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ABSTRACT

Insurance companies must have an appropriate method of estimating future reserve amounts.

These values will directly influence the rates that are charged to the customer. This thesis analyzes

stochastic reserving techniques that use bootstrap methods in order to obtain variability estimates

of predicted reserves. Bootstrapping techniques are of interest because they usually do not re-

quire advanced statistical software to implement. Some bootstrap techniques have incorporated

generalized linear models in order to produce results. To analyze how well these methods are per-

forming, data with known future losses was obtained from the National Association of Insurance

Commissioners. Analysis of this data shows that most bootstrapping methods produce results that

are comparable to one another and to the trusted Chain Ladder method. The methods are then

applied to loss data from a small Midwestern insurance company to predict variation of their future

reserve amounts.
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1. INTRODUCTION

1.1. Insurance Reserves

Loss reserving is essential for insurance companies to meet future liabilities. Insurance losses

are not fully developed at the moment of a claim. Claims mature as payments are made and more

information is obtained about the true value of the loss. Premiums collected from a calendar year

may not be enough to cover that year’s claim amounts for various reasons: a claim could be filed

years after the accident/incident occurred, certain claims require multiple payments throughout

the years (such as disability), or it could take years for a claim to be settled due to liability issues.

For these reasons, along with many others, insurance companies must set aside reserves to cover

each year’s liability. An appropriate method of estimating what the reserve amount should be

is necessary. Many methods have been developed and implemented, but this paper will focus on

analyzing various Bootstrap and General Linear Model techniques. These will be described fully

in later sections.

To demonstrate how to employ these methods claim amount data will be used, but the

processes could be extended to claim count data. Claim amount data is usually presented in a

triangular form as shown in Table 1, which displays incremental claims made, in thousands, for

an Auto Liability line of insurance for the years 2002-2011 . This data was obtained from a small

Midwestern insurance company. This form of data can be referred to as a ‘loss triangle’ or a ‘run-

off triangle’. The rows represent the year of origin, or accident year, that a claim occurred in.

Claim amounts are shown for each development year that occurs after the accident year. Table 1 is

considered fully developed after ten years. Different lines of insurance may develop faster or slower

depending on the nature of the insurance. Also, development periods may be represented in other

quantities, such as quarters or months, as needed.

The elements in Table 1 will be referenced as Xi,j , the incremental claim amount from

accident year i and development year j. Thus X2,3 = 1219 corresponds to a claim made in 2005

for an accident that occurred in 2003 . It should be noted that it is possible to have negative

values in an incremental loss triangle. Negative values occur from salvages or subrogations. When

a company replaces customer property they assume ownership of the damaged property. If the
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Table 1: Incremental Claim Amounts for Auto Liability Insurance Line
Development Year

Accident Year 1 2 3 4 5 6 7 8 9 10

2002 3556 2389 1107 732 272 160 -14 30 86 1
2003 3495 2267 1219 562 53 130 42 10 54
2004 4556 2068 1463 148 295 242 107 43
2005 4139 2042 467 441 831 -252 89
2006 3771 1496 1545 409 457 -203
2007 3624 1841 277 450 121
2008 3817 1727 1232 -42
2009 4524 1888 1960
2010 3816 604
2011 4299

damaged property can be reconditioned and sold, part of the payments that have been made are

offset. This type of recovery is called salvage. Subrogation occurs when the insurance company

pays for the customer’s loss and then recovers payments from a third party who is determined at

fault for the loss event. These recuperations are recorded as negative payments.

Loss triangles also display the total amount paid during a calendar year. Each calendar

year is shown as a diagonal going from lower-left to upper-right. For example, the total claims paid

in 2011 would be the sum of the diagonal beginning at X10,1:

4299 + 604 + 1960 + (−42) + 121 + (−203) + 89 + 43 + 54 + 1 = 6926

Loss reserving techniques try to predict the lower triangle of loss data. These claims are

often Incurred But Not Reported (IBNR) where a claim has occurred but has not yet been filed,

or Reported But Not Settled (RBNS) where a claim is known but not completely paid. (Kaas,

Goovaerts, Dhaene, and Denuit 2009). Loss reserving is trying to predict values of Xi,j where

calendar year, k, is greater than the last accident year given in the data. The calendar year can

be determined by k = i + j − 1. This thesis will focus not only on predicting the future values of

Table 1 but also determining variability measures for the loss predictions.

1.2. Chain Ladder Method

One of the most commonly used methods of estimating loss reserves is the Chain Ladder

Method. It is a very well established actuarial practice that does not require any statistical mod-

eling. This method uses historical loss data patterns to predict future development patterns. It

2



assumes that the columns of a loss triangle are proportional and approximately the same percent-

age of claims will be made in similar development years. A full description of the methods and

assumptions can be found in IBNR Techniques (Kaas et al. 2009) but a brief description and

example will be given next.

The chain ladder method can be performed using incremental data as shown in Table 1,

but it is common for loss data to be shown in a cumulative form. The cumulative data takes the

same triangular shape but the elements represent the total amount of claims paid for an accident

year up to a particular development year. Table 2 displays the cumulative loss data for the Auto

Liability Insurance given in Table 1. Each element of the table is calculated using Equation (1)

with Yi,j representing the cumulative claim value of accident year i and development year j. i and

j are from 1 to m, where m is the number of development years.

Yi,j =

j∑
s=1

Xi,s (1)

Table 2: Cumulative Claim Amounts for Auto Liability Insurance
Development Year

Accident Year 1 2 3 4 5 6 7 8 9 10

2002 3556 5945 7052 7784 8056 8216 8202 8232 8318 8319
2003 3495 5762 6981 7543 7596 7726 7768 7778 7832
2004 4556 6624 8087 8235 8530 8772 8879 8922
2005 4139 6181 6648 7089 7920 7668 7757
2006 3771 5267 6812 7221 7678 7475
2007 3624 5465 5742 6192 6313
2008 3817 5544 6776 6734
2009 4524 6412 8372
2010 3816 4420
2011 4299

Each empty element of Table 2 can be predicted by multiplying the latest claim amount

by a development factor. These development factors are calculated as proportions of successive

development years.The process for creating the development factor for the j th development year is

shown in Equation (2).

fj =

∑i−1
t=1 Yt,j+1∑i−1
t=1 Yt,j

(2)

3



The future claim amounts can then be calculated for j >= k − i+ 1, as

Yi,j = fj−1 ∗ Yi,j−1 (3)

Using the above formula, each calendar year must be predicted in order. It is not possible

to find elements for a calendar year if the previous diagonal has not yet been estimated because

those numbers will be needed in the calculations. It should be noted that by using Equations (2)

and (3) the Chain Ladder method is equivalent to performing a weighted least squares regression

with weights of 1/x.

To demonstrate the use of Equations (2) and ( 3), calculations are shown for finding the

first five development factors and predicted cumulative amounts associated with completing the

2012 calendar year diagonal.

Development Factors:

f1 = 5945+5762+6624+6181+5267+5465+5544+6412+4420
3556+3495+4556+4139+3771+3624+3817+4524+3816 = 1.4624

f2 = 7052+6981+8087+6648+6812+5742+6776+8372
5945+5762+6624+6181+5267+5465+5544+6412 = 1.1964

f3 = 7784+7543+8235+7089+7221+6192+6734
7052+6981+8087+6648+6812+5742+6776 = 1.0561

f4 = 8056+7596+8530+7920+7678+6313
7784+7543+8235+7089+7221+6192 = 1.0460

f5 = 8216+7726+8772+7668+7475
8056+7596+8530+7920+7678 = 1.0019

Predicted Cumulative Amounts:

Y10,2 = 4299 ∗ 1.4624 = 6287

Y9,3 = 4420 ∗ 1.1964 = 5288

Y8,4 = 8372 ∗ 1.0561 = 8842

Y7,5 = 6734 ∗ 1.0460 = 7044

Y6,6 = 6313 ∗ 1.0019 = 6325

In this way the lower triangle of Table 2 can be estimated. For simplification these calcula-

tions can be completed using statistical software. Table 3 shows the cumulative claim amounts for

the Auto Liability Insurance with the predicted values in bold.

From Table 3 the total claim amounts that will be need to be paid in future development

years are estimated. For example, the company can expect to pay an estimated total of $5,966,000

for all claims from 2010. It is also beneficial to calculate the incremental claim amounts because

4



Table 3: Predicted Cumulative Claim Amounts

Development Year

Accident Year 1 2 3 4 5 6 7 8 9 10

2002 3556 5945 7052 7784 8056 8216 8202 8232 8318 8319
2003 3495 5762 6981 7543 7596 7726 7768 7778 7832 7833
2004 4556 6624 8087 8235 8530 8772 8879 8922 9000 9001
2005 4139 6181 6648 7089 7920 7668 7757 7783 7851 7852
2006 3771 5267 6812 7221 7678 7475 7527 7552 7618 7619
2007 3624 5465 5742 6192 6313 6325 6369 6390 6446 6447
2008 3817 5544 6776 6734 7044 7058 7106 7130 7193 7193
2009 4524 6412 8372 8842 9249 9267 9331 9362 9444 9445
2010 3816 4420 5288 5585 5842 5853 5894 5914 5965 5966
2011 4299 6287 7522 7944 8310 8326 8383 8411 8485 8486

this will display how much the company must pay in any development year, not just the total.

The incremental values are given in Table 4, with the predicted values in bold. It can be seen

that the last development year contains a value of 1 for all accident years. This coincides with

the assumption that this particular line of insurance is fully developed after ten years because the

amount being settled has significantly decreased.

Table 4: Predicted Incremental Claim Amounts

Development Year

Accident Year 1 2 3 4 5 6 7 8 9 10

2002 3556 2389 1107 732 272 160 -14 30 86 1
2003 3495 2267 1219 562 53 130 42 10 54 1
2004 4556 2068 1463 148 295 242 107 43 78 1
2005 4139 2042 467 441 831 -252 89 26 68 1
2006 3771 1496 1545 409 457 -203 52 25 66 1
2007 3624 1841 277 450 121 12 44 21 56 1
2008 3817 1727 1232 -42 310 14 49 24 62 1
2009 4524 1888 1960 470 407 18 64 31 82 1
2010 3816 604 868 297 257 11 40 20 52 1
2011 4299 1988 1235 422 366 16 58 28 74 1

The chain ladder method is simple to implement and produces results that are easy to

understand. However, there are certain drawbacks to this method. The reserve predictions can

be unstable if the loss data given is volatile. For this reason it is important that the data being

analyzed is a good representation of how the data will act in the future, and that the data is not

unstable. Another disadvantage to the chain ladder method is that there is no way to estimate the
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variability of the predictions; all that is given is the point estimates of the reserves. This thesis will

focus on methods that produce variability estimates so confidence limits can be predicted as well.
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2. LITERATURE REVIEW

Predicting future claims accurately is vital for all insurance companies. Many methods

have been developed and studied with the purpose of obtaining more accurate predictions. Most

of these methods are compared to the results produced by the Chain Ladder method. The Chain

Ladder method is a deterministic algorithm that is simple to implement but it is not a model based

on mathematical statistics where calculations are estimating parameters of a statistical model

(Mart́ınez-Miranda, Nielsen, and Verrall 2012). For this reason many stochastic methods have

been developed.

A general framework for creating a stochastic method is presented by England and Verrall

(2001). The method suggested attempts to smooth the Chain Ladder development factors to

get “best estimates” and variability/precision estimates. The smoothing factor is subject to the

judgment of the statistician performing the algorithm. This makes the method time consuming and

non-consistent. There were also many drawbacks, one of which was that only positive values would

be predicted which will not work for every data set. To create a better stochastic method, models

using Bayesian statistics were introduced (England and Verrall 2002). These methods also focus

on creating a best estimate but they stress that understanding variability is important for accurate

model assumptions. Prediction error is a good estimate of variability and should be analyzed.

One method of producing prediction error that has become more popular is to use bootstrap

techniques to estimate future claims. Bootstrapping repeatedly resamples the data to create a

distribution to estimate bias and variance of a parameter of interest. This method connects to

the jackknife technique but is more widely applicable (Efron 1979). Bootstrap techniques were

extended to claims reserving because prediction errors could be calculated with a spreadsheet

instead of statistical software packages.

To estimate future claims using the bootstrap technique, residuals are repeatedly resam-

pled. Residuals are found using fitted values obtained from the Chain Ladder Method. The Pearson

residual was found to be most appropriate for loss data because of its simple form (England and

Verrall 1999). After the bootstrap distribution has been created the prediction error can be calcu-

lated by including estimation variance and process variance. It has also been suggested that data

7



be sampled from the process distribution during the bootstrap procedure to provide realizations

from the whole predictive distribution (England 2002).

Many variations on the original bootstrap procedure have been introduced to account for

different data distributions. Instead of using the Chain Ladder method to calculate fitted and

predicted values, these new methods are using results from Generalized Linear Model (GLM)

techniques (Wüthrich and Merz 2008). Generalized Linear Model estimates can be calculated for

multiple distributions but the Gamma and Poisson distributions are most commonly used for loss

reserving. It has been found that the over-dispersed Poisson GLM will produce estimates that are

identically to those of the Chain Ladder Method (Wüthrich and Merz 2008). The estimates can be

found using matrix algebra if statistical software is not available (Shapland and Leong 2010).

Some methods change the steps of the original bootstrap procedure in an attempt to obtain

a more robust prediction error. Pinheiro, Silva, and Centeno suggest a method in which the

bootstrap procedure is performed twice in one iteration; once to find the estimated claim values

and again to calculate prediction error with new values that are not seen in the original bootstrap

(2003). This method was not determined to be more accurate than the original bootstrap and it

was also found to be greatly affected by the process distribution chosen.

Recently there has been a focus on the assumptions that should be assessed when using

bootstrap techniques. Bootstrapping produces predictive distributions of losses that are of interest

to insurers. Some problems that can occur are model inadequacy due to predictions of never-before-

observed calendar years, and over-parameterization (Barnett and Zehnwirth 2008). The one-step

ahead prediction errors should be analyzed to determine if problems are arising in the bootstrap

model. Also the estimates of the last development year should be validated as plausible from the

predictive distribution.

Other stochastic methods have found to be comparable to bootstrapping. The EM algorithm

can be used as a tool to detect unobserved risks in finite mixture models. This method sees losses as

distributions when making predictions. It has been shown that using Monte Carlo based methods

via the EM algorithm produces results that are similar to the bootstrap technique (Rempala and

Derrig 2005). Another method proposes using Bayesian estimation implemented with Markov

Chain Monte Carlo (MCMC) techniques to predict future claims and obtain prediction errors.

The Bayesian method produced similar results to the bootstrap technique. However the bootstrap

8



method is easier to implement and is more amenable to manipulation. Even so, it was found that

the Bayesian method was more likely to produce accurate results over time (England and Verrall

2006).

A method that combines Bayesian techniques with bootstrap methods was developed in

recent years. The bootstrap produce allows samples to be generated without distribution assump-

tions so no parametric assumptions are made for the MCMC Bayesian procedures. From this

the algorithm will produce not only the point estimates of the future claims but also an accurate

empirical approximation of the entire distribution of claims. When compared to the original boot-

strap method, this Bayesian technique was found to be comparable and producing accurate results

(Peters, Wüthrich, and Shevchenko 2010).

One of the most recent methods of claims reserving that has been developed is much simpler

than those with Bayesian or bootstrap techniques. The Double Chain Ladder method uses a simple

regression approach to predict future claims. Unlike the original Chain Ladder method, the Double

Chain Ladder applies the chain ladder algorithm on both the claim amount data and the claim count

data. This method also divides the predicted claims into Reported But Not Settled (RBNS) and

Incurred But Not Reported (IBNR). This distinction could be very important for various insurers

but is not the focus of many loss reserving techniques. It has been claimed that this method is

better than other stochastic methods because it is based on quatities that have a real interpretation

in the context of the insurance data (Mart́ınez-Miranda et al. 2012).

This paper will focus on various bootstrap methods. Most of the bootstrap methods that

have been analyzed use current insurance data which makes them unable to validate their results

with actual observations. Various bootstrap methods will be compared using past data so the

accuracy of these methods can be determined.
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3. METHODOLOGY

When performing predictions on loss triangles, most often the main goal is to obtain the

total amount of claims for each accident year. It is not as important to know the claim amounts for

each combination of accident year and development year as it is to know the total for each year. It is

also valuable to be able to predict an upper bound on each year’s total, so some variability measures

must be estimated along with the parameter estimate. Many stochastic reserving techniques have

been implemented to create such variability measures. Methods that will be analyzed in later

chapters are using generalized linear models and bootstrapping techniques. A description of the

methods used for these stochastic reserving techniques will be given in this chapter followed by an

overview of the methods that will be implemented in this paper.

3.1. Generalized Linear Model Approach

One stochastic approach to loss reserving is to treat the incremental claim amounts as

the response of a Generalized Linear Model (GLM) that uses a logarithmic link function. If the

incremental claim amounts for accident year i and development year j are denoted as Xi,j , then

the form of the model proposed would be as follows:

E(Xi,j) = mi,j (4)

V ar(Xi,j) = φE(Xi,j) = φmi,j (5)

log(mi,j) = ηi,j (6)

ηi,j = c+ αi + βj α1 = β1 = 0 (7)

From Equations (4) - (7) the generalized linear model is shown to have a variance proportional

to its mean, thus an over-dispersed Poisson error distribution is used. It is known that this is an

over-dispersed Poisson because of the Poisson distribution’s relation to the exponential family. All

members of the exponential family will have variances that are proportional to some function of

the mean. In this model, accident year and development year are treated as factors with αi for

accident year i and βj for development year j. The scale parameter φ is estimated when the model
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is fit. This model is easy to implement with statistical software and produces reserve estimates

that are identical to those given by the chain ladder method. This model also works with a small

number of negative incremental values, unlike other proposed methods such as those that use the

log-normal class.

Another model that is important to understand is one in which the incremental claim

amounts are modeled as Gamma response variables. This model also uses a logarithmic link

function and a linear predictor. The main difference is that the variance is proportional to the

mean squared. Thus, this model can be represented by Equations (4) - (7), if the variance formula

in Equation (5) is replaced by Equation (8) below. This model should produce reserves that are

similar to the Chain Ladder method, but not identical.

V ar(Xi,j) = φE(Xi,j)
2 = φm2

i,j (8)

This paper proposes that another model could be used to form incremental claim amounts.

Over-dispersed Poisson and Gamma distributions are commonly used but Inverse Gaussian also has

a similar shape. The Inverse Gaussian distribution is also skewed to the right but it has a thicker

tail than the Gamma distribution. This could produce similar results and should be explored.

The Inverse Gaussian model commonly uses the link function 1/µ2 instead of the log link

function used in the previously described models. Other than this difference, the Inverse Gaussian

model is very similar to the Poisson and Gamma models. The Inverse Gaussian model can be

described by Equations (9) - (12). The variance is proportional to the mean cubed and a linear

predictor is used.

E(Xi,j) = mi,j (9)

V ar(Xi,j) = φE(Xi,j)
3 = φm3

i,j (10)

1

m2
i,j

= ηi,j (11)

ηi,j = c+ αi + βj α1 = β1 = 0 (12)

11



The main advantage of using stochastic GLM models, such as the three presented, is that

reserve variability estimates can now be calculated. Since loss reserving problems are predicting fu-

ture claim amounts, the prediction error, or root mean square of prediction, is used as the variability

estimate. The calculation of the mean square error of prediction is given by Equation (13).

E[(Xi,j − X̂i,j)
2] ≈ V ar(Xi,j) + V ar(X̂i,j) (13)

This form of mean square error is valid for models using over-dispersed Poisson, Gamma, or Inverse

Gaussian distributions. It can be seen that the mean square error of prediction is the sum of two

parts, the variability in the data, or process variance, and the variability due to estimation. The

process variance has already been defined in Equations (5), (8), and (10) for over-dispersed Poisson,

Gamma, and Inverse Gaussian models respectively but for simplicity a general form of the process

variance can be given.

V ar(Xi,j) = φmρ
i,j (14)

Equation (14) represents the process variance with ρ = 1 for the over-dispersed Poisson model,

ρ = 2 for the Gamma model, and ρ = 3 for the Inverse Gaussian model.

Estimate variance is usually found with statistical software but can be calculated using the

delta method. Equation (15) shows the estimation variance for Poisson and Gamma models.

V ar(X̂i,j) ≈|
δmi.j

δηi,j
|2 V ar(ηi,j) = m2

i,jV ar(ηi,j) (15)

Now both parts of the mean square error are defined and the prediction error can be found by

taking the square root of the mean square error. An example of how to use the GLM models

described to solve loss reserving problems is given next.

3.2. General Example Solving GLM Model

Statistical software packages can be used to solve for the coefficients in the GLM models

described in the previous section but for a better understanding of the methods, the coefficients

can be solved using matrix algebra. To demonstrate how these calculations can be performed for

an over-dispersed Poisson model, a small loss triangle is given in Table 5.
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Table 5: General Incremental Data

1 2 3

1 X1,1 X1,2 X1,3

2 X2,1 X2,2

3 X3,1

The above losses are then transformed using the log-link function which would give the

natural log of each of the values. Then the model is specified using Equation (7) to create a system

of equations.

ln(X1,1) = c

ln(X2,1) = c+ α2

ln(X3,1) = c+ α3

ln(X1,2) = c+ β2

ln(X2,2) = c+ α2 + β2

ln(X1,3) = c+ β3

The coefficients of the model can be solved by writing the system of equations in matrix

notation, Y = X*A, and solving using orthogonal decomposition or other matrix methods. The

coefficients are solved such that the difference between the actual log incremental values and the

fitted log values is minimized.

Y =



ln(X1,1)

ln(X2,1)

ln(X3,1)

ln(X1,2)

ln(X2,2)

ln(X1,3)


X =



1 0 0 0 0

1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

1 1 0 1 0

1 0 0 0 1


A =



c

α2

α3

β2

β3



X is called the design matrix and will have dimensions n x p, where n is the number of

known elements in the loss triangle and p is the number of coefficients that are being predicted.

After solving for the coefficients, the log fitted values can be calculated.

ln(m1,1) = ĉ

ln(m2,1) = ĉ+ α̂2
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ln(m3,1) = ĉ+ α̂3

ln(m1,2) = ĉ+ β̂2

ln(m2,2) = ĉ+ α̂2 + β̂2

ln(m1,3) = ĉ+ β̂3

These results can then be exponentiated to solve for the fitted incremental claim values and

can be placed in the triangular form.

Table 6: GLM Fitted Incremental Data

1 2 3

1 m1,1 m1,2 m1,3

2 m2,1 m2,2

3 m3,1

The estimated values of the coefficients can also be used to predict the log values for the

lower triangle. The predicted incremental values are then found by exponentiating the predicted

logs.

ln(m3,2) = ĉ+ α̂3 + β̂2

ln(m2,3) = ĉ+ α̂2 + β̂3

ln(m3,3) = ĉ+ α̂3 + β̂3

This method can be used for Gamma and Inverse Gaussian models as well and, can be used

to find fitted values for the upper triangle as well as predicted values for the lower triangle.

3.3. Bootstrap Technique

Bootstrapping is a form of nonparametric Monte Carlo methods that estimate the distribu-

tion of a population by resampling from the data (Rizzo 2008). These methods are often done when

the sample is the only information available and the distribution is unknown. The objective is to

repeatedly resample from the data itself to get a better idea of the distribution or the parameter of

interest. When bootstrapping, resampling can be done on the data or on the residuals, depending

on the type of problem. If the original data is not a good representation of the actual distribution,

the samples obtained by bootstrapping will not become close to the actual values. Therefore it is

essential to have a sample that is indicative of the population.
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In loss reserving problems the prediction error needs to be estimated and bootstrapping

is an appropriate method to do this. In these types of problems it is common to resample, with

replacement, the residuals of the upper triangle of claims and create pseudo data sets. In order

to find residual values, fitted values must first be calculated. Most bootstrapping techniques use

the chain ladder method for fitting and predicting. These fitted values will be different than those

found using the GLM approach (except for over-dispersed Poisson model).

Given an upper triangle of observed cumulative claim amounts and the chain ladder devel-

opment factors, the fitted values can be found. First, the final diagonal of the observed amounts

will remain the same for the fitted values. The remaining fitted values are then found backwards by

recursively dividing the fitted value at time t by the development factor from time t-1. An example

of finding fitted values of Table 2 is given next with Tables 7 and 8.

Table 7: Development Factors of Table 2
f1 = 1.462 f2 = 1.196 f3 = 1.056 f4 = 1.046 f5 = 1.002
f6 = 1.007 f7 = 1.003 f8 = 1.009 f9 = 1.000 f10 = 1.000

Table 8: Fitted Cumulative Claims Associated with Table 2

Development Year

Accident Year 1 2 3 4 5 6 7 8 9 10

2002 4214 6163 7374 7788 8146 8162 8218 8246 8318 8319
2003 3968 5803 6943 7333 7670 7685 7738 7764 7832
2004 4560 6669 7978 8426 8814 8831 8892 8922
2005 3978 5817 6960 7350 7689 7704 7757
2006 3860 5644 6753 7132 7461 7475
2007 3266 4776 5714 6035 6313
2008 3644 5329 6376 6734
2009 4785 6998 8372
2010 3022 4420
2011 4299

From the fitted cumulative data, fitted incremental data is easily found by differencing.

Once the fitted incremental values have been found, the residuals can be calculated. It is important

to use an appropriate residual formula. England and Verrall (1999) propose using either Deviance

residuals or Pearson residuals. Pearson residuals are more commonly used because the form is

easily inverted to solve for pseudo fitted values.
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Pearson residuals:

r =
X −m√

m
(16)

where X and m are the observed and fitted incremental claim amounts, respectively. These residuals

are considered “unscaled” because they do not contain the scale parameter φ. This scale parameter

is not needed in the bootstrap calculations but is used when finding the process error so it should

be estimated. One estimation of φ that is consistent with residuals that are being used is:

φ∗ =

∑
r2

n− p
(17)

with n as the number of data points in the sample, or the number of claims in the upper triangle,

and p as the number of parameters to estimate. The sum is then taken over the n residuals that

are calculated from the upper triangle.

Once n residuals have been resampled, with replacement, and placed in the upper triangular

form a bootstrap data sample is created. The pseudo values for the claim amounts, X∗, are found

by solving for X in Equation (16) and using the resampled Pearson residuals, r∗, and the fitted

incremental values. In this way bootstrapping gives a new upper triangle of incremental payments.

X∗ = r∗
√
m+m (18)

Now the prediction error can be calculated in the same way as was described in section 3.1

as the square root of mean square error. It has been shown that mean square error can be broken

up into the sum of the process variance and the estimation variance. Using bootstrap methods

these variances can be found with simple calculations that do not require advanced statistical

software. This is one main advantage of using bootstrapping techniques; instead of trying to find

the prediction error with analytic calculations, it can be found with simulation and easily calculated

in a spreadsheet.

The bootstrap process variance can be found by multiplying the total reserve amount for

each accident year by the estimated scale parameter, φ∗. The accident year totals, R, are found

by calculating the chain ladder estimates of future reserves on the original observed claim amount

data. The estimation variance uses the standard error found for the accident year reserves over
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all bootstrap samples. The estimation variance is scaled to take degrees of freedom into account

which will make the results comparable to those in section 3.1.

Thus the bootstrap estimates are given by:

V ar(Xi,j)B = φ∗R (19)

V ar(X̂i,j)B =
n

n− p
(SE(R))2 (20)

PEB =

√
φ∗R+

n

n− p
(SE(R))2 (21)

Now that the basics of the bootstrapping technique are understood the procedure can be

defined.

Steps to perform bootstrap procedure:

1. Compute development factors for the cumulative claim amounts

2. Use development factors to obtain fitted cumulative values for the upper triangle

3. Obtain fitted incremental values by differencing

4. Calculate Pearson residuals for each value in the upper triangle by using the observed and

fitted incremental values

5. Begin iterative bootstrap loop to be repeated N times

(a) Resample with replacement n residuals to form a new upper triangle of residual values

(b) Create pseudo data of incremental claims using the resampled residuals and the fitted

incremental values

(c) Create pseudo data of cumulative claims that is associated with the pseudo incremental

claims

(d) Use the Chain Ladder method on the pseudo cumulative data to estimate future cumu-

lative claims

(e) Obtain the future incremental claims by differencing

(f) Sum the predicted incremental claims by accident year to obtain yearly reserve estimates
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(g) Store the results and return to the beginning of the bootstrap loop

The stored results will create the predictive distribution. These values can be compared against

Chain Ladder results to determine bias and the prediction error can be computed using Equa-

tion (21).

England (2002) proposed some changes to the bootstrap procedure. It is suggested that

the residuals be scaled to account for degrees of freedom before sampling from them. This would

be done by calculating the residuals as

r′ =

√
n

n− p
x
X −m√

m
(22)

Then step 4 of the bootstrap procedure would be done with Equation (22) instead of Equation (16).

It is also suggested that an additional step be added in the iterative loop to draw a random

observation from the underlying process distribution. This would take place right after step (e)

of the bootstrap loop. For each cell in the lower triangle, a random observation is drawn from

the process distribution with a mean value given as the estimated incremental claim amount and

a variance found using Equation (14) along with the estimated scale parameter in Equation (17).

Then the accident year reserves in step (f) are found using the values simulated from the process

distribution.

The process distributions that have been discussed are over-dispersed Poisson and Gamma.

England points out some drawbacks to using over-dispersed Poisson that can be found in Addendum

to “Analytic and bootstrap estimates of prediction errors in claims reserving” (2002). One of these

drawbacks is that observations will always be multiples of φ. For this reason the Gamma distribution

is preferable as the process distribution. This allows the advantage of the observations being on

a continuous scale and not just being multiples of φ. This will change the shape of the predictive

distribution but the first two moments will remain the same.

This thesis will explore the differences between using the bootstrap procedure as defined by

steps 1 - 5 and the procedure that involves sampling from the process distribution. Both methods

will be implemented and compared.
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3.4. Bootstrap of Predictions

A further addition to the bootstrap procedure was introduced by Pinheiro, Silva, and Cen-

teno (2003). This method proposes that the fitted and predicted values found using the GLM

method be used in the bootstrap procedure instead of those found with the Chain Ladder method.

This should not change the reserve estimates by much as these two methods are considered com-

parable to one another. It was also suggested that an extra step be added to the bootstrap loop to

better estimate the prediction error. The new step would take place inside the bootstrap loop and

after step (f).

(g) Resample again from the residuals but now take a sample to form a lower triangle

(h) Create pseudo reality of incremental predicted values using the resampled residuals and

the predicted lower triangle values

(i) Obtain prediction errors using the new pseudo data of predicted values

(j) Store the results and return to the beginning of the bootstrap loop

As shown in the steps above, this method places residuals calculated from the upper triangle

into the lower triangle and uses predicted values to create pseudo data. The residuals are assumed

to be independent and identically distributed so it is argued that they could be used to repopulate

the lower triangle. This second resample of the residuals is not used to calculate the predicted

reserve values, it is only used for prediction error.

This thesis is focused on the reserve estimates produced by different bootstrap procedures

so it is of interest to alter the method proposed by Pinheiro. Instead of adding steps (g) through

(j) to the existing bootstrap loop, this thesis proposes to replace steps (a) through (f) and use the

values found by simulating the lower triangle to estimate the reserve values. This new process can

be defined in the steps given below.

Steps to perform Bootstrap of Predictions:

1. Obtain fitted incremental values for the upper triangle

2. Obtain predicted incremental values for the lower triangle

3. Calculate Pearson residuals for each value in the upper triangle by using the observed and

fitted incremental values
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4. Begin iterative bootstrap loop to be repeated N times

(a) Resample, with replacement, residuals to form a new lower triangle of residual values

(b) Create pseudo data of incremental claims using the resampled residuals and the pre-

dicted incremental values

(c) Sum the pseudo predicted incremental claims by accident year to obtain yearly reserve

estimates

(d) Store the results and return to the beginning of the bootstrap loop

For this new method the fitted and predicted values from steps (1) and (2) can be calculated

using either the Chain Ladder method or the GLM approach. It is not known how well this method

will perform because the prediction bootstrap has previously only been used for prediction error.

3.5. Overview of Methods to be Performed

In order to compare various reserve estimates found from different methods each process

will be implemented using the same data. As a baseline comparison, the Chain Ladder method

will also be applied to the data. The methods from this chapter that will be compared are: the

GLM approach with Gamma response variables, GLM approach with Inverse Gaussian response

variables, Bootstrap technique with Chain Ladder fitted/predicted values, Bootstrap technique with

Gamma process distribution, Bootstrap of predictions with Chain Ladder fitted/predicted values,

Bootstrap of predictions with Gamma GLM fitted/predicted values, and Bootstrap of predictions

with Inverse Gaussian GLM fitted/predicted values. Each bootstrap loop will go through 1,000

iterations. The over-dispersed Poisson GLM method will not be implemented because the reserves

that are produced are identical to the Chain Ladder method.

It should be noted that heteroscedasticity is a common problem among all loss reserving

methods. The Chain Ladder method described in this paper has been developed to adjust for pos-

sible heteroscedasticity but it may not work in all cases. The Generalized Linear Model approaches

do not fully address heteroscedasticity so it could be present in the results. This issue should be

studied further but for the purpose of this thesis the results from all methods will be compared to

one another without considering heteroscedasticity.
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4. NAIC ANALYSIS

To determine the effectiveness of each method described in Chapter 3, data with known

reserve values will be analyzed. The data was collected by the National Association of Insur-

ance Commissioners (NAIC) and retrieved from the Casualty Actuarial Society (CAS) website

(www.casact.org). NAIC is the U.S. standard-setting and regulatory support organization for the

insurance market. The members of NAIC are the chief insurance regulators from the 50 states,

the District of Columbia, and five U.S. territories. These members are elected or appointed state

government officials and their departments. NAIC establishes insurance standards and best prac-

tices. The goals of the NAIC are to protect the public interest, promote competitive markets,

facilitate fair and equitable treatment of insurance consumers, and promote the reliability, solvency

and financial solidity of insurance institutions (www.naic.org).

4.1. Data Description

The National Association of Insurance Commissioners compiles annual statements based

on insurance companies’ annual financial data. NAIC can only compile data from companies under

its regulation. These annual statements contain various schedules and exhibits, such as: income

statement, cash flow, underwriting and investment exhibits, number of policies exhibit, property

reinsurance (schedule F), 10-year losses by line (schedule P), life reinsurance (schedule S), and

premiums written by state (schedule T). Using NAIC data, industry leaders determine market

share, conduct market research, and monitor industry trends. Also, NAIC and CAS have made

loss data available so that methods of loss reserving can be analyzed.

For the purpose of this paper, data was obtained from Schedule P which gives 10-year loss

expenses and loss analysis by line of insurance. Data from 140 companies was available for auto

liability insurance. The data for each company includes cumulative paid losses for the accident

years 1988-1997. An example of an NAIC data table is shown in Table 9.

The cumulative losses for each accident year are known for ten development years. Thus

the data given is of the form of Table 3, a completed table. However, unlike a predicted loss table,

the losses in the lower triangle are known instead of estimated. These known future losses can be

used to compare with results from various estimation processes.
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Table 9: Example NAIC Table of Known Losses
Development Year

Accident Year 1 2 3 4 5 6 7 8 9 10

1988 463 903 1659 2190 2301 2331 2347 2349 2367 2366
1989 471 1305 1820 1900 2089 2170 2169 2246 2233 2225
1990 493 1297 2004 2383 2604 2625 2627 2627 2664 2664
1991 469 1323 2284 2816 2954 3083 3174 3177 3177 3177
1992 956 2240 3265 3740 3809 3897 3933 3982 4005 4007
1993 883 2390 4208 4942 5458 5588 6711 6693 6693 6693
1994 1035 2967 5510 7678 7906 7943 8155 8136 8140 8208
1995 900 2984 5481 6055 6389 6404 6409 6441 6455 6474
1996 1412 4449 5908 7591 8063 8358 8464 8467 8468 8470
1997 1782 4819 6429 7273 8410 8545 8547 8530 8577 8600

Most of the methods being used in this paper require incremental losses to be greater than

zero. For this reason tables showing negative or zero values have been disregarded. There are 12

tables that have appropriate forms and can be analyzed.

4.2. Results

The accuracy of the each of the methods described in Chapter 3 can be determined by

comparing the estimated IBNR values to the true losses given in the NAIC data. As previously

mentioned, IBNR values are the total incurred but not reported amounts. These are found by

summing all of the predicted incremental future claims for each accident year. Thus the IBNR

values represent the total predicted reserve amounts for each year. Since the first accident year is

always fully known, the IBNR value will always be zero. For this reason only the IBNR values for

accident years two through ten will be discussed (1989-1997).

In order to compare predicted IBNR values with the known losses provided in the NAIC

data, the reserve amounts for each accident year must be calculated. The known reserves will

consist of all losses that occurred in the lower triangle of each loss table. These are found from the

cumulative NAIC loss tables by subtracting the loss of the last diagonal of the upper triangle from

the last development year loss. This process can be expressed by Equation (23). Reserve values for

Table 9 are given in Table 10 as an example. This calculation is done for each of the 12 NAIC loss

tables.

Ri = Yi,10 − Yi,10+1−i (23)
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Table 10: Example of Known Reserve Values
Accident Year Reserves

1989 -8
1990 37
1991 3
1992 110
1993 1235
1994 530
1995 993
1996 4021
1997 6818

For each method of estimation that was performed, predicted IBNR values for each accident

year were found for each of the 12 companies. These predictions can then be compared against the

actual reserve values to analyze accuracy. Commonly used residual values (observed - expected)

will not be a good indicator of how well each technique is performing because the NAIC data was

gathered from companies of several sizes, giving different orders of magnitude in the triangles being

analyzed. To account for the different loss magnitudes the residuals are found by dividing the

difference between the observed and expected IBNR values by the observed value. This adjustment

will allow comparison of the residuals over all NAIC triangles.

AdjRes =
ObsIBNR− PredIBNR

ObsIBNR
(24)

Once the adjusted residuals have be calculated the distribution of residuals for each accident

year can be seen with boxplots like those in Figure 1. Figure 1 shows that the residuals seem to

have less spread as accident year increases. This is likely caused by the number of loss values that

are required to be estimated for each IBNR value. For the 1989 accident year, one loss value is

estimated, cell X2,10, and is used in calculating the predicted IBNR value. Whereas for the 1993

accident year there are five estimated values, cells X6,6, X6,7, X6,8, X6,9, and X6,10. These values

are then summed to find the predicted IBNR value for that accident year. The increasing number

of cells used to find each year’s IBNR value leads to smaller variation around the true value.

In Figure 1 each boxplot has a mean value that is close to zero. This suggests that the

Bootstrap technique with Chain Ladder estimates produces results that are similar to the observed

IBNR values for NAIC data. In fact most of the methods performed on NAIC data produced box-
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Figure 1: Residual plots of NAIC triangles using Chain Ladder Bootstrap Method

plots that resemble those in Figure 1. This similarity shows that all of the methods are comparable

to one another, at least when it comes to residual values.

For comparison Figure 2 shows the boxplots for the Gamma GLM method and Figure

3 shows the boxplots for Prediction Bootstrap with Chain Ladder estimates. Since most of the

boxplots look very similar, not all of the graphs are necessary to include. The boxplots from the

other methods can be found in the Appendix.

Comparing Figures 1 - 3 it can be seen that the three methods given produce similar residual

values. The Gamma GLM method has a larger spread as the residuals are from -10 to 4, and the

other methods are between -8 and 4. This is not a large difference but should be noted. Also the

Gamma GLM method is not using bootstrapping techniques so only one set of estimated IBNR

values is calculated. The bootstrapping techniques find 1000 simulated IBNR estimates and then

takes the average value to obtain the predicted IBNR for each year. This difference could account

for the slight difference in spread of the residuals.
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Figure 2: Residual plots of NAIC triangles using Gamma GLM Method
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Figure 3: Residual plots of NAIC triangles using Bootstrap on Prediction with Chain Ladder
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In order to compare how all of the methods are performing, the average adjusted residual

was found for each accident year. Table 11 shows the average residual values for each of the

methods described in Chapter 3. The average residual values were also found for the basic Chain

Ladder method because the values found using this technique are widely trusted. In Table 11 “CL

Bootstrap” is the Bootstrap method that uses the Chain Ladder method for fitted and predicted

values, and “Pred Bootstrap” is the Bootstrap of predictions using Chain Ladder predicted values.

Table 11: Comparing Average Residuals

Accident Year Chain Ladder Gamma GLM Inv Gaus GLM CL Bootstrap

1989 -0.35290 -0.55669 -0.10387 -0.41968
1990 -0.34669 -0.30328 -0.25494 -0.45987
1991 -2.42109 -2.89670 -2.360672 -2.73079
1992 -0.35161 -0.36259 -0.29968 -0.40853
1993 0.00860 0.03060 0.00606 -0.01388
1994 -0.15003 -0.18022 -0.00904 -0.16689
1995 -0.04108 -0.03476 0.02267 -0.04959
1996 -0.15384 -0.15879 -0.08413 -0.16054
1997 -0.36078 -0.35558 -0.07236 -0.36743

Accident Year Gamma Bootstrap Pred Bootstrap Pred w/ Gamma Pred w/ Inv Gaus

1989 -0.44192 -0.32388 -0.55313 -0.10452
1990 -0.45363 -0.43376 -0.42241 -0.37743
1991 -2.77969 -2.67634 -3.11963 -2.77993
1992 -0.40076 -0.38971 -0.40021 -0.37784
1993 -0.01785 -0.01420 0.00917 -0.02839
1994 -0.16610 -0.15987 -0.19019 -0.03346
1995 -0.04956 -0.04516 -0.03733 0.00837
1996 -0.16283 -0.15779 -0.16223 -0.09513
1997 -0.36589 -0.36373 -0.35287 -0.08051

Analysis of Table 11 shows that all of the methods produce similar average residual values

for each accident year. All of the methods produce residuals that are close to zero, meaning the

methods are predicting IBNR values close to the observed values. The largest absolute residual

appears in the 1991 accident year for all methods. The smallest residual appears in the 1993

accident year for all methods except the last, Prediction Bootstrap with Inverse Gaussian GLM

fitted values. The bootstrap methods over estimate the IBNR values for all accident years since all

of the residual values are negative, whereas the methods without bootstrapping have at least one

positive residual value.
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With this comparison table it is reasonable to claim that all methods analyzed will be able to

adequately predict future IBNR values. The Gamma GLM, with no bootstrapping, has some of the

highest residual values followed by the Prediction Bootstrap that uses Gamma GLM fitted values.

These large residuals suggest that a Gamma GLM model is least appropriate for modeling NAIC

data. The Inverse Gaussian GLM model and the Prediction Bootstrap using Inverse Gaussian have

the smallest residual values. Inverse Gaussian is not a common distribution used in loss reserving

but it appears to be the most appropriate for predicting NAIC data.
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5. ESTIMATING LOSSES FOR A SMALL INSURANCE COMPANY

A small insurance company in the Midwest provided loss data for an autoliability line of

insurance that was presented in Tables 1 and 2 in incremental and cumulative form, respectively.

The goal of this paper is to predict reserve amounts based on the provided data that will adequately

cover the future losses. It has been shown that each method introduced and analyzed with NAIC

data produces estimates that are comparable to actual observed losses. The predicted reserves for

the auto liability data from the small company will be found using each method.

In order to perform the methods that use a GLM approach, with or without bootstrapping,

all of the incremental values must be positive. As seen in Table 1 the small insurance company data

has negative incremental values. In Bootstrap Modeling: Beyond the Basics, Shapland and Leong

propose several methods for dealing with negative values in a GLM model (2010). The method

that will be implemented for the Midwest company data is one in which the absolute value of the

largest negative incremental claim is added to all incremental claim amounts. Once the predicted

values are found the value that was added is subtracted to return the losses to their original form.

This approach was used for the data in Table 1 by adding 253 to each value. The absolute largest

negative is 252 but in order to have all of the values be non-negative, 253 must be added. This was

done for each method that uses GLM fitted or predicted values.

Once all of the methods have been performed on the small company data, the predicted

IBNR values are found and compared. Table 12 shows the predicted IBNR values for each method

along with the predicted total reserve amount. For the methods that use bootstrapping, the

predicted IBNR values are the average amount over the 1000 iterations.

Analyzing Table 12, the various methods can be compared. The predictions for the first

few accident years seem to vary widely depending on method, but the later accident years are more

consistent. This agrees with what was found when analyzing the boxplots in the previous chapter.

Also the methods that involve using Gamma GLM produce estimates that are the least similar to

the other methods. The Gamma GLM models produce the lowest estimates. Since these models

were found to have some of the largest residual values in the previous chapter, these estimates are

probably not producing the most accurate predictions. It appears that using these predicted values

would lead to under-estimation, compared to the other models, and the company would not have
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Table 12: Predicted IBNR Values

Accident Year Chain Ladder Gamma GLM Inv Gaus GLM CL Bootstrap

2003 0.94 -17.09 0.92 6.01
2004 79.10 100.64 71.34 110.44
2005 94.91 -36.36 98.41 143.81
2006 143.80 -63.01 154.02 212.96
2007 133.90 -251.01 166.79 207.15
2008 459.49 13.90 505.49 567.19
2009 1073.29 1350.23 901.52 1260.96
2010 1546.01 566.33 1972.33 1695.36
2011 4186.88 3924.46 3947.89 4413.05

Total 7718.32 5588.10 7818.72 8616.93

Accident Year Gamma Bootstrap Pred Bootstrap Pred w/ Gamma Pred w/ Inv Gaus

2003 4.86 5.76 -15.92 12.77
2004 110.08 109.92 98.01 91.20
2005 149.70 144.91 -45.43 122.30
2006 203.03 220.41 -64.59 180.33
2007 206.71 217.52 -241.75 195.28
2008 546.10 566.31 20.50 549.84
2009 1285.70 1234.89 1343.40 939.20
2010 1663.76 1756.12 582.26 2011.97
2011 4374.85 4355.53 3929.01 3970.84

Total 8544.78 8611.38 5605.49 8073.73

enough reserves set aside for future loss. It is not recommended that the company use these values

for reserve estimation.

The method that produces the largest reserve values is the Bootstrap with Chain Ladder

fitted values. The Prediction Bootstrap with Chain Ladder fitted values also produces large results

that are similar to the original Bootstrap approach. This suggests that using the Chain Ladder

method combined with some form of bootstrapping will produce high reserve values. The total

value is almost $1,000,000 higher than that found using only the Chain Ladder method. Even

though the values are high, they could still be accurate. As seen in Table 11 the residual values for

these methods were not much larger than the other methods so there is no reason to believe that

the estimates produced will be inadequate.

The Inverse Gaussian GLM method produces IBNR predictions that are closest to those

produced by the Chain Ladder method. This method was very accurate when predicting the NAIC

data. For these reasons the predictions found using this method would be appropriate for the

company to use when planning for future reserves. The estimates found using Prediction Bootstrap
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with Inverse Gaussian GLM fitted values are also similar and were also found to be accurate in the

previous chapter. These values could also be used as predictions of future reserves and the variance

estimates can then be used to find confidence limits for the reserve values.

The bootstrap techniques perform 1000 iterations to simulate a distribution of the data.

Instead of looking at the distribution for each accident year it is common to focus on the distribution

of the total reserve value. This value should cover all future losses for each accident year through

the final development year. A summary of the distributions from the bootstrap methods performed

is given in Table 13. From this, predictions of the future total can be made.

Table 13: Total IBNR Values from Bootstrap Methods
Method CL Bootstrap Gamma Bootstrap Pred Bootstrap

Mean 8616.93 8544.78 8611.38
Standard Dev 1712.90 2788.25 1267.47
Coeff of Var 0.199 0.326 0.147

Skewness 0.163 0.334 -0.047
50th Percentile 8524.06 8233.85 8631.09
75th Percentile 9534.70 10082.99 9464.86
95th Percentile 11351.12 13590.91 10653.78

Method Pred w/ Gamma Pred w/ Inv Gaus

Mean 5605.49 8073.73
Standard Dev 1229.80 1382.71
Coeff of Var 0.219 0.171

Skewness 0.032 0.065
50th Percentile 5592.26 8043.88
75th Percentile 6454.32 9057.25
95th Percentile 7611.99 10370.22

The mean total value is the predicted total given in Table 12 and the standard deviation was

found over the 1000 estimated totals produced by bootstrapping. The predictions in Table 13 seem

similar for each bootstrap method besides the Prediction bootstrap using Gamma GLM fits. It has

already been seen that methods using the Gamma GLM approach do not seem to be appropriate

for this data.

The Gamma Bootstrap represents the original bootstrap approach using a Gamma process

distribution. This method has the largest standard deviation and is the most skewed. This method

therefore produces the largest estimates for the percentiles. All of the other methods have skew-

ness values that are very small and would suggest that the distribution could be approximately

symmetric.
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The percentiles are important when considering predictions because companies want to

know with a high level of certainty that they will be able to cover all future losses. They can

make decisions about how much to set aside based on the average value and the 75th and 95th

percentiles. This company should have at least $8,500,000 as total reserves for this insurance line,

based on all of the averages but could have around $11,000,000 to make sure they cover the 95th

percentile of most of the bootstrap methods.

A histogram provides a visualization of the distributions created for the total reserves. Fig-

ures 4 and 5 show the distributions for the Bootstrap method using Chain Ladder fitted values and

the Prediction Bootstrap using Inverse Gaussian GLM fitted values. The Chain Ladder Bootstrap

had the largest average predicted total and one of the largest standard deviations. The Inverse

Gaussian Prediction Bootstrap produced results similar to the basic Chain Ladder method and was

found to be one of the most accurate with NAIC data. Histograms from the other three bootstrap

methods are available in the Appendix.
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Figure 4: Predictive Distribution of Total Reserves from Chain Ladder Bootstrap
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Predicted Total Reserves from Pred Bootstrap w/ Inv Gaus
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Figure 5: Predictive Distribution of Total Reserves from Pred Bootstrap with Inv Gauss

Comparing Figures 4 and 5, both methods produce total reserve values that have approxi-

mately symmetric distributions. The Chain Ladder Bootstrap appears to have a peaked distribution

compared to the flat distribution from the Prediction Bootstrap using Inverse Gaussian. This is

caused from the larger standard deviation in the Chain Ladder Bootstrap. Graphs like these could

be useful when the small company is deciding how much total reserves to set aside because they

can see where their amount falls on the graph and how often this was the simulated total.

Aside from average predicted IBNR values and their distributions, the prediction error must

be considered when determining which method to use for the estimations. The prediction error

for each bootstrap method can be found using Equation 21. A small prediction error is desirable

because it indicates that the method is predicting future claims well. The prediction errors for each

bootstrap method are shown in Table 14 as a percentage. This percentage is found by dividing the

prediction error by the estimated IBNR value for that accident year. In this way the errors from

the various methods can be compared.
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The percent of prediction error decreases for later accident years. This decrease is consistent

with the spread of the residuals becoming smaller for later accident years in the NAIC boxplots.

The bootstrap methods that use the Chain Ladder fitted and predicted values have some of the

smallest prediction errors. The Prediction Bootstraps that use a GLM approach for fitted values

have the largest prediction errors for early accident years, but these decrease quickly for the last

accident years. The model that uses values from Gamma GLM has the highest prediction errors

which is to be expected as this method has been shown to be the least accurate in the analysis so

far.

Table 14: Prediction Errors (%)
Accident Year CL Bootstrap Gamma Bootstrap Pred Bootstrap

2003 431 1058 432
2004 202 327 221
2005 169 280 182
2006 139 240 144
2007 137 231 140
2008 93 148 106
2009 66 104 75
2010 64 97 63
2011 50 66 43

Total 34 46 29

Accident Year Pred w/ Gamma Pred w/ Inv Gaus

2003 1153 1421
2004 307 327
2005 717 290
2006 549 227
2007 165 244
2008 2156 107
2009 56 77
2010 107 45
2011 31 31

Total 31 25

From all of the analysis done on the small company data it has been found that most of the

bootstrap methods produce results that are comparable to one another. These results have similar

distributions and variation estimates. The variance estimates can be used to find percentiles which

will allow the company to see an upper bound on the IBNR predictions. From the Prediction

Errors it appears that using the Chain Ladder method for fitted/predicted values when performing

bootstrapping will give the most accurate estimates.
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6. CONCLUSION

Accurate predictions of future losses are essential for insurance companies to set premium

rates. This thesis studies various loss reserving methods in an attempt to predict future reserves for

a small Midwestern insurance company. The deterministic Chain Ladder method is easy to perform

and produces accurate and trusted results but does not give estimates of variability. The bootstrap

technique was introduced as a way to produce variability estimates. This technique creates pseudo

data sets by repeatedly resampling from residuals that are found from Chain Ladder or Generalized

Linear Model fitted values. The pseudo data sets create a predicted distribution from which reserve

estimates and their variability can be found.

Various bootstrap methods were implemented on fully known loss data from the National

Association of Insurance Commissioners. The results of the bootstrap methods were then compared

to the actual observed losses. It was found that the bootstrapping done with GLM estimates

produced reserves that were least similar to those found using the Chain Ladder method. The

Gamma GLM residuals were the largest which implies that these results are the least accurate.

The Inverse Gaussian GLM residuals were the smallest, indicating that this is the best bootstrap

method for this data. Inverse Gaussian has not often been used in loss reserving but as these results

show, should be studied further. Also, the two bootstrap techniques that use Chain Ladder fitted

values had comparable residuals and are still considered accurate.

The bootstrap methods were then applied to the Midwestern insurance company data. The

predicted reserves varied for the different methods with the Gamma GLM producing the smallest

reserves values and the Chain Ladder bootstrap producing the largest. It was concluded that the

Gamma GLM bootstrap is the least accurate and would lead to under-estimation of reserves leaving

the insurance company unable to pay future liabilities. The other bootstrap methods produced

similar total reserve values with approximately symmetric distributions whose standard deviations

vary depending on the method. The distributions can be used to find upper percentiles of the total

reserves to give the company a better idea of the predicted total reserve amount.

Although the bootstrap methods produced similar estimates for the Midwestern company

data, prediction error must be considered when determining which estimates to use. The methods

that use GLM fitted values had much higher prediction error percents that didn’t decrease as fast as
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the other methods. This suggests that using bootstrap techniques with Chain Ladder fitted values

will be more accurate. Now the Midwestern company can use the average total reserve values along

with the upper percentiles from the Chain Ladder Bootstrap and Prediction Bootstrap using Chain

Ladder to get an estimate of future reserves and how much the reserves are expected to vary.
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APPENDIX

A.1. Boxplots of Residuals from NAIC Data
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Figure A1: Residual plots of NAIC data using Gamma Bootstrap Method

38



−
1
0

−
5

0
5

Residuals from Prediction Bootstrap with Gamma

Accident Year

R
e
s
id

u
a
l

1989 1990 1991 1992 1993 1994 1995 1996 1997

Figure A2: Residual plots of NAIC data using Bootstrap on Prediction with Gamma GLM
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Figure A3: Residual plots of NAIC data using Bootstrap on Prediction with Inv Gauss GLM
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Figure A4: Residual plots of NAIC data using Inverse Gaussian GLM Method
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A.2. Histograms of Total IBNR values from Midwestern company data
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Figure A5: Predictive Distribution of Total Reserves from Gamma Bootstrap
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Predicted Total Reserves from Pred Bootstrap with CL
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Figure A6: Predictive Distribution of Total Reserves from Pred Bootstrap with Chain Ladder
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Figure A7: Predictive Distribution of Total Reserves from Pred Bootstrap with Gamma GLM
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