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ABSTRACT 

 

Recent interest in utilizing corn (Zea Mays L.) stover for cellulosic ethanol and 

supplements for distillers’ grain in livestock rations has increased corn stover demand. A study 

was established to evaluate corn stover removal on selected soil properties in irrigated sandy 

outwash soils under no-tillage management including continuous corn and corn-soybean (glycine 

max) rotations. For continuous corn, increasing stover removal rates (0 to 100%) increased the 

wind erodible soil fraction (25.4 to 36.6%), decreased the field-moist water stable soil aggregates 

(58.78 to 48.3%) and water infiltration rates (22.4 to 8.6 cm/hr). Water infiltration rates 

decreased in the corn phase of the corn-soybean rotation (16.8 to 10.8 cm/hr) and air-dry water 

stable aggregates decreased in the soybean phase of the corn soybean rotation (88.1% to 77.7%) 

for 100% removal when compared to 0% removal. Longer-term evaluation of stover removal is 

needed to fully evaluate stover removal effects on soil properties.
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INTRODUCTION 

 

North Dakota corn production has increased with the emergence of improved corn 

varieties that can withstand cooler summers and shorter growing seasons.  According to the 

United States Department of Agriculture, National Agricultural Statistics Service (USDA-NASS, 

2015) corn acreage harvested in North Dakota during 2012 equates to 3,460,000 acres with a 

slight increase in 2013 to 3,600,000. However, corn acreage decreased in 2014 to 2,530,000 

acres due to economic factors. Although, traditionally, corn grain has been produced for 

livestock feed, the demand for grain corn in the United States has risen rapidly to meet the 

demand for alternative energy as ethanol (Schenpf and Yacobucci, 2013). The Energy Policy Act 

of 2005 expanded the Renewable Fuel Standard Act (RSF) requiring the use of 36 billion gallons 

of biofuels in the US by 2022, with at least 16 billion gallons from cellulosic biofuels and with a 

cap of 15 billion gallons for corn-starch ethanol (Schenpf and Yacobucci, 2013). In addition to 

ethanol, corn is utilized in the manufacture of other products such as corn sweeteners and 

plastics. 

There has been significant interest in utilizing the corn stover, residue left behind in fields 

after harvest, in the production of additional alternative energy products. Although the 

production of cellulosic ethanol has not yet been commercially developed on a widely accepted 

basis, large amounts of corn stover are currently being removed from harvested corn fields by 

baling and utilization as livestock feed. This has been driven partially by dry conditions in parts 

of the Great Plains, where corn stover is supplementing other forages in short supply. Corn 

stover is added to distiller grains being used for livestock feeding to provide roughage for 

animals. 
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Although crop stover removal has its promising economic benefits, research has shown 

that the removal of crop stover may have varying degrees of negative impacts on soil organic 

matter and erosion (Mann et al., 2002). Crop stover provides the soil with protection from wind 

and water erosion; which permits the soil to preserve soil aggregate stability, water holding 

capacity and minimal compaction. Crop stover is essential to soil organic matter (SOM) as it is a 

source of nutrients to the microbial population, a foremost participant in the soils nutrient 

cycling. Larson et al. (1972) concluded that SOM decreases in proportion to the rates of stover 

removal as a function of the soil type, topography and climate. Carbon (C) and nitrogen (N) 

concentrations are higher in the surface soil of plots that experienced treatments of mulch 

opposed to unmulched plots (Salinas-Garcia et al., 2001). When crop stover is removed 

consistently it has the potential to decrease SOM, soil nutrient concentrations, soil C and N ratios 

and degrade soil physical properties which is likely to impact the soil quality and crop yields in 

the long term. 

The objective of this research is to evaluate the impacts of variable stover removal rates 

on selected physical, chemical and biological properties of a soil in irrigated continuous corn and 

corn-soybean rotation on a sandy textured soil, that are highly susceptible to erosion, under lower 

humidity conditions with greater climactic variability than reported in previously published 

research that has focused on the Corn Belt region of the U.S. 
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LITERATURE REVIEW 

 

The removal of crop stover can impact the maintenance of soil organic matter and soil 

productivity, soil loss by wind and water erosion and plant nutrients for future crops. The extent 

of these impacts are not yet well-known; and requires long-term (5 years +, the average time 

previous studies dedicated is 5 years) studies in order to identify and evaluate how crop stover 

removal practices will impact future soil productivity and sustainability. 

 

Soil Biological and Chemical Properties 

 

Barber (1979) examined the changes in SOM content associated with the change of 

cropping practices in field experiments. One trial examined a continuous corn system over a 

period of 11 years with 3 experimental treatments of stover removal, stover added, no stover 

removed and doubled stover applied. The second trial examined the varying levels of stover 

returned due to N level in soils over a sequence of 12 years. The experiments were conducted on 

a Raub silt loam, with soil samples taken from the surface during and after the experiments. The 

samples were analyzed for organic C. Results indicated a decomposition rate of 2.4% of the soil 

O.M. per year due to loss of organic matter from continually tilled plots after 6 years. After 10 

years, the corn stover removed plots were compared to stover returned plots, the data showed 

about 11% of the C in stover produced new organic matter, thus increasing SOM. This 

experiment also showed that 8% of the C from stover was transformed into SOC. The end 

results of this experiment indicated no significant differences in yields associated with the stover 

treatments. Barber (1979) concluded that long-term experiments are useful to determine the new 

equilibrium for organic matter stover management when crop management practices are altered. 
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Doran (1980) conducted field and greenhouse investigations on changes in soil 

microbiological populations with stover management under reduced tillage in Nebraska. The 

field investigation was on a Crete-Butler silty clay loam under both field and greenhouse 

conditions. For field and greenhouse studies, chopped corn stover was applied at initial surface at 

rates of 0, 7 and 14 metric tons/ ha to soils. The following year, chopped corn stover was applied 

to the soil surface at rates of 0, 4 and 8 metric tons/ha. The greenhouse investigation was 

conducted on the same soil collected from the surface 15 cm of the field trial. Corn stover from 

the field analysis was blended into the soil to reach application rates of 0- and 14- metric tons/ha. 

This study resulted in an increase in the population of bacteria, actinomycetes and fungi by 2- to 

6-fold due to mulching treatments. The fungi populations were limited by rival bacterial and 

actinomycetes population increases in response to changes in soil water increasing 2-5% in 

mulched plots and pH regimes which differed significantly between rows 5.51 compared to 

within rows 5.32. Doran (1980) reported counts of nitrifying and denitrifying organisms 

contained by the surface soil increased 2-to-20-fold and 3-to-43-fold, corresponding to the 

application of corn stover on the surfaces of field plots. The greenhouse investigation reported 2- 

to-5 fold increases in microbial population in response to the surface applications of corn stover 

combined with the uniformly controlled moisture and soil conditions. 

Blanco-Canqui and Lal (2009) examined the changes in soil structural stability and soil 

fertility in reaction to 4 years of systematic stover removal. The analysis was conducted on a 

Rayne silt loam (10% slope), a Celina silt loam (20% slope) and a Hoytville clay loam (1% 

slope) under no- tillage practices.  Stover was removed at rates of 0, 25, 50, 75 and 100% after 

harvest over a course of 4 years on plots planted with continuous corn. The results indicated that 

stover removal reduced total soil organic carbon (SOC) and N concentrations over the course of 
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the investigation. These reductions in total SOC and N concentrations were also dependent on 

the stover removal rates and soil type. Complete stover removal reduced soil plant available P by 

40% and exchangeable Ca+2 and Mg+2 and the cation exchange capacity (CEC) decreased by 

10% on the sloping Rayne silt loam. Exchangeable K+ decreased by 15% on the silt loam soils 

for stover treatments >75% removal and by 25% under complete removal on the clay loam in the 

0-to 10 cm depth. Blanco-Canqui and Lal (2009) also compiled an assessment on the impact of 

crop stover removal on soil productivity and environmental quality based on the literature by 

Bohlen et al. (1997); Butt et al. (1999) and Shipitalo and Butt (1999).  Earthworm populations 

decreased with the removal of crop stover. Reduced stover was found to generate a scarcity of 

food sources and habitats for soil organisms. They concluded that stover removal encourages 

earthworms to migrate to neighboring mulched soils and to lower soil depths. The reduction of 

earthworms were associated with a reduction in water infiltration rates and an increase in the 

occurrence of runoff and soil loss. 

Soil organic matter supplies energy and cell components and constituents for most of the 

microorganisms as they decompose organic matter. Soil microorganisms obtain carbon (C) and 

nitrogen (N) from the mineralization of organic matter, which fuels their cellular activity and 

energy. According to Brady and Weil (2010), organic matter is decomposed by microorganisms 

in aerobic soil conditions and anaerobic conditions slowly increases oxidation of organic carbon, 

increases the decomposition rate as does the breaking up of stover into smaller fractions creating 

more surface for decomposition. This process produces CO2 and water, as well as humic and 

nonhumic (compounds which are resistant to microbial action). The rate that soil 

microorganisms metabolize organic matter depends the C/N ratio of organic material. Organic 

matter with a high C/N ratio being incorporated into soils has the ability to cause plants to suffer 
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from N deficiency. Due to the depletion of the soil’s available N by microorganism, which may 

lead to immobilization of N (Brady and Weil, 2010). The rate at which mineralization occurs to 

organic matter that is incorporated into soil can be hindered if there is not a sufficient nitrogen 

supply to meet the demands required by microorganisms (Brady and Weil, 2010). When the 

annual source of organic materials, like corn stover, are harvested, the r-strategist organisms 

(organisms with short reproductive times that allow them to respond rapidly to the presence of 

easily metabolized food sources) will lack adequate nutrients to maintain their metabolism 

(Brady and Weil, 2010).  The r-strategist organisms will become the minority of the 

microorganism population.  Meanwhile, k-strategist organisms (organisms with slow 

reproductive times) that specialize in metabolizing nonhumic compounds that other organisms 

cannot utilize, will become the majority population within the soil system (Brady and Weil, 

2010). This imbalance within the soil system will create a decline in the humic substances that 

plants utilize for nutrient sources. Humic substances also encourage soil granulation and 

aggregate stability and improves soil water retention and soil cation exchange capacity (Brady 

and Weil, 2010). 

Schmer et al. (2014) and the United States department of Agriculture-USDA-ARS 

researchers evaluated grain yield, SOC, and total soil N in a 10 year irrigated continuous corn 

study under conventional disk tillage and no tillage with variable stover removal rates (low, 

medium, and high). This investigation was conducted at the University of Nebraska Agricultural 

Research and Development Center on irrigated Tomek and Filbert soils. This study was designed 

in a randomized complete block with factorial treatments arranged in split plots; with the whole- 

plot factor being tillage treatment and the subplot factor the residue removal treatments (0, 35, 70 

and 100%). Total SOC and N stocks experienced change within the 0-30 cm surface soils, and 
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there were no identifiable changes within 0 to 150 cm.  The change in SOC was found to be 

greater than 0 for all depths and did not differ among N fertilizer rates in the 0-30 cm depths. The 

SOC for the conventional disk tillage was concluded to be affected by the residue removal 

treatments and found to decline over the duration of the investigation. Schmer et al. (2014) 

concluded that the results support the need to evaluate the SOC cycling process below near- 

surface soil layers. 

Jin. et al. (2015) and the United States Department of Agriculture-USDA-ARS 

researchers have been conducting research at the US Corn Belt at the University of Nebraska 

Agricultural Research and Development Center on Yutan, Tomek and Filbert soils. This study 

evaluated the impact of systematic stover removal (0% or 55%) and nitrogen fertilizer treatments 

in a split-split-plot arrangement in a randomized complete block with three replication design 

with continuous corn, on bulk density, pH, SOC and particulate organic matter. Across all 

treatments N fertilizer treatments the soil bulk density increased (1.35 to 1.44 Mg m-3), pH 

decreased (6.6 to 5.9-6.3), and SOC stocks increased (49.4 to 57.8 Mg C ha-1). The stover 

removal was found to have no treatment effect on any of the above properties. The SOC were 

found to increase during the duration of this study depending on the N fertilizer rate in the 0-5 

cm depth, but a comparison by year indicated that there were no difference between SOC stocks. 

Osborne et al. (2015) and the United States Department of Agriculture-USDA-ARS 

researchers have been conducting research at the South Dakota USDA-ARS North Central 

Agricultural Research Laboratory on Kranzburg, and Brookings soils. This study evaluated the 

impact of systematic stover removal (low, medium and high) in a randomized block design with 

a corn-soybean rotation on soil properties. Cover crops were integrated into the overall design in 

2005 transforming the design to a split-plot with residue removal remaining as the whole plot 
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treatment and cover crop representing the split-plot treatment. Osborne et al. (2015) evaluated 

SOC, total C, total N, hydrolysis of fluorescein diacetate. The crop residue removal and cover 

crop impacts on hydrolysis of fluorescein diacetate was evaluated on the 0-15 cm depth. The 

corn phase and cover crops did not impact the microbial activity. The soybean phase was 

significantly impacted by residue removal for all years (2008-2010). The hydrolysis of 

fluorescein diacetate within the low and high residue removal differed by 24% (2008), 18% 

(2009), and 31% (2010). The SOC significantly impacted the 0-5 cm depth for both the corn and 

soybean crop phases. The soybean phase SOC in 2008 at 0-5 cm was measured to be 30.0g kg-1 

for the low stover removal, 28.3g kg-1 for the medium stover removal and 26.0g kg-1 for the high 

stover removal. The low stover removal was 15% higher and the medium stover removal was 

7.7% higher than the high stover removal in 2008. The low stover removal increased by 17% 

(2009), 24% (2010), and 12% (2011); the medium stover removal increased by 12% (2009), 12% 

(2010), and 8% (2011) when they were compared to the high residue removal rates of those 

years. The corn phase SOC in 2008 at 0-5 cm was measured to be 27.0g kg-1 for the low stover 

removal, 25.4g kg-1 for the medium stover removal and 24.0g kg-1 for the high stover removal. 

The low stover removal was 12.5% higher than the high stover removal in 2008. The low stover 

removal increased by 19.2% (2009), 17.3% (2010), and 19.2% (2011) when compared to the 

high residue removal rates of those years. The medium stover removal was not significantly 

different for the corn phase. The cover crop showed no significant difference within any of the 

phases throughout the study. Osborne et al. (2015) attributed the differences in SOC between the 

treatments to be to the amount of corn stover returned to the soil surface. 
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Soil Physical Properties 

 

Since soil organic matter is one of the soil components that influences soil physical 

properties, identifying the role that stover management plays is imperative. Skidmore et al. 

(1986) investigated the influence of various methods of stover management for winter wheat and 

grain sorghum on soil physical properties. The study was established on a Richfield silty clay 

loam in southwest Kansas. The study included: (a) stover removal by burning, (b) stover removal 

by baling and hauling, (c) incorporation of stover produced during the previous cropping season 

and (d) the incorporation of twice the amount of stover produced by the crop. They concluded 

that most of the soil physical properties measured were not significantly influenced by wheat or 

sorghum stover management treatments due to the brief period of this study. However, there was 

a difference in the soil physical properties measured between the two crops. The soil aggregates 

from the sorghum plots were smaller, more fragile, less dense and less stable when dry and more 

stable when wet compared to aggregates from the wheat. The saturated hydraulic conductivity 

was several times greater in the soil cores obtained from the sorghum plots than those obtained 

from the wheat plots. 

Karlen et al. (1994) investigated the impact of crop stover on soil quality following 10 

years of no-tillage corn. This investigation was done in Wisconsin on Rozetta and Palsgrove silt 

loam soils under no-tillage management. Corn stover was maintained in place, removed 

completely or added to create double-stover plots. They reported that the soil aggregates from 

the double stover treatments were more stable when immersed in water than the normal removal 

treatment cropping systems. The measures of force and energy required to crush soil aggregates 

showed significant differences for different aggregate sizes. 
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Blanco-Canqui and Lal (2007b) examined the impact that long-term straw management 

has on micro and macro-scale soil physical properties. The study was conducted in Ohio under 

no tillage management on a 10 year stover management plot. The soil in this plot was a Crosby 

silt loam. The stover management was accomplished with treatments of wheat stover mulched at 

0, 8 and 16 Mg ha-1 year-1. During the duration of this investigation, no crops were grown on 

these plots. The results showed that most changes in soil properties were predominantly confined 

in the upper 5 cm of the soil. The investigators reported that mulching increased SOC 

concentrations but did not significantly impact the shear strength due the shear strengths or cone 

index. The shear strengths and cone indexes did not indicate significant differences due to them 

being corrected to a common value of soil gravimetric water content because the gravimetric 

water contents varied significantly due to treatment effects. When compared to unmulched soil, 

bulk density decreased by 40-50%, aggregate density determined by the clod method decreased 

by 30-40%, particle density determined by pycnometer method using mineral and organic matter 

particles decreased by 10-15% and a  >30% increase of soil water retention was observed within 

the upper 0-5 cm of soil between 0 and -1500 kPa. This study concluded that long term 

management of wheat stover on no-tillage age system increased SOC and improved the soil 

aggregate properties near the soil surface. 

Blanco-Canqui and Lal (2009) examined the changes in soil structural stability and soil 

fertility in reaction to 4 years of systematic stover removal. The stover removal reduced soil 

macroaggregates (>4.75 mm) by 40% at stover removal rates >25%. One hundred percent stover 

removal reduced soil macroaggregates by 60% on sloping soils.  
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Blanco-Canqui and Lal (2009) compiled an assessment on the impact of crop stover 

removal on soil productivity and environmental quality. Based on the literature by Morachen et 

al. (1972), Black (1973) and Singh and Malhi (2006), they concluded that increases in crop 

stover removal rates are linked to decreases in aggregate stability. When these observations were 

compared with results from Karlen et al. (1994) and Roldán et al. (2003) the results concerning 

soil stover removal on aggregate stability contradicted each other. They concluded that the extent 

of the impacts of crop stover on soil structural properties are dependent on soil type, type of 

crop stover, cropping system, climate and relief. Soil bulk density and cone index was 

determined to be increased by crop stover removal. These evaluations of studies by Morachen et 

al. (1972), Black (1973), Blanco-Canqui and Lal (2006) and Blanco-Canqui and Lal (2007b), 

showed that soil type, tillage, stover type and cropping systems are all factors that are significant 

when the effects of crop stover removal on compaction is determined. They also concluded that 

the influence of stover removal on soil compaction is very small in clayey soils. The soils’ 

capacity to resist against compaction is proportional to the amount of stover cover. 

Osborne et al. (2014) and USDA-ARS researchers have been conducting multi-location 

studies (Minnesota, Nebraska, and South Dakota) to evaluate the impact of corn stover removal 

on soil physical properties (dry aggregate size distribution, erodible fraction and SOM 

components). The plots at Brookings, South Dakota were established 2000 under a randomized 

complete block design under a corn-soybean rotation with three replications, a cover crop 

treatment was added in 2005 under a split-plot design. Morris, Minnesota’s plots were 

established in 2005 under a randomized complete block design with four replications with corn-

soybean rotation. Ithaca, Nebraska’s plots were established 1999 under continuous corn with a 

randomized complete block design with three replications. At the Minnesota and South Dakota 
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sites treatments include three levels of corn stover removal low stover removal, medium stover 

removal and high stover removal. The Nebraska site only included stover removal at two rates 

low stover removal and medium stover removal. Data collection included dry aggregate size 

distribution, erodible fraction, and SOM components. The soil aggregate size distribution for 

South Dakota showed that the proportion of soil samples in the largest aggregate size class 

>19.mm was greater for the low stover removal treatment compared to the two other treatments. 

There were no significant difference between the fractions of soil within 2.0-6.4-mm size classes 

for the different residue removal or cover crop treatments. When stover was removed from the 

soil surface under high stover removal and not replaced by a cover crop there was less desirable 

overall dry aggregate size distribution compared when the soil surface was protected by stover or 

cover crops. Minnesota showed that significant increases were observed in aggregates of <1 mm 

and significant decrease in aggregates of 5-9 mm in high stover removal when compared to 

medium and low stover removal. Nebraska showed that regardless of N application there were a 

greater amount of soil aggregates >2.0-mm with the low stover removal when compared to 

medium stover removal. The erodible fraction was found to be significantly lower than the high 

stover removal and medium stover removal for all three treatments regardless of tillage, cover 

crops or N treatments. There was a conclusion that when residue was removed there was an 

increase in the erodible fraction, the use of cover crops aided to reduce the impacts of stover 

removal. This study also concluded that the amounts of SOM (cPOM, fPOM, and tPOM) 

decreased as a result of the amount of stover that was removed from the soil surface. 

Jin. et al. (2015) and the United States Department of Agriculture-USDA-ARS 

researchers conducted an evaluation on soil dry aggregate size distribution and aggregate 

stability. Dry aggregate size distributions were found to be impacted by stover removal. The 
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(>2.0mm) fraction decreased from 55 to 40 % at the 0-5 cm, 72 to 60% at the 5-10 cm and 72 to 

68% at the 10-30 cm. The water stable dry aggregates were found to not be affected by stover 

removal or N fertilizer treatment. 

Osborne et al. (2015) and the United States Department of Agriculture-USDA-ARS 

researchers examined the stover removal impact on water stable aggregates and soil water 

retention. The water stable aggregates for the 2010 corn phase of the rotation, low stover removal 

( 44.2%) was found to be 30.8% higher than the medium stover removal (33.8%) and 17.6% 

higher than the high stover removal (37.6%). Water stable aggregates for the soybean phase was 

found to be significantly higher in the low stover removal in 2008 and 2010. The low residue 

removal in 2008 (52.0%) was found to be 61% higher than the medium stover removal (32.2%) 

and 62% higher than the high stover removal (30.3%). The low residue removal in 2010 (44.2%) 

was found to be 22.5% higher than the high stover removal (37.6%). Cover crops did not impact 

water stable aggregates throughout either phase of the study. The soil water retention at a 0-15 

cm depth was found to not be significantly different between the soybean phase and cover crop 

treatments. The soil water retention in the same depth for the corn phase were found to have 

significant at -6,-8,and -100 kPa and cover crops did not have and influence on soil water 

retention. Osborne et al. (2015) concluded that soil water retention for the low stover removal 

was improved compared with those of the high stover removal. 

Yield Responses 

 

Wilhelm et al. (1986) conducted an investigation on the yield response of continuous 

corn and continuous soybean with crop stover management under no-tillage age. This study was 

on a Crete-Butler silty clay loam. The amount of stover returned was applied in treatments of 0, 

50, 100, or 150 % of the amount that was produced. They reported that grain and stover yield 
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had a positive linear response to the amount of stover applied to the soil. This study concluded 

that changes in soil water and soil temperature associated with stover treatments impacted crop 

yields. 

Blanco-Canqui and Lal (2009) evaluated the impact of crop stover removal on soil 

productivity and environmental quality. Based on the literature by Morachen et al. (1972), 

Wilhelm et al. (1986), Karlen et al. (1994), Sow et al. (1997) and Linden et al. (2000) they found 

that crop yields are highly variable and dependent on crop management, soil texture, relief, 

topography and climate. Morachen et al. (1972) concluded that mulched stover retention at rates 

as high as 16 Mg ha on a no-tillage silty clay loam in Iowa increased yields during the first year 

and reduced yields during the second year. After the 13 year study ended, mulched stover had no 

effects on corn yields 10 out of the 13 years. Wilhelm et al. (1986), observed stover removal on a 

no-tillage silty clay loam in Nebraska, this study concluded that stover removal rates of 50% 

reduced corn grain yields by 0.80 Mg ha in 2 out of 4 years. Complete stover removal reduced 

corn grain yields by 1.5 to 3.0 Mg ha every year. Karlen et al. (1994) researched stover removal 

from no-tillage continuous corn on silt loams in Wisconsin for 10 years. Complete stover removal 

on continuous corn did not effect grain yields during the first 8 years of the study. Grain yields 

did increase by 0.5 Mg ha in the 9th year and declined by 2.8 Mg ha in the 10th year. Sow et al. 

(1997) evaluated a no-tillage clay loam in Texas for stover removal of sorghum straw impact on 

crop yields. This study resulted in a reduction in crop yields from 4.69 to 4.02 Mg ha. Linden et 

al. (2000) evaluated stover removal on a silt loam in Minnesota impact on corn grain yields of 

continuous corn for 12 years under no-tillage, chisel plow and moldboard plow systems. Corn 

grain yields were reduced by 1.0 Mg ha during 3 out of 12 years under no-tillage, by 0.5 to 1.0 

Mg ha during 4 out of 12 years under chisel plowing, and by 0.5 to 2.0 Mg ha during 4 out of 12 
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years in moldboard plowing. The various studies concluded that crop yield responses to stover 

management depends on the in-situ conditions and can vary yearly. More research is required to 

understand the relationships between variability in weather conditions, fertilizer and organic 

amendments, invasive species of weeds and pest, soil water and temperature relationships and 

soil compaction as it relates with stover removal treatment. 

Schmer et al. (2014) and the USDA-ARS researchers evaluated grain yield N in a 10 year 

irrigated continuous corn study under conventional disk tillage and no tillage with variable 

stover removal rates (low, medium, and high). Mean grain yields were 7.5 to 8.6% higher for no 

tillage when stover was removed compared with no stover removal. The conventional disk tillage 

mean grain yields were similar across all stover removal treatments. 

Jin. et al. (2015) and the USDA-ARS researchers conducted an evaluation on yield 

responses to stover removal under N fertilizer treatments and found that there were no affect on 

the mean stover and grain yields from 2000-2011 growing seasons. Jin et al. (2015) attributed the 

various stover and grain yields experienced throughout the duration of the study as a response to 

growing conditions due to dryer climates and soil water retention due to stover accumulation on 

the surface. 

Little is reported about the impacts of corn stover removal on soil properties in North 

Dakota especially coarse textured outwash soils. The climate in North Dakota can be highly 

variable and soils can be fragile and susceptible to wind erosion especially in areas of sandy 

outwash soils. As previously stated, the objectives of this research was to evaluate impacts of 

variable corn stover removal rates on selected physical, chemical and biological properties of a 

soil under irrigated continuous corn and corn-soybean rotation on a sandy soil. This research 

will focus on stover removal impacts on wind erodibility, aggregate stability, soil compaction, 
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water infiltration and stover removal impacts on SOC changes and N mineralization. This will 

answer the question of does residue removal affect these soil properties; with the hypothesis  

being: the soil physical, chemical and biological properties will be i m pacted if corn stover is 

removed. 
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MATERIALS AND METHODS 

 

Site Description 

 

The study was conducted at the North Dakota State University’s Oakes Research Site 

near Oakes, ND (46°04’24.96”N and 98°05’31.86”W). Corn stover removal plots were 

established in 2008 using a randomized complete block design with 4 replications, including 

continuous corn and corn/soybean rotation plots under irrigation and no-tillage management. The 

continuous corn and each phase of the corn/soybean rotation are located in separate adjacent plot 

areas, with 4 replications of each stover removal treatments including a) no stover removal; b) 

33% stover removal; c) 67% stover removal; and, d) 100% stover removal.  This site is located 

on a complex of Embden sandy loam (coarse-loamy, mixed, superactive, frigid Pachic 

Hapludolls), Hecla sandy loam (sandy, mixed, frigid Oxyaquic Hapludolls) and Maddock sandy 

loam (sandy, mixed, frigid Entic Hapludolls) soils (USDA-NRCS, 2014). Vegetable crops 

(onion) were previously grown and thereafter, the new research plots were conditioned with corn 

for the initial crop. Beginning in the fall of 2008, corn stover was removed annually from the 

continuous corn plots. On the corn/soybean rotation plots, the stover was removed from the plots 

in the corn phase of the rotation with no stover removal from the soybean plots. The stover was 

removed from the plots using a small plot forage harvester with a 30 inch cutting width. Each 

plot was 12 rows wide and the row spacing was 30 inches so that the number of rows was 

divisible by 3. The remaining stover was left in place unaltered and the harvested rows were 

rotated for each year so the stover was equally removed from all rows over the duration of the 

study. For the 33% removal plots, stover was removed from 1 out of every 3 rows.  For the 67% 

removal plots, stover from 2 out of every 3 rows was removed. No stover was removed from the 

0% removal plots and all of the stover was removed from the 100% removal plots. The annual 
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irrigation applied was based on crop needs estimated from growing season rainfall and 

evapotranspiration rates. The annual total irrigation applied and corn yields are presented in the 

Appendix. The crop cycles since 2007 including the 2008 are shown in Table 1. 

Table 1. Plots and their respective crop occurrence each year since the establishment of the crop 

rotation cycle  

 

Plots    Year  
 2007 2008

†
 2009 2010 2011 2012 2013 

Continuous corn Corn 
‡
 Corn Corn Corn Corn Corn Corn 

Corn/soybean 1 Corn 
‡
 Soybean Corn Soybean Corn Soybean Corn 

Corn/soybean 2 Onion Corn Soybean Corn Soybean Corn Soybean 

† Plots were conditioned for the study during 2008 growing season. 
‡ Plots were planted into the corn/soybean rotation in the first corn year occurrence. 
 

Field Methods 

 

Soil properties (OM, fertility) were evaluated in September and October of 2008, 2011 

and 2013 after irrigation was completed for the season. The study was originally established 

(2008) to evaluate stover removal on crop yields and agronomic factors contributing to yield. 

Therefore soil physical and chemical properties studied here were not evaluated in 2008 to 

provide a baseline for the study. The 2011 sampling was to evaluate soil C only and soil physical 

properties were only evaluated in 2013. However, since the plots were historically managed in a 

uniform manner, soil differences due to management were assumed to be minimal.  Soil 

differences were mainly influenced by normal variability attributed to the soil types found in the 

area. The data reported here represents soil conditions after 6 years for the continuous corn and 

corn/soybean plot 1 and 5 years for the corn/soybean plot 2. 
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Soil Sampling 

 

Soil samples were collected using a hydraulic soil coring machine (Giddings probe) with 

a 59 mm diameter steel tube with a plastic tube liner. The initial sampling (2008) was to a 60 cm 

depth after harvest from each plot and the subsequent sampling (2011 and 2013) was to a depth 

of 1m after harvest. Two core samples were taken per plot and combined after being subsampled. 

These cores were composited by 0-10, 10-20 and 20-30 cm depths from the surface 30 cm of the 

core and by 15 cm depth increments thereafter for the remainder of the cores for each plot. 

Composited core sample increments were hand crushed and air dried before mechanically 

crushing to pass a 2 mm sieve. The initial cores were collected in 15 cm depths to 60 cm, but the 

subsamples were handled similarly to the later sampling. The samples were utilized for soil total 

C and bulk density determinations. All sampling for soil measurements (aggregate analysis, 

infiltration rates, penetrability resistance) were done in inter-row areas that did not have 

equipment traffic.  

 

Soil Aggregate Stability and Wind Erodibility 

 

Composite soil samples were collected to a depth of 5 cm from 6 points within each plot 

for the soil aggregate analysis using a flat bottom shovel. A portion of the composite soil samples 

were subsampled for soil aggregates and were hand screened to obtain the 1-2 mm fraction. The 

1-2mm fraction was separated into 2 portions; one of which was air dried and the other was 

refrigerated in small air tight plastic containers until they were analyzed. The remaining 

unscreened bulk samples were placed in plastic buckets, taken to a greenhouse and air-dried for 

wind erodible fraction (<0.84 mm) determination (Chepil, 1954). 
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Water Infiltration Rate 

 

Water infiltration was conducted using 15.24 cm diameter aluminum single ring 

infiltrometer driven into the soil to a depth of 10 cm (Bouwer, 1986). Two rings were installed in 

each plot and were sealed along the inner wall with bentonite clay. The soil was covered with a 

circle of filter paper to prevent soil disturbance when adding water. Two liters of water were 

added to each ring followed by maintenance of at least 10 cm of water in each ring for 90 

minutes to minimize errors due to lateral divergence of flow. Bouwer (1986) suggest the use of 

an infiltrometer with a diameter large enough that the ratio of critical pressure head to cylinder 

diameter is equal to 0; to eliminate the error associated with lateral divergence of flow.  The soils 

at this site are coarse textured and thus have a high infiltration rate. Normally soil saturations for 

infiltration measurements take longer than 90 minutes to equilibrate on finer textured soils 

(Reynolds et al., 2002). These soils were considered to be near saturation when the filter paper 

on the soil surface at the bottom of the infiltrometer began to float (the hydraulic conductivity of 

the wetted zone equals depth of wetting front) and the soil surface surrounding the aluminum 

ring began to glisten due to upward wicking of water from the saturated zone. Lateral divergence 

due to capillary flow occurs when the pressure heads in the unsaturated soil adjacent to the 

infiltrometer are more negative than the pressure heads vertical to the infiltrometer (Bouwer, 

1986). Field saturated hydraulic conductivity accuracy is increased with increasing the cylinder 

radius, decreasing depth of water ponding, increasing depth of ring insertion and increasing the 

macroscopic capillary length according to Reynolds et al. (2002). A 30 cm ruler was then placed 

in the rings and water depth readings were taken in millimeters (mm) at 10 minute intervals for a 

minimum of 6 readings over a 60 minute time period to determine the infiltration rate. Water was 

added as needed to maintain a 10 cm water head in the rings. The water utilized in the 
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infiltration study was from the well water system that supplies the irrigation system that is used 

to irrigate the plots. An analysis was conducted on a sample of the irrigation well water at the 

NDSU soil testing laboratory is reported in the Appendix. The electrical conductivity of the 

water was 984 umho/cm and the sodium adsorption ratio is 0.21; these values show that the 

water is suitable for irrigation and will not negatively impact the soil. 

 

Laboratory Methods 

 

Bulk density, texture, organic matter, total C, aggregate stability, nitrogen availability 

indexes and wind erodible fraction were determined in the laboratory. These are described in the 

following subsections. 

 

Bulk Density 

 

Bulk density was determined on the cores collected with hydraulic probe. The ratio of the 

mass of dry solids to the bulk volume of the soil, known as the bulk density, was determined 

using the core method as described by Blake and Hartge (1965). The oven dried weight of each 

depth increments (0-10, 10-20 and 20-30 cm) was divided by its volume to determine the bulk 

density values. These values for each treatment per block were averaged and are presented in the 

Appendix. Since the soils were sampled to a depth of 1 m using a Giddings hydraulic probe, with 

plastic core liners, attempts were made to collect bulk density data on all depths. However, sandy 

soils are difficult to sample for bulk density by the core method at the lower depths due to 

compaction during sampling. Only the bulk density values for the 0-30 cm depths were 

unaffected by compaction based on data revisions and thus only these are reported for this study. 
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Total C 

 

The composite soil samples from the core samples divided into their respective depth 

intervals were air dried and crushed to pass a 2 mm sieve. A 10 g subsample was milled with a 

ball carborundum media to pass 100-mesh screen for C analysis by high combustion (1000 °C) 

(Cihacek and Jacobson, 2007). Carbon analysis was performed with a Skalar PrimacsTM solid 

carbon analyzer. The soil total C determinations for each plot (%C x B.D) were taken to a depth 

of 30 cm were summed up for the 3 depth increments. Although soils were sampled to either 0.6 

or 1 m for soil C determinations, unreliable bulk density data below 30 cm for calculating the 

soil C values resulted in the reporting of soil C only to a 30 cm depth. 

 

Inorganic C 
 

Inorganic C on the 2008 samples were performed by release of CO2 by phosphoric acid 

addition using a Skalar PrimacsTM instrument. The 2011 and 2013 inorganic C in soils was 

determined on the subsamples prepared for the total C by the method of Williams (1948). The 

inorganic C was subtracted from the total C determinations to derive the organic C 

determinations per plot. 

 

Aggregate Stability 

 

The cohesive forces between particles allows a groups of particles to cohere to each 

other. When a disruptive force is applied to aggregates and if the aggregate does not experience 

failure, the aggregate is considered to be stable. The air-dry aggregates were air-dried with 

minimum disturbance before wet sieving for stability determination. The wet aggregate stability 

samples were collected and stored in plastic containers with refrigeration to retain field moisture 

conditions. Both the air-dried and field moist aggregate samples were wet using a modified 
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vaporizer as described by Kemper and Rosenau (1986) to decrease disintegration by ion 

hydration and osmotic swelling forces. The stable fraction of the aggregates were determined 

using the method of Kemper and Rosenau (1986). The stability values are based on the average 

of analysis of four subsamples on each plot sample. 

 

Particle Size Analysis 
 

The particle size analysis (PSA) (Table 2) was determined by the hydrometer method of 

Gee and Bauder (1986). Volumetric samples of 10 g using an NCERA-059 standard 10g dipper 

were composited from the 0-20 cm depths of the core samples, from the 0% stover removal 

treatment on the 2013 samples. The use of the 10 g dipper was to get the subsample across the 

plot areas as homogenous as possible with proportional representation of soils over the plot area. 

A separate analysis was made for each of the three plot areas (continuous corn; corn/corn-

soybean; soybean/corn-soybean). The PSA results are shown in Table 2. 

Table 2. Particle size analysis of the 0% residue removal treatment during 2013 

 

Plots Depth (cm) Pa rticle size analysis 
† 

Soil Texture 
  Percent sand Percent silt Percent clay 

claclay 

 

Continuous corn 0-20 70.3 20.3 9.4 Sandy 

loam Corn/soybean 1 
‡

 0-20 70.1 21.7 8.2 Sandy 

loam Corn/soybean 2 
§

 0-20 78.5 16.4 5.1 Loamy 

sand †PSA determined by the hydrometer method. (Gee and Bauder, 1986) 
‡ Corn phase during 2013 
§ Soybean phase during 2013 
 

Nitrogen Availability Indexes 
 

A biological estimation of the mineral-N formed under incubation conditions that 

promote mineralization of soil-N were determined utilizing a 14 day incubation at 25 °C of the 0- 

10 cm core samples (Keeney and Bremner, 1966). The available NH4
+N and NO3

-N in incubated 

samples was determined by steam distillation method described Bremner (1965). Analysis was 



 

24 

 

done on samples at day 0 and day 14 and the values reported are the difference between initial N 

values and N value after incubation. 

 

Wind Erodible Fraction 

 

Approximately 500g of the air dried bulk soil samples was accurately weighed and 

placed on a rocker sieve with a 0.84 mm screen. The sieve was oscillated 30 times over a two 

minute time period and the soil that passed through the screen and residual soil on the screen 

were weighed to determine the mass of the separate fractions. The wind erodible fractions were 

then calculated according to the methodology of Chepil (1954). 

 

Irrigation Water Evaluation 
 

A 16 oz. sample of irrigation water was collected in a plastic bottle and evaluated by the 

North Dakota State University Soil Testing Laboratory for electrical conductivity and SAR. The 

results of this irrigation water evaluation is available in the Appendix. This water was used for 

determination of water infiltration rates of the various treatments. 

 

Statistical Methods 

 

Analysis of variance of the data for determination of significant differences was 

conducted using the PROC ANOVA routine with least significant difference (LSD) 

determination at P≤0.05 using SAS version 9.3 (SAS Institute, 2010). 

 

Crop Cultivation Methods 

 

The corn and soybean crops were managed by the staff of the Oakes Research Station 

(ORS) and the Carrington Research and Extension Center (CREC) based on their standards and 

protocols. Agronomic data collected by the ORS and CREC personnel are presented in the 
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Appendix. Other data can be found at Oakes irrigation research site: 

(http://www.ag.ndsu.nodak.edu/oakes/oakes.htm) with their annual reports under the Optimum 

corn stover removal for bio-fuel and the environment sections. 

http://www.ag.ndsu.nodak.edu/oakes/oakes.htm
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RESULTS AND DISCUSSION 

 

Wind Erodible Fraction 

 

Results for the wind erodible aggregate fraction, field-moist and air-dry water stable 

aggregate fraction and water infiltration rates as influenced by stover removal treatment are 

shown in Table 3 (continuous corn), Table 4 (corn/corn-soybean), and Table 5 (soybean/corn-

soybean). The wind erodible fraction or the fraction of soil aggregates and individual particles is 

that portion of the soil that is subject to wind detachment and displacement.  Generally, these 

aggregates and particles are sand sized or smaller (<0.84 mm) and are easily detachable when 

the soils are dry. Within the continuous corn plots, the fraction of wind erodible aggregates and 

particles was lowest for the 0 % stover removal rate (25.4 %) and highest for the 100 % stover 

removal rate (36.6 %). The corn-corn/soybean plots during 2013 plots showed no significant 

differences between stover removal treatments that were observed for the wind erodible fraction 

of aggregates and particles. Within the soybean-corn/soybean plots there were no significant 

differences between stover removal treatments for the wind erodible fraction. However, there 

did appear to be a slight trend for an increase in the wind erodible fraction as the stover removal 

rate increased. These results are likely due both to quicker drying of the relatively bare soil for 

the 100 % removal rate as well as the lack of protective cover and decreased surface roughness 

due to the removal of stover covering the soil surface. There may also be a difference in the 

organic matter composition which acts as a binding agent for soil particles when the surface 

stover is reduced. Determining the composition of the organic matter was beyond the scope of 

this study. The trend observed when reside was removed and the soil surface was less protected 

in regards to the increase within the wind erodible fraction was similar to the findings of Osborne 

et al. 2014. 
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Field-Moist and Air-dry Aggregate Stability 

 

Field-moist aggregate stability represents the potential for soil aggregate dispersion due 

to wetting (e.g. rainfall) when the soils are in a “as-is” condition in the field. Air-dry aggregate 

stability represents the potential for soil aggregate dispersion when soils dry out in a field 

environment. The difference between these two types of stability is influenced by a number of 

factors of which physical wetting and drying forces can break up aggregates. There was a 

significant reduction of field-moist aggregate stability for the continuous corn plots when 100 % 

removal rate is compared with the 0 % rate (48.3 % vs. 58.7 %, respectively) (Table 3). The 33% 

and 67 % removal rates were intermediate to the 0 % and 100 % rates. The corn/corn-soybean 

and soybean-corn/soybean plots indicated no significant differences in field-moist and air-dry 

aggregate stability due to corn stover removal (Table 4). These research result supports the 

concepts of the Skidmore et al. 1986; Karlen et al. 1994; Blanco-Canqui et al. 2009; Jin et al. 

2015; and Osborne et al. 2015, that failure to manage enough stover on the soil surface in plots 

without cover crops limits the materials that can be produced for soil aggregation, thus creating 

the conditions experienced with an increase in aggregation attributed to increased stover 

remaining on the soil surface. 

 

Water Infiltration Rate 

 

Water infiltration rate within the continuous corn plots showed a significant decline as the 

corn stover removal rate increased (Table 3). The infiltration rate for the 100 % stover removal 

rate was 38 % of the 0 % removal rate. Corn/corn-soybean plots indicated that the removal of 

corn stover, although done on an alternating year basis, significantly reduced the water 

infiltration rate (Table 4). The water infiltration rate for the 100 % stover removal treatment was 

64 % of the control treatment. There were no significant differences observed in the water 
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infiltration rates for the stover removal treatments within the soybean/corn-soybean plots. 

However, the water infiltration rate for the 100 % stover removal treatment was 81 % of the 

control treatment. 

Table 3. Wind erodible fraction, water stable aggregate fractions and water infiltration rates as 

influenced by corn stover removal rates for the continuous corn 

 

    Water Stable Aggregates   

Stover 

Removal 

Treatment 

Wind 

Erodible 

Fraction 

Field Moist Air-dry 
Infiltration 

Rate 

-----------------------%------------------------ -cm/hr- 

0 25.4 a† 58.7 a 89.5 a 22.4 a 

33 36.9 a 54.6 b 84.9 a 12.6 b 

67 35.5 ab 55.5 a 81.7 a 13.8 bc 

100 35.5 a 48.3 b 82.2 a 8.6 c 
 
 

†Values followed by the same letter are not significantly different at P ≥ 0.05. 

 

Table 4. Wind erodible fraction, water stable aggregate fractions and water infiltration rates as 

influenced by corn stover removal rates for the corn phase 2013-corn-soybean rotation 

 

    Water Stable Aggregates   

Stover 

Removal 

Treatment 

Wind 

Erodible 

Fraction 

Field Moist Air-dry 
Infiltration 

Rate 

-----------------------%------------------------ -cm/hr- 

0 35.1 a† 52.0 a 83.1 a 16.8 a 

33 43.6 a 51.4 a 84.2 a 11.6 b 

67 35.5 a 53.6 a 82.1 a 11.9 ab 

100 47.1 a 50.6 a 82.9 a 10.8 b 
 

†Values followed by the same letter are not significantly different at P ≥ 0.05. 
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Table 5. Wind erodible fraction, water stable aggregate fractions and water infiltration rates as 

influenced by corn stover removal rates for the soybean phase 2013-corn-soybean rotation 

 

    Water Stable Aggregates   

Stover 

Removal 

Treatment 

Wind 

Erodible 

Fraction 

Field Moist Air-dry 
Infiltration 

Rate 

-----------------------%------------------------ -cm/hr- 

0 40.2 a† 63.9 a 88.1 a 16.4 a 

33 44.7 a 60.2 a 84.4 b 15.9 a 

67 48.8 a 67.2 a 84.9 b 16.7 a 

100 46.7 a 56.7 a 77.7 c 13.3 a 

†Values followed by the same letter are not significantly different at P ≥ 0.05. 

 

Soil Organic Carbon (SOC) 
 

Soil organic carbon (SOC) data including initial and final SOC mass and change in mass 

are shown in Table 6 (continuous corn), Table 7 (corn/corn-soybean), and Table 8 

(soybean/corn-soybean). The SOC mass (adjusted for soil bulk density) increased from the 

initiation of the plots in 2008 to the final sampling in 2013. Soil OC mass is a more precise way 

of expressing changes in SOC because it is adjusted for treatment effects that affect soil bulk 

density. The SOC mass frequently identifies subtle changes in SOC that regular analysis for 

percent (%) C does not pick up. Significant differences were observed for the continuous corn 

plots that appear to be partially related to soil variability at the beginning of the study. The trends 

between treatments at the initiation of the study in 2008 (prior to stover removal) appear to be 

reflected in the 2013 data. Significant differences in the SOC change tend to reflect the soil 

variability more than stover removal treatments.  

Corn-corn/soybean plot area appears to have more uniform soils as compared to the data 

shown for the continuous corn plots (Table 7). There were no significant differences between the 
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stover removal treatments for both the initial and final samplings. However, there were 

significant differences between the 0 % and 100 % stover removal rates for SOC mass change. 

The 0 % removal treatment had the greatest change while the 100 % removal treatment had the 

least change. The levels of SOC and SOC change for the 2013 sampling do not appear to be in as 

great a magnitude as for the continuous corn because the total amount of plant biomass (most of 

which comes from corn) is less than for continuous corn plots. Thus, the potential for increasing 

SOC in a corn-soybean rotation system is lower. Soybean-corn/soybean plots trends toward more 

coarse sand in the sand fraction of the soil which may influence the soil’s ability to accrete and 

store SOC. Differences in SOC for the initial (2008) sampling date which occurred prior to 

application of the stover removal treatments tends to support this idea.  However, there were no 

significant differences in the SOC mass for the final sampling date (2013). The SOC mass 

changes as influenced by stover removal treatment were very low and not statistically different 

from each other. There was a trend, however, to lower levels of SOC mass change for the higher 

stover removal rates. The soybean phase of the corn-soybean rotations has the lowest total 

overall plant biomass input due to the lower frequency of corn during the five years previous to 

the 2013 sampling. 

This study differs by the impact stover removal have on SOC compared to previous 

studies. Schmer et al. 2014 researched tillage and stover management effects on SOC under 

irrigated continuous corn on silt loam textured soils. There were no change identified in the SOC 

within the 0-15 cm depths from 2001 to 2010 in the no-tillage plots. Within the low stover 

removal treatment in the no-tillage plots there was an increase in SOC stocks, the medium stover 

removal there was not a change with time and the high stover removal experienced a decline in 

SOC stocks. When compared to Schmer et al. (2014), this study showed increases in SOC from 
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2008 to 2013 among the treatments. This may be influenced by low initial SOC level and the 

soils having a high C storage capacity according to Jin et al. 2015; who also investigated a no-

tillage site with systematic stover removal in continuous corn response to N-fertilizer 

applications. This study also resulted in an increase in SOC within the 0-30 cm depth after 12 

years. Overall, SOC changes are dependent on stover removal rate and soil type (Blanco-Canqui 

and Lal, 2009; Osborne et al., 2015).  

Table 6. Initial and final soil organic carbon (SOC) masses in the surface foot of the soil at the 

initiation of the study (2008), the final year of the evaluation period (2013) and the change over 5 

years of continuous corn 

 

 Residue 

Removal 

Treatment 

  

Soil Organic Carbon Mass 

2008 2013 Change 

---%--- --------kg/m2/30 cm--------- 

0 5.97 b‡ 8.59 bc 2.62 ab 

33 4.87 a 6.80 a 1.93 a 

67 5.76 b 8.84 c 3.08 b 

100 5.49 ab 7.63 ab 2.20 ab 

†Change = 2013 SOC mass – 2008 SOC mass. 
‡ Values followed by the same letter are not significantly different at P ≥ 0.05. 
 

Table 7. Initial and final soil organic carbon (SOC) masses in the surface foot of the soil at the 

initiation of the study (2008), the final year of the evaluation period (2013) and the change over 5 

years in the corn phase 2013-corn-soybean rotation 

 

Residue 

Removal 

Treatment 

  

Soil Organic Carbon Mass 

2008 2013 Change 

---%--- --------kg/m2/30 cm--------- 

0 4.82 a† 7.29 a 2.47 b 

33 4.41 a 6.22 a 1.81 ab 

67 4.86 a 7.03 a 2.17 ab 

100 5.04 a 6.02 a 0.96 a 

†Values followed by the same letter are not significantly different at P ≥ 0.05.
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Table 8. Initial and final soil organic carbon (SOC) masses in the surface foot of the soil at the 

initiation of the study (2008), the final year of the evaluation period (2013) and the change over 5 

years in the soybean phase 2013-corn-soybean rotation 

 

Residue 

Removal 

Treatment 

  

Soil Organic Carbon Mass 

2008 2013 Change 

----%---- -----------kg/m2/30 cm----------- 

0 3.39 a† 4.04 a 0.65 a 

33 3.46 a 4.20 a 0.74 a 

67 4.04ab 4.24 a 0.10 a 

100 4.63 b 4.66 a 0.22 a 

†Values followed by the same letter are not significantly different at P ≥ 0.05. 

 

Soil N Mineralization Potential 
 

Potential soil N mineralization for the surface 0-10 cm depth are shown in Table 9 

(continuous corn), Table 10 (corn/corn-soybean), and Table 11 (soybean/corn-soybean), the 

values reported here were corrected for the initial soil NH4-N and NO3-N prior to incubation. 

This measure is a proxy index for the microbiological activity as affected by corn stover removal 

as well as an index of a component of soil health. All plots did not have a significant ammonium- 

N (NH4-N) and nitrate-N (NO3-N) mineralization treatment affect. The NH4-N mineralization 

was very low and the NO3-N was substantially higher which may be due to the repeated crop 

planting allowing the microbiological community to mature and adapt to the environment unlike 

the corn/soybean rotation plots. The mineralized NH4-N in the soybean-corn/soybean plots is 

higher than the continuous corn or the corn phase of the corn-soybean rotation possibly due to 

higher N enriched fresh soybean crop stover on the soil at the time of the 2013 sampling. 

Mineralized NO3-N was somewhat higher in the soybean phase than for the corn phase; again 

likely to be related to the presence of soybean stover on the soil. The soybeans were harvested 
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earlier than the corn and the soybean stover was on the soil surface longer than the corn stover. 

Several fall rains may have leached nitrogenous compounds into the soil which were likely 

mineralized during the incubations. Although the soil microbiological counts weren’t conducted 

like Doran’s (1980) investigation, this study also indicates that there probably are changes in 

microbial ecology associated with systematic stover management due to the varied mineralized 

NO3-N levels observed. 

Table 9. Effects of corn stover removal on potential mineralizable ammonium- and nitrate-N 

after fourteen days of incubation for the surface soil (0-10 centimeters) of continuous corn 

 
 

 

Stover 

Removal 

Treatment 

Mineralizable N 
 

 

NH4-N NO3-N 

 
 

----%---- --------------ppm--------------- 
 

0 0.17 a†
 18.7 a 

33 0.00 a 12.8 a 

67 0.14 a 20.6 a 

100 0.11 a 13.2 a 

†Values followed by the same letter are not significantly different at P ≥ 0.05. 
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Table 10. Effects of corn stover removal on mineralizable ammonium- and nitrate-N after 

fourteen days of incubation for the surface soil (0-10 centimeters) of the corn phase 2013 - corn-

soybean rotation 
 

 

 

Stover 

Removal 

Treatment 

Mineralizable N 
 

 

NH4-N NO3-N 

 
 

----%---- --------------ppm--------------- 
 

0 0.04 a†
 2.56 a 

33 0.04 a 0.04 a 

67 0.00 a 4.63 a 

100 0.00 a 4.30 a 

†Values followed by the same letter are not significantly different at P ≥ 0.05. 

 
Table 11. Effects of corn stover removal on mineralizable ammonium- and nitrate-N after 

fourteen days of incubation for the surface soil (0-10 centimeters) of the soybean phase 2013-

corn-soybean rotation 

 
 

 

Stover 

Removal 

Treatment 

Mineralizable N 
 

 

NH4-N NO3-N 

 
 

----%---- --------------ppm--------------- 
 

0 3.63 a†
 0.50 a 

33 4.39 a 2.99 a 

67 7.43 a 4.05 a 

100 5.03 a 4.10 a 

†Values followed by the same letter are not significantly different at P ≥ 0.05. 
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SUMMARY AND CONCLUSIONS 

 
The results of this study located on an area of potentially fragile soils from an erosion 

standpoint, generally, gave mixed results for all of the factors studied. Differences in soil 

physical properties appeared to be most pronounced on the continuous corn plots. Evaluating 

effects of corn stover removal after five years of applied treatments is probably the shortest time 

frame over which to conduct a study such as this. Soils have some level of inherent resilience 

which resists change when management or inputs change. Changing inputs, management or 

agronomic conditions often require at least 3 to 5 years in order to create enough change in the 

soil so that the effects can be measured. This study encompassed a minimum time period of 

systematic stover removal research due to its irrigated conditions which maintains a high level of 

crop productivity. In addition, this study is on sandy soils, whereas, most other studies were on 

loams, silt loams, or clay loams. 

In summary, five years of stover removal in a continuous corn system increased the wind 

erodible fraction and decreased field-moist aggregate stability and water infiltration rate. 

However, it had very little effect on SOC changes and N mineralization. For the corn phase in a 

corn-soybean rotation, stover removal decreased water infiltration rate, and appeared to decrease 

the magnitude of SOC change. Again, N mineralization did not appear to be affected by stover 

removal. For the soybean phase in a corn-soybean rotation, air-dry water stable aggregates were 

decreased. Although SOC change appeared to decrease with stover removal, the changes were 

small and not significant. 

This study also agrees with Blanco-Canqui (2009), where further long-term studies are 

needed to evaluate the real impacts of changing management on the soil to advance upon the 

existing near-term (< 5 years) investigations. From the information obtained in this study and 
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others already published, short-term effects appear to be minor but longer-term studies may be 

required to identify the lasting impacts of management. The treatments of this study site will be 

continued into the future and the study parameters that were reported here should be revaluated 

again in another 3 to 5 years. 
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Figure A1. The experimental design 
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Figure A2. Irrigation water analysis 
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Table A1. Soil infiltration, soil moist and dry aggregate stable fraction, gravimetric H2O, Soil 

wind erodible fraction 

 
Block Treatment Infiltration Moist Stable fraction  Air Dried Stable fraction Gravimetric H20 Mineralized NH4N Mineralized NO3N  Wind erodible fraction (<0.84 mm) 

  (cm/hr) ―――――――

―――--- 

―%

――

――

%%

― 

――――――――

――   %―――― 

―――――― (ppm) (ppm) % 

1 100 8.76 0.49  0.84 12.64 0.00 7.15 0.3834 

1 67 16.53 0.58  0.79 18.80 0.00 39.71 0.3449 

1 33 10.14 0.57  0.90 11.68 0.00 5.08 0.3286 

1 0 22.53 0.67  0.96 13.35 0.07 9.24 0.218 

1 100 11.22 0.47  0.89 13.11 0.00 15.93 0.2486 

1 67 13.26 0.56  0.88 14.49 0.00 8.73 0.3191 

1 33 16.11 0.55  0.83 12.89 0.00 12.23 0.2833 

1 0 26.58 0.52  0.89 14.22 0.61 20.33 0.2432 

1 100 8.25 0.50  0.73 12.44 0.43 19.06 0.4346 

1 67 13.8 0.51  0.74 10.61 0.00 12.04 0.3383 

1 33 12.3 0.44  0.79 13.74 0.00 25.26 0.3809 

1 0 21.27 0.49  0.84 12.79 0.00 12.26 0.2882 

1 100 6.03 0.47  0.84 8.58 0.00 10.73 0.3964 

1 67 11.67 0.56  0.86 10.59 0.53 21.77 0.3379 

1 33 11.85 0.62  0.88 7.92 0.00 8.73 0.4832 

1 0 19.35 0.67  0.90 10.31 0.00 32.89 0.2672 

2 100 9.51 0.54  0.84 13.78 0.00 10.34 0.3684 

2 67 13.44 0.50  0.80 14.02 0.00 0.51 0.3017 

2 33 10.02 0.44  0.81 14.26 0.18 0.18 0.3623 

2 0 13.74 0.48  0.87 9.91 0.00 0.00 0.3088 

2 100 14.82 0.51  0.82 13.94 0.00 4.86 0.4479 

2 67 8.07 0.54  0.87 14.53 0.00 4.80 0.3623 

2 33 13.41 0.50  0.90 11.40 0.00 0.00 0.3953 

2 0 22.11 0.55  0.88 11.00 0.18 8.40 0.3313 

2 100 8.43 0.51  0.85 14.39 0.00 1.99 0.5789 

2 67 15.66 0.56  0.76 11.07 0.00 8.91 0.4223 

2 33 12.09 0.57  0.80 12.84 0.00 0.00 0.5755 

2 0 19.56 0.54  0.71 12.69 0.00 0.42 0.3711 

2 100 10.35 0.47  0.81 11.13 0.00 0.00 0.491 

2 67 10.62 0.55  0.86 11.39 0.00 4.30 0.3333 

2 33 10.74 0.54  0.86 13.37 0.00 0.00 0.4108 

2 0 11.91 0.51  0.87 10.31 0.00 1.43 0.3939 

3 100 20.67 0.56  0.72 8.71 5.91 7.12 0.452 

3 67 19.74 0.67  0.90 6.14 12.89 9.96 0.4267 

3 33 14.19 0.57  0.80 9.62 7.86 0.00 0.3808 

3 0 14.49 0.63  0.87 5.35 2.15 0.00 0.4393 

3 100 10.71 0.67  0.79 11.76 5.96 3.61 0.4103 

3 67 15.48 0.64  0.82 6.21 6.53 1.34 0.44 

3 33 12.39 0.69  0.87 4.43 5.19 0.00 0.4875 

3 0 10.56 0.57  0.87 49.52 8.06 0.00 0.3075 

3 100 8.82 0.46  0.79 8.23 7.19 5.65 0.4652 

3 67 12.57 0.65  0.82 9.12 6.56 4.88 0.5943 

3 33 32.25 0.60  0.88 6.75 1.51 10.52 0.5243 

3 0 19.11 0.61  0.88 6.87 2.69 1.99 0.434 

3 100 12.9 0.58  0.81 11.24 1.07 0.00 0.5437 

3 67 19.23 0.52  0.86 10.51 3.76 0.00 0.4922 

3 33 4.8 0.55  0.83 10.26 3.00 1.42 0.3972 

3 0 21.33 0.75  0.90 9.82 1.61 0.00 0.4294 
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Table A2. Continuous corn bulk densities and soil organic carbon mass for three years during 

the study 

 

 

 
Plot Depth 

Residue 

Removal 

Treatment 

 
Bulk Density Mean Soil Organic Carbon Mass 

 
`  

2008 2011 2013 

 

-------- --------(g/cm
3
)----------- ---------------------(kg/m

2
)--------------------- ---- 

 

101 0-4 100 1.50 1.993 2.743 3.277 

101 4-8 100 1.58 1.842 2.536 2.954 

101 8-12 100 1.70 1.705 1.295 2.902 

102 0-4 0 1.70 2.608 3.375 3.496 

102 4-8 0 1.53 2.083 3.358 3.404 

102 8-12 0 1.65 1.967 2.934 2.85 

103 0-4 67 1.48 1.892 2.240 2.857 

103 4-8 67 1.73 1.996 2.918 4.57 

103 8-12 67 1.79 1.842 3.128 2.401 

104 0-4 33 1.49 1.748 2.316 2.831 

104 4-8 33 1.58 1.494 2.007 2.617 

104 8-12 33 1.65 1.184 1.760 2.716 

201 0-4 33 1.49 1.801 2.225 2.437 

201 4-8 33 1.58 1.636 2.071 2.312 

201 8-12 33 1.65 1.423 1.559 1.777 

202 0-4 67 1.48 1.955 2.421 2.992 

202 4-8 67 1.73 2.231 2.462 3.217 

202 8-12 67 1.79 2.252 1.346 3.110 

203 0-4 100 1.50 1.980 2.682 2.972 

203 4-8 100 1.58 2.003 2.44 2.745 

203 8-12 100 1.70 2.067 1.313 2.193 

204 0-4 0 1.70 2.316 2.458 3.513 

204 4-8 0 1.53 1.832 2.394 2.845 

204 8-12 0 1.65 1.709 2.079 2.414 

301 0-4 67 1.48 1.729 2.421 3.143 

301 4-8 67 1.73 1.830 2.865 2.847 

301 8-12 67 1.79 1.696 2.692 2.582 

302 0-4 100 1.50 2.012 2.515 2.682 

302 4-8 100 1.58 1.83 1.91 2.344 

302 8-12 100 1.70 1.658 2.055 2.370 

303 0-4 0 1.70 2.178 2.838 3.496 

303 4-8 0 1.53 1.776 2.503 2.083 

303 8-12 0 1.65 1.721 1.878 2.632 

304 0-4 33 1.49 1.696 1.347 1.817 

304 4-8 33 1.58 1.74 2.633 2.151 

304 8-12 33 1.65 1.755 2.213 1.458 

401 0-4 0 1.70 2.153 2.042 3.842 

401 4-8 0 1.53 1.78 2.394 2.098 

401 8-12 0 1.65 1.754 2.246 1.693 

402 0-4 67 1.48 1.738 2.376 2.391 

402 4-8 67 1.73 1.947 2.584 2.724 

402 8-12 67 1.79 1.927 2.401 2.580 

403 0-4 33 1.49 1.944 2.256 2.619 

403 4-8 33 1.58 1.69 3.259 2.520 

403 8-12 33 1.65 1.377 2.534 1.961 

404 0-4 100 1.50 1.748 1.661 2.286 

404 4-8 100 1.58 1.613 2.793 2.007 

404 8-12 100 1.70 1.489 2.746 2.004 
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Table A3. Corn phase 2013 – corn-soybean rotation bulk densities and soil organic carbon mass 

for three years during the study 

 
 

 
Plot Depth 

Residue 

Removal 

Treatment 

 

Bulk Density Mean Soil Organic Carbon Mass  
2008 2011 2013 

 

-------- --------(g/cm
3
)----------- ---------------------(kg/m

2
)--------------------- 

 

101 0-4 67 1.5 1.993 2.76 2.835 

101 4-8 67 1.59 1.876 2.97 3.15 

101 8-12 67 1.5 1.547 1.55 2.438 

102 0-4 100 1.65 2.223 3.49 3.185 

102 4-8 100 1.54 1.884 2.47 2.175 

102 8-12 100 1.6 1.758 0.31 2.195 

103 0-4 0 1.62 1.913 3.61 2.716 

103 4-8 0 1.5 1.529 1.97 2.042 

103 8-12 0 1.54 1.320 1.00 2.034 

104 0-4 33 1.46 1.380 2.52 2.269 

104 4-8 33 1.55 1.236 2.28 2.031 

104 8-12 33 1.6 1.038 1.67 0.992 

201 0-4 33 1.46 1.896 2.42 2.655 

201 4-8 33 1.55 1.746 2.38 2.173 

201 8-12 33 1.6 1.527 1.71 2.325 

202 0-4 0 1.62 2.049 3.06 2.88 

202 4-8 0 1.5 1.737 2.47 2.53 

202 8-12 0 1.54 1.619 2.21 2.613 

203 0-4 67 1.5 1.697 2.82 2.377 

203 4-8 67 1.59 1.531 2.68 2.472 

203 8-12 67 1.5 1.192 2.26 1.737 

204 0-4 100 1.65 1.880 3.27 2.565 

204 4-8 100 1.54 1.441 2.36 0.485 

204 8-12 100 1.6 1.170 1.66 1.187 

301 0-4 0 1.62 1.847 3.06 2.847 

301 4-8 0 1.5 1.528 1.97 2.195 

301 8-12 0 1.54 1.382 1.00 2.222 

302 0-4 67 1.5 1.865 2.59 2.606 

302 4-8 67 1.59 1.786 2.70 2.407 

302 8-12 67 1.5 1.504 2.21 0.945 

303 0-4 100 1.65 2.119 3.05 2.632 

303 4-8 100 1.54 1.665 2.64 1.737 

303 8-12 100 1.6 1.404 2.76 0.862 

304 0-4 33 1.46 1.572 2.43 2.433 

304 4-8 33 1.55 1.521 0.41 2.22 

304 8-12 33 1.6 1.417 1.38 1.723 

401 0-4 100 1.65 1.799 2.62 2.766 

401 4-8 100 1.54 1.500 2.44 2.378 

401 8-12 100 1.6 1.372 2.16 1.902 

402 0-4 33 1.46 1.723 2.40 2.625 

402 4-8 33 1.55 1.455 1.83 1.965 

402 8-12 33 1.6 1.115 0.83 1.447 

403 0-4 0 1.62 1.812 2.83 2.65 

403 4-8 0 1.5 1.398 2.30 2.393 

403 8-12 0 1.54 1.118 2.02 2.05 

404 0-4 67 1.5 1.696 2.39 2.484 

404 4-8 67 1.59 1.535 2.33 2.633 

404 8-12 67 1.5 1.201 1.86 2.027 
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Table A4. Soybean phase 2013 – corn-soybean rotation bulk densities and soil organic carbon 

mass for three years during the study 

 
 

 
Plot Depth 

Residue 

Removal 

Treatment 

 

Bulk Density Mean Soil Organic Carbon Mass 

  
2008 2011 2013 

 

------------------ --------(g/cm
3
)----------- ---------------------(kg/m

2
)--------------------- 

 

101 0-4 100 1.64 2.179 2.033 2.000 

101 4-8 100 1.53 1.649 1.897 1.825 

101 8-12 100 2.12 1.753 1.960 1.852 

102 0-4 33 1.58 1.338 1.718 1.589 

102 4-8 33 1.63 1.277 0.613 1.557 

102 8-12 33 1.71 1.232 2.050 1.425 

103 0-4 0 1.54 1.206 1.705 1.580 

103 4-8 0 1.59 1.186 1.486 1.341 

103 8-12 0 1.66 1.176 1.400 1.130 

104 0-4 67 1.5 1.060 0.198 1.143 

104 4-8 67 1.58 1.091 1.477 0.995 

104 8-12 67 2.08 1.402 2.198 0.824 

201 0-4 0 1.54 1.377 1.158 1.878 

201 4-8 0 1.59 1.231 1.874 1.551 

201 8-12 0 1.66 1.086 1.771 0.961 

202 0-4 100 1.64 1.440 1.816 1.433 

202 4-8 100 1.53 1.162 1.415 1.275 

202 8-12 100 2.12 1.354 1.357 0.754 

203 0-4 67 1.5 1.164 1.082 1.417 

203 4-8 67 1.58 1.052 1.637 1.124 

203 8-12 67 2.08 1.157 1.754 0.972 

204 0-4 33 1.58 0.998 1.381 1.541 

204 4-8 33 1.63 0.993 1.242 1.242 

204 8-12 33 1.71 0.963 1.598 0.869 

301 0-4 100 1.64 1.470 1.583 1.899 

301 4-8 100 1.53 1.228 2.021 1.352 

301 8-12 100 2.12 1.490 2.132 1.745 

302 0-4 67 1.5 1.410 1.768 1.890 

302 4-8 67 1.58 1.333 1.557 1.814 

302 8-12 67 2.08 1.547 1.205 2.198 

303 0-4 33 1.58 1.076 1.926 1.685 

303 4-8 33 1.63 1.043 2.004 1.143 

303 8-12 33 1.71 1.023 0.792 1.007 

304 0-4 0 1.54 1.069 1.768 1.142 

304 4-8 0 1.59 0.975 1.357 1.034 

304 8-12 0 1.66 0.883 0.438 1.990 

401 0-4 33 1.58 1.405 1.525 1.108 

401 4-8 33 1.63 1.304 0.712 1.789 

401 8-12 33 1.71 1.215 0.903 1.859 

402 0-4 0 1.54 1.282 1.408 1.017 

402 4-8 0 1.59 1.128 0.630 1.535 

402 8-12 0 1.66 0.900 0.573 0.995 

403 0-4 100 1.64 1.389 1.300 1.500 

403 4-8 100 1.53 1.181 0.606 0.979 

403 8-12 100 2.12 1.497 14.754 2.046 

404 0-4 67 1.5 1.239 0.457 1.676 

404 4-8 67 1.58 1.109 0.495 1.525 

404 8-12 67 2.08 1.202 0.592 1.395 
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Table A5. Continuous corn bulk density bulk density averages 

 
 

Treatment Depth  
0-4 4-8 8-12  

――――― g/cm
3 

―――――― 

0 1.49 ± 0.20 1.92 ± 0.69 1.82 ± 0.58 

33 2.50 ± 0.62 1.39 ± 0.18 1.58 ± 0.06 

67 1.41 ± 0.07 1.58 ± 0.16 1.82 ± 0.44 

  100 1.40 ± 0.08 1.58 ± 0.07     1.70 ± 0.06   

 

Table A6. Corn phase 2013 – corn-soybean rotation bulk density averages 

  
Treatment Depth  

0-4 4-8 8-12  

――――― g/cm
3 

―――――― 

0 1.62 ± 0.07 1.41 ± 0.17 1.54 ± 0.05 

33 1.41 ± 0.08 1.47 ± 0.14 1.60 ± 0.09 

67 1.56 ± 0.14 1.52 ± 0.11 1.93 ± 0.46 

  100 1.76 ± 0.80 1.58 ± 0.13       1.59 ± 0.06   

 

Table A7. Soybean phase 2013 – corn-soybean rotation bulk density averages 

  
Treatment Depth  

0-4 4-8 8-12  

――――― g/cm
3 

―――――― 

0 1.63 ± 0.13 1.91 ± 0.49 1.92 ± 0.41 

33 1.57 ± 0.15 1.56 ± 0.06 1.61 ± 0.22 

67 1.86 ± 0.55 1.60 ± 0.08 1.64 ± 0.22 

  100 1.73 ± 0.18 1.79 ± 0.37       2.05 ± 0.90   
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Table A8. Corn yields for continuous corn † 

 

Residue 

Removal 

Treatment 

    Crop Year   

2009 2010 2011 2012 2013 

---%--- --------------------------bu/ac-------------------------- 

0 199.5 220.1 193.8 258.9 218.1 

33 205.8 217.8 189.9 265.8 219.8 

67 206.2 215.0 207.5 257.8 221.6 

100 209.4 211.1 204.9 260.1 221.4 

Table A9. Corn yields for corn phase 2013– corn soybean rotation† 

 

Residue 

Removal 

Treatment 

    Crop Year   

2009 2010 2011 2012 2013 

---%--- 

--------------------------bu/ac------------------------

-- 

0     205.1   241.3 

33     183.7   247.3 

67     200.6   243.1 

100     196.9   247.5 

Table A10. Corn yields for soybean phase 2013 – corn soybean rotation
† 

 

Residue 

Removal 

Treatment 

    Crop Year   

2009 2010 2011 2012 2013 

---%--- --------------------------bu/ac-------------------------- 

0   219.4   261.2   

33   214.7   257.7   

67   213.1   252.8   

100   213.0   256.6   

 

†Data from North Dakota State University Oakes irrigation research site yields were only taken 

on corn crops. 
 

  †Data from North Dakota State University Oakes irrigation research site yields were only taken 

on corn crops. 
 

†Data from North Dakota State University Oakes irrigation research site yields were only taken 

on corn crops. 
 


