H†22H12 H
†
22H22

 (3.10)

Now, H†12H12 −H†11H11 H
†
12H22 −H†11H21

H†22H12 −H†21H11 H
†
21H21 −H†22H22

 � 0 (3.11)

Let x ε C(M1+M2)×1 be an arbitrary complex vector and B ε C(M1+M2)×(M1+M2) be

an arbitrary P.S.D matrix; then according to the definition of Positive Semi-Definite

Matrices [23], i.e ∀ x ε C(M1+M2)×1, B is said to be positive semidefinite matrix i.e,

B � 0, if x†Bx � 0.

Now if we set x =

[
x1 0

]†
where x1 is arbitrary and,

B =

H†12H12 −H†11H11 H
†
12H22 −H†11H21

H†22H12 −H†21H11 H
†
21H21 −H†22H22

 , (3.12)

then from the definition of P.S.D, equation (3.11) implies,

[
x†1 0

]H†12H12 −H†11H11 H
†
12H22 −H†11H21

H†22H12 −H†21H11 H
†
21H21 −H†22H22


 x1

0

 � 0 (3.13)

x†1

[
H†12H12 −H†11H11

]
x1 � 0 (3.14)
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Since x1 is also arbitrary, again from definition of P.S.D matrices we have,

H†11H11 � H†12H12 (3.15)

Similarly if we set x =

[
0 x2

]†
where x2 is arbitrary, It can be proved that

H†21H21 � H†22H22 (3.16)

Case-2: k = 2 and j = 1

In this case there is the direct communication in Cell-2 i.e, Users 2 and 3 are

communicating with receiver 2.

Hence,

H†τ22Hτ22 � H†τ21Hτ21, (3.17)

where, τ2 = {3, 4}.

Hence,

H†τ32Hτ32 �H†τ31Hτ31 (3.18) H†32

H†42

[ H32 H42

]
�

 H†31

H†41

[ H31 H41

]
(3.19)

H†32H32 H
†
32H42

H†42H32 H
†
42H42

 �
H†31H31 H

†
31H41

H†41H31 H
†
41H41

 (3.20)

Now, H†31H31 −H†32H32 H
†
31H41 −H†32H42

H†41H31 −H†42H32 H
†
41H41 −H†42H42

 � 0 (3.21)
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We again use the definition of P.S.D as defined above, for an arbitrary complex vector

x ε C(M3+M4)×1 and an arbitrary P.S.D matrix B ε C(M3+M4)×(M3+M4).

Now if we set x =

[
x1 0

]†
where x1 is arbitrary and,

B =

H†31H31 −H†32H32 H
†
31H41 −H†32H42

H†41H31 −H†42H32 H
†
41H41 −H†42H42

 (3.22)

Then from the definition of P.S.D, equation (3.21) implies,

[
x†1 0

]H†31H31 −H†32H32 H
†
31H41 −H†32H42

H†41H31 −H†42H32 H
†
41H41 −H†42H42


 x1

0

 � 0 (3.23)

x†1

[
H†32H32 −H†31H31

]
x1 � 0 (3.24)

Since x1 is also arbitrary, again from definition of P.S.D matrices we have,

H†32H32 � H†31H31 (3.25)

Similarly, if we set x =

[
0 x2

]†
, where x2 is arbitrary, It can be proved that

H†42H42 � H†41H41 (3.26)

Hence Equation (3.5) and (3.6) are the shorthand notations of Equations

(3.25), (3.26), (3.15) and (3.16).

Now if we practically interpret this definition then, Equation (3.15) means that

the gram matrix of H11 is less than or equal to gram matrix of H12. Now H11 is the

channel matrix of the direct link and the H12 is the channel matrix of the interfering

link. Hence intutively we can say that the interfernec channel is stronger than the
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direct channel. Similarly for equations (3.16), (3.25) and (3.26) we can learn that the

interference channel is stronger.

To derive an explicit expression for an achievable rate region and to prove that

it is the capacity region, we need several interesting information theoretic results,

which we now derive in the following Lemmas.

First such result provides an upper bound on the conditional mutual information

between the received signal at either of the receivers and a set of transmitters over

n-channel uses. Note that the received signal at Rxj over n channel uses can be

written as

znj =
∑
k∈Σ

Hn
kjx

n
k + unj = Hn

Σjx
n
Σ + unj , j ∈ {1, 2}. (3.27)

Here, Hn
Σj =

[
Hn

1j H
n
2j H

n
3j H

n
4j

]
.

Lemma 1. On an IMAC, as shown in Figure 13, with transmitters having signal

covariance constraint as in equation (3.2), the conditional entropy of the received

signal at Rxj have the following upper bound:

I(xnα; znj |xnαc) ≤ n log

∣∣∣∣∣IN +
∑
k∈α

HkjQkH
†
kj

∣∣∣∣∣ . (3.28)

Proof of Lemma 1. We know that,

znj =
∑
kεα

Hn
kjx

n
k + unj = Hn

αjx
n
α + unj , jε{1, 2}, α ⊆ {1, 2, 3, 4}, αc = Σ\α (3.29)

Here for a sequence of column vectors xk1, · · · , xkn, xnk represents a tall vector

obtained by stacking all the component vectors in a single column, i.e., xnk =

[x†k1 · · ·x
†
kn]†. For the sequence of matrices, there is a column wise concatenation

of all matrices i.e. Hn
αj =

[
Hn

1j H
n
2j H

n
3j H

n
4j

]
for α = {1, 2, 3, 4}. For a matrix

A, we denote its Tensor product [24] with the n × n identity matrix In by An, i.e.,
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An = In ⊗ A. Hence Hn
kj is basically shorthand notation for (In ⊗Hkj). Now,

I(xnα; znj |xnαc) = h(znj |xnαc)− h(znj |xnαcxnα) (3.30)

= h

(∑
kεα

Hn
kjx

n
k + unj

)
− h(unj ) (3.31)

Now if we assume that x̃k
n is the input signal with Gaussian distribution where

Cov(x̃k) = Cov(xk) then from the results of information theory, we know that,

entropy maximizes with gaussian distribution and it introduces inequality as follows,

I(xnα; znj |xnαc) �
n∑
t=1

h

(∑
kεα

Hkjx̃kt + ujt|
∑
kεα

H
(t−1)
kj x̃

(t−1)
k + u

(t−1)
j

)
− h(unj ) (3.32)

�
n∑
t=1

h

(∑
kεα

Hkjx̃kt + ujt

)
− h(unj ) (3.33)

Above inequality is introduced by removing the conditioning. Now we will use

information theoretic result of Entropy of a Gaussian random variable [2]

I(xnα; znj |xnαc) =
n∑
t=1

log |2πe

(∑
kεα

HkjCov(x̃kt)H
†
kj + IN

)
| − log (2πe)nN (3.34)

=

[
n× 1

n

] n∑
t=1

log |2πe

(∑
kεα

HkjQktH
†
kj + IN

)
| − nN log(2πe)

(3.35)

Now using the Jensen’s Inequality [2] we get,

I(xnα; znj |xnαc) � n log |2πe

(∑
kεα

Hkj

(
1

n

n∑
t=1

Qkt

)
H†kj + IN

)
| − nN log(2πe)

(3.36)
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Now, as we know that,

1

n

n∑
t=1

Cov(xαt) � Qα, α ⊆ Σ.

where Qα is a block diagonal matrix with diagonal entries of Qαt. The inequality

occurs because the log det(.) is a monotonically increasing function on the cone of

positive definite matrices.

I(xnα; znj |xnαc) � nN log (2πe) + n log |
∑
kεα

HkjQkH
†
kj + IN | − nN log(2πe) (3.37)

In short form,

I
(
xnα; znj |xnαc

)
≤ n log |IN +Hn

αjQαH
n†
αj | (3.38)

In Equation (3.35) the expected value of x is zero with certain power constraint

if we use a non-zero expected value , that leads to inefficient power constraint . It is

a typical assumption in information theory.

The significance of Lemma 1 is that it shows the mutual information between the

transmitters communicating simultaneously with respective receivers. For example,

when α = {1} and so αc = {2, 3, 4}; in this case I (xn1 ; z1|xn2 , xn3 , xn4 ) is information

between transmitter- 1 and receiver-1 where signal of transmitter 2,3 and 4 is known

at receiver 1.The mutual information will be

I (xn1 ; zn1 |xn2 , xn3 , xn4 ) � n log |IN +H11Q1H
†
11|.

A similar set of upper bounds were proved in [19] and [17] in the context of

2-user MIMO IC, where there were 2 transmitters in the network.
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The next lemma bascially proves that for two full-rank complex, square channel

matrices, satisfying certain condition leads to difference of two mutual information

terms less than or equal to zero. The next result is a very important as this result is

used in various proofs of section 3.2.1.

Lemma 2. Let G,H ∈ CM×M are two full-rank, complex matrices and x ∈ CM×1 is a

random vector with arbitrary distribution and ũ1 and ũ2 are i.i.d. as CN (0, IM) which

are also independent of x. If the matrices G and H satisfy the following condition

G†G � H†H. (3.39)

then,

D , I(x;Gx+ ũ1)− I(x;Hx+ ũ2) ≤ 0. (3.40)

Remark 2 (Independence of input power constraint). The inequality in equation

(3.40) with an additional covariance constraint on x was proved in [22] using the

extremal inequality of [25]. The proof given here is independent of any covariance

constraint on x and is therefore more suitable for this analysis because, in subsec-

tion 3.2.1 we shall have occasions to use inequality equation (3.40) with a composite

vector such as xnτ1 and xnτ2 (e.g., see equation (3.99)).

Proof of Lemma 2. The proof is based on the well known information theoretic Data

Processing Inequality (Sec. 2.8, [2]). For convenience we shall use the following

shorthand in the rest of the proof, (G†G)−1 = K1 and (H†H)−1 = K2 and Kd =

((G†G)−1 − (H†H)−1), hence Kd = K1 −K2. Using these notations, we have
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D =h(Gx+ ũ1)− h(Hx+ ũ2)− h(Gx+ ũ1|x) + h(Hx+ ũ2|x), (3.41)

=h(Gx+ ũ1)− h(Hx+ ũ2)− h(ũ1) + h(ũ2), (3.42)

=h(x+G−1ũ1)− h(x+H−1ũ2) + log |G†G| − log |H†H| (3.43)

− h(ũ1) + h(ũ2), (3.44)

=h(x+G−1ũ1)− h(x+H−1ũ2) (3.45)

− h(G−1ũ1) + h(H−1ũ2), (3.46)

=h(x+ û1)− h(x+ û2)− h(û1) + h(û2), (3.47)

where in last step ûi ∼ CN (0, Ki), for i = 1, 2. From the assumption (3.39), it follows

that K1 � K2, i.e., Cov(û1) � Cov(û2). Therefore, û1 can be written as û1 = û2 + ûd,

where ûd ∼ CN (0, Kd) and is independent of û2. Substituting that in the above

expression we get,

D =h(x+ û2 + ûd)− h(x+ û2) + h(û2)− h(û1), (3.48)

= [h(x+ û2 + ûd)− h(û2 + ûd)]− [h(x+ û2)− h(û2)] (3.49)

=I(x;x+ û2 + ûd)− I(x;x+ û2) ≤ 0, (3.50)

where the equality in equation (3.50) follows from the fact that û1 = û2 + ûd and the

inequality follows from the well known Data processing inequality since x→ x+ û2 →

x+ û2 + ûd forms a Markov chain for any arbitrary x.

Now we need to prove the similar result for full rank complex, non-square

matrices. In this case the result of Lemma 2 can be used after converting the matrices

into square and invertible.
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Lemma 3. Let H1, H2 ∈ CN×M are full-rank matrices, x ∈ CM×1 is a random vector

with arbitrary distribution and ũ1 and ũ2 are i.i.d. as CN (0, IN) which are also

independent of x. If the matrices H1 and H2 satisfy the following condition

H†1H1 � H†2H2, (3.51)

then

Ds = I (x;H1x+ ũ1)− I (x;H2x+ ũ2) ≤ 0. (3.52)

Proof for Lemma 3. In the proof, the main idea is to first convert the matrices into

square and invertible ones by replacing the zero singular values by infinitesimal

singular values, then apply the result of Lemma 2 and finally, take limit to remove

the contribution of the additional singular values. This procedure is valid since the

set of singular matrices is dense in the space of non-singular square matrices. Note

that a similar approach was used in [26] to extend their results on square invertible

matrices to the case of non-square channel matrices.

Let us denote W̃1 = H1x+ ũ1 and W̃2 = H2x+ ũ2. Hence,

Ds =I(x; W̃1)− I(x; W̃2) (3.53)

=h(W̃1)− h(W̃1|x)− h(W̃2) + h(W̃2|x) (3.54)

Now, as H1 and H2 are N ×M matrices and we need to convert them to square and

invertible matrices. Using Singular Value Decomposition [24] we get, H1 = V1Σ1U
†
1

and H2 = V2Σ2U
†
2 . Σ1 and Σ2 have singular values in its diagonal entries in descending

order. Viε UN×N and Uiε UM×M for i = 1, 2 Since a unitary transformation does not
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change the differential entropy of a random vector we have,

h(W̃i) =h(ViΣiU
†
i + ũi) (3.55)

=h(ΣiU
†
i x+ V −1

i ũi) (3.56)

=h(Wi) (3.57)

Let ui = V −1
i ũi. Hence, Wi = ΣiU

†
i x+ ui. Now , depending on the relative values N

and M we modify the vector Wi can be written as;

Case-1: N > M

In this case, the last (N −M) rows of Σi will have only zeros.

Wi =

 Σ̂i

0

U †i x+ ui (3.58)

=

 Ŵi

uie

 (3.59)

Where, Ŵi = Σ̂iU
†
i x + ûi; uie ∼ CN (0, IN−M) and ûi ∼ CN (0, IM). uie and ûi are

mutually independent. Σ̂i ε C(M×M) contains the non-zero diagonal singular values

of Hi.

Since , uie is independent of ûi;

h(Wi) = h(Ŵi) + h(uie|Ŵi) (3.60)

= h(Ŵi) + h(uie) (3.61)

= h(Ŵi) + log |2πeIN−M | (3.62)

= h(Ŵi) + log(2πe)(N−M) (3.63)

= h(Ŵi) + (N −M) log(2πe) (3.64)
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Case-2: N < M

In this case, the last (M −N) columns of Σi will have only zeros.

Σi =

[
Σ̃i 0N×p

]
(3.65)

Let p = M − N and Σ̂i =

Σ̃i + δIN 0N×p

0p×N δIp×p

. Now as Σi =

[
Σ̃i 0N×p

]
, we can say

that,

Σ̂i =

 Σi

L

where L =

[
0p×N δIp×p

]
. (3.66)

Here ûi =

[
u†i u

†
ie

]†
∼ CN (0, IM).

The differential entropy;

h(Wi) = h
(

ΣiU
†
i x+ ui

)
(3.67)

= h(Σ̂iU
†
i x+ ûi)− h(LU †i x+ uie|ΣiU

†
i x+ ui) (3.68)

Now we introduce the limits,

h(Wi) = lim
δ→0

[
h(Σ̂iU

†
i x+ ûi)− h(LU †i x+ uie|Wi)

]
(3.69)

We know that Ŵi = Σ̂iU
†
i x+ ûi, also when we apply limits to L it will essentially be

zero matrix and hence only uie will be there,

h(Wi) = lim
δ→0

[
h
(
Ŵi

)
− h (uie|Wi)

]
(3.70)

Now, uie is independent of Wi as it is independent of ui and x.
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Also uie ∼ CN (0, I(M−N)),

h(Wi) = lim
δ→0

[
h
(
Ŵi

)
− (M −N) log(2πe)

]
(3.71)

Denoting Σ̂iU
†
i by Ĥi it can be proved that,

Ĥ1

†
Ĥ1 � Ĥ2

†
Ĥ2 (3.72)

For N ≥M , this fact follows directly from the lemma 1

U1Σ†1Σ1U
†
1 � U2Σ†2Σ2U

†
2 (3.73)

or, U1

 Σ̂2
1

0

U †1 � U2

 Σ̂2
2

0

U2 (3.74)

or, U1Σ̂1
†
Σ̂1U

†
1 � U2Σ̂2

†
Σ̂2U

†
2 (3.75)

or, Ĥ1

†
Ĥ1 � Ĥ2

†
Ĥ2 (3.76)

In the above set of equations (3.74) follows from the definition of Σi in (3.65),(3.74)

follows from the fact that for any two PSD matrices, K1 and K2, K1 ≺ K2 if and

only if K
1
2
1 ≺ K

1
2
2 , and finally, (3.75) follows from the definition of Σ̂i.
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For N < M the proof is as follows:

U1Σ†1Σ1U
†
1 � U2Σ†2Σ2U

†
2 (3.77)

or, U1

 Σ̃1
2

0N×p

0p×N 0p×p

U †1 � U2

 Σ̃2
2

0N×p

0p×N 0p×p

U †2 (3.78)

or, U1

 Σ̃1
2

0N×p

0p×N 0p×p

U †1 + δU1U
†
1 � U2

 Σ̃2
2

0N×p

0p×N 0p×p

U †2 + δU2U
†
2 ; ∀δ > 0 (3.79)

or, U1

 Σ̃1
2

0N×p

0p×N 0p×p

U †1 + δIM � U2

 Σ̃2
2

0N×p

0p×N 0p×p

U †2 + δIM ; ∀δ > 0 (3.80)

or, U1

Σ̃1 + δIN 0N×p

0p×N δIp×p

U †1 � U2

Σ̃2 + δIN 0N×p

0p×N δIp×p

U †2 ; ∀δ > 0 (3.81)

or, U1

(Σ̃1 + δIN)2 0N×p

0p×N (δ)2Ip×p

U †1 � U2

(Σ̃2 + δIN)2 0N×p

0p×N (δ)2Ip×p

U †2 ; ∀δ > 0 (3.82)

or, U1Σ̂1

†
Σ̂1U

†
1 � U2Σ̂2

†
Σ̂2U

†
2 (3.83)

or, Ĥ1

†
Ĥ1 � Ĥ2

†
Ĥ2 (3.84)

In the above set of equations (3.78) follows from the definition of Σi in (3.65),(3.79)

and (3.82) follow from the fact that for any two PSD matrices, K1 and K2, K1 ≺ K2

if and only if K
1
2
1 ≺ K

1
2
2 , and finally, (3.83) follows from the definition of Σ̂i.

Using Equations (3.64) and (3.71) in equation (3.54);

D = h(W̃1)− h(W̃2)− h(ũ1) + h(ũ2) (3.85)

= h(H1x+ ũ1)− h(H2x+ ũ2)− h(ũ1) + h(ũ2) (3.86)

= lim
δ→0

h(Ĥ1x+ ũ1)− h(Ĥ2x+ ũ2) (3.87)
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Using results of Lemma 2 we can prove; D � 0

In deriving the converse to the capacity region however, we shall need an upper

bound to the difference of entropies of n-symbol extensions of the channel which is

provided by the following Lemma.

Lemma 4. Let H1 ∈ CN×M and H2 ∈ CN×M are full-rank matrices, {xt ∈ CM×1, 1 ≤

t ≤ n} is a sequence of arbitrary random vectors and ũjt are i.i.d. as CN (0, IN) for

all 1 ≤ t ≤ n and mutually independent across 1 ≤ j ≤ 2, which are also independent

of xn. In addition, if the matrices H1 and H2 satisfy equation (3.51), then

Dn =I (xn;Hn
1 x

n + ũn1 )− I (xn;Hn
2 x

n + ũn2 ) ≤ 0, (3.88)

where Hn
i = In ⊗Hi for i = 1, 2.

Proof of Lemma 4. In equation (3.88), xn ∈ CMn×1 is an arbitrary random vector,

ũnj ∼ CN (0, InN) for j = 1, 2 and are independent of xn. Moreover, from the definition

of partial order and equation (3.51) it follows that

(In ⊗H1)†(In ⊗H1) � (In ⊗H2)†(In ⊗H2). (3.89)

The statement of the Lemma then follows from the above conditions and Lemma 3.

In the next section we will derive the capacity region. Initially we define the

capacity region and then by using the traditional approach in information theory we

derive the converse and the achiveability in the subsections.
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3.2. Capacity Region

The capacity region here is bascially the capacity region of the Interfering MAC

and hence it will be the capacity region where all the transmitters can effectively

communicate simultaneously to the desired receivers. The next theorem will essen-

tially define the capacity region of the Interfering MAC (CIMAC) of a strongly ordered

IMAC as intersection of all the outer rate bounds of the achievable rate tuples.

Theorem 5. The capacity region (CIMAC) of a strongly ordered IMAC, as shown in

Fig.13, with Txk having Mk antennas for k ∈ Σ and N antennas at both the receivers

is given as

CIMAC =
{
R̄ :

⋂
β⊆Σ

Rβ ≤ min
1≤j≤2

log

∣∣∣∣∣IN +
∑
k∈β

HkjQkH
†
kj

∣∣∣∣∣}, (3.90)

where Rβ =
∑

k∈β Rk.

Proof of Theorem 5. In subsections 3.2.1 and 3.2.2 we prove that CIMAC ⊆ Cu and

RCMAC ⊆ CIMAC, respectively. It is also clear from the expressions of RCMAC in

(3.176) and Cu in (3.169) that RCMAC = Cu. Combining all of these we have,

RCMAC ⊆ CIMAC ⊆ Cu = RCMAC. (3.91)

Further, it is proved in subsection 3.2.2 that every rate tuple R̄ ∈ RCMAC can be

achieved by independent Gaussian coding at all the transmitters and if each receiver

does joint decoding of all the messages.

Remark 3 (special case: IC). Note that if we reduce the number of users in each

MAC to one, then the strongly ordered condition of equation (3.4) coincides with the

strong in partial order definition in [22] and the capacity region also becomes the same

as in [22]. It was shown in [22] that, under a particular covariance constraint, the

51



results of [17] forms a subset of the result reported in [22]. In other words, the result

of this paper while more general than IC results can also incorporate them as special

cases.

3.2.1. Converse: Outer bounds to the achievable rate tuples

In this section, we derive all the outer rate bounds of the achievable rate

tuples. Now R1 + R2 + R3 + R4 is the sum rate bound which basically involves

all the transmitter communicating. Similarly if we consider any three transmitter

communicating simultaneously i.e. one of the transmitter is mute, for example

R1 + R2 + R3 i.e. R4c then we get outer bound for three such cases i.e.R1c , R2c and

R3c . Similarly we can consider only two transmitters communicating simultaneously,

in this case R1+R2 and R3+R4 will be transmitters from same cell and hence will have

direct communication link, like a MAC channel. But for R2 +R3,R2 +R4,R1 +R3 and

R1 +R4 there will be interferring links included, hence it will be interference channel.

Finally we will consider only one transmitter communicating at once, i.eR1, R2, R3

and R4. Now we will use the previously defined lemmas in order to derive these rate

bounds. Let us consider the sum bound first;
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Case-1: Providing xnτ1 at R2 i.e.(Providing receiver 2 with information of

transmitter 1 and 2

Using Fano’s inequality [2] we have,

nRΣ ≤ I(xnτ1 ; z
n
1 ) + I(xnτ2 ; z

n
2 ) + nε, (3.92)

≤ I(xnτ1 ; z
n
1 ) + I(xnτ2 ; z

n
2 , x

n
τ1

), (3.93)

= I(xnτ1 ; z
n
1 ) + I(xnτ2 ; z

n
2 |xnτ1) + I(xnτ2 ;x

n
τ1

), (3.94)

= I(xnτ1 ; z
n
1 ) + I(xnτ2 ; z

n
2 |xτ1) (3.95)

= h(z1)− h(zn1 |xτ1) + h(zn2 |xτ1)− h(zn2 |xτ1xτ2) (3.96)

= h(z1)− [h(zn1 |xτ1)− h(zn1 |xτ1xτ2)] + [h(zn2 |xτ1)− h(zn2 |xτ1xτ2)]− h(zn1 |xnτ1x
n
τ2

)

(3.97)

= I(xnΣ; zn1 )− I(xnτ2 ; z
n
1 |xnτ1) + I(xnτ2 ; z

n
2 |xnτ1), (3.98)

= I(xnΣ; zn1 ) + I(xnτ2 ;H
n
τ22x

n
τ2

+ un2 ), (3.99)

− I(xnτ2 ;H
n
τ21x

n
τ2

+ un1 ), (3.100)

≤ I(xnΣ; zn1 ), (3.101)

≤ nlog

∣∣∣∣∣IN +
∑
k∈Σ

Hk1QkH
†
k1

∣∣∣∣∣+ nε, (3.102)

where we have ignored nε term from equation (3.93) onwards for convenience,

which can any way be discarded if we divide both sides by n and take n → ∞.

Equation (3.95) is because I(xnτ2 ;x
n
τ1

) = 0, as they are mutually independent.

Equation (3.93), (3.94) and (3.98) follows from the fact that additional information at

R2 does not decrease mutual information and xnτ1 and xnτ2 are mutually independent.

Equation (3.99) in an alternative expression for (3.102) using the following equations:

Hn
τ2j

= [Hn
3j H

n
4j] = [In ⊗H3j In ⊗H4j], j = 1, 2,
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and equation (3.101) follows from Lemma 3. Finally equation (3.102) is obtained

from Lemma 4. Now, dividing both sides of equation (3.102) by n and taking n→∞

we get,

RΣ ≤ log

∣∣∣∣∣IN +
∑
k∈Σ

Hk1QkH
†
k1

∣∣∣∣∣ , (3.103)

Case-2: Providing xnτ2 at R1. Using the similar steps as previous case we get

the following:

nRΣ ≤ I(xnτ1 ; z
n
1 ) + I(xnτ2 ; z

n
2 ) + nε, (3.104)

≤ I(xnτ2 ; z
n
2 ) + I(xnτ1 ; z

n
1 , x

n
τ2

), (3.105)

= I(xnτ2 ; z
n
2 ) + I(xnτ1 ; z

n
1 |xnτ2) + I(xnτ2 ;x

n
τ1

), (3.106)

= I(xnτ2 ; z
n
2 ) + I(xnτ1 ; z

n
1 |xτ2) (3.107)

= h(z2)− h(zn2 |xτ2) + h(zn1 |xτ2)− h(zn1 |xτ1xτ2) (3.108)

= h(z2)− [h(zn2 |xτ2)− h(zn2 |xτ2xτ1)] + [h(zn1 |xτ2)− h(zn1 |xτ2xτ1)]− h(zn2 |xnτ2x
n
τ1

)

(3.109)

= I(xnΣ; zn2 )− I(xnτ1 ; z
n
2 |xnτ2) + I(xnτ1 ; z

n
1 |xnτ2), (3.110)

= I(xnΣ; zn2 ) + I(xnτ1 ;H
n
τ11x

n
τ1

+ un1 ), (3.111)

− I(xnτ1 ;H
n
τ12x

n
τ1

+ un2 ), (3.112)

≤ I(xnΣ; zn2 ), (3.113)

≤ nlog

∣∣∣∣∣IN +
∑
k∈Σ

Hk2QkH
†
k2

∣∣∣∣∣+ nε, (3.114)

Hence we get,

RΣ ≤ log

∣∣∣∣∣IN +
∑
k∈Σ

Hk2QkH
†
k2

∣∣∣∣∣ , (3.115)
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Combining equation (3.103) and (3.115) we have the sum rate upper bound

RΣ ≤ min
1≤j≤2

log

∣∣∣∣∣IN +
∑
k∈Σ

HkjQkH
†
kj

∣∣∣∣∣ , (3.116)

Let us now consider outer bounds on sum of 3 users rates, such as R1 +R2 +R3.

Again, using Fano’s inequality we have

nR{4}c ≤ I(xnτ1 ; z
n
1 ) + I(xn3 ; zn2 ) + nε, (3.117)

Next, we provide the side information xn4 to both R1 and R2 and xnτ1 to only R2

to obtain the following

nR{4}c ≤ I(xnτ1 ; z
n
1 |xn4 ) + I(xn3 ; zn2 |xnτ1 , x

n
4 ), (3.118)

= I(xnΣ; zn1 |xn4 )− I(xnτ3 ; z
n
1 |xnτ1 , x

n
4 ) (3.119)

+ I(xn3 ; zn2 |xnτ1 , x
n
4 ), (3.120)

= I(xnΣ; zn1 |xn4 ) + I(xn3 ;Hn
32x

n
3 + un2 ) (3.121)

− I(xn3 ;Hn
31x

n
3 + un1 ) (3.122)

≤ I (xnΣ; zn1 |xn4 ) (3.123)

≤ nlog

∣∣∣∣∣∣IN +
∑
k∈{4}c

Hk1QkH
†
k1

∣∣∣∣∣∣+ nε, (3.124)

where equation (3.118) follows from the independence of xnτ1 to xn4 and xn3 to xnτ1 and

xn4 , (3.119) is chain rule of mutual information, (3.121) is just an simpler expression

of (3.119) and the first inequality in(3.123) follows from Lemma 4. Finally, the last

inequality in equation (3.124) follows from Lemma 1.
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Alternatively, providing the side information of xn4 to both R1 and R2 and xn3

to only R1 we get from equation (3.117)

nR{4}c ≤ I(xnτ1 ; z
n
1 , x

n
τ2

) + I(xn3 ; zn2 , x
n
4 ), (3.125)

= I(xnτ1 ;x
n
τ2

) + I(xnτ1 ; z
n
1 |xnτ2) + I(xn3 ;xn4 ) (3.126)

+ I(xn3 ; zn2 |xn4 ), (3.127)

≤ I(xnτ1 ; z
n
1 |xnτ2) + I(xn3 ; zn2 |xn4 ), (3.128)

= I(xnτ1 ; z
n
1 |xnτ2) + I(xnΣ; zn2 |xn4 )− I(xnτ1 ; z

n
2 |xnτ2), (3.129)

= I(xnΣ; zn2 |xn4 ) + I(xnτ1 ;H
n
τ11x

n
τ1

+ un1 ) (3.130)

− I(xnτ1 ;H
n
τ12x

n
τ1

+ un2 ), (3.131)

≤ I (xnΣ; zn2 |xn4 ) (3.132)

≤ nlog

∣∣∣∣∣∣IN +
∑
k∈{4}c

Hk2QkH
†
k2

∣∣∣∣∣∣+ nε, (3.133)

where equations (3.126), (3.128), (3.129) and (3.130) are obtained via basic

properties of information theory as before. The first and second inequalities of

equation (3.132) and (3.133) follows from Lemma 4 and 1, respectively.

Now, dividing both sides of equation (3.124) and (3.133) by n, taking n → ∞

and subsequently combining them we have

R{4}c ≤ min
1≤j≤2

log

∣∣∣∣∣∣IN +
∑
k∈{4}c

HkjQkH
†
kj

∣∣∣∣∣∣ , (3.134)

Using a similar approach, the following upper bounds can also be proved:

For the case of R1 +R3 +R4 , Using the Fano’s inequality we have;

nR{2}c ≤ I(xnτ2 ; z
n
2 ) + I(xn1 ; zn1 ) + nε, (3.135)
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Next, we provide the side information xn2 to both R1 and R2 and xn1 to only R2

to obtain the following

nR{2}c ≤ nlog

∣∣∣∣∣∣IN +
∑
k∈{2}c

Hk1QkH
†
k1

∣∣∣∣∣∣+ nε, (3.136)

Now, we provide the side information xn2 to both R1 and R2 and xnτ2 to only R1 to

obtain the following

nR{2}c ≤ nlog

∣∣∣∣∣∣IN +
∑
k∈{2}c

Hk2QkH
†
k2

∣∣∣∣∣∣+ nε, (3.137)

Now, dividing both sides of equation (3.136) and (3.137) by n, taking n → ∞ and

subsequently combining them we have

R{2}c ≤ min
1≤j≤2

log

∣∣∣∣∣∣IN +
∑
k∈{2}c

HkjQkH
†
kj

∣∣∣∣∣∣ . (3.138)

For the case of R1 +R2 +R4 , Using the Fano’s inequality we have;

nR{3}c ≤ I(xnτ1 ; z
n
1 ) + I(xn4 ; zn2 ) + nε, (3.139)

Next, we provide the side information xn3 to both R1 and R2 and xnτ1 to only R2

to obtain the following

nR{3}c ≤ nlog

∣∣∣∣∣∣IN +
∑
k∈{3}c

Hk1QkH
†
k1

∣∣∣∣∣∣+ nε, (3.140)

Now, we provide the side information xn3 to both R1 and R2 and xn4 to only R1 to
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obtain the following

nR{3}c ≤ nlog

∣∣∣∣∣∣IN +
∑
k∈{3}c

Hk2QkH
†
k2

∣∣∣∣∣∣+ nε, (3.141)

Now, dividing both sides of equation (3.140) and (3.141) by n, taking n → ∞ and

subsequently combining them we have

R{3}c ≤ min
1≤j≤2

log

∣∣∣∣∣∣IN +
∑
k∈{3}c

HkjQkH
†
kj

∣∣∣∣∣∣ , (3.142)

For the case of R2 +R3 +R4 , Using the Fano’s inequality we have;

nR{1}c ≤ I(xnτ2 ; z
n
1 ) + I(xn2 ; zn2 ) + nε, (3.143)

Next, we provide the side information xn1 to both R1 and R2 and xn2 to only R2

to obtain the following

nR{1}c ≤ nlog

∣∣∣∣∣∣IN +
∑
k∈{1}c

Hk1QkH
†
k1

∣∣∣∣∣∣+ nε, (3.144)

Now, we provide the side information xn1 to both R1 and R2 and xnτ2 to only R1 to

obtain the following

nR{1}c ≤ nlog

∣∣∣∣∣∣IN +
∑
k∈{1}c

Hk2QkH
†
k2

∣∣∣∣∣∣+ nε, (3.145)

Now, dividing both sides of equation (3.144) and (3.145) by n, taking n → ∞ and
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subsequently combining them we have

R{1}c ≤ min
1≤j≤2

log

∣∣∣∣∣∣IN +
∑
k∈{1}c

HkjQkH
†
kj

∣∣∣∣∣∣ , (3.146)

There are six possible bounds on sum of two rates; we divide these into two

categories depending on whether both the rates belong to the same MAC or not, i.e.,

1) bounds on (R1 + R2) and (R3 + R4) and 2) the remaining four bounds. First let

us consider the bound on (R1 +R2); From Fano’s inequality we have,

nR{1,2} ≤ I(xnτ1 ; z
n
1 ) + nε (3.147)

≤ I(xnτ1 ; z
n
1 , x

n
τ2

) + nε (3.148)

= I(xnτ1 ;x
n
τ2

) + I(xnτ1 ; z
n
1 |xnτ2) + nε (3.149)

= I(xnτ1 ; z
n
1 |xnτ2) + nε (3.150)

≤ nlog

∣∣∣∣∣∣IN +
∑

k∈{1,2}

Hk1QkH
†
k1

∣∣∣∣∣∣+ nε, (3.151)

where equation (3.151) follows from Lemma 1.

Further, from the definition of ordered strong interference channel we have,

H†τ11Hτ11 � H†τ12Hτ12; (3.152)

or, (Q
1
2
12)†H†τ11Hτ11Q

1
2
12 � (Q

1
2
12)†H†τ12Hτ12Q

1
2
12; (3.153)

or, log
∣∣∣I + (Q

1
2
12)†H†τ11Hτ11Q

1
2
12

∣∣∣≤ log
∣∣∣I + (Q

1
2
12)†H†τ12Hτ12Q

1
2
12

∣∣∣; (3.154)

or, log
∣∣∣IN +Hτ11Q12H

†
τ11

∣∣∣≤ log
∣∣∣IN +Hτ12Q12H

†
τ12

∣∣∣; (3.155)

or, log

∣∣∣∣∣∣IN +
∑

k∈{1,2}

Hk1QkH
†
k1

∣∣∣∣∣∣≤ log

∣∣∣∣∣∣IN +
∑

k∈{1,2}

Hk2QkH
†
k2

∣∣∣∣∣∣, (3.156)

where (3.153) follows from definition of partial order, (3.154) from the fact that
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log det(.) is a monotonically increasing function in the cone of positive semi definite

matrices and (3.155) follows from the following log det(.) identity:

log |I + AB| = log |I +BA|, and Q12 =

Q1 0

0 Q2

 (3.157)

is a positive semi-definite (psd) matrix and therefore, so is Q
1
2
12, i.e., (Q

1
2
12)† = Q

1
2
12.

Equation (3.156) follows from the notational definition of Hτ1j, i.e., Hτ1j = [H1j H2j].

Now, dividing equation (3.151) by n and taking the limit of n → ∞, and

combining the resulting equation with (3.156) we get

R{1,2} ≤ min
1≤j≤2

log

∣∣∣∣∣∣IN +
∑

k∈{1,2}

HkjQkH
†
kj

∣∣∣∣∣∣ , (3.158)

Similarly, we can prove that

R{3,4} ≤ min
1≤j≤2

log

∣∣∣∣∣∣IN +
∑

k∈{3,4}

HkjQkH
†
kj

∣∣∣∣∣∣ , (3.159)

Next we turn to the second set of bounds. Say the following bound,

nR{1,4} ≤ I(xn1 ; zn1 ) + I(xn4 ; zn2 ) + nε (3.160)

Providing, the side information xn2 , x
n
3 to R1 and xn2 , x

n
1 , x

n
3 to R2 and following similar
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technique as before we get,

nR{1,4} ≤ I(xnΣ; zn1 |xn2 , xn3 ) + I(xn4 ;Hn
42x

n
4 + un2 ) (3.161)

− I(xn4 ;Hn
41x

n
4 + un1 ) (3.162)

≤ I(xnΣ; zn1 |xn2 , xn3 ), (3.163)

≤ n log

∣∣∣∣∣∣IN +
∑

k∈{1,4}

Hk1QkH
†
k1

∣∣∣∣∣∣+ nε, (3.164)

where in equation (3.163) we have used Lemma 4 along with equation (3.6) with

k = 2 and in (3.165) Lemma 1.

From equation (3.160) we can also have

nR{1,4} ≤ n log

∣∣∣∣∣∣IN +
∑

k∈{1,4}

Hk2QkH
†
k2

∣∣∣∣∣∣+ nε, (3.165)

Combining (3.163) and (3.165) we have,

R{1,4} ≤ min
1≤j≤2

log

∣∣∣∣∣∣IN +
∑

k∈{1,4}

HkjQkH
†
kj

∣∣∣∣∣∣+ nε, (3.166)

Similarly we can also get

Rβ ≤ min
1≤j≤2

log

∣∣∣∣∣IN +
∑
k∈β

HkjQkH
†
kj

∣∣∣∣∣ , (3.167)

for β ∈ {{1, 3}, {2, 3}, {2, 4}}. Using a similar method as in the derivation of (3.151)

and (3.156) we get the following

Rk ≤ min
1≤j≤2

log
∣∣∣IN +HkjQkH

†
kj

∣∣∣ , ∀k ∈ Σ. (3.168)
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Finally, if we define the set of rate tuples satisfying all of the above constraints

by Cu, i.e.,

Cu =
{
R̄ :

⋂
{β⊆Σ}

Rβ ≤ min
1≤j≤2

log

∣∣∣∣∣IN +
∑
k∈β

HkjQkH
†
kj

∣∣∣∣∣ }, (3.169)

then clearly,

CIMAC ⊆ Cu. (3.170)

Hence we have derived all the possible outer rate bounds in this section. Then

we define a set Cu which is a set of rate tuples satisfying all the above constraints,

which essetially means that in a four dimensional planar structure, each rate bound

will form a plane according to its constraint and intersection of all such palnes will

form a closed structure which will be Cu. But it is obvious that CIMAC will be subset

of Cu. Now in next section we will work on the achievability. Here our task is to

show that independent Gaussian coding at each transmitter and joint decoding of

the messages at the receivers can achieve all the rate pairs that satisfy all the afore

mentioned contraints.

3.2.2. Achievability

As we are considering a cellular structure here, Cell-1 has two users, Transmitter

1 and 2 and one Base Station, receiver 1 with which the users intend to communicate.

Similarly Cell-2 has two users, Transmitter 3 and 4 and a Base Station, receiver 2 with

which they intend to communicate. Hence they form direct links of communication

within the cell and hence form a MAC channel in the individual cell. Now let us

define RMAC−R1 as the rate region of MAC channel formed with receiver 1 in Cell-1.

Simlarly RMAC−R2 is the rate region of MAC channel formed with receiver 2 in Cell-2.
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Now we will use the results of Discrete Memoryless Channel (DMC) which

we discussed in section 1.5.1, for any given distribution on xΣ satisfying p(xΣ) =

{p(x1)p(x2)p(x3)p(x4)},

RMAC−Rj =
{
R̄ : ∩α⊆Σ (Rα ≤ I(xα; zj|xαc))

}
, (3.171)

represents an achievable rate region for the 4-user MAC formed by all 4 transmitters

and Rxj, for 1 ≤ j ≤ 2, where xα = [x†i1 , x
†
i2
, · · · ]†, α = {i1, i2, · · · }.

Now we define a Compound MAC region which is basically intersection of rate

regions of two MACs. This is important because this intersection will be the region

where all the four transmitter are communicating. It is defined as follows:

RCMAC = RMAC−R1 ∩RMAC−R2 . (3.172)

Clearly, if R̄ ∈ RCMAC, then Txk can communicate at a rate of Rk to both Rx1

and Rx2 with probability of error going to zero ∀ k ∈ Σ. In particular, Tx1 and Tx2

can communicate to Rx1 at rates (R1, R2) and Tx3 and Tx4 can communicate to Rx2

at rates (R3, R4), respectively, which in turn imply that R̄ ∈ RCMAC. Since this is

true for all rate tuples R̄ ∈ RCMAC we have

RCMAC ⊆ CIMAC. (3.173)

In what follows, we evaluate the mutual information terms of (3.171) in order

to derive an explicit expression for RCMAC, which serves as an achievable rate region

for the IMAC by equation (3.173). Incorporating the input covariance constraint

of (3.2), we assume that each transmitter uses i.i.d. Gaussian code books, i.e., the

63



inputs are distributed as

xk ∼ CN (0, Qk), 1 ≤ k ≤ 4. (3.174)

Computation of I(xα; zj|xαc), for any α ⊆ Σ with such distributions is straight forward

and can be evaluated as

I(xα; zj|xαc) = log

∣∣∣∣∣IN +
∑
k∈α

HkjQkH
†
kj

∣∣∣∣∣ , (3.175)

for all α ⊆ Σ and 1 ≤ j ≤ 2. Substituting this expression into equation (3.171) we

obtain the achievable rate region for the IMAC as follows:

RCMAC =
{
R̄ :

⋂
α⊆Σ

Rα ≤ min
1≤j≤2

log

∣∣∣∣∣IN +
∑
k∈α

HkjQkH
†
kj

∣∣∣∣∣}. (3.176)

The converse and the achievability results match in this case and hence we can

say that this is the desired capacity region of the strongly ordered IMAC and the

capacity is the intersection of all the sum rate constraints derived before. Practically,

the capacity region will be the intersection of planes formed by the rate bounds, in

the four dimensional co-ordinate system.
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CHAPTER 4. PRACTICAL APPLICATIONS OF OUR RESULTS

The practical application of our results is discussed in this section. As we know

that, interfernce is a fundamental phenomenon in wireless communication networks,

uncoordinated interference reduces wireless network throughput. As a result, it

is essential to understand and manage interference to achieve the highest network

performance. Conventional approaches to deal with interference are

1. Avoiding interference through orthogonalization of the shared time/frequency

resource,

2. Treating other transmitters signals as noise or decoding interference.

These strategies have been studied extensively and adapted to contemporary

wireless systems such as cellular and wireless local area networks (WLANs). Although

these approaches control interference without system overhead, it turns out that they

are not the optimal in most network configurations, except in certain special cases.

For example consider the K-user interference channel where K transmitters send data

to their corresponding receivers in a shared wireless medium. When the interference

power is of the order of the power of the signal of interest, the traditional interference

management approaches have resulted in (at best) achieving the same data rate order

as the rate of a single communication link because of their inefficient usage of the

spectrum.

It can be shown that the information theoretic results can give the better

results compared to conventional approaches. Now if we consider the method of

avoiding interference through orthogonalization scheme i.e. Orthogonal multiple

access schemes, such as OFDM. This tradeoff can be achieved by varying the number

of sub-carriers allocated to each user. Then the capacity region C characterizes the

optimal tradeoff achievable by any multiple access scheme.
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Now it is hard to practically characterize the capacity region derived in sec-

tion 3.2. To compare the results of two methods:

1. Method-1: Information theoretic rate bounds derived in section 3.2, and

2. Method-2: Rate bounds achieved by Orthogonal multiple access method.

we will derive the capacity of two Cells differently with two different methods and

then compare them individually.

Method-1 results are derived in chapter 3. Now we will derive the results for

Method-2. Consider an orthogonal scheme that allocates a fraction α of the degrees

of freedom to cell-1 and the rest, 1 − α, to cell-2. It is irrelevant for the capacity

analysis whether the partitioning is across frequency or across time, since the power

constraint is on the average across the degrees of freedom. If the received power of

user-k is Pk, the amount of received energy for user-1 in cell-1 is P1

α
joules per degree

of freedom, similarly for other users. The maximum rate user-1 can achieve over the

total bandwidth W is

R1 = αW log

(
1 +

P1

αN0

)
bits/s (4.1)

Similarly, the maximum rate user-2 can achieve is

R2 = αW log

(
1 +

P2

αN0

)
bits/s (4.2)

and sum rate will be

R1 +R2 = αW log

(
1 +

P1 + P2

αN0

)
bits/s (4.3)
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Similarly for Cell-2

R3 = (1− α)W log

(
1 +

P3

(1− α)N0

)
bits/s (4.4)

R4 = (1− α)W log

(
1 +

P4

(1− α)N0

)
bits/s (4.5)

R3 +R4 = (1− α)W log

(
1 +

P3 + P4

(1− α)N0

)
bits/s (4.6)

Here, W is the bandwidth and α is a constant that varies from 0 to 1. Varying α

from 0 to 1 yields all the rate pairs achieved by orthogonal schemes.

In the simulations, We have considered W = 20Hz. For Method-1, We have

derived all the rate bounds using equations from section 3.2. The matlab code for all

rate bounds with Method-1 and its output is in Appendix. A.

For Method-2, first we derive R1, R2, R3, R4, R1 + R2 and R3 + R4 ,then by

adding the rates with other combinations we can derive all the bounds. The matlab

code for Method-2 and its output is in Appendix. B.

The easy way to compare the results is by comparing the graphs of 2 user links

from Cell-1 and Cell-2. The graph for the Cell-1 formed by equations derived by rate

tuple (R1, R2) from Method-1 and Method-2. Figure 14 and Figure 15 shows these

graphs for Cell-1 and Cell-2 respectively.

As it is evident from Figures 14 and 15, the graphs from Method-1 have greater

capacity region than the graphs from Method-2. This shows that the information

theoretic results give better results than orthogonal multiple access method which is

practically implemented. We are working on getting the four dimensional graphs for

better comparison results.
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Figure 14. The comparison of graphs by two methods in Cell-1

Figure 15. The comparison of graphs by two methods in Cell-2
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CHAPTER 5. CONCLUSION

We characterize the capacity region of the class of strongly ordered IMAC, with

arbitrary number of antennas at each transmitter and arbitrary but same number of

antennas at both the receivers.Our results prove that while characterizing the capacity

region the two tradeoffs will turn out to be unique, i.e. Interference channel problem

and the MAC channel problem are the same. Hence there is a homogeneity between

the two types of tradeoffs. The results of two user MIMO strong interference channel

is the special case of four user strongly ordered IMAC.

In this work, we have tried to show that information theoretic result can provide

optimal results than the methods used presently in pratical applications.

Characterizing the capacity region for non-strong channel matrices can be an

interesting direction of future research.
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APPENDIX A

The matlab code for Method-1 and its output is as follows:

%R1+R2+R3+R4

R12341=log(det(I+(H11*Q*H11.')+(H21*Q*H21.')+(H31*Q*H31.')+(H41*Q*H41.')));

R12342=log(det(I+(H12*Q*H12.')+(H22*Q*H22.')+(H32*Q*H32.')+(H42*Q*H42.')));

R7=min(R12341,R12342)*W;

%R1+R2+R3

R1231=log(det(I+(H11*Q*H11.')+(H21*Q*H21.')+(H31*Q*H31.')));

R1232=log(det(I+(H12*Q*H12.')+(H22*Q*H22.')+(H32*Q*H32.')));

R14=min(R1231,R1232)*W;

%R1+R3+R4

R1341=log(det(I+(H11*Q*H11.')+(H31*Q*H31.')+(H41*Q*H41.')));

R1342=log(det(I+(H12*Q*H12.')+(H32*Q*H32.')+(H42*Q*H42.')));

R12=min(R1341,R1342)*W;

%R1+R2+R4

R1241=log(det(I+(H11*Q*H11.')+(H21*Q*H21.')+(H41*Q*H41.')));

R1242=log(det(I+(H12*Q*H12.')+(H22*Q*H22.')+(H42*Q*H42.')));

R13=min(R1241,R1242)*W;

%R2+R3+R4

R2341=log(det(I+(H21*Q*H21.')+(H31*Q*H31.')+(H41*Q*H41.')));

R2342=log(det(I+(H22*Q*H22.')+(H32*Q*H32.')+(H42*Q*H42.')));

R15=min(R2341,R2342)*W;

%R1+R2

R121=log(det(I+(H11*Q*H11.')+(H21*Q*H21.')));

R122=log(det(I+(H12*Q*H12.')+(H22*Q*H22.')));

R5=min(R121,R122)*W;

%R3+R4

R341=log(det(I+(H31*Q*H31.')+(H41*Q*H41.')));

R342=log(det(I+(H32*Q*H32.')+(H42*Q*H42.')));
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R6=min(R341,R342)*W;

%R1+R3

R131=log(det(I+(H11*Q*H11.')+(H31*Q*H31.')));

R132=log(det(I+(H12*Q*H12.')+(H32*Q*H32.')));

R8=min(R131,R132)*W;

%R1+R4

R141=log(det(I+(H11*Q*H11.')+(H41*Q*H41.')));

R142=log(det(I+(H12*Q*H12.')+(H42*Q*H42.')));

R9=min(R1241,R1242)*W;

%R2+R3

R231=log(det(I+(H21*Q*H21.')+(H31*Q*H31.')));

R232=log(det(I+(H22*Q*H22.')+(H32*Q*H32.')));

R10=min(R231,R232)*W;

%R2+R4

R241=log(det(I+(H21*Q*H21.')+(H41*Q*H41.')));

R242=log(det(I+(H22*Q*H22.')+(H42*Q*H42.')));

R11=min(R241,R242)*W;

%R1

R011=log(det(I+(H11*Q*H11.')));

R012=log(det(I+(H12*Q*H12.')));

R1=min(R011,R012)*W

%R2

R21=log(det(I+(H21*Q*H21.')));

R22=log(det(I+(H22*Q*H22.')));

R2=min(R21,R22)*W;

%R3

R31=log(det(I+(H31*Q*H31.')));

R32=log(det(I+(H32*Q*H32.')));

R3=min(R31,R32)*W;

%R4

R41=log(det(I+(H41*Q*H41.')));

R42=log(det(I+(H42*Q*H42.')));
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R4=min(R41,R42)*W;

N(1,:)=[R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15]

In the above code, ′N ′ is the output where the order of the rate bounds is as follows:

[R1 R2 R3 R4 R1 +R2 R3 +R4 R1 +R2 +R3 +R4 R1 +R3 R1 +R4 R2 +R3 R2 +

R4 R1 +R3 +R4 R1 +R2 +R4 R1 +R2 +R3 R2 +R3 +R4]

Q is the power constraint matrix. For this simulation I have considered two

antennas at transmitter and the receiver. Hnece I is a 2× 2 matirx and the channel

matrices are randomly generated 2× 2 matrices.

The output for particular set of random channel matrices is as follows:

N = Columns 1 through 10

37.3412 66.0080 58.9239 43.7388 90.0089 86.7171 ...

116.7628 82.5857 103.5614 101.5780

Columns 11 through 15

96.7876 93.0552 103.5614 108.3696 112.2398
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APPENDIX B

The matlab code for Method-2 and its output is as follows:

alpha=0.5

%Cell−1

%R1

C011=alpha*W*log(det(I+(H11*Q*H11.')./alpha));

C012=alpha*W*log(det(I+(H12*Q*H12.')./alpha));

C1=min(C011,C012);

%R2

C21=alpha*W*log(det(I+(H21*Q*H21.')./alpha));

C22=alpha*W*log(det(I+(H22*Q*H22.')./alpha));

C2=min(C21,C22);

%R1+R2

C51=alpha*W*log(det(I+((H11*Q*H11.')+ (H21*Q*H21.'))./alpha));

C52=alpha*W*log(det(I+((H11*Q*H11.')+ (H21*Q*H21.'))./alpha));

C5=min(C51,C52);

%Cell−2

%R3

C31=(1−alpha)*W*log(det(I+(H31*Q*H31.')./(1−alpha)));

C32=(1−alpha)*W*log(det(I+(H32*Q*H32.')./(1−alpha)));

C3=min(C31,C32);

%R4

C41=(1−alpha)*W*log(det(I+(H41*Q*H41.')./(1−alpha)));

C42=(1−alpha)*W*log(det(I+(H42*Q*H42.')./(1−alpha)));

C4=min(C41,C42);

%R3+R4

C61=(1−alpha)*W*log(det(I+((H31*Q*H31.')+ (H41*Q*H41.'))./(1−alpha)));

C62=(1−alpha)*W*log(det(I+((H31*Q*H31.')+ (H41*Q*H41.'))./(1−alpha)));

C6=min(C61,C62);
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%R1+R2+R3+R4

C7=C5+C6;

%R1+R3

C8=C1+C3;

%R1+R4

C9=C1+C4;

%R2+R3

C10=C2+C3;

%R2+R4

C11=C2+C4;

%R1+R3+R4

C12=C1+C6;

%R1+R2+R4

C13=C5+C4;

%R1+R2+R3

C14=C5+C3;

%R2+R3+R4

C15=C2+C6;

M(1,:)=[C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15]

The output for particular set of random channel matrices is as follows, for α = 0.5:

M = Columns 1 through 10

27.1488 43.3895 38.7082 30.0800 57.6710 55.9576 ...

113.6286 65.8570 57.2288 82.0977

Columns 11 through 15

73.4695 83.1064 87.7510 96.3791 99.3472
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