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ABSTRACT

Cardiac dyssynchrony (CD) causes some heart muscle regions to contract at different
times, and current treatments do not help 30 — 50% of patients. In this thesis, multi-site pacing
control schemes are created to quantitatively and automatically reduce the CD of ventricular wall
accelerations by adjusting pacing times. Two and four left ventricular region models are
investigated containing model variables that represent numerous muscle parameters.
Optimization is performed using exhaustive search and genetic algorithm techniques, with
particular attention paid to the latter with regard to development, parameter selection, and
limitations. Relative to treatments firing all regions simultaneously, timing adjustment improves
acceleration CD by up to 56%. Furthermore, simulations also demonstrate improvements to
dyssynchronous region power generation and workload by up to 50% and up to 15% decrease in
healthy region workload. Thus, the current model indicates it may be possible to improve

acceleration CD by adjustments to regional firing times.
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1. INTRODUCTION

1.1. Thesis Statement

Current CRT devices rely on patient/physician interactions in an attempt to set the proper
pacemaker timing(s). An automatically tuned, multi-site pacing control device alleviates the need
for manual, post-operation adjustment by a physician and should help to reduce the non-response
rate in patients requiring CRT by adapting itself to the patient’s individual needs. It is
hypothesized that a multi-site pacing control scheme can be created via an optimization
algorithm to reduce cardiac dyssynchrony (CD) by adjusting regional pacing times based on
ventricular wall accelerations.

One optimization method investigated is exhaustive search. Exaustive searches create a
grid of search points over the entirety of a search space and select the best solution based on
some metric of performance. Another optimization method investigated is the genetic algorithm
(GA). GAs are a stochastic method borrowing selection principles from biologic evolution to
select and favor better performing solutions.

GA s think of problems as “black boxes” in that, they do not care how the problem works,
but rather only concern themselves with the set of control knobs that can be adjusted, and a
singular metric of how well those control knob positions “solve” the problem [22]. This unique
feature allows them to find solutions to problems some other optimization methods cannot
handle due to lack of objective function and search space continuity, linearity, derivatives, or
other necessary features [8, 32].

Exhaustive search is a brute force search that tests and quantitatively evaluates all
possible solutions within a specified search space to find the best one. In the case of problems

with a continuous set of possible solution values, the search space is broken into a discrete subset
1



of values that can be tested and evaluated for the best solution within that subset. Exhaustive
searching is generally used in cases when no efficient method is known to arrive at the best
solution or as the standard by which to evaluate the ability of another search method to arrive at
the best solution.

The intellectual merit of this research is that, presently, no pacemaker employs either a
self-adjusting or multi-site pacing control algorithm for the treatment of CD. This research has
the potential to advance cardiac resynchronization therapy (CRT). This work takes the first step
in using ventricular wall acceleration from a CD model to develop a multi-site pacing control
algorithm to quantitatively and automatically determine an optimal set of regional pacing times
individualized to the model parameters at the time of control system initialization. This work
does not investigate continuously adaptive techniques. A secondary goal of this thesis is to give
an in depth tutorial of Genetic Algorithms, their creation, and their potential in solving a

complex, biological system problem.

1.2. Introduction of Cardiac Function, Cardiac Dyssynchrony, Cardiac Pacing, and

Cardiac Resynchronization Therapy

1.2.1. Cardiac Function

The heart is a complex electromechanical system in which muscle contraction is
coordinated by an electrical stimulus from either the brain via the nervous system, or from one of
the secondary firing nodes. (These nodes are known as the atrio-ventricular, AV, node and the
sino-atrial, SA, node.) The structure and operation is summarized from [21]. Cardiac muscle is
unique in that it is striated, like skeletal muscle, but involuntary, like smooth muscle. Like

skeletal muscle, cardiac muscle is organized in a hierarchy with the muscle fiber being the base



cellular unit. Each fiber contains many parallel contractile structures known as myofibrils with

each myofibril being further segmented into sarcomeres. Sarcomeres in turn, contain actin and

myosin that interact and move following the sliding filament theory as described further in [21].
These structures can be observed in Figure 1.

The forces generated by these fibers, both passively, at rest, and actively, during
contraction are dependent on a number of interactions including the number of parallel
myofibrils, the velocity of contraction, and the initial length of the sarcomeres. During the
contraction of a fiber under normal cardiac conditions, the fiber starts at an initial length with an
initial tension known as the passive tension. Then, when electrically stimulated, the fiber begins
to contract isometrically, generating increased tension without moving, and once the fiber
generates enough force to overcome its load it contracts and shortens isotonically, with the same
tension, while shortening in length. In the case of the entire heart, the load includes some portion
of the force needed to overcome the pressure holding the chamber’s valve closed, the fiber’s
mass, and a portion of the total friction and inertia present in the system. The muscle then
isotonically lengthens returning to its resting length, and finally concludes by isometrically
relaxing to its passive tension [21]. The length tension relationship is an important idea in
attempting to understand the underlying concepts involved in cardiac operation and remodeling
under non-ideal/non-normal conditions. Studies have shown that cardiac muscle length affects
force generation by its influence on excitation contraction coupling [30]. Additional studies have
shown that cardiac muscle stretch [31] causes hypertrophy of the muscle in the same manner that

pressure overload (increasing cardiac work load) does [31].
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4



1.2.2. Cardiac Dyssynchrony

During a normal cardiac cycle, cardiac tissue contracts in concert (together) as described
previously, but cardiac dyssynchrony (CD) occurs when some muscle regions of the heart wall
contract at different times causing early-activating regions of contraction to push blood volume
into late-activating regions of contraction reducing ventricular wall accelerations [1, 2]. Asa
result, these changes in activation time cause decreased stroke volume and cardiac function [1,
2]. In addition, this abnormal stretching puts excess strain and stress on the late-activating
muscle regions and changes myocardial blood flow that can lead to muscle tissue remodeling
that is deleterious to cardiac function over time [1, 2, 3, 27]. Changes in ventricular wall
thickness begin as early as 1 month after the start of pacing with early activated regions thinning

and late activated regions thickening corresponding to the respective changes in work load [2].

1.2.3. Cardiac Pacing

Mobile and implantable cardiac pacing got its start in the 1950s and 1960s. The advent
of the first battery operated, and totally implantable pacemakers with recorded long term
correction of heart block by an implantable pacemaker occurred in 1960 [5]. In theory, the idea
is relatively straight forward: the pacemaker (device used for cardiac pacing) assists in creating
an electrical stimulus that forces the cardiac muscle to contract. Over the years, this device
evolved from a single node pacing device with set timing and no sensing capabilities, to a single-
atrial/bi-ventricular (3 node) pacing system with both sense and pace capabilities. The current
system also has the ability to vary the heart rate via a sensor placed in the pacemaker box meant
to detect body movement and approximate activity level [5]. But still, even with these

advancements in pacemaker design, there still exist shortfalls with current pacing techniques.



At present, cardiac pacing is the only effective method for treating cardiac conduction
disorders and sick sinus syndrome. Typically, pacing leads are anchored in the apex of the right
ventricle; however, an increasing number of studies link RV apical pacing to detrimental cardiac
remodeling and left ventricle (LV) function [6]. A number of studies are compiled in [6], and a
few of these trials even associate RV pacing with eventual cardiac morbidity and mortality.

These detrimental changes are believed to result from the use of abnormal conduction
pathways to achieve full cardiac contraction [6]. Both dual chamber, atrial (A) and ventricular
(V), pacing and single chamber (A or V) pacing were associated with an increased risk of heart
failure hospitalization of over 40%. A number of studies show long-term RV pacing may lead to
ventricular dyssynchrony. Three studies presented indicate anywhere from 36% - 66% of
patients exhibit LV dyssynchrony after RV apical pacing. In yet another study 26% of patients
developed new-onset heart failure after 0.8 — 12.2 years of RV apical pacing [6]. Long term
changes associated with right ventricle (RV) apical pacing include: changes in oxygen demand
and regional blood profusion, asymmetric hypertrophy, ventricular dilation, decreased cardiac
output, increased LV filling pressures, changes in myocardial strain, and inter/intra ventricular

mechanical dyssynchrony among others [6, 26, 27].

1.2.4. Shortfalls of Current Pacing Techniques

While pacemakers are necessary to solve some cardiac problems in the short term, RV
pacing techniques have been repeatedly shown to cause detrimental effects to overall cardiac
remodeling and long term cardiac health [16]. For example, AV node ablation and permanent
pacing is well established as a treatment for atrial fibrillation in cases that the patient does not
respond well to pharmaceutical remedies. However, long term RV apical pacing, as is common

in two lead pacing systems, has been shown to cause LV remodeling along with a decrease in left
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ventricular ejection fraction and performance [16, 17, 26, 27]. A similar study investigated the
effects of RV pacing after His bundle ablation and concluded that RV pacing adversely effected
LV structure and performance in patients showing normal LV function and dimensions prior to
pacing [29]. The bundle of His is a network of specialized cardiac cells that propagates electrical
signals through the heart. Additional deleterious effects of RV pacing include left ventricular
electrical and mechanical dyssynchrony, abnormalities in myocardial histopathology,
latrogenically accentuated intra-ventricular conduction delay, congestive heart failure,
myocardial perfusion defects and regional wall motion abnormalities, functional mitral
regurgitation, increased risk of atrial fibrillation (AF) and heart failure in patients with sino-atrial
(SA) node dysfunction, left atrial (LA) enlargement, promotion of ventricular arrhythmias, and
activation of the sympathetic nervous system [17, 29].

The cause of the remodeling is believed to be related, at least in part, to the induced LV
dyssynchrony caused by long term RV pacing [16, 27]. Studies have linked long term RV
pacing to LV dyssynchrony in almost 50% of patients treated with AV node ablation for AF
[16]. Another study tied LV remodeling directly to LV dyssynchrony by implanting pacemakers
in otherwise healthy dogs and inducing LV dyssynchrony through RV pacing [27]. This result
shows that variation in LV workload and LV remodeling is not solely the result of cardiac
disease progression, but has at least some component tied to RV pacing induced LV
dyssynchrony. However, this study conflicts with the findings of [28] that claims long term RV
pacing alone appears unassociated with the development of heart failure, deterioration in
ventricular function, or reduced survival in patients without an antinuclear antibody. The study
goes on to claim that ventricular dyssynchrony can exacerbate the progression of heart failure in

patients with compromised “cardiac reserves”, but RV pacing’s effect on cardiac function in



patients without structural heart disease is still not fully defined [28]. Regardless of these
conflicting studies, the fact remains that there is a need for advancements in cardiac pacing
technology for at least a subset of current pacing eligible patients.

Current pacemakers utilize preset timings to determine pacing control, and use at most
two ventricular pacing sites. These methods rely on doctor/patient interactions to set relative
firing times for the individual nodes and do little to objectively minimize the amount of effort
required by the doctor to fine tune pacemaker operation for individual patients. A never
attempted approach is to use measured ventricular wall accelerations to create a pacing sequence
unique to every patient with the goal of reducing CD without a doctor performing the tedious

operation of hand tuning each patient’s device.

1.2.5. Cardiac Resynchronization Therapy

As of 2011, heart failure affected 5.8 million patients in the US, with an addition of about
500,000 annually, and remains a major cause of hospitalization and death [25]. It is believed that
up to 20-30% of all congestive heart failure patients are also afflicted by ventricular
dyssynchrony [17]. Cardiac Resynchronization Therapy (CRT) in the form of biventricular or
left ventricular pacing has been acclaimed as a new mode of non-pharmaceutical, non-surgical
(non-transplant) therapy for patients with moderate to advanced heart failure [17]. In current
Cardiac Resynchronization Therapy (CRT), pacemakers compensate for this difference in
activation times by pacing two ventricular sites in an attempt to get all regions of the ventricles
to contract in concert [4]. However, 30-50% of patients receiving CRT do not have their
dyssynchrony reduced. One reason for this may be scarring of tissues that create islands of viable
tissue that may not contract in synchrony by using only two ventricular pacing sites [4]. The

introduction of biventricular pacing in current CRT devices has helped achieve mechanical
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cardiac synchrony in patients suffering from ventricular dyssynchrony improving quality of life
and reducing hospitalization rates for many patients [25, 26]. CRT has been shown to reverse
the detrimental remodeling of the LV for responding patients by reducing LV volume, and
increasing LV ejection fraction [25, 26]. In addition to this, one study calculates that for every
nine devices implanted, one death and three hospitalizations are prevented [26]. However, even
with these advances in cardiac pacing techniques, only about one in three heart failure patients

meet the requirements for current CRT methods [25].
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1.3. Introduction of Genetic Algorithms

1.3.1. History of Genetic Algorithms

Genetic algorithms were initially developed in 1958 by Bremermann [20] but popularized
by Holland and his students and formally applied the mechanisms to computer science [20, 22].
This base model developed by Holland and associates is referred to as the canonical genetic
algorithm (sometimes also referred to as the simple genetic algorithm) [22, 32]. This led to
various advancements including variable length chromosomes by Kotani, Ochi, Ozawa, and
Akazawa [20], and Bremermann’s further advancements, by being the first to implement a real-
coded Genetic Algorithm [20] with the idea that future computers could implement his more
advanced concepts and methods [20]. Additionally, many other variations have been, and can be
made on the canonical genetic algorithm to better tailor the algorithm to a specific problem of

interest.

1.3.2. Introduction of Genetic Algorithms

A genetic algorithm (GA) is an optimization algorithm branch of evolutionary
computation that imitates the biological processes of natural selection through reproduction to
find the “fittest” solution [8, 13, 32]. GAs are global, stochastic search algorithms that operate
on populations of current “approximations” that begin as a random set of test parameters, and as
the search proceeds, the population is modified by exploiting characteristics from favorable
solutions previously tested [32]. By operating on populations of potential solutions, GAs lend
themselves readily to parallel computing techniques [32]. These algorithms are more powerful
than either random search or exhaustive search algorithms in that they converge to their solution

much more consistently and quickly on average respectively than either of the other two search
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types, and yet require no extra information on the problem such as solution space derivatives or
gradients [8, 13].

GA s think of problems as “black boxes” in that, they do not care how the problem works,
but rather only concern themselves with the set of control knobs that can be adjusted, and a
singular metric of how well those control knob positions “solve” the problem [22]. This unique
feature allows them to find solutions to problems some other optimization methods cannot
handle due to lack of continuity, linearity, derivatives, or other necessary features in the
objective function and/or search space [8, 32]. For example, GAs provide a strong framework
for solving nonlinear, multi-objective, multi-modal, and other complex system problems [13,
22]. One of the few requirements is that the parameters being optimized must be able to be
represented by encoded strings, such as binary strings [22, 32]. In addition, since GAs act on the
coded variable rather than the variable itself, it is suited for the use of structure objects as well
[13, 32]. GAs have the potential to converge to nearly global optimal solutions given that the
GA is set up correctly for the problem since it is possible for them to search the entire solution
space [13, 32].

The downfall for some optimization algorithms that rely on derivatives and gradients,
like gradient descent, is that they target and move toward the closest minimum or maximum
from the starting point. Algorithms like gradient descent work extremely quickly and efficiently
for problems where the solution space is monotonically increasing or decreasing. However, to
come to this conclusion, one needs previous knowledge of the search space being investigated.
GA s have the inherent benefit of also working for non-monotonic, discontinuous, and noisy
functions since they work on a population of possible solutions each generation and no single

solution inherently impacts all following solutions [14, 32].
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Another benefit of GAs is that because of the stochastic population based search, they
have the possibility to find a family of similarly fit solutions just by re-running the algorithm
[14]. GAs can be applied in two main areas of control engineering: off-line design and on-line
adaptation, and are discussed to some detail in [32]. Off-line optimization is useful in operations
that do not require constant updating to “fine tune” a system after it is set and turned on. In on-
line applications however, one must be cautious of the direct application of “weak” individuals
within the population operating directly on the system of interest since the consequences could
be severe. In order to operate safely in on-line applications, it is common for the GA to operate
on a fairly accurate model of the system and only indirectly tune the controlled system. The
other option, though arguably less safe, is allowing on-line operation on the system if it is known
the system is sufficiently fault tolerant and robust to tolerate the level of exploration utilized and
required by the GA. In addition, on-line applications usually require faster rates of convergence,
usually at the cost of decreased robustness [32]. One example of decreased robustness could be
having a wider convergence window around the optimal solution.

When used carefully, GAs can be used to create adaptive systems that can tolerate
changes in the system being controlled [32]. Almost any implementation of a GA has a few key
components that are explained in detail in section 2.1. But, in short, all GAs use some form of
the following components: an optimization function, a population of chromosomes, a
chromosome selection scheme (choosing mating chromosome pairs), a method of chromosome
crossover (how data are traded between paired chromosomes), and a method for random

chromosome mutation.
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1.3.3. Operation of a Basic Genetic Algorithm

Most GAs follow a similar set of steps to systematically and stochastically test potential
solutions within the global solution space of the problem. After determining specific operational
values for the GA, which are usually tuned for each individual problem, GAs follow much the
same set of operations: mate selection, crossover, mutation, objective function score
computation, etc. The GA for a specific problem may make slight variations to this set in order
to implement or remove certain operations, such as elitism, chromosome encoding variations, or
others as desired by the designer to elicit specific responses desired for the system being
optimized. Specific values have to be selected for a number of variables that have to be
considered carefully to implement a GA successfully for each specific problem including:
defining the objective function, selecting an encoding scheme for the possible solutions,
selecting population size, determining crossover criteria/rates, selecting mutation rates, along
with multiple others. A high level, operational overview can be helpful in visualizing the various
considerations that must be weighed when using GAs. Figure 3 gives a graphical representation
of the general steps involved. First, the initial population of chromosomes is randomly generated
from the defined solution space [14, 15, 20, 32]. These chromosomes are then evaluated by
computing a fitness value using a specific optimization function that determines how well each
individual chromosome satisfies a specific set of criteria unique to the problem being solved [14,
15, 20, 32]. Next, the results of this testing are utilized to determine parent selection (pairing of
chromosomes) by one of many pairing protocols such as rank selection, roulette wheel selection,
and others that are discussed in more detail later in chapter 2 [14, 15, 20, 32]. The paired
chromosomes then undergo a crossover operation by which the two chromosomes trade some

portion of their information with each other [14, 15, 20, 32]. These new chromosomes undergo a
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second operation, mutation, by which information within the chromosomes can be randomly
changed outside of trading material with another chromosome [14, 15, 20, 32]. The
chromosomes now having undergone crossover and mutation constitute the population of a new
generation, and the cycle repeats from the step of testing the individual chromosomes against the
problem’s optimization function [14, 15, 20, 32]. GAs do not explicitly remember fitness results
from previous generations, but due to the selection processes employed to generate the next set
of test solutions, the best solutions from the current generation have the best chance to be
represented in the subsequent generations [18, 32]. Additionally, certain other techniques such
as elitism can be utilized to ensure the best solution(s) from the current generation is
automatically passed to the subsequent generation. These are also discussed in further detail in
subsequent sections in chapter 2, but most notably in section 2.1.

GA papers generally use a combination of biological and traditional optimization terms to
explain the methods of how a GA goes about finding a solution to its specific problem.

Definitions of biological GA nomenclature are discussed in section 2.1.
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2. GENETIC ALGORITHMS AS THE NEXT STEP IN PACEMAKER

CONTROL SYSTEMS

This chapter outlines GA criteria that need to be considered in creating a GA based
optimization algorithm for a specific problem culminating in a design for a GA that indicates
when pacing should occur during a normalized beat. This pacing is timed to reduce cardiac
dyssynchrony by reducing regional differences in ventricular wall accelerations. Sections 2.1
and 2.2 outline the components necessary to create a GA.

The first step necessary to create a GA for the purpose of finding regional cardiac firing
times is to cast, or map, the problem onto a GA architecture. Specific GA properties (such as
elitism) can aid in ensuring operations act in the most beneficial way for our problem. The
second step is to test the problem with a MATLAB coded GA (from step 1) and a simple,
MATLAB coded model, referred to as the walking sinusoid model, with the goal of testing the
GA itself to ensure the coded algorithm operates true to GA nature and verify the algorithm
before attempting to work with more complex. Finally, after the GA is in an acceptable state
with the sinusoid model, it is tested on a more complex model of CD. This testing is designed to
obtain preliminary data on the feasibility using a GA to reduce CD by measure of ventricular
wall accelerations. These results are compared against the discrete exhaustive search of a
sufficient subset of the GA solution space to quantify how well the GA did in two categories:
A.) reducing ventricular wall acceleration CD and B.) comparing the time required to obtain the
GA solution to the time required to perform the exhaustive search of a similar search space.

2.1. GA Terms, Operators, and Options
Figure 4 shows a basic overview of all GA terms and operators in one graphical

representation for easy reference. Individual terms, operators, and options are detailed further in
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the following sub-sections as a tutorial for basic GA utilization and implementation. The tutorial
culminates in a selection of specific criteria for mapping the main thesis objective of determining

if specific timings can reduce ventricular acceleration CD.

Pgent Population (Generation 1) Gene
C41|1{1|1{1]|0|0|0O|O|O|2|1|2(1|1
C,0(0|0(0|0|1{1|1|1{1|0|O|0O]|O(O
Csl1|1{1|1{1]|0|0|0|0O|0O|1(1|1|1]|0O

Pgen2 Cq1{1|1(1|1|0(0|0|O(O|2|1|1|2|1

Elitism Crossover
C,/0[0|0(0|0|1|1|1|0{01(1|1|1(O
Mutation Crossover Loc
Cs1{0|1(1|1]|0|0|O|1{1]|0(0|0O]|O(O

Figure 4: Generic GA Representation of Population Components and Operations

2.1.1. Chromosomes

A chromosome, C,, is single possible solution where n is the solution’s number
comprised of a set of coded variables used by the GA and the optimization function. The
optimization function uses the variable set to determine the relative “goodness” of the solution in
comparison to all other solutions of that solution set, and the GA uses the coded variable string to
generate subsequent generations.
2.1.2. Genes

A gene is a specific variable within the chromosome that comprises part of a single
possible solution.
2.1.3. Populations

A population is the entire set of chromosomes that exist at any one time. The size of the

population is decided by the user. Selection criteria are detailed in section 2.2.1.
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2.1.4. Generations

A generation is the population of all chromosomes that are tested using the optimization
function to receive the fitness for each chromosome to determine the ranking profile necessary to
generate individual chromosome selection criteria and percentages prior to generating a new
population based on the relative rankings assigned by the optimization function. The selection
criteria can be one of a number of different operations, each of which are detailed in later
sections.

2.1.5. Mating Operations

Crossover paring, paring, or mating is the operation by which the relative rankings
assigned to the chromosomes of a generation are used to select which chromosomes “mate” and
exchange information with each other. These parings can be created by a number of different
selection operations such as roulette wheel, tournament selection, and rank selection.
2.1.5.1. Roulette Wheel

In roulette wheel (relative probability) selection, selection probabilities of the previous
generation for mating are based off how well a given solution is evaluated by the objective
function [9, 14].

For a maximization problem, individual fitness is divided by the sum of all individual
fitness values. Where “cost’ is the vector of values returned by the optimization equation for the
generation, cost(n) is the cost value for a chromosome n, the probability of selection, P, 4, Can
be determined as follows:

p _ cost(n)
nmax YN cost(n)
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For a minimization problem with the same conditions, probability, P,, ,,,;,,, may be
computed by an equation such as:

max(cost) — cost(n)

P =
- »N | cost(n)

It is worth noting that using this equation, the worst fitting case has no chance of reproduction.
This type of selection can be viewed as having a few problems in that selective pressure
can be quite high in the first generations if one of the chromosomes dominates fitness with
respect to the others, and as the search continues with the population converging, selective
pressure can decrease substantially [10]. Figures 5 and 6 give a visual representation of relative

fitness selection.

F)genx F I:rel
15 0.395
12 0.316

Figure 5: GA Roulette Wheel Selection Criteria

Mating Selection Percentage

5% 0%
® Chromosome 1

0,
24% 39% B Chromosome 2

Chromosome 3
® Chromosome 4

320 ® Chromosome 5

Figure 6: Roulette Wheel for Relative Fitness Selection of Mating Probabilities
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2.1.5.2. Tournament Selection

In tournament selection, two individuals are randomly selected from the previous
generation and the fitness values compared; the more fit of the two is selected as one of the
mates to create the next generation [10, 14]. Figure 7 gives a visual representation of tournament
selection.

Chromosome 1 :
Fitness
o[ da[ddofoaif1f1f11] ;5

S Mate 1
Chromosome 2 Fitness

EEFEECEECEEERECIR Chromosome 1
: EEFEECECECEERER

Mate 2
Chromosome 2 Fitness Chromosome 2
L[l a[ 1 1[odofod1[1[1[1]d 1 L1[ 1l 1[ 1[0 o ofofof1] 1] 1] 1]
Chromosome 4 .
Fitness
EEEEEEEREECEEEE -

Figure 7: GA Tournament Selection

2.1.5.3. Rank Selection

Rank selection is a more controlled roulette wheel in that the probabilities of selection do
not rely on the relative fitness of a solution with respect to its competition in the generation [14].
In other words, the probabilities of selection for a given rank are fixed between generations, and
the chromosomes are given one of the probabilities based off their fitness with respect to other
chromosomes in the generation. This type of selection results in a selective pressure that is more
consistent and controlled when compared to that of a traditional roulette wheel [10, 14]. The

values for individual selection probabilities can be individually selected and assigned by the GA
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designer or computed by a weighting function of the user’s choice. Figures 8 and 9 give a visual

representation of rank selection with selection probability arbitrarily assigned for demonstration.

Pgenx F Fa P
15 1 0.40
12 2 0.25
9 3 0.20
2 4 0.10
Cs(1]1(0|0f0]1{1|1|12|1|0(0|0Of0|O O 5 0.05
Total 38

Figure 8: GA Rank Selection Criteria

Mating Selection Percentage
5%

10% B Chromosome 1
‘ 40% B Chromosome 2
20% Chromosome 3

B Chromosome 4

® Chromosome 5

25%

Figure 9: Roulette Wheel for Rank Selection of Mating Probabilities
2.1.6. Additional Selection Criteria
In addition to the mating selection methods discussed previously, there are options to add
specialized functionality to a GA for specific problems should the user decide to implement
them. Two such operations, elitism and steady-state selection are explained in further detail.
2.1.6.1. Elitism
Elitism is the GA equivalent of survival of the fittest. The best chromosome(s) from the

previous generation are ensured to continue to the next generation without regard to crossover or
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mutation mechanics [9]. The remaining selections are performed in one of the other ways
discussed previously in section 2.1.5.
2.1.6.2. Steady-State Selection

In steady-state selection, the worst chromosomes are discarded before mating selection
takes place and only the best chromosomes are considered for mating selection. This can be
considered inverse elitism. If implemented, the user can select the number of discarded
individuals, or discard individuals with less than a specific level of fitness with a threshold on the
maximum number of individuals removed. The discarded chromosomes are replaced via
crossover mating where mates are selected by one of the methods discussed previously in section
2.1.5. The remaining chromosomes continue without replacement [9].
2.1.6.3. Generation Gap

Generation gap is the percentage of a generation that is attempted to be replaced from one
generation to the next [12]. In any case that the generation gap is not 1.0 (100%), the remaining
positions in the next generation are filled with individuals from the current generation selected
randomly by a uniform distribution [12].
2.1.7. Crossover Operations

Crossover is the operation by which two chromosomes of the previous generation trade
information. This operation can be performed by a number of different schemes like single
point, multiple point, and uniform crossover, all discussed in further detail. The following
examples for each of these operations use binary encoded chromosomes, though the operations
work with other encoding schemes as well. Encoding schemes are discussed in more detail in

section 2.1.9.
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2.1.7.1. Single Point Crossover

Single point crossover selects one point in the chromosome after which, all information
between the mated chromosomes is exchanged. The crossover location is generated randomly
and can occur anywhere along the length of the chromosome. Figure 10 shows a representation

of single point crossover between two chromosomes in sequential generations.

Pgent Population (Generation 1) Gene
Cq1{1|1(1|1|0(0|0|O(O|2|L|2]|2(2
C,0(0|0(0|0|1{1|1|1{1|0|0|0O]|O(O
Csl1{1|1(1|1|0(0|0|O|0O|1|1|1|2|O0

Pgen2 C,1|1(1{1|1]|0|0(0|0|0O|2|1|1|1|2

Elitism Crossover
C,/0(0|0(0|0|1|1|1|0{01(L1|1]|1(0
Csl1(1(1{1|1]|0|0|0|2|1|0(0Of0|0|O

Figure 10: GA Single Point Crossover
2.1.7.2. Multiple Point Crossover
Multiple point crossover selects two or more points between which information is
exchanged between the mated chromosomes. The crossover location is generated randomly and
can occur anywhere along the length of the chromosome. Figure 11 shows a representation of

multiple point crossover between two chromosomes in sequential generations.
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Pgent Population (Generation 1) Gene
Cq1{1|1(1|1|0(0|O|O(O|2|L|1]|2(2
C,0(0|0(0|0|1{1|1|1{1|0|0|0O]|O(O
Csl1{1|1(1|1|0(0|0|O(0O|1|1|1|2|0

Pgen2 C,1|1(1{1|1]|0|0[0|0|0O]|2|1|1|1|2

Elitism Crossover
C,/0{0]{0(0{0|1|1|1|0f0|1|1(0|O
Csl1|1(1{1|1|0|0(0|1]|2]0l0Of1|1|0

Figure 11: GA Multiple Point Crossover
2.1.7.3. Uniform Crossover
In uniform crossover, information is randomly exchanged between the mated
chromosomes [9]. The number of crossover points can be set, or random in addition to the
locations of crossover being generated randomly. Figure 12 shows a representation of uniform

crossover between two chromosomes in sequential generations.

Pgent Population (Generation 1) Gene
Cq1{1|2(1|1]|0(0|0|O(O|2|L|2]|1(2
C,0({0|0(0|0|1|1|1|1{1|0|0|0O]|O(O
Csl1|1(1{1|1|0|0l0|0|0O|2|1|1|1|0

Pgen2 Cq1{1|2(1|1|0(0|0|O(0O|2|1|1|2|1

Elitism Crossover
C,/0{1]{0(0{1]|0(1|0]1{0|0|1(0|2
Cj/1]/0{1|1|0j1|0l1|Of1(1(Of1(0

Figure 12: GA Uniform Crossover
2.1.8. Mutation Operations
Mutation is the operation by which a chromosome can be randomly changed outside of
crossover to introduce new variation in the population. Depending on the encoding scheme,

mutation can be implemented in multiple ways. Only binary encoded and value encoded
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mutation are discussed in more detail here. The others are specialized in their applications and
outside the scope of a general GA tutorial and the resulting implementation used in this thesis to
reduce ventricular wall acceleration CD by regional timing modifications.
2.1.8.1. Binary Encoded Mutations

In binary encoded mutations, a random number of bits based on a pre-selected probability
are inverted randomly within a generation of chromosomes [9]. Choice of this pre-selected
mutation probability is addressed in section 2.2.2. Figure 13 shows a representation of binary

encoded mutation of a chromosome between sequential generations.

IDgenl Gene
C,1{1|1(1|1|0(0|0|O(O|2|L|1|1(1
C,/0(0|0(0|0|1|1|1|1{1]|O(O|O|O(O
Cj/1|1|1|1|1|0|0|O|O|Of1(1(1(1|0

Penz  [C4l1[2|2|2|1]0|0|0|O]O[1|2|1|2|2
C,/0]|0(0|0f0|1|1|1|1|1|0(0]|0O|O|O
C311I110000011110

Figure 13: GA Binary Encoded Mutation
2.1.8.2. Value Encoded Mutations
In value encoded mutations, a random number of values based on a pre-selected
probability are changed by adding or subtracting a small number [9]. Depending on the
programmer’s preference, the ‘small number’ could possibly be fixed, or be a random
distribution of the programmer’s choosing around a mean value of interest, or within a specified
range. Choice of this variation value depends largely on the GA designer’s understanding of the

problem attempting to be optimized.
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2.1.9. GA Encoding Scheme

The encoding scheme is the method by which individual variables are stored and
manipulated by the GA. These encoded values are then transformed when needed for use by the
objective function. Encoding schemes can vary between GA implementations. Some common
implementations are binary, and value encodings. These two types are discussed in more detail
in following sections. Other encodings are possible, but are specialized in nature and outside the
scope of the desired generic GA tutorial and the resulting GA implementation used to reduce
ventricular wall acceleration CD by regional timing modifications.

As for which encoding is better (binary or value), results are unclear. The results depend
largely on the problem being solved, and other factors such as the resolution (number of bits)
representing the genes [10]. For the problem at hand, binary encoding was selected to increase
computation efficiency if ever ported to an embedded processor device and to reduce
dependence on user selected parameters as compared to value encoded GA implementations in
an attempt to make a more universal GA optimization algorithm.
2.1.9.1. Binary Encoded GAs

In a binary encoding scheme, all genes within the chromosomes are broken down and
represented by a single binary string [9]. This is the most common GA encoding scheme since
binary operations lend themselves so readily to necessary GA operations [9]. Since
chromosomes are treated as a single binary string, gene start/end locations are tracked by the
coding of the GA implementation. The way values can be encoded in binary numbers can vary,

and each has its own merits and downfalls [10].
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2.1.9.1.1. Binary Coded Decimal (BCD)
A standard BCD uses the standard binary counting scheme to keep track of successive
values. Where N is the number of bits and the values for the binary digits (b,) are 0 or 1, the

decimal value of the number can be evaluated as:

The ease of BCD conversion to decimal allows for efficient use in optimization functions
designed using traditional mathematics and computer architecture.
2.1.9.1.2. Binary Grey Codes

A binary grey code represents decimal values (‘real-numbers’) as binary strings where
consecutive decimal values vary by only one bit in the binary code [10]. Standard encoding
tables can be used for this representation if the number of bits required is known, or can be
custom created for a specific task and/or bit length. This type of encoding can help mitigate
drastic value changes if a mutation were to occur at what would otherwise be a significant bit
location in a gene. However, since this encoding is not easily switched between bit lengths, the
number of bits required for this problem is not well defined, and implementing such an
architecture would lose a great deal of the flexibility desired, it is not used for the problem at
hand.
2.1.9.2. Value Encoded GAs

In a value encoding schemes, each chromosome is represented by a string of real values
for genes including: integers, decimals, characters, complicated objects, and more [9]. This type
of encoding is good for some very specialized problems, but may require special considerations

to be made in implementing problem specific crossover and mutation functions [9]. More recent
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evolutionary programming communities advocate real number encodings [10]. One reason for
this may be in helping mitigate how drastic a change can be made by mutation to a critical value.
2.1.10. Optimization Function

An optimization function is the function by which the GA ranks the relative fitness of a
specific chromosome. The optimization function is largely what specializes a GA to perform its
specific search. This function can be anything from a simple difference of values or sum of
squared error equation, to a complex, specialized function meant to exploit known aspects of a
problem’s search. Although prior search space knowledge is helpful, a GA does not require this
prior knowledge to perform its search lending to the power of GA implementations. GAs do not
explicitly remember the fitness of previous solutions from one generation to the next, rather the
fitness is utilized to effect mating selection frequencies, and propagate more fit individuals in
higher frequently than less fit individuals [18].
2.1.11. Stop Conditions

A stop condition designates a point that, once reached, causes the GA to quit searching
for a more optimal solution, and exit its search returning the best solution found. Some examples
of stop criteria include terminating the GA after a certain number of generations are tested, after
the evaluation of the objective function reaches a specific value, or if no improvements have
been observed after a specified number of generations [14]. In the case of the GA implemented
for this thesis, all three stop conditions are used. Use of a specified objective function evaluation
value allows for the case of exiting early if the ideal solution is found. Exiting after a specified
number of generations allows for a fail-safe where the GA would terminate in the case where the
population did not converge quickly enough. Finally, exiting after improvements have not been

observed in a user determined number of generations allows for exit under the assumption that
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the population has converged to a value and further improvement is unlikely except in the case of
mutation. Under purely stochastic conditions, relying on only mutation to find solution
improvements limit its usefulness after the population has converged and crossover can no
longer aid in solution improvement.
2.2. GA Parameters

In addition to the basic GA operations discussed in section 2.1, there are a number of
parameters that depend on user selected values and can drastically change implemented GA
performance by orders of magnitude, even within a specific optimization problem being
considered [11]. While there are guidelines for the ranges of specific values, care must be taken
in setting values for a specific problem to balance minimizing the run time and maximizing the
effectiveness of the search results. Investigations in the effects of population size and mutation
rate on GA performance are made in this thesis, outlined in section 5.2.6 and discussed in section
6.2.5.
2.2.1. Population Size

Population size is the number of chromosomes in each generation of a GA search.
Arguably, population sizing is one of the most important parameters set for successful GA
operation on a specific problem [23, 24]. Too small a population can cause premature
convergence, and as a result, a poor solution, while too large a population results in wasted
computation time due to overly slow convergence to the optimal or near-optimal solution [23,
24]. Population size has been agreed to depend directly on the “difficulty” of the problem [23].
This means that the more “difficult” or the larger the number of adjustable parameters for the
problem is, the larger the population size must be to accommodate the increased level of

difficulty and prevent premature convergence. Initial trials of the implemented GA were run
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using a fixed population size to isolate the number of possible factors being changed between
test cases. Population size changes are investigated for a subset of the cardiac dyssynchrony
model test cases and are discussed in section 6.2.5.

Multiple investigations reviewed in [11] speculate the best population size to be 20 - 30
chromosomes. Another study in [11] advocates for ‘small’ populations but does not elaborate on
specific size, while [14] states population sizes of 20 to 500 are common, but also says there are
few, if any, rules available to help determine the correct size. A third paper summarizes that
even after years of research, population size is selected by little more than trial and error for any
particular problem instance, and further goes to claim that the larger the initial population, the
greater the chance that the initial population contains a chromosome representing the optimal
solution, or an optimal gene [19]. While increasing population size can improve solution
accuracy, it also has the less desirable characteristic of increasing the number of generations
required to converge an entire population to a small number (1 — 2) of possible solutions [19,
24].

There is a trade-off between number of generations required for convergence to the
correct solution and population size. Generally speaking, increasing the size of one decreases the
other, but additional caveats can be present in deciding which is better. Repeated shorter runs
with smaller populations can be better for finding multiple solutions that are acceptable, while
longer runs with larger populations can be better for finding a single “best” solution [14].

Longer runs with a higher population sizes can end in better solutions. However, since the GA is
stochastic in nature, it is still considered better in most cases to run multiple trials and average

the results from each [14].
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There are a number of ways to optimize population size. Two ways discussed in [23] are
self adaptation of the GA either prior to executing a GA run (causing all generations in the GA to
have the same population size), or self-adaptation during the GA run (allowing varying
population sizes during the GA run) based on computed fitness values. Theoretically, population
size can be coded to vary on any number of parameters the GA designer wanted as long as it aids
in allowing the GA to solve the desired problem. These automated methods can be hard to
implement since this largely depends on prior knowledge of the problem to guide the self-
selection criteria. Thus, most GA implementations and implementers use trial and error to size a
population that is appropriate for their problem of interest [19, 23, 24]. The results of [14]
indicate a population size of 50 was ideal for their test case. Results for another problem with 3
control parameters operated on by a canonical genetic algorithm indicated a population size of
100 as ideal [24]; however, this can easily vary depending on values selected for other GA
parameters so trial and error may still be the most reliable and simplest way to select a
population size for a specific problem of interest.

2.2.2. Mutation Rate

Mutation rate is the probability that a random change occurs within a chromosome. In
the event of binary encoded chromosomes, it is generally implemented as the probability that an
individual bit inverts outside of crossover (changes from 0 = 1 or 1-> 0). A couple in-depth
investigations discussed in [11] place the optimal value for mutation rate between 0.005 and 0.01
(0.5% and 1%) and is agreed on in [14] while another study investigated places it between 0.05
and 0.35 (5% and 35%) [11]. A third paper claims ideal mutation rates are between 0.001 and

0.01 (0.1% and 1%) [15].
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Another study investigated combinations of changes to population size and mutation rate
and showed better performance in populations sizes of 4 — 8 with a mutation rate of 15% than in
population sizes of 64 — 128 with a mutation rate of 2% [11]. [11] goes on to conclude that for
the problem they investigated, optimal population size should be less than 16 and mutation rate
be between 5% and 20%. While, mutation rate values may vary greatly depending on the study
referenced, the problem being investigated, and the combined interaction between mutation rate
and population size, it is worth taking into consideration when investigating possible ways to
streamline a more generic GA to a custom tailored one specific to the designer’s problem.

2.2.3. Crossover Rate

Crossover rate is the probability that two paired (mated) chromosomes exchange
information. In the event of crossover in binary encoded chromosomes, a second value is
generated randomly to determine at which point the chromosomes’ information is exchanged. In
the event that crossover does not occur, both chromosomes are copied to the next generation
without exchanging information. Desirable GA performance was shown to rely on a ‘high’
crossover rate [7]. Another paper further clarifies typical ranges for crossover rate as generally
being between 0.6 and 0.95 (60% to 95%) [15]. Reducing crossover rate effectively reduces the
number of new possibilities created in the subsequent generation [12]. Crossover rates of 0.6
(60%) and above show favorable results in GA convergence to an optimal solution while
crossover rates being too high (1.0 or 100%) show the same detrimental effects of being too low
(<0.4 or 40%) [12]. The theory is if crossover rate is too high (100%) favorable chromosomes to
disappear more quickly than new favorable chromosomes can be created while the rate being too
low (<40%) causes less exploration than is necessary to find new, favorable solutions [12]. In

our case, we used a crossover rate of 100% since we implemented elitism to ensure the best
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chromosomes do not disappear and wanted to promote as much exploration as possible with the
remaining individuals in each generation.
2.3. GA Parameters in Context of Cardiac Dyssynchrony: Mapping the Problem

From previous discussion, it is apparent that there are many ways to create an algorithm
that uses the required basic principles of GAs to perform the task of sifting out a near optimal
solution from an initial pool of randomly generated possibilities. A single combination of the
possible components previously discussed must be selected to create a starting point from which
to fine tune a GA to specifically solve the problem of ventricular wall acceleration CD.
Decisions on GA parameter values could have a direct impact on a future implantable design.
Thus, the goal is to select parameter values well in the initial design phase to reduce the redesign
and retest time between model based implementations, and those solutions destined for
implantation. From an end goal point of view, faster convergence and ensuring that the best
solution is never lost is of utmost importance considering the goal is to start helping the patient
as quickly as possible. Additional trials investigate the effects of variations in population size
and results are presented in section 5.2.6 and discussed in section 6.2.5.

All things considered in terms of population size, a population size of 20 was selected
following the recommendations of [11] for the majority of GA test cases.

The mutation rate for the majority of GA test cases is selected as 0.001 (0.1%) since it is
the most agreed upon value in literature with the continued reasoning that too high a mutation
rate would increase time to convergence, yet having no mutation would allow no chance for the
GA to explore outside the region created by the initial random population. Additional trials
investigate the effects of variations in mutation rate and results are presented in section 5.2.6 and

discussed in section 6.2.5.
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Again, if implemented in hardware, the outcome of the GA will directly impact a
person’s health. It is imperative that the best found solution is never lost between generations
due to crossover replacement. With this in mind, elitism is implemented to preserve the best two
solutions from one generation to the next. Two is chosen because population sizes are generally
even to facilitate efficient mating and crossover implementations with the fixed arrays and
matrices that are present in the coded GA structure. An even number of elite members keeps the
remaining population even as well. In addition, if elitism is ever removed from the GA
architecture, no modifications to other operations are necessary.

The mate selection probability is determined by a relative probability roulette wheel with
the idea that variable mating probabilities allow for more rapid population convergence which is
desirable in a real time design as previously discussed.

With the implementation of an elitism mechanism, crossover rate is selected as 1.0
(100%) since the best solutions are always conserved with elitism, and maximum exploration is
desired from the remaining population for more rapid convergence.

Since determining a “good” set of stop conditions is one of the more tricky sets of values
to choose correctly, the initial number of generations was set at 50 for the CD model with the
idea that it would create a “hard” stop condition to avoid getting stuck in a loop finding only
marginally better solutions. Exit criteria were also created to exit the GA if the objective
function evaluated to “0”, or a perfect fit, and if no improvement was observed between
populations for 5 consecutive generations which indicates the population likely converged to a
single value and only a lucky mutation would have a chance at improving the solution.

The minimization metric (optimization function) that is used for these trials is a standard

sum squared error equation:
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K
Cost = Z(ideal(k) — experimental(k))?
k=0

where cost is the value being minimized, K is the inverse of the sample rate, or the number of
computed points per period, ideal is the waveform being used as the control, and experimental is
the waveform being modified by the optimization algorithm.

Parameter encoding is chosen as standard binary coded decimals (BCD) due to its
computational efficiency and flexibility in implementing multiple gene bit lengths. Values
encoded are represented as fixed point numbers between 0 and 1 and scaled to the correct
range(s) for use in each the CD and sinusoid models. Other possibilities for changes and
improvement to this structure are discussed further in future work.

2.4. Walking Sinusoids Test Model

The “walking sinusoid” model created was an attempt to create a bare-bones model on
which to test a hand-coded GA in MATLAB prior to use of a more complex, longer run-time,
and more “realistic” CD model. This model was used to investigate GA properties and their
effects on convergence, reliability, run-time, and robustness prior to committing to the
significantly longer execution time of the “realistic”” model.

2.4.1. Walking Sinusoid Model

In theory, The model created is relatively straight forward. A set of parameters meant to
represent any combination of sinusoid amplitude, phase, frequency, or noise characteristics to
represent the adjustable parameters would be passed to the model from the GA chromosomes
after undergoing appropriate conversion and scaling while the “reference” parameters would be

hard coded into the model. The model would then generate a sinusoid to represent an
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acceleration waveform for both the reference and adjustable parameters and return these

waveforms to the GA.
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@an GA function ca@

A

Initialize GA parameters as noted for the specific run, create initial (random) population.

Convert Binary Population into model usable values.

A

Run converted chromosomes through selected model.

A

Run model output data through objective function.

A

Convert fitness values from objective function, generate relative mating probability.

Generate Mating pairs, perform
No—»| crossover and mutation
operations.

GA exit criteria satisfied?

A 4

Export solution information to calling function.

A

@il GA function caD

Figure 14: Flow Chart for MATLAB Implemented Genetic Algorithm
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Left Ventricle

Region 1 Region 2

Region 3 . Region 4

Figure 15: Visual Representation of Cardiac Dyssynchrony Model

2.4.2. GA Operation w/ Walking Sinusoid Model

After starting, the GA would generate a random population of possible solutions as bit
strings. These bit strings would be converted and scaled into values usable by the sinusoid
model. These converted values would be passed to the model (one chromosome worth) at a time
and the returned waveforms would be recorded. Once all chromosomes for the generation are
used to generate and record the “accelerations”, the recorded waveforms for each chromosome
undergo optimization analysis via the sum of differences squared error computations mentioned
before. Since a smaller value returned from the optimization function is better, the scores must

be “inverted” to compute a proportional fit probability for mating selection. The raw values
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returned from the optimization function described in section 2.3 are then normalized by
subtracting each raw score from the maximum value for the generation following the equation
outlined in section 2.1.5.1.

In doing so, the best fit chromosome receives the largest value, and the worst fit
chromosome becomes zero (eliminating its possibility from influencing the next generation).
These probabilities are passed to another function developed by [8] to generate the random
parings (with replacement) of mates for crossover. Crossover then occurs between the selected
chromosomes in the raw (binary) population, and the resulting offspring are copied to the
population pool for the next generation and the new population pool is subjected to possible
mutation based on the rate selected. The stop conditions are then checked, and if not satisfied,
the generation counter is incremented. The cycle then continues with converting and scaling the
raw values of the new (now current) generation’s population for another pass through the model
function, fitness check, mating probability computation/selection, and crossover/mutation, until
the stop conditions are satisfied at which point, the GA terminates and returns the best
chromosome’s values for performance analysis.

2.4.3. Parameter Definitions and Declarations: Walking Sinusoid Model

Several instances of the walking sinusoid/GA combination were executed with variations
in noise values, number of optimized parameters, crossover probabilities, etc. Results are
outlined in section 5.1. The goal of testing with this model is to determine workable starting

points for the GA search parameters prior to implementation of the more complex CD model.
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3. EXHAUSTIVE SEARCH

An exhaustive search is a type of objective search function that operates by evaluating
every possible solution (in a given, discrete solution space/mapping) with an objective function
and comparing the evaluated fitness values to obtain the optimal solution for the given set of
choices. Since it tests all possible combinations presented, an exhaustive search is the most
reliable way to get as close as possible to the global optimum (minimum in this case) for a search
space with unknown contour characteristics. The cost for this reliability is potentially taking a
long time to search through solutions. In addition to providing a more definitive answer as to
whether variations of timing can improve ventricular acceleration CD, exhaustive searching also
gives a “golden standard” to which the GA solutions are compared and conclusions are drawn at
the GA’s effectiveness in: 1) seeing how well (and consistently) the GA finds a solution close to
the solution returned by exhaustive search, and 2) the speed at which the GA returns its solution
as compared to an exhaustive search of the entire search space.

3.1. Exhaustive Search Algorithms

To perform the goals outlined previously in section 3, two exhaustive search algorithms

were developed in MATLAB to use the same CD model and objective function as the GA uses.

These two exhaustive search algorithms are discussed in sections 3.1.1 and 3.1.2.

3.1.1. 2 Parameter Exhaustive Search

Implementing an exhaustive search is a relatively straight forward operation in
MATLAB. For the 2 parameter Exhaustive Search, a script file is created to allow the user the
ability to select a number of test points between the bounds of the search space. This value is
then used to create a vector of test values uniformly spaced between the supplied bounds of the

search space. A loop then runs each value in the test vector through the same CD model used by
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the GA previously to generate a set of ventricular wall acceleration profiles. Fitness values are
then computed for each test point using the same equations as the GA search as shown in section
2.4. The minimum fitness value from these computations identifies the best solution from the
exhaustive search. This solution is then also used as the global minimum by which GA
determined timing values are compared and evaluated. The final implementation can be found in
Appendix E.

3.1.2. 4 Parameter Exhaustive Search

Each time a degree of freedom is added, the number of searches required to test all
possible combinations within the specified search space increases exponentially as demonstrated
by the following equation:

Runsroiq = test points™ Parameters

In order to search the space for 3 controlled parameter as required in the 4 parameter
search with the same level of resolution in each parameter as in the 2 parameter search, the
number of total trials required would be cubed.

Thus, for implementation of the 4 parameter search, slight modifications are made to the
search utilized in the 2 parameter case by implementing a hybrid narrowing exhaustive search as
shown in Figure 16. To implement the narrowing search for the 4 parameter case, an assumption
IS made based on experimentation discussed in section 3.2 that the search space is well behaved
enough that the initial granularity of the search is sufficient to direct subsequent narrowing to the
proper region of convergence in the search space. Some search space surfaces are included in
section 5.2.5 showing well behaved surfaces in the case of 2 parameter optimization and more
complex surfaces for 4 parameter optimization by investigating the interaction of variation in 2

parameters.
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Thus, the 4 parameter exhaustive search allows for user selection of two parameters: the
first selects the number of test points within the current bounds of testing, and the second selects
the number of times the search zooms, or narrows, those bounds. The resulting search allows for
a very fine resolution search with a drastically reduced computation time. While the final search
space is larger, the operation of the 4 parameter search follows the basic structure of the 2
parameter search. The search steps through the grid of test points, generates the model
acceleration waveforms for those points, computes the cost value by the equation outlined in
section 4.2 for the 4 parameter GA search, and maintains the solution for the minimum value as

the solution for that trial. The final implementation can be found in Appendix E.

Best solution

from cycle
Cyclel \
Position 2 3 4 s ¢ 7 8 9 1o 11 12
Value 1 2 3 4 5 e 1 § 9 10 11 12
Cycle 2
Position 1 2 3 4 5 ¢ 7 8 9 10 11 12
Value 3.000 3.17 3.33] 3.50 3.67) 3.83 4.00| 4.17 4.33] 4.50| 4.67 5.00

Figure 16: Visualization of 4 Parameter Exhaustive Search Zoom Feature

3.2. Parameter Definitions and Declarations

Parameter values not discussed here, but utilized in exhaustive search optimization
algorithms can be found with the included code in Appendix E.

Since the heart rate in the CD model was fixed at 60 beats per minute or 1 beat per

second, 1001 test points were chosen for the 2 parameter exhaustive searches to give a search
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space of approximately 1 ms resolution with a test point at time = 0 as a starting point for
comparison.

As discussed in section 3.1.2, using the same 1001 test points for each parameter as was
used in the 2 parameter exhaustive search would create a search space of 10012, or 1 billion
points. The search time for this is prohibitively large. The solution to this is to use the discussed
narrowing search whereby starting from a coarse search grid of 12 points, the algorithm zooms in
a total of 6 times and investigates a region of interest further by creating the same number of test
points in a region +/- one test point from the best solution for the previous search space. This
process is repeated a number of times until the search space becomes small enough to give
resolution equal to or exceeding that of using an initial 1001 point search lattice.

From experimentation, the starting grid size to provide reliable convergence is 6 points
while 4 points appears to suffer from reliability issues. Since parallel computing was
implemented on a 6 core machine to reduce computation time, a multiple of 6 is chosen to
maximize the resolution for the same computational efficiency. Further, to provide a buffer zone
for better ensuring reliability over the likely complex search spaces investigated in section 5.2.5,
12 points are used with 6 narrowing operations to compute the optimal timings for each of the 4

parameter GA runs.

43



4. CARDIAC DYSSYNCHRONY MODEL

Note: This model is a first pass approximation of a dyssynchronous left ventricle. This
thesis does not claim that the model is adequate or biologically representative of an actual heart,
but is rather used as a simplified approximation of cardiac dyssynchrony with the sole purpose of
testing the GA optimization of CD across a number of physiologically relevant parameters that
can plague a failing heart in a semi-realistic fashion.

To further the cause of determining if timing adjustments hold the power to reduce
acceleration CD, a more realistic model of a dyssynchronous heart must be utilized. Like the
walking sinusoid model, this model is implemented using MATLAB for use with an exhaustive
search algorithm along with the same GA developed and used in testing of the sinusoid model.
The same model and optimization function are used with both search algorithms in order to
allow parallel investigation of the merits and demerits of each approach.

4.1. “Realistic” Cardiac Dyssynchrony Model

Initial CD model testing is performed by observing 2 of the 4 possible regions in the
supplied model. The searches are then scaled to use the full 4 regions possible in order to
observe algorithm scaling with more degrees of freedom.

The CD model used was originally developed by a team lead by Dr. Dan Ewert, professor
of Electrical and Computer Engineering at NDSU specializing in cardiovascular engineering and
research. The team consisted of Sam Oguyemi, McNair scholar and undergraduate student of
mechanical engineering at NDSU, and a group of senior design students at Iron Range
Engineering for the purpose of creating a graphical user representation of CD for use as a visual
aid in classroom instruction on CD and creating an objective set of metrics to measure CD.
Assisted by Sam Oguyemi, the model was modified to accept 4 timings relative to a heart beat
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from the search algorithm after which, the model calculates and returns the acceleration
waveforms of the 4 left ventricular regions over the course of one heart beat. These acceleration
waveforms are then used to determine the impact of the specific set of firing times. In short, the
model uses a series of differential equations developed, modified, or implemented by the team
above in conjunction with built-in MATLAB simultaneous differential equation solvers to
generate the required regional wall acceleration values along with the other values necessary for
model operation and algorithm evaluation. (See Appendix G for CD Model code and equations
utilized.) Values for ventricular tissue parameters such as mechanical resistance, mass,
minimum and maximum elastance values, along with heart rate, sample rate, and number of
beats prior to returning acceleration measurements can be changed to affect the measured wall
accelerations in an attempt to investigate which causes of CD can be corrected by changes in
regional firing time.
4.2. GA Operation with “Realistic” CD Model

Operation of the GA occurs much in the same way as it had occurred with the sinusoid
model. Runs documented in Tables 3, 4, 9, and 10 along with the corresponding Figures in
Appendix A follow the same flow path as that for the Walking Sinusoid model. Differences
between the two involve changing the objective function of the 4 parameter GA code to also
measure fitness from the two additional control parameters. This process just involves extending
the sum squared error function from section 2.4 that operates on one parameter to one that
operates on all 3 control values, denoted as N, by the following modification:

N K
Cost = Z Z(ideal(k) — experimental, (k))?

n=0 k=0
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Interpretation of the cost value remains the same (i.e. lower = better). The GA is coded
to exit and return the best solution in the population in the event that: the best solution has not
improved for 5 successive generations, the objective function value returned is zero, or 50

generations have elapsed.
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5. RESULTS

Chapter 5 presents the results of the trials performed broken down by sections based on
optimization utilized and parameter deviations. The analysis and interpretation of these results
are left to Chapter 6.

5.1. Walking Sinusoids

The walking sinusoid model allows for verification of the GA implementation prior to
execution of more computationally intensive models as well as gives a feel for GA noise
tolerance. Multiple GA test cases using the Walking Sinusoid model are summarized in Table 1.
Figure references (Fig Ref) point to plots that can help visually represent how well the GA was
able to match reference parameters in both no noise (NN), and added noise (MN) cases.

Table 1: Walking Sinusoid Model Test Data

Noise (SD) [# Runs |Min Gen |Max Gen |RunTime [Fig Ref

1 Param |NN 0 10 7 1410.1999 s F-1,F-2
MN 2 10 29 713|7.9309s |F-3,F-4

2 Param [NN 0 10 20 49|1.1563s  |F-5, F-6
MN 2 10 24 1493(31.1175s |F-7, F-8

5.2. “Realistic” CD Model

Several instances of the “Realistic” CD model are investigated with variations in the
values associated with the possible mechanical variations between ventricular regions
implemented in the CD model. Each test case is executed and evaluated using GA optimization,
ES optimization, and no optimization/adjustment (where all timings are fixed and equal).
Results from each test case are tabulated here in tables corresponding to one of the three
optimization theories. Additionally, acceleration and timing data for all test cases are plotted in

Appendices A, B, and C for a visual representation as noted by the respective figure reference
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column for each test case. To gain an idea of the baseline performance expected of each search
type prior to operating the model in a state where the expected results are unknown, three
configurations are attempted for the no dyssynchrony GA setup: the first configuration sets 3 of
the 4 regions to a known timing value and attempts to find the 4™ time, the second configuration
sets 2 of the 4 regions to a known timing value and ties the other 2 regions together (effectively
creating 2 larger regions) and attempts to find a time for the 2", large region. Finally, the third
configuration sets one of the 4 regions and attempts to find individual timings for the other 3
regions. Initial results show the first 2 test configurations outlined here as operating almost
identically. Thus, in subsequent runs for the various dyssynchronous conditions, only test
configurations 1 and 3 from the no dyssynchrony set are replicated for each test case.

5.2.1. Select Trial Data

This section shows an extended data set for a small sample of the numerous trials
performed. These trials use modified CD model initial conditions to alleviate computational
problems found with the model as discussed in section 6.2.

As is discussed in section 5.2.5, GA trials do not yet perform to levels that can compete
with exhaustive searches in either computational time or level of fitness when utilizing more than
2 parameters. Thus, these select trials focus on, and draw conclusions from, exhaustive search
optimization data sets. Table 2 gives data for two sets of trial conditions using both old and new
model parameters. Figures 17 and 18 show pressure-volume, PV, loops for each set of trial
conditions using the new model with the values generated from no timing variation overlaid on
the set optimized by exhaustive search. Figures 19 and 20 show Wiggers diagrams outlining
pressure, volume, and regional timing comparisons for the same conditions as in Figures 17 and

18. Figures 21 and 22 show acceleration waveforms and corresponding regional timings for the

48



no dyssynchrony (ND) trial in Table 2 for both exhaustive search (ES) and no timing adjustment
(NA) trials respectively. Figures 23 and 24 show the same acceleration and timing information
as Figures 20 and 21 but for the maximum elastance (EmaxD) trial. Figures 25 — 28 show
zoomed, normalized regional timing data for each of the trials depicted in Figures 21 — 24
respectively. Figures 29 — 32 show regional work performed, and Figures 33 — 36 show regional
instantaneous power for the respective conditions of Figures 21 — 24.

Table 2: Trial Data, New vs. Old CD Model Parameters

ES Trial AP, tes» tess tess EF %A EF [COm |%A CO [%A F Fig Ref

ES,ND, N (1,3) [N/A| 1.0000] 1.0000{ 1.0000[ 0.4764| 0.0000{ 3469| 0.0000( 2.98E+08|16, 18, 20, 24, 28, 32

ES,ND, O (1,3) [N/A| 1.0000| 1.0000{ 1.0000( 0.3782| 0.0000{ 1450{ 0.0000 3.42E+09|B-5, B-6

NA ND,N  |(1,3) |[N/A| 1.0000] 1.0000] 1.0000| 0.4764|N/A 3469|N/A N/A 16, 18, 21, 25, 29, 33

NA ND, O |(1,3) [N/A| 1.0000( 1.0000 1.0000| 0.3782|N/A 1450|N/A N/A C-5,C-6

ES, EmaxD, N [(1,3) 40| 0.8100( 0.9871] 0.9872 0.4982| 5.3945| 3532 0.0275| -5.62E+01(17, 19, 22, 26, 30, 34

ES, EnaxD, O ((1,3) | 40 0.8364 1.0085| 1.0082| 0.3959( 0.6611( 1495| -0.4251| -3.01E+01|B-21, B-22

NA, EnaxD, N |(1,3) 40( 1.0000( 1.0000| 1.0000 0.4727|N/A 3531|N/A N/A 17,19, 23, 27, 31, 35

NA, EnaxD, O|(1,3) | 40[ 1.0000] 1.0000| 1.0000{ 0.3933|N/A 1502|N/A N/A C-21,C-22
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Exhaustive Search: No Dyssynchrony: 1 fixed, 3 adjusted regions
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Figure 21: Acceleration Plot with Firing Times, ES, ND (1,3), New CD Model

52

time ({in seconds)

Figure 22: Acceleration Plot with Firing Times, NA, ND (1,3), New CD Model



Exhaustive Search: Maximum Elastance Dyssynchrony: 1 fixed, 3 adjusted regions
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Figure 23: Acceleration Plot with Firing Times, ES, EnaxD (1,3), New CD Model

Mo Adjustment: Maximum Elastance Dyssynchrony: 1 fixed, 3 adjusted regions no correction
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Figure 24: Acceleration Plot with Firing Times, NA, EmaxD (1,3), New CD Model
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Relative Regional firing times with respect to theoretical beat start
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Figure 25: Zoomed Firing Times, ES, ND (1,3), New CD Model
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Figure 26: Zoomed Firing Times, NA, ND (1,3), New CD Model
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Relative Regional firing times with respect to theoretical beat start
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Figure 27: Zoomed Firing Times, ES, EmaxD (1,3), New CD Model
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Figure 28: Zoomed Firing Times, NA, EmaxD (1,3), New CD Model
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Reglonal Woark Plot: ES No Dyssynchrony New CD Model
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Figure 29: Work Plot with Firing Times, ES, ND (1,3), New CD Model
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Figure 30: Work Plot with Firing Times, NA, ND (1,3), New CD Model
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Figure 31: Work Plot with Firing Times, ES, EmaxD (1,3), New CD Model
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Figure 32: Work Plot with Firing Times, NA, EmaxD (1,3), New CD Model
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«10% Regional Power Plot: ES No Dyssynchmny New CD Model
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Figure 33: Instantaneous Power Plot with Firing Times, ES, ND (1,3), New CD Model
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Figure 34: Instantaneous Power Plot with Firing Times, NA, ND (1,3), New CD Model
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% 10 Regional Power Plot: ES Maximum Elastance Dyssynchrony New CD Model
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Figure 35: Instantaneous Power Plot with Firing Times, ES, EmaxD (1,3), New CD Model
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Figure 36: Instantaneous Power Plot with Firing Times, NA, EmaxD (1,3), New CD Model
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5.2.2. GA Search Cases: Tables

Table 3: 2 Parameter GA Search Case Results for CD Model

GA Trial (#Runs |AP, tmin2  [tNavge  [tnmaxe |tNes EFca EFgs %A EF
ND |(3,1) 10{N/A 0.4955| 0.9827| 1.3284| 0.99900( 0.37850| 0.37820 0.0793
(2,2) 10{N/A 0.7578| 0.9647( 1.3300{ 0.99900( 0.37940( 0.37820 0.3173
RD (3,1) 10| 0.0150| 0.5614| 0.9112| 1.0385| 0.99900| 0.35070| 0.35150 -0.2276
MD |(3,1) 10| 0.0100| 0.7578| 1.0212| 1.3422| 1.04300| 0.39590| 0.39460 0.3294
EnminD [(3,1) 10| 4.0000| 0.7578| 1.0298| 1.3468| 1.00530| 0.32440| 0.32440 0.0000
EmaxD [(3,1) 10| 40.0000| 0.5614| 0.8089| 0.8958| 0.83570| 0.39660| 0.39630 0.0757
GA Trial cont. COga [COgs [%A CO |%AF Fig Ref
ND (3,1) 1450| 1450| -0.0012| 1.61E+04|A-1, A-2
(2,2) 1450| 1450| -0.0058| 6.66E+04|A-3, A-4
RD (3,1) 1312| 1318| -0.4481| -5.25E-01|A-7, A-8
MD (3,1) 1528| 1532| -0.3043| 2.68E+00|A-11, A-12
EninD (3,1) 1207| 1207| 0.0075| 6.06E-01|A-15, A-16
EnaxD (3,1) 1494| 1496| -0.1099| 1.24E+00[{A-19, A-20
Table 4. 4 Parameter GA Search Case Results for CD Model
GA Trial # Runs |AP, tumine navg2 tumax2 tumina tnavgs  [tumaxs |tnmina |tnavgs  |fnmaxa [tnes2 tness tnEsa
ND (1,3) 10|N/A 0.8345 1.2907 2.0417] 0.1580| 0.8897| 1.4235| 0.7348| 1.2056| 1.9696/ 1.0000f 1.0000| 1.0000
RD (1,3) 10 0.0150 0.7593 1.1586 1.4036 0.5262| 1.4176| 3.1477| 0.6059| 2.2849| 5.6082| 0.9461| 0.9968| 0.9963
MD |(1,3) 10 0.0100 0.3712 1.1152 1.4726 0.0276| 2.1790| 5.6266| 0.7670| 3.1442| 5.7892| 1.0412( 1.0000| 0.9994
EninD [(1,3) 10 4.0000 0.5446 1.0744 1.7763 0.1580| 0.9560| 2.0126| 0.6044| 2.2355| 6.0792| 1.0111| 1.0043| 1.0045
EnmaxD [(1,3) 10| 40.0000 0.7854 0.9633 1.3744 0.1580| 1.3660| 3.4146| 0.5630| 1.6783| 2.8363| 0.8364 1.0085| 1.0082
GA Trial cont. EFca |EFgs %A EF |COgp [COgs %A CO |%AF Fig Ref
ND (1,3) 0.3642| 0.3782| -3.7017| 1432| 1450| -1.2788| 1.92E+10|A-5, A-6
RD (1,3) 0.2669 0.3501| -23.7646 19| 1308| -98.5788| 1.34E+03|A-9, A-10
MD (1,3) 0.1156( 0.3947| -70.7119 475 1523| -68.8217( 1.50E+03|A-13, A-14
EninD [(1,3) 0.2587| 0.3243| -20.2282| 1031| 1207( -14.5487| 3.91E+03|A-17, A-18
EmaxD  |(1,3) 0.3586 0.3959| -9.4216| 1457 1495 -2.5724| 8.52E+02(|A-21, A-22
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5.2.3. Exhaustive Search Cases: Tables

Table 5: 2 Parameter Exhaustive Search Case Results for CD Model

ES Trial AP2 tESZ EFES EFNA %A EF COES CONA %A CO |%AF Flg Ref

ND |(3,1) |N/A 0.9990| 0.3782| 0.3782| 0.0000| 1450| 1450| 0.0012| 1.28E+13|B-1, B-2

(2,2) [N/A 0.9990| 0.3782| 0.3782| 0.0000| 1450| 1450| 0.0004| 1.28E+13|B-3, B-4

RD |(3,1) | 0.0150| 0.9990| 0.3515| 0.3515| 0.0000| 1318| 1318| -0.0137| -5.19E-02|B-7, B-8
MD |(3,1) | 0.0100| 1.0430| 0.3946| 0.3972| -0.6546| 1523| 1532| -0.6015| -7.26E+00(B-11, B-12
EnminD [(3,1) | 4.0000| 1.0053| 0.3244| 0.3245| -0.0308| 1207| 1207| -0.0144| -7.08E-02|B-15, B-16
EmaxD [(3,1) | 40.0000| 0.8357| 0.3963| 0.3933| 0.76278| 1496| 1502| -0.4027| -2.98E+01|B-19, B-20

Table 6: 4 Parameter Exhaustive Search Case Results for CD Model

ES Trial AP, teso tess tesa EFgs EFna %AEF |COg [COna (%A CO |%AF Fig Ref

ND 1,3) |N/A 1.0000| 1.0000[ 1.0000{ 0.3782| 0.3782[ 0.0000[ 1450 1450/ 0.0000| 3.42E+09(B-5, B-6
RD (1,3) 0.0150| 0.9461| 0.9968| 0.9963| 0.3501| 0.3515| -0.3983| 1308 1318 -0.7289| -1.42E+00(B-9, B-10
MD (1,3) 0.0100| 1.0412| 1.0000{ 0.9994| 0.3947| 0.3972| -0.6294| 1523 1532| -0.5807| -7.38E+00|B-13, B-14
EninD  |(1,3) 4.0000( 1.0111| 1.0043| 1.0045| 0.3243| 0.3245| -0.0616( 1207 1207| 0.0045| -4.01E-01(B-17,B-18
EnaxD  |(1,3) 40.0000| 0.8364| 1.0085| 1.0082( 0.3959( 0.3933| 0.6611| 1495| 1502 -0.4251| -3.01E+01|B-21, B-22
R,D (1,3) |SeeFig 0.9757| 0.9844 0.985| 0.0568| 0.0565 0.5310( 1302| 1302 0.0207| -1.18E+00|B-23, B-24
R234D  |(1,3) |See Fig 1.0236] 1.0304| 1.0954| 0.0293| 0.0294| -0.3401 782 783| -0.1954| -3.20E+00|B-25, B-26

5.2.4. No Timing Adjustment: Tables

Table 7: 2 Parameter No Adjustment Case Results for CD Model

NA Trial [AP, t EFya  [COna  |Fig Ref

ND |(3,1) |N/A 1.0000| 0.3782 1450|C-1, C-2

(2,2) IN/A 1.0000|{ 0.3782 1450|C-3, C-4

RD |(3,1) | 0.0150| 1.0000{ 0.3515 1318|C-7, C-8
MD |(3,1) | 0.0100| 1.0000{ 0.3972 1532|C-11, C-12
EninD |(3,1) | 4.0000] 1.0000{ 0.3245 1207|C-15, C-16
EmaxD [(3,1) | 40.0000 1.0000| 0.3933 1502|C-19, C-20
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Table 8: 4 Parameter No Adjustment Case Results for CD Model

NA Trial AP, t, t3 ty EFna COna |Fig Ref
ND (1,3) |N/A 1.0000( 1.0000| 1.0000| 0.3782| 1450|C-5,C-6
RD (1,3) 0.0150| 1.0000( 1.0000| 1.0000| 0.3515/ 1318|C-9,C-10
MD (1,3 0.0100| 1.0000{ 1.0000| 1.0000| 0.3972| 1532|C-13,C-14
EninD  |(1,3) 4.0000{ 1.0000{ 1.0000{ 1.0000{ 0.3245| 1207|C-17,C-18
EmaxD  |(1,3) 40.0000| 1.0000| 1.0000{ 1.0000{ 0.3933| 1502|C-21,C-22
R,D (1,3) |See Fig 1.0000( 1.0000| 1.0000{ 0.0565| 1302|C-23,C-24
R23.D  [(1,3) [See Fig 1.0000( 1.0000| 1.0000{ 0.0294| 783|C-25,C-26

5.2.5. Optimization Function Fitness Surface

Optimization function fitness surface geometry is investigated via exhaustive search in order to
create a map of fitness values in both 1 and 2 varying parameters. The reasons for this are 3 fold. First,
creating maps for two sets of 1 varying parameters can show that each model region is computed and
treated equally. Second, the map for 1 varying parameter shows the level of impact of changing the
timing of a single region when the other regions are held equal and constant. Third, creating the map for
2 varying parameters can show how having up to 3 different timing values present in the model causes the
regions to interact with each other and gives scaled intuition and insight to how the surface likely changes
when increasing the number of varying parameters further (3+ varying regions). Due to the
dimensionality of the fitness surface, variation in more than 2 regions simultaneously cannot be visualized
graphically. Figures 37 and 38 show fitness values for timing variation in region 3 using both standard
and logarithmic (base 10) scales respectively while Figures 38 and 39 depict the same results for region 4.
Additionally, Figures 41 and 42 show the results of two simultaneously time varying regions (regions 3
and 4) with standard scale in both 3d and top views. Figures 43 and 44 depict the same 3d and top views

using a base 10 logarithmic scales for cost.
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Optimization Function Cost
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Figure 37: Cost Curve for Region 3 Timing Changes
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Figure 38: Logio(Cost) Curve for Region 3 Timing Changes Zoomed
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Fittness Value vs. Change in Region 4 Timing
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Cost Contour When Varying Region 3 and Region 4 Timings
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Region 4 normalized timing (0 to 27) Region 3 normalized timing (0 to 27)

Figure 41: 3D Cost Contour for Timing Changes in Regions 3 and 4

Region 4 normalized timing (0 to 2q)

Region 3 nermalized timing (0 to 27)

Figure 42: Top View Cost Contour for Timing Changes in Regions 3 and 4
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Base 10 Log(Cost) Contour When Varying Region 3 and Region 4 Timings
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Figure 43: 3D Log10(Cost) Contour for Timing Changes in Regions 3 and 4
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Figure 44: Top View Log;o(Cost) Contour for Timing Changes in Regions 3 and 4
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5.2.6. Additional GA Investigation

As discussed in section 5.2, GA optimization performs less than desirably in test trials involving

more than two parameters (1 reference and 1 controlled parameter). There are multiple possible causes

for these results that include: problematic optimization fitness surface geometry, incorrect population size

utilization, and incorrect mutation rate utilization. Data for GA cases are introduced in sections 5.2.4 and

5.2.6.1 and are investigated further in sections 6.2.5 and 7.1.

5.2.6.1. Additional GA Trials: Tables

Data for variations in population size and mutation rate are displayed in tables 9 and 10.

Further, the average results from 10 runs using each set of initial conditions are plotted in Figure

45 on top of a copy of the contour plot shown in Figure 42 which is generated by having regions

1 and 2 are both equal to 1. While it is noted that region 2 does not always evaluate to 1 in the

trials, it is a concession necessary to allow at least a partial visual comparison between various

trials.
Table 9: GA Varied Population Size Trials
GATrial __ |#Runs |AP, tuminz  |tNavg2 tumaxz tmin3  |tNavgs  [tmaxs |tumina |tNavgs  |tumaxa |tn2.canD |tns.canp [tnacand
ND (1,3 10 48|  0.8682 1.0092 1.1781 0.9143| 1.1325| 1.7564| 0.9219| 1.5134| 3.2505| 1.2907| 0.8897| 1.2056
ND 1,3) 10 72 0.9695 0.9891 1.0063 0.8529| 1.9709| 5.5837| 0.4157| 1.2217| 2.3807| 1.2907( 0.8897| 1.2056
ND (1,3) 10 96 0.9158 0.9926 1.0262 0.4249| 2.1546| 5.7187| 0.6918| 1.1374| 1.8837| 1.2907| 0.8897| 1.2056
ND (1,3) 10 120|  0.9986 1.0058 1.0247 0.1917] 2.5061| 5.9887| 0.6673| 1.3181| 2.8256| 1.2907| 0.8897| 1.2056
GA Trial cont. EFca |EFcanp |[%AEF  [COga [COganp [Y0A CO (%A F Fig Ref
ND (1,3) 0.3584| 0.3642| -1.5925( 1435 1450| -1.0397| -1.00E+02|A-23, A-24
ND 1,3) 0.3318| 0.3642| -8.8962( 1370 1450| -5.5279| -1.00E+02|A-25, A-26
ND (1,3) 0.3196| 0.3642| -12.2460( 1326 1450| -8.5907| -1.00E+02|A-27, A-28
ND (1,3) 0.2864| 0.3642| -21.3619| 1214 1450| -16.2547| -1.00E+02|A-29, A-30
Table 10: GA Varied Mutation Rate Trials
GA Trial #Runs (AP, Tmin2 |Navg2  [fnmax2 [fmin3  |fNavgs  [fnmaxa [nming [fNavgs  [fnmaxa  [fnz2.canp [Inz.cano [tnacand
ND (1,3) 10 0.01]| 0.8682| 0.9916| 1.0584| 0.7793| 1.9411| 5.3674| 0.7747| 1.5993| 3.1569| 1.2907| 0.8897| 1.2056
ND (1,3) 10 0.05[ 0.9695| 1.3419| 4.1510| 0.8575| 2.7339| 5.5545| 0.2102| 2.5621| 6.1497| 1.2907| 0.8897| 1.2056)
ND (1,3) 10 0.10[ 0.1104| 1.0474] 4.1832| 1.2701| 3.1361| 5.8000| 0.3375| 2.1554| 5.9350| 1.2907| 0.8897| 1.2056)
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Table 10: GA Varied Mutation Rate Trials Continued

GA Trial cont. EFca  |[EFcanp |%AEF  |COga |COganp |%A CO |%AF Fig Ref
ND (1,3) 0.0551| 0.3642| -84.8710[ 1400 1450 -3.4427| 5.47E+10|A-31, A-32
ND (1,3) 0.0392| 0.3642| -89.2367| 1099 1450| -24.2173| 1.46E+11|A-33, A-34
ND (1,3) 0.0059| 0.3642| -98.3800[ 156 1450| -89.2558| 1.55E+11|A-35, A-36

5.2.6.2. GA Investigation: Contour Plot Representations

Cost Comparison for Various GA Population Sizes and Mutation Rates
=T T T T T

Region 4 normalized timing (0 to 2q)

Region 3 normalized timing (0 to 27)

Pop Size 48, Mut Rate 0.1%
Pop Size 72, Mut Rate 0.1%
Pop Size 96, Mut Rate 0.1%
Pop Size 120, Mut Rate 0.1%
Mut Rate 1%, Pop size 20
Mut Rate 5%, Pop size 20
Mut Rate 10%, Pop size 20

F++4x x x %

Figure 45: Overall GA Parameter Variation Cost Comparison, Region 2 Values Truncated

tol
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Region 4 normalized timing (0 to 2q)

Region 3 normalized timing (0 to 27)

> Max Gen Time-out
> Pop Size 48, mut rate 0.1% trial
M Avg Pop Size 48, mut rate 0.1%

Figure 46: GA Population Size = 48 Individual Run Cost Comparison, Region 2 Values

Truncated to 1 for Comparison
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Region 4 normalized timing (0 to 2q)

Region 3 normalized timing (0 to 27)

Max Gen Time-out
X Pop Size 72, mut rate 0.1% trial
R’ Avg Pop Size 72, mut rate 0.1%

Figure 47: GA Population Size = 72 Individual Run Cost Comparison, Region 2 Values

Truncated to 1 for Comparison
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Region 4 normalized timing (0 to 2q)
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Region 3 normalized timing (0 to 27)
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X Pop Size 96, mut rate 0.1% trial

®  Avg Pop Size 96, mut rate 0.1%

Figure 48: GA Population Size = 96 Individual Run Cost Comparison, Region 2 Values

Truncated to 1 for Comparison
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Region 4 normalized timing (0 to 2q)

Region 3 normalized timing (0 to 27)

Max Gen Time-out
+ Pop Size 120, mut rate 0.1% trial
+ Avg Pop Size 120, mut rate 0.1%

Figure 49: GA Population Size = 120 Individual Run Cost Comparison, Region 2 Values

Truncated to 1 for Comparison
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Region 4 normalized timing (0 to 2q)

Region 3 normalized timing (0 to 27)

Max Gen Time-out
+ Pop Size 20, mut rate 1% trial
+ Avg Pop Size 20, mut rate 1%

Figure 50: GA Mutation Rate = 1% Individual Run Cost Comparison, Region 2 Values

Truncated to 1 for Comparison
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Region 4 normalized timing (0 to 2q)

Region 3 normalized timing (0 to 27)

Max Gen Time-out
+ Pop Size 20, mut rate 5% trial
+ Avg Pop Size 20, mut rate 5%

Figure 51: GA Mutation Rate = 5% Individual Run Cost Comparison, Region 2 Values

Truncated to 1 for Comparison
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Cost Comparison for Various GA Population Sizes and Mutation Rates

Region 4 normalized timing (0 to 2q)

Region 3 normalized timing (0 to 27)

Max Gen Time-out
+ Pop Size 20, mut rate 10% trial
+ Avg Pop Size 20, mut rate 10%

Figure 52: GA Mutation Rate = 10% Individual Run Cost Comparison, Region 2 Values

Truncated to 1 for Comparison

5.2.7. Combined GA and Exhaustive Search Timing Comparisons

Sections 5.2.1 and 5.2.2 provide tabular data for the results generated by both GA and
exhaustive searches respectively in trying to minimize ventricular wall acceleration for the initial
conditions provided for the trial. Additionally, section 5.2.6.1 shows tabular data from
investigating the impact of population size and mutation rate GA search parameters on the ability
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of the GA to converge to a more or less fit solution. The average regional timing results from the
GA trials and the returned timings from the exhaustive search are placed in box and whisker
plots in sections 5.2.7.1-3 broken into 2 parameter trials, 4 parameter trials, and additional GA

trials respectively to provide a visual representation of the results obtained.
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5.2.7.1. 2 Parameter Timing Box and Whisker Plot
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Figure 53: 2 Parameter Box and Whisker Plot Multiple Trials: GA vs. Exhaustive Search
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Figure 54: 2 Parameter Box and Whisker Plot Multiple Trials: GA vs. Exhaustive Search
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5.2.7.2. 4 Parameter Timing Box and Whisker Plot
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Figure 55: 4 Parameter Box and Whisker Plot Multiple Trials: GA vs. Exhaustive Search
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Figure 56: 4 Parameter Box and Whisker Plot Multiple Trials: GA vs. Exhaustive Search
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5.2.7.3. Varied GA Parameters Box and Whisker Plot
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Figure 57: 4 Parameter Box and Whisker Plot Multiple Trials: GA Variations
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Figure 58: 4 Parameter Box and Whisker Plot Multiple Trials: GA Variations Zoomed
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6. DISCUSSION

6.1. Interpreting the Walking Sinusoid Model GA Search Data

In the case of the walking sinusoids model, the GA was able to converge with one and
two searched parameters by averaging the results of 10 trials. Due to the nature of stochastically
based optimization algorithms like GAs, the error seen in individual final outputs is not
surprising. With the simplistic nature of the model, the time required to execute a GA based
search is likely longer that what might be required by other methods such as exhaustive search,
even at a relatively fine grid-like search of the solution space. Though another method may be
more time efficient in generating a solution, the purpose was to validate the GA algorithm
designed prior to use with more computationally intensive models. Regardless, the GA
succeeded in its task even under noisy conditions as shown in Table 1 and in Appendix F
Figures.
6.2. Discussion and Analysis of CD Model Testing

Due to a model discrepancy found late in the data collection process and the large
number of trial cases already performed, select trial cases based on the model improvements
were performed and analyzed to inspect the impact on previously collected results. These new
trials mirror one of the previous 4 parameter control trials and one additional random sample
from the previous 4 parameter dyssynchrony trials to provide a comparison of what impact the
model setup may have on the data already collected in the previous model configuration.
Additional information was also gathered for these trials to draw more insightful conclusions and
to provide a basis for determining future directions. Such additional information includes PV

loop plots, Wiggers diagrams, and regional work/power plots for these select trials.
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6.2.1. CD Model Validation

As mentioned in section 6.2, after multiple test trials, it was found that the CD model
being used contains some discrepancies in some of its initial conditions that contributed to
volumes outside of physiological norms. Attempts were made to work with the model designers
to remedy the defect and the corresponding values were brought within acceptable ranges;
however, it was not possible to create a situation in which all the nominally accepted values were
obtained simultaneously which can likely be attributed as a shortfall of using a simple model for
a very complex system. After varying model initial conditions to elicit more physiologic values
for pressure and volume, the CD model with varied initial conditions was used with the 4
parameter exhaustive search to see if those model conditions affected optimization timings.

From this, two trials were selected to be re-run using the new model conditions: the
control, no dyssynchrony trial and a random trial from the set of dyssynchrony trials, the
maximum elastance dyssynchrony trial. The new initial conditions involve changing the value of
“volume” in the dyss1.m file from 10 to 30, and the default minimum elastance was decreased to
0.5 from 1 in Scripted_Initialization.m. In addition, Line 11 of dyss1.m was changed from
...0de23s(...6 100 volume...) to ...ode23s(... pressure 100 volume). While these changes do
not result in the expected “normal” physiological values for ventricular volume, pressure, stroke
volume, ejection fraction, or cardiac output, the values do better fall within physiological ranges.

The no dyssynchrony trial converges to the same solution with both the new and old CD
model initial conditions as shown in Table 2. Thus, it can be concluded that the model changes
do not impact the ability for a solution to be realized through optimization.

Also shown in Table 2, the dyssynchrony trial EnqxD indicates approximately a 3.2 ms,

overall shift in optimal timings, but the distance between the optimized regional times are largely
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unaffected. This can be interpreted to indicate that while the model’s initial conditions can
drastically impact modeled ventricular volumes, pressures, stroke volumes, and cardiac outputs,
the impact on wall acceleration values and the corresponding wall acceleration optimizations is
influenced to a much lesser extent. From this, it can be reasoned that while the absolute timing
values and percentage improvements may differ, the overall conclusions drawn from these trials
can largely be translated to the pre-existing trials using the old model initial conditions.

The results of this testing show that while the acceleration waveforms are altered, the
timings returned as optimal remain largely unchanged from those using the previous version of
the model and initial. From this it was concluded that while the acceleration waveforms may be
inaccurate representations on the majority of the test cases, the results and conclusions derived
from the earlier test cases are still valid.

6.2.2. Cardiac Pressure-Volume Characteristics

Figures 17 and 18 respectively show the PV loop characteristics for the no dyssynchrony
and maximum elastance dyssynchrony trials involving the new CD model initial conditions. The
figures show both the exhaustive search optimized timings as well as a no adjustment trial in
which timings for all 4 regions are forced to be equal. (The no adjustment trial simulates a
pacemaker setting regional timings without a feedback parameter for self adjustment.) In the
case of no dyssynchrony (Figure 17) it is shown that the exhaustive search is capable of
matching the performance of a pacemaker forcing simultaneous activation of all 4 regions. By
contrast, Figure 18 shows in the case of maximum elastance dyssynchrony both end-diastolic and
end-systolic volumes are reduced without a commensurate increase in pressure. Rather, a subtle
shift in ventricular pressure in the timing optimized condition is seen when compared to the trial

when timings are forced to be equal. While this translates into a higher EF, CO is largely
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unchanged. A reduction of both end-diastolic and end-systolic volume is a desirable
characteristic since the increased preload and afterload associated with higher end-diastolic and
end-systolic volumes can lead to ventricular remodeling such as hypertrophy [33].

6.2.3. Acceleration and Timing Characteristics

References to individual figures are given in tables 2 through 10. For example, Figure 21
and 25 correspond to the CD model under these three conditions: new initial conditions, no
dyssynchrony and 4 parameter optimization. Figure 21 shows the acceleration waveforms as
would be measured on the ventricular walls for each of the 4 regions computed by the model. In
2 parameter mode, 3 of the regions are tied together and set to the control timing while the 4™
region is allowed to be optimized by the named algorithm. The acceleration waveforms are color
coded to their respective regions and a legend is provided with each plot. Some trials also show
the timing values used to generate the acceleration waveforms on the acceleration plots, like seen
in Figure 21. As the regions are on either side of a central chamber as shown in Figure 15,
acceleration direction was normalized such that movement toward the center indicates a negative
acceleration, and movement away from the center indicates a positive acceleration regardless of
the region’s location. In this context, direct overlay of all regional accelerations is the most
desired outcome.

Figure 25 indicates the times at which each region was commanded to “fire” (begin
contracting) with respect to the overall heart timing signal. These values range from 0 to 2x with
a value of 1 being the default time of the fixed region(s). The color coded lines indicate the
solution(s) returned by the search algorithm utilized for the controlled region(s). A legend is
provided with each graph to aid in identification of regional results and performance. In the case

of GA sets where multiple individual attempts were made, there are multiple, thin, tick marks
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indicating the individual GA results returned, and a thicker tick mark indicating the average of
all individual GA runs for a specific set of starting conditions. In the case of exhaustive search,
and no adjustment runs, there are grey, vertical bars indicating the range of possible solutions for
controlled region(s) to show the final level of granularity when performing the exhaustive search
since the ability to draw meaningful conclusions from the exhaustive search is directly
proportional to how fine the search grid was when the search terminated.

Figures 23 and 24 correspond to maximum elastance dyssynchrony using exhaustive
search and no optimization respectively. As can be seen in these figures, the exhaustive search
optimized trial has better correlation during systole with some sacrifices made during diastole
when compared to the non-optimized, linked, firing times.

6.2.4. Regional Work and Power Plots

Figures 29-32 show regional work plots for no dyssynchrony and maximum elastance
dyssynchrony under both timing optimized and non-optimized conditions respectively. In the
case of no dyssynchrony, Figures 29 and 30, under both timing optimized and non-optimized
conditions, no work variations are observed between regions. However, in the case of maximum
elastance dyssynchrony, Figures 31 and 32, it can be seen that there is approximately a 50%
increase in work performed in Region 2 (the region with varied maximum elastance) for the
timing optimized condition when compared to the non-optimized control with approximately
15% decreases in work performed by the other three regions resulting in a much more balanced
work distribution. This redistribution of work load likely explains the lack of significant CO
change observed in the other dyssynchrony trials.

In similar fashion, Figures 33-36 show regional instantaneous power generation for no

dyssynchrony and maximum elastance dyssynchrony under both timing optimized and non-
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optimized conditions respectively. Again, there is no observable difference between optimized
and non-optimized conditions in the no dyssynchrony trial, Figures 33 and 34. However, in the
case of maximum elastance dyssynchrony, the maximum power generated by region 2 increased
by approximately 50% while the remaining regions decreased by approximately 8% each
resulting in a much stronger correlation between peak power generation of region 2 and the
remaining regions. [27] and [31] link variations in regional workload to cardiac remodeling that
is ultimately detrimental. Similarly, it would be interesting to investigate if balancing those
regional workloads elicits more beneficial remodeling.

6.2.5. Interpreting the CD Model GA Search Data

In the case of the CD Model, the GA performed unsatisfactorily in the 4 parameter model
search by investigation of the AF% values. However, by the same AF% value, GA use on the 2
parameter model is more promising with only +/- 7% deviations from the exhaustive search
solutions involving the same conditions as shown in Table 3. Visual comparison of these timing
results can be observed in Figures 53 — 56 where each colored plot represents the range of
individual solutions for the specified region. The box represents the middle 50% of data with the
outer edges marking the upper and lower quartiles (25" and 75" percentiles), and the center mark
in the box representing the mean (50" percentile). Cross marks designate outliers falling outside
+/- 2.7 standard deviations from the mean.

With the exception of the RD, 2 parameter trial, these solutions still do not reach the level
of accuracy and cost reduction achieved by the exhaustive search. This singular improvement
can largely be attested to the complexity of the search space as shown in Figures 41 — 44, and the
granularity of the exhaustive search used in the 2 parameter conditions as discussed in section

3.2. In contrast however, the 2 parameter GA trial solutions prove to be much closer in terms of
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change in cost values (AF%) than their 4 parameter trial counterparts outlined by comparing
Tables 3 and 4. There are a number of possible reasons for this. The largest suspected culprit
for the diminishing performance with increased degrees of freedom is premature convergence of
the population. Although the ultimate cause is unknown, contributing factors may include: an
undersized population pool, overly fit individuals relative to the rest of the population early in
the GA process dominating mate selection, or too small a mutation rate to name a few.
Variations in population size and mutation rate are investigated individually. However, the
complex interactions of GA parameters and the implementation of gene manipulating operations
do not allow for simple conclusions to be drawn on the individual impact of either parameter.

In short, additional tuning is still required to optimize the GA for solving the problem of
reducing acceleration CD by altered regional timings, especially with larger degrees of freedom.
Brute force methods such as forcing excessively large population sizes or increasing the
maximum number of generations can be used in an attempt to resolve the aforementioned issues
of GA, but at a great cost of computational time in each case. Each trial consists of a set of 10
GA runs using the sets of parameters stated previously (section 6.2.2) and was executed using
the parallel computing toolbox in MATLAB in a six core environment; these trials averaged
about 24 hours for completion. Conceivably, in single core operation, the same task would take
up to 6 times as long (almost a week) to converge to a solution—a solution that is not yet correct
to any level of implementable usefulness (see Appendix A for examples, trial references can be
found in Tables 3, 4, 9, and 10).

To investigate possible contributions from incorrect population sizes and mutation rates,
these parameters have been investigated individually as shown in Tables 9 and 10. The averaged

results of 10 runs in each trial are placed in Figure 45 for a visual representation. Timing results

89



for these trials are also compared with those of exhaustive search in Figures 57 and 58 utilizing
box and whisker plots discussed previously.

Figures 45 — 52 are visual aids to help understand GA convergence patterns under varied
population size and mutation rates, but are not specific to individual GA trial solutions. Since
these plots can only show variations in two parameters (timings for regions 3 and 4) at a time.
The other values (timings for regions 1 and 2) must remain fixed and have no way of being
adjusted from one run to the next. For example, a similar comparison can be made between
variations in regions 2 and 3, regions 3 and 4, or regions 2 and 4. However, since region 2 is the
most constant in terms of convergence seen in Tables 9 and 10, it was deemed most useful to
show the fitness surface from varying regions 3 and 4.

While results from these additional trials (Figures 46 — 52) show variations in the
individual solution timing values, it is unclear that modifications to any one parameter provides
the desired GA response of all runs converging near the ideal solution as seen in the variation of
individual solution runs in Figures 46 — 52.

It is suspected that it takes a combination of parameter changes to allow for consistent
convergence using GA optimization and even then, the computational cost may make GA
optimization in its native form infeasible for real application. These GA parameter variations
could be an avenue for future investigation.

In addition to the potential shortfalls mentioned, the method of un-weighted means for
averaging the individual GA runs appears to cause problems with inaccurate GA results, possibly
giving the GA less credit than it deserves. As previously discussed, a subset of GA trials is
represented in Figures 46 — 52 that show locations of individual solutions with respect to

generated values for regions 3 and 4. As can be seen, while some runs converge to regions
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bordering the optimal solution when looking at the overall fitness curve, other runs get stuck in
local minimums and are unable to escape (unable to remove themselves from a local minimum)
prior to population convergence. The averages in each trial, indicated by the bold marks,
represent the mean of all compiled GA run solutions within the specified trial. A number of
these individual runs in multiple trials converge near the ideal values; however, in averaging all
trials, the results from runs that get stuck in either local minima or on the far side of the graphed
solution range. The means are computed using standard averaging techniques; however, since
the region being investigated is periodic, this method of averaging can unjustly skew results in
the event of irregular convergence around the ideal solution. A better solution may be selecting
the minimum solution from the set of trials, selecting a solution based on cluster recognition, or
obtaining a solution from modified averaging to take advantage of the periodic nature of the
search space. While just taking the minimum can impact noise immunity, this method can be
further adjusted if noise becomes a problem once measurements are used instead of models.
One additional cause for the varied GA convergence could be the search population was
not seeded with a test case that forces all regions to fire simultaneously as a starting point for the
search. While this test case could focus the search near that area of the search space if it is a
relatively fit solution, introducing it too early in the GA search process could negatively
influence the mating probabilities computed and lead to premature population convergence. It
was decided that investigating the GA performance in an unguided search is more beneficial
since fitness surfaces can conceivably vary greatly depending on the model and initial conditions
used. If the GA can converge without an overly specific set of starting conditions itself, it
strengthens the argument that GAs can be robust tools for finding solutions to complex

problems.
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The deviations in CD Model behavior could also potentially lead to less than desirable
GA performance for the 4 parameter optimization cases. Although it was found that changes in
initial conditions of the model do not significantly impact the optimal condition overall, it may
impact the fitness surface in a way that is even less favorable to GA optimization. Further
discussion of findings involving CD Model behavior can be found in section 6.2.1.
6.2.6. Interpreting the Exhaustive Search Data

Exhaustive searching of the solution space yields rather exciting results. As can be seen
in Tables 3, 4, 5, and 6 along with Appendix B Figures, the Exhaustive Search yields better
solutions than all 4 parameter GA solutions and meets or exceeds the “no adjustment” solutions
of firing all regions at the same time. The only time firing all regions at the same time out
performed exhaustive search solutions is in the case of no dyssynchrony which can be attributed
to discretization errors when sampling and testing the search space. This error could be
minimized further and nearly eliminated if the exhaustive search is allowed to narrow its search
regions further, at the cost of computational time. As an aside, while a normal heart largely
contracts from the bottom up, the simplest solution to CD is firing all regions simultaneously.
The default case for comparison, “no adjustment”, is used to generate baseline data matching the
simplest solution, not normal physiology. This baseline is used in the ultimate determination of
whether or not timing adjustments can beat baseline CD correction. All being considered, since
the main goal of both the exhaustive search and GA search was to test whether changes in
regional timing can improve ventricular wall acceleration dyssynchrony, the results for the no
dyssynchrony case were treated as a control in verifying the algorithms performed as expected.
In conclusion, exhaustive search outperforms both GA and “no adjustment” cases with the

singular exception to the discretization errors previously discussed.
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7. CONCLUSIONS

7.1. GA Conclusions

Overall, the GA algorithm and procedure outlined in this thesis takes a step-by-step
approach in investigating the use of ventricular wall accelerations as a measure to adjust regional
firing times in the pursuit of reducing acceleration measured cardiac dyssynchrony. This step-
by-step procedure resulted from the complexity of implementing a GA, and was put into practice
by giving a GA tutorial and slowly building up a GA using simple and intuitive models. This
method allowed for absolute focus to be placed on understanding the inner workings of the GA
architecture in a hands-on approach prior to investigating a specific implementation.

After verifying a GA architecture that has potential to achieve desirable results, the
simple model is replaced with a more computationally intensive and physiologically relevant CD
model. Finally, an exhaustive search algorithm is used with the same CD Model and
optimization function to perform two tasks: First, to gauge GA performance, and second, as a
parallel investigation to answer the overall question of whether or not adjustments to regional
firing times can reduce the impacts of mechanical cardiac dyssynchrony, on measured
acceleration CD.

In the case of the 2 parameter searches, the GA results came close but not quite as good
as those of the exhaustive searches when averaging multiple separate GA runs (Tables 3 and 5
along with Appendices A and B). The results are as expected since GAs, by nature, get close to
the optimal solution for any one particular run, but rarely achieve the global optimum without
trial averaging or other method of fine tuning to create a more hybrid search architecture.

In the case of the 4 parameter searches, the GA results are infeasible when compared to
their respective exhaustive search results (Tables 4 and 6 along with Appendices A and B). Even
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firing all the regions simultaneously is better in many cases as can be seen when comparing
identical trial conditions as noted in Tables 3, 4, 7, and 8 with Figures in Appendices Aand C. A
simple way to remedy this might be to selectively place this sequence into the initial GA
population; however, other modification will also likely be required to avoid early convergence
in the case that this solution is significantly more fit than other initial solutions.

GA s can likely achieve the results desired in using cardiac wall acceleration to reduce
CD, but the question is at what cost computationally. In the situation where the GA is properly
tuned, there is a chance that computational performance could be drastically better than a
similarly performing exhaustive search. For example, in a 2 parameter, no dyssynchrony test
run, a single instance of the GA search executed in about 1/8" the time of a single run of the
exhaustive search. While these single execution times vary for the 4 parameter search, there is
still substantial margin between GA and exhaustive searches that can be exploited to obtain a
similar solution from the GA, in less time than a sufficiently narrow exhaustive search if the GA
can be tuned to reliably find the desired result in a single run.

Due to the discussed flexibility of GA implementation, the GA shows strong promise in
areas of medical/biological interaction and optimization given proper tuning. In contrast
however, significant tuning must yet be done in the case of using GAs to assign firing times for a
pacemaker to provide a higher chance of convergence to a near optimal solution. In addition, use
of the GA algorithm against more comprehensive cardiac models is highly recommended since it
is suspected that discussed model shortfalls may substantially change the search space of the
optimization function.

Already cautioned in [32], it is advised against GAs operating directly on a system in on-

line applications due to the extreme randomness in how GA solutions are generated. The
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exception to this would be in the case where a system is known to be robust enough to tolerate
what could be significant stress on the system by very poor solution choices. Since the system
under test in this case would be a human heart, it is inadvisable to allow a GA unhindered search
ability across a global solution space. Strong safeguards such as narrowing the search range for
any given generation should be considered to protect human life.

Problems strongly suited for GA optimization are usually poorly understood, or have
poorly behaved search spaces. This paradox largely confines GA use to off-line applications and
on-line applications where a short hiccup will not cause catastrophic damage. In the case of
medical applications, it is questionable to allow such unrestricted experimentation of the device
directly on a patient’s heart. Likely, the solution to this is twofold. First, an individualized
model could be created and run as a secondary operation within a pacemaker for each patient.
This would allow on-line timing changes only after obtaining one or multiple “best fits” from
model driven GA executions. Second, a hybrid system, similar to those discussed in [32],
utilizing all or portions of the GA architecture modified and combined with another type of
optimization, such as exhaustive search, could be implemented to help quell the randomness of
the initial GA search space and allow a slower, more controlled path toward convergence and the
globally optimal solution.

For systems with well behaved and optimization functions and well understood search
spaces, utilizing the inherent parallel operations of the GA to find suitable starting positions and
systematically “climbing the hill” to the local optimum from a given starting point could speed
the process of finding the local optimum from each starting point, yet still yield a global
optimum when taking those now optimized starting points to perform the rest of the GA

protocol.
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7.2. Exhaustive Search Conclusions

While it is slow, especially with higher degrees of freedom, the exhaustive search has
easily shown promise in using cardiac wall acceleration as a metric of measuring and correcting
CD. In all trials of importance, exhaustive search out performed both GA search, and “no
adjustment” testing conditions. Timing adjustment has been shown to improve acceleration CD
by up to 56%, increase both the dyssynchronous region’s workload and instantaneous power
generation by up to 50%, and decrease the healthy regions’ workload by up to 15% and
instantaneous power generation by up to 7%. Exhaustive searching gives merit to the continued
investigation of using cardiac wall acceleration as a metric for both measuring, and reducing CD
on an individualized basis.

Even with exhaustive search being able to find the best solution, it also finds the worst
solution in an unrestricted search space. Prior to non-model trials, restrictions will need to be
placed on the search space available to exhaustive or any other type of search.

7.3. Future Work

This thesis provides an in depth tutorial on GA operation and problem casting along with
a first step examination of the merits and demerits of utilizing GA and exhaustive search in a
medical device control system applications. The focus was placed on proposing an improved
method of more systematically adjusting a cardiac pacemaker lead timings to reduce measured
ventricular acceleration CD caused by both mechanical and electrical cardiac in a model based,
MATLAB environment. While these investigations include the use of GAs and exhaustive
search methods, safety in the random navigation of the GA search space and its results on the
heart have not been investigated and were not considered a concern for this specific

implementation.
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Medical devices are understandably a highly regulated industry and while that regulation
ultimately leads to safer devices, at this stage of development, designing to those stringent
criteria would unduly slow the gathering of beneficial results at early stages of development.
Therefore, future investigations should strongly consider the safety precautions necessary for
clinical trials as research pushes closer to actual device implementation.

In addition, to the short comings discussed in sections 7.2 and 7.2.1, the model only
provides a 1-dimensional acceleration for each of the regions of interest where a real heart would
have 3-dimensional accelerations. As an example, future work would have to allow for 3-
dimensional accelerations and other complexities inherent to truer cardiac models as a path
toward eventual hardware implementation, implantation, and testing. Future research could
attempt to streamline either or both of these fronts to improve eventual patient safety in the
search for a system that already shows strong promise in realizing an improved solution over
firing all regions simultaneously.

One option for future GA exploration may be in constraining the explorable search space
of the GA to a smaller region around the initial conditions given by either the model or
physiological measurement. There are multiple reasons for this, but the most important being
that if this GA is allowed to make on-line changes to an individual’s cardiac timing it must be in
a more controlled fashion than what is inherent with traditional GA operation. Traditional GAs
have the potential to explore the entire search space given to them; however, in the case of
cardiac pacing, it is unknown if one wrong pacing trial can send a heart into arrest, but it is
something that cannot be risked. Thus, creating a hybrid GA with other optimization properties
may be a better solution. One example may be starting with an exhaustive search and using

those results to then constraining exploration of a GA to an area close to the initial
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measurements, while slowly tracking that search window with the current best solution could
help mitigate the possibility of having a catastrophic timing combination causing cardiac arrest.
Another reason this could be beneficial, is it allows an easy path toward allowing the GA to track
with cardiac changes over time in that, this search and slow movement concept can be looped
indefinitely and allow for change in timing that would be less noticeable to the patient unlike
traditional GA or exhaustive searches that test the entire scope of the solution space when
restarted.

Another area of possible improvement lies in how GA solutions are utilized. Following
recommendations in [14], multiple GA runs were performed and averaged for a given set of trial
conditions. These referenced cases involve non-periodic signals, but the tests performed here are
on periodic waveforms. In this case, strict averaging caused trials to appear worse than they may
actually be if convergence is not guaranteed to be in a relatively small window. A better
approach may be to modify the averaging to take advantage of the periodic nature of the
waveforms, perform cluster recognition and ignore outliers prior to averaging, or to simply pick
the best, final solution of the individual GA runs. The latter approach is just picking the best
solution from parallel, isolated GA experiments. Instead, it may be better to focus on selecting
an approach that does not require as much computing power. Rather, it may be more beneficial
to focus on making smarter choices in GA parameter selection and windowing to allow for more
rapid and clustered convergence. Likely, experimentation will be required to find the correct
balance of GA starting parameters, search windows, and forced starting conditions to generate
better solutions.

This work takes the first steps toward creating a system that can continually adjust as

physiological changes take place in the heart to ensure an up-to-date, near optimal solution for
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every patient implanted with what could very likely become the next generation in both cardiac

resynchronization therapy, and individualized medicine.
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APPENDIX A. PLOTS OF GA SEARCH VARIATIONS FOR CD MODEL

Note: Labeling convention for acceleration plots (x, y) where x is the number of fixed

regions, and y is the number of adjusted regions.
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A.1. No Dyssynchrony

Case 1: Scripted_Initialization_no_dyss.m parameters

GA Search: No Dyssynchrony 10 runs averaged 3 fixed, 1 adjusted regions
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Figure A-1: No Dyssynchrony (3, 1) Acceleration for GA Search 10 runs averaged

no relevance, heights varied to better show on plot

Relative Regional frmg times with respect to theoretical beat start
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Case 2: Scripted_Initialization_no_dyss.m parameters

GA Search: No Dyssynchrony 10 runs averaged 2 fixed, 2 linked (adjusted) reglons
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Figure A-3: No Dyssynchrony (2, 2) Acceleration for GA Search 10 runs averaged
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Case 3. Scripted_|Initialization_no_dyss.m parameters

GA Search: No Dyssynchrony 10 runs averaged 1 fixed, 3 adjusted reglons
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Figure A-5: No Dyssynchrony (1, 3) Acceleration for GA Search 10 runs averaged

Relative Regional frmg times with respect to theoretical beat start
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Figure A-6: No Dyssynchrony (1,3) Timing for GA Search 10 runs
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A.2. Resistance Dyssynchrony

Case 1: Scripted_Initialization_r2_dyss_0_015.m parameters

GA Search: Resistance Dyssynchrony 10 runs averaged 3 fixed, 1 adjusted reglons
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Figure A-7: Resistance Dyssynchrony (3, 1) Acceleration for GA Search 10 runs averaged

Relative Regional firing times with respect to theoretical beat start
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Case 2: Scripted_Initialization_r2_dyss_0_015.m parameters
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Figure A-9: Resistance Dyssynchrony (1, 3) Acceleration for GA Search 10 runs averaged

Relative Regmnal firing times with respect to theoretical beat start
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A.3. Mass Dyssynchrony

Case 1: Scripted_Initialization_m2_dyss_0_01.m parameters
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Case 2: Scripted_Initialization_m2_dyss_0_01.m parameters

GA Search: Mass Dyssynchrony 10 runs averaged 1 fixed, 3 adjusted reglons
1000 g

acceleration

-500

-1000

1500 i i i i ; i i i i i
1] ot 02 03 04 05 0B 07 08 08 1
time (in seconds)

Figure A-13: Mass Dyssynchrony (1, 3) Acceleration for GA Search 10 runs averaged

Relative Regional f'nng times with respect to theoretical beat start
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A.4. Minimum Elastance Dyssynchrony

Case 1: Scripted_Initialization_min_elas2_dyss_4.m parameters

GA Search: Minimum Elastance 10 runs averaged: 3 fixed, 1 adjusted regions
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Figure A-15: Min Elastance Dyssynchrony (3, 1) Acceleration for GA Search 10 runs avg

Relative Regional firing times with respect to theoretical beat start
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Case 2: Scripted_Initialization_min_elas2_dyss_4.m parameters

GA Search: Min Elastance Dyssynchrony 10 runs averaged: 1 fixed, 3 adjusted reg|0ns
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Figure A-17: Min Elastance Dyssynchrony (1, 3) Acceleration for GA Search 10 runs avg

Relative Regional firing times with respect to theoretical beat start
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A.5. Maximum Elastance Dyssynchrony

Case 1: Scripted_Initialization_max_elas2_dyss_40.m parameters

GA Search: Maximum Elastance Dyssynchrony 10 runs averaged: 3 fixed, 1 adjusted regions
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Figure A-19: Max Elastance Dyssynchrony (3, 1) Acceleration for GA Search 10 runs avg
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Figure A-20: Max Elastance Dyssynchrony (3,1) Timing for GA Search 10 runs

113



Case 2: Scripted_Initialization_max_elas2_dyss_40.m parameters
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Figure A-21: Max Elastance Dyssynchrony (1, 3) Acceleration for GA Search 10 runs avg
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A.6. Population Size Variation: No Dyssynchrony

Scripted_Initialization_no_dyss.m parameters

GA Search: No Dyssynchrony 10 runs averaged: 1 fixed, 3 adjusted regions
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Figure A-23: No Dyssynchrony (1, 3) Acceleration for GA Search 10 Runs Avg, Pop Size =

48
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Figure A-24: No Dyssynchrony (1,3) Timing for GA Search 10 Runs, Population Size = 48
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GA Search: No Dyssynchrony 10 runs averaged: 1 fixed, 3 adjusted regions
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Figure A-25: No Dyssynchrony (1, 3) Acceleration for GA Search 10 Runs Avg, Pop Size =

72
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Figure A-26: No Dyssynchrony (1,3) Timing for GA Search 10 Runs, Pop Size = 72
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GA Search: No Dyssynchrony 10 runs averaged: 1 fixed, 3 adjusted regions

1500
Al
1000 A2
/\ A3
500{‘ \ A4l
o~ Y
0 \(\/ \_~ N
s WM A %
“(_-5' &
@ -500 \_/
3 /
&
-1000
-1500
-2000
-2500
O 01 02 03 04 05 06 07 08 09 1

time (in seconds)

Figure A-27: No Dyssynchrony (1, 3) Acceleration for GA Search 10 Runs Avg, Pop Size =

96
Relative Regional firing times with respect to theoretical beat start
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Figure A-28: No Dyssynchrony (1,3) Timing for GA Search 10 Runs, Pop Size = 96
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GA Search: No Dyssynchrony 10 runs averaged: 1 fixed, 3 adjusted regions
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Figure A-29: No Dyssynchrony (1, 3) Acceleration for GA Search 10 Runs Avg, Pop Size =

120
Relative Regional firing times with respect to theoretical beat start
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Figure A-30: No Dyssynchrony (1,3) Timing for GA Search 10 Runs, Pop Size = 120
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A.7. Mutation Rate Variation: No Dyssynchrony

Scripted_Initialization_no_dyss.m parameters

GA Search: No Dyssynchrony 10 runs averaged 1 fixed, 3 adjusted reglons
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Figure A-31: No Dyssynchrony (1, 3) Acceleration for GA Search 10 Runs Avg, Mutation

Rate = 0.01 (1%)
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Figure A-32: No Dyssynchrony (1,3) Timing for GA Search 10 Runs, Mutation Rate = 0.01

(1%0)
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Figure A-33: No Dyssynchrony (1, 3) Acceleration for GA Search 10 Runs Avg, Mutation

Rate = 0.05 (5%)

Relative Regional firing times with respect to theoretical beat start
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Figure A-34: No Dyssynchrony (1,3) Timing for GA Search 10 Runs, Mutation Rate = 0.05

(5%)
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Figure A-36: No Dyssynchrony (1,3) Timing for GA Search 10 Runs, Mutation Rate = 0.10
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APPENDIX B. PLOTS OF VARIOUS EXHAUSTIVE SEARCH

VARIATIONS FOR CD MODEL

Note: Labeling convention for acceleration plots (x, y) where x is the number of fixed

regions, and y is the number of adjusted regions.
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B.1. No Dyssynchrony

Case 1: Scripted_Initialization_no_dyss.m parameters

acceleration
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Figure B-1: No Dyssynchrony (3, 1) Acceleration for Exhaustive Search

no relevance, heights varied to better show on plot
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Figure B-2: No Dyssynchrony (3,1) Timing for Exhaustive Search
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Case 2: Scripted_Initialization_no_dyss.m parameters

Exhaustive Search: No Dyssynchrony 2 fixed, 2 linked (adjusted) 1001 pomts
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Figure B-3: No Dyssynchrony (2, 2) Acceleration for Exhaustive Search
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Figure B-4: No Dyssynchrony (2,2) Timing for Exhaustive Search
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Case 3: Scripted_Initialization_no_dyss.m parameters
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Figure B-5: No Dyssynchrony (1, 3) Acceleration for Exhaustive Search
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Figure B-6: No Dyssynchrony (1, 3) Acceleration for Exhaustive Search
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B.2. Resistance Dyssynchrony

Case 1: Scripted_Initialization_r2_dyss_0_015.m parameters

Exhaustive Search: Resistance Dyssynchrony 3 fixed, 1 adjusted regions 1001 pomts
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Figure B-7: Resistance Dyssynchrony (3, 1) Acceleration for Exhaustive Search

Relative Regional frmg times with respect to theoretical beat start
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Figure B-8: Resistance Dyssynchrony (3,1) Timing for Exhaustive Search
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Case 2: Scripted_Initialization_r2_dyss_0_015.m parameters

Exhaustive Search: Resistance Dyssynchrony: 1 fixed, 3 adjusted regions
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Figure B-9: Resistance Dyssynchrony (1, 3) Acceleration for Exhaustive Search

Relative Regional firing times with respect to theoretical beat start
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Figure B-10: Resistance Dyssynchrony (1,3) Timing for Exhaustive Search
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B.3. Mass Dyssynchrony

Case 1: Scripted_Initialization_m2_dyss_0_01.m parameters

Exhaustive Search: Mass Dyssynchrony 3 fixed, 1 adjusted reglons 1001 points
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Figure B-11: Mass Dyssynchrony (3, 1) Acceleration for Exhaustive Search

Relative Reglonal frmg times with respect to theoretical beat start
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Figure B-12: Mass Dyssynchrony (3,1) Timing for Exhaustive Search
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Case 2: Scripted_Initialization_m2_dyss_0_01.m parameters
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Figure B-13: Mass Dyssynchrony (1, 3) Acceleration for Exhaustive Search

Relative Regional firing times with respect to theoretical beat start
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Figure B-14: Mass Dyssynchrony (1,3) Timing for Exhaustive Search
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B.4. Minimum Elastance Dyssynchrony

Case 1: Scripted_Initialization_min_elas2_dyss_4.m parameters

Exhaustive Search: Minimum Elastance Dyssynchrony: 3 fixed, 1 adjusted regions 1001 points
1000 - PR RETTTTEERTRRPPPOY .- ERPRRRRES o sprmeagssnae T snsn S .

——— A1, A3, and Ad |

500 F------- AAAAAAAA ......... ; AAAAAAAA ........ ........ ........
=
® 2 : : : : g : : : :
E S00F e ........ ....... ........ ‘ ........ ........ ......... ........ Ve
[ : . x g < 2 : . 3 3
a : 3 ; : ! ;
o
= 3 . : % ¥ . 3 : 5
000k O | e st ........ s R ........ s
AS00 k- ........ SERS SRS ........ ........ R ........
2000 i | : i 1 i 1 1 i ]
0 01 0.2 03 04 05 0B 07 0g 09 1

time (in seconds)

Figure B-15: Min Elastance Dyssynchrony (3, 1) Acceleration for Exhaustive Search

Relative Regional firing times with respect to theoretical beat start
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Figure B-16: Min Elastance Dyssynchrony (3,1) Timing for Exhaustive Search
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Case 2:

Scripted_Initialization_min_elas2_dyss_4.m parameters

Exhaustive Search: Min Elastance Dyssynchrony 1 fixed, 3 adjusted reglons
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Figure B-17: Min Elastance Dyssynchrony (1, 3) Acceleration for Exhaustive Search
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B.5. Maximum Elastance Dyssynchrony

Case 1: Scripted_Initialization_max_elas2_dyss_40.m parameters

Exhaustive Search: Maximum Elastance Dyssynchrony: 3 fixed, 1 adjusted regions 1001 point:

acceleration
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Figure B-20: Max Elastance Dyssynchrony (3,1) Timing for Exhaustive Search
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Case 2:

acceleration

Figure B-21:

Figure B-22:

Scripted_Initialization_max_elas2_dyss_40.m parameters
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B.6. Combined Dyssynchrony (all dyssynchrony)

Region 2: Scripted_Initialization_all_dyss_region2.m parameters

Exhaustive Search: Region 2 All Dyssynchrony: 1 fixed, 3 adjusted regions
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Figure B-23: All Dyssynchrony Region 2 (1, 3) Acceleration for Exhaustive Search

Relative Regional firing times with respect to theoretical beat start
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Regions 2, 3, and 4: Scripted_Initialization_all_dyss_region234.m parameters

Exhaustive Search: Reglons 2,3, and 4 All Dyssynchrony 1 fixed, 3 adjusted reglons
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Figure B-26: All Dyssynchrony Regions 2, 3, and 4 (3,1) Timing for Exhaustive Search
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APPENDIX C. PLOTS OF NO TIMING ADJUSTMENT FOR CD MODEL

(ALL TIMES ARE EQUAL)

Note: Labeling convention for acceleration plots (x, y) where x is the number of fixed

regions, and y is the number of adjusted regions.
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C.1. No Dyssynchrony

Case 1: Scripted_Initialization_no_dyss.m parameters

Exhaustive Search: No Dyssynchmny 3 fixed, 1 adjusted regmns no carrection
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Figure C-1: No Dyssynchrony (3, 1) Acceleration for No Adjustment
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Exhaustive Search: No Dyssynchrony 2 fixed, 2 linked (adjusted) reglons no correction
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Case 3: Scripted_Initialization_no_dyss.m parameters

Exhaustive Search: No Dyssynchrony 1 fixed, 3 adjusted regions no correction
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C.2. Resistance Dyssynchrony

Case 1: Scripted_Initialization_r2_dyss_0_015.m parameters

Exhaustive Search: Resistance Dyssynchrony 3 fixed, 1 adjusted reglons no carrection
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Figure C-8: Resistance Dyssynchrony (3,1) Timing for No Adjustment
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Relative Regional frmg times with respect to theoretical beat start

firing time in delay from theoretical beat start (0 to 2m)

140

T S e —— B ;

_ : Region 1,3, and 4 |:

=i Bl S R TEE U R R Region 2

s — p2 grid

=0Ty LA NN RS ROES R 1, S L

Z :

=

w

5 i R B R AEEERET] FREPEP PRI PR CPRPEPPEPPPEE] ERPPREPEPPE SR I

T

i Tl SEAE PPPPPRR REEET RPPPFRRTETTTIEN B IOPPPPPPRPRPRE! (NRRPPPPPPPR PP FEPPRRRS

5

% i R e R TREEEPRRE CPEPPEEEPEPPEPEE B PR PP PP

=

w0

%UB_ ...............................................................................

‘o

N =

i DBt HIZSAR TSR] [ EARERS R R F

(8]

&

a [ N B R R EEEEEECEPREREPREE B FEEPRPEPREPEE] PRPPPEPPEPP PRI RPN

i

g 02_ .............................................................................
ol i 1 i 1 i
0.985 0.99 0.995 1 1.005 1.01 1.015



Case 2: Scripted_Initialization_r2_dyss_0_015.m parameters

Exhaustive Search: Resistance Dyssynchrony: 1 fixed, 3 adjusted regions no correction
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Figure C-9: Resistance Dyssynchrony (1, 3) Acceleration for No Adjustment

Relative Regional firing times with respect to theoretical beat start
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C.3. Mass Dyssynchrony

Case 1: Scripted_Initialization_m2_dyss_0_01.m parameters

Exhaustive Search: Mass Dyssynchrony 3 fixed, 1 adjusted reglons no correction
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Figure C-11: Mass Dyssynchrony (3, 1) Acceleration for No Adjustment

Relative Reglonal frmg times with respect to theoretical beat start
o AP S— TR P SETTATeeTE S g e s Cromepeanas s

: d : : : : Region 1,3, and 4
18 NS i """" S Region 2
. : : : o | ——p2grid

1Bk ....... ....... ....... ......
70 e ....... = B ....... ....... ....... sl ........

12k i, 3 ....... - ....... ........ ....... 2 - ...... oo

08k ST ....... ....... ....... ........ ....... ....... .....

(I ke e i ....... e B ....... ....... ....... L .....

no relevance, heights varied to better show on plot

0 1 i i | i 1 i i i
09895 1 1005 1.01 1015 1.02 1025 1.03 1035 1.04 1.045
firing time in delay from theoretical beat start {0 to 2x)

Figure C-12: Mass Dyssynchrony (3,1) Timing for No Adjustment
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Case 2: Scripted_Initialization_m2_dyss_0_01.m parameters

Exhaustive Search: Mass Dyssynchrony: 1 fixed, 3 adjusted regions no correction
1000_ ....... Seeeeeas CRR EEERERRER o ........ REREEEEED e R :

acceleration

4000 k---eee ........ TN - ......... ........ ........ ........ ........

AB00 k- ............... — ........ ........ ......... ........ banngenss

2000k g ........ ........ ......... ........ ........ s ........

22500 | l 1 i 1 i i
0 0.1 02 03 04 05 06 07 08 09 1
time (in seconds)

Figure C-13: Mass Dyssynchrony (1, 3) Acceleration for No Adjustment

Relative Regional firing times with respect to theoretical beat start
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C.4. Minimum Elastance Dyssynchrony

Case 1: Scripted_Initialization_min_elas2_dyss_4.m parameters

Exhaustive Search: Minimum Elastance Dyssynchrony: 3 fixed, 1 adjusted regions no correctio
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Case 2:

Scripted_Initialization_min_elas2_dyss_4.m parameters

Exhaustive Search: Min Elastance Dyssynchrony 1 fixed, 3 adjusted regions no correction
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Figure C-17: Min Elastance Dyssynchrony (1, 3) Acceleration for No Adjustment
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C.5. Maximum Elastance Dyssynchrony

Case 1: Scripted_Initialization_max_elas2_dyss_40.m parameters

Exhaustive Search: Maximum Elastance Dyssynchrony: 3 fixed, 1 adjusted regions no correctic
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Figure C-19: Max Elastance Dyssynchrony (3, 1) Acceleration for No Adjustment
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Case 2: Scripted_Initialization_max_elas2_dyss_40.m parameters

Exhaustive Search: Max Elastance Dyssynchrony: 1 fixed, 3 adjusted regions no correction
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Figure C-21: Max Elastance Dyssynchrony (1, 3) Acceleration for No Adjustment
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C.6. Combined Dyssynchrony (all dyssynchrony)

Region 2: Scripted_Initialization_all_dyss_region2.m parameters

Mo Adjustment: Region 2 All Dyssynchrony: 1 fixed, 3 adjusted regions no correction
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n for No Adjustment
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Regions 2, 3, and 4: Scripted_Initialization_all_dyss_region234.m parameters

No Adjustment: Reglons 2,3, and 4 All Dyssynchrony 1 fixed, 3 adjusted regions no correctiol
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Figure C-25: All Dyssynchrony Regions 2, 3, and 4 (1, 3) Acceleration for No Adjustment

Relative Regional firing times with respect to theoretical beat start
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APPENDIX D. GA CODE

D.1. GA Base Code Sets
D.1.1. GA 2 Parameter Automation Code: 3 fixed, 1 variable

%Peter Hettwer

%Thesis Work

%Genetic Algorithm Automated Run Sequence
%3 fixed and 1 variable regions

%Prior to execution, user or user generated script file should open a

%parallel MATLAB workstation with the following command:
%matlabpool(‘open',4); where the number is the number of MATLAB cores
%desired to run. Maximum Number of cores is dictated by the number of
%physical cores on the computer running MATLAB. After execution, the user
%or a user generated script file should close the parallel MATLAB
%workstation with the following command: matlabpool(‘close’).

function [] = GA_1_auto_run_A(file, num_runs, noise, seed)
global r1 r2 r3 r4 m1 m2 m3 m4 elmin e2min e3min e4min elmax e2max ...
e3max edmax bpm step_size cycle t

run_time = zeros(1,num_runs); %stores run time for all GA run sets

run_gen = zeros(1,num_runs); %stores number of generations for all GA run
%sets

run_cost = zeros(1,num_runs); %stores minimum cost for all GA run sets
pl_hist = zeros(1,num_runs); %region 1 timings for all GA run sets

p2_hist = zeros(1,num_runs); %region 2 timings for all GA run sets

p3_hist = zeros(1,num_runs); %region 3 timings for all GA run sets

p4_hist = zeros(1,num_runs); %region 4 timings for all GA run sets

%Scripted_Initialization; %this CD model parameter initialization file is
%needed if this code is not called from a script file previously calling
%the initialization file.

ti = O:step_size:1; %set period time values based on desired step size;
%used to create acceleration wave plots.

for k = 1:num_runs; %run the GA code a user specified number of times
pl_ref =1; %region 1 timing is assumed as reference,
%regions 2, 3, and 4 are controlled within the GA search code.
%for this variation, regions 3 and 4 are set equal to region 1 internal
%to the GA search function and region 2 is to be optimized.

%run the GA search function
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[run_gen(Kk) run_cost(k) run_time(k) phase_y(k) amp_y(Kk) p1_hist(k) ...
p2_hist(k) p3_hist(k) p4_hist(k)] = GA_1_A(K, noise, ti, ...
pl_ref,step_size,cycle,bpm,rl,r2,r3,r4,elmin,elmax,e2min,e2max,...
e3min,e3max,e4min,edmax,ml1l,m2,m3,m4);

%create acceleration waveforms for the returned values from the GA
%search function.
[AL(k,:), A2(k,:), A3(K,)), Ad(k,:)] = Scripted_GUI(p1_hist(Kk),...
p2_hist(k),p3_hist(k),p4_hist(k));
end

min_run_gen = min(run_gen) %minimum number of run generations from all GA
%runs

max_run_gen = max(run_gen) %omaximum number of run generations from all GA
%runs

mean_run_gen = mean(run_gen) % mean number of generations from all GA runs
min_run_cost = min(run_cost) %ominimum run cost from all GA runs
max_run_cost = max(run_cost) %maximum run cost from all GA runs
mean_run_cost = mean(run_cost) %mean run cost from all GA runs
min_run_time = min(run_time) %minimum run time from all GA runs
max_run_time = max(run_time)%maximum run time from all GA runs
mean_run_time = mean(run_time) %mean run time from all GA runs
total_run_time = sum(run_time) %sum of all run times from all GA runs

save(file); %save to user defined filename

end
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D.1.2. GA 2 Parameter Automation Code: 2 fixed, 2 variable

%Peter Hettwer

%Thesis Work

%Genetic Algorithm Automated Run Sequence
%2 fixed and 2 variable regions

%Prior to execution, user or user generated script file should open a

%parallel MATLAB workstation with the following command:
%matlabpool(‘open’,4); where the number is the number of MATLAB cores
%desired to run. Maximum Number of cores is dictated by the number of
%physical cores on the computer running MATLAB. After execution, the user
%or a user generated script file should close the parallel MATLAB
%workstation with the following command: matlabpool(‘close’).

function [] = GA_1_auto_run_2and2_A(file, num_runs, noise, seed)
global r1 r2 r3 r4 m1 m2 m3 m4 elmin e2min e3min e4min elmax e2max...
e3max edmax bpm step cycle t

run_time = zeros(1,num_runs); %stores run time for all GA run sets

run_gen = zeros(1,num_runs); %stores number of generations for all GA run
%sets

run_cost = zeros(1,num_runs); %stores minimum cost for all GA run sets
pl_hist = zeros(1,num_runs); %region 1 timings for all GA run sets

p2_hist = zeros(1,num_runs); %region 2 timings for all GA run sets

p3_hist = zeros(1,num_runs); %region 3 timings for all GA run sets

p4_hist = zeros(1,num_runs); %region 4 timings for all GA run sets

%Scripted_Initialization; %this CD model parameter initialization file is
%needed if this code is not called from a script file previously calling
%the initialization file.

ti = O:step_size:1; %set period time values based on desired step size;
%used to create acceleration wave plots.

for k = 1:num_runs; %run the GA code a user specified number of times
pl_ref =1; %region 1 timing is assumed as reference,
%regions 2, 3, and 4 are controlled within the GA search code.
%for this variation, region 3 is set equal to region 1 and region 4 is
%set equal to region 2 internal to the GA search function and region 2
%is to be optimized.

%run the GA search function

[run_gen(K) run_cost(k) run_time(k) phase_y(k) amp_y(k) p1_hist(k)...
p2_hist(k) p3_hist(k) p4_hist(k)] = GA_1_A 2and2(k,noise,ti,pl,...
step,cycle,bpm,rl,r2,r3,r4,elmin,elmax,e2min,e2max,e3min,e3max,...
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e4min,edmax,m1,m2,m3,m4);

%create acceleration waveforms for the returned values from the GA

%search function.

[AL(k,:), A2(k,:), A3(K,:), Ad(k,:)] = Scripted_GUI(p1_hist(k),...
p2_hist(k),p3_hist(k),p4_hist(k),step,cycle,bpm,ri,r2,r3,r4,...
elmin,elmax,e2min,e2max,e3min,e3max,e4min,e4max,ml,m2,m3,m4);

end

min_run_gen = min(run_gen) %minimum number of run generations from all GA
%runs

max_run_gen = max(run_gen) %maximum number of run generations from all GA
%runs

mean_run_gen = mean(run_gen) % mean number of generations from all GA runs
min_run_cost = min(run_cost) %ominimum run cost from all GA runs
max_run_cost = max(run_cost) %maximum run cost from all GA runs
mean_run_cost = mean(run_cost) %mean run cost from all GA runs
min_run_time = min(run_time) %minimum run time from all GA runs
max_run_time = max(run_time)%maximum run time from all GA runs
mean_run_time = mean(run_time) %mean run time from all GA runs
total_run_time = sum(run_time) %sum of all run times from all GA runs

save(file); %save to user defined filename

end
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D.1.3. GA 4 Parameter Automation Code

%Peter Hettwer

%Thesis Work

%Genetic Algorithm Automated Run Sequence
%Attempt 11

function [] = GA_1_auto_run_4param_A(file, num_runs, noise, seed)
global r1 r2 r3 r4 m1 m2 m3 m4 elmin e2min e3min e4min elmax e2max...
e3max edmax bpm step cycle t

run_time = zeros(1,num_runs); %stores run time for all GA run sets

run_gen = zeros(1,num_runs); %stores number of generations for all GA run
%sets

run_cost = zeros(1,num_runs); %stores minimum cost for all GA run sets
pl_hist = zeros(1,num_runs); %region 1 timings for all GA run sets

p2_hist = zeros(1,num_runs); %region 2 timings for all GA run sets

p3_hist = zeros(1,num_runs); %region 3 timings for all GA run sets

p4_hist = zeros(1,num_runs); %region 4 timings for all GA run sets

%Scripted_Initialization; %this CD model parameter initialization file is
%needed if this code is not called from a script file previously calling
%the initialization file.

ti = O:step_size:1; %set period time values based on desired step size;
%used to create acceleration wave plots.

for k = 1:num_runs; %run the GA code a user specified number of times
pl_ref = 1; %region 1 timing is assumed as reference,
%regions 2, 3, and 4 are controlled within the GA search code.
%for this variation, all regions 2, 3, and 4 are to be optimized.

%run the GA search function

[run_gen(Kk) run_cost(k) run_time(k) phase_y(k) amp_y(K) p1_hist(k)...
p2_hist(k) p3_hist(k) p4_hist(k)] = GA_1_A_4param(k,noiseti,...
pl_refstep,cycle,bpm,rl,r2,r3,r4,elmin,elmax,e2min,e2max,...
e3min,e3max,edmin,edmax,m1,m2,m3,m4);

%create acceleration waveforms for the returned values from the GA

%search function.

[AL(k,), A2(k,:), A3(k,:), Ad(k,:)] = Scripted_GUI(p1_hist(k),...
p2_hist(k),p3 _hist(k),p4_hist(k),step,cycle,bpm,rl,r2,r3,r4,...
elmin,elmax,e2min,e2max,e3min,e3max,e4min,e4max,ml,m2,m3,m4);

end

min_run_gen = min(run_gen) %minimum number of run generations from all GA
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%runs

max_run_gen = max(run_gen) %maximum number of run generations from all GA
%runs

mean_run_gen = mean(run_gen) % mean number of generations from all GA runs
min_run_cost = min(run_cost) %ominimum run cost from all GA runs
max_run_cost = max(run_cost) %maximum run cost from all GA runs
mean_run_cost = mean(run_cost) %mean run cost from all GA runs
min_run_time = min(run_time) %minimum run time from all GA runs
max_run_time = max(run_time)%maximum run time from all GA runs
mean_run_time = mean(run_time) %mean run time from all GA runs
total_run_time = sum(run_time) %sum of all run times from all GA runs

save(file); %save to user defined filename

end
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D.1.4. GA 2 Parameter Base Code: 3 fixed, 1 variable

%Peter Hettwer

%Thesis Work

%Genetic Algorithm Backbone Code
%3 fixed and 1 variable region

function [gen_count final_cost time phase amplitude p1_best p2_best ...
p3_best p4_best] = GA_1 A(seed, noise, t, p1_ref,step,cycle,bpm,rl,...
r2,r3,r4,elmin,elmax,e2min,e2max,e3min,e3max,e4min,e4dmax,ml,m2,m3,m4)

tic; %ostart MATLAB timer to measure how long search takes

%crossover type: single point crossover, binary strings
Y%parameter encoding scheme: binary

%ranking method: inversely proportional to normalized fit
%pairing method: weighted random based on rank
%fitness function: Least Mean Square

%model: Simple Sinusoid "Acceleration”

%Citation: portions adopted from Jenna Carr, An Introduction to Genetic
%Algorithms; carrjk.pdf Example 2.2

%initialize rng value
%rng(seed); %newer matlab 2013+

SeedRNG(seed); %older matlab: 2010a
%% User Defined Parameters of Genetic Algorithm

%These should be tuned for each model/objective function for best
Y%performance.

%Max Heart Rate ~250 bpm ~= 4.2 bps = 4.2 Hz ==> 240 ms period

%Min Heart Rate ~40 bpm ~= 0.67 bps = 0.67 Hz ==> 1500 ms period
%assume want <= 1ms steps; need >= 1500 steps to accomodate min Heart Rate
%>= 11 bits to represent 1500 steps

param_len = 12; %f#bits used to represent a time shift;
%12 bits ==> 4096 steps

%4096 steps ==> minimum 0.366211 ms/step @ 40 bpm
population_size = 20; %Genetic Algorithm population size

elitism = 0.1; %Top n of previous generation passed on to next gen
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%unchanged ex. 0.1 ==>10%

Pcross = 1; % % of new generation made up of offspring
%of previous generation ex. 1 - 0.1 = 0.9 ==> 90%

Pmute = 0.001; %chance of flipping a bit, 0.1%
n_param = 2; %number of parameters in each chromosome/test case

Nbits_total = n_param * param_len; %f# bits in a test case
%= # bits per parameter * # parameters

gen_max = 50; %omaximum number of generations

min_cost = 0; %set min cost value for early termination of GA.
noise_max = noise;

% Parameters based on User Defined Parameters

converted_parameter_list = zeros(population_size,n_param); %decimal
%representation of chromosomes

elite = ceil(elitism * population_size); % # of elite saved each generation
offspring = population_size - elite; %# of offspring to generate on every
%mating mix

gen_count = 0; %generation counter instantiated and initialized to 0
stop_count = 0; %counter to terminate GA run if best solution doesn't
%improve for stop_gen generations

stop_gen = 5; %GA terminates if no solution improvement seen for this
%number of generations.

population = InitPopulation(population_size, Nbits_total); %generate the
%initial, random population

pl_bin = fix2bin(pl_ref,0,0.9998*2*pi,param_len); %create the binary value
%of the supplied reference region timing of the set binary length

%% Parameters to be optimized

Al = zeros(population_size, length(t)); %Acceleration 1 for cardiac
%dyssynchrony model or sin 1 for simple model

A2 = zeros(population_size, length(t)); %Acceleration 2 for cardiac
%dyssynchrony model or sin 2 for simple model

A3 = zeros(population_size, length(t)); %Acceleration 3 for cardiac
%dyssynchrony model

A4 = zeros(population_size, length(t)); %Acceleration 4 for cardiac
%dyssynchrony model
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%% Parameter Envelopes

phase_max = 2*pi; %param 1 max
phase_min = 0; %param 1 min

%% Initial objective function evaluations

%Transform test cases to usable values and run through model function
for k = 1:population_size
population(k,1:param_len) = p1_bin; %copy reference phase into each
%chromosome

converted_parameter_list(k,:) = bin2fix(population(k,:),phase_min,...
phase_max,n_param,phase_min,phase_max);

pl(k) = converted_parameter_list(k,1); %record region 1 timing values
p2(k) = converted_parameter_list(k,2); %record region 2 timing values
p3(K) = p1(K); %p3 reset same as pl after descritization since not
%being optimized by GA,

p4(K) = p1(K); %p4 reset same as pl after descritization since not
%being optimized by GA,

end

parfor k = 1:population_size
[AL(k,:), A2(k,:), A3(Kk,)), Ad(k,:)] = Scripted_GUI(p1(Kk),p2(Kk),...
p3(K),p4(k),step,cycle,bpm,rl,r2,r3,r4,elmin,elmax,e2min,e2max,...
e3min,e3max,edmin,edmax,m1,m2,m3,m4); %find acceleration waveforms

end

for k = 1:population_size
cost(k) = SSE(AL(k,:), A2(k,:)); %generate costs for each chromosome
end

% (want min cost to have highest prob)

cost_norm = max(cost) - cost; %invert high and low costs for mating
%probability. highest cost is eliminated from propagation

[cost_norm, cost_norm_ind] = sort(cost_norm,'descend’); %search population
%w/ "highest"” cost in first entry (lowest actual cost).

population = population(cost_norm_ind,:); %sort population w/ lowest cost
%first

max_obj(gen_count + 1) = max(cost); %contains min of initial population
min_obj(1) = min(cost); %contains min of initial population

mean_obj(1) = mean(cost_norm); %contains mean of initial population
mate_prob = cost_norm/sum(cost_norm); %probability normalization;
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%% Main Loop
while (gen_count < gen_max)
gen_count = gen_count +1 %increment generation/loop counter
%Choose Mates:
M = offspring / 2; %number of parings
[matel, mate2] = Mates(mate_prob,M); %generate pairing vectors

cross_point = Cross(M,Pcross,Nbits_total); %generate pairing crossover
%points

%generate next generation's population
population = NextGen(population,elite,cross_point,matel,mate2);

%protect elite population from mutation:

for k = 1:elite
pop_temp(k) = population(k);
end

%Mutate Population:
mutation = Mutate(population,Pmute);

population = abs(population - mutation);
%toggle bit at specified location

%rewrite elite population

for k = 1:elite
population(k) = pop_temp(k);
end

%% Evaluate New Population for cost:

%Transform test cases to usable values and run through model function
for k = 1:population_size

population(k,1:param_len) = p1_bin; %copy reference phase into each

%chromosome

converted_parameter_list(k,:) = bin2fix(population(k,:),phase_min,...
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phase_max,n_param,phase_min,phase_max);

pl(k) = converted_parameter_list(k,1); %record region 1 timing values
p2(k) = converted_parameter_list(k,2); %record region 2 timing values
p3(K) = p1(K); %p3 reset same as pl after descritization since not
%being optimized by GA,

p4(K) = p1(K); %p4 reset same as pl after descritization since not
%being optimized by GA,

end

parfor k = 1:population_size
[AL(k,)), A2(k,:), A3(Kk,)), Ad(k,:)] = Scripted_GUI(p1(k),p2(Kk),...
p3(K),p4(k),step,cycle,bpm,rl,r2,r3,r4,elmin,elmax,e2min,e2max,...
e3min,e3max,edmin,edmax,m1,m2,m3,m4); %find acceleration waveforms

end

for k = 1:population_size
cost(k) = SSE(A1(k,:), A2(k,:)); %generate costs for each chromosome
end

% (want min cost to have highest prob)

cost_norm = max(cost) - cost; %invert high and low costs for mating
%probability. highest cost is eliminated from propagation

[cost_norm, cost_norm_ind] = sort(cost_norm,'descend’); %search population
%w/ "highest" cost in first entry (lowest actual cost).

population = population(cost_norm_ind,:); %sort population w/ lowest cost
%first

max_obj(gen_count + 1) = max(cost); %contains min of current population
min_obj(gen_count + 1) = min(cost); %contains min of current population
mean_obj(gen_count + 1) = mean(cost_norm); %contains mean of current
%population normalized

mate_prob = cost_norm/sum(cost_norm); %probability normalization;

%% Early Stopping Criteria:

%increment stop counter if improvement not made in current generation
if( min_obj(gen_count) <= min_obj(gen_count+1) )
stop_count = stop_count + 1;
else
stop_count = 0;
end

if ( (gen_count> gen_max) || min_obj(gen_count+1) <=0.01 || ...
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stop_count == stop_gen )

break
end

end %while

time = toc; %stop MATLAB Timer and display to command window
final_cost = cost(1); %record min cost from GA run

pl_best = p1(1); %record best timing value for region 1

p2_best = p2(1); %record best timing value for region 2

p3_best = p3(1); %record best timing value for region 3

p4_best = p4(1); %record best timing value for region 4

end
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D.1.5. GA 2 Parameter Base Code: 2 fixed, 2 variable

%Peter Hettwer

%Thesis Work

%Genetic Algorithm Backbone Code
%2 fixed and 2 variable regions

function [gen_count final_cost time phase amplitude p1_best p2_best ...
p3_best p4_best] = GA_1 A _2and2(seed, noise, t, p1_ref,step,cycle,...
bpm,rl,r2,r3,r4,elmin,elmax,e2min,e2max,e3min,e3max,e4min,edmax,ml,...
m2,m3,m4)

tic; %start MATLAB timer to measure how long search takes

%crossover type: single point crossover, binary strings
%parameter encoding scheme: binary

%ranking method: inversely proportional to normalized fit
%pairing method: weighted random based on rank
%fitness function: Least Mean Square

%maodel: Simple Sinusoid "Acceleration"

%Citation: portions adopted from Jenna Carr, An Introduction to Genetic
%Algorithms; carrjk.pdf Example 2.2

%initialize rng value
%rng(seed); %newer matlab 2013+

SeedRNG(seed); %older matlab: 2010a
%% User Defined Parameters of Genetic Algorithm

%These should be tuned for each model/objective function for best
%performance.

%Max Heart Rate ~250 bpm ~= 4.2 bps = 4.2 Hz ==> 240 ms period

%Min Heart Rate ~40 bpm ~=0.67 bps = 0.67 Hz ==> 1500 ms period
%assume want <= 1ms steps; need >= 1500 steps to accomodate min Heart Rate
%>= 11 bits to represent 1500 steps

param_len = 12; %#bits used to represent a time shift;
%12 bits ==> 4096 steps
%4096 steps ==> minimum 0.366211 ms/step @ 40 bpm

population_size = 20; %Genetic Algorithm population size
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elitism = 0.1; %Top n of previous generation passed on to next gen
%unchanged ex. 0.1 ==> 10%

Pcross = 1; % % of new generation made up of offspring
%of previous generation ex. 1 - 0.1 = 0.9 ==> 90%

Pmute = 0.001; %chance of flipping a bit, 0.1%
n_param = 2; %number of parameters in each chromosome/test case

Nbits_total = n_param * param_len; %f# bits in a test case
%= # bits per parameter * # parameters

gen_max = 50; Yomaximum number of generations

min_cost = 0; %set min cost value for early termination of GA.
noise_max = noise;

% Parameters based on User Defined Parameters

converted_parameter_list = zeros(population_size,n_param); %decimal
%representation of chromosomes

elite = ceil(elitism * population_size); % # of elite saved each generation
offspring = population_size - elite; %# of offspring to generate on every
%mating mix

gen_count = 0; %generation counter instantiated and initialized to 0
stop_count = 0; %counter to terminate GA run if best solution doesn't
%improve for stop_gen generations

stop_gen =5; %GA terminates if no solution improvement seen for this
%number of generations.

population = InitPopulation(population_size, Nbits_total); %generate the
%initial, random population

pl_bin = fix2bin(pl_ref,0,0.9998*2*pi,param_len); %create the binary value
%of the supplied reference region timing of the set binary length

%% Parameters to be optimized

Al = zeros(population_size, length(t)); %Acceleration 1 for cardiac
%dyssynchrony model or sin 1 for simple model

A2 = zeros(population_size, length(t)); %Acceleration 2 for cardiac
%dyssynchrony model or sin 2 for simple model

A3 = zeros(population_size, length(t)); %Acceleration 3 for cardiac
%dyssynchrony model

A4 = zeros(population_size, length(t)); %Acceleration 4 for cardiac
%dyssynchrony model
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%% Parameter Envelopes

phase_max = 2*pi; %param 1 max
phase_min = 0; %param 1 min

%% Initial objective function evaluations

%Transform test cases to usable values and run through model function
for k = 1:population_size
population(k,1:param_len) = p1_bin; %copy reference phase into each
%chromosome

converted_parameter_list(k,:) = bin2fix(population(k,:),phase_min,...
phase_max,n_param,phase_min,phase_max);

pl(k) = converted_parameter_list(k,1) %record region 1 timing values
p2(K) = converted_parameter_list(k,2) %record region 2 timing values
p3(K) = p1(K) %p3 reset same as pl after descritization since not
%Dbeing optimized by GA,

p4(k) = p2(k) %p4 reset same as p2 after descritization since not
%Dbeing optimized by GA,

end

parfor k = 1:population_size
[AL(k,:), A2(k,:), A3(k,:), Ad(k,:)] = Scripted_GUI(p1(k),p2(k),...
p3(K),p4(Kk),step,cycle,bpm,rl,r2,r3,r4,elmin,elmax,e2min,e2max,...
e3min,e3max,e4min,edmax,ml,m2,m3,m4); %find acceleration waveforms

end

for k = 1:population_size
cost(k) = SSE(A1(k,:), A2(k,:)); %generate costs for each chromosome
end

% (want min cost to have highest prob)

cost_norm = max(cost) - cost; %invert high and low costs for mating
%probability. highest cost is eliminated from propagation

[cost_norm, cost_norm_ind] = sort(cost_norm,'descend'); %search population
%w/ "highest" cost in first entry (lowest actual cost).

population = population(cost_norm_ind,:); %sort population w/ lowest cost
%first

max_obj(gen_count + 1) = max(cost); %contains min of initial population
min_obj(1) = min(cost); %contains min of initial population

mean_obj(1) = mean(cost_norm); %contains mean of initial population
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mate_prob = cost_norm/sum(cost_norm); %probability normalization;
%want min cost to have highest prob.
%% Main Loop
while (gen_count < gen_max)
gen_count = gen_count +1 %increment generation/loop counter
%Choose Mates:
M = offspring / 2; %number of parings
[matel, mate2] = Mates(mate_prob,M); %generate pairing vectors

cross_point = Cross(M,Pcross,Nbits_total); %generate pairing crossover
%points

%generate next generation's population
population = NextGen(population,elite,cross_point,matel,mate2);

%protect elite population from mutation:

for k = 1:elite
pop_temp(k) = population(k);
end

%Mutate Population:
mutation = Mutate(population,Pmute);

population = abs(population - mutation);
%toggle bit at specified location

%rewrite elite population

for k = 1:elite
population(k) = pop_temp(k);
end

%% Evaluate New Population for cost:

%Transform test cases to usable values and run through model function
for k = 1:population_size
population(k,1:param_len) = p1_bin; %copy reference phase into each
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%chromosome

converted_parameter_list(k,:) = bin2fix(population(k,:),phase_min,...
phase_max,n_param,phase_min,phase_max);

pl(k) = converted_parameter_list(k,1) %record region 1 timing values
p2(k) = converted_parameter_list(k,2) %record region 2 timing values
p3(K) = p1(K) %p3 reset same as pl after descritization since not
%Dbeing optimized by GA,

p4(K) = p2(K) %p4 reset same as p2 after descritization since not
%Dbeing optimized by GA,

end

parfor k = 1:population_size
[AL(k,:), A2(k,:), A3(K,)), Ad(k,:)] = Scripted_GUI(p1(Kk),p2(Kk),...
p3(K),p4(k),step,cycle,bpm,rl,r2,r3,r4,elmin,elmax,e2min,e2max,...
e3min,e3max,edmin,edmax,m1l,m2,m3,m4); %find acceleration waveforms

end

for k = 1:population_size
cost(k) = SSE(AL(k,:), A2(k,:)); %generate costs for each chromosome
end

% (want min cost to have highest prob)

cost_norm = max(cost) - cost; %invert high and low costs for mating
%probability. highest cost is eliminated from propagation

[cost_norm, cost_norm_ind] = sort(cost_norm,'descend’); %search population
%w/ "highest"” cost in first entry (lowest actual cost).

population = population(cost_norm_ind,:); %sort population w/ lowest cost
%first

max_obj(gen_count + 1) = max(cost); %contains min of current population
min_obj(gen_count + 1) = min(cost); %contains min of current population
mean_obj(gen_count + 1) = mean(cost_norm); %contains mean of current
%population normalized

mate_prob = cost_norm/sum(cost_norm); %probability normalization;

%% Early Stopping Criteria:

%increment stop counter if improvement not made in current generation
if( min_obj(gen_count) <= min_obj(gen_count+1) )
stop_count = stop_count + 1;
else
stop_count = 0;
end
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if ((gen_count>gen_max) || min_obj(gen_count+1) <=0.01 || ...
stop_count == stop_gen )

break
end

end %while

time = toc; %stop MATLAB Timer and display to command window
final_cost = cost(1); %record min cost from GA run

pl_best = p1(1); %record best timing value for region 1

p2_best = p2(1); %record best timing value for region 2

p3_best = p3(1); %record best timing value for region 3

p4_best = p4(1); %record best timing value for region 4

end
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D.1.6. GA 4 Parameter Base Code

%Peter Hettwer

%Thesis Work

%Genetic Algorithm Backbone Code
%1 fixed and 3 variable regions

function [gen_count final_cost time phase amplitude p1_best p2_best ...
p3_best p4_best] = GA_1_A(seed,noise,t,pl_ref,step,cycle,opm,rl,r2,...
r3,r4,elmin,elmax,e2min,e2max,e3min,e3max,e4min,edmax,m1,m2,m3,m4)

tic; %ostart MATLAB timer to measure how long search takes

%crossover type: single point crossover, binary strings
Y%parameter encoding scheme: binary

%ranking method: inversely proportional to normalized fit
%pairing method: weighted random based on rank
%fitness function: Least Mean Square

%model: Simple Sinusoid "Acceleration”

%Citation: portions adopted from Jenna Carr, An Introduction to Genetic
%Algorithms; carrjk.pdf Example 2.2

%initialize rng value
%rng(seed); %newer matlab 2013+

SeedRNG(seed); %older matlab: 2010a
%% User Defined Parameters of Genetic Algorithm

%These should be tuned for each model/objective function for best
Y%performance.

%Max Heart Rate ~250 bpm ~= 4.2 bps = 4.2 Hz ==> 240 ms period

%Min Heart Rate ~40 bpm ~= 0.67 bps = 0.67 Hz ==> 1500 ms period
%assume want <= 1ms steps; need >= 1500 steps to accomodate min Heart Rate
%>= 11 bits to represent 1500 steps

param_len = 12; % #bits used to represent a time shift;
%12 bits ==> 4096 steps

%4096 steps ==> minimum 0.366211 ms/step @ 40 bpm
population_size = 20; %Genetic Algorithm population size

elitism = 0.1; %Top n of previous generation passed on to next gen
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%unchanged ex. 0.1 ==>10%

Pcross = 1; % % of new generation made up of offspring
%of previous generation ex. 1 - 0.1 = 0.9 ==> 90%

Pmute = 0.001; %chance of flipping a bit, 0.1%
n_param = 4; %number of parameters in each chromosome/test case

Nbits_total = n_param * param_len; %f# bits in a test case
%= # bits per parameter * # parameters

gen_max = 50; %omaximum number of generations

min_cost = 0; %set min cost value for early termination of GA.
noise_max = noise;

% Parameters based on User Defined Parameters

converted_parameter_list = zeros(population_size,n_param); %decimal
%representation of chromosomes

elite = ceil(elitism * population_size); % # of elite saved each generation
offspring = population_size - elite; %# of offspring to generate on every
%mating mix

gen_count = 0; %generation counter instantiated and initialized to 0
stop_count = 0; %counter to terminate GA run if best solution doesn't
%improve for stop_gen generations

stop_gen = 5; %GA terminates if no solution improvement seen for this
%number of generations.

population = InitPopulation(population_size, Nbits_total); %generate the
%initial, random population

pl_bin = fix2bin(pl_ref,0,0.9998*2*pi,param_len); %create the binary value
%of the supplied reference region timing of the set binary length

%% Parameters to be optimized

Al = zeros(population_size, length(t)); %Acceleration 1 for cardiac
%dyssynchrony model or sin 1 for simple model

A2 = zeros(population_size, length(t)); %Acceleration 2 for cardiac
%dyssynchrony model or sin 2 for simple model

A3 = zeros(population_size, length(t)); %Acceleration 3 for cardiac
%dyssynchrony model

A4 = zeros(population_size, length(t)); %Acceleration 4 for cardiac
%dyssynchrony model
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%% Parameter Envelopes

phase_max = 2*pi; %param 1 max
phase_min = 0; %param 1 min

%% Initial objective function evaluations

%Transform test cases to usable values and run through model function
for k = 1:population_size
population(k,1:param_len) = p1_bin; %copy reference phase into each
%chromosome

converted_parameter_list(k,:) = bin2fix_4param(population(k,:),...
phase_min,phase_max,n_param,phase_min,phase_max);

pl(k) = converted_parameter_list(k,1) %record region 1 timing values

p2(k) = converted_parameter_list(k,2) %record region 2 timing values

p3(K) = converted_parameter_list(k,3) %record region 3 timing values

p4(K) = converted_parameter_list(k,4) %record region 4 timing values
end

parfor k = 1:population_size
[AL(k,), A2(k,:), A3(Kk,), Ad(k,:)] = Scripted_GUI(p1(k),p2(Kk),...
p3(K),p4(k),step,cycle,bpm,rl,r2,r3,r4,elmin,elmax,e2min,e2max,...
e3min,e3max,edmin,edmax,m1,m2,m3,m4); %find acceleration waveforms

end

for k = 1:population_size
cost(k) = SSE(A1(k,:), A2(k,:)); %generate costs for each chromosome
end

% (want min cost to have highest prob)
cost_norm = max(cost) - cost; %invert high and low costs for mating
%probability. highest cost is eliminated from propagation

[cost_norm, cost_norm_ind] = sort(cost_norm,'descend’); %search population
%w/ "highest"” cost in first entry (lowest actual cost).

population = population(cost_norm_ind,:); %sort population w/ lowest cost
%first

max_obj(gen_count + 1) = max(cost); %contains min of initial population
min_obj(1) = min(cost); %contains min of initial population

mean_obj(1) = mean(cost_norm); %contains mean of initial population
mate_prob = cost_norm/sum(cost_norm); %probability normalization
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%% Main Loop
while (gen_count < gen_max)
gen_count = gen_count +1 %increment generation/loop counter
%Choose Mates:
M = offspring / 2; %number of parings
[matel, mate2] = Mates(mate_prob,M); %generate pairing vectors

cross_point = Cross(M,Pcross,Nbits_total); %generate pairing crossover
%points

%generate next generation's population
population = NextGen(population,elite,cross_point,matel,mate2);

%protect elite population from mutation:

for k = 1:elite
pop_temp(k) = population(k);
end

%Mutate Population:
mutation = Mutate(population,Pmute);

population = abs(population - mutation);
%toggle bit at specified location

%rewrite elite population

for k = 1:elite
population(k) = pop_temp(k);
end

%% Evaluate New Population for cost:

%Transform test cases to usable values and run through model function
for k = 1:population_size

population(k,1:param_len) = p1_bin; %copy reference phase into each

%chromosome

converted_parameter_list(k,:) = bin2fix(population(k,:),phase_min,...
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phase_max,n_param,phase_min,phase_max);

pl(k) = converted_parameter_list(k,1) %record region 1 timing values

p2(K) = converted_parameter_list(k,2) %record region 2 timing values

p3(K) = converted_parameter_list(k,3) %record region 3 timing values

p4(K) = converted_parameter_list(k,4) %record region 4 timing values
end

parfor k = 1:population_size
[AL(k,:), A2(k,:), A3(K,)), Ad(k,:)] = Scripted_GUI(p1(Kk),p2(k),...
p3(Kk),p4(k),step,cycle,bpm,rl,r2,r3,r4,elmin,elmax,e2min,e2max,...
e3min,e3max,edmin,edmax,m1,m2,m3,m4); %find acceleration waveforms

end

for k = 1:population_size
cost(k) = SSE(AL(k,:), A2(k,:)); %generate costs for each chromosome
end

%(want min cost to have highest prob)

cost_norm = max(cost) - cost; %invert high and low costs for mating
%probability. highest cost is eliminated from propagation

[cost_norm, cost_norm_ind] = sort(cost_norm,'descend’); %search population
%w/ "highest"” cost in first entry (lowest actual cost).

population = population(cost_norm_ind,:); %sort population w/ lowest cost
%first

max_obj(gen_count + 1) = max(cost); %contains min of current population
min_obj(gen_count + 1) = min(cost); %contains min of current population
mean_obj(gen_count + 1) = mean(cost_norm); %contains mean of current
%population normalized

mate_prob = cost_norm/sum(cost_norm); %probability normalization;

%% Early Stopping Criteria:

%increment stop counter if improvement not made in current generation
if( min_obj(gen_count) <= min_obj(gen_count+1) )
stop_count = stop_count + 1;
else
stop_count = 0;
end

if ((gen_count>gen_max) || min_obj(gen_count+1) <=0.01 || ...
stop_count == stop_gen )

break
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end

end %while

time = toc; %stop MATLAB Timer and display to command window
final_cost = cost(1); %record min cost from GA run

pl_best = p1(1); %record best timing value for region 1

p2_best = p2(1); %record best timing value for region 2

p3_best = p3(1); %record best timing value for region 3

p4_best = p4(1); %record best timing value for region 4

end
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D.2. GA Function Calls
D.2.1. bin2fix.m

%Peter Hettwer
%Thesis Work
%2 Parameter Binary to Unsigned Fixed Point Conversion

function Value = bin2fix(Bin,Min,Max,n_param,amp_min,amp_max)

%Take a binary number, Bin, and convert it to one value in the range of Min
% to Max and a second value in the range of amp_min to amp_max

[pop_size bits] = size(Bin); %obtain population size and number of bits
%in each chromosome from the binary matrix passed to the function.

param_length = bits/n_param; %obtain the bit lenght of each parameter
%from number of parameters contained within each chromosome.

temp_sum = zeros(pop_size,n_param); %contains the matrix of temporary sums
%to compute fixed point values for each parameter in each chromosome.

for n = 1:n_param %step through chromosome parameters
for k = 1:param_length %step through individual parameter bits
%compute sums for each parameter in each chromosome of the
%population in the range of 0 to (1-27(-bits)).
temp_sum(:,n) = temp_sum(:,n) + ...
2N(-(K))*Bin(:,((n-1)*param_length + k));
end

end

%Take normalized sum, scales to the desired range, and returns to the
%calling function.

Value(:,1) = Min + (Max - Min)*temp_sum(:,1); %value for p1

Value(:,2) = amp_min + (amp_max - amp_min)*temp_sum(:,2); %value for p2

end
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D.2.2. Bin2fix_4param.m

%Peter Hettwer
%Thesis Work
%Genetic Algorithm 4 Parameter Binary to Unsigned Fixed Point Conversion

function Value = bin2fix_4param(Bin,Min,Max,n_param,amp_min,amp_max)

%Take a binary number, Bin, and convert it to a value in the range of Min
% to Max. Code allows for varying the range of region 2 (region used for
% dyssynchrony test cases), but this functionality not used.

[pop_size bits] = size(Bin); %obtain population size and number of bits
%in each chromosome from the binary matrix passed to the function.

param_length = bits/n_param; %obtain the bit lenght of each parameter
%from number of parameters contained within each chromosome.

temp_sum = zeros(pop_size,n_param);%contains the matrix of temporary sums
%to compute fixed point values for each parameter in each chromosome.

for n = 1:n_param %step through chromosome parameters
for k = 1:param_length %step through individual parameter bits
%compute sums for each parameter in each chromosome of the
%population in the range of 0 to (1-27(-bits)).
temp_sum(:,n) = temp_sum(:,n) + ...
27(-(k))*Bin(:,((n-1)*param_length + k));
end

end

Value(:,1) = Min + (Max - Min)*temp_sum(:,1); %value for p1

Value(:,2) = amp_min + (amp_max - amp_min)*temp_sum(:,2); %value for p2
Value(:,3) = Min + (Max - Min)*temp_sum(:,3); %value for p3

Value(:,4) = Min + (Max - Min)*temp_sum(:,4); %value for p4

end
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D.2.3. Cross.m

%Peter Hettwer
%Thesis Work
%Crossover Selection Function

function crossOverPoint = Cross(nPairs, Pcross, bitsTotal)
%generate random crossover points for each pair of mating chromosomes
crossOverPoint = ceil(rand(1,nPairs)*(bitsTotal - 1))...
*(rand(1,nPairs) < Pcross);
%rounds up random number to be between 1 and Nbits_total. value used
%ito select crossover index. All crossover points selected at once.

for k = 1L:nPairs
%fail safe check to ensure no crossover point is zero (caused if
%rand returns 0). If such a case does occur (very rare), places
%that crossover point at the final bit position to allow proper
%indexing in calling code.
if(crossOverPoint(k) ==0)

crossOverPoint(k) = bitsTotal;

end

end

end
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D.2.4. fix2bin.m

%Peter Hettwer
%Thesis Work
%Generic Unsigned Fixed Point to Binary Conversion

function Value = fix2bin(Fix,Min,Max,bits)

%Take a number, Fix, in the range of Min to Max and convert it to a binary
%value with the supplied number of bits

temp = zeros(1,bits); %temporary vector to store binary bit values
norm = (Fix-Min)./(Max - Min); %normalized version of number supplied for
%conversion

for k = 1:bits %determine individual bit values starting with most
%significant bit
if( (norm - 2°(-(k))) > 0)

temp(k) = 1,

norm = norm - 2°*(-(k));
else

temp(k) = 0;
end

end

%Return the converted number as a binary string
Value = temp;

end
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D.2.5. initPopulation.m

%Peter Hettwer

%Thesis Work

%Initial Binary Population Creation
%Attempt 0

function initial_population = InitPopulation(populationSize, numBits)
%creates a random, binary population of the desired size and number of
%bits.

%generates random values of 0 or 1 for each position in a matrix of
%size populationSize by numBits.
initial_population = round(rand(populationSize,numBits));

end
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D.2.6. Mates.m

%Peter Hettwer
%Thesis Work
%Mate Selection

%generates two vectors, matel and mate 2 for GA chromosome crossover
%pairing selection based on supplied mating selection probability of each
%chromosome. Code allows for chromosome pairing with iteself.

%uses RandChooseN.m function developed by Jenna Carr. Available at:
%Citation:
%http://people.whitman.edu/~hundledr/courses/M350/RandChooseN.m

function [matel, mate2] = Mates(mating_prob, numMates)
matel = RandChooseN(mating_prob,numMates); %generate mating vector 1
mate2 = RandChooseN(mating_prob,numMates); %generate mating vector 2
end
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D.2.7. NextGen.m

%Peter Hettwer
%Thesis Work
%Next Generation Creation

function nextGeneration = NextGen(currentGen,numElite,crossPoint,matel,mate2)
%start at index values after the elite population to be saved from one
%population to the next.
genSize = size(currentGen); %determine size of current generation

%obtain population size from supplied current generation
popSize = genSize(1);

%obtain number of bits in each chromosome from supplied current
%generation
numBits = genSize(2);

%Rewrite current generation to next generation to save elite population
nextGeneration = currentGen;

%perform crossover of odd numbered current generation mating pairs at

%specified crossover point after elite population

nextGeneration((1+numElite):2:popSize,:) = ...
[currentGen(matel,1:crossPoint()) ...
currentGen(mate2,crossPoint()+1:numBits)];

%perform crossover of odd numbered current generation mating pairs at
%specified crossover point after elite population
nextGeneration((2+numElite):2:popSize,:) = ...
[currentGen(mate2,1:crossPoint()) ...
currentGen(matel,crossPoint()+1:numBits)];
end
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D.2.8. SeedRNG.m

%Peter Hettwer
%Thesis Work
%MATLAB RNG seeding function

%seeds MATLAB RNG to allow for reproducible results in any function
%requiring use of rand and randn functions.

function [] = SeedRNG(integer)
stream = RandStream('mt19937ar','Seed',integer);
RandStream.setDefaultStream(stream);

end
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D.2.9. SSE.m

%Peter Hettwer
%Thesis Work
%Sum Squared Error Optimization Function for 2 parameter optimization

function fit = SSE(ideal, experimental)

%ideal is the reference value, experimental is the value being optimized
diff = ideal - experimental;

fit = sum(diff.*2);

end
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D.2.10. SSE4.m

%Peter Hettwer
%Thesis Work
%Sum Squared Error Optimization Function for 4 parameter optimization

%ideal is the reference value (region 1), experiemntall is region 2,
%experimental?2 is region 3, and experimental3 is region4

function fit = SSE(ideal, experimentall, experimental2, experimental3)

diff1 = ideal - experimentall;

diff2 = ideal - experimental2;

diff3 = ideal - experimental3;

fit = sum((diff1.~2 + diff2./2 + diff3./2));
end
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D.2.11. Scripted_Initialization_no_dyss.m

% Scripted Initialization Functions
global r1 r2 r3 r4 m1 m2 m3 m4 elmin e2min e3min e4min elmax e2max e3max e4max bpm
step cycle t

%The Resistance Values (which ranges from 0.00001 - 0.0075)

rl =0.0015; r2 =0.0015; r3 =0.0015; r4 = 0.0015;

%r=0.00001 + (0.0075-0.00001).*rand; % random generator for the
%Resistance

%rl=r; r2=r; r3=r; rd=r,

%The Mass Values (which ranges from 0.0001 - 0.01)

m1 =0.001; m2 =0.001; m3 =0.001; m4 = 0.001;

%m= 0.0001 + (0.01-0.0001).*rand; % random generator for the masses
%ml=m; m2=m; m3=m; m4=m,

%The Min Elastance Values (which ranges from 1 - 5)
elmin=1; e2min=1; e3min=1; ed4min=1;
%emin=1 + (5-1).*rand; % random generator for the

%Min Elastance

%eminl=emin; emin2=emin; emin3=emin; emind4=emin;

%The Max Elastance Values (which ranges from 10 - 50)
elmax = 20; e2max = 20; e3max = 20; e4max = 20;

%emax= 10 + (50-10).*rand; % random generator for the
%Max Elastance

%emax1l=emax; emax2=emax; emax3=emax; emax4d=emax;

%Heart Perimeters
bpm = 60; step =0.001; cycle=5;

184



D.2.12. Scripted_Initialization_r2_dyss_0_015.m

% Scripted Initialization Functions
global r1 r2 r3 r4 m1 m2 m3 m4 elmin e2min e3min e4min elmax e2max e3max e4max bpm
step cycle t

%The Resistance Values (which ranges from 0.00001 - 0.0075)

rl =0.0015; r2 =0.015; r3 =0.0015; r4 = 0.0015;

%r=0.00001 + (0.0075-0.00001).*rand; % random generator for the
%Resistance

%rl=r; r2=r; r3=r; rd=r,

%The Mass Values (which ranges from 0.0001 - 0.01)

m1 =0.001; m2 =0.001; m3 =0.001; m4 = 0.001;

%m= 0.0001 + (0.01-0.0001).*rand; % random generator for the masses
%ml=m; m2=m; m3=m; m4=m,;

%The Min Elastance Values (which ranges from 1 - 5)
elmin=1; e2min=1; e3min=1; ed4min=1;
%emin=1 + (5-1).*rand; % random generator for the

%Min Elastance

%eminl=emin; emin2=emin; emin3=emin; emind4=emin;

%The Max Elastance Values (which ranges from 10 - 50)
elmax = 20; e2max = 20; e3max = 20; e4max = 20;

%emax= 10 + (50-10).*rand; % random generator for the
%Max Elastance

%emax1l=emax; emax2=emax; emax3=emax; emax4d=emax;

%Heart Perimeters
bpm = 60; step =0.001; cycle=5;
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D.2.13. Scripted_Initialization_m2_dyss_0_01.m

% Scripted Initialization Functions
global r1 r2 r3 r4 m1 m2 m3 m4 elmin e2min e3min e4min elmax e2max e3max e4max bpm
step cycle t

%The Resistance Values (which ranges from 0.00001 - 0.0075)

rl =0.0015; r2 =0.0015; r3 =0.0015; r4 = 0.0015;

%r=0.00001 + (0.0075-0.00001).*rand; % random generator for the
%Resistance

%rl=r; r2=r; r3=r; rd=r,

%The Mass Values (which ranges from 0.0001 - 0.01)

m1 =0.001; m2 =0.01; m3 = 0.001; m4 = 0.001,

%m= 0.0001 + (0.01-0.0001).*rand; % random generator for the masses
%ml=m; m2=m; m3=m; m4=m;

%The Min Elastance Values (which ranges from 1 - 5)
elmin=1; e2min=1; e3min=1; ed4min=1;
%emin=1 + (5-1).*rand; % random generator for the

%Min Elastance

%eminl=emin; emin2=emin; emin3=emin; emind4=emin;

%The Max Elastance Values (which ranges from 10 - 50)
elmax = 20; e2max = 20; e3max = 20; e4max = 20;

%emax= 10 + (50-10).*rand; % random generator for the
%Max Elastance

%emax1l=emax; emax2=emax; emax3=emax; emax4d=emax;

%Heart Perimeters
bpm = 60; step =0.001; cycle =5;

186



D.2.14. Scripted_Initialization_min_elas2_dyss_4.m

% Scripted Initialization Functions
global r1 r2 r3 r4 m1 m2 m3 m4 elmin e2min e3min e4min elmax e2max e3max e4max bpm
step cycle t

%The Resistance Values (which ranges from 0.00001 - 0.0075)

rl =0.0015; r2 =0.0015; r3 =0.0015; r4 = 0.0015;

%r=0.00001 + (0.0075-0.00001).*rand; % random generator for the
%Resistance

%rl=r; r2=r; r3=r; rd=r,

%The Mass Values (which ranges from 0.0001 - 0.01)

m1 =0.001; m2 =0.001; m3 =0.001; m4 = 0.001;

%m=0.0001 + (0.01-0.0001).*rand; % random generator for the masses
%ml=m; m2=m; m3=m; m4=m;

%The Min Elastance Values (which ranges from 1 - 5)
elmin=1; e2min=4; e3min=1; ed4min=1;
%emin=1 + (5-1).*rand; % random generator for the

%Min Elastance

%eminl=emin; emin2=emin; emin3=emin; emind=emin;

%The Max Elastance Values (which ranges from 10 - 50)
elmax = 20; e2max = 20; e3max = 20; e4max = 20;

%emax= 10 + (50-10).*rand; % random generator for the
%Max Elastance

%emax1l=emax; emax2=emax; emax3=emax; emax4d=emax;

%Heart Perimeters
bpm = 60; step =0.001; cycle =5;
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D.2.15. Scripted_Initialization_max_elas2_dyss_40.m

% Scripted Initialization Functions
global r1 r2 r3 r4 m1 m2 m3 m4 elmin e2min e3min e4min elmax e2max e3max e4max bpm
step cycle t

%The Resistance Values (which ranges from 0.00001 - 0.0075)

rl =0.0015; r2 =0.0015; r3 =0.0015; r4 = 0.0015;

%r=0.00001 + (0.0075-0.00001).*rand; % random generator for the
%Resistance

%rl=r; r2=r; r3=r; r4=r,

%The Mass Values (which ranges from 0.0001 - 0.01)

m1 =0.001; m2 =0.001; m3 =0.001; m4 = 0.001;

%m= 0.0001 + (0.01-0.0001).*rand; % random generator for the masses
%ml=m; m2=m; m3=m; m4=m,;

%The Min Elastance Values (which ranges from 1 - 5)
elmin=1; e2min=1; e3min=1; ed4min=1;
%emin=1 + (5-1).*rand; % random generator for the

%Min Elastance

%eminl=emin; emin2=emin; emin3=emin; emind4=emin;

%The Max Elastance Values (which ranges from 10 - 50)
elmax = 20; e2max = 40; e3max = 20; e4max = 20;

%emax= 10 + (50-10).*rand; % random generator for the
%Max Elastance

%emax1l=emax; emax2=emax; emax3=emax; emax4d=emax;

%Heart Perimeters
bpm = 60; step =0.001; cycle=5;

188



D.2.16. Scripted_Initialization_all_dyss_region2.m

% Scripted Initialization Functions
global r1 r2 r3 r4 m1 m2 m3 m4 elmin e2min e3min e4min elmax e2max e3max e4max bpm
step_size cycle t

%The Resistance Values (which ranges from 0.00001 - 0.0075)

rl =0.0015; r2 =0.0075; r3=0.0015; r4 =0.0015;

%r=0.00001 + (0.0075-0.00001).*rand; % random generator for the
%Resistance

%rl=r; r2=r; r3=r; rd=r,

%The Mass Values (which ranges from 0.0001 - 0.01)

m1 =0.001; m2 =0.01; m3 = 0.001; m4 = 0.001,

%m= 0.0001 + (0.01-0.0001).*rand; % random generator for the masses
%ml=m; m2=m; m3=m; m4=m,;

%The Min Elastance Values (which ranges from 1 - 5)
elmin=1; e2min=4; e3min=1; ed4min=1;
%emin=1 + (5-1).*rand; % random generator for the

%Min Elastance

%eminl=emin; emin2=emin; emin3=emin; emind4=emin;

%The Max Elastance Values (which ranges from 10 - 50)
elmax = 20; e2max = 40; e3max = 20; e4max = 20;

%emax= 10 + (50-10).*rand; % random generator for the
%Max Elastance

%emax1l=emax; emax2=emax; emax3=emax; emax4d=emax;

%Heart Perimeters
bpm = 60; step_size = 0.001; cycle =5;
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D.2.17. Scripted_Initialization_m2_dyss_0_01.m

% Scripted Initialization Functions
global r1 r2 r3 r4 m1 m2 m3 m4 elmin e2min e3min e4min elmax e2max e3max e4max bpm
step_size cycle t

%The Resistance Values (which ranges from 0.00001 - 0.0075)

rl =0.0015; r2 =0.0075; r3 =0.0025; r4 =0.0035;

%r=0.00001 + (0.0075-0.00001).*rand; % random generator for the
%Resistance

%rl=r; r2=r; r3=r; rd=r,

%The Mass Values (which ranges from 0.0001 - 0.01)

m1 =0.001; m2 =0.01; m3 = 0.005; m4 = 0.0075;

%m= 0.0001 + (0.01-0.0001).*rand; % random generator for the masses
%ml=m; m2=m; m3=m; m4=m;

%The Min Elastance Values (which ranges from 1 - 5)
elmin=1; e2min=4; e3min=3; e4min=>5;
%emin=1 + (5-1).*rand; % random generator for the

%Min Elastance

%eminl=emin; emin2=emin; emin3=emin; emind4=emin;

%The Max Elastance Values (which ranges from 10 - 50)
elmax = 20; e2max = 40; e3max = 30; e4max = 50;

%emax= 10 + (50-10).*rand; % random generator for the
%Max Elastance

%emax1l=emax; emax2=emax; emax3=emax; emax4d=emax;

%Heart Perimeters
bpm = 60; step_size = 0.001; cycle =5;
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D.3. Sinusoid Model Code

D.3.1. model_sin.m

%Peter Hettwer

%Thesis Work

%3 February 2015

%Simplified Model for Testing Optimization Algorithms

%"Walking" Sinusoids
%phase should be a value between 0 and 2pi

%generates two sine waves based on supplied parameters and noise range
function [sin_x, sin_y] = model_sin(seed, t, params, noise, freq_y)

%sets values of reference sinusoid

phase_x = 2;
amp_x=1;
freg x =1;

%Set default values for experimental parameters if not suplied.
if (nargin < 5)
freq_y = freq_x;

end

if (nargin < 4)
noise = 0.1;

end

if (nargin < 3)

phase_y = -pi + (pi - (-pi))*rand;
end
if (nargin < 2)

t = linspace(0, 1, 1000);

end

if (nargin < 1)
seed = 0;

end

amp_y = params(2);
phase_y = params(1);

%create noise profiles for each sinusoid randomly based on supplied noise
%standard deviation

noise_x = 1 + noise*randn(1,length(t));

noise_y =1 + noise*randn(1,length(t));
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%Create reference waveform.
W_X = 2*pi*freq_x;
sin_x =amp_X * sin(w_X.*t + phase_x) + noise_x;

%Create test waveform (modified by inputs to model by optimization
%algorithm).

w_y = 2*pi*freq_y;

sin_y =amp_y * sin(w_y.*t + phase_y) + noise_y;

end
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D.3.2. model_sin_plot.m
%Peter Hettwer

%Thesis Work

%3 February 2015

%Plot sinusoids based on supplied characteristics

function model_sin_plot(t, phase_y, amp_y, noise_x, noise_y)

%initialize reference sinusiod parameters

phase_Xx = 2;
amp_x=1;
freg x =1;

freq_y = freq_x;

%find min, max, and mean values for supplied parameter data sets
[min_phase_y, index_min_py] = min(phase_y);

[max_phase_y, index_max_py] = max(phase_y);

mean_phase_y = mean(phase_y);

[min_amp_y, index_min_ay] = min(amp_y);

[max_amp_y, index_max_ay] = max(amp_y);

mean_amp_y = mean(amp_y);

%Create reference waveform with noise.
w_X = 2*pi*freq_Xx;
sin_x =amp_Xx * sin(w_X.*t + phase_x) + noise_x;

%Create test waveforms (modified by inputs to model by optimization
%algorithm). Show waveforms based on searches for min/max values for each
%phase and amplitude and a final waveform based on the average values
%computed from each phase and amplitude

w_y = 2*pi*freq_y;

%sinusoid with noise created from data in set with minimum phase
sin_y_p_min =amp_y(index_min_py) * sin(w_y.*t + min_phase_y) + noise_y;
%sinusoid with noise created from data in set with maximum phase
sin_y_p_max = amp_y(index_max_py) * sin(w_y.*t + max_phase_y) + noise_y;
%sinusoid with noise created from data in set with minimum amplidude
sin_y a _min=min_amp_y * sin(w_y.*t + phase_y(index_min_ay)) + noise_y;
%sinusoid with noise created from data in set with maximum amplitude
sin_y a _max = max_amp_y * sin(w_y.*t + phase_y(index_max_ay)) + noise_y;
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%sinusoid with noise created from averaged amplitude and phase data
sin_y avg = mean_amp_y * sin(w_y.*t + mean_phase_y) + noise_y;

%reference sinusoid without noise
sin_x_2 =amp_x * sin(w_X.*t + phase_x);

%plot of noisy sinusoids

figure

plot(t,sin_x,".b'",t,sin_x_2,'0);
legend('sample noisy signal’,'ideal’,1);
xlabel(‘time’);

ylabel(‘amplitude”);

title('Sample of signal corrupted by noise’);

sin_x =amp_x * sin(w_x.*t + phase_x);

%sinusoid without noise created from data in set with minimum phase
sin_y_p_min = amp_y(index_min_py) * sin(w_y.*t + min_phase_y);
%sinusoid without noise created from data in set with maximum phase
sin_y _p_max =amp_y(index_max_py) * sin(w_y.*t + max_phase_y);
%sinusoid without noise created from data in set with minimum amplidude
sin_y _a min =min_amp_y * sin(w_y.*t + phase_y(index_min_ay));
%sinusoid without noise created from data in set with maximum amplitude
sin_y a max = max_amp_y * sin(w_y.*t + phase_y(index_max_ay));
%sinusoid without noise created from averaged amplitude and phase data
sin_y_avg = mean_amp_y * sin(w_y.*t + mean_phase_y);

%plot of sinusiods without noise

figure

plot(t,sin_x,".b",t,sin_y p_min,'g't,sin_y p_max,'r'tsin_y a min,'k',t,sin_y a max,'c\tsin_y av
9."9);

legend(‘ideal’,'min phase','max phase’,'min ampl’,'max ampl','avg’,1);

xlabel(‘time);

ylabel(‘amplitude”);

title('GA Solution vs. Ideal Solution shown w/o Noise";

end
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APPENDIX E. EXHAUSTIVE SEARCH CODE

E.1. Exhaustive Search: 2 Parameter

Exhaustive_Search_CD_A.m

%Peter Hettwer
%Exhaustive Search Method
%For use with CD Model, 2 parameter (1 reference, 1 search)

%Code to execute exhaustive search operations for the various 2 parameter
%dyssynchrony sets shown in the corrisponding thesis appendix section.

%Prior to execution, user or user generated script file should open a

Y%parallel MATLAB workstation with the following command:
%matlabpool(‘open',4); where the number is the number of MATLAB cores
%desired to run. Maximum Number of cores is dictated by the number of
%physical cores on the computer running MATLAB. After execution, the user
%or a user generated script file should close the parallel MATLAB
%workstation with the following command: matlabpool(‘close’).

function [] = Exhaustive_Search_CD_A(file, num_points, noise)
global r1 r2 r3 r4 m1 m2 m3 m4 elmin e2min e3min e4min elmax e2max...
e3max edmax bpm step_size cycle t

tic; %ostart MATLAB timer to measure how long search takes

%Scripted_Initialization; %this CD model parameter initialization file is
%needed if this code is not called from a script file previously calling
%the initialization file.

ti = O:step_size:1; %set period time values based on desired step size;
%used to create acceleration wave plots.

cost = zeros(1,num_points); %create vector of cost values of length
%determined at run-time by user

%Vector of region 1 acceleration wave forms
Al = zeros(num_points, length(ti));
%Vector of region 2 acceleration wave forms
A2 = zeros(num_points, length(ti));
%Vector of region 3 acceleration wave forms
A3 = zeros(num_points, length(ti));
%Vector of region 4 acceleration wave forms
A4 = zeros(num_points, length(ti));
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pl =1; %region 1 timing is assumed as reference,

p2 = linspace(0,2*pi,num_points); %region 2 is being searched
p3 = pl; %region 3 is tied to region 1

p4 = pl; %region 4 is tied to region 1

parfor k = 1:num_points; %Parallel for loop to speed up code execution
%compute acceleration wave forms for regional timing values
[ALl(k,), A2(k,:), A3(k,:), Ad(k,:)] = Scripted_GUI(p1,p2(Kk),p3,...
p4,step_size,cycle,bpm,rl,r2,r3,r4,elmin,elmax,e2min,e2max,...
e3min,e3max,e4min,edmax,m1l,m2,m3,m4);
%compute cost value for current set of acceleration wave forms
cost(k) = SSE(AL(k,:), A2(k,));
end

%find minimum cost value and index value in region 2

[min_cost index] = min(cost);

p2_best_fit = p2(index) %find the best value for region 2 timing
run_time = toc %stop MATLAB Timer and display to command window

save(file); %save to user defined filename

end
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E.2. Exhaustive Search: 4 Parameter

Exhaustive_Search_CD_4param_A.m

%Peter Hettwer
%Exhaustive Search Method
%For use with CD Model, 2 parameter (1 reference, 3 search)

%Code to execute exhaustive search operations for the various 4 parameter
%dyssynchrony sets shown in the corrisponding thesis appendix section.

%Prior to execution, user or user generated script file should open a

%parallel MATLAB workstation with the following command:
%matlabpool(‘open',4); where the number is the number of MATLAB cores
%desired to run. Maximum Number of cores is dictated by the number of
%physical cores on the computer running MATLAB. After execution, the user
%or a user generated script file should close the parallel MATLAB
%workstation with the following command: matlabpool(‘close’).

function [] = Exhaustive_Search_CD_4param_A(file, num_points,...
num_runs, noise)

global r1 r2 r3 r4 m1 m2 m3 m4 elmin e2min e3min e4min elmax e2max...
e3max edmax bpm step_size cycle t

tic; %start MATLAB timer to measure how long search takes

%Scripted_lInitialization; %this CD model parameter initialization file is
%needed if this code is not called from a script file previously calling
%the initialization file.

ti = O:step_size:1; %set period time values based on desired step size;
%used to create acceleration wave plots.

cost = zeros(1,num_points); %create cost vector for all cost values over
%range for region 2 for a given value for each region 3 and region 4.

range_min = 0; %eminimum starting value for search space
range_max = 2*pi; %maximum starting value for search space

i_low =range_min; %minimum starting value for one searched variable
i_high = range_max; %maximum starting value for one searched variable
J_low =range_min; %minimum starting value for second searched variable
j_high =range_max; %maximum starting value for second searched variable
k_low =range_min; %minimum starting value for third searched variable
k_high = range_max; %maximum starting value for third searched variable
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%Vector of region 1 acceleration wave forms
Al = zeros(num_points, length(ti));
%Vector of region 2 acceleration wave forms
A2 = zeros(num_points, length(ti));
%Vector of region 3 acceleration wave forms
A3 = zeros(num_points, length(ti));
%Vector of region 4 acceleration wave forms
A4 = zeros(num_points, length(ti));

%initial search ranges

pl =1; %region 1 timing is assumed as reference,

p2 = linspace(range_min,range_max,num_points) %region 2 is being optimized
p3 = linspace(range_min,range_max,num_points) %region 3 is being optimized
p4 = linspace(range_min,range_max,num_points) %region 4 is being optimized

for r = 1:num_runs; %implements search 'zoom' feature.
%Zooms for user selected number of times,

cost_min = NaN; %resets minumum cost at onset of each zoom cycle

%creates new min and max search space values if not initial run
if(r~=1)

%create new p2, p3, and p4 test vectors

if(index_i==1)
%if lowest best fit == index 1, keep same lower bound as
%previous.

i_low =i_low;
else

i_low = p4(index_i-1);
end
if(index_j==1)

%if lowest best fit == index 1, keep same lower bound as
%previous.
j_low =j_low;

else

j_low = p3(index_j-1);
end
if(index_k==1)

%if lowest best fit == index 1, keep same lower bound as
%previous.
k_low =k_low;
else
k_low = p2(index_k-1);
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end

if(index_i==num_points)
%if highest best fit == max index value, keep same lower bound
%as previous.
i_high =i_high;
else
i_high = p4(index_i+1);
end

if(index_j==num_points)
%if highest best fit == max index value, keep same lower bound
%as previous.

j_high =j_high;
else

j_high = p3(index_j+1);
end

if(index_k==num_points)
%if highest best fit == max index value, keep same lower bound
%as previous.

k_high = k_high;
else

k_high = p2(index_k+1);
end

p2 = linspace(k_low,k_high,num_points) %new region 2 range
p3 = linspace(j_low,j_high,num_points) %new region 3 range
p4 = linspace(i_low,i_high,num_points) %new region 4 range

end

for i = 1:num_points; %iterates through region 4 values
for j = 1:num_points; %itterates through region 3 values
parfor k = 1:num_points; %parallel itteration through
%region 2 values
%compute acceleration wave forms for regional timing values
[ALl(k,), A2(Kk,)), A3(K,:), Ad(k,:)] = Scripted_GUI(p1,...
p2(k),p3(j),p4(i),step_size,cycle,bpm,rl,r2,r3,r4,...
elmin,elmax,e2min,e2max,e3min,e3max,e4min,e4dmax,mil,...
m2,m3,m4);
%compute cost value for current set of acceleration wave
%forms
cost(k) = SSE4(AL(k,:), A2(k,:), A3(k,:), Ad(k,:));
end
%check and record if any newly computed cost values are the new
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%minimum, replace old minimum value and region indices as
%needed.
if((min(cost)<cost_min) || isnan(cost_min))
[cost_min index_K] = min(cost)
index_i =i
index_j=]j
% else
% i
% i
end
end
end
end

[min_cost index] = min(cost); %record minumum cost as standardized
%variable for plotting scripts
p2_best_fit = p2(index_k) %record best region 2 value as standardized
%variable for plotting scripts
p3_best_fit = p3(index_j) %record best region 3 value as standardized
%variable for plotting scripts
p4_best_fit = p4(index_i) %record best region 4 value as standardized
%variable for plotting scripts

run_time = toc %stop MATLAB Timer and display to command window
save(file); %save to user defined filename

end
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E.3. Exhaustive Search: 2 Parameter, R2 Cost Curve

Same code as Exhaustive_Search_CD_A.m shown previously.
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E.4. Exhaustive Search: 2 Parameter, R3 Cost Curve

Exhaustive_Search_CD_A3.m

%Peter Hettwer
%Exhaustive Search Method
%For use with CD Model, 2 parameter (1 reference, 1 search)

%Code to Create the Cost Curve for Region 3 of the CD Model.
%Regions 1, 2, and 4 are held constant and equal.

%Prior to execution, user or user generated script file should open a

%parallel MATLAB workstation with the following command:
%matlabpool(‘open',4); where the number is the number of MATLAB cores
%desired to run. Maximum Number of cores is dictated by the number of
%physical cores on the computer running MATLAB. After execution, the user
%or a user generated script file should close the parallel MATLAB
%workstation with the following command: matlabpool(‘close’).

function [] = Exhaustive_Search_CD_A3(file, num_points, noise)
%global variables as required by CD Model Code
global r1 r2 r3 r4 m1 m2 m3 m4 elmin e2min e3min ...

edmin elmax e2max e3max e4max bpm step_size cycle t

tic; %start MATLAB timer to measure how long search takes

%Scripted_lInitialization; %this CD model parameter initialization file is
%needed if this code is not called from a script file previously calling
%the initialization file.

ti = O:step_size:1; %set period time values based on desired step size;
%used to create acceleration wave plots.

cost = zeros(1,num_points); %create vector of cost values of length
%determined at run-time by user

%Vector of region 1 acceleration wave forms
Al = zeros(num_points, length(ti));
%Vector of region 2 acceleration wave forms
A2 = zeros(num_points, length(ti));
%Vector of region 3 acceleration wave forms
A3 = zeros(num_points, length(ti));
%Vector of region 4 acceleration wave forms
A4 = zeros(num_points, length(ti));

pl =1; %region 1 timing is assumed as reference,
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p2 = pl; %region 2 is tied to region 1
p3 = linspace(0,2*pi,num_points); %region 3 is being searched
p4 = pl; %region 4 is tied to region 1

parfor k = 1:num_points; %Parallel for loop to speed up code execution
%compute acceleration wave forms for regional timing values
[AL(k,:), A2(k,:), A3(K,)), Ad(k,:)] = Scripted_GUI(p1,p2,p3(K),p4,...
step_size,cycle,bpm,rl,r2,r3,r4,elmin,elmax,e2min,e2max,e3min,...
e3max,edmin,edmax,ml1l,m2,m3,m4);

%compute cost value for current set of acceleration wave forms
cost(k) = SSE4(AL(k,:), A2(k,:), A3(k,:), Ad(Kk,));
end

%find minimum cost value and index value in region 3
[min_cost index] = min(cost);

p3_best_fit = p3(index) %find the best value for region 3 timing
run_time = toc %stop MATLAB Timer and display to command window

save(file); %save to user defined filename
end

203



E.5. Exhaustive Search: 2 Parameter, R4 Cost Curve

Exhaustive_Search_CD_A4.m

%Peter Hettwer
%Exhaustive Search Method
%For use with CD Model, 2 parameter (1 reference, 1 search)

%Code to Create the Cost Curve for Region 4 of the CD Model.
%Regions 1, 2, and 3 are held constant and equal.

%Prior to execution, user or user generated script file should open a

%parallel MATLAB workstation with the following command:
%matlabpool(‘open',4); where the number is the number of MATLAB cores
%desired to run. Maximum Number of cores is dictated by the number of
%physical cores on the computer running MATLAB. After execution, the user
%or a user generated script file should close the parallel MATLAB
%workstation with the following command: matlabpool(‘close’).

function [] = Exhaustive_Search_CD_A4(file, num_points, noise)
%global variables as required by CD Model Code
global r1 r2 r3 r4 m1 m2 m3 m4 elmin e2min e3min...

edmin elmax e2max e3max e4max bpm step_size cycle t

tic; %start MATLAB timer to measure how long search takes

%Scripted_Initialization; %this CD model parameter initialization file is
%needed if this code is not called from a script file previously calling
%the initialization file.

ti = O:step_size:1; %set period time values based on desired step size;
%used to create acceleration wave plots.

cost = zeros(1,num_points); %create vector of cost values of length
%determined at run-time by user

%Vector of region 1 acceleration wave forms
Al = zeros(num_points, length(ti));
%Vector of region 2 acceleration wave forms
A2 = zeros(num_points, length(ti));
%Vector of region 3 acceleration wave forms
A3 = zeros(num_points, length(ti));
%Vector of region 4 acceleration wave forms
A4 = zeros(num_points, length(ti));

pl =1; %region 1 timing is assumed as reference,
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p2 = pl; %region 2 is tied to region 1
p3 = pl; %region 3 is tied to region 1
p4 = linspace(0,2*pi,num_points); %region 4 is being searched

parfor k = 1:num_points; %Parallel for loop to speed up code execution
%compute acceleration wave forms for regional timing values
[Al(k,)), A2(k,:), A3(k,:), Ad(k,:)] = Scripted_GUI(p1,p2,p3,p4(K),...
step_size,cycle,bpm,rl,r2,r3,r4,elmin,elmax,e2min,e2max,e3min,...
e3max,edmin,edmax,m1,m2,m3,m4);
%compute cost value for current set of acceleration wave forms
cost(k) = SSE4(AL(k,:), A2(k,:), A3(k,:), Ad(Kk,));
end

%find minimum cost value and index value in region 4
[min_cost index] = min(cost);

p4_best_fit = p4(index) %find the best value for region 4 timing

run_time = toc %stop MATLAB Timer and display to command window
save(file); %save to user defined filename

end
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E.6. Exhaustive Search: 4 Parameter, R3 & R4 Cost Surface

Exhaustive_Search_CD_4param_A34.m

%Peter Hettwer
%Exhaustive Search Method
%For use with CD Model, 4 parameter (1 reference, 3 search)

%Code to Create the Cost Surface for varying Regions 3 & 4 of the CD Model.
%Regions 1, and 2 are held constant and equal.

%Prior to execution, user or user generated script file should open a

%parallel MATLAB workstation with the following command:
%matlabpool(‘open',4); where the number is the number of MATLAB cores
%desired to run. Maximum Number of cores is dictated by the number of
%physical cores on the computer running MATLAB. After execution, the user
%or a user generated script file should close the parallel MATLAB
%workstation with the following command: matlabpool(‘close’).

function [] = Exhaustive_Search_CD_4param_A34(file, num_points, ...
num_runs, noise)

global r1 r2 r3 r4 m1 m2 m3 m4 elmin e2min e3min e4min elmax e2max ...
e3max edmax bpm step_size cycle t

tic; %start MATLAB timer to measure how long search takes

%Scripted_lInitialization; %this CD model parameter initialization file is
%needed if this code is not called from a script file previously calling
%the initialization file.

ti = O:step_size:1; %set period time values based on desired step size;
%used to create acceleration wave plots.

range_min = 0; %minimum starting value for search space
range_max = 2*pi; Y%omaximum starting value for search space

i_low =range_min; %minimum starting value for one searched variable
i_high = range_max; %maximum starting value for one searched variable
j_low = range_min; %minimum starting value for second searched variable
j_high = range_max; %maximum starting value for second searched variable
k_low = range_min; %minimum starting value for third searched variable,
%not used for this modified code

k_high = range_max; %maximum starting value for third searched variable,
%not used for this modified code

%Vector of region 1 acceleration wave forms
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Al = zeros(num_points, length(ti));
%Vector of region 2 acceleration wave forms
A2 = zeros(num_points, length(ti));
%Vector of region 3 acceleration wave forms
A3 = zeros(num_points, length(ti));
%Vector of region 4 acceleration wave forms
A4 = zeros(num_points, length(ti));

%initial search ranges

pl =1; %region 1 timing is assumed as reference,

p2 = pl; %region 2 is tied to region 1

p3 = linspace(range_min,range_max,num_points) %region 3 is being searched
p4 = linspace(range_min,range_max,num_points) %region 4 is being searched

% cost = zeros(num_points,num_points);
cost = zeros(50,50);

for r = 1:num_runs; %implements search 'zoom' feature.
%Zooms for user selected number of times,
%feature not utilized in this search. i.e. num_runs = 1 for creating
%cost surface

cost_min = NaN; %resets minumum cost at onset of each zoom cycle

%creates new min and max search space values if not initial run
if(r~=1)

%create new p2, p3, and p4 test vectors after initial run
if(index_i==1)
%if lowest best fit == index 1, keep same lower bound as
%previous.
i_low=1i_low;
else
i_low = p4(index_i-1);
end

if(index_j==1)
%if lowest best fit == index 1, keep same lower bound as
%previous.
j_low =j_low;

else

j_low = p3(index_j-1);
end
if(index_k==1)

%if lowest best fit == index 1, keep same lower bound as
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%previous.

k_low =k _low;
else

k_low = p2(index_k-1);
end

if(index_i==num_points)
%if highest best fit == max index value, keep same lower bound
%as previous.
i_high =i_high;
else
i_high = p4(index_i+1);
end

if(index_j==num_points)
%if highest best fit == max index value, keep same lower bound
%as previous.

j_high =j_high;
else

j_high = p3(index_j+1);
end

if(index_k==num_points)
%if highest best fit == max index value, keep same lower bound
%as previous.

k_high = k_high;
else

k_high = p2(index_k+1);
end

p3 = linspace(j_low,j_high,num_points) %new region 3 range
p4 = linspace(i_low,i_high,num_points) %new region 4 range

end

for i = 135:185; %creating surface directly around "best" values,
%spacing determined using 1001 points between 0 and 2pi
parfor j = 135:185;
%compute acceleration wave forms for regional timing values
[AL(),:), A2(j,)), A3(},:), A4(j,:)] = Scripted_GUI(p1,p2,...
p3(j),p4(i),step_size,cycle,bpm,rl,r2,r3,r4,elmin,elmax,...
e2min,e2max,e3min,e3max,e4min,e4max,ml,m2,m3,m4);
%compute cost value for current set of acceleration wave forms
cost(j,i) = SSE4(AL(j,:), A2(j,)), A3(],:), A4(,));
end
end
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end

min_cost = min(min(cost)); %determine minimum cost for tested values
[index_j index_i] = find(cost==min_cost); %find indices for tested regions
p2_best_fit = p2 %best value for region 2. Region 2 was fixed.
p3_best_fit = p3(index_j) %best value for region 3

p4_best_fit = p4(index_i) %best value for region 4

run_time = toc %stop MATLAB Timer and display to command window
save(file); %save to user defined filename

end
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APPENDIX F. GA SEARCH VARIATIONS FOR WALKING SINUSOID

MODEL

210



F.1. Single Parameter Optimizations

Figure F-1:
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Figure F-2: Noise Level Representation for Single Parameter, No Noise GA Optimization

of Walking Sinusoid Model
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Sinusoid Model w/ new noise added for each individual comparison to objective function.
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F.2. Two Parameter Optimization
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Figure F-6: Noise Level Representation for Two Parameter, No Noise GA Optimization of
Walking Sinusoid Model
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Multi Parameter (Phase & Amplitude),
Single Additive Noise: Noise = 2 sd
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Figure F-7: Noise Level Representation for Two Parameter, 2 Std. Deviation Noise GA
Optimization of Walking Sinusoid Model
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Figure F-8: Two Parameter, 2 Std. Deviation Noise GA Optimization of Walking Sinusoid
Model w/ new noise added for each individual comparison to objective function.
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APPENDIX G. CARDIAC DYSSYNCHRONY MODEL CODE!

The CD model is not strictly clinical in nature; however, that being said, it does provide a
stepping stone by which to judge the merits of different optimization algorithms and schemes

prior to using more advanced, and computationally intensive models.

! The cardiac dyssynchrony model shown in this appendix was originally developed by a
team lead by Dr. Dan Ewert, professor of electrical and computer engineering of NDSU
specializing in cardiovascular engineering and research, and consisted of Sam Oguyemi, McNair
scholar and undergraduate student of mechanical engineering of NDSU, and a group of senior
design students at Iron Range Engineering for the purpose of having a graphical user
representation of CD for use as a visual aid in classroom instruction on CD and creating an
objective set of metrics to measure CD. Assisted by Sam Oguyemi, Peter Hettwer created the
shell function Scripted_GUI.m and the parameter initialization file Scripted_Initialization.m to
allow model operation without a user interactive graphical user interface (GUI) and accept four
relative firing phases from an optimization algorithm after which, it calculates and returns the
accelerations of the four left ventricular regions for use in the optimization algorithm creating a
closed loop test platform. Peter Hettwer then used the CD model with the optimization
algorithms he designed to obtain the data utilized in this thesis.
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G.1. Scripted_GUI.m

This code is the base function called within an optimization algorithm to generate regional
acceleration waveforms from generated regional phase timings.

% Script GUI

function [A1,A2,A3,A4] = Scripted_GUI(P1,P2,P3,P4,step_size,cycle,bpm,...
r1,r2,r3,r4,elmin,elmax,e2min,e2max,e3min,e3max,e4min,e4max,mi,mz2,...
m3,m4)

%global t1 t2 t3 t4

%Calling the Initialization Script

%step = 1/1000;

%Phase Transformation

t1 = ((1/(bpm/60))/(2*pi))*P1;
t2 = ((1/(bpm/60))/(2*pi))*P2;
t3 = ((1/(bpm/60))/(2*pi))*P3;
t4 = ((1/(bpm/60))/(2*pi))*P4;

% Caling the Dyss Function
[11,12,13,14] = dyss1(step_size,cycle,bpm,rl,r2,r3,r4,elmin,elmax,e2min,...
e2max,e3min,e3max,e4min,e4max,ml,m2,m3,m4,t1,t2 t3,t4);

%The Acceleration Values

Aal = nineptder1(l1,step_size);

Aa2 = nineptder1(12,step_size);

Aa3 = nineptder1(13,step_size);

Aa4 = nineptder1(14,step_size);

%Method of extrating the last elements at equilibrium
period_length = 1/step_size;

Al = Aal(length(Aal)-period_length:length(Aal));
A2 = Aa2(length(Aa2)-period_length:length(Aa2));
A3 = Aa3(length(Aa3)-period_length:length(Aa3));
A4 = Aa4(length(Aad)-period_length:length(Aa4));
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G.2. Scripted_Initialization.m

This function declares and initializes the values for the mechanical model parameters in
each of the four model regions.

% Scripted Initialization Functions
global r1 r2 r3 r4 m1 m2 m3 m4 elmin e2min e3min e4min elmax e2max ...
e3max edmax bpm step_size cycle t

%The Resistance Values (which ranges from 0.00001 - 0.015)
rl =0.0015; r2 =0.0015; r3 =0.0015; r4 =0.0015;

%The Mass Values (which ranges from 0.0001 - 0.01)
m1=0.001; m2 = 0.001; m3 = 0.001; m4 = 0.001;

%The Min Elastance Values (which ranges from 1 - 5)
elmin=1; e2min=1; e3min=1; e4min=1;

%The Max Elastance Values (which ranges from 10 - 50)
elmax = 20; e2max = 20; e3max = 20; edmax = 20;

%Heart Perimeters
bpm = 60; step_size = 0.001; cycle =5;
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G.3. dyssl.m
This file handles model interaction with a MATLAB ordinary differential equation (ode) solver.

%Awesome script to run dyssynchrony

function [I1, 12, 13, 14] = dyss1(step,cycle,bpm,rl,r2,r3,r4,elmin,...
elmax,e2min,e2max,e3min,e3max,e4min,e4max,ml,m2,m3,m4,t1,t2 t3,t4)

%global rl1 r2 r3 r4 elmin elmax e2min e2max e3min e3max e4min e4max m1l ...

%m2 m3 m4 t1 t2 t3 t4 step cycle bpm t

t = O:step:cycle;

min_e =.5;

volume = 10;

pressure = volume*min_e;
OPTIONS=o0deset('MaxStep',1e-4);

[a2 b2]=0de23s(@ejection,t,[pressure O pressure 0 0 O pressure volume ...
volume 0 0 pressure pressure 0 0 6 100 volume volume min_erlr2r3 ...
r4 m1 m2 m3 m4],0PTIONS,[rl r2 r3 r4 elmin elmax e2min e2max e3min ...
e3max e4min edmax m1 m2 m3 m4 t1 t2 t3 t4 bpm]);

pel=Db2(:,1);
11 =b2(:,2);
pe2=b2(:,3);
12 = b2(:,4);

li = b2(:,5);

lo = b2(:,6);
LVP=b2(:,7);
V1="0b2(:8);
V2 =b2(:,9);
Vi = b2(;,10);
Vo =b2(:,11);
pe3=b2(:,12);
ped=b2(:,13);
13 = b2(:;,14);
14 = b2(:,15);
LAP=b2(:,16);
AoP=b2(:,17);
V3 =b2(:;,18);
V4 =b2(:,19);
W =b2(:,20);
R1 =Db2(:,21);
R2 =b2(:,22);
R3 =Db2(:,23);
R4 =b2(:,24);
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M1 = b2(:,25);
M2 = b2(:,26);
M3 = b2(:,27);
M4 = b2(:,28);

assignin(‘base’, 's', step);
t=1;
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G.4. ejection.m

This function defines the differential equations used within the MATLAB ode solver.

%This is ejecting stacked model

function [dy] = ejection(t,y,z)
global di1
%defining variables
pel =y(1);
11 =y(2);
pe2 = y(3);
12 = y(4);

li =y(5);

lo = y(6);
LVP = y(7);
V1=y(8);
V2 =y(9);
Vi =y(10);
Vo = y(11);
pe3d = y(12);
ped = y(13);
13 = y(14);
14 = y(15);
LAP = y(16);
AoP =y(17);
V3 =y(18);
V4 = y(19);
W =y(20);
R1= y(21);
R2=y(22);
R3=y(23);
R4=y(24);
M1 = y(25);
M2 = y(26);
M3 = y(27);
M4 = y(28);
%EL = y(29);
%E2 = y(30);
%E3 = y(31);
%E4 = y(32);

%resistance dyssynchrony for each section of the heart
rl=z(1);
r2=z(2);
r3=2(3);
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r4 =z(4),

%elastance dyssynchrony for each section of the heart
elmin=z(5);

elmax=z(6);

e2min=z(7);

e2max=z(8);

e3min=z(9);

e3max=z(10);

edmin=z(11);

edmax=z(12);

% el=elmax-elmin;

% e2=e2max-e2min;

% e3= e3max-e3min;

% e4= edmax-e4min;

%mass dyssynchrony for each section of the heart
ml = z(13);

m2 = z(14);

m3 = z(15);

m4 = z(16);

%timing dyssynchrony for each section of the heart
tl =z(17);
t2 = z(18);
t3 = z(19);
t4 = z(20);

%heart beats per minute
bpm = z(21);

% Defining constants

kl=rl; %This is really resistance 1
k2 =r2; %This is really resistance 2
k3 =r3; %This is really resistance 3
k4 =r4; %This is really resistance 4
Ri=.01;

Ro =.01;

mi = .0002;

mo = .0002;

%LAP = 10;

%A0P = 100;

Clvp =.0001;

ml=m1l;

m2 = m2,

m3 = m3;
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m4 = m4;
Rs = 2.5;
Cv =100;
Ca=20;

% Attain time varying parameters

[el del] = getk(t+tl,elmin,elmax,bpm);

[e2 de2] = getk(t+t2,e2min,e2max,bpm);% for dyssynchrony create second offset elastance
[e3 de3] = getk(t+t3,e3min,e3max,bpm);

[e4 ded] = getk(t+t4,e4min,edmax,bpm);

% Writing differential equations

dpel = el*(I1+pel*(1/(e1)*2*del)); % next four for elastance

%dpe2 = el*(12+pe2*(1/el)2*del);

dpe2 = e2*(12+pe2*(1/e2)"2*de2); % switch percent to the one above for dyssnchrony
dpe3 = e3*(13+pe3*(1/e3)"2*de3);

dped = ed*(14+ped*(1/ed4)"2*ded);

dil = (I/m1)*(LVP-pel-(k1*LVP)*I1); % flow for next four for mass
dI2 = (1/m2)*(LVP-pe2-(k2*LVP)*12);
diI3 = (1/m3)*(LVP-pe3-(k3*LVP)*13);
dl4 = (1/m4)*(LVP-ped-(k4d*LVP)*14);

% if (LVP>A0P)

% Ro=.1;

% else

% Ro=1e3;

% end
D0=20*(-(.15/(.15+exp(-6*10)))+1);

dlo = (1/mo)*(LVP-AoP-(Ro+Do)*l0); % next two for flow in/flow out
% if (LAP>LVP)

% Ri=.1;

% else

% Ri=1e3;

% end

Di=20*(-(.15/(.15+exp(-6*1i)))+1);

dli = (/mi)*(LAP-LVP-(Ri+Di)*li);

llvp = li-lo-11-12-13-14; % flow balance
dLVP = (1/Clvp)*llvp; % for the capacitor

dLAP=(li-((AoP-LAP)/Rs))/-CV;
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dAoP=(lo-((AoP-LAP)/Rs))/Ca;

%w = LVP*(V1+V2+V3+V4)  %work
dW = LVP*(11+12+13+14);

%Elastic power for each heart segment (ideal)
% dwel=-e1*V1*11*.00013;
% dwe2=-e2*V2*12*.00013;
% dwe3=-e3*V3*13*.00013;
% dwed=-e4*V4*14*,00013;

%Power disipated by myocardial resistance (dash pot)
dwrl=k1*LVP*1172*.00013;
dwr2=k2*LVP*12/2*.,00013;
dwr3=k3*LVP*1372*.00013;
dwr4=k4*LVP*1472*,00013;

%Derivative of the Power disipated by myocardial resistance
%ewr1=[0 diff(dwrl)];
%ewr2=[0 diff(dwr2)];
%ewr3=[0 diff(dwr3)];
%ewr4=[0 diff(dwr4)];

%Kinetic power of the mass of the heart
dwk1=m1*11*9.81*10"-5;
dwk2=m2*12*9.81*10"-5;
dwk3=m3*13*9.81*10"-5;
dwk4=m4*14*9.81*10"-5;

%w1 = (Vi*lir2/2 + Vi*(LAP-Ri*i) - Vo*1072/2 - Vo*(AoP-R0*10))/(V1+V2)

dy =
[dpel;dil;dpe2;di2;dli;dlo;dLVP;11;12;li;10;dpe3;dpe4;d13;d14;dLAP;dAoP;I13;14;del;dwrl;dwr
2;dwr3;dwr4;dwk1;dwk2;dwk3;dwk4]; %ewrl;ewr2;ewr3;ewr4];

%The dy Solves for the integral of the inputted variables

%Q= diff (R1);
end

% function setGlobalAal(dll)

% global Aal
% Aal=dll
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G.5. getk.m

This function generates elastance waveforms from supplied min and max elastance
values.

function [k,dk] = getk(t,Emin,Emax,bpm)

% global beat
% global t_old
t = mod(t,60/bpm);

a=1; %scales normal distribution to 1

b=.5*60/bpm; % centers the mean at 1/2 of the cycle

c=.23*b; %makes the spread of curve to 50% duty cycle
k=(Emax-Emin)*a*exp(-(t-b).”2 /(2*c.*2))+Emin;
dk=(Emax-Emin)*a*exp(-(t-b).”2 /(2*c."2)).*(-2*(t-b)/(2*C."2));

% % create elastance waveform

% t = mod(t,60/bpm);

% q = (Emax-Emin)*sin(2*pi*t*(60/bpm));

% w = .5*square(2*pi*t*(60/bpm)) + .5;

% k = q.*w + Emin;

% % t

%

% % create derivative of elastance waveform

%

%

% % this creates 5 points centered on k, and then offset by k-2, k-1, k+1,
% % and k+2... Add these together with weighting function to get 5 pt der.
%

% dq = 2*pi*(60/bpm)*(Emax-Emin)*cos(2*pi*t*(60/bpm));

% dw = .5*square(2*pi*t*(60/bpm)) + .5;

% dk = dg.*dw;

end
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G.6. nineptderl.m

This function computes specific derivatives for various data vectors within the model.
function [dxdt]=nineptderl1(x,dt)

% Computes the derivative using algoritm from Numerical Analysis, 2ed.,
% Burden, Faires, Reynolds; pg.130

% fiveptder(x,fs)

% X is the input signal for derivative calculation

% fs is the sampling frequency

% computes numerical derivative dx/dt

%dt = 1/dt;

%We need the time derivative of AoF so what follows is a numerical
%?5-point derivative

dxdt=ones(length(x),1);

a=length(x);

dxdt(1)=(x(2)-x(1))/dt;
dxdt(2)=(x(3)-x(2))/dt;
dxdt(a-1)=(x(a-1)-x(a-2))/dt;
dxdt(a)=(x(a)-x(a-1))/dt;

% 5 point Derivative for the third and fourth points

fori=3:4
dxdt(i)=[1/(12*dt)] * [x(i-2) - 8*x(i-1) + 8*x(i+1) - x(i+2)];
end

% 5 point Derivative for the third and fourth points from the end

fori=a-3:a-2
dxdt(i)=[1/(12*dt)] * [x(i-2) - 8*x(i-1) + 8*x(i+1) - X(i+2)];
end

% 9 point Derivative

for i = 5:length(x)-4

dxdt(i)=[1/(840*dt)] * [3*X(i-4) - 32*x(i-3) + 168*X(i-2) - 672*x(i-1)...
+ 672*x(i+1) - 168*x(i+2) + 32*x(i+3) - 3*x(i+4) |;

% previous algoritm is from Numerical Analysis, 2ed., Burden, Faires,

% Reynolds; pg.130

end
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