

INDIVIDUALIZED CARDIAC RESYNCHRONIZATION THERAPY:

NEXT GENERATION PACEMAKER CONTROLS

A Thesis

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Peter Jacob Hettwer

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Department:

Electrical and Computer Engineering

November 2015

Fargo, North Dakota

North Dakota State University

Graduate School

Title

INDIVIDUALIZED CARDIAC RESYNCHRONIZATION THERAPY: NEXT

GENERATION PACEMAKER CONTROLS

 By

Peter Jacob Hettwer

 The Supervisory Committee certifies that this disquisition complies with North Dakota State

University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

 Dr. Roger Green

 Co-Chair

Dr. Dan Ewert

 Co-Chair

Dr. Mark Jensen

 Approved:

 18 November 2015 Dr. Scott Smith

 Date Department Chair

iii

ABSTRACT

Cardiac dyssynchrony (CD) causes some heart muscle regions to contract at different

times, and current treatments do not help 30 – 50% of patients. In this thesis, multi-site pacing

control schemes are created to quantitatively and automatically reduce the CD of ventricular wall

accelerations by adjusting pacing times. Two and four left ventricular region models are

investigated containing model variables that represent numerous muscle parameters.

Optimization is performed using exhaustive search and genetic algorithm techniques, with

particular attention paid to the latter with regard to development, parameter selection, and

limitations. Relative to treatments firing all regions simultaneously, timing adjustment improves

acceleration CD by up to 56%. Furthermore, simulations also demonstrate improvements to

dyssynchronous region power generation and workload by up to 50% and up to 15% decrease in

healthy region workload. Thus, the current model indicates it may be possible to improve

acceleration CD by adjustments to regional firing times.

iv

ACKNOWLEDGEMENTS

I would like to give special thanks to my advisor, Dr. Green, for his continued and

consistent support and review of my work along with my family and close friends, without which

I likely wouldn’t have finished this endeavor. I would also like to extend thanks to my co-

advisor, Dr. Ewert, for the conversations that sparked my research path, Dr. Jensen for his

enthusiasm and willingness to be an external contributor, Sam Ogunyemi for his assistance in

adapting his cardiac dyssynchrony model to allow interactions with my work, and Andrew

Taylor for his assistance in paper editing.

v

DEDICATION

This work is dedicated to my family, close friends, and the love of my life who have been pillars

of support through the challenges of life and graduate school.

vi

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

DEDICATION .. v

LIST OF TABLES ... xiii

LIST OF FIGURES ... xiv

LIST OF ABBREVIATIONS ... xvii

LIST OF APPENDIX FIGURES... xix

1. INTRODUCTION ... 1

1.1. Thesis Statement ... 1

1.2. Introduction of Cardiac Function, Cardiac Dyssynchrony, Cardiac Pacing, and Cardiac

Resynchronization Therapy... 2

1.2.1. Cardiac Function... 2

1.2.2. Cardiac Dyssynchrony .. 5

1.2.3. Cardiac Pacing .. 5

1.2.4. Shortfalls of Current Pacing Techniques .. 6

1.2.5. Cardiac Resynchronization Therapy .. 8

1.3. Introduction of Genetic Algorithms .. 10

1.3.1. History of Genetic Algorithms ... 10

1.3.2. Introduction of Genetic Algorithms ... 10

1.3.3. Operation of a Basic Genetic Algorithm .. 13

2. GENETIC ALGORITHMS AS THE NEXT STEP IN PACEMAKER CONTROL

SYSTEMS... 16

2.1. GA Terms, Operators, and Options ... 16

2.1.1. Chromosomes ... 17

vii

2.1.2. Genes .. 17

2.1.3. Populations ... 17

2.1.4. Generations ... 18

2.1.5. Mating Operations .. 18

2.1.5.1. Roulette Wheel... 18

2.1.5.2. Tournament Selection .. 20

2.1.5.3. Rank Selection ... 20

2.1.6. Additional Selection Criteria .. 21

2.1.6.1. Elitism .. 21

2.1.6.2. Steady-State Selection ... 22

2.1.6.3. Generation Gap .. 22

2.1.7. Crossover Operations ... 22

2.1.7.1. Single Point Crossover ... 23

2.1.7.2. Multiple Point Crossover ... 23

2.1.7.3. Uniform Crossover... 24

2.1.8. Mutation Operations ... 24

2.1.8.1. Binary Encoded Mutations .. 25

2.1.8.2. Value Encoded Mutations .. 25

2.1.9. GA Encoding Scheme .. 26

2.1.9.1. Binary Encoded GAs ... 26

2.1.9.1.1. Binary Coded Decimal (BCD) .. 27

2.1.9.1.2. Binary Grey Codes .. 27

2.1.9.2. Value Encoded GAs ... 27

2.1.10. Optimization Function .. 28

2.1.11. Stop Conditions .. 28

viii

2.2. GA Parameters .. 29

2.2.1. Population Size ... 29

2.2.2. Mutation Rate ... 31

2.2.3. Crossover Rate .. 32

2.3. GA Parameters in Context of Cardiac Dyssynchrony: Mapping the Problem 33

2.4. Walking Sinusoids Test Model ... 35

2.4.1. Walking Sinusoid Model .. 35

2.4.2. GA Operation w/ Walking Sinusoid Model ... 38

2.4.3. Parameter Definitions and Declarations: Walking Sinusoid Model 39

3. EXHAUSTIVE SEARCH ... 40

3.1. Exhaustive Search Algorithms .. 40

3.1.1. 2 Parameter Exhaustive Search .. 40

3.1.2. 4 Parameter Exhaustive Search .. 41

3.2. Parameter Definitions and Declarations .. 42

4. CARDIAC DYSSYNCHRONY MODEL .. 44

4.1. “Realistic” Cardiac Dyssynchrony Model .. 44

4.2. GA Operation with “Realistic” CD Model ... 45

5. RESULTS .. 47

5.1. Walking Sinusoids... 47

5.2. “Realistic” CD Model ... 47

5.2.1. Select Trial Data ... 48

5.2.2. GA Search Cases: Tables .. 60

5.2.3. Exhaustive Search Cases: Tables .. 61

5.2.4. No Timing Adjustment: Tables ... 61

5.2.5. Optimization Function Fitness Surface .. 62

ix

5.2.6. Additional GA Investigation .. 67

5.2.6.1. Additional GA Trials: Tables.. 67

5.2.6.2. GA Investigation: Contour Plot Representations .. 68

5.2.7. Combined GA and Exhaustive Search Timing Comparisons 75

5.2.7.1. 2 Parameter Timing Box and Whisker Plot ... 77

5.2.7.2. 4 Parameter Timing Box and Whisker Plot ... 79

5.2.7.3. Varied GA Parameters Box and Whisker Plot ... 81

6. DISCUSSION .. 83

6.1. Interpreting the Walking Sinusoid Model GA Search Data .. 83

6.2. Discussion and Analysis of CD Model Testing .. 83

6.2.1. CD Model Validation ... 84

6.2.2. Cardiac Pressure-Volume Characteristics .. 85

6.2.3. Acceleration and Timing Characteristics ... 86

6.2.4. Regional Work and Power Plots ... 87

6.2.5. Interpreting the CD Model GA Search Data .. 88

6.2.6. Interpreting the Exhaustive Search Data .. 92

7. CONCLUSIONS.. 93

7.1. GA Conclusions .. 93

7.2. Exhaustive Search Conclusions .. 96

7.3. Future Work .. 96

8. WORKS CITED .. 100

APPENDIX A. PLOTS OF GA SEARCH VARIATIONS FOR CD MODEL 103

A.1. No Dyssynchrony ... 104

A.2. Resistance Dyssynchrony ... 107

A.3. Mass Dyssynchrony ... 109

x

A.4. Minimum Elastance Dyssynchrony.. 111

A.5. Maximum Elastance Dyssynchrony ... 113

A.6. Population Size Variation: No Dyssynchrony... 115

A.7. Mutation Rate Variation: No Dyssynchrony ... 119

APPENDIX B. PLOTS OF VARIOUS EXHAUSTIVE SEARCH VARIATIONS FOR CD

MODEL .. 122

B.1. No Dyssynchrony ... 123

B.2. Resistance Dyssynchrony ... 126

B.3. Mass Dyssynchrony .. 128

B.4. Minimum Elastance Dyssynchrony .. 130

B.5. Maximum Elastance Dyssynchrony ... 132

B.6. Combined Dyssynchrony (all dyssynchrony)... 134

APPENDIX C. PLOTS OF NO TIMING ADJUSTMENT FOR CD MODEL (ALL TIMES

ARE EQUAL) ... 136

C.1. No Dyssynchrony ... 137

C.2. Resistance Dyssynchrony ... 140

C.3. Mass Dyssynchrony .. 142

C.4. Minimum Elastance Dyssynchrony .. 144

C.5. Maximum Elastance Dyssynchrony ... 146

C.6. Combined Dyssynchrony (all dyssynchrony)... 148

APPENDIX D. GA CODE .. 150

D.1. GA Base Code Sets .. 150

D.1.1. GA 2 Parameter Automation Code: 3 fixed, 1 variable .. 150

D.1.2. GA 2 Parameter Automation Code: 2 fixed, 2 variable .. 152

D.1.3. GA 4 Parameter Automation Code .. 154

D.1.4. GA 2 Parameter Base Code: 3 fixed, 1 variable ... 156

xi

D.1.5. GA 2 Parameter Base Code: 2 fixed, 2 variable ... 162

D.1.6. GA 4 Parameter Base Code ... 168

D.2. GA Function Calls .. 174

D.2.1. bin2fix.m .. 174

D.2.2. Bin2fix_4param.m ... 175

D.2.3. Cross.m .. 176

D.2.4. fix2bin.m .. 177

D.2.5. initPopulation.m... 178

D.2.6. Mates.m ... 179

D.2.7. NextGen.m ... 180

D.2.8. SeedRNG.m ... 181

D.2.9. SSE.m .. 182

D.2.10. SSE4.m .. 183

D.2.11. Scripted_Initialization_no_dyss.m .. 184

D.2.12. Scripted_Initialization_r2_dyss_0_015.m ... 185

D.2.13. Scripted_Initialization_m2_dyss_0_01.m ... 186

D.2.14. Scripted_Initialization_min_elas2_dyss_4.m .. 187

D.2.15. Scripted_Initialization_max_elas2_dyss_40.m ... 188

D.2.16. Scripted_Initialization_all_dyss_region2.m .. 189

D.2.17. Scripted_Initialization_m2_dyss_0_01.m ... 190

D.3. Sinusoid Model Code ... 191

D.3.1. model_sin.m... 191

D.3.2. model_sin_plot.m .. 193

APPENDIX E. EXHAUSTIVE SEARCH CODE .. 195

E.1. Exhaustive Search: 2 Parameter .. 195

xii

E.2. Exhaustive Search: 4 Parameter .. 197

E.3. Exhaustive Search: 2 Parameter, R2 Cost Curve ... 201

E.4. Exhaustive Search: 2 Parameter, R3 Cost Curve ... 202

E.5. Exhaustive Search: 2 Parameter, R4 Cost Curve ... 204

E.6. Exhaustive Search: 4 Parameter, R3 & R4 Cost Surface .. 206

APPENDIX F. GA SEARCH VARIATIONS FOR WALKING SINUSOID MODEL 210

F.1. Single Parameter Optimizations.. 211

F.2. Two Parameter Optimization .. 213

APPENDIX G. CARDIAC DYSSYNCHRONY MODEL CODE ... 215

G.1. Scripted_GUI.m ... 216

G.2. Scripted_Initialization.m .. 217

G.3. dyss1.m ... 218

G.4. ejection.m ... 220

G.5. getk.m ... 224

G.6. nineptder1.m ... 225

xiii

LIST OF TABLES

Table Page

1: Walking Sinusoid Model Test Data .. 47

2: Trial Data, New vs. Old CD Model Parameters ... 49

3: 2 Parameter GA Search Case Results for CD Model ... 60

4: 4 Parameter GA Search Case Results for CD Model ... 60

5: 2 Parameter Exhaustive Search Case Results for CD Model 61

6: 4 Parameter Exhaustive Search Case Results for CD Model 61

7: 2 Parameter No Adjustment Case Results for CD Model... 61

8: 4 Parameter No Adjustment Case Results for CD Model... 62

9: GA Varied Population Size Trials .. 67

10: GA Varied Mutation Rate Trials... 67

xiv

LIST OF FIGURES

Figure Page

1: Figure of Muscle Structure. Modified from [35] under free use license. 4

2: NIH Diagram of 1 and 2 lead pacemaker lead placement [34]. 2nd ventricular

lead for CRT pacing would be located on the LV free wall. Arrow added to

show location of 3rd lead for CRT pacing. ... 9

3: Generic GA Flowchart .. 15

4: Generic GA Representation of Population Components and Operations 17

5: GA Roulette Wheel Selection Criteria .. 19

6: Roulette Wheel for Relative Fitness Selection of Mating Probabilities 19

7: GA Tournament Selection .. 20

8: GA Rank Selection Criteria .. 21

9: Roulette Wheel for Rank Selection of Mating Probabilities 21

10: GA Single Point Crossover ... 23

11: GA Multiple Point Crossover ... 24

12: GA Uniform Crossover ... 24

13: GA Binary Encoded Mutation .. 25

14: Flow Chart for MATLAB Implemented Genetic Algorithm 37

15: Visual Representation of Cardiac Dyssynchrony Model .. 38

16: Visualization of 4 Parameter Exhaustive Search Zoom Feature 42

17: PV Loop, No Dyssynchrony, ES vs. No Adjustment ... 50

18: PV Loop, Maximum Elastance Dyssynchrony, ES vs. No Adjustment 50

19: Wiggers Diagram, No Dyssynchrony, ES vs. No Adjustment 51

20: Wiggers Diagram, Maximum Elastance Dyssynchrony, ES vs. No Adjustment 51

21: Acceleration Plot with Firing Times, ES, ND (1,3), New CD Model 52

xv

22: Acceleration Plot with Firing Times, NA, ND (1,3), New CD Model 52

23: Acceleration Plot with Firing Times, ES, EmaxD (1,3), New CD Model 53

24: Acceleration Plot with Firing Times, NA, EmaxD (1,3), New CD Model 53

25: Zoomed Firing Times, ES, ND (1,3), New CD Model ... 54

26: Zoomed Firing Times, NA, ND (1,3), New CD Model .. 54

27: Zoomed Firing Times, ES, EmaxD (1,3), New CD Model .. 55

28: Zoomed Firing Times, NA, EmaxD (1,3), New CD Model 55

29: Work Plot with Firing Times, ES, ND (1,3), New CD Model 56

30: Work Plot with Firing Times, NA, ND (1,3), New CD Model 56

31: Work Plot with Firing Times, ES, EmaxD (1,3), New CD Model 57

32: Work Plot with Firing Times, NA, EmaxD (1,3), New CD Model 57

33: Instantaneous Power Plot with Firing Times, ES, ND (1,3), New CD Model 58

34: Instantaneous Power Plot with Firing Times, NA, ND (1,3), New CD Model 58

35: Instantaneous Power Plot with Firing Times, ES, EmaxD (1,3), New CD

Model .. 59

36: Instantaneous Power Plot with Firing Times, NA, EmaxD (1,3), New CD

Model .. 59

37: Cost Curve for Region 3 Timing Changes .. 63

38: Log10(Cost) Curve for Region 3 Timing Changes Zoomed.. 63

39: Cost Curve for Region 4 Timing Changes .. 64

40: Log10(Cost) Curve for Region 4 Timing Changes Zoomed.. 64

41: 3D Cost Contour for Timing Changes in Regions 3 and 4 ... 65

42: Top View Cost Contour for Timing Changes in Regions 3 and 4 65

43: 3D Log10(Cost) Contour for Timing Changes in Regions 3 and 4 66

44: Top View Log10(Cost) Contour for Timing Changes in Regions 3 and 4 66

xvi

45: Overall GA Parameter Variation Cost Comparison, Region 2 Values

Truncated to 1 ... 68

46: GA Population Size = 48 Individual Run Cost Comparison, Region 2 Values

Truncated to 1 for Comparison ... 69

47: GA Population Size = 72 Individual Run Cost Comparison, Region 2 Values

Truncated to 1 for Comparison ... 70

48: GA Population Size = 96 Individual Run Cost Comparison, Region 2 Values

Truncated to 1 for Comparison ... 71

49: GA Population Size = 120 Individual Run Cost Comparison, Region 2 Values

Truncated to 1 for Comparison ... 72

50: GA Mutation Rate = 1% Individual Run Cost Comparison, Region 2 Values

Truncated to 1 for Comparison ... 73

51: GA Mutation Rate = 5% Individual Run Cost Comparison, Region 2 Values

Truncated to 1 for Comparison ... 74

52: GA Mutation Rate = 10% Individual Run Cost Comparison, Region 2 Values

Truncated to 1 for Comparison ... 75

53: 2 Parameter Box and Whisker Plot Multiple Trials: GA vs. Exhaustive Search 77

54: 2 Parameter Box and Whisker Plot Multiple Trials: GA vs. Exhaustive Search

Zoomed ... 78

55: 4 Parameter Box and Whisker Plot Multiple Trials: GA vs. Exhaustive Search 79

56: 4 Parameter Box and Whisker Plot Multiple Trials: GA vs. Exhaustive Search

Zoomed ... 80

57: 4 Parameter Box and Whisker Plot Multiple Trials: GA Variations 81

58: 4 Parameter Box and Whisker Plot Multiple Trials: GA Variations Zoomed 82

xvii

LIST OF ABBREVIATIONS

A ...Atrial

AF ..Atrial Fibrillation

AV ..Atrio-Ventricular

AP or APnAdjusted Parameter (for region n)

CD ..Cardiac Dyssynchrony

Cn ...Chromosome number n

CO or COxxCardiac Output (for condition xx)

CRT ..Cardiac Resynchronization Therapy

EF or EFxxEjection Fraction (for condition xx)

EmaxD or EmaxDMaximum Elastance Dyssynchrony

EminD or EminDMinimum Elastance Dyssynchrony

ES ...Exhaustive Search

Fig ..Figure

GA ..Genetic Algorithm

Gen ...Generation

LA ..Left Atrium

LV ..Left Ventricle

MD ...Mass Dyssynchrony

MN ...Added Noise

N ...New

NA ..No Adjustment

N/A ...Not Applicable

ND ..No Dyssynchrony

NN ..No Noise

xviii

O ...Old

Pgenx Population for generation number x

RA ..Right Atrium

Ref ..Reference

RD ..Resistance Dyssynchrony

RV ..Right Ventricle

R2D ...Region 2, All Dyssynchrony

R234DRegions 2, 3, and 4, All Dyssynchrony

SA ..Sino-Atrial

SD ..Standard Deviations

txx,n Time for condition xx, region n

tNxxn Normalized time for condition xx, region n

V ...Ventricular

%Δ ..Percent Change

xix

LIST OF APPENDIX FIGURES

Figure Page

A-1: No Dyssynchrony (3, 1) Acceleration for GA Search 10 runs averaged 104

A-2: No Dyssynchrony (3,1) Timing for GA Search 10 runs ... 104

A-3: No Dyssynchrony (2, 2) Acceleration for GA Search 10 runs averaged 105

A-4: No Dyssynchrony (2,2) Timing for GA Search 10 runs ... 105

A-5: No Dyssynchrony (1, 3) Acceleration for GA Search 10 runs averaged 106

A-6: No Dyssynchrony (1,3) Timing for GA Search 10 runs ... 106

A-7: Resistance Dyssynchrony (3, 1) Acceleration for GA Search 10 runs averaged 107

A-8: Resistance Dyssynchrony (3,1) Timing for GA Search 10 runs 107

A-9: Resistance Dyssynchrony (1, 3) Acceleration for GA Search 10 runs averaged 108

A-10: Resistance Dyssynchrony (1,3) Timing for GA Search 10 runs 108

A-11: Mass Dyssynchrony (3, 1) Acceleration for GA Search 10 runs averaged 109

A-12: Mass Dyssynchrony (3,1) Timing for GA Search 10 runs 109

A-13: Mass Dyssynchrony (1, 3) Acceleration for GA Search 10 runs averaged 110

A-14: Mass Dyssynchrony (1,3) Timing for GA Search 10 runs 110

A-15: Min Elastance Dyssynchrony (3, 1) Acceleration for GA Search 10 runs avg 111

A-16: Min Elastance Dyssynchrony (3,1) Timing for GA Search 10 runs 111

A-17: Min Elastance Dyssynchrony (1, 3) Acceleration for GA Search 10 runs avg 112

A-18: Min Elastance Dyssynchrony (1,3) Timing for GA Search 10 runs 112

A-19: Max Elastance Dyssynchrony (3, 1) Acceleration for GA Search 10 runs avg 113

A-20: Max Elastance Dyssynchrony (3,1) Timing for GA Search 10 runs 113

A-21: Max Elastance Dyssynchrony (1, 3) Acceleration for GA Search 10 runs avg 114

A-22: Minimum Elastance Dyssynchrony (1,3) Timing for GA Search 10 runs 114

xx

A-23: No Dyssynchrony (1, 3) Acceleration for GA Search 10 Runs Avg, Pop Size =

48... 115

A-24: No Dyssynchrony (1,3) Timing for GA Search 10 Runs, Population Size = 48 115

A-25: No Dyssynchrony (1, 3) Acceleration for GA Search 10 Runs Avg, Pop Size =

72... 116

A-26: No Dyssynchrony (1,3) Timing for GA Search 10 Runs, Pop Size = 72 116

A-27: No Dyssynchrony (1, 3) Acceleration for GA Search 10 Runs Avg, Pop Size =

96... 117

A-28: No Dyssynchrony (1,3) Timing for GA Search 10 Runs, Pop Size = 96 117

A-29: No Dyssynchrony (1, 3) Acceleration for GA Search 10 Runs Avg, Pop Size =

120... 118

A-30: No Dyssynchrony (1,3) Timing for GA Search 10 Runs, Pop Size = 120 118

A-31: No Dyssynchrony (1, 3) Acceleration for GA Search 10 Runs Avg, Mutation

Rate = 0.01 (1%) ... 119

A-32: No Dyssynchrony (1,3) Timing for GA Search 10 Runs, Mutation Rate = 0.01

(1%)... 119

A-33: No Dyssynchrony (1, 3) Acceleration for GA Search 10 Runs Avg, Mutation

Rate = 0.05 (5%) ... 120

A-34: No Dyssynchrony (1,3) Timing for GA Search 10 Runs, Mutation Rate = 0.05

(5%)... 120

A-35: No Dyssynchrony (1, 3) Acceleration for GA Search 10 Runs Avg, Mutation

Rate = 0.10 (10%) ... 121

A-36: No Dyssynchrony (1,3) Timing for GA Search 10 Runs, Mutation Rate = 0.10

(10%)... 121

B-1: No Dyssynchrony (3, 1) Acceleration for Exhaustive Search 123

B-2: No Dyssynchrony (3,1) Timing for Exhaustive Search .. 123

B-3: No Dyssynchrony (2, 2) Acceleration for Exhaustive Search 124

B-4: No Dyssynchrony (2,2) Timing for Exhaustive Search .. 124

B-5: No Dyssynchrony (1, 3) Acceleration for Exhaustive Search 125

xxi

B-6: No Dyssynchrony (1, 3) Acceleration for Exhaustive Search 125

B-7: Resistance Dyssynchrony (3, 1) Acceleration for Exhaustive Search 126

B-8: Resistance Dyssynchrony (3,1) Timing for Exhaustive Search 126

B-9: Resistance Dyssynchrony (1, 3) Acceleration for Exhaustive Search 127

B-10: Resistance Dyssynchrony (1,3) Timing for Exhaustive Search 127

B-11: Mass Dyssynchrony (3, 1) Acceleration for Exhaustive Search 128

B-12: Mass Dyssynchrony (3,1) Timing for Exhaustive Search .. 128

B-13: Mass Dyssynchrony (1, 3) Acceleration for Exhaustive Search 129

B-14: Mass Dyssynchrony (1,3) Timing for Exhaustive Search .. 129

B-15: Min Elastance Dyssynchrony (3, 1) Acceleration for Exhaustive Search 130

B-16: Min Elastance Dyssynchrony (3,1) Timing for Exhaustive Search 130

B-17: Min Elastance Dyssynchrony (1, 3) Acceleration for Exhaustive Search 131

B-18: Min Elastance Dyssynchrony (1,3) Timing for Exhaustive Search 131

B-19: Max Elastance Dyssynchrony (3, 1) Acceleration for Exhaustive Search 132

B-20: Max Elastance Dyssynchrony (3,1) Timing for Exhaustive Search 132

B-21: Max Elastance Dyssynchrony (1, 3) Acceleration for Exhaustive Search 133

B-22: Max Elastance Dyssynchrony (1,3) Timing for Exhaustive Search 133

B-23: All Dyssynchrony Region 2 (1, 3) Acceleration for Exhaustive Search 134

B-24: All Dyssynchrony Region 2 (3,1) Timing for Exhaustive Search 134

B-25: All Dyssynchrony Regions 2, 3, and 4 (1, 3) Acceleration for Exhaustive

Search .. 135

B-26: All Dyssynchrony Regions 2, 3, and 4 (3,1) Timing for Exhaustive Search 135

C-1: No Dyssynchrony (3, 1) Acceleration for No Adjustment ..137

C-2: No Dyssynchrony (3,1) Timing for No Adjustment ... 137

C-3: No Dyssynchrony (2, 2) Acceleration for No Adjustment 138

xxii

C-4: No Dyssynchrony (2,2) Timing for No Adjustment ... 138

C-5: No Dyssynchrony (1, 3) Acceleration for No Adjustment 139

C-6: No Dyssynchrony (1,3) Timing for No Adjustment ... 139

C-7: Resistance Dyssynchrony (3, 1) Acceleration for No Adjustment 140

C-8: Resistance Dyssynchrony (3,1) Timing for No Adjustment 140

C-9: Resistance Dyssynchrony (1, 3) Acceleration for No Adjustment 141

C-10: Resistance Dyssynchrony (1,3) Timing for No Adjustment 141

C-11: Mass Dyssynchrony (3, 1) Acceleration for No Adjustment 142

C-12: Mass Dyssynchrony (3,1) Timing for No Adjustment ... 142

C-13: Mass Dyssynchrony (1, 3) Acceleration for No Adjustment 143

C-14: Mass Dyssynchrony (1,3) Timing for No Adjustment ... 143

C-15: Min Elastance Dyssynchrony (3, 1) Acceleration for No Adjustment 144

C-16: Min Elastance Dyssynchrony (3,1) Timing for No Adjustment 144

C-17: Min Elastance Dyssynchrony (1, 3) Acceleration for No Adjustment 145

C-18: Min Elastance Dyssynchrony (1,3) Timing for No Adjustment 145

C-19: Max Elastance Dyssynchrony (3, 1) Acceleration for No Adjustment 146

C-20: Max Elastance Dyssynchrony (3,1) Timing for No Adjustment 146

C-21: Max Elastance Dyssynchrony (1, 3) Acceleration for No Adjustment 147

C-22: Max Elastance Dyssynchrony (1,3) Timing for No Adjustment 147

C-23: All Dyssynchrony Region 2 (1, 3) Acceleration for No Adjustment 148

C-24: All Dyssynchrony Region 2 (3,1) Timing for No Adjustment 148

C-25: All Dyssynchrony Regions 2, 3, and 4 (1, 3) Acceleration for No Adjustment 149

C-26: All Dyssynchrony Regions 2, 3, and 4 (3,1) Timing for No Adjustment 149

F-1: Single Parameter, No Noise GA Optimization of Walking Sinusoid Model 211

xxiii

F-2: Noise Level Representation for Single Parameter, No Noise GA Optimization

of Walking Sinusoid Model .. 211

F-3: Noise Level Representation for Single Parameter, 2 Std. Deviation Noise GA

Optimization of Walking Sinusoid Model .. 212

F-4: Single Parameter, 2 Std. Deviation Noise GA Optimization of Walking

Sinusoid Model w/ new noise added for each individual comparison to

objective function.. 212

F-5: Two Parameter, No Noise GA Optimization of Walking Sinusoid Model 213

F-6: Noise Level Representation for Two Parameter, No Noise GA Optimization

of Walking Sinusoid Model .. 213

F-7: Noise Level Representation for Two Parameter, 2 Std. Deviation Noise GA

Optimization of Walking Sinusoid Model .. 214

F-8: Two Parameter, 2 Std. Deviation Noise GA Optimization of Walking Sinusoid

Model w/ new noise added for each individual comparison to objective

function. .. 214

1

1. INTRODUCTION

1.1. Thesis Statement

Current CRT devices rely on patient/physician interactions in an attempt to set the proper

pacemaker timing(s). An automatically tuned, multi-site pacing control device alleviates the need

for manual, post-operation adjustment by a physician and should help to reduce the non-response

rate in patients requiring CRT by adapting itself to the patient’s individual needs. It is

hypothesized that a multi-site pacing control scheme can be created via an optimization

algorithm to reduce cardiac dyssynchrony (CD) by adjusting regional pacing times based on

ventricular wall accelerations.

One optimization method investigated is exhaustive search. Exaustive searches create a

grid of search points over the entirety of a search space and select the best solution based on

some metric of performance. Another optimization method investigated is the genetic algorithm

(GA). GAs are a stochastic method borrowing selection principles from biologic evolution to

select and favor better performing solutions.

GAs think of problems as “black boxes” in that, they do not care how the problem works,

but rather only concern themselves with the set of control knobs that can be adjusted, and a

singular metric of how well those control knob positions “solve” the problem [22]. This unique

feature allows them to find solutions to problems some other optimization methods cannot

handle due to lack of objective function and search space continuity, linearity, derivatives, or

other necessary features [8, 32].

Exhaustive search is a brute force search that tests and quantitatively evaluates all

possible solutions within a specified search space to find the best one. In the case of problems

with a continuous set of possible solution values, the search space is broken into a discrete subset

2

of values that can be tested and evaluated for the best solution within that subset. Exhaustive

searching is generally used in cases when no efficient method is known to arrive at the best

solution or as the standard by which to evaluate the ability of another search method to arrive at

the best solution.

The intellectual merit of this research is that, presently, no pacemaker employs either a

self-adjusting or multi-site pacing control algorithm for the treatment of CD. This research has

the potential to advance cardiac resynchronization therapy (CRT). This work takes the first step

in using ventricular wall acceleration from a CD model to develop a multi-site pacing control

algorithm to quantitatively and automatically determine an optimal set of regional pacing times

individualized to the model parameters at the time of control system initialization. This work

does not investigate continuously adaptive techniques. A secondary goal of this thesis is to give

an in depth tutorial of Genetic Algorithms, their creation, and their potential in solving a

complex, biological system problem.

1.2. Introduction of Cardiac Function, Cardiac Dyssynchrony, Cardiac Pacing, and

Cardiac Resynchronization Therapy

1.2.1. Cardiac Function

The heart is a complex electromechanical system in which muscle contraction is

coordinated by an electrical stimulus from either the brain via the nervous system, or from one of

the secondary firing nodes. (These nodes are known as the atrio-ventricular, AV, node and the

sino-atrial, SA, node.) The structure and operation is summarized from [21]. Cardiac muscle is

unique in that it is striated, like skeletal muscle, but involuntary, like smooth muscle. Like

skeletal muscle, cardiac muscle is organized in a hierarchy with the muscle fiber being the base

3

cellular unit. Each fiber contains many parallel contractile structures known as myofibrils with

each myofibril being further segmented into sarcomeres. Sarcomeres in turn, contain actin and

myosin that interact and move following the sliding filament theory as described further in [21].

These structures can be observed in Figure 1.

The forces generated by these fibers, both passively, at rest, and actively, during

contraction are dependent on a number of interactions including the number of parallel

myofibrils, the velocity of contraction, and the initial length of the sarcomeres. During the

contraction of a fiber under normal cardiac conditions, the fiber starts at an initial length with an

initial tension known as the passive tension. Then, when electrically stimulated, the fiber begins

to contract isometrically, generating increased tension without moving, and once the fiber

generates enough force to overcome its load it contracts and shortens isotonically, with the same

tension, while shortening in length. In the case of the entire heart, the load includes some portion

of the force needed to overcome the pressure holding the chamber’s valve closed, the fiber’s

mass, and a portion of the total friction and inertia present in the system. The muscle then

isotonically lengthens returning to its resting length, and finally concludes by isometrically

relaxing to its passive tension [21]. The length tension relationship is an important idea in

attempting to understand the underlying concepts involved in cardiac operation and remodeling

under non-ideal/non-normal conditions. Studies have shown that cardiac muscle length affects

force generation by its influence on excitation contraction coupling [30]. Additional studies have

shown that cardiac muscle stretch [31] causes hypertrophy of the muscle in the same manner that

pressure overload (increasing cardiac work load) does [31].

4

Figure 1: Figure of Muscle Structure. Modified from [35] under free use license.

5

1.2.2. Cardiac Dyssynchrony

During a normal cardiac cycle, cardiac tissue contracts in concert (together) as described

previously, but cardiac dyssynchrony (CD) occurs when some muscle regions of the heart wall

contract at different times causing early-activating regions of contraction to push blood volume

into late-activating regions of contraction reducing ventricular wall accelerations [1, 2]. As a

result, these changes in activation time cause decreased stroke volume and cardiac function [1,

2]. In addition, this abnormal stretching puts excess strain and stress on the late-activating

muscle regions and changes myocardial blood flow that can lead to muscle tissue remodeling

that is deleterious to cardiac function over time [1, 2, 3, 27]. Changes in ventricular wall

thickness begin as early as 1 month after the start of pacing with early activated regions thinning

and late activated regions thickening corresponding to the respective changes in work load [2].

1.2.3. Cardiac Pacing

Mobile and implantable cardiac pacing got its start in the 1950s and 1960s. The advent

of the first battery operated, and totally implantable pacemakers with recorded long term

correction of heart block by an implantable pacemaker occurred in 1960 [5]. In theory, the idea

is relatively straight forward: the pacemaker (device used for cardiac pacing) assists in creating

an electrical stimulus that forces the cardiac muscle to contract. Over the years, this device

evolved from a single node pacing device with set timing and no sensing capabilities, to a single-

atrial/bi-ventricular (3 node) pacing system with both sense and pace capabilities. The current

system also has the ability to vary the heart rate via a sensor placed in the pacemaker box meant

to detect body movement and approximate activity level [5]. But still, even with these

advancements in pacemaker design, there still exist shortfalls with current pacing techniques.

6

At present, cardiac pacing is the only effective method for treating cardiac conduction

disorders and sick sinus syndrome. Typically, pacing leads are anchored in the apex of the right

ventricle; however, an increasing number of studies link RV apical pacing to detrimental cardiac

remodeling and left ventricle (LV) function [6]. A number of studies are compiled in [6], and a

few of these trials even associate RV pacing with eventual cardiac morbidity and mortality.

These detrimental changes are believed to result from the use of abnormal conduction

pathways to achieve full cardiac contraction [6]. Both dual chamber, atrial (A) and ventricular

(V), pacing and single chamber (A or V) pacing were associated with an increased risk of heart

failure hospitalization of over 40%. A number of studies show long-term RV pacing may lead to

ventricular dyssynchrony. Three studies presented indicate anywhere from 36% - 66% of

patients exhibit LV dyssynchrony after RV apical pacing. In yet another study 26% of patients

developed new-onset heart failure after 0.8 – 12.2 years of RV apical pacing [6]. Long term

changes associated with right ventricle (RV) apical pacing include: changes in oxygen demand

and regional blood profusion, asymmetric hypertrophy, ventricular dilation, decreased cardiac

output, increased LV filling pressures, changes in myocardial strain, and inter/intra ventricular

mechanical dyssynchrony among others [6, 26, 27].

1.2.4. Shortfalls of Current Pacing Techniques

While pacemakers are necessary to solve some cardiac problems in the short term, RV

pacing techniques have been repeatedly shown to cause detrimental effects to overall cardiac

remodeling and long term cardiac health [16]. For example, AV node ablation and permanent

pacing is well established as a treatment for atrial fibrillation in cases that the patient does not

respond well to pharmaceutical remedies. However, long term RV apical pacing, as is common

in two lead pacing systems, has been shown to cause LV remodeling along with a decrease in left

7

ventricular ejection fraction and performance [16, 17, 26, 27]. A similar study investigated the

effects of RV pacing after His bundle ablation and concluded that RV pacing adversely effected

LV structure and performance in patients showing normal LV function and dimensions prior to

pacing [29]. The bundle of His is a network of specialized cardiac cells that propagates electrical

signals through the heart. Additional deleterious effects of RV pacing include left ventricular

electrical and mechanical dyssynchrony, abnormalities in myocardial histopathology,

latrogenically accentuated intra-ventricular conduction delay, congestive heart failure,

myocardial perfusion defects and regional wall motion abnormalities, functional mitral

regurgitation, increased risk of atrial fibrillation (AF) and heart failure in patients with sino-atrial

(SA) node dysfunction, left atrial (LA) enlargement, promotion of ventricular arrhythmias, and

activation of the sympathetic nervous system [17, 29].

The cause of the remodeling is believed to be related, at least in part, to the induced LV

dyssynchrony caused by long term RV pacing [16, 27]. Studies have linked long term RV

pacing to LV dyssynchrony in almost 50% of patients treated with AV node ablation for AF

[16]. Another study tied LV remodeling directly to LV dyssynchrony by implanting pacemakers

in otherwise healthy dogs and inducing LV dyssynchrony through RV pacing [27]. This result

shows that variation in LV workload and LV remodeling is not solely the result of cardiac

disease progression, but has at least some component tied to RV pacing induced LV

dyssynchrony. However, this study conflicts with the findings of [28] that claims long term RV

pacing alone appears unassociated with the development of heart failure, deterioration in

ventricular function, or reduced survival in patients without an antinuclear antibody. The study

goes on to claim that ventricular dyssynchrony can exacerbate the progression of heart failure in

patients with compromised “cardiac reserves”, but RV pacing’s effect on cardiac function in

8

patients without structural heart disease is still not fully defined [28]. Regardless of these

conflicting studies, the fact remains that there is a need for advancements in cardiac pacing

technology for at least a subset of current pacing eligible patients.

Current pacemakers utilize preset timings to determine pacing control, and use at most

two ventricular pacing sites. These methods rely on doctor/patient interactions to set relative

firing times for the individual nodes and do little to objectively minimize the amount of effort

required by the doctor to fine tune pacemaker operation for individual patients. A never

attempted approach is to use measured ventricular wall accelerations to create a pacing sequence

unique to every patient with the goal of reducing CD without a doctor performing the tedious

operation of hand tuning each patient’s device.

1.2.5. Cardiac Resynchronization Therapy

As of 2011, heart failure affected 5.8 million patients in the US, with an addition of about

500,000 annually, and remains a major cause of hospitalization and death [25]. It is believed that

up to 20-30% of all congestive heart failure patients are also afflicted by ventricular

dyssynchrony [17]. Cardiac Resynchronization Therapy (CRT) in the form of biventricular or

left ventricular pacing has been acclaimed as a new mode of non-pharmaceutical, non-surgical

(non-transplant) therapy for patients with moderate to advanced heart failure [17]. In current

Cardiac Resynchronization Therapy (CRT), pacemakers compensate for this difference in

activation times by pacing two ventricular sites in an attempt to get all regions of the ventricles

to contract in concert [4]. However, 30-50% of patients receiving CRT do not have their

dyssynchrony reduced. One reason for this may be scarring of tissues that create islands of viable

tissue that may not contract in synchrony by using only two ventricular pacing sites [4]. The

introduction of biventricular pacing in current CRT devices has helped achieve mechanical

9

cardiac synchrony in patients suffering from ventricular dyssynchrony improving quality of life

and reducing hospitalization rates for many patients [25, 26]. CRT has been shown to reverse

the detrimental remodeling of the LV for responding patients by reducing LV volume, and

increasing LV ejection fraction [25, 26]. In addition to this, one study calculates that for every

nine devices implanted, one death and three hospitalizations are prevented [26]. However, even

with these advances in cardiac pacing techniques, only about one in three heart failure patients

meet the requirements for current CRT methods [25].

Figure 2: NIH Diagram of 1 and 2 lead pacemaker lead placement [34]. 2nd ventricular

lead for CRT pacing would be located on the LV free wall. Arrow added to show location

of 3rd lead for CRT pacing.

Location for 3
rd

lead for CRT

pacing.

10

1.3. Introduction of Genetic Algorithms

1.3.1. History of Genetic Algorithms

Genetic algorithms were initially developed in 1958 by Bremermann [20] but popularized

by Holland and his students and formally applied the mechanisms to computer science [20, 22].

This base model developed by Holland and associates is referred to as the canonical genetic

algorithm (sometimes also referred to as the simple genetic algorithm) [22, 32]. This led to

various advancements including variable length chromosomes by Kotani, Ochi, Ozawa, and

Akazawa [20], and Bremermann’s further advancements, by being the first to implement a real-

coded Genetic Algorithm [20] with the idea that future computers could implement his more

advanced concepts and methods [20]. Additionally, many other variations have been, and can be

made on the canonical genetic algorithm to better tailor the algorithm to a specific problem of

interest.

1.3.2. Introduction of Genetic Algorithms

A genetic algorithm (GA) is an optimization algorithm branch of evolutionary

computation that imitates the biological processes of natural selection through reproduction to

find the “fittest” solution [8, 13, 32]. GAs are global, stochastic search algorithms that operate

on populations of current “approximations” that begin as a random set of test parameters, and as

the search proceeds, the population is modified by exploiting characteristics from favorable

solutions previously tested [32]. By operating on populations of potential solutions, GAs lend

themselves readily to parallel computing techniques [32]. These algorithms are more powerful

than either random search or exhaustive search algorithms in that they converge to their solution

much more consistently and quickly on average respectively than either of the other two search

11

types, and yet require no extra information on the problem such as solution space derivatives or

gradients [8, 13].

GAs think of problems as “black boxes” in that, they do not care how the problem works,

but rather only concern themselves with the set of control knobs that can be adjusted, and a

singular metric of how well those control knob positions “solve” the problem [22]. This unique

feature allows them to find solutions to problems some other optimization methods cannot

handle due to lack of continuity, linearity, derivatives, or other necessary features in the

objective function and/or search space [8, 32]. For example, GAs provide a strong framework

for solving nonlinear, multi-objective, multi-modal, and other complex system problems [13,

22]. One of the few requirements is that the parameters being optimized must be able to be

represented by encoded strings, such as binary strings [22, 32]. In addition, since GAs act on the

coded variable rather than the variable itself, it is suited for the use of structure objects as well

[13, 32]. GAs have the potential to converge to nearly global optimal solutions given that the

GA is set up correctly for the problem since it is possible for them to search the entire solution

space [13, 32].

The downfall for some optimization algorithms that rely on derivatives and gradients,

like gradient descent, is that they target and move toward the closest minimum or maximum

from the starting point. Algorithms like gradient descent work extremely quickly and efficiently

for problems where the solution space is monotonically increasing or decreasing. However, to

come to this conclusion, one needs previous knowledge of the search space being investigated.

GAs have the inherent benefit of also working for non-monotonic, discontinuous, and noisy

functions since they work on a population of possible solutions each generation and no single

solution inherently impacts all following solutions [14, 32].

12

Another benefit of GAs is that because of the stochastic population based search, they

have the possibility to find a family of similarly fit solutions just by re-running the algorithm

[14]. GAs can be applied in two main areas of control engineering: off-line design and on-line

adaptation, and are discussed to some detail in [32]. Off-line optimization is useful in operations

that do not require constant updating to “fine tune” a system after it is set and turned on. In on-

line applications however, one must be cautious of the direct application of “weak” individuals

within the population operating directly on the system of interest since the consequences could

be severe. In order to operate safely in on-line applications, it is common for the GA to operate

on a fairly accurate model of the system and only indirectly tune the controlled system. The

other option, though arguably less safe, is allowing on-line operation on the system if it is known

the system is sufficiently fault tolerant and robust to tolerate the level of exploration utilized and

required by the GA. In addition, on-line applications usually require faster rates of convergence,

usually at the cost of decreased robustness [32]. One example of decreased robustness could be

having a wider convergence window around the optimal solution.

When used carefully, GAs can be used to create adaptive systems that can tolerate

changes in the system being controlled [32]. Almost any implementation of a GA has a few key

components that are explained in detail in section 2.1. But, in short, all GAs use some form of

the following components: an optimization function, a population of chromosomes, a

chromosome selection scheme (choosing mating chromosome pairs), a method of chromosome

crossover (how data are traded between paired chromosomes), and a method for random

chromosome mutation.

13

1.3.3. Operation of a Basic Genetic Algorithm

Most GAs follow a similar set of steps to systematically and stochastically test potential

solutions within the global solution space of the problem. After determining specific operational

values for the GA, which are usually tuned for each individual problem, GAs follow much the

same set of operations: mate selection, crossover, mutation, objective function score

computation, etc. The GA for a specific problem may make slight variations to this set in order

to implement or remove certain operations, such as elitism, chromosome encoding variations, or

others as desired by the designer to elicit specific responses desired for the system being

optimized. Specific values have to be selected for a number of variables that have to be

considered carefully to implement a GA successfully for each specific problem including:

defining the objective function, selecting an encoding scheme for the possible solutions,

selecting population size, determining crossover criteria/rates, selecting mutation rates, along

with multiple others. A high level, operational overview can be helpful in visualizing the various

considerations that must be weighed when using GAs. Figure 3 gives a graphical representation

of the general steps involved. First, the initial population of chromosomes is randomly generated

from the defined solution space [14, 15, 20, 32]. These chromosomes are then evaluated by

computing a fitness value using a specific optimization function that determines how well each

individual chromosome satisfies a specific set of criteria unique to the problem being solved [14,

15, 20, 32]. Next, the results of this testing are utilized to determine parent selection (pairing of

chromosomes) by one of many pairing protocols such as rank selection, roulette wheel selection,

and others that are discussed in more detail later in chapter 2 [14, 15, 20, 32]. The paired

chromosomes then undergo a crossover operation by which the two chromosomes trade some

portion of their information with each other [14, 15, 20, 32]. These new chromosomes undergo a

14

second operation, mutation, by which information within the chromosomes can be randomly

changed outside of trading material with another chromosome [14, 15, 20, 32]. The

chromosomes now having undergone crossover and mutation constitute the population of a new

generation, and the cycle repeats from the step of testing the individual chromosomes against the

problem’s optimization function [14, 15, 20, 32]. GAs do not explicitly remember fitness results

from previous generations, but due to the selection processes employed to generate the next set

of test solutions, the best solutions from the current generation have the best chance to be

represented in the subsequent generations [18, 32]. Additionally, certain other techniques such

as elitism can be utilized to ensure the best solution(s) from the current generation is

automatically passed to the subsequent generation. These are also discussed in further detail in

subsequent sections in chapter 2, but most notably in section 2.1.

GA papers generally use a combination of biological and traditional optimization terms to

explain the methods of how a GA goes about finding a solution to its specific problem.

Definitions of biological GA nomenclature are discussed in section 2.1.

15

Figure 3: Generic GA Flowchart

16

2. GENETIC ALGORITHMS AS THE NEXT STEP IN PACEMAKER

CONTROL SYSTEMS

This chapter outlines GA criteria that need to be considered in creating a GA based

optimization algorithm for a specific problem culminating in a design for a GA that indicates

when pacing should occur during a normalized beat. This pacing is timed to reduce cardiac

dyssynchrony by reducing regional differences in ventricular wall accelerations. Sections 2.1

and 2.2 outline the components necessary to create a GA.

The first step necessary to create a GA for the purpose of finding regional cardiac firing

times is to cast, or map, the problem onto a GA architecture. Specific GA properties (such as

elitism) can aid in ensuring operations act in the most beneficial way for our problem. The

second step is to test the problem with a MATLAB coded GA (from step 1) and a simple,

MATLAB coded model, referred to as the walking sinusoid model, with the goal of testing the

GA itself to ensure the coded algorithm operates true to GA nature and verify the algorithm

before attempting to work with more complex. Finally, after the GA is in an acceptable state

with the sinusoid model, it is tested on a more complex model of CD. This testing is designed to

obtain preliminary data on the feasibility using a GA to reduce CD by measure of ventricular

wall accelerations. These results are compared against the discrete exhaustive search of a

sufficient subset of the GA solution space to quantify how well the GA did in two categories:

A.) reducing ventricular wall acceleration CD and B.) comparing the time required to obtain the

GA solution to the time required to perform the exhaustive search of a similar search space.

2.1. GA Terms, Operators, and Options

 Figure 4 shows a basic overview of all GA terms and operators in one graphical

representation for easy reference. Individual terms, operators, and options are detailed further in

17

the following sub-sections as a tutorial for basic GA utilization and implementation. The tutorial

culminates in a selection of specific criteria for mapping the main thesis objective of determining

if specific timings can reduce ventricular acceleration CD.

Figure 4: Generic GA Representation of Population Components and Operations

2.1.1. Chromosomes

A chromosome, Cn, is single possible solution where n is the solution’s number

comprised of a set of coded variables used by the GA and the optimization function. The

optimization function uses the variable set to determine the relative “goodness” of the solution in

comparison to all other solutions of that solution set, and the GA uses the coded variable string to

generate subsequent generations.

2.1.2. Genes

A gene is a specific variable within the chromosome that comprises part of a single

possible solution.

2.1.3. Populations

A population is the entire set of chromosomes that exist at any one time. The size of the

population is decided by the user. Selection criteria are detailed in section 2.2.1.

Pgen1 Population (Generation 1) Gene

C1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

C2 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

C3 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0

Pgen2 C1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

Elitism Crossover

C2 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0

Mutation Crossover Loc

C3 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0

18

2.1.4. Generations

A generation is the population of all chromosomes that are tested using the optimization

function to receive the fitness for each chromosome to determine the ranking profile necessary to

generate individual chromosome selection criteria and percentages prior to generating a new

population based on the relative rankings assigned by the optimization function. The selection

criteria can be one of a number of different operations, each of which are detailed in later

sections.

2.1.5. Mating Operations

Crossover paring, paring, or mating is the operation by which the relative rankings

assigned to the chromosomes of a generation are used to select which chromosomes “mate” and

exchange information with each other. These parings can be created by a number of different

selection operations such as roulette wheel, tournament selection, and rank selection.

2.1.5.1. Roulette Wheel

In roulette wheel (relative probability) selection, selection probabilities of the previous

generation for mating are based off how well a given solution is evaluated by the objective

function [9, 14].

For a maximization problem, individual fitness is divided by the sum of all individual

fitness values. Where ‘cost’ is the vector of values returned by the optimization equation for the

generation, cost(n) is the cost value for a chromosome n, the probability of selection, , can

be determined as follows:

19

For a minimization problem with the same conditions, probability, , may be

computed by an equation such as:

It is worth noting that using this equation, the worst fitting case has no chance of reproduction.

This type of selection can be viewed as having a few problems in that selective pressure

can be quite high in the first generations if one of the chromosomes dominates fitness with

respect to the others, and as the search continues with the population converging, selective

pressure can decrease substantially [10]. Figures 5 and 6 give a visual representation of relative

fitness selection.

Figure 5: GA Roulette Wheel Selection Criteria

Figure 6: Roulette Wheel for Relative Fitness Selection of Mating Probabilities

PgenX F Frel

C1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 15 0.395

C2 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 12 0.316

C3 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 9 0.237

C4 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 2 0.053

C5 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0

Total 38

39%

32%

24%

5% 0%

Mating Selection Percentage

Chromosome 1

Chromosome 2

Chromosome 3

Chromosome 4

Chromosome 5

20

2.1.5.2. Tournament Selection

In tournament selection, two individuals are randomly selected from the previous

generation and the fitness values compared; the more fit of the two is selected as one of the

mates to create the next generation [10, 14]. Figure 7 gives a visual representation of tournament

selection.

Figure 7: GA Tournament Selection

2.1.5.3. Rank Selection

Rank selection is a more controlled roulette wheel in that the probabilities of selection do

not rely on the relative fitness of a solution with respect to its competition in the generation [14].

In other words, the probabilities of selection for a given rank are fixed between generations, and

the chromosomes are given one of the probabilities based off their fitness with respect to other

chromosomes in the generation. This type of selection results in a selective pressure that is more

consistent and controlled when compared to that of a traditional roulette wheel [10, 14]. The

values for individual selection probabilities can be individually selected and assigned by the GA

Mate 1

Mate 2

21

designer or computed by a weighting function of the user’s choice. Figures 8 and 9 give a visual

representation of rank selection with selection probability arbitrarily assigned for demonstration.

Figure 8: GA Rank Selection Criteria

Figure 9: Roulette Wheel for Rank Selection of Mating Probabilities

2.1.6. Additional Selection Criteria

In addition to the mating selection methods discussed previously, there are options to add

specialized functionality to a GA for specific problems should the user decide to implement

them. Two such operations, elitism and steady-state selection are explained in further detail.

2.1.6.1. Elitism

Elitism is the GA equivalent of survival of the fittest. The best chromosome(s) from the

previous generation are ensured to continue to the next generation without regard to crossover or

PgenX F Frel Psel

C1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 15 1 0.40

C2 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 12 2 0.25

C3 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 9 3 0.20

C4 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 2 4 0.10

C5 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 5 0.05

Total 38

40%

25%

20%

10%
5%

Mating Selection Percentage

Chromosome 1

Chromosome 2

Chromosome 3

Chromosome 4

Chromosome 5

22

mutation mechanics [9]. The remaining selections are performed in one of the other ways

discussed previously in section 2.1.5.

2.1.6.2. Steady-State Selection

In steady-state selection, the worst chromosomes are discarded before mating selection

takes place and only the best chromosomes are considered for mating selection. This can be

considered inverse elitism. If implemented, the user can select the number of discarded

individuals, or discard individuals with less than a specific level of fitness with a threshold on the

maximum number of individuals removed. The discarded chromosomes are replaced via

crossover mating where mates are selected by one of the methods discussed previously in section

2.1.5. The remaining chromosomes continue without replacement [9].

2.1.6.3. Generation Gap

Generation gap is the percentage of a generation that is attempted to be replaced from one

generation to the next [12]. In any case that the generation gap is not 1.0 (100%), the remaining

positions in the next generation are filled with individuals from the current generation selected

randomly by a uniform distribution [12].

2.1.7. Crossover Operations

Crossover is the operation by which two chromosomes of the previous generation trade

information. This operation can be performed by a number of different schemes like single

point, multiple point, and uniform crossover, all discussed in further detail. The following

examples for each of these operations use binary encoded chromosomes, though the operations

work with other encoding schemes as well. Encoding schemes are discussed in more detail in

section 2.1.9.

23

2.1.7.1. Single Point Crossover

Single point crossover selects one point in the chromosome after which, all information

between the mated chromosomes is exchanged. The crossover location is generated randomly

and can occur anywhere along the length of the chromosome. Figure 10 shows a representation

of single point crossover between two chromosomes in sequential generations.

Figure 10: GA Single Point Crossover

2.1.7.2. Multiple Point Crossover

Multiple point crossover selects two or more points between which information is

exchanged between the mated chromosomes. The crossover location is generated randomly and

can occur anywhere along the length of the chromosome. Figure 11 shows a representation of

multiple point crossover between two chromosomes in sequential generations.

Pgen1 Population (Generation 1) Gene

C1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

C2 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

C3 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0

Pgen2 C1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

Elitism Crossover

C2 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0

C3 1 1 1 1 1 0 0 0 1 1 0 0 0 0 0

24

Figure 11: GA Multiple Point Crossover

2.1.7.3. Uniform Crossover

In uniform crossover, information is randomly exchanged between the mated

chromosomes [9]. The number of crossover points can be set, or random in addition to the

locations of crossover being generated randomly. Figure 12 shows a representation of uniform

crossover between two chromosomes in sequential generations.

Figure 12: GA Uniform Crossover

2.1.8. Mutation Operations

Mutation is the operation by which a chromosome can be randomly changed outside of

crossover to introduce new variation in the population. Depending on the encoding scheme,

mutation can be implemented in multiple ways. Only binary encoded and value encoded

Pgen1 Population (Generation 1) Gene

C1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

C2 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

C3 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0

Pgen2 C1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

Elitism Crossover

C2 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0

C3 1 1 1 1 1 0 0 0 1 1 0 0 1 1 0

Pgen1 Population (Generation 1) Gene

C1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

C2 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

C3 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0

Pgen2 C1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

Elitism Crossover

C2 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0

C3 1 0 1 1 0 1 0 1 0 1 1 0 1 0 0

25

mutation are discussed in more detail here. The others are specialized in their applications and

outside the scope of a general GA tutorial and the resulting implementation used in this thesis to

reduce ventricular wall acceleration CD by regional timing modifications.

2.1.8.1. Binary Encoded Mutations

In binary encoded mutations, a random number of bits based on a pre-selected probability

are inverted randomly within a generation of chromosomes [9]. Choice of this pre-selected

mutation probability is addressed in section 2.2.2. Figure 13 shows a representation of binary

encoded mutation of a chromosome between sequential generations.

Figure 13: GA Binary Encoded Mutation

2.1.8.2. Value Encoded Mutations

In value encoded mutations, a random number of values based on a pre-selected

probability are changed by adding or subtracting a small number [9]. Depending on the

programmer’s preference, the ‘small number’ could possibly be fixed, or be a random

distribution of the programmer’s choosing around a mean value of interest, or within a specified

range. Choice of this variation value depends largely on the GA designer’s understanding of the

problem attempting to be optimized.

Pgen1 Mutation Gene

C1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

C2 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

C3 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0

Pgen2 C1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

C2 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

C3 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0

26

2.1.9. GA Encoding Scheme

The encoding scheme is the method by which individual variables are stored and

manipulated by the GA. These encoded values are then transformed when needed for use by the

objective function. Encoding schemes can vary between GA implementations. Some common

implementations are binary, and value encodings. These two types are discussed in more detail

in following sections. Other encodings are possible, but are specialized in nature and outside the

scope of the desired generic GA tutorial and the resulting GA implementation used to reduce

ventricular wall acceleration CD by regional timing modifications.

As for which encoding is better (binary or value), results are unclear. The results depend

largely on the problem being solved, and other factors such as the resolution (number of bits)

representing the genes [10]. For the problem at hand, binary encoding was selected to increase

computation efficiency if ever ported to an embedded processor device and to reduce

dependence on user selected parameters as compared to value encoded GA implementations in

an attempt to make a more universal GA optimization algorithm.

2.1.9.1. Binary Encoded GAs

In a binary encoding scheme, all genes within the chromosomes are broken down and

represented by a single binary string [9]. This is the most common GA encoding scheme since

binary operations lend themselves so readily to necessary GA operations [9]. Since

chromosomes are treated as a single binary string, gene start/end locations are tracked by the

coding of the GA implementation. The way values can be encoded in binary numbers can vary,

and each has its own merits and downfalls [10].

27

2.1.9.1.1. Binary Coded Decimal (BCD)

A standard BCD uses the standard binary counting scheme to keep track of successive

values. Where N is the number of bits and the values for the binary digits (bn) are 0 or 1, the

decimal value of the number can be evaluated as:

The ease of BCD conversion to decimal allows for efficient use in optimization functions

designed using traditional mathematics and computer architecture.

2.1.9.1.2. Binary Grey Codes

A binary grey code represents decimal values (‘real-numbers’) as binary strings where

consecutive decimal values vary by only one bit in the binary code [10]. Standard encoding

tables can be used for this representation if the number of bits required is known, or can be

custom created for a specific task and/or bit length. This type of encoding can help mitigate

drastic value changes if a mutation were to occur at what would otherwise be a significant bit

location in a gene. However, since this encoding is not easily switched between bit lengths, the

number of bits required for this problem is not well defined, and implementing such an

architecture would lose a great deal of the flexibility desired, it is not used for the problem at

hand.

2.1.9.2. Value Encoded GAs

In a value encoding schemes, each chromosome is represented by a string of real values

for genes including: integers, decimals, characters, complicated objects, and more [9]. This type

of encoding is good for some very specialized problems, but may require special considerations

to be made in implementing problem specific crossover and mutation functions [9]. More recent

28

evolutionary programming communities advocate real number encodings [10]. One reason for

this may be in helping mitigate how drastic a change can be made by mutation to a critical value.

2.1.10. Optimization Function

An optimization function is the function by which the GA ranks the relative fitness of a

specific chromosome. The optimization function is largely what specializes a GA to perform its

specific search. This function can be anything from a simple difference of values or sum of

squared error equation, to a complex, specialized function meant to exploit known aspects of a

problem’s search. Although prior search space knowledge is helpful, a GA does not require this

prior knowledge to perform its search lending to the power of GA implementations. GAs do not

explicitly remember the fitness of previous solutions from one generation to the next, rather the

fitness is utilized to effect mating selection frequencies, and propagate more fit individuals in

higher frequently than less fit individuals [18].

2.1.11. Stop Conditions

A stop condition designates a point that, once reached, causes the GA to quit searching

for a more optimal solution, and exit its search returning the best solution found. Some examples

of stop criteria include terminating the GA after a certain number of generations are tested, after

the evaluation of the objective function reaches a specific value, or if no improvements have

been observed after a specified number of generations [14]. In the case of the GA implemented

for this thesis, all three stop conditions are used. Use of a specified objective function evaluation

value allows for the case of exiting early if the ideal solution is found. Exiting after a specified

number of generations allows for a fail-safe where the GA would terminate in the case where the

population did not converge quickly enough. Finally, exiting after improvements have not been

observed in a user determined number of generations allows for exit under the assumption that

29

the population has converged to a value and further improvement is unlikely except in the case of

mutation. Under purely stochastic conditions, relying on only mutation to find solution

improvements limit its usefulness after the population has converged and crossover can no

longer aid in solution improvement.

2.2. GA Parameters

In addition to the basic GA operations discussed in section 2.1, there are a number of

parameters that depend on user selected values and can drastically change implemented GA

performance by orders of magnitude, even within a specific optimization problem being

considered [11]. While there are guidelines for the ranges of specific values, care must be taken

in setting values for a specific problem to balance minimizing the run time and maximizing the

effectiveness of the search results. Investigations in the effects of population size and mutation

rate on GA performance are made in this thesis, outlined in section 5.2.6 and discussed in section

6.2.5.

2.2.1. Population Size

Population size is the number of chromosomes in each generation of a GA search.

Arguably, population sizing is one of the most important parameters set for successful GA

operation on a specific problem [23, 24]. Too small a population can cause premature

convergence, and as a result, a poor solution, while too large a population results in wasted

computation time due to overly slow convergence to the optimal or near-optimal solution [23,

24]. Population size has been agreed to depend directly on the “difficulty” of the problem [23].

This means that the more “difficult” or the larger the number of adjustable parameters for the

problem is, the larger the population size must be to accommodate the increased level of

difficulty and prevent premature convergence. Initial trials of the implemented GA were run

30

using a fixed population size to isolate the number of possible factors being changed between

test cases. Population size changes are investigated for a subset of the cardiac dyssynchrony

model test cases and are discussed in section 6.2.5.

Multiple investigations reviewed in [11] speculate the best population size to be 20 - 30

chromosomes. Another study in [11] advocates for ‘small’ populations but does not elaborate on

specific size, while [14] states population sizes of 20 to 500 are common, but also says there are

few, if any, rules available to help determine the correct size. A third paper summarizes that

even after years of research, population size is selected by little more than trial and error for any

particular problem instance, and further goes to claim that the larger the initial population, the

greater the chance that the initial population contains a chromosome representing the optimal

solution, or an optimal gene [19]. While increasing population size can improve solution

accuracy, it also has the less desirable characteristic of increasing the number of generations

required to converge an entire population to a small number (1 – 2) of possible solutions [19,

24].

There is a trade-off between number of generations required for convergence to the

correct solution and population size. Generally speaking, increasing the size of one decreases the

other, but additional caveats can be present in deciding which is better. Repeated shorter runs

with smaller populations can be better for finding multiple solutions that are acceptable, while

longer runs with larger populations can be better for finding a single “best” solution [14].

Longer runs with a higher population sizes can end in better solutions. However, since the GA is

stochastic in nature, it is still considered better in most cases to run multiple trials and average

the results from each [14].

31

There are a number of ways to optimize population size. Two ways discussed in [23] are

self adaptation of the GA either prior to executing a GA run (causing all generations in the GA to

have the same population size), or self-adaptation during the GA run (allowing varying

population sizes during the GA run) based on computed fitness values. Theoretically, population

size can be coded to vary on any number of parameters the GA designer wanted as long as it aids

in allowing the GA to solve the desired problem. These automated methods can be hard to

implement since this largely depends on prior knowledge of the problem to guide the self-

selection criteria. Thus, most GA implementations and implementers use trial and error to size a

population that is appropriate for their problem of interest [19, 23, 24]. The results of [14]

indicate a population size of 50 was ideal for their test case. Results for another problem with 3

control parameters operated on by a canonical genetic algorithm indicated a population size of

100 as ideal [24]; however, this can easily vary depending on values selected for other GA

parameters so trial and error may still be the most reliable and simplest way to select a

population size for a specific problem of interest.

2.2.2. Mutation Rate

Mutation rate is the probability that a random change occurs within a chromosome. In

the event of binary encoded chromosomes, it is generally implemented as the probability that an

individual bit inverts outside of crossover (changes from 0  1 or 1 0). A couple in-depth

investigations discussed in [11] place the optimal value for mutation rate between 0.005 and 0.01

(0.5% and 1%) and is agreed on in [14] while another study investigated places it between 0.05

and 0.35 (5% and 35%) [11]. A third paper claims ideal mutation rates are between 0.001 and

0.01 (0.1% and 1%) [15].

32

Another study investigated combinations of changes to population size and mutation rate

and showed better performance in populations sizes of 4 – 8 with a mutation rate of 15% than in

population sizes of 64 – 128 with a mutation rate of 2% [11]. [11] goes on to conclude that for

the problem they investigated, optimal population size should be less than 16 and mutation rate

be between 5% and 20%. While, mutation rate values may vary greatly depending on the study

referenced, the problem being investigated, and the combined interaction between mutation rate

and population size, it is worth taking into consideration when investigating possible ways to

streamline a more generic GA to a custom tailored one specific to the designer’s problem.

2.2.3. Crossover Rate

Crossover rate is the probability that two paired (mated) chromosomes exchange

information. In the event of crossover in binary encoded chromosomes, a second value is

generated randomly to determine at which point the chromosomes’ information is exchanged. In

the event that crossover does not occur, both chromosomes are copied to the next generation

without exchanging information. Desirable GA performance was shown to rely on a ‘high’

crossover rate [7]. Another paper further clarifies typical ranges for crossover rate as generally

being between 0.6 and 0.95 (60% to 95%) [15]. Reducing crossover rate effectively reduces the

number of new possibilities created in the subsequent generation [12]. Crossover rates of 0.6

(60%) and above show favorable results in GA convergence to an optimal solution while

crossover rates being too high (1.0 or 100%) show the same detrimental effects of being too low

(<0.4 or 40%) [12]. The theory is if crossover rate is too high (100%) favorable chromosomes to

disappear more quickly than new favorable chromosomes can be created while the rate being too

low (<40%) causes less exploration than is necessary to find new, favorable solutions [12]. In

our case, we used a crossover rate of 100% since we implemented elitism to ensure the best

33

chromosomes do not disappear and wanted to promote as much exploration as possible with the

remaining individuals in each generation.

2.3. GA Parameters in Context of Cardiac Dyssynchrony: Mapping the Problem

From previous discussion, it is apparent that there are many ways to create an algorithm

that uses the required basic principles of GAs to perform the task of sifting out a near optimal

solution from an initial pool of randomly generated possibilities. A single combination of the

possible components previously discussed must be selected to create a starting point from which

to fine tune a GA to specifically solve the problem of ventricular wall acceleration CD.

Decisions on GA parameter values could have a direct impact on a future implantable design.

Thus, the goal is to select parameter values well in the initial design phase to reduce the redesign

and retest time between model based implementations, and those solutions destined for

implantation. From an end goal point of view, faster convergence and ensuring that the best

solution is never lost is of utmost importance considering the goal is to start helping the patient

as quickly as possible. Additional trials investigate the effects of variations in population size

and results are presented in section 5.2.6 and discussed in section 6.2.5.

All things considered in terms of population size, a population size of 20 was selected

following the recommendations of [11] for the majority of GA test cases.

The mutation rate for the majority of GA test cases is selected as 0.001 (0.1%) since it is

the most agreed upon value in literature with the continued reasoning that too high a mutation

rate would increase time to convergence, yet having no mutation would allow no chance for the

GA to explore outside the region created by the initial random population. Additional trials

investigate the effects of variations in mutation rate and results are presented in section 5.2.6 and

discussed in section 6.2.5.

34

Again, if implemented in hardware, the outcome of the GA will directly impact a

person’s health. It is imperative that the best found solution is never lost between generations

due to crossover replacement. With this in mind, elitism is implemented to preserve the best two

solutions from one generation to the next. Two is chosen because population sizes are generally

even to facilitate efficient mating and crossover implementations with the fixed arrays and

matrices that are present in the coded GA structure. An even number of elite members keeps the

remaining population even as well. In addition, if elitism is ever removed from the GA

architecture, no modifications to other operations are necessary.

The mate selection probability is determined by a relative probability roulette wheel with

the idea that variable mating probabilities allow for more rapid population convergence which is

desirable in a real time design as previously discussed.

With the implementation of an elitism mechanism, crossover rate is selected as 1.0

(100%) since the best solutions are always conserved with elitism, and maximum exploration is

desired from the remaining population for more rapid convergence.

Since determining a “good” set of stop conditions is one of the more tricky sets of values

to choose correctly, the initial number of generations was set at 50 for the CD model with the

idea that it would create a “hard” stop condition to avoid getting stuck in a loop finding only

marginally better solutions. Exit criteria were also created to exit the GA if the objective

function evaluated to “0”, or a perfect fit, and if no improvement was observed between

populations for 5 consecutive generations which indicates the population likely converged to a

single value and only a lucky mutation would have a chance at improving the solution.

The minimization metric (optimization function) that is used for these trials is a standard

sum squared error equation:

35

where cost is the value being minimized, K is the inverse of the sample rate, or the number of

computed points per period, ideal is the waveform being used as the control, and experimental is

the waveform being modified by the optimization algorithm.

Parameter encoding is chosen as standard binary coded decimals (BCD) due to its

computational efficiency and flexibility in implementing multiple gene bit lengths. Values

encoded are represented as fixed point numbers between 0 and 1 and scaled to the correct

range(s) for use in each the CD and sinusoid models. Other possibilities for changes and

improvement to this structure are discussed further in future work.

2.4. Walking Sinusoids Test Model

The “walking sinusoid” model created was an attempt to create a bare-bones model on

which to test a hand-coded GA in MATLAB prior to use of a more complex, longer run-time,

and more “realistic” CD model. This model was used to investigate GA properties and their

effects on convergence, reliability, run-time, and robustness prior to committing to the

significantly longer execution time of the “realistic” model.

2.4.1. Walking Sinusoid Model

In theory, The model created is relatively straight forward. A set of parameters meant to

represent any combination of sinusoid amplitude, phase, frequency, or noise characteristics to

represent the adjustable parameters would be passed to the model from the GA chromosomes

after undergoing appropriate conversion and scaling while the “reference” parameters would be

hard coded into the model. The model would then generate a sinusoid to represent an

36

acceleration waveform for both the reference and adjustable parameters and return these

waveforms to the GA.

37

Figure 14: Flow Chart for MATLAB Implemented Genetic Algorithm

38

Figure 15: Visual Representation of Cardiac Dyssynchrony Model

2.4.2. GA Operation w/ Walking Sinusoid Model

After starting, the GA would generate a random population of possible solutions as bit

strings. These bit strings would be converted and scaled into values usable by the sinusoid

model. These converted values would be passed to the model (one chromosome worth) at a time

and the returned waveforms would be recorded. Once all chromosomes for the generation are

used to generate and record the “accelerations”, the recorded waveforms for each chromosome

undergo optimization analysis via the sum of differences squared error computations mentioned

before. Since a smaller value returned from the optimization function is better, the scores must

be “inverted” to compute a proportional fit probability for mating selection. The raw values

39

returned from the optimization function described in section 2.3 are then normalized by

subtracting each raw score from the maximum value for the generation following the equation

outlined in section 2.1.5.1.

In doing so, the best fit chromosome receives the largest value, and the worst fit

chromosome becomes zero (eliminating its possibility from influencing the next generation).

These probabilities are passed to another function developed by [8] to generate the random

parings (with replacement) of mates for crossover. Crossover then occurs between the selected

chromosomes in the raw (binary) population, and the resulting offspring are copied to the

population pool for the next generation and the new population pool is subjected to possible

mutation based on the rate selected. The stop conditions are then checked, and if not satisfied,

the generation counter is incremented. The cycle then continues with converting and scaling the

raw values of the new (now current) generation’s population for another pass through the model

function, fitness check, mating probability computation/selection, and crossover/mutation, until

the stop conditions are satisfied at which point, the GA terminates and returns the best

chromosome’s values for performance analysis.

2.4.3. Parameter Definitions and Declarations: Walking Sinusoid Model

Several instances of the walking sinusoid/GA combination were executed with variations

in noise values, number of optimized parameters, crossover probabilities, etc. Results are

outlined in section 5.1. The goal of testing with this model is to determine workable starting

points for the GA search parameters prior to implementation of the more complex CD model.

40

3. EXHAUSTIVE SEARCH

An exhaustive search is a type of objective search function that operates by evaluating

every possible solution (in a given, discrete solution space/mapping) with an objective function

and comparing the evaluated fitness values to obtain the optimal solution for the given set of

choices. Since it tests all possible combinations presented, an exhaustive search is the most

reliable way to get as close as possible to the global optimum (minimum in this case) for a search

space with unknown contour characteristics. The cost for this reliability is potentially taking a

long time to search through solutions. In addition to providing a more definitive answer as to

whether variations of timing can improve ventricular acceleration CD, exhaustive searching also

gives a “golden standard” to which the GA solutions are compared and conclusions are drawn at

the GA’s effectiveness in: 1) seeing how well (and consistently) the GA finds a solution close to

the solution returned by exhaustive search, and 2) the speed at which the GA returns its solution

as compared to an exhaustive search of the entire search space.

3.1. Exhaustive Search Algorithms

To perform the goals outlined previously in section 3, two exhaustive search algorithms

were developed in MATLAB to use the same CD model and objective function as the GA uses.

These two exhaustive search algorithms are discussed in sections 3.1.1 and 3.1.2.

3.1.1. 2 Parameter Exhaustive Search

Implementing an exhaustive search is a relatively straight forward operation in

MATLAB. For the 2 parameter Exhaustive Search, a script file is created to allow the user the

ability to select a number of test points between the bounds of the search space. This value is

then used to create a vector of test values uniformly spaced between the supplied bounds of the

search space. A loop then runs each value in the test vector through the same CD model used by

41

the GA previously to generate a set of ventricular wall acceleration profiles. Fitness values are

then computed for each test point using the same equations as the GA search as shown in section

2.4. The minimum fitness value from these computations identifies the best solution from the

exhaustive search. This solution is then also used as the global minimum by which GA

determined timing values are compared and evaluated. The final implementation can be found in

Appendix E.

3.1.2. 4 Parameter Exhaustive Search

Each time a degree of freedom is added, the number of searches required to test all

possible combinations within the specified search space increases exponentially as demonstrated

by the following equation:

In order to search the space for 3 controlled parameter as required in the 4 parameter

search with the same level of resolution in each parameter as in the 2 parameter search, the

number of total trials required would be cubed.

Thus, for implementation of the 4 parameter search, slight modifications are made to the

search utilized in the 2 parameter case by implementing a hybrid narrowing exhaustive search as

shown in Figure 16. To implement the narrowing search for the 4 parameter case, an assumption

is made based on experimentation discussed in section 3.2 that the search space is well behaved

enough that the initial granularity of the search is sufficient to direct subsequent narrowing to the

proper region of convergence in the search space. Some search space surfaces are included in

section 5.2.5 showing well behaved surfaces in the case of 2 parameter optimization and more

complex surfaces for 4 parameter optimization by investigating the interaction of variation in 2

parameters.

42

Thus, the 4 parameter exhaustive search allows for user selection of two parameters: the

first selects the number of test points within the current bounds of testing, and the second selects

the number of times the search zooms, or narrows, those bounds. The resulting search allows for

a very fine resolution search with a drastically reduced computation time. While the final search

space is larger, the operation of the 4 parameter search follows the basic structure of the 2

parameter search. The search steps through the grid of test points, generates the model

acceleration waveforms for those points, computes the cost value by the equation outlined in

section 4.2 for the 4 parameter GA search, and maintains the solution for the minimum value as

the solution for that trial. The final implementation can be found in Appendix E.

Figure 16: Visualization of 4 Parameter Exhaustive Search Zoom Feature

3.2. Parameter Definitions and Declarations

Parameter values not discussed here, but utilized in exhaustive search optimization

algorithms can be found with the included code in Appendix E.

Since the heart rate in the CD model was fixed at 60 beats per minute or 1 beat per

second, 1001 test points were chosen for the 2 parameter exhaustive searches to give a search

43

space of approximately 1 ms resolution with a test point at time = 0 as a starting point for

comparison.

As discussed in section 3.1.2, using the same 1001 test points for each parameter as was

used in the 2 parameter exhaustive search would create a search space of 1001
3
, or 1 billion

points. The search time for this is prohibitively large. The solution to this is to use the discussed

narrowing search whereby starting from a coarse search grid of 12 points, the algorithm zooms in

a total of 6 times and investigates a region of interest further by creating the same number of test

points in a region +/- one test point from the best solution for the previous search space. This

process is repeated a number of times until the search space becomes small enough to give

resolution equal to or exceeding that of using an initial 1001 point search lattice.

From experimentation, the starting grid size to provide reliable convergence is 6 points

while 4 points appears to suffer from reliability issues. Since parallel computing was

implemented on a 6 core machine to reduce computation time, a multiple of 6 is chosen to

maximize the resolution for the same computational efficiency. Further, to provide a buffer zone

for better ensuring reliability over the likely complex search spaces investigated in section 5.2.5,

12 points are used with 6 narrowing operations to compute the optimal timings for each of the 4

parameter GA runs.

44

4. CARDIAC DYSSYNCHRONY MODEL

Note: This model is a first pass approximation of a dyssynchronous left ventricle. This

thesis does not claim that the model is adequate or biologically representative of an actual heart,

but is rather used as a simplified approximation of cardiac dyssynchrony with the sole purpose of

testing the GA optimization of CD across a number of physiologically relevant parameters that

can plague a failing heart in a semi-realistic fashion.

 To further the cause of determining if timing adjustments hold the power to reduce

acceleration CD, a more realistic model of a dyssynchronous heart must be utilized. Like the

walking sinusoid model, this model is implemented using MATLAB for use with an exhaustive

search algorithm along with the same GA developed and used in testing of the sinusoid model.

The same model and optimization function are used with both search algorithms in order to

allow parallel investigation of the merits and demerits of each approach.

4.1. “Realistic” Cardiac Dyssynchrony Model

Initial CD model testing is performed by observing 2 of the 4 possible regions in the

supplied model. The searches are then scaled to use the full 4 regions possible in order to

observe algorithm scaling with more degrees of freedom.

The CD model used was originally developed by a team lead by Dr. Dan Ewert, professor

of Electrical and Computer Engineering at NDSU specializing in cardiovascular engineering and

research. The team consisted of Sam Oguyemi, McNair scholar and undergraduate student of

mechanical engineering at NDSU, and a group of senior design students at Iron Range

Engineering for the purpose of creating a graphical user representation of CD for use as a visual

aid in classroom instruction on CD and creating an objective set of metrics to measure CD.

Assisted by Sam Oguyemi, the model was modified to accept 4 timings relative to a heart beat

45

from the search algorithm after which, the model calculates and returns the acceleration

waveforms of the 4 left ventricular regions over the course of one heart beat. These acceleration

waveforms are then used to determine the impact of the specific set of firing times. In short, the

model uses a series of differential equations developed, modified, or implemented by the team

above in conjunction with built-in MATLAB simultaneous differential equation solvers to

generate the required regional wall acceleration values along with the other values necessary for

model operation and algorithm evaluation. (See Appendix G for CD Model code and equations

utilized.) Values for ventricular tissue parameters such as mechanical resistance, mass,

minimum and maximum elastance values, along with heart rate, sample rate, and number of

beats prior to returning acceleration measurements can be changed to affect the measured wall

accelerations in an attempt to investigate which causes of CD can be corrected by changes in

regional firing time.

4.2. GA Operation with “Realistic” CD Model

Operation of the GA occurs much in the same way as it had occurred with the sinusoid

model. Runs documented in Tables 3, 4, 9, and 10 along with the corresponding Figures in

Appendix A follow the same flow path as that for the Walking Sinusoid model. Differences

between the two involve changing the objective function of the 4 parameter GA code to also

measure fitness from the two additional control parameters. This process just involves extending

the sum squared error function from section 2.4 that operates on one parameter to one that

operates on all 3 control values, denoted as N, by the following modification:

46

Interpretation of the cost value remains the same (i.e. lower = better). The GA is coded

to exit and return the best solution in the population in the event that: the best solution has not

improved for 5 successive generations, the objective function value returned is zero, or 50

generations have elapsed.

47

5. RESULTS

 Chapter 5 presents the results of the trials performed broken down by sections based on

optimization utilized and parameter deviations. The analysis and interpretation of these results

are left to Chapter 6.

5.1. Walking Sinusoids

 The walking sinusoid model allows for verification of the GA implementation prior to

execution of more computationally intensive models as well as gives a feel for GA noise

tolerance. Multiple GA test cases using the Walking Sinusoid model are summarized in Table 1.

Figure references (Fig Ref) point to plots that can help visually represent how well the GA was

able to match reference parameters in both no noise (NN), and added noise (MN) cases.

Table 1: Walking Sinusoid Model Test Data

5.2. “Realistic” CD Model

Several instances of the “Realistic” CD model are investigated with variations in the

values associated with the possible mechanical variations between ventricular regions

implemented in the CD model. Each test case is executed and evaluated using GA optimization,

ES optimization, and no optimization/adjustment (where all timings are fixed and equal).

Results from each test case are tabulated here in tables corresponding to one of the three

optimization theories. Additionally, acceleration and timing data for all test cases are plotted in

Appendices A, B, and C for a visual representation as noted by the respective figure reference

Noise (SD) # Runs Min Gen Max Gen Run Time Fig Ref

1 Param NN 0 10 7 14 0.1999 s F-1, F-2

MN 2 10 29 713 7.9309 s F-3, F-4

2 Param NN 0 10 20 49 1.1563 s F-5, F-6

MN 2 10 24 1493 31.1175 s F-7, F-8

48

column for each test case. To gain an idea of the baseline performance expected of each search

type prior to operating the model in a state where the expected results are unknown, three

configurations are attempted for the no dyssynchrony GA setup: the first configuration sets 3 of

the 4 regions to a known timing value and attempts to find the 4
th

 time, the second configuration

sets 2 of the 4 regions to a known timing value and ties the other 2 regions together (effectively

creating 2 larger regions) and attempts to find a time for the 2
nd

, large region. Finally, the third

configuration sets one of the 4 regions and attempts to find individual timings for the other 3

regions. Initial results show the first 2 test configurations outlined here as operating almost

identically. Thus, in subsequent runs for the various dyssynchronous conditions, only test

configurations 1 and 3 from the no dyssynchrony set are replicated for each test case.

5.2.1. Select Trial Data

 This section shows an extended data set for a small sample of the numerous trials

performed. These trials use modified CD model initial conditions to alleviate computational

problems found with the model as discussed in section 6.2.

As is discussed in section 5.2.5, GA trials do not yet perform to levels that can compete

with exhaustive searches in either computational time or level of fitness when utilizing more than

2 parameters. Thus, these select trials focus on, and draw conclusions from, exhaustive search

optimization data sets. Table 2 gives data for two sets of trial conditions using both old and new

model parameters. Figures 17 and 18 show pressure-volume, PV, loops for each set of trial

conditions using the new model with the values generated from no timing variation overlaid on

the set optimized by exhaustive search. Figures 19 and 20 show Wiggers diagrams outlining

pressure, volume, and regional timing comparisons for the same conditions as in Figures 17 and

18. Figures 21 and 22 show acceleration waveforms and corresponding regional timings for the

49

no dyssynchrony (ND) trial in Table 2 for both exhaustive search (ES) and no timing adjustment

(NA) trials respectively. Figures 23 and 24 show the same acceleration and timing information

as Figures 20 and 21 but for the maximum elastance (EmaxD) trial. Figures 25 – 28 show

zoomed, normalized regional timing data for each of the trials depicted in Figures 21 – 24

respectively. Figures 29 – 32 show regional work performed, and Figures 33 – 36 show regional

instantaneous power for the respective conditions of Figures 21 – 24.

Table 2: Trial Data, New vs. Old CD Model Parameters

AP2 tES2 tES3 tES4 EF %Δ EF COES %Δ CO %Δ F Fig Ref

ES, ND, N (1,3) N/A 1.0000 1.0000 1.0000 0.4764 0.0000 3469 0.0000 2.98E+08 16, 18, 20, 24, 28, 32

ES, ND, O (1,3) N/A 1.0000 1.0000 1.0000 0.3782 0.0000 1450 0.0000 3.42E+09 B-5, B-6

NA, ND, N (1,3) N/A 1.0000 1.0000 1.0000 0.4764 N/A 3469 N/A N/A 16, 18, 21, 25, 29, 33

NA, ND, O (1,3) N/A 1.0000 1.0000 1.0000 0.3782 N/A 1450 N/A N/A C-5, C-6

ES, EmaxD, N (1,3) 40 0.8100 0.9871 0.9872 0.4982 5.3945 3532 0.0275 -5.62E+01 17, 19, 22, 26, 30, 34

ES, EmaxD, O (1,3) 40 0.8364 1.0085 1.0082 0.3959 0.6611 1495 -0.4251 -3.01E+01 B-21, B-22

NA, EmaxD, N (1,3) 40 1.0000 1.0000 1.0000 0.4727 N/A 3531 N/A N/A 17, 19, 23, 27, 31, 35

NA, EmaxD, O (1,3) 40 1.0000 1.0000 1.0000 0.3933 N/A 1502 N/A N/A C-21, C-22

ES Trial

50

Figure 17: PV Loop, No Dyssynchrony, ES vs. No Adjustment

Figure 18: PV Loop, Maximum Elastance Dyssynchrony, ES vs. No Adjustment

51

Figure 19: Wiggers Diagram, No Dyssynchrony, ES vs. No Adjustment

Figure 20: Wiggers Diagram, Maximum Elastance Dyssynchrony, ES vs. No Adjustment

52

Figure 21: Acceleration Plot with Firing Times, ES, ND (1,3), New CD Model

Figure 22: Acceleration Plot with Firing Times, NA, ND (1,3), New CD Model

53

Figure 23: Acceleration Plot with Firing Times, ES, EmaxD (1,3), New CD Model

Figure 24: Acceleration Plot with Firing Times, NA, EmaxD (1,3), New CD Model

54

Figure 25: Zoomed Firing Times, ES, ND (1,3), New CD Model

Figure 26: Zoomed Firing Times, NA, ND (1,3), New CD Model

55

Figure 27: Zoomed Firing Times, ES, EmaxD (1,3), New CD Model

Figure 28: Zoomed Firing Times, NA, EmaxD (1,3), New CD Model

56

Figure 29: Work Plot with Firing Times, ES, ND (1,3), New CD Model

Figure 30: Work Plot with Firing Times, NA, ND (1,3), New CD Model

57

Figure 31: Work Plot with Firing Times, ES, EmaxD (1,3), New CD Model

Figure 32: Work Plot with Firing Times, NA, EmaxD (1,3), New CD Model

58

Figure 33: Instantaneous Power Plot with Firing Times, ES, ND (1,3), New CD Model

Figure 34: Instantaneous Power Plot with Firing Times, NA, ND (1,3), New CD Model

59

Figure 35: Instantaneous Power Plot with Firing Times, ES, EmaxD (1,3), New CD Model

Figure 36: Instantaneous Power Plot with Firing Times, NA, EmaxD (1,3), New CD Model

60

5.2.2. GA Search Cases: Tables

Table 3: 2 Parameter GA Search Case Results for CD Model

Table 4: 4 Parameter GA Search Case Results for CD Model

Runs AP2 tNmin2 tNavg2 tNmax2 tNES EFGA EFES %Δ EF

ND (3,1) 10 N/A 0.4955 0.9827 1.3284 0.99900 0.37850 0.37820 0.0793

(2,2) 10 N/A 0.7578 0.9647 1.3300 0.99900 0.37940 0.37820 0.3173

RD (3,1) 10 0.0150 0.5614 0.9112 1.0385 0.99900 0.35070 0.35150 -0.2276

MD (3,1) 10 0.0100 0.7578 1.0212 1.3422 1.04300 0.39590 0.39460 0.3294

EminD (3,1) 10 4.0000 0.7578 1.0298 1.3468 1.00530 0.32440 0.32440 0.0000

EmaxD (3,1) 10 40.0000 0.5614 0.8089 0.8958 0.83570 0.39660 0.39630 0.0757

GA Trial

COGA COES %Δ CO %Δ F Fig Ref

ND (3,1) 1450 1450 -0.0012 1.61E+04 A-1, A-2

(2,2) 1450 1450 -0.0058 6.66E+04 A-3, A-4

RD (3,1) 1312 1318 -0.4481 -5.25E-01 A-7, A-8

MD (3,1) 1528 1532 -0.3043 2.68E+00 A-11, A-12

EminD (3,1) 1207 1207 0.0075 6.06E-01 A-15, A-16

EmaxD (3,1) 1494 1496 -0.1099 1.24E+00 A-19, A-20

GA Trial cont.

Runs AP2 tNmin2 tNavg2 tNmax2 tNmin3 tNavg3 tNmax3 tNmin4 tNavg4 tNmax4 tNES2 tNES3 tNES4

ND (1,3) 10 N/A 0.8345 1.2907 2.0417 0.1580 0.8897 1.4235 0.7348 1.2056 1.9696 1.0000 1.0000 1.0000

RD (1,3) 10 0.0150 0.7593 1.1586 1.4036 0.5262 1.4176 3.1477 0.6059 2.2849 5.6082 0.9461 0.9968 0.9963

MD (1,3) 10 0.0100 0.3712 1.1152 1.4726 0.0276 2.1790 5.6266 0.7670 3.1442 5.7892 1.0412 1.0000 0.9994

EminD (1,3) 10 4.0000 0.5446 1.0744 1.7763 0.1580 0.9560 2.0126 0.6044 2.2355 6.0792 1.0111 1.0043 1.0045

EmaxD (1,3) 10 40.0000 0.7854 0.9633 1.3744 0.1580 1.3660 3.4146 0.5630 1.6783 2.8363 0.8364 1.0085 1.0082

GA Trial

EFGA EFES %Δ EF COGA COES %Δ CO %Δ F Fig Ref

ND (1,3) 0.3642 0.3782 -3.7017 1432 1450 -1.2788 1.92E+10 A-5, A-6

RD (1,3) 0.2669 0.3501 -23.7646 19 1308 -98.5788 1.34E+03 A-9, A-10

MD (1,3) 0.1156 0.3947 -70.7119 475 1523 -68.8217 1.50E+03 A-13, A-14

EminD (1,3) 0.2587 0.3243 -20.2282 1031 1207 -14.5487 3.91E+03 A-17, A-18

EmaxD (1,3) 0.3586 0.3959 -9.4216 1457 1495 -2.5724 8.52E+02 A-21, A-22

GA Trial cont.

61

5.2.3. Exhaustive Search Cases: Tables

Table 5: 2 Parameter Exhaustive Search Case Results for CD Model

Table 6: 4 Parameter Exhaustive Search Case Results for CD Model

5.2.4. No Timing Adjustment: Tables

Table 7: 2 Parameter No Adjustment Case Results for CD Model

AP2 tES2 EFES EFNA %Δ EF COES CONA %Δ CO %Δ F Fig Ref

ND (3,1) N/A 0.9990 0.3782 0.3782 0.0000 1450 1450 0.0012 1.28E+13 B-1, B-2

(2,2) N/A 0.9990 0.3782 0.3782 0.0000 1450 1450 0.0004 1.28E+13 B-3, B-4

RD (3,1) 0.0150 0.9990 0.3515 0.3515 0.0000 1318 1318 -0.0137 -5.19E-02 B-7, B-8

MD (3,1) 0.0100 1.0430 0.3946 0.3972 -0.6546 1523 1532 -0.6015 -7.26E+00 B-11, B-12

EminD (3,1) 4.0000 1.0053 0.3244 0.3245 -0.0308 1207 1207 -0.0144 -7.08E-02 B-15, B-16

EmaxD (3,1) 40.0000 0.8357 0.3963 0.3933 0.76278 1496 1502 -0.4027 -2.98E+01 B-19, B-20

ES Trial

AP2 tES2 tES3 tES4 EFES EFNA %Δ EF COES CONA %Δ CO %Δ F Fig Ref

ND (1,3) N/A 1.0000 1.0000 1.0000 0.3782 0.3782 0.0000 1450 1450 0.0000 3.42E+09 B-5, B-6

RD (1,3) 0.0150 0.9461 0.9968 0.9963 0.3501 0.3515 -0.3983 1308 1318 -0.7289 -1.42E+00 B-9, B-10

MD (1,3) 0.0100 1.0412 1.0000 0.9994 0.3947 0.3972 -0.6294 1523 1532 -0.5807 -7.38E+00 B-13, B-14

EminD (1,3) 4.0000 1.0111 1.0043 1.0045 0.3243 0.3245 -0.0616 1207 1207 0.0045 -4.01E-01 B-17, B-18

EmaxD (1,3) 40.0000 0.8364 1.0085 1.0082 0.3959 0.3933 0.6611 1495 1502 -0.4251 -3.01E+01 B-21, B-22

R2D (1,3) See Fig 0.9757 0.9844 0.985 0.0568 0.0565 0.5310 1302 1302 0.0207 -1.18E+00 B-23, B-24

R234D (1,3) See Fig 1.0236 1.0304 1.0954 0.0293 0.0294 -0.3401 782 783 -0.1954 -3.20E+00 B-25, B-26

ES Trial

AP2 t2 EFNA CONA Fig Ref

ND (3,1) N/A 1.0000 0.3782 1450 C-1, C-2

(2,2) N/A 1.0000 0.3782 1450 C-3, C-4

RD (3,1) 0.0150 1.0000 0.3515 1318 C-7, C-8

MD (3,1) 0.0100 1.0000 0.3972 1532 C-11, C-12

EminD (3,1) 4.0000 1.0000 0.3245 1207 C-15, C-16

EmaxD (3,1) 40.0000 1.0000 0.3933 1502 C-19, C-20

NA Trial

62

Table 8: 4 Parameter No Adjustment Case Results for CD Model

5.2.5. Optimization Function Fitness Surface

Optimization function fitness surface geometry is investigated via exhaustive search in order to

create a map of fitness values in both 1 and 2 varying parameters. The reasons for this are 3 fold. First,

creating maps for two sets of 1 varying parameters can show that each model region is computed and

treated equally. Second, the map for 1 varying parameter shows the level of impact of changing the

timing of a single region when the other regions are held equal and constant. Third, creating the map for

2 varying parameters can show how having up to 3 different timing values present in the model causes the

regions to interact with each other and gives scaled intuition and insight to how the surface likely changes

when increasing the number of varying parameters further (3+ varying regions). Due to the

dimensionality of the fitness surface, variation in more than 2 regions simultaneously cannot be visualized

graphically. Figures 37 and 38 show fitness values for timing variation in region 3 using both standard

and logarithmic (base 10) scales respectively while Figures 38 and 39 depict the same results for region 4.

Additionally, Figures 41 and 42 show the results of two simultaneously time varying regions (regions 3

and 4) with standard scale in both 3d and top views. Figures 43 and 44 depict the same 3d and top views

using a base 10 logarithmic scales for cost.

AP2 t2 t3 t4 EFNA CONA Fig Ref

ND (1,3) N/A 1.0000 1.0000 1.0000 0.3782 1450 C-5, C-6

RD (1,3) 0.0150 1.0000 1.0000 1.0000 0.3515 1318 C-9, C-10

MD (1,3) 0.0100 1.0000 1.0000 1.0000 0.3972 1532 C-13, C-14

EminD (1,3) 4.0000 1.0000 1.0000 1.0000 0.3245 1207 C-17, C-18

EmaxD (1,3) 40.0000 1.0000 1.0000 1.0000 0.3933 1502 C-21, C-22

R2D (1,3) See Fig 1.0000 1.0000 1.0000 0.0565 1302 C-23, C-24

R234D (1,3) See Fig 1.0000 1.0000 1.0000 0.0294 783 C-25, C-26

NA Trial

63

Figure 37: Cost Curve for Region 3 Timing Changes

Figure 38: Log10(Cost) Curve for Region 3 Timing Changes Zoomed

64

Figure 39: Cost Curve for Region 4 Timing Changes

Figure 40: Log10(Cost) Curve for Region 4 Timing Changes Zoomed

65

Figure 41: 3D Cost Contour for Timing Changes in Regions 3 and 4

Figure 42: Top View Cost Contour for Timing Changes in Regions 3 and 4

66

Figure 43: 3D Log10(Cost) Contour for Timing Changes in Regions 3 and 4

Figure 44: Top View Log10(Cost) Contour for Timing Changes in Regions 3 and 4

67

5.2.6. Additional GA Investigation

As discussed in section 5.2, GA optimization performs less than desirably in test trials involving

more than two parameters (1 reference and 1 controlled parameter). There are multiple possible causes

for these results that include: problematic optimization fitness surface geometry, incorrect population size

utilization, and incorrect mutation rate utilization. Data for GA cases are introduced in sections 5.2.4 and

5.2.6.1 and are investigated further in sections 6.2.5 and 7.1.

5.2.6.1. Additional GA Trials: Tables

 Data for variations in population size and mutation rate are displayed in tables 9 and 10.

Further, the average results from 10 runs using each set of initial conditions are plotted in Figure

45 on top of a copy of the contour plot shown in Figure 42 which is generated by having regions

1 and 2 are both equal to 1. While it is noted that region 2 does not always evaluate to 1 in the

trials, it is a concession necessary to allow at least a partial visual comparison between various

trials.

Table 9: GA Varied Population Size Trials

Table 10: GA Varied Mutation Rate Trials

Runs AP2 tNmin2 tNavg2 tNmax2 tNmin3 tNavg3 tNmax3 tNmin4 tNavg4 tNmax4 tN2,GA,ND tN3,GA,ND tN4,GA,ND

ND (1,3) 10 48 0.8682 1.0092 1.1781 0.9143 1.1325 1.7564 0.9219 1.5134 3.2505 1.2907 0.8897 1.2056

ND (1,3) 10 72 0.9695 0.9891 1.0063 0.8529 1.9709 5.5837 0.4157 1.2217 2.3807 1.2907 0.8897 1.2056

ND (1,3) 10 96 0.9158 0.9926 1.0262 0.4249 2.1546 5.7187 0.6918 1.1374 1.8837 1.2907 0.8897 1.2056

ND (1,3) 10 120 0.9986 1.0058 1.0247 0.1917 2.5061 5.9887 0.6673 1.3181 2.8256 1.2907 0.8897 1.2056

GA Trial

EFGA EFGA,ND %Δ EF COGA COGA,ND %Δ CO %Δ F Fig Ref

ND (1,3) 0.3584 0.3642 -1.5925 1435 1450 -1.0397 -1.00E+02 A-23, A-24

ND (1,3) 0.3318 0.3642 -8.8962 1370 1450 -5.5279 -1.00E+02 A-25, A-26

ND (1,3) 0.3196 0.3642 -12.2460 1326 1450 -8.5907 -1.00E+02 A-27, A-28

ND (1,3) 0.2864 0.3642 -21.3619 1214 1450 -16.2547 -1.00E+02 A-29, A-30

GA Trial cont.

Runs AP2 tNmin2 tNavg2 tNmax2 tNmin3 tNavg3 tNmax3 tNmin4 tNavg4 tNmax4 tN2,GA,ND tN3,GA,ND tN4,GA,ND

ND (1,3) 10 0.01 0.8682 0.9916 1.0584 0.7793 1.9411 5.3674 0.7747 1.5993 3.1569 1.2907 0.8897 1.2056

ND (1,3) 10 0.05 0.9695 1.3419 4.1510 0.8575 2.7339 5.5545 0.2102 2.5621 6.1497 1.2907 0.8897 1.2056

ND (1,3) 10 0.10 0.1104 1.0474 4.1832 1.2701 3.1361 5.8000 0.3375 2.1554 5.9350 1.2907 0.8897 1.2056

GA Trial

68

Table 10: GA Varied Mutation Rate Trials Continued

5.2.6.2. GA Investigation: Contour Plot Representations

Figure 45: Overall GA Parameter Variation Cost Comparison, Region 2 Values Truncated

to 1

EFGA EFGA,ND %Δ EF COGA COGA,ND %Δ CO %Δ F Fig Ref

ND (1,3) 0.0551 0.3642 -84.8710 1400 1450 -3.4427 5.47E+10 A-31, A-32

ND (1,3) 0.0392 0.3642 -89.2367 1099 1450 -24.2173 1.46E+11 A-33, A-34

ND (1,3) 0.0059 0.3642 -98.3800 156 1450 -89.2558 1.55E+11 A-35, A-36

GA Trial cont.

69

Figure 46: GA Population Size = 48 Individual Run Cost Comparison, Region 2 Values

Truncated to 1 for Comparison

70

Figure 47: GA Population Size = 72 Individual Run Cost Comparison, Region 2 Values

Truncated to 1 for Comparison

71

Figure 48: GA Population Size = 96 Individual Run Cost Comparison, Region 2 Values

Truncated to 1 for Comparison

72

Figure 49: GA Population Size = 120 Individual Run Cost Comparison, Region 2 Values

Truncated to 1 for Comparison

73

Figure 50: GA Mutation Rate = 1% Individual Run Cost Comparison, Region 2 Values

Truncated to 1 for Comparison

74

Figure 51: GA Mutation Rate = 5% Individual Run Cost Comparison, Region 2 Values

Truncated to 1 for Comparison

75

Figure 52: GA Mutation Rate = 10% Individual Run Cost Comparison, Region 2 Values

Truncated to 1 for Comparison

5.2.7. Combined GA and Exhaustive Search Timing Comparisons

 Sections 5.2.1 and 5.2.2 provide tabular data for the results generated by both GA and

exhaustive searches respectively in trying to minimize ventricular wall acceleration for the initial

conditions provided for the trial. Additionally, section 5.2.6.1 shows tabular data from

investigating the impact of population size and mutation rate GA search parameters on the ability

76

of the GA to converge to a more or less fit solution. The average regional timing results from the

GA trials and the returned timings from the exhaustive search are placed in box and whisker

plots in sections 5.2.7.1-3 broken into 2 parameter trials, 4 parameter trials, and additional GA

trials respectively to provide a visual representation of the results obtained.

77

5.2.7.1. 2 Parameter Timing Box and Whisker Plot

Figure 53: 2 Parameter Box and Whisker Plot Multiple Trials: GA vs. Exhaustive Search

78

Figure 54: 2 Parameter Box and Whisker Plot Multiple Trials: GA vs. Exhaustive Search

Zoomed

79

5.2.7.2. 4 Parameter Timing Box and Whisker Plot

Figure 55: 4 Parameter Box and Whisker Plot Multiple Trials: GA vs. Exhaustive Search

80

Figure 56: 4 Parameter Box and Whisker Plot Multiple Trials: GA vs. Exhaustive Search

Zoomed

81

5.2.7.3. Varied GA Parameters Box and Whisker Plot

Figure 57: 4 Parameter Box and Whisker Plot Multiple Trials: GA Variations

82

Figure 58: 4 Parameter Box and Whisker Plot Multiple Trials: GA Variations Zoomed

83

6. DISCUSSION

6.1. Interpreting the Walking Sinusoid Model GA Search Data

In the case of the walking sinusoids model, the GA was able to converge with one and

two searched parameters by averaging the results of 10 trials. Due to the nature of stochastically

based optimization algorithms like GAs, the error seen in individual final outputs is not

surprising. With the simplistic nature of the model, the time required to execute a GA based

search is likely longer that what might be required by other methods such as exhaustive search,

even at a relatively fine grid-like search of the solution space. Though another method may be

more time efficient in generating a solution, the purpose was to validate the GA algorithm

designed prior to use with more computationally intensive models. Regardless, the GA

succeeded in its task even under noisy conditions as shown in Table 1 and in Appendix F

Figures.

6.2. Discussion and Analysis of CD Model Testing

Due to a model discrepancy found late in the data collection process and the large

number of trial cases already performed, select trial cases based on the model improvements

were performed and analyzed to inspect the impact on previously collected results. These new

trials mirror one of the previous 4 parameter control trials and one additional random sample

from the previous 4 parameter dyssynchrony trials to provide a comparison of what impact the

model setup may have on the data already collected in the previous model configuration.

Additional information was also gathered for these trials to draw more insightful conclusions and

to provide a basis for determining future directions. Such additional information includes PV

loop plots, Wiggers diagrams, and regional work/power plots for these select trials.

84

6.2.1. CD Model Validation

As mentioned in section 6.2, after multiple test trials, it was found that the CD model

being used contains some discrepancies in some of its initial conditions that contributed to

volumes outside of physiological norms. Attempts were made to work with the model designers

to remedy the defect and the corresponding values were brought within acceptable ranges;

however, it was not possible to create a situation in which all the nominally accepted values were

obtained simultaneously which can likely be attributed as a shortfall of using a simple model for

a very complex system. After varying model initial conditions to elicit more physiologic values

for pressure and volume, the CD model with varied initial conditions was used with the 4

parameter exhaustive search to see if those model conditions affected optimization timings.

From this, two trials were selected to be re-run using the new model conditions: the

control, no dyssynchrony trial and a random trial from the set of dyssynchrony trials, the

maximum elastance dyssynchrony trial. The new initial conditions involve changing the value of

“volume” in the dyss1.m file from 10 to 30, and the default minimum elastance was decreased to

0.5 from 1 in Scripted_Initialization.m. In addition, Line 11 of dyss1.m was changed from

…ode23s(…6 100 volume…) to …ode23s(… pressure 100 volume). While these changes do

not result in the expected “normal” physiological values for ventricular volume, pressure, stroke

volume, ejection fraction, or cardiac output, the values do better fall within physiological ranges.

The no dyssynchrony trial converges to the same solution with both the new and old CD

model initial conditions as shown in Table 2. Thus, it can be concluded that the model changes

do not impact the ability for a solution to be realized through optimization.

Also shown in Table 2, the dyssynchrony trial EmaxD indicates approximately a 3.2 ms,

overall shift in optimal timings, but the distance between the optimized regional times are largely

85

unaffected. This can be interpreted to indicate that while the model’s initial conditions can

drastically impact modeled ventricular volumes, pressures, stroke volumes, and cardiac outputs,

the impact on wall acceleration values and the corresponding wall acceleration optimizations is

influenced to a much lesser extent. From this, it can be reasoned that while the absolute timing

values and percentage improvements may differ, the overall conclusions drawn from these trials

can largely be translated to the pre-existing trials using the old model initial conditions.

The results of this testing show that while the acceleration waveforms are altered, the

timings returned as optimal remain largely unchanged from those using the previous version of

the model and initial. From this it was concluded that while the acceleration waveforms may be

inaccurate representations on the majority of the test cases, the results and conclusions derived

from the earlier test cases are still valid.

6.2.2. Cardiac Pressure-Volume Characteristics

 Figures 17 and 18 respectively show the PV loop characteristics for the no dyssynchrony

and maximum elastance dyssynchrony trials involving the new CD model initial conditions. The

figures show both the exhaustive search optimized timings as well as a no adjustment trial in

which timings for all 4 regions are forced to be equal. (The no adjustment trial simulates a

pacemaker setting regional timings without a feedback parameter for self adjustment.) In the

case of no dyssynchrony (Figure 17) it is shown that the exhaustive search is capable of

matching the performance of a pacemaker forcing simultaneous activation of all 4 regions. By

contrast, Figure 18 shows in the case of maximum elastance dyssynchrony both end-diastolic and

end-systolic volumes are reduced without a commensurate increase in pressure. Rather, a subtle

shift in ventricular pressure in the timing optimized condition is seen when compared to the trial

when timings are forced to be equal. While this translates into a higher EF, CO is largely

86

unchanged. A reduction of both end-diastolic and end-systolic volume is a desirable

characteristic since the increased preload and afterload associated with higher end-diastolic and

end-systolic volumes can lead to ventricular remodeling such as hypertrophy [33].

6.2.3. Acceleration and Timing Characteristics

References to individual figures are given in tables 2 through 10. For example, Figure 21

and 25 correspond to the CD model under these three conditions: new initial conditions, no

dyssynchrony and 4 parameter optimization. Figure 21 shows the acceleration waveforms as

would be measured on the ventricular walls for each of the 4 regions computed by the model. In

2 parameter mode, 3 of the regions are tied together and set to the control timing while the 4
th

region is allowed to be optimized by the named algorithm. The acceleration waveforms are color

coded to their respective regions and a legend is provided with each plot. Some trials also show

the timing values used to generate the acceleration waveforms on the acceleration plots, like seen

in Figure 21. As the regions are on either side of a central chamber as shown in Figure 15,

acceleration direction was normalized such that movement toward the center indicates a negative

acceleration, and movement away from the center indicates a positive acceleration regardless of

the region’s location. In this context, direct overlay of all regional accelerations is the most

desired outcome.

Figure 25 indicates the times at which each region was commanded to “fire” (begin

contracting) with respect to the overall heart timing signal. These values range from 0 to 2π with

a value of 1 being the default time of the fixed region(s). The color coded lines indicate the

solution(s) returned by the search algorithm utilized for the controlled region(s). A legend is

provided with each graph to aid in identification of regional results and performance. In the case

of GA sets where multiple individual attempts were made, there are multiple, thin, tick marks

87

indicating the individual GA results returned, and a thicker tick mark indicating the average of

all individual GA runs for a specific set of starting conditions. In the case of exhaustive search,

and no adjustment runs, there are grey, vertical bars indicating the range of possible solutions for

controlled region(s) to show the final level of granularity when performing the exhaustive search

since the ability to draw meaningful conclusions from the exhaustive search is directly

proportional to how fine the search grid was when the search terminated.

Figures 23 and 24 correspond to maximum elastance dyssynchrony using exhaustive

search and no optimization respectively. As can be seen in these figures, the exhaustive search

optimized trial has better correlation during systole with some sacrifices made during diastole

when compared to the non-optimized, linked, firing times.

6.2.4. Regional Work and Power Plots

 Figures 29-32 show regional work plots for no dyssynchrony and maximum elastance

dyssynchrony under both timing optimized and non-optimized conditions respectively. In the

case of no dyssynchrony, Figures 29 and 30, under both timing optimized and non-optimized

conditions, no work variations are observed between regions. However, in the case of maximum

elastance dyssynchrony, Figures 31 and 32, it can be seen that there is approximately a 50%

increase in work performed in Region 2 (the region with varied maximum elastance) for the

timing optimized condition when compared to the non-optimized control with approximately

15% decreases in work performed by the other three regions resulting in a much more balanced

work distribution. This redistribution of work load likely explains the lack of significant CO

change observed in the other dyssynchrony trials.

 In similar fashion, Figures 33-36 show regional instantaneous power generation for no

dyssynchrony and maximum elastance dyssynchrony under both timing optimized and non-

88

optimized conditions respectively. Again, there is no observable difference between optimized

and non-optimized conditions in the no dyssynchrony trial, Figures 33 and 34. However, in the

case of maximum elastance dyssynchrony, the maximum power generated by region 2 increased

by approximately 50% while the remaining regions decreased by approximately 8% each

resulting in a much stronger correlation between peak power generation of region 2 and the

remaining regions. [27] and [31] link variations in regional workload to cardiac remodeling that

is ultimately detrimental. Similarly, it would be interesting to investigate if balancing those

regional workloads elicits more beneficial remodeling.

6.2.5. Interpreting the CD Model GA Search Data

In the case of the CD Model, the GA performed unsatisfactorily in the 4 parameter model

search by investigation of the ΔF% values. However, by the same ΔF% value, GA use on the 2

parameter model is more promising with only +/- 7% deviations from the exhaustive search

solutions involving the same conditions as shown in Table 3. Visual comparison of these timing

results can be observed in Figures 53 – 56 where each colored plot represents the range of

individual solutions for the specified region. The box represents the middle 50% of data with the

outer edges marking the upper and lower quartiles (25
th

 and 75
th

 percentiles), and the center mark

in the box representing the mean (50
th

 percentile). Cross marks designate outliers falling outside

+/- 2.7 standard deviations from the mean.

With the exception of the RD, 2 parameter trial, these solutions still do not reach the level

of accuracy and cost reduction achieved by the exhaustive search. This singular improvement

can largely be attested to the complexity of the search space as shown in Figures 41 – 44, and the

granularity of the exhaustive search used in the 2 parameter conditions as discussed in section

3.2. In contrast however, the 2 parameter GA trial solutions prove to be much closer in terms of

89

change in cost values (ΔF%) than their 4 parameter trial counterparts outlined by comparing

Tables 3 and 4. There are a number of possible reasons for this. The largest suspected culprit

for the diminishing performance with increased degrees of freedom is premature convergence of

the population. Although the ultimate cause is unknown, contributing factors may include: an

undersized population pool, overly fit individuals relative to the rest of the population early in

the GA process dominating mate selection, or too small a mutation rate to name a few.

Variations in population size and mutation rate are investigated individually. However, the

complex interactions of GA parameters and the implementation of gene manipulating operations

do not allow for simple conclusions to be drawn on the individual impact of either parameter.

In short, additional tuning is still required to optimize the GA for solving the problem of

reducing acceleration CD by altered regional timings, especially with larger degrees of freedom.

Brute force methods such as forcing excessively large population sizes or increasing the

maximum number of generations can be used in an attempt to resolve the aforementioned issues

of GA, but at a great cost of computational time in each case. Each trial consists of a set of 10

GA runs using the sets of parameters stated previously (section 6.2.2) and was executed using

the parallel computing toolbox in MATLAB in a six core environment; these trials averaged

about 24 hours for completion. Conceivably, in single core operation, the same task would take

up to 6 times as long (almost a week) to converge to a solution—a solution that is not yet correct

to any level of implementable usefulness (see Appendix A for examples, trial references can be

found in Tables 3, 4, 9, and 10).

To investigate possible contributions from incorrect population sizes and mutation rates,

these parameters have been investigated individually as shown in Tables 9 and 10. The averaged

results of 10 runs in each trial are placed in Figure 45 for a visual representation. Timing results

90

for these trials are also compared with those of exhaustive search in Figures 57 and 58 utilizing

box and whisker plots discussed previously.

Figures 45 – 52 are visual aids to help understand GA convergence patterns under varied

population size and mutation rates, but are not specific to individual GA trial solutions. Since

these plots can only show variations in two parameters (timings for regions 3 and 4) at a time.

The other values (timings for regions 1 and 2) must remain fixed and have no way of being

adjusted from one run to the next. For example, a similar comparison can be made between

variations in regions 2 and 3, regions 3 and 4, or regions 2 and 4. However, since region 2 is the

most constant in terms of convergence seen in Tables 9 and 10, it was deemed most useful to

show the fitness surface from varying regions 3 and 4.

While results from these additional trials (Figures 46 – 52) show variations in the

individual solution timing values, it is unclear that modifications to any one parameter provides

the desired GA response of all runs converging near the ideal solution as seen in the variation of

individual solution runs in Figures 46 – 52.

It is suspected that it takes a combination of parameter changes to allow for consistent

convergence using GA optimization and even then, the computational cost may make GA

optimization in its native form infeasible for real application. These GA parameter variations

could be an avenue for future investigation.

In addition to the potential shortfalls mentioned, the method of un-weighted means for

averaging the individual GA runs appears to cause problems with inaccurate GA results, possibly

giving the GA less credit than it deserves. As previously discussed, a subset of GA trials is

represented in Figures 46 – 52 that show locations of individual solutions with respect to

generated values for regions 3 and 4. As can be seen, while some runs converge to regions

91

bordering the optimal solution when looking at the overall fitness curve, other runs get stuck in

local minimums and are unable to escape (unable to remove themselves from a local minimum)

prior to population convergence. The averages in each trial, indicated by the bold marks,

represent the mean of all compiled GA run solutions within the specified trial. A number of

these individual runs in multiple trials converge near the ideal values; however, in averaging all

trials, the results from runs that get stuck in either local minima or on the far side of the graphed

solution range. The means are computed using standard averaging techniques; however, since

the region being investigated is periodic, this method of averaging can unjustly skew results in

the event of irregular convergence around the ideal solution. A better solution may be selecting

the minimum solution from the set of trials, selecting a solution based on cluster recognition, or

obtaining a solution from modified averaging to take advantage of the periodic nature of the

search space. While just taking the minimum can impact noise immunity, this method can be

further adjusted if noise becomes a problem once measurements are used instead of models.

One additional cause for the varied GA convergence could be the search population was

not seeded with a test case that forces all regions to fire simultaneously as a starting point for the

search. While this test case could focus the search near that area of the search space if it is a

relatively fit solution, introducing it too early in the GA search process could negatively

influence the mating probabilities computed and lead to premature population convergence. It

was decided that investigating the GA performance in an unguided search is more beneficial

since fitness surfaces can conceivably vary greatly depending on the model and initial conditions

used. If the GA can converge without an overly specific set of starting conditions itself, it

strengthens the argument that GAs can be robust tools for finding solutions to complex

problems.

92

The deviations in CD Model behavior could also potentially lead to less than desirable

GA performance for the 4 parameter optimization cases. Although it was found that changes in

initial conditions of the model do not significantly impact the optimal condition overall, it may

impact the fitness surface in a way that is even less favorable to GA optimization. Further

discussion of findings involving CD Model behavior can be found in section 6.2.1.

6.2.6. Interpreting the Exhaustive Search Data

Exhaustive searching of the solution space yields rather exciting results. As can be seen

in Tables 3, 4, 5, and 6 along with Appendix B Figures, the Exhaustive Search yields better

solutions than all 4 parameter GA solutions and meets or exceeds the “no adjustment” solutions

of firing all regions at the same time. The only time firing all regions at the same time out

performed exhaustive search solutions is in the case of no dyssynchrony which can be attributed

to discretization errors when sampling and testing the search space. This error could be

minimized further and nearly eliminated if the exhaustive search is allowed to narrow its search

regions further, at the cost of computational time. As an aside, while a normal heart largely

contracts from the bottom up, the simplest solution to CD is firing all regions simultaneously.

The default case for comparison, “no adjustment”, is used to generate baseline data matching the

simplest solution, not normal physiology. This baseline is used in the ultimate determination of

whether or not timing adjustments can beat baseline CD correction. All being considered, since

the main goal of both the exhaustive search and GA search was to test whether changes in

regional timing can improve ventricular wall acceleration dyssynchrony, the results for the no

dyssynchrony case were treated as a control in verifying the algorithms performed as expected.

In conclusion, exhaustive search outperforms both GA and “no adjustment” cases with the

singular exception to the discretization errors previously discussed.

93

7. CONCLUSIONS

7.1. GA Conclusions

Overall, the GA algorithm and procedure outlined in this thesis takes a step-by-step

approach in investigating the use of ventricular wall accelerations as a measure to adjust regional

firing times in the pursuit of reducing acceleration measured cardiac dyssynchrony. This step-

by-step procedure resulted from the complexity of implementing a GA, and was put into practice

by giving a GA tutorial and slowly building up a GA using simple and intuitive models. This

method allowed for absolute focus to be placed on understanding the inner workings of the GA

architecture in a hands-on approach prior to investigating a specific implementation.

After verifying a GA architecture that has potential to achieve desirable results, the

simple model is replaced with a more computationally intensive and physiologically relevant CD

model. Finally, an exhaustive search algorithm is used with the same CD Model and

optimization function to perform two tasks: First, to gauge GA performance, and second, as a

parallel investigation to answer the overall question of whether or not adjustments to regional

firing times can reduce the impacts of mechanical cardiac dyssynchrony, on measured

acceleration CD.

In the case of the 2 parameter searches, the GA results came close but not quite as good

as those of the exhaustive searches when averaging multiple separate GA runs (Tables 3 and 5

along with Appendices A and B). The results are as expected since GAs, by nature, get close to

the optimal solution for any one particular run, but rarely achieve the global optimum without

trial averaging or other method of fine tuning to create a more hybrid search architecture.

In the case of the 4 parameter searches, the GA results are infeasible when compared to

their respective exhaustive search results (Tables 4 and 6 along with Appendices A and B). Even

94

firing all the regions simultaneously is better in many cases as can be seen when comparing

identical trial conditions as noted in Tables 3, 4, 7, and 8 with Figures in Appendices A and C. A

simple way to remedy this might be to selectively place this sequence into the initial GA

population; however, other modification will also likely be required to avoid early convergence

in the case that this solution is significantly more fit than other initial solutions.

GAs can likely achieve the results desired in using cardiac wall acceleration to reduce

CD, but the question is at what cost computationally. In the situation where the GA is properly

tuned, there is a chance that computational performance could be drastically better than a

similarly performing exhaustive search. For example, in a 2 parameter, no dyssynchrony test

run, a single instance of the GA search executed in about 1/8
th

 the time of a single run of the

exhaustive search. While these single execution times vary for the 4 parameter search, there is

still substantial margin between GA and exhaustive searches that can be exploited to obtain a

similar solution from the GA, in less time than a sufficiently narrow exhaustive search if the GA

can be tuned to reliably find the desired result in a single run.

Due to the discussed flexibility of GA implementation, the GA shows strong promise in

areas of medical/biological interaction and optimization given proper tuning. In contrast

however, significant tuning must yet be done in the case of using GAs to assign firing times for a

pacemaker to provide a higher chance of convergence to a near optimal solution. In addition, use

of the GA algorithm against more comprehensive cardiac models is highly recommended since it

is suspected that discussed model shortfalls may substantially change the search space of the

optimization function.

Already cautioned in [32], it is advised against GAs operating directly on a system in on-

line applications due to the extreme randomness in how GA solutions are generated. The

95

exception to this would be in the case where a system is known to be robust enough to tolerate

what could be significant stress on the system by very poor solution choices. Since the system

under test in this case would be a human heart, it is inadvisable to allow a GA unhindered search

ability across a global solution space. Strong safeguards such as narrowing the search range for

any given generation should be considered to protect human life.

Problems strongly suited for GA optimization are usually poorly understood, or have

poorly behaved search spaces. This paradox largely confines GA use to off-line applications and

on-line applications where a short hiccup will not cause catastrophic damage. In the case of

medical applications, it is questionable to allow such unrestricted experimentation of the device

directly on a patient’s heart. Likely, the solution to this is twofold. First, an individualized

model could be created and run as a secondary operation within a pacemaker for each patient.

This would allow on-line timing changes only after obtaining one or multiple “best fits” from

model driven GA executions. Second, a hybrid system, similar to those discussed in [32],

utilizing all or portions of the GA architecture modified and combined with another type of

optimization, such as exhaustive search, could be implemented to help quell the randomness of

the initial GA search space and allow a slower, more controlled path toward convergence and the

globally optimal solution.

For systems with well behaved and optimization functions and well understood search

spaces, utilizing the inherent parallel operations of the GA to find suitable starting positions and

systematically “climbing the hill” to the local optimum from a given starting point could speed

the process of finding the local optimum from each starting point, yet still yield a global

optimum when taking those now optimized starting points to perform the rest of the GA

protocol.

96

7.2. Exhaustive Search Conclusions

While it is slow, especially with higher degrees of freedom, the exhaustive search has

easily shown promise in using cardiac wall acceleration as a metric of measuring and correcting

CD. In all trials of importance, exhaustive search out performed both GA search, and “no

adjustment” testing conditions. Timing adjustment has been shown to improve acceleration CD

by up to 56%, increase both the dyssynchronous region’s workload and instantaneous power

generation by up to 50%, and decrease the healthy regions’ workload by up to 15% and

instantaneous power generation by up to 7%. Exhaustive searching gives merit to the continued

investigation of using cardiac wall acceleration as a metric for both measuring, and reducing CD

on an individualized basis.

Even with exhaustive search being able to find the best solution, it also finds the worst

solution in an unrestricted search space. Prior to non-model trials, restrictions will need to be

placed on the search space available to exhaustive or any other type of search.

7.3. Future Work

This thesis provides an in depth tutorial on GA operation and problem casting along with

a first step examination of the merits and demerits of utilizing GA and exhaustive search in a

medical device control system applications. The focus was placed on proposing an improved

method of more systematically adjusting a cardiac pacemaker lead timings to reduce measured

ventricular acceleration CD caused by both mechanical and electrical cardiac in a model based,

MATLAB environment. While these investigations include the use of GAs and exhaustive

search methods, safety in the random navigation of the GA search space and its results on the

heart have not been investigated and were not considered a concern for this specific

implementation.

97

Medical devices are understandably a highly regulated industry and while that regulation

ultimately leads to safer devices, at this stage of development, designing to those stringent

criteria would unduly slow the gathering of beneficial results at early stages of development.

Therefore, future investigations should strongly consider the safety precautions necessary for

clinical trials as research pushes closer to actual device implementation.

In addition, to the short comings discussed in sections 7.2 and 7.2.1, the model only

provides a 1-dimensional acceleration for each of the regions of interest where a real heart would

have 3-dimensional accelerations. As an example, future work would have to allow for 3-

dimensional accelerations and other complexities inherent to truer cardiac models as a path

toward eventual hardware implementation, implantation, and testing. Future research could

attempt to streamline either or both of these fronts to improve eventual patient safety in the

search for a system that already shows strong promise in realizing an improved solution over

firing all regions simultaneously.

One option for future GA exploration may be in constraining the explorable search space

of the GA to a smaller region around the initial conditions given by either the model or

physiological measurement. There are multiple reasons for this, but the most important being

that if this GA is allowed to make on-line changes to an individual’s cardiac timing it must be in

a more controlled fashion than what is inherent with traditional GA operation. Traditional GAs

have the potential to explore the entire search space given to them; however, in the case of

cardiac pacing, it is unknown if one wrong pacing trial can send a heart into arrest, but it is

something that cannot be risked. Thus, creating a hybrid GA with other optimization properties

may be a better solution. One example may be starting with an exhaustive search and using

those results to then constraining exploration of a GA to an area close to the initial

98

measurements, while slowly tracking that search window with the current best solution could

help mitigate the possibility of having a catastrophic timing combination causing cardiac arrest.

Another reason this could be beneficial, is it allows an easy path toward allowing the GA to track

with cardiac changes over time in that, this search and slow movement concept can be looped

indefinitely and allow for change in timing that would be less noticeable to the patient unlike

traditional GA or exhaustive searches that test the entire scope of the solution space when

restarted.

Another area of possible improvement lies in how GA solutions are utilized. Following

recommendations in [14], multiple GA runs were performed and averaged for a given set of trial

conditions. These referenced cases involve non-periodic signals, but the tests performed here are

on periodic waveforms. In this case, strict averaging caused trials to appear worse than they may

actually be if convergence is not guaranteed to be in a relatively small window. A better

approach may be to modify the averaging to take advantage of the periodic nature of the

waveforms, perform cluster recognition and ignore outliers prior to averaging, or to simply pick

the best, final solution of the individual GA runs. The latter approach is just picking the best

solution from parallel, isolated GA experiments. Instead, it may be better to focus on selecting

an approach that does not require as much computing power. Rather, it may be more beneficial

to focus on making smarter choices in GA parameter selection and windowing to allow for more

rapid and clustered convergence. Likely, experimentation will be required to find the correct

balance of GA starting parameters, search windows, and forced starting conditions to generate

better solutions.

This work takes the first steps toward creating a system that can continually adjust as

physiological changes take place in the heart to ensure an up-to-date, near optimal solution for

99

every patient implanted with what could very likely become the next generation in both cardiac

resynchronization therapy, and individualized medicine.

100

8. WORKS CITED

[1] F. W. Prinzen, et. al., "Redistribution of Myocardial Fiber Strain and Blood Flow by

Asynchronous Activation," Am. J. Physiol. Heart Circ. Physiol., vol. 259, no. 2, pp. H300-

308, Aug., 1990.

[2] M. F. M. Oosterhout, et. al., "Asynchronous Electrical Activation Induces Asymmetrical

Hypertrophy of the Left Ventricular Wall," Circulation., vol. 96, no. 6, pp. 588-95, 1998.

[3] D. D. Spragg, et. al., "Regional alterations in protein expression in the dyssynchronous

failing heart," Circulation., vol. 108, no. 8, pp. 929-932, 2003.

[4] J. B. Thambo, et. al., "Detrimental ventricular remodeling in patients with congenital

complete heart block and chronic right ventricular apical pacing," Circulation., vol. 110,

no. 25, pp. 3766-3772, 2004.

[5] O. Aquilina, A Brief History of Cardiac Pacing,” Images Paediatr Cardiol., vol. 8, no. 2,

pp. 17-81, 2006.

[6] L. F. Tops, M. J. Schalij, and J. J. Bax, "The Effects of Right Ventricular Apical Pacing on

Ventricular Function and Dyssynchrony," J. Am. Coll. Cardiol., vol. 59, no. 9, pp. 764-

776, 2009.

[7] D. E. Golberg, "Genetic algorithms in search, optimization, and machine learning," Addion

Wesley, 1989.

[8] J. Carr, “An Introduction to Genetic Algorithms,” [Online]. pp. 1-40, Available:

https://karczmarczuk.users.greyc.fr/TEACH/IAD/GenDoc/carrGenet.pdf

[9] M. Obitko, P. Slavik, and W. Patzold, "GENETIC ALGORITHMS, Introduction to

Genetic Algorithms," [Online]. Available: http://www.obitko.com/tutorials/genetic-

algorithms/index.php

[10] D. Whitley, "An Overview of Evolutionary Algorithms: Practical Issues and Common

Pitfalls," Inform. Software. Tech., vol. 43, no. 14, pp. 817-831, 2001.

[11] R. L. Haupt, "Optimum Population Size and Mutation Rate for a Simple Real Genetic

Algorithm That Optimizes Array Factors," in IEEE Antennas Propagat. Soc. Int. Symp.

Transmitting Waves of Progress to the Next Millenium., 2000.

[12] K. A. De Jong, “An analysis of the behavior of a class of genetic adaptive systems,” Ph.D.

dissertation, Univ. of Michigan, Ann Arbor, MI, 1975.

[13] G. Liu, and J. Chen, "The Application of Genetic Algorithm Based on Matlab in Function

Optimization," 2011 Int. Conf. on Electrical and Control Engineering, 2011.

101

[14] R. Wehrens, and L. M. C. Buydens, "Evolutionary optimisation: a tutorial," Trends Anal.

Chem., vol. 17, no. 4, pp. 193-203, 1998.

[15] Y. J. Cao, and Q. H. Wu, "Teaching genetic algorithm using MATLAB," Int. J. Elec. Eng.

Educ., vol. 36, no. 2, pp. 139-153, 1999.

[16] L. F. Tops, et. al., "Right Ventricular Pacing Can Induce Ventricular Dyssynchrony in

Patients With Atrial Fibrillation After Atrioventricular Node Ablation," J. Am. Coll.

Cardiol., vol. 48, no. 8, pp. 1642-1648, 2006.

[17] A. S. Manolis, "The Deleterious Consequences of Right Ventricular Apical Pacing: Time

to Seek Alternate Site Pacing," Pace., vol. 29, no. 3, pp. 298-315, 2006.

[18] C. R. Reeves, "Genetic Algorithms and Statistical Methods: A Comparison," 1
st
 Int. Conf.

on Genetic Algorithms in Engineering Systems: Innovations and Applications, 1995.

[19] S. Gotshall, and B. Rylander, “Optimal Population Size and the Genetic Algorithm.”

[Online.] Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.417.1552&rep=rep1&type=pdf

[20] M. Dianati, I. Song, and M. Treiber, “An Introduction to Genetic Algorithms and

Evolution Strategies,” [Online.] Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.6910&rep=rep1&type=pdf

[21] L. Sewanan, Modeling Cardiac Muscle Mechanics," Undergraduate thesis, Trinity College,

Hartford, CT, 2012. Trinity College Digital Repository,

<http://digitalrepository.trincoll.edu/theses/213>.

[22] D. Whitley, "A genetic algorithm tutorial," Stat. Comput., vol. 4, no. 2, pp. 65-85, 1994.

[23] P. A. Diaz-Gomez, and D. F. Hougen, "Initial Population for Genetic Algorithms: A

Metric Approach," GEM. 2007. Available: http://www.cameron.edu/~pdiaz-

go/GAsPopMetric.pdf

[24] O. Roeva, S. Fidanova, and M. Paprzycki, "Influence of the population size on the genetic

algorithm performance in case of cultivation process modeling," Computer Science and

Information Systems (FedCSIS), 2013 Federated Conf. on IEEE, 2013.

[25] L. Ganjehei, M. Razavi, and A. Massumi, “Cardiac Resynchronization Therapy: A Decade

of Experience and the Dilemma of Nonresponders,” Tex. Heart. I. J., vol. 38, no. 4, pp.

358-360, 2011.

[26] J. G. F. Cleland, et. al., "The effect of cardiac resynchronization on morbidity and

mortality in heart failure," New. Engl. J. Med., vol. 352, no. 15, pp. 1539-1549, 2005.

102

[27] F. W. Prinzen, et. al., "Asymmetric Thickness of the Left Ventricular Wall Resulting from

Asynchronous Electric Activation: A Study in Dogs with Ventricular Pacing and in

Patients with Left Bundle Branch Block," Am. Heart. J., vol. 130, no. 5, pp. 1045-1053.

[28] S. Sagar, et. al., "Effect of Long-Term Right Ventricular Pacing in Young Adults With

Structurally Normal Heart," Circulation., vol. 121, no. 15, pp. 1698-1705, 2010.

[29] K. Vernooy, et. al., "Ventricular remodeling during long-term right ventricular pacing

following His bundle ablation," Am. J. Cardiol., vol. 97, no. 8, pp. 1223-1227, 2006.

[30] H. E. D. J. Ter Keurs, W. H. Rijnsburger, R. Van Heuningen, and M. J. Nagelsmit,

"Tension Development and Sarcomere Length in Rat Cardiac Trabeculae: Evidence of

Length-Dependent Activation," Cardiac Dynamics Developments, Cardiovasc. Med., pp.

25-36, 1980.

[31] J. Sadoshima, et. al., "Molecular characterization of the stretch-induced adaptation of

cultured cardiac cells. An in vitro model of load-induced cardiac hypertrophy," J. Biol.

Chem., vol. 267, no. 15, pp. 10551-10560, 1992.

[32] P. J. Fleming, and C. M. Fonseca, "Genetic algorithms in control systems engineering: A

brief introduction," Genetic Algorithms for Control Systems Engineering, IEE Colloq. on.

IET, 1993.

[33] K. Toischer, et. al., "Differential cardiac remodeling in preload versus afterload,"

Circulation, vol. 122, no. 10, pp. 993-1003, 2010.

[34] Pacemaker NIH.jpg. Digital image. Wikimedia Commons. National Heart Lung and Blood

Institute (NIH), 12 Nov. 2013. Web.

<https://commons.wikimedia.org/wiki/File:Pacemaker_NIH.jpg>.

[35] Deglr6328~commonswiki. Skeletal Muscle.jpg. Digital image. Wikimedia Commons.

N.p., 11 Sept. 2005. Web.

<https://commons.wikimedia.org/wiki/File:Skeletal_muscle.jpg>.

103

APPENDIX A. PLOTS OF GA SEARCH VARIATIONS FOR CD MODEL

Note: Labeling convention for acceleration plots (x, y) where x is the number of fixed

regions, and y is the number of adjusted regions.

104

A.1. No Dyssynchrony

Case 1: Scripted_Initialization_no_dyss.m parameters

Figure A-1: No Dyssynchrony (3, 1) Acceleration for GA Search 10 runs averaged

Figure A-2: No Dyssynchrony (3,1) Timing for GA Search 10 runs

105

Case 2: Scripted_Initialization_no_dyss.m parameters

Figure A-3: No Dyssynchrony (2, 2) Acceleration for GA Search 10 runs averaged

Figure A-4: No Dyssynchrony (2,2) Timing for GA Search 10 runs

106

Case 3: Scripted_Initialization_no_dyss.m parameters

Figure A-5: No Dyssynchrony (1, 3) Acceleration for GA Search 10 runs averaged

Figure A-6: No Dyssynchrony (1,3) Timing for GA Search 10 runs

107

A.2. Resistance Dyssynchrony

Case 1: Scripted_Initialization_r2_dyss_0_015.m parameters

Figure A-7: Resistance Dyssynchrony (3, 1) Acceleration for GA Search 10 runs averaged

Figure A-8: Resistance Dyssynchrony (3,1) Timing for GA Search 10 runs

108

Case 2: Scripted_Initialization_r2_dyss_0_015.m parameters

Figure A-9: Resistance Dyssynchrony (1, 3) Acceleration for GA Search 10 runs averaged

Figure A-10: Resistance Dyssynchrony (1,3) Timing for GA Search 10 runs

109

A.3. Mass Dyssynchrony

Case 1: Scripted_Initialization_m2_dyss_0_01.m parameters

Figure A-11: Mass Dyssynchrony (3, 1) Acceleration for GA Search 10 runs averaged

Figure A-12: Mass Dyssynchrony (3,1) Timing for GA Search 10 runs

110

Case 2: Scripted_Initialization_m2_dyss_0_01.m parameters

Figure A-13: Mass Dyssynchrony (1, 3) Acceleration for GA Search 10 runs averaged

Figure A-14: Mass Dyssynchrony (1,3) Timing for GA Search 10 runs

111

A.4. Minimum Elastance Dyssynchrony

Case 1: Scripted_Initialization_min_elas2_dyss_4.m parameters

Figure A-15: Min Elastance Dyssynchrony (3, 1) Acceleration for GA Search 10 runs avg

Figure A-16: Min Elastance Dyssynchrony (3,1) Timing for GA Search 10 runs

112

Case 2: Scripted_Initialization_min_elas2_dyss_4.m parameters

Figure A-17: Min Elastance Dyssynchrony (1, 3) Acceleration for GA Search 10 runs avg

Figure A-18: Min Elastance Dyssynchrony (1,3) Timing for GA Search 10 runs

113

A.5. Maximum Elastance Dyssynchrony

Case 1: Scripted_Initialization_max_elas2_dyss_40.m parameters

Figure A-19: Max Elastance Dyssynchrony (3, 1) Acceleration for GA Search 10 runs avg

Figure A-20: Max Elastance Dyssynchrony (3,1) Timing for GA Search 10 runs

114

Case 2: Scripted_Initialization_max_elas2_dyss_40.m parameters

Figure A-21: Max Elastance Dyssynchrony (1, 3) Acceleration for GA Search 10 runs avg

Figure A-22: Minimum Elastance Dyssynchrony (1,3) Timing for GA Search 10 runs

115

A.6. Population Size Variation: No Dyssynchrony

Scripted_Initialization_no_dyss.m parameters

Figure A-23: No Dyssynchrony (1, 3) Acceleration for GA Search 10 Runs Avg, Pop Size =

48

Figure A-24: No Dyssynchrony (1,3) Timing for GA Search 10 Runs, Population Size = 48

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2500

-2000

-1500

-1000

-500

0

500

1000
GA Search: No Dyssynchrony 10 runs averaged: 1 fixed, 3 adjusted regions

time (in seconds)

a
c
c
e
le

ra
ti
o
n

A1

A2

A3

A4

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Relative Regional firing times with respect to theoretical beat start

firing time in delay from theoretical beat start (0 to 2)

n
o
 r

e
le

v
a
n
c
e
,

h
e
ig

h
ts

 v
a
ri
e
d
 t

o
 b

e
tt

e
r

s
h
o
w

 o
n
 p

lo
t

Region 1

Region 2

Region 3

Region 4

Avg Region 1

Avg Region 2

Avg Region 3

Avg Region 4

116

Figure A-25: No Dyssynchrony (1, 3) Acceleration for GA Search 10 Runs Avg, Pop Size =

72

Figure A-26: No Dyssynchrony (1,3) Timing for GA Search 10 Runs, Pop Size = 72

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2500

-2000

-1500

-1000

-500

0

500

1000

1500
GA Search: No Dyssynchrony 10 runs averaged: 1 fixed, 3 adjusted regions

time (in seconds)

a
c
c
e
le

ra
ti
o
n

A1

A2

A3

A4

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Relative Regional firing times with respect to theoretical beat start

firing time in delay from theoretical beat start (0 to 2)

n
o
 r

e
le

v
a
n
c
e
,

h
e
ig

h
ts

 v
a
ri
e
d
 t

o
 b

e
tt

e
r

s
h
o
w

 o
n
 p

lo
t

Region 1

Region 2

Region 3

Region 4

Avg Region 1

Avg Region 2

Avg Region 3

Avg Region 4

117

Figure A-27: No Dyssynchrony (1, 3) Acceleration for GA Search 10 Runs Avg, Pop Size =

96

Figure A-28: No Dyssynchrony (1,3) Timing for GA Search 10 Runs, Pop Size = 96

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2500

-2000

-1500

-1000

-500

0

500

1000

1500
GA Search: No Dyssynchrony 10 runs averaged: 1 fixed, 3 adjusted regions

time (in seconds)

a
c
c
e
le

ra
ti
o
n

A1

A2

A3

A4

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Relative Regional firing times with respect to theoretical beat start

firing time in delay from theoretical beat start (0 to 2)

n
o
 r

e
le

v
a
n
c
e
,

h
e
ig

h
ts

 v
a
ri
e
d
 t

o
 b

e
tt

e
r

s
h
o
w

 o
n
 p

lo
t

Region 1

Region 2

Region 3

Region 4

Avg Region 1

Avg Region 2

Avg Region 3

Avg Region 4

118

Figure A-29: No Dyssynchrony (1, 3) Acceleration for GA Search 10 Runs Avg, Pop Size =

120

Figure A-30: No Dyssynchrony (1,3) Timing for GA Search 10 Runs, Pop Size = 120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1000

-500

0

500

1000

1500
GA Search: No Dyssynchrony 10 runs averaged: 1 fixed, 3 adjusted regions

time (in seconds)

a
c
c
e
le

ra
ti
o
n

A1

A2

A3

A4

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Relative Regional firing times with respect to theoretical beat start

firing time in delay from theoretical beat start (0 to 2)

n
o
 r

e
le

v
a
n
c
e
,

h
e
ig

h
ts

 v
a
ri
e
d
 t

o
 b

e
tt

e
r

s
h
o
w

 o
n
 p

lo
t

Region 1

Region 2

Region 3

Region 4

Avg Region 1

Avg Region 2

Avg Region 3

Avg Region 4

119

A.7. Mutation Rate Variation: No Dyssynchrony

Scripted_Initialization_no_dyss.m parameters

Figure A-31: No Dyssynchrony (1, 3) Acceleration for GA Search 10 Runs Avg, Mutation

Rate = 0.01 (1%)

Figure A-32: No Dyssynchrony (1,3) Timing for GA Search 10 Runs, Mutation Rate = 0.01

(1%)

120

Figure A-33: No Dyssynchrony (1, 3) Acceleration for GA Search 10 Runs Avg, Mutation

Rate = 0.05 (5%)

Figure A-34: No Dyssynchrony (1,3) Timing for GA Search 10 Runs, Mutation Rate = 0.05

(5%)

121

Figure A-35: No Dyssynchrony (1, 3) Acceleration for GA Search 10 Runs Avg, Mutation

Rate = 0.10 (10%)

Figure A-36: No Dyssynchrony (1,3) Timing for GA Search 10 Runs, Mutation Rate = 0.10

(10%)

122

APPENDIX B. PLOTS OF VARIOUS EXHAUSTIVE SEARCH

VARIATIONS FOR CD MODEL

Note: Labeling convention for acceleration plots (x, y) where x is the number of fixed

regions, and y is the number of adjusted regions.

123

B.1. No Dyssynchrony

Case 1: Scripted_Initialization_no_dyss.m parameters

Figure B-1: No Dyssynchrony (3, 1) Acceleration for Exhaustive Search

Figure B-2: No Dyssynchrony (3,1) Timing for Exhaustive Search

124

Case 2: Scripted_Initialization_no_dyss.m parameters

Figure B-3: No Dyssynchrony (2, 2) Acceleration for Exhaustive Search

Figure B-4: No Dyssynchrony (2,2) Timing for Exhaustive Search

125

Case 3: Scripted_Initialization_no_dyss.m parameters

Figure B-5: No Dyssynchrony (1, 3) Acceleration for Exhaustive Search

Figure B-6: No Dyssynchrony (1, 3) Acceleration for Exhaustive Search

126

B.2. Resistance Dyssynchrony

Case 1: Scripted_Initialization_r2_dyss_0_015.m parameters

Figure B-7: Resistance Dyssynchrony (3, 1) Acceleration for Exhaustive Search

Figure B-8: Resistance Dyssynchrony (3,1) Timing for Exhaustive Search

127

Case 2: Scripted_Initialization_r2_dyss_0_015.m parameters

Figure B-9: Resistance Dyssynchrony (1, 3) Acceleration for Exhaustive Search

Figure B-10: Resistance Dyssynchrony (1,3) Timing for Exhaustive Search

128

B.3. Mass Dyssynchrony

Case 1: Scripted_Initialization_m2_dyss_0_01.m parameters

Figure B-11: Mass Dyssynchrony (3, 1) Acceleration for Exhaustive Search

Figure B-12: Mass Dyssynchrony (3,1) Timing for Exhaustive Search

129

Case 2: Scripted_Initialization_m2_dyss_0_01.m parameters

Figure B-13: Mass Dyssynchrony (1, 3) Acceleration for Exhaustive Search

Figure B-14: Mass Dyssynchrony (1,3) Timing for Exhaustive Search

130

B.4. Minimum Elastance Dyssynchrony

Case 1: Scripted_Initialization_min_elas2_dyss_4.m parameters

Figure B-15: Min Elastance Dyssynchrony (3, 1) Acceleration for Exhaustive Search

Figure B-16: Min Elastance Dyssynchrony (3,1) Timing for Exhaustive Search

131

Case 2: Scripted_Initialization_min_elas2_dyss_4.m parameters

Figure B-17: Min Elastance Dyssynchrony (1, 3) Acceleration for Exhaustive Search

Figure B-18: Min Elastance Dyssynchrony (1,3) Timing for Exhaustive Search

132

B.5. Maximum Elastance Dyssynchrony

Case 1: Scripted_Initialization_max_elas2_dyss_40.m parameters

Figure B-19: Max Elastance Dyssynchrony (3, 1) Acceleration for Exhaustive Search

Figure B-20: Max Elastance Dyssynchrony (3,1) Timing for Exhaustive Search

133

Case 2: Scripted_Initialization_max_elas2_dyss_40.m parameters

Figure B-21: Max Elastance Dyssynchrony (1, 3) Acceleration for Exhaustive Search

Figure B-22: Max Elastance Dyssynchrony (1,3) Timing for Exhaustive Search

134

B.6. Combined Dyssynchrony (all dyssynchrony)

Region 2: Scripted_Initialization_all_dyss_region2.m parameters

Figure B-23: All Dyssynchrony Region 2 (1, 3) Acceleration for Exhaustive Search

Figure B-24: All Dyssynchrony Region 2 (3,1) Timing for Exhaustive Search

135

Regions 2, 3, and 4: Scripted_Initialization_all_dyss_region234.m parameters

Figure B-25: All Dyssynchrony Regions 2, 3, and 4 (1, 3) Acceleration for Exhaustive

Search

Figure B-26: All Dyssynchrony Regions 2, 3, and 4 (3,1) Timing for Exhaustive Search

136

APPENDIX C. PLOTS OF NO TIMING ADJUSTMENT FOR CD MODEL

(ALL TIMES ARE EQUAL)

Note: Labeling convention for acceleration plots (x, y) where x is the number of fixed

regions, and y is the number of adjusted regions.

137

C.1. No Dyssynchrony

Case 1: Scripted_Initialization_no_dyss.m parameters

Figure C-1: No Dyssynchrony (3, 1) Acceleration for No Adjustment

Figure C-2: No Dyssynchrony (3,1) Timing for No Adjustment

138

Case 2: Scripted_Initialization_no_dyss.m parameters

Figure C-3: No Dyssynchrony (2, 2) Acceleration for No Adjustment

Figure C-4: No Dyssynchrony (2,2) Timing for No Adjustment

139

Case 3: Scripted_Initialization_no_dyss.m parameters

Figure C-5: No Dyssynchrony (1, 3) Acceleration for No Adjustment

Figure C-6: No Dyssynchrony (1,3) Timing for No Adjustment

140

C.2. Resistance Dyssynchrony

Case 1: Scripted_Initialization_r2_dyss_0_015.m parameters

Figure C-7: Resistance Dyssynchrony (3, 1) Acceleration for No Adjustment

Figure C-8: Resistance Dyssynchrony (3,1) Timing for No Adjustment

141

Case 2: Scripted_Initialization_r2_dyss_0_015.m parameters

Figure C-9: Resistance Dyssynchrony (1, 3) Acceleration for No Adjustment

Figure C-10: Resistance Dyssynchrony (1,3) Timing for No Adjustment

142

C.3. Mass Dyssynchrony

Case 1: Scripted_Initialization_m2_dyss_0_01.m parameters

Figure C-11: Mass Dyssynchrony (3, 1) Acceleration for No Adjustment

Figure C-12: Mass Dyssynchrony (3,1) Timing for No Adjustment

143

Case 2: Scripted_Initialization_m2_dyss_0_01.m parameters

Figure C-13: Mass Dyssynchrony (1, 3) Acceleration for No Adjustment

Figure C-14: Mass Dyssynchrony (1,3) Timing for No Adjustment

144

C.4. Minimum Elastance Dyssynchrony

Case 1: Scripted_Initialization_min_elas2_dyss_4.m parameters

Figure C-15: Min Elastance Dyssynchrony (3, 1) Acceleration for No Adjustment

Figure C-16: Min Elastance Dyssynchrony (3,1) Timing for No Adjustment

145

Case 2: Scripted_Initialization_min_elas2_dyss_4.m parameters

Figure C-17: Min Elastance Dyssynchrony (1, 3) Acceleration for No Adjustment

Figure C-18: Min Elastance Dyssynchrony (1,3) Timing for No Adjustment

146

C.5. Maximum Elastance Dyssynchrony

Case 1: Scripted_Initialization_max_elas2_dyss_40.m parameters

Figure C-19: Max Elastance Dyssynchrony (3, 1) Acceleration for No Adjustment

Figure C-20: Max Elastance Dyssynchrony (3,1) Timing for No Adjustment

147

Case 2: Scripted_Initialization_max_elas2_dyss_40.m parameters

Figure C-21: Max Elastance Dyssynchrony (1, 3) Acceleration for No Adjustment

Figure C-22: Max Elastance Dyssynchrony (1,3) Timing for No Adjustment

148

C.6. Combined Dyssynchrony (all dyssynchrony)

Region 2: Scripted_Initialization_all_dyss_region2.m parameters

Figure C-23: All Dyssynchrony Region 2 (1, 3) Acceleration for No Adjustment

Figure C-24: All Dyssynchrony Region 2 (3,1) Timing for No Adjustment

149

Regions 2, 3, and 4: Scripted_Initialization_all_dyss_region234.m parameters

Figure C-25: All Dyssynchrony Regions 2, 3, and 4 (1, 3) Acceleration for No Adjustment

Figure C-26: All Dyssynchrony Regions 2, 3, and 4 (3,1) Timing for No Adjustment

150

APPENDIX D. GA CODE

D.1. GA Base Code Sets

D.1.1. GA 2 Parameter Automation Code: 3 fixed, 1 variable

%Peter Hettwer

%Thesis Work

%Genetic Algorithm Automated Run Sequence

%3 fixed and 1 variable regions

%Prior to execution, user or user generated script file should open a

%parallel MATLAB workstation with the following command:

%matlabpool('open',4); where the number is the number of MATLAB cores

%desired to run. Maximum Number of cores is dictated by the number of

%physical cores on the computer running MATLAB. After execution, the user

%or a user generated script file should close the parallel MATLAB

%workstation with the following command: matlabpool('close').

function [] = GA_1_auto_run_A(file, num_runs, noise, seed)

global r1 r2 r3 r4 m1 m2 m3 m4 e1min e2min e3min e4min e1max e2max ...

 e3max e4max bpm step_size cycle t

run_time = zeros(1,num_runs); %stores run time for all GA run sets

run_gen = zeros(1,num_runs); %stores number of generations for all GA run

%sets

run_cost = zeros(1,num_runs); %stores minimum cost for all GA run sets

p1_hist = zeros(1,num_runs); %region 1 timings for all GA run sets

p2_hist = zeros(1,num_runs); %region 2 timings for all GA run sets

p3_hist = zeros(1,num_runs); %region 3 timings for all GA run sets

p4_hist = zeros(1,num_runs); %region 4 timings for all GA run sets

%Scripted_Initialization; %this CD model parameter initialization file is

%needed if this code is not called from a script file previously calling

%the initialization file.

ti = 0:step_size:1; %set period time values based on desired step size;

%used to create acceleration wave plots.

for k = 1:num_runs; %run the GA code a user specified number of times

 p1_ref = 1; %region 1 timing is assumed as reference,

 %regions 2, 3, and 4 are controlled within the GA search code.

 %for this variation, regions 3 and 4 are set equal to region 1 internal

 %to the GA search function and region 2 is to be optimized.

 %run the GA search function

151

 [run_gen(k) run_cost(k) run_time(k) phase_y(k) amp_y(k) p1_hist(k) ...

 p2_hist(k) p3_hist(k) p4_hist(k)] = GA_1_A(k, noise, ti, ...

 p1_ref,step_size,cycle,bpm,r1,r2,r3,r4,e1min,e1max,e2min,e2max,...

 e3min,e3max,e4min,e4max,m1,m2,m3,m4);

 %create acceleration waveforms for the returned values from the GA

 %search function.

 [A1(k,:), A2(k,:), A3(k,:), A4(k,:)] = Scripted_GUI(p1_hist(k),...

 p2_hist(k),p3_hist(k),p4_hist(k));

end

min_run_gen = min(run_gen) %minimum number of run generations from all GA

%runs

max_run_gen = max(run_gen) %maximum number of run generations from all GA

%runs

mean_run_gen = mean(run_gen) % mean number of generations from all GA runs

min_run_cost = min(run_cost) %minimum run cost from all GA runs

max_run_cost = max(run_cost) %maximum run cost from all GA runs

mean_run_cost = mean(run_cost) %mean run cost from all GA runs

min_run_time = min(run_time) %minimum run time from all GA runs

max_run_time = max(run_time)%maximum run time from all GA runs

mean_run_time = mean(run_time) %mean run time from all GA runs

total_run_time = sum(run_time) %sum of all run times from all GA runs

save(file); %save to user defined filename

end

152

D.1.2. GA 2 Parameter Automation Code: 2 fixed, 2 variable

%Peter Hettwer

%Thesis Work

%Genetic Algorithm Automated Run Sequence

%2 fixed and 2 variable regions

%Prior to execution, user or user generated script file should open a

%parallel MATLAB workstation with the following command:

%matlabpool('open',4); where the number is the number of MATLAB cores

%desired to run. Maximum Number of cores is dictated by the number of

%physical cores on the computer running MATLAB. After execution, the user

%or a user generated script file should close the parallel MATLAB

%workstation with the following command: matlabpool('close').

function [] = GA_1_auto_run_2and2_A(file, num_runs, noise, seed)

global r1 r2 r3 r4 m1 m2 m3 m4 e1min e2min e3min e4min e1max e2max...

 e3max e4max bpm step cycle t

run_time = zeros(1,num_runs); %stores run time for all GA run sets

run_gen = zeros(1,num_runs); %stores number of generations for all GA run

%sets

run_cost = zeros(1,num_runs); %stores minimum cost for all GA run sets

p1_hist = zeros(1,num_runs); %region 1 timings for all GA run sets

p2_hist = zeros(1,num_runs); %region 2 timings for all GA run sets

p3_hist = zeros(1,num_runs); %region 3 timings for all GA run sets

p4_hist = zeros(1,num_runs); %region 4 timings for all GA run sets

%Scripted_Initialization; %this CD model parameter initialization file is

%needed if this code is not called from a script file previously calling

%the initialization file.

ti = 0:step_size:1; %set period time values based on desired step size;

%used to create acceleration wave plots.

for k = 1:num_runs; %run the GA code a user specified number of times

 p1_ref = 1; %region 1 timing is assumed as reference,

 %regions 2, 3, and 4 are controlled within the GA search code.

 %for this variation, region 3 is set equal to region 1 and region 4 is

 %set equal to region 2 internal to the GA search function and region 2

 %is to be optimized.

 %run the GA search function

 [run_gen(k) run_cost(k) run_time(k) phase_y(k) amp_y(k) p1_hist(k)...

 p2_hist(k) p3_hist(k) p4_hist(k)] = GA_1_A_2and2(k,noise,ti,p1,...

 step,cycle,bpm,r1,r2,r3,r4,e1min,e1max,e2min,e2max,e3min,e3max,...

153

 e4min,e4max,m1,m2,m3,m4);

 %create acceleration waveforms for the returned values from the GA

 %search function.

 [A1(k,:), A2(k,:), A3(k,:), A4(k,:)] = Scripted_GUI(p1_hist(k),...

 p2_hist(k),p3_hist(k),p4_hist(k),step,cycle,bpm,r1,r2,r3,r4,...

 e1min,e1max,e2min,e2max,e3min,e3max,e4min,e4max,m1,m2,m3,m4);

end

min_run_gen = min(run_gen) %minimum number of run generations from all GA

%runs

max_run_gen = max(run_gen) %maximum number of run generations from all GA

%runs

mean_run_gen = mean(run_gen) % mean number of generations from all GA runs

min_run_cost = min(run_cost) %minimum run cost from all GA runs

max_run_cost = max(run_cost) %maximum run cost from all GA runs

mean_run_cost = mean(run_cost) %mean run cost from all GA runs

min_run_time = min(run_time) %minimum run time from all GA runs

max_run_time = max(run_time)%maximum run time from all GA runs

mean_run_time = mean(run_time) %mean run time from all GA runs

total_run_time = sum(run_time) %sum of all run times from all GA runs

save(file); %save to user defined filename

end

154

D.1.3. GA 4 Parameter Automation Code

%Peter Hettwer

%Thesis Work

%Genetic Algorithm Automated Run Sequence

%Attempt 11

function [] = GA_1_auto_run_4param_A(file, num_runs, noise, seed)

global r1 r2 r3 r4 m1 m2 m3 m4 e1min e2min e3min e4min e1max e2max...

 e3max e4max bpm step cycle t

run_time = zeros(1,num_runs); %stores run time for all GA run sets

run_gen = zeros(1,num_runs); %stores number of generations for all GA run

%sets

run_cost = zeros(1,num_runs); %stores minimum cost for all GA run sets

p1_hist = zeros(1,num_runs); %region 1 timings for all GA run sets

p2_hist = zeros(1,num_runs); %region 2 timings for all GA run sets

p3_hist = zeros(1,num_runs); %region 3 timings for all GA run sets

p4_hist = zeros(1,num_runs); %region 4 timings for all GA run sets

%Scripted_Initialization; %this CD model parameter initialization file is

%needed if this code is not called from a script file previously calling

%the initialization file.

ti = 0:step_size:1; %set period time values based on desired step size;

%used to create acceleration wave plots.

for k = 1:num_runs; %run the GA code a user specified number of times

 p1_ref = 1; %region 1 timing is assumed as reference,

 %regions 2, 3, and 4 are controlled within the GA search code.

 %for this variation, all regions 2, 3, and 4 are to be optimized.

 %run the GA search function

 [run_gen(k) run_cost(k) run_time(k) phase_y(k) amp_y(k) p1_hist(k)...

 p2_hist(k) p3_hist(k) p4_hist(k)] = GA_1_A_4param(k,noise,ti,...

 p1_ref,step,cycle,bpm,r1,r2,r3,r4,e1min,e1max,e2min,e2max,...

 e3min,e3max,e4min,e4max,m1,m2,m3,m4);

 %create acceleration waveforms for the returned values from the GA

 %search function.

 [A1(k,:), A2(k,:), A3(k,:), A4(k,:)] = Scripted_GUI(p1_hist(k),...

 p2_hist(k),p3_hist(k),p4_hist(k),step,cycle,bpm,r1,r2,r3,r4,...

 e1min,e1max,e2min,e2max,e3min,e3max,e4min,e4max,m1,m2,m3,m4);

end

min_run_gen = min(run_gen) %minimum number of run generations from all GA

155

%runs

max_run_gen = max(run_gen) %maximum number of run generations from all GA

%runs

mean_run_gen = mean(run_gen) % mean number of generations from all GA runs

min_run_cost = min(run_cost) %minimum run cost from all GA runs

max_run_cost = max(run_cost) %maximum run cost from all GA runs

mean_run_cost = mean(run_cost) %mean run cost from all GA runs

min_run_time = min(run_time) %minimum run time from all GA runs

max_run_time = max(run_time)%maximum run time from all GA runs

mean_run_time = mean(run_time) %mean run time from all GA runs

total_run_time = sum(run_time) %sum of all run times from all GA runs

save(file); %save to user defined filename

end

156

D.1.4. GA 2 Parameter Base Code: 3 fixed, 1 variable

%Peter Hettwer

%Thesis Work

%Genetic Algorithm Backbone Code

%3 fixed and 1 variable region

function [gen_count final_cost time phase amplitude p1_best p2_best ...

 p3_best p4_best] = GA_1_A(seed, noise, t, p1_ref,step,cycle,bpm,r1,...

 r2,r3,r4,e1min,e1max,e2min,e2max,e3min,e3max,e4min,e4max,m1,m2,m3,m4)

tic; %start MATLAB timer to measure how long search takes

%crossover type: single point crossover, binary strings

%parameter encoding scheme: binary

%ranking method: inversely proportional to normalized fit

%pairing method: weighted random based on rank

%fitness function: Least Mean Square

%model: Simple Sinusoid "Acceleration"

%Citation: portions adopted from Jenna Carr, An Introduction to Genetic

%Algorithms; carrjk.pdf Example 2.2

%initialize rng value

%rng(seed); %newer matlab 2013+

SeedRNG(seed); %older matlab: 2010a

%% User Defined Parameters of Genetic Algorithm

%These should be tuned for each model/objective function for best

%performance.

%Max Heart Rate ~250 bpm ~= 4.2 bps = 4.2 Hz ==> 240 ms period

%Min Heart Rate ~40 bpm ~= 0.67 bps = 0.67 Hz ==> 1500 ms period

%assume want <= 1ms steps; need >= 1500 steps to accomodate min Heart Rate

%>= 11 bits to represent 1500 steps

param_len = 12; %#bits used to represent a time shift;

%12 bits ==> 4096 steps

%4096 steps ==> minimum 0.366211 ms/step @ 40 bpm

population_size = 20; %Genetic Algorithm population size

elitism = 0.1; %Top n of previous generation passed on to next gen

157

%unchanged ex. 0.1 ==> 10%

Pcross = 1; % % of new generation made up of offspring

%of previous generation ex. 1 - 0.1 = 0.9 ==> 90%

Pmute = 0.001; %chance of flipping a bit, 0.1%

n_param = 2; %number of parameters in each chromosome/test case

Nbits_total = n_param * param_len; %# bits in a test case

%= # bits per parameter * # parameters

gen_max = 50; %maximum number of generations

min_cost = 0; %set min cost value for early termination of GA.

noise_max = noise;

% Parameters based on User Defined Parameters

converted_parameter_list = zeros(population_size,n_param); %decimal

%representation of chromosomes

elite = ceil(elitism * population_size); % # of elite saved each generation

offspring = population_size - elite; %# of offspring to generate on every

%mating mix

gen_count = 0; %generation counter instantiated and initialized to 0

stop_count = 0; %counter to terminate GA run if best solution doesn't

%improve for stop_gen generations

stop_gen = 5; %GA terminates if no solution improvement seen for this

%number of generations.

population = InitPopulation(population_size, Nbits_total); %generate the

%initial, random population

p1_bin = fix2bin(p1_ref,0,0.9998*2*pi,param_len); %create the binary value

%of the supplied reference region timing of the set binary length

%% Parameters to be optimized

A1 = zeros(population_size, length(t)); %Acceleration 1 for cardiac

%dyssynchrony model or sin 1 for simple model

A2 = zeros(population_size, length(t)); %Acceleration 2 for cardiac

%dyssynchrony model or sin 2 for simple model

A3 = zeros(population_size, length(t)); %Acceleration 3 for cardiac

%dyssynchrony model

A4 = zeros(population_size, length(t)); %Acceleration 4 for cardiac

%dyssynchrony model

158

%% Parameter Envelopes

phase_max = 2*pi; %param 1 max

phase_min = 0; %param 1 min

%% Initial objective function evaluations

%Transform test cases to usable values and run through model function

for k = 1:population_size

 population(k,1:param_len) = p1_bin; %copy reference phase into each

 %chromosome

 converted_parameter_list(k,:) = bin2fix(population(k,:),phase_min,...

 phase_max,n_param,phase_min,phase_max);

 p1(k) = converted_parameter_list(k,1); %record region 1 timing values

 p2(k) = converted_parameter_list(k,2); %record region 2 timing values

 p3(k) = p1(k); %p3 reset same as p1 after descritization since not

 %being optimized by GA,

 p4(k) = p1(k); %p4 reset same as p1 after descritization since not

 %being optimized by GA,

end

parfor k = 1:population_size

 [A1(k,:), A2(k,:), A3(k,:), A4(k,:)] = Scripted_GUI(p1(k),p2(k),...

 p3(k),p4(k),step,cycle,bpm,r1,r2,r3,r4,e1min,e1max,e2min,e2max,...

 e3min,e3max,e4min,e4max,m1,m2,m3,m4); %find acceleration waveforms

end

for k = 1:population_size

 cost(k) = SSE(A1(k,:), A2(k,:)); %generate costs for each chromosome

end

%(want min cost to have highest prob)

cost_norm = max(cost) - cost; %invert high and low costs for mating

%probability. highest cost is eliminated from propagation

[cost_norm, cost_norm_ind] = sort(cost_norm,'descend'); %search population

%w/ "highest" cost in first entry (lowest actual cost).

population = population(cost_norm_ind,:); %sort population w/ lowest cost

%first

max_obj(gen_count + 1) = max(cost); %contains min of initial population

min_obj(1) = min(cost); %contains min of initial population

mean_obj(1) = mean(cost_norm); %contains mean of initial population

mate_prob = cost_norm/sum(cost_norm); %probability normalization;

159

%% Main Loop

while (gen_count < gen_max)

 gen_count = gen_count +1 %increment generation/loop counter

 %Choose Mates:

 M = offspring / 2; %number of parings

 [mate1, mate2] = Mates(mate_prob,M); %generate pairing vectors

 cross_point = Cross(M,Pcross,Nbits_total); %generate pairing crossover

 %points

 %generate next generation's population

 population = NextGen(population,elite,cross_point,mate1,mate2);

 %protect elite population from mutation:

 for k = 1:elite

 pop_temp(k) = population(k);

 end

 %Mutate Population:

 mutation = Mutate(population,Pmute);

 population = abs(population - mutation);

 %toggle bit at specified location

 %rewrite elite population

 for k = 1:elite

 population(k) = pop_temp(k);

 end

 %% Evaluate New Population for cost:

 %Transform test cases to usable values and run through model function

for k = 1:population_size

 population(k,1:param_len) = p1_bin; %copy reference phase into each

 %chromosome

 converted_parameter_list(k,:) = bin2fix(population(k,:),phase_min,...

160

 phase_max,n_param,phase_min,phase_max);

 p1(k) = converted_parameter_list(k,1); %record region 1 timing values

 p2(k) = converted_parameter_list(k,2); %record region 2 timing values

 p3(k) = p1(k); %p3 reset same as p1 after descritization since not

 %being optimized by GA,

 p4(k) = p1(k); %p4 reset same as p1 after descritization since not

 %being optimized by GA,

end

parfor k = 1:population_size

 [A1(k,:), A2(k,:), A3(k,:), A4(k,:)] = Scripted_GUI(p1(k),p2(k),...

 p3(k),p4(k),step,cycle,bpm,r1,r2,r3,r4,e1min,e1max,e2min,e2max,...

 e3min,e3max,e4min,e4max,m1,m2,m3,m4); %find acceleration waveforms

end

for k = 1:population_size

 cost(k) = SSE(A1(k,:), A2(k,:)); %generate costs for each chromosome

end

%(want min cost to have highest prob)

cost_norm = max(cost) - cost; %invert high and low costs for mating

%probability. highest cost is eliminated from propagation

[cost_norm, cost_norm_ind] = sort(cost_norm,'descend'); %search population

%w/ "highest" cost in first entry (lowest actual cost).

population = population(cost_norm_ind,:); %sort population w/ lowest cost

%first

max_obj(gen_count + 1) = max(cost); %contains min of current population

min_obj(gen_count + 1) = min(cost); %contains min of current population

mean_obj(gen_count + 1) = mean(cost_norm); %contains mean of current

%population normalized

mate_prob = cost_norm/sum(cost_norm); %probability normalization;

%% Early Stopping Criteria:

%increment stop counter if improvement not made in current generation

if(min_obj(gen_count) <= min_obj(gen_count+1))

 stop_count = stop_count + 1;

else

 stop_count = 0;

end

if ((gen_count> gen_max) || min_obj(gen_count+1) <= 0.01 || ...

161

 stop_count == stop_gen)

 break

end

end %while

time = toc; %stop MATLAB Timer and display to command window

final_cost = cost(1); %record min cost from GA run

p1_best = p1(1); %record best timing value for region 1

p2_best = p2(1); %record best timing value for region 2

p3_best = p3(1); %record best timing value for region 3

p4_best = p4(1); %record best timing value for region 4

end

162

D.1.5. GA 2 Parameter Base Code: 2 fixed, 2 variable

%Peter Hettwer

%Thesis Work

%Genetic Algorithm Backbone Code

%2 fixed and 2 variable regions

function [gen_count final_cost time phase amplitude p1_best p2_best ...

 p3_best p4_best] = GA_1_A_2and2(seed, noise, t, p1_ref,step,cycle,...

 bpm,r1,r2,r3,r4,e1min,e1max,e2min,e2max,e3min,e3max,e4min,e4max,m1,...

 m2,m3,m4)

tic; %start MATLAB timer to measure how long search takes

%crossover type: single point crossover, binary strings

%parameter encoding scheme: binary

%ranking method: inversely proportional to normalized fit

%pairing method: weighted random based on rank

%fitness function: Least Mean Square

%model: Simple Sinusoid "Acceleration"

%Citation: portions adopted from Jenna Carr, An Introduction to Genetic

%Algorithms; carrjk.pdf Example 2.2

%initialize rng value

%rng(seed); %newer matlab 2013+

SeedRNG(seed); %older matlab: 2010a

%% User Defined Parameters of Genetic Algorithm

%These should be tuned for each model/objective function for best

%performance.

%Max Heart Rate ~250 bpm ~= 4.2 bps = 4.2 Hz ==> 240 ms period

%Min Heart Rate ~40 bpm ~= 0.67 bps = 0.67 Hz ==> 1500 ms period

%assume want <= 1ms steps; need >= 1500 steps to accomodate min Heart Rate

%>= 11 bits to represent 1500 steps

param_len = 12; %#bits used to represent a time shift;

%12 bits ==> 4096 steps

%4096 steps ==> minimum 0.366211 ms/step @ 40 bpm

population_size = 20; %Genetic Algorithm population size

163

elitism = 0.1; %Top n of previous generation passed on to next gen

%unchanged ex. 0.1 ==> 10%

Pcross = 1; % % of new generation made up of offspring

%of previous generation ex. 1 - 0.1 = 0.9 ==> 90%

Pmute = 0.001; %chance of flipping a bit, 0.1%

n_param = 2; %number of parameters in each chromosome/test case

Nbits_total = n_param * param_len; %# bits in a test case

%= # bits per parameter * # parameters

gen_max = 50; %maximum number of generations

min_cost = 0; %set min cost value for early termination of GA.

noise_max = noise;

% Parameters based on User Defined Parameters

converted_parameter_list = zeros(population_size,n_param); %decimal

%representation of chromosomes

elite = ceil(elitism * population_size); % # of elite saved each generation

offspring = population_size - elite; %# of offspring to generate on every

%mating mix

gen_count = 0; %generation counter instantiated and initialized to 0

stop_count = 0; %counter to terminate GA run if best solution doesn't

%improve for stop_gen generations

stop_gen = 5; %GA terminates if no solution improvement seen for this

%number of generations.

population = InitPopulation(population_size, Nbits_total); %generate the

%initial, random population

p1_bin = fix2bin(p1_ref,0,0.9998*2*pi,param_len); %create the binary value

%of the supplied reference region timing of the set binary length

%% Parameters to be optimized

A1 = zeros(population_size, length(t)); %Acceleration 1 for cardiac

%dyssynchrony model or sin 1 for simple model

A2 = zeros(population_size, length(t)); %Acceleration 2 for cardiac

%dyssynchrony model or sin 2 for simple model

A3 = zeros(population_size, length(t)); %Acceleration 3 for cardiac

%dyssynchrony model

A4 = zeros(population_size, length(t)); %Acceleration 4 for cardiac

%dyssynchrony model

164

%% Parameter Envelopes

phase_max = 2*pi; %param 1 max

phase_min = 0; %param 1 min

%% Initial objective function evaluations

%Transform test cases to usable values and run through model function

for k = 1:population_size

 population(k,1:param_len) = p1_bin; %copy reference phase into each

 %chromosome

 converted_parameter_list(k,:) = bin2fix(population(k,:),phase_min,...

 phase_max,n_param,phase_min,phase_max);

 p1(k) = converted_parameter_list(k,1) %record region 1 timing values

 p2(k) = converted_parameter_list(k,2) %record region 2 timing values

 p3(k) = p1(k) %p3 reset same as p1 after descritization since not

 %being optimized by GA,

 p4(k) = p2(k) %p4 reset same as p2 after descritization since not

 %being optimized by GA,

end

parfor k = 1:population_size

 [A1(k,:), A2(k,:), A3(k,:), A4(k,:)] = Scripted_GUI(p1(k),p2(k),...

 p3(k),p4(k),step,cycle,bpm,r1,r2,r3,r4,e1min,e1max,e2min,e2max,...

 e3min,e3max,e4min,e4max,m1,m2,m3,m4); %find acceleration waveforms

end

for k = 1:population_size

 cost(k) = SSE(A1(k,:), A2(k,:)); %generate costs for each chromosome

end

%(want min cost to have highest prob)

cost_norm = max(cost) - cost; %invert high and low costs for mating

%probability. highest cost is eliminated from propagation

[cost_norm, cost_norm_ind] = sort(cost_norm,'descend'); %search population

%w/ "highest" cost in first entry (lowest actual cost).

population = population(cost_norm_ind,:); %sort population w/ lowest cost

%first

max_obj(gen_count + 1) = max(cost); %contains min of initial population

min_obj(1) = min(cost); %contains min of initial population

mean_obj(1) = mean(cost_norm); %contains mean of initial population

165

mate_prob = cost_norm/sum(cost_norm); %probability normalization;

%want min cost to have highest prob.

%% Main Loop

while (gen_count < gen_max)

 gen_count = gen_count +1 %increment generation/loop counter

 %Choose Mates:

 M = offspring / 2; %number of parings

 [mate1, mate2] = Mates(mate_prob,M); %generate pairing vectors

 cross_point = Cross(M,Pcross,Nbits_total); %generate pairing crossover

 %points

 %generate next generation's population

 population = NextGen(population,elite,cross_point,mate1,mate2);

 %protect elite population from mutation:

 for k = 1:elite

 pop_temp(k) = population(k);

 end

 %Mutate Population:

 mutation = Mutate(population,Pmute);

 population = abs(population - mutation);

 %toggle bit at specified location

 %rewrite elite population

 for k = 1:elite

 population(k) = pop_temp(k);

 end

 %% Evaluate New Population for cost:

 %Transform test cases to usable values and run through model function

for k = 1:population_size

 population(k,1:param_len) = p1_bin; %copy reference phase into each

166

 %chromosome

 converted_parameter_list(k,:) = bin2fix(population(k,:),phase_min,...

 phase_max,n_param,phase_min,phase_max);

 p1(k) = converted_parameter_list(k,1) %record region 1 timing values

 p2(k) = converted_parameter_list(k,2) %record region 2 timing values

 p3(k) = p1(k) %p3 reset same as p1 after descritization since not

 %being optimized by GA,

 p4(k) = p2(k) %p4 reset same as p2 after descritization since not

 %being optimized by GA,

end

parfor k = 1:population_size

 [A1(k,:), A2(k,:), A3(k,:), A4(k,:)] = Scripted_GUI(p1(k),p2(k),...

 p3(k),p4(k),step,cycle,bpm,r1,r2,r3,r4,e1min,e1max,e2min,e2max,...

 e3min,e3max,e4min,e4max,m1,m2,m3,m4); %find acceleration waveforms

end

for k = 1:population_size

 cost(k) = SSE(A1(k,:), A2(k,:)); %generate costs for each chromosome

end

%(want min cost to have highest prob)

cost_norm = max(cost) - cost; %invert high and low costs for mating

%probability. highest cost is eliminated from propagation

[cost_norm, cost_norm_ind] = sort(cost_norm,'descend'); %search population

%w/ "highest" cost in first entry (lowest actual cost).

population = population(cost_norm_ind,:); %sort population w/ lowest cost

%first

max_obj(gen_count + 1) = max(cost); %contains min of current population

min_obj(gen_count + 1) = min(cost); %contains min of current population

mean_obj(gen_count + 1) = mean(cost_norm); %contains mean of current

%population normalized

mate_prob = cost_norm/sum(cost_norm); %probability normalization;

%% Early Stopping Criteria:

%increment stop counter if improvement not made in current generation

if(min_obj(gen_count) <= min_obj(gen_count+1))

 stop_count = stop_count + 1;

else

 stop_count = 0;

end

167

if ((gen_count> gen_max) || min_obj(gen_count+1) <= 0.01 || ...

 stop_count == stop_gen)

 break

end

end %while

time = toc; %stop MATLAB Timer and display to command window

final_cost = cost(1); %record min cost from GA run

p1_best = p1(1); %record best timing value for region 1

p2_best = p2(1); %record best timing value for region 2

p3_best = p3(1); %record best timing value for region 3

p4_best = p4(1); %record best timing value for region 4

end

168

D.1.6. GA 4 Parameter Base Code

%Peter Hettwer

%Thesis Work

%Genetic Algorithm Backbone Code

%1 fixed and 3 variable regions

function [gen_count final_cost time phase amplitude p1_best p2_best ...

 p3_best p4_best] = GA_1_A(seed,noise,t,p1_ref,step,cycle,bpm,r1,r2,...

 r3,r4,e1min,e1max,e2min,e2max,e3min,e3max,e4min,e4max,m1,m2,m3,m4)

tic; %start MATLAB timer to measure how long search takes

%crossover type: single point crossover, binary strings

%parameter encoding scheme: binary

%ranking method: inversely proportional to normalized fit

%pairing method: weighted random based on rank

%fitness function: Least Mean Square

%model: Simple Sinusoid "Acceleration"

%Citation: portions adopted from Jenna Carr, An Introduction to Genetic

%Algorithms; carrjk.pdf Example 2.2

%initialize rng value

%rng(seed); %newer matlab 2013+

SeedRNG(seed); %older matlab: 2010a

%% User Defined Parameters of Genetic Algorithm

%These should be tuned for each model/objective function for best

%performance.

%Max Heart Rate ~250 bpm ~= 4.2 bps = 4.2 Hz ==> 240 ms period

%Min Heart Rate ~40 bpm ~= 0.67 bps = 0.67 Hz ==> 1500 ms period

%assume want <= 1ms steps; need >= 1500 steps to accomodate min Heart Rate

%>= 11 bits to represent 1500 steps

param_len = 12; % #bits used to represent a time shift;

%12 bits ==> 4096 steps

%4096 steps ==> minimum 0.366211 ms/step @ 40 bpm

population_size = 20; %Genetic Algorithm population size

elitism = 0.1; %Top n of previous generation passed on to next gen

169

%unchanged ex. 0.1 ==> 10%

Pcross = 1; % % of new generation made up of offspring

%of previous generation ex. 1 - 0.1 = 0.9 ==> 90%

Pmute = 0.001; %chance of flipping a bit, 0.1%

n_param = 4; %number of parameters in each chromosome/test case

Nbits_total = n_param * param_len; %# bits in a test case

%= # bits per parameter * # parameters

gen_max = 50; %maximum number of generations

min_cost = 0; %set min cost value for early termination of GA.

noise_max = noise;

% Parameters based on User Defined Parameters

converted_parameter_list = zeros(population_size,n_param); %decimal

%representation of chromosomes

elite = ceil(elitism * population_size); % # of elite saved each generation

offspring = population_size - elite; %# of offspring to generate on every

%mating mix

gen_count = 0; %generation counter instantiated and initialized to 0

stop_count = 0; %counter to terminate GA run if best solution doesn't

%improve for stop_gen generations

stop_gen = 5; %GA terminates if no solution improvement seen for this

%number of generations.

population = InitPopulation(population_size, Nbits_total); %generate the

%initial, random population

p1_bin = fix2bin(p1_ref,0,0.9998*2*pi,param_len); %create the binary value

%of the supplied reference region timing of the set binary length

%% Parameters to be optimized

A1 = zeros(population_size, length(t)); %Acceleration 1 for cardiac

%dyssynchrony model or sin 1 for simple model

A2 = zeros(population_size, length(t)); %Acceleration 2 for cardiac

%dyssynchrony model or sin 2 for simple model

A3 = zeros(population_size, length(t)); %Acceleration 3 for cardiac

%dyssynchrony model

A4 = zeros(population_size, length(t)); %Acceleration 4 for cardiac

%dyssynchrony model

170

%% Parameter Envelopes

phase_max = 2*pi; %param 1 max

phase_min = 0; %param 1 min

%% Initial objective function evaluations

%Transform test cases to usable values and run through model function

for k = 1:population_size

 population(k,1:param_len) = p1_bin; %copy reference phase into each

 %chromosome

 converted_parameter_list(k,:) = bin2fix_4param(population(k,:),...

 phase_min,phase_max,n_param,phase_min,phase_max);

 p1(k) = converted_parameter_list(k,1) %record region 1 timing values

 p2(k) = converted_parameter_list(k,2) %record region 2 timing values

 p3(k) = converted_parameter_list(k,3) %record region 3 timing values

 p4(k) = converted_parameter_list(k,4) %record region 4 timing values

end

parfor k = 1:population_size

 [A1(k,:), A2(k,:), A3(k,:), A4(k,:)] = Scripted_GUI(p1(k),p2(k),...

 p3(k),p4(k),step,cycle,bpm,r1,r2,r3,r4,e1min,e1max,e2min,e2max,...

 e3min,e3max,e4min,e4max,m1,m2,m3,m4); %find acceleration waveforms

end

for k = 1:population_size

 cost(k) = SSE(A1(k,:), A2(k,:)); %generate costs for each chromosome

end

%(want min cost to have highest prob)

cost_norm = max(cost) - cost; %invert high and low costs for mating

%probability. highest cost is eliminated from propagation

[cost_norm, cost_norm_ind] = sort(cost_norm,'descend'); %search population

%w/ "highest" cost in first entry (lowest actual cost).

population = population(cost_norm_ind,:); %sort population w/ lowest cost

%first

max_obj(gen_count + 1) = max(cost); %contains min of initial population

min_obj(1) = min(cost); %contains min of initial population

mean_obj(1) = mean(cost_norm); %contains mean of initial population

mate_prob = cost_norm/sum(cost_norm); %probability normalization

171

%% Main Loop

while (gen_count < gen_max)

 gen_count = gen_count +1 %increment generation/loop counter

 %Choose Mates:

 M = offspring / 2; %number of parings

 [mate1, mate2] = Mates(mate_prob,M); %generate pairing vectors

 cross_point = Cross(M,Pcross,Nbits_total); %generate pairing crossover

 %points

 %generate next generation's population

 population = NextGen(population,elite,cross_point,mate1,mate2);

 %protect elite population from mutation:

 for k = 1:elite

 pop_temp(k) = population(k);

 end

 %Mutate Population:

 mutation = Mutate(population,Pmute);

 population = abs(population - mutation);

 %toggle bit at specified location

 %rewrite elite population

 for k = 1:elite

 population(k) = pop_temp(k);

 end

 %% Evaluate New Population for cost:

 %Transform test cases to usable values and run through model function

for k = 1:population_size

 population(k,1:param_len) = p1_bin; %copy reference phase into each

 %chromosome

 converted_parameter_list(k,:) = bin2fix(population(k,:),phase_min,...

172

 phase_max,n_param,phase_min,phase_max);

 p1(k) = converted_parameter_list(k,1) %record region 1 timing values

 p2(k) = converted_parameter_list(k,2) %record region 2 timing values

 p3(k) = converted_parameter_list(k,3) %record region 3 timing values

 p4(k) = converted_parameter_list(k,4) %record region 4 timing values

end

parfor k = 1:population_size

 [A1(k,:), A2(k,:), A3(k,:), A4(k,:)] = Scripted_GUI(p1(k),p2(k),...

 p3(k),p4(k),step,cycle,bpm,r1,r2,r3,r4,e1min,e1max,e2min,e2max,...

 e3min,e3max,e4min,e4max,m1,m2,m3,m4); %find acceleration waveforms

end

for k = 1:population_size

 cost(k) = SSE(A1(k,:), A2(k,:)); %generate costs for each chromosome

end

%(want min cost to have highest prob)

cost_norm = max(cost) - cost; %invert high and low costs for mating

%probability. highest cost is eliminated from propagation

[cost_norm, cost_norm_ind] = sort(cost_norm,'descend'); %search population

%w/ "highest" cost in first entry (lowest actual cost).

population = population(cost_norm_ind,:); %sort population w/ lowest cost

%first

max_obj(gen_count + 1) = max(cost); %contains min of current population

min_obj(gen_count + 1) = min(cost); %contains min of current population

mean_obj(gen_count + 1) = mean(cost_norm); %contains mean of current

%population normalized

mate_prob = cost_norm/sum(cost_norm); %probability normalization;

%% Early Stopping Criteria:

%increment stop counter if improvement not made in current generation

if(min_obj(gen_count) <= min_obj(gen_count+1))

 stop_count = stop_count + 1;

else

 stop_count = 0;

end

if ((gen_count> gen_max) || min_obj(gen_count+1) <= 0.01 || ...

 stop_count == stop_gen)

 break

173

end

end %while

time = toc; %stop MATLAB Timer and display to command window

final_cost = cost(1); %record min cost from GA run

p1_best = p1(1); %record best timing value for region 1

p2_best = p2(1); %record best timing value for region 2

p3_best = p3(1); %record best timing value for region 3

p4_best = p4(1); %record best timing value for region 4

end

174

D.2. GA Function Calls

D.2.1. bin2fix.m

%Peter Hettwer

%Thesis Work

%2 Parameter Binary to Unsigned Fixed Point Conversion

function Value = bin2fix(Bin,Min,Max,n_param,amp_min,amp_max)

%Take a binary number, Bin, and convert it to one value in the range of Min

% to Max and a second value in the range of amp_min to amp_max

[pop_size bits] = size(Bin); %obtain population size and number of bits

%in each chromosome from the binary matrix passed to the function.

param_length = bits/n_param; %obtain the bit lenght of each parameter

%from number of parameters contained within each chromosome.

temp_sum = zeros(pop_size,n_param); %contains the matrix of temporary sums

%to compute fixed point values for each parameter in each chromosome.

for n = 1:n_param %step through chromosome parameters

 for k = 1:param_length %step through individual parameter bits

 %compute sums for each parameter in each chromosome of the

 %population in the range of 0 to (1-2^(-bits)).

 temp_sum(:,n) = temp_sum(:,n) + ...

 2^(-(k))*Bin(:,((n-1)*param_length + k));

 end

end

%Take normalized sum, scales to the desired range, and returns to the

%calling function.

Value(:,1) = Min + (Max - Min)*temp_sum(:,1); %value for p1
Value(:,2) = amp_min + (amp_max - amp_min)*temp_sum(:,2); %value for p2

end

175

D.2.2. Bin2fix_4param.m

%Peter Hettwer

%Thesis Work

%Genetic Algorithm 4 Parameter Binary to Unsigned Fixed Point Conversion

function Value = bin2fix_4param(Bin,Min,Max,n_param,amp_min,amp_max)

%Take a binary number, Bin, and convert it to a value in the range of Min

% to Max. Code allows for varying the range of region 2 (region used for

% dyssynchrony test cases), but this functionality not used.

[pop_size bits] = size(Bin); %obtain population size and number of bits

%in each chromosome from the binary matrix passed to the function.

param_length = bits/n_param; %obtain the bit lenght of each parameter

%from number of parameters contained within each chromosome.

temp_sum = zeros(pop_size,n_param);%contains the matrix of temporary sums

%to compute fixed point values for each parameter in each chromosome.

for n = 1:n_param %step through chromosome parameters

 for k = 1:param_length %step through individual parameter bits

 %compute sums for each parameter in each chromosome of the

 %population in the range of 0 to (1-2^(-bits)).

 temp_sum(:,n) = temp_sum(:,n) + ...

 2^(-(k))*Bin(:,((n-1)*param_length + k));

 end

end

Value(:,1) = Min + (Max - Min)*temp_sum(:,1); %value for p1

Value(:,2) = amp_min + (amp_max - amp_min)*temp_sum(:,2); %value for p2

Value(:,3) = Min + (Max - Min)*temp_sum(:,3); %value for p3

Value(:,4) = Min + (Max - Min)*temp_sum(:,4); %value for p4

end

176

D.2.3. Cross.m

%Peter Hettwer
%Thesis Work
%Crossover Selection Function

function crossOverPoint = Cross(nPairs, Pcross, bitsTotal)
 %generate random crossover points for each pair of mating chromosomes
 crossOverPoint = ceil(rand(1,nPairs)*(bitsTotal - 1))...
 .*(rand(1,nPairs) < Pcross);
 %rounds up random number to be between 1 and Nbits_total. value used
 %to select crossover index. All crossover points selected at once.

 for k = 1:nPairs
 %fail safe check to ensure no crossover point is zero (caused if
 %rand returns 0). If such a case does occur (very rare), places
 %that crossover point at the final bit position to allow proper
 %indexing in calling code.
 if(crossOverPoint(k) ==0)
 crossOverPoint(k) = bitsTotal;
 end
 end
end

177

D.2.4. fix2bin.m

%Peter Hettwer

%Thesis Work

%Generic Unsigned Fixed Point to Binary Conversion

function Value = fix2bin(Fix,Min,Max,bits)

%Take a number, Fix, in the range of Min to Max and convert it to a binary

%value with the supplied number of bits

temp = zeros(1,bits); %temporary vector to store binary bit values

norm = (Fix-Min)./(Max - Min); %normalized version of number supplied for

%conversion

 for k = 1:bits %determine individual bit values starting with most

 %significant bit

 if((norm - 2^(-(k))) > 0)

 temp(k) = 1;

 norm = norm - 2^(-(k));

 else

 temp(k) = 0;

 end

 end

%Return the converted number as a binary string

Value = temp;

end

178

D.2.5. initPopulation.m

%Peter Hettwer
%Thesis Work
%Initial Binary Population Creation
%Attempt 0

function initial_population = InitPopulation(populationSize, numBits)
 %creates a random, binary population of the desired size and number of
 %bits.

 %generates random values of 0 or 1 for each position in a matrix of
 %size populationSize by numBits.
 initial_population = round(rand(populationSize,numBits));
end

179

D.2.6. Mates.m

%Peter Hettwer
%Thesis Work
%Mate Selection

%generates two vectors, mate1 and mate 2 for GA chromosome crossover
%pairing selection based on supplied mating selection probability of each
%chromosome. Code allows for chromosome pairing with iteself.

%uses RandChooseN.m function developed by Jenna Carr. Available at:
%Citation:
%http://people.whitman.edu/~hundledr/courses/M350/RandChooseN.m

function [mate1, mate2] = Mates(mating_prob, numMates)
 mate1 = RandChooseN(mating_prob,numMates); %generate mating vector 1
 mate2 = RandChooseN(mating_prob,numMates); %generate mating vector 2
end

180

D.2.7. NextGen.m

%Peter Hettwer
%Thesis Work
%Next Generation Creation

function nextGeneration = NextGen(currentGen,numElite,crossPoint,mate1,mate2)
 %start at index values after the elite population to be saved from one
 %population to the next.
 genSize = size(currentGen); %determine size of current generation

 %obtain population size from supplied current generation
 popSize = genSize(1);

 %obtain number of bits in each chromosome from supplied current
 %generation
 numBits = genSize(2);

 %Rewrite current generation to next generation to save elite population
 nextGeneration = currentGen;

 %perform crossover of odd numbered current generation mating pairs at
 %specified crossover point after elite population
 nextGeneration((1+numElite):2:popSize,:) = ...
 [currentGen(mate1,1:crossPoint()) ...
 currentGen(mate2,crossPoint()+1:numBits)];

 %perform crossover of odd numbered current generation mating pairs at
 %specified crossover point after elite population
 nextGeneration((2+numElite):2:popSize,:) = ...
 [currentGen(mate2,1:crossPoint()) ...
 currentGen(mate1,crossPoint()+1:numBits)];
end

181

D.2.8. SeedRNG.m

%Peter Hettwer
%Thesis Work
%MATLAB RNG seeding function

%seeds MATLAB RNG to allow for reproducible results in any function
%requiring use of rand and randn functions.

function [] = SeedRNG(integer)
 stream = RandStream('mt19937ar','Seed',integer);
 RandStream.setDefaultStream(stream);
end

182

D.2.9. SSE.m

%Peter Hettwer
%Thesis Work
%Sum Squared Error Optimization Function for 2 parameter optimization

function fit = SSE(ideal, experimental)
%ideal is the reference value, experimental is the value being optimized
diff = ideal - experimental;
fit = sum(diff.^2);
end

183

D.2.10. SSE4.m

%Peter Hettwer
%Thesis Work
%Sum Squared Error Optimization Function for 4 parameter optimization

%ideal is the reference value (region 1), experiemntal1 is region 2,
%experimental2 is region 3, and experimental3 is region4

function fit = SSE(ideal, experimental1, experimental2, experimental3)

diff1 = ideal - experimental1;
diff2 = ideal - experimental2;
diff3 = ideal - experimental3;
fit = sum((diff1.^2 + diff2.^2 + diff3.^2));
end

184

D.2.11. Scripted_Initialization_no_dyss.m

% Scripted Initialization Functions

global r1 r2 r3 r4 m1 m2 m3 m4 e1min e2min e3min e4min e1max e2max e3max e4max bpm

step cycle t

%The Resistance Values (which ranges from 0.00001 - 0.0075)

r1 = 0.0015; r2 = 0.0015; r3 = 0.0015; r4 = 0.0015;

%r= 0.00001 + (0.0075-0.00001).*rand; % random generator for the

%Resistance

%r1= r; r2= r; r3= r; r4=r;

%The Mass Values (which ranges from 0.0001 - 0.01)

m1 = 0.001; m2 = 0.001; m3 = 0.001; m4 = 0.001;

%m= 0.0001 + (0.01-0.0001).*rand; % random generator for the masses

%m1= m; m2= m; m3= m; m4=m;

%The Min Elastance Values (which ranges from 1 - 5)

e1min = 1; e2min = 1; e3min = 1; e4min = 1;

%emin= 1 + (5-1).*rand; % random generator for the

%Min Elastance

%emin1= emin; emin2= emin; emin3= emin; emin4=emin;

%The Max Elastance Values (which ranges from 10 - 50)

e1max = 20; e2max = 20; e3max = 20; e4max = 20;

%emax= 10 + (50-10).*rand; % random generator for the

%Max Elastance

%emax1= emax; emax2= emax; emax3= emax; emax4=emax;

%Heart Perimeters

bpm = 60; step = 0.001; cycle = 5;

185

D.2.12. Scripted_Initialization_r2_dyss_0_015.m

% Scripted Initialization Functions

global r1 r2 r3 r4 m1 m2 m3 m4 e1min e2min e3min e4min e1max e2max e3max e4max bpm

step cycle t

%The Resistance Values (which ranges from 0.00001 - 0.0075)

r1 = 0.0015; r2 = 0.015; r3 = 0.0015; r4 = 0.0015;

%r= 0.00001 + (0.0075-0.00001).*rand; % random generator for the

%Resistance

%r1= r; r2= r; r3= r; r4=r;

%The Mass Values (which ranges from 0.0001 - 0.01)

m1 = 0.001; m2 = 0.001; m3 = 0.001; m4 = 0.001;

%m= 0.0001 + (0.01-0.0001).*rand; % random generator for the masses

%m1= m; m2= m; m3= m; m4=m;

%The Min Elastance Values (which ranges from 1 - 5)

e1min = 1; e2min = 1; e3min = 1; e4min = 1;

%emin= 1 + (5-1).*rand; % random generator for the

%Min Elastance

%emin1= emin; emin2= emin; emin3= emin; emin4=emin;

%The Max Elastance Values (which ranges from 10 - 50)

e1max = 20; e2max = 20; e3max = 20; e4max = 20;

%emax= 10 + (50-10).*rand; % random generator for the

%Max Elastance

%emax1= emax; emax2= emax; emax3= emax; emax4=emax;

%Heart Perimeters

bpm = 60; step = 0.001; cycle = 5;

186

D.2.13. Scripted_Initialization_m2_dyss_0_01.m

% Scripted Initialization Functions

global r1 r2 r3 r4 m1 m2 m3 m4 e1min e2min e3min e4min e1max e2max e3max e4max bpm

step cycle t

%The Resistance Values (which ranges from 0.00001 - 0.0075)

r1 = 0.0015; r2 = 0.0015; r3 = 0.0015; r4 = 0.0015;

%r= 0.00001 + (0.0075-0.00001).*rand; % random generator for the

%Resistance

%r1= r; r2= r; r3= r; r4=r;

%The Mass Values (which ranges from 0.0001 - 0.01)

m1 = 0.001; m2 = 0.01; m3 = 0.001; m4 = 0.001;

%m= 0.0001 + (0.01-0.0001).*rand; % random generator for the masses

%m1= m; m2= m; m3= m; m4=m;

%The Min Elastance Values (which ranges from 1 - 5)

e1min = 1; e2min = 1; e3min = 1; e4min = 1;

%emin= 1 + (5-1).*rand; % random generator for the

%Min Elastance

%emin1= emin; emin2= emin; emin3= emin; emin4=emin;

%The Max Elastance Values (which ranges from 10 - 50)

e1max = 20; e2max = 20; e3max = 20; e4max = 20;

%emax= 10 + (50-10).*rand; % random generator for the

%Max Elastance

%emax1= emax; emax2= emax; emax3= emax; emax4=emax;

%Heart Perimeters

bpm = 60; step = 0.001; cycle = 5;

187

D.2.14. Scripted_Initialization_min_elas2_dyss_4.m

% Scripted Initialization Functions
global r1 r2 r3 r4 m1 m2 m3 m4 e1min e2min e3min e4min e1max e2max e3max e4max bpm

step cycle t

%The Resistance Values (which ranges from 0.00001 - 0.0075)
r1 = 0.0015; r2 = 0.0015; r3 = 0.0015; r4 = 0.0015;
%r= 0.00001 + (0.0075-0.00001).*rand; % random generator for the
%Resistance
%r1= r; r2= r; r3= r; r4=r;

%The Mass Values (which ranges from 0.0001 - 0.01)
m1 = 0.001; m2 = 0.001; m3 = 0.001; m4 = 0.001;
%m= 0.0001 + (0.01-0.0001).*rand; % random generator for the masses
%m1= m; m2= m; m3= m; m4=m;

%The Min Elastance Values (which ranges from 1 - 5)
e1min = 1; e2min = 4; e3min = 1; e4min = 1;
%emin= 1 + (5-1).*rand; % random generator for the
%Min Elastance
%emin1= emin; emin2= emin; emin3= emin; emin4=emin;

%The Max Elastance Values (which ranges from 10 - 50)
e1max = 20; e2max = 20; e3max = 20; e4max = 20;
%emax= 10 + (50-10).*rand; % random generator for the
%Max Elastance
%emax1= emax; emax2= emax; emax3= emax; emax4=emax;

%Heart Perimeters
bpm = 60; step = 0.001; cycle = 5;

188

D.2.15. Scripted_Initialization_max_elas2_dyss_40.m

% Scripted Initialization Functions

global r1 r2 r3 r4 m1 m2 m3 m4 e1min e2min e3min e4min e1max e2max e3max e4max bpm

step cycle t

%The Resistance Values (which ranges from 0.00001 - 0.0075)

r1 = 0.0015; r2 = 0.0015; r3 = 0.0015; r4 = 0.0015;

%r= 0.00001 + (0.0075-0.00001).*rand; % random generator for the

%Resistance

%r1= r; r2= r; r3= r; r4=r;

%The Mass Values (which ranges from 0.0001 - 0.01)

m1 = 0.001; m2 = 0.001; m3 = 0.001; m4 = 0.001;

%m= 0.0001 + (0.01-0.0001).*rand; % random generator for the masses

%m1= m; m2= m; m3= m; m4=m;

%The Min Elastance Values (which ranges from 1 - 5)

e1min = 1; e2min = 1; e3min = 1; e4min = 1;

%emin= 1 + (5-1).*rand; % random generator for the

%Min Elastance

%emin1= emin; emin2= emin; emin3= emin; emin4=emin;

%The Max Elastance Values (which ranges from 10 - 50)

e1max = 20; e2max = 40; e3max = 20; e4max = 20;

%emax= 10 + (50-10).*rand; % random generator for the

%Max Elastance

%emax1= emax; emax2= emax; emax3= emax; emax4=emax;

%Heart Perimeters

bpm = 60; step = 0.001; cycle = 5;

189

D.2.16. Scripted_Initialization_all_dyss_region2.m

% Scripted Initialization Functions

global r1 r2 r3 r4 m1 m2 m3 m4 e1min e2min e3min e4min e1max e2max e3max e4max bpm

step_size cycle t

%The Resistance Values (which ranges from 0.00001 - 0.0075)

r1 = 0.0015; r2 = 0.0075; r3 = 0.0015; r4 = 0.0015;

%r= 0.00001 + (0.0075-0.00001).*rand; % random generator for the

%Resistance

%r1= r; r2= r; r3= r; r4=r;

%The Mass Values (which ranges from 0.0001 - 0.01)

m1 = 0.001; m2 = 0.01; m3 = 0.001; m4 = 0.001;

%m= 0.0001 + (0.01-0.0001).*rand; % random generator for the masses

%m1= m; m2= m; m3= m; m4=m;

%The Min Elastance Values (which ranges from 1 - 5)

e1min = 1; e2min = 4; e3min = 1; e4min = 1;

%emin= 1 + (5-1).*rand; % random generator for the

%Min Elastance

%emin1= emin; emin2= emin; emin3= emin; emin4=emin;

%The Max Elastance Values (which ranges from 10 - 50)

e1max = 20; e2max = 40; e3max = 20; e4max = 20;

%emax= 10 + (50-10).*rand; % random generator for the

%Max Elastance

%emax1= emax; emax2= emax; emax3= emax; emax4=emax;

%Heart Perimeters

bpm = 60; step_size = 0.001; cycle = 5;

190

D.2.17. Scripted_Initialization_m2_dyss_0_01.m

% Scripted Initialization Functions

global r1 r2 r3 r4 m1 m2 m3 m4 e1min e2min e3min e4min e1max e2max e3max e4max bpm

step_size cycle t

%The Resistance Values (which ranges from 0.00001 - 0.0075)

r1 = 0.0015; r2 = 0.0075; r3 = 0.0025; r4 = 0.0035;

%r= 0.00001 + (0.0075-0.00001).*rand; % random generator for the

%Resistance

%r1= r; r2= r; r3= r; r4=r;

%The Mass Values (which ranges from 0.0001 - 0.01)

m1 = 0.001; m2 = 0.01; m3 = 0.005; m4 = 0.0075;

%m= 0.0001 + (0.01-0.0001).*rand; % random generator for the masses

%m1= m; m2= m; m3= m; m4=m;

%The Min Elastance Values (which ranges from 1 - 5)

e1min = 1; e2min = 4; e3min = 3; e4min = 5;

%emin= 1 + (5-1).*rand; % random generator for the

%Min Elastance

%emin1= emin; emin2= emin; emin3= emin; emin4=emin;

%The Max Elastance Values (which ranges from 10 - 50)

e1max = 20; e2max = 40; e3max = 30; e4max = 50;

%emax= 10 + (50-10).*rand; % random generator for the

%Max Elastance

%emax1= emax; emax2= emax; emax3= emax; emax4=emax;

%Heart Perimeters

bpm = 60; step_size = 0.001; cycle = 5;

191

D.3. Sinusoid Model Code

D.3.1. model_sin.m

%Peter Hettwer

%Thesis Work

%3 February 2015

%Simplified Model for Testing Optimization Algorithms

%"Walking" Sinusoids

%phase should be a value between 0 and 2pi

%generates two sine waves based on supplied parameters and noise range

function [sin_x, sin_y] = model_sin(seed, t, params, noise, freq_y)

%sets values of reference sinusoid

phase_x = 2;

amp_x = 1;

freq_x = 1;

%Set default values for experimental parameters if not suplied.

if (nargin < 5)

 freq_y = freq_x;

end

if (nargin < 4)

 noise = 0.1;

end

if (nargin < 3)

 phase_y = -pi + (pi - (-pi))*rand;

end

if (nargin < 2)

 t = linspace(0, 1, 1000);

end

if (nargin < 1)

 seed = 0;

end

amp_y = params(2);

phase_y = params(1);

%create noise profiles for each sinusoid randomly based on supplied noise

%standard deviation

noise_x = 1 + noise*randn(1,length(t));

noise_y = 1 + noise*randn(1,length(t));

192

%Create reference waveform.

w_x = 2*pi*freq_x;

sin_x = amp_x * sin(w_x.*t + phase_x) + noise_x;

%Create test waveform (modified by inputs to model by optimization

%algorithm).

w_y = 2*pi*freq_y;

sin_y = amp_y * sin(w_y.*t + phase_y) + noise_y;

end

193

D.3.2. model_sin_plot.m

%Peter Hettwer

%Thesis Work

%3 February 2015

%Plot sinusoids based on supplied characteristics

function model_sin_plot(t, phase_y, amp_y, noise_x, noise_y)

%initialize reference sinusiod parameters

phase_x = 2;

amp_x = 1;

freq_x = 1;

freq_y = freq_x;

%find min, max, and mean values for supplied parameter data sets

[min_phase_y, index_min_py] = min(phase_y);

[max_phase_y, index_max_py] = max(phase_y);

mean_phase_y = mean(phase_y);

[min_amp_y, index_min_ay] = min(amp_y);

[max_amp_y, index_max_ay] = max(amp_y);

mean_amp_y = mean(amp_y);

%Create reference waveform with noise.

w_x = 2*pi*freq_x;

sin_x = amp_x * sin(w_x.*t + phase_x) + noise_x;

%Create test waveforms (modified by inputs to model by optimization

%algorithm). Show waveforms based on searches for min/max values for each

%phase and amplitude and a final waveform based on the average values

%computed from each phase and amplitude

w_y = 2*pi*freq_y;

%sinusoid with noise created from data in set with minimum phase

sin_y_p_min = amp_y(index_min_py) * sin(w_y.*t + min_phase_y) + noise_y;

%sinusoid with noise created from data in set with maximum phase

sin_y_p_max = amp_y(index_max_py) * sin(w_y.*t + max_phase_y) + noise_y;

%sinusoid with noise created from data in set with minimum amplidude

sin_y_a_min = min_amp_y * sin(w_y.*t + phase_y(index_min_ay)) + noise_y;

%sinusoid with noise created from data in set with maximum amplitude

sin_y_a_max = max_amp_y * sin(w_y.*t + phase_y(index_max_ay)) + noise_y;

194

%sinusoid with noise created from averaged amplitude and phase data

sin_y_avg = mean_amp_y * sin(w_y.*t + mean_phase_y) + noise_y;

%reference sinusoid without noise

sin_x_2 = amp_x * sin(w_x.*t + phase_x);

%plot of noisy sinusoids

figure

plot(t,sin_x,'.b',t,sin_x_2,'g');

legend('sample noisy signal','ideal',1);

xlabel('time');

ylabel('amplitude');

title('Sample of signal corrupted by noise');

sin_x = amp_x * sin(w_x.*t + phase_x);

%sinusoid without noise created from data in set with minimum phase

sin_y_p_min = amp_y(index_min_py) * sin(w_y.*t + min_phase_y);

%sinusoid without noise created from data in set with maximum phase

sin_y_p_max = amp_y(index_max_py) * sin(w_y.*t + max_phase_y);

%sinusoid without noise created from data in set with minimum amplidude

sin_y_a_min = min_amp_y * sin(w_y.*t + phase_y(index_min_ay));

%sinusoid without noise created from data in set with maximum amplitude

sin_y_a_max = max_amp_y * sin(w_y.*t + phase_y(index_max_ay));

%sinusoid without noise created from averaged amplitude and phase data

sin_y_avg = mean_amp_y * sin(w_y.*t + mean_phase_y);

%plot of sinusiods without noise

figure

plot(t,sin_x,'.b',t,sin_y_p_min,'g',t,sin_y_p_max,'r',t,sin_y_a_min,'k',t,sin_y_a_max,'c',t,sin_y_av

g,'.g');

legend('ideal','min phase','max phase','min ampl','max ampl','avg',1);

xlabel('time');

ylabel('amplitude');

title('GA Solution vs. Ideal Solution shown w/o Noise');

end

195

APPENDIX E. EXHAUSTIVE SEARCH CODE

E.1. Exhaustive Search: 2 Parameter

Exhaustive_Search_CD_A.m

%Peter Hettwer

%Exhaustive Search Method

%For use with CD Model, 2 parameter (1 reference, 1 search)

%Code to execute exhaustive search operations for the various 2 parameter

%dyssynchrony sets shown in the corrisponding thesis appendix section.

%Prior to execution, user or user generated script file should open a

%parallel MATLAB workstation with the following command:

%matlabpool('open',4); where the number is the number of MATLAB cores

%desired to run. Maximum Number of cores is dictated by the number of

%physical cores on the computer running MATLAB. After execution, the user

%or a user generated script file should close the parallel MATLAB

%workstation with the following command: matlabpool('close').

function [] = Exhaustive_Search_CD_A(file, num_points, noise)

global r1 r2 r3 r4 m1 m2 m3 m4 e1min e2min e3min e4min e1max e2max...

 e3max e4max bpm step_size cycle t

tic; %start MATLAB timer to measure how long search takes

%Scripted_Initialization; %this CD model parameter initialization file is

%needed if this code is not called from a script file previously calling

%the initialization file.

ti = 0:step_size:1; %set period time values based on desired step size;

%used to create acceleration wave plots.

cost = zeros(1,num_points); %create vector of cost values of length

%determined at run-time by user

%Vector of region 1 acceleration wave forms

A1 = zeros(num_points, length(ti));

%Vector of region 2 acceleration wave forms

A2 = zeros(num_points, length(ti));

%Vector of region 3 acceleration wave forms

A3 = zeros(num_points, length(ti));

%Vector of region 4 acceleration wave forms

A4 = zeros(num_points, length(ti));

196

p1 = 1; %region 1 timing is assumed as reference,

p2 = linspace(0,2*pi,num_points); %region 2 is being searched

p3 = p1; %region 3 is tied to region 1

p4 = p1; %region 4 is tied to region 1

parfor k = 1:num_points; %Parallel for loop to speed up code execution

 %compute acceleration wave forms for regional timing values

 [A1(k,:), A2(k,:), A3(k,:), A4(k,:)] = Scripted_GUI(p1,p2(k),p3,...

 p4,step_size,cycle,bpm,r1,r2,r3,r4,e1min,e1max,e2min,e2max,...

 e3min,e3max,e4min,e4max,m1,m2,m3,m4);

 %compute cost value for current set of acceleration wave forms

 cost(k) = SSE(A1(k,:), A2(k,:));

end

%find minimum cost value and index value in region 2

[min_cost index] = min(cost);

p2_best_fit = p2(index) %find the best value for region 2 timing

run_time = toc %stop MATLAB Timer and display to command window

save(file); %save to user defined filename

end

197

E.2. Exhaustive Search: 4 Parameter

Exhaustive_Search_CD_4param_A.m

%Peter Hettwer

%Exhaustive Search Method

%For use with CD Model, 2 parameter (1 reference, 3 search)

%Code to execute exhaustive search operations for the various 4 parameter

%dyssynchrony sets shown in the corrisponding thesis appendix section.

%Prior to execution, user or user generated script file should open a

%parallel MATLAB workstation with the following command:

%matlabpool('open',4); where the number is the number of MATLAB cores

%desired to run. Maximum Number of cores is dictated by the number of

%physical cores on the computer running MATLAB. After execution, the user

%or a user generated script file should close the parallel MATLAB

%workstation with the following command: matlabpool('close').

function [] = Exhaustive_Search_CD_4param_A(file, num_points,...

 num_runs, noise)

global r1 r2 r3 r4 m1 m2 m3 m4 e1min e2min e3min e4min e1max e2max...

 e3max e4max bpm step_size cycle t

tic; %start MATLAB timer to measure how long search takes

%Scripted_Initialization; %this CD model parameter initialization file is

%needed if this code is not called from a script file previously calling

%the initialization file.

ti = 0:step_size:1; %set period time values based on desired step size;

%used to create acceleration wave plots.

cost = zeros(1,num_points); %create cost vector for all cost values over

%range for region 2 for a given value for each region 3 and region 4.

range_min = 0; %minimum starting value for search space

range_max = 2*pi; %maximum starting value for search space

i_low = range_min; %minimum starting value for one searched variable

i_high = range_max; %maximum starting value for one searched variable

j_low = range_min; %minimum starting value for second searched variable

j_high = range_max; %maximum starting value for second searched variable

k_low = range_min; %minimum starting value for third searched variable

k_high = range_max; %maximum starting value for third searched variable

198

%Vector of region 1 acceleration wave forms

A1 = zeros(num_points, length(ti));

%Vector of region 2 acceleration wave forms

A2 = zeros(num_points, length(ti));

%Vector of region 3 acceleration wave forms

A3 = zeros(num_points, length(ti));

%Vector of region 4 acceleration wave forms

A4 = zeros(num_points, length(ti));

%initial search ranges

p1 = 1; %region 1 timing is assumed as reference,

p2 = linspace(range_min,range_max,num_points) %region 2 is being optimized

p3 = linspace(range_min,range_max,num_points) %region 3 is being optimized

p4 = linspace(range_min,range_max,num_points) %region 4 is being optimized

for r = 1:num_runs; %implements search 'zoom' feature.

 %Zooms for user selected number of times,

 cost_min = NaN; %resets minumum cost at onset of each zoom cycle

 %creates new min and max search space values if not initial run

 if(r ~= 1)

 %create new p2, p3, and p4 test vectors

 if(index_i==1)

 %if lowest best fit == index 1, keep same lower bound as

 %previous.

 i_low = i_low;

 else

 i_low = p4(index_i-1);

 end

 if(index_j==1)

 %if lowest best fit == index 1, keep same lower bound as

 %previous.

 j_low = j_low;

 else

 j_low = p3(index_j-1);

 end

 if(index_k==1)

 %if lowest best fit == index 1, keep same lower bound as

 %previous.

 k_low = k_low;

 else

 k_low = p2(index_k-1);

199

 end

 if(index_i==num_points)

 %if highest best fit == max index value, keep same lower bound

 %as previous.

 i_high = i_high;

 else

 i_high = p4(index_i+1);

 end

 if(index_j==num_points)

 %if highest best fit == max index value, keep same lower bound

 %as previous.

 j_high = j_high;

 else

 j_high = p3(index_j+1);

 end

 if(index_k==num_points)

 %if highest best fit == max index value, keep same lower bound

 %as previous.

 k_high = k_high;

 else

 k_high = p2(index_k+1);

 end

 p2 = linspace(k_low,k_high,num_points) %new region 2 range

 p3 = linspace(j_low,j_high,num_points) %new region 3 range

 p4 = linspace(i_low,i_high,num_points) %new region 4 range

 end

 for i = 1:num_points; %iterates through region 4 values

 for j = 1:num_points; %itterates through region 3 values

 parfor k = 1:num_points; %parallel itteration through

 %region 2 values

 %compute acceleration wave forms for regional timing values

 [A1(k,:), A2(k,:), A3(k,:), A4(k,:)] = Scripted_GUI(p1,...

 p2(k),p3(j),p4(i),step_size,cycle,bpm,r1,r2,r3,r4,...

 e1min,e1max,e2min,e2max,e3min,e3max,e4min,e4max,m1,...

 m2,m3,m4);

 %compute cost value for current set of acceleration wave

 %forms

 cost(k) = SSE4(A1(k,:), A2(k,:), A3(k,:), A4(k,:));

 end

 %check and record if any newly computed cost values are the new

200

 %minimum, replace old minimum value and region indices as

 %needed.

 if((min(cost)<cost_min) || isnan(cost_min))

 [cost_min index_k] = min(cost)

 index_i = i

 index_j = j

% else

% i

% j

 end

 end

 end

end

[min_cost index] = min(cost); %record minumum cost as standardized

%variable for plotting scripts

p2_best_fit = p2(index_k) %record best region 2 value as standardized

%variable for plotting scripts

p3_best_fit = p3(index_j) %record best region 3 value as standardized

%variable for plotting scripts

p4_best_fit = p4(index_i) %record best region 4 value as standardized

%variable for plotting scripts

run_time = toc %stop MATLAB Timer and display to command window

save(file); %save to user defined filename

end

201

E.3. Exhaustive Search: 2 Parameter, R2 Cost Curve

Same code as Exhaustive_Search_CD_A.m shown previously.

202

E.4. Exhaustive Search: 2 Parameter, R3 Cost Curve

Exhaustive_Search_CD_A3.m

%Peter Hettwer

%Exhaustive Search Method

%For use with CD Model, 2 parameter (1 reference, 1 search)

%Code to Create the Cost Curve for Region 3 of the CD Model.

%Regions 1, 2, and 4 are held constant and equal.

%Prior to execution, user or user generated script file should open a

%parallel MATLAB workstation with the following command:

%matlabpool('open',4); where the number is the number of MATLAB cores

%desired to run. Maximum Number of cores is dictated by the number of

%physical cores on the computer running MATLAB. After execution, the user

%or a user generated script file should close the parallel MATLAB

%workstation with the following command: matlabpool('close').

function [] = Exhaustive_Search_CD_A3(file, num_points, noise)

%global variables as required by CD Model Code

global r1 r2 r3 r4 m1 m2 m3 m4 e1min e2min e3min ...

 e4min e1max e2max e3max e4max bpm step_size cycle t

tic; %start MATLAB timer to measure how long search takes

%Scripted_Initialization; %this CD model parameter initialization file is

%needed if this code is not called from a script file previously calling

%the initialization file.

ti = 0:step_size:1; %set period time values based on desired step size;

%used to create acceleration wave plots.

cost = zeros(1,num_points); %create vector of cost values of length

%determined at run-time by user

%Vector of region 1 acceleration wave forms

A1 = zeros(num_points, length(ti));

%Vector of region 2 acceleration wave forms

A2 = zeros(num_points, length(ti));

%Vector of region 3 acceleration wave forms

A3 = zeros(num_points, length(ti));

%Vector of region 4 acceleration wave forms

A4 = zeros(num_points, length(ti));

p1 = 1; %region 1 timing is assumed as reference,

203

p2 = p1; %region 2 is tied to region 1

p3 = linspace(0,2*pi,num_points); %region 3 is being searched

p4 = p1; %region 4 is tied to region 1

parfor k = 1:num_points; %Parallel for loop to speed up code execution

 %compute acceleration wave forms for regional timing values

 [A1(k,:), A2(k,:), A3(k,:), A4(k,:)] = Scripted_GUI(p1,p2,p3(k),p4,...

 step_size,cycle,bpm,r1,r2,r3,r4,e1min,e1max,e2min,e2max,e3min,...

 e3max,e4min,e4max,m1,m2,m3,m4);

 %compute cost value for current set of acceleration wave forms

 cost(k) = SSE4(A1(k,:), A2(k,:), A3(k,:), A4(k,:));

end

%find minimum cost value and index value in region 3

[min_cost index] = min(cost);

p3_best_fit = p3(index) %find the best value for region 3 timing

run_time = toc %stop MATLAB Timer and display to command window

save(file); %save to user defined filename

end

204

E.5. Exhaustive Search: 2 Parameter, R4 Cost Curve

Exhaustive_Search_CD_A4.m

%Peter Hettwer

%Exhaustive Search Method

%For use with CD Model, 2 parameter (1 reference, 1 search)

%Code to Create the Cost Curve for Region 4 of the CD Model.

%Regions 1, 2, and 3 are held constant and equal.

%Prior to execution, user or user generated script file should open a

%parallel MATLAB workstation with the following command:

%matlabpool('open',4); where the number is the number of MATLAB cores

%desired to run. Maximum Number of cores is dictated by the number of

%physical cores on the computer running MATLAB. After execution, the user

%or a user generated script file should close the parallel MATLAB

%workstation with the following command: matlabpool('close').

function [] = Exhaustive_Search_CD_A4(file, num_points, noise)

%global variables as required by CD Model Code

global r1 r2 r3 r4 m1 m2 m3 m4 e1min e2min e3min...

 e4min e1max e2max e3max e4max bpm step_size cycle t

tic; %start MATLAB timer to measure how long search takes

%Scripted_Initialization; %this CD model parameter initialization file is

%needed if this code is not called from a script file previously calling

%the initialization file.

ti = 0:step_size:1; %set period time values based on desired step size;

%used to create acceleration wave plots.

cost = zeros(1,num_points); %create vector of cost values of length

%determined at run-time by user

%Vector of region 1 acceleration wave forms

A1 = zeros(num_points, length(ti));

%Vector of region 2 acceleration wave forms

A2 = zeros(num_points, length(ti));

%Vector of region 3 acceleration wave forms

A3 = zeros(num_points, length(ti));

%Vector of region 4 acceleration wave forms

A4 = zeros(num_points, length(ti));

p1 = 1; %region 1 timing is assumed as reference,

205

p2 = p1; %region 2 is tied to region 1

p3 = p1; %region 3 is tied to region 1

p4 = linspace(0,2*pi,num_points); %region 4 is being searched

parfor k = 1:num_points; %Parallel for loop to speed up code execution

 %compute acceleration wave forms for regional timing values

 [A1(k,:), A2(k,:), A3(k,:), A4(k,:)] = Scripted_GUI(p1,p2,p3,p4(k),...

 step_size,cycle,bpm,r1,r2,r3,r4,e1min,e1max,e2min,e2max,e3min,...

 e3max,e4min,e4max,m1,m2,m3,m4);

 %compute cost value for current set of acceleration wave forms

 cost(k) = SSE4(A1(k,:), A2(k,:), A3(k,:), A4(k,:));

end

%find minimum cost value and index value in region 4

[min_cost index] = min(cost);

p4_best_fit = p4(index) %find the best value for region 4 timing

run_time = toc %stop MATLAB Timer and display to command window

save(file); %save to user defined filename

end

206

E.6. Exhaustive Search: 4 Parameter, R3 & R4 Cost Surface

Exhaustive_Search_CD_4param_A34.m

%Peter Hettwer

%Exhaustive Search Method

%For use with CD Model, 4 parameter (1 reference, 3 search)

%Code to Create the Cost Surface for varying Regions 3 & 4 of the CD Model.

%Regions 1, and 2 are held constant and equal.

%Prior to execution, user or user generated script file should open a

%parallel MATLAB workstation with the following command:

%matlabpool('open',4); where the number is the number of MATLAB cores

%desired to run. Maximum Number of cores is dictated by the number of

%physical cores on the computer running MATLAB. After execution, the user

%or a user generated script file should close the parallel MATLAB

%workstation with the following command: matlabpool('close').

function [] = Exhaustive_Search_CD_4param_A34(file, num_points, ...

 num_runs, noise)

global r1 r2 r3 r4 m1 m2 m3 m4 e1min e2min e3min e4min e1max e2max ...

 e3max e4max bpm step_size cycle t

tic; %start MATLAB timer to measure how long search takes

%Scripted_Initialization; %this CD model parameter initialization file is

%needed if this code is not called from a script file previously calling

%the initialization file.

ti = 0:step_size:1; %set period time values based on desired step size;

%used to create acceleration wave plots.

range_min = 0; %minimum starting value for search space

range_max = 2*pi; %maximum starting value for search space

i_low = range_min; %minimum starting value for one searched variable

i_high = range_max; %maximum starting value for one searched variable

j_low = range_min; %minimum starting value for second searched variable

j_high = range_max; %maximum starting value for second searched variable

k_low = range_min; %minimum starting value for third searched variable,

%not used for this modified code

k_high = range_max; %maximum starting value for third searched variable,

%not used for this modified code

%Vector of region 1 acceleration wave forms

207

A1 = zeros(num_points, length(ti));

%Vector of region 2 acceleration wave forms

A2 = zeros(num_points, length(ti));

%Vector of region 3 acceleration wave forms

A3 = zeros(num_points, length(ti));

%Vector of region 4 acceleration wave forms

A4 = zeros(num_points, length(ti));

%initial search ranges

p1 = 1; %region 1 timing is assumed as reference,

p2 = p1; %region 2 is tied to region 1

p3 = linspace(range_min,range_max,num_points) %region 3 is being searched

p4 = linspace(range_min,range_max,num_points) %region 4 is being searched

% cost = zeros(num_points,num_points);

cost = zeros(50,50);

for r = 1:num_runs; %implements search 'zoom' feature.

 %Zooms for user selected number of times,

 %feature not utilized in this search. i.e. num_runs = 1 for creating

 %cost surface

 cost_min = NaN; %resets minumum cost at onset of each zoom cycle

 %creates new min and max search space values if not initial run

 if(r ~= 1)

 %create new p2, p3, and p4 test vectors after initial run

 if(index_i==1)

 %if lowest best fit == index 1, keep same lower bound as

 %previous.

 i_low = i_low;

 else

 i_low = p4(index_i-1);

 end

 if(index_j==1)

 %if lowest best fit == index 1, keep same lower bound as

 %previous.

 j_low = j_low;

 else

 j_low = p3(index_j-1);

 end

 if(index_k==1)

 %if lowest best fit == index 1, keep same lower bound as

208

 %previous.

 k_low = k_low;

 else

 k_low = p2(index_k-1);

 end

 if(index_i==num_points)

 %if highest best fit == max index value, keep same lower bound

 %as previous.

 i_high = i_high;

 else

 i_high = p4(index_i+1);

 end

 if(index_j==num_points)

 %if highest best fit == max index value, keep same lower bound

 %as previous.

 j_high = j_high;

 else

 j_high = p3(index_j+1);

 end

 if(index_k==num_points)

 %if highest best fit == max index value, keep same lower bound

 %as previous.

 k_high = k_high;

 else

 k_high = p2(index_k+1);

 end

 p3 = linspace(j_low,j_high,num_points) %new region 3 range

 p4 = linspace(i_low,i_high,num_points) %new region 4 range

 end

 for i = 135:185; %creating surface directly around "best" values,

 %spacing determined using 1001 points between 0 and 2pi

 parfor j = 135:185;

 %compute acceleration wave forms for regional timing values

 [A1(j,:), A2(j,:), A3(j,:), A4(j,:)] = Scripted_GUI(p1,p2,...

 p3(j),p4(i),step_size,cycle,bpm,r1,r2,r3,r4,e1min,e1max,...

 e2min,e2max,e3min,e3max,e4min,e4max,m1,m2,m3,m4);

 %compute cost value for current set of acceleration wave forms

 cost(j,i) = SSE4(A1(j,:), A2(j,:), A3(j,:), A4(j,:));

 end

 end

209

end

min_cost = min(min(cost)); %determine minimum cost for tested values

[index_j index_i] = find(cost==min_cost); %find indices for tested regions

p2_best_fit = p2 %best value for region 2. Region 2 was fixed.

p3_best_fit = p3(index_j) %best value for region 3

p4_best_fit = p4(index_i) %best value for region 4

run_time = toc %stop MATLAB Timer and display to command window

save(file); %save to user defined filename

end

210

APPENDIX F. GA SEARCH VARIATIONS FOR WALKING SINUSOID

MODEL

211

F.1. Single Parameter Optimizations

Single Parameter (Phase),
No Noise , (single noise code)

Figure F-1: Single Parameter, No Noise GA Optimization of Walking Sinusoid Model

Single Parameter (Phase),
No Noise , (single noise code)

Figure F-2: Noise Level Representation for Single Parameter, No Noise GA Optimization

of Walking Sinusoid Model

212

Single Parameter (Phase), Single
Additive Noise: Noise = 2 sd

Figure F-3: Noise Level Representation for Single Parameter, 2 Std. Deviation Noise GA

Optimization of Walking Sinusoid Model

Single Parameter (Phase),
Multi Additive Noise: Noise = 2 sd

Figure F-4: Single Parameter, 2 Std. Deviation Noise GA Optimization of Walking

Sinusoid Model w/ new noise added for each individual comparison to objective function.

213

F.2. Two Parameter Optimization

Multi Parameter (Phase & Amplitude),
No Noise (single noise code)

Figure F-5: Two Parameter, No Noise GA Optimization of Walking Sinusoid Model

Multi Parameter (Phase & Amplitude),
No Noise (single noise code)

Figure F-6: Noise Level Representation for Two Parameter, No Noise GA Optimization of

Walking Sinusoid Model

214

Multi Parameter (Phase & Amplitude),
Single Additive Noise: Noise = 2 sd

Figure F-7: Noise Level Representation for Two Parameter, 2 Std. Deviation Noise GA

Optimization of Walking Sinusoid Model

Multi Parameter (Phase & Amplitude),
Multi Additive Noise: Noise = 2 sd

Figure F-8: Two Parameter, 2 Std. Deviation Noise GA Optimization of Walking Sinusoid

Model w/ new noise added for each individual comparison to objective function.

215

APPENDIX G. CARDIAC DYSSYNCHRONY MODEL CODE
1

The CD model is not strictly clinical in nature; however, that being said, it does provide a

stepping stone by which to judge the merits of different optimization algorithms and schemes

prior to using more advanced, and computationally intensive models.

1
 The cardiac dyssynchrony model shown in this appendix was originally developed by a

team lead by Dr. Dan Ewert, professor of electrical and computer engineering of NDSU

specializing in cardiovascular engineering and research, and consisted of Sam Oguyemi, McNair

scholar and undergraduate student of mechanical engineering of NDSU, and a group of senior

design students at Iron Range Engineering for the purpose of having a graphical user

representation of CD for use as a visual aid in classroom instruction on CD and creating an

objective set of metrics to measure CD. Assisted by Sam Oguyemi, Peter Hettwer created the

shell function Scripted_GUI.m and the parameter initialization file Scripted_Initialization.m to

allow model operation without a user interactive graphical user interface (GUI) and accept four

relative firing phases from an optimization algorithm after which, it calculates and returns the

accelerations of the four left ventricular regions for use in the optimization algorithm creating a

closed loop test platform. Peter Hettwer then used the CD model with the optimization

algorithms he designed to obtain the data utilized in this thesis.

216

G.1. Scripted_GUI.m

This code is the base function called within an optimization algorithm to generate regional

acceleration waveforms from generated regional phase timings.

% Script GUI

function [A1,A2,A3,A4] = Scripted_GUI(P1,P2,P3,P4,step_size,cycle,bpm,...

 r1,r2,r3,r4,e1min,e1max,e2min,e2max,e3min,e3max,e4min,e4max,m1,m2,...

 m3,m4)

%global t1 t2 t3 t4

%Calling the Initialization Script

%step = 1/1000;

%Phase Transformation

t1 = ((1/(bpm/60))/(2*pi))*P1;

t2 = ((1/(bpm/60))/(2*pi))*P2;

t3 = ((1/(bpm/60))/(2*pi))*P3;

t4 = ((1/(bpm/60))/(2*pi))*P4;

% Caling the Dyss Function

[I1,I2,I3,I4] = dyss1(step_size,cycle,bpm,r1,r2,r3,r4,e1min,e1max,e2min,...

 e2max,e3min,e3max,e4min,e4max,m1,m2,m3,m4,t1,t2,t3,t4);

%The Acceleration Values

Aa1 = nineptder1(I1,step_size);

Aa2 = nineptder1(I2,step_size);

Aa3 = nineptder1(I3,step_size);

Aa4 = nineptder1(I4,step_size);

%Method of extrating the last elements at equilibrium

period_length = 1/step_size;

A1 = Aa1(length(Aa1)-period_length:length(Aa1));

A2 = Aa2(length(Aa2)-period_length:length(Aa2));

A3 = Aa3(length(Aa3)-period_length:length(Aa3));

A4 = Aa4(length(Aa4)-period_length:length(Aa4));

217

G.2. Scripted_Initialization.m

This function declares and initializes the values for the mechanical model parameters in

each of the four model regions.

% Scripted Initialization Functions

global r1 r2 r3 r4 m1 m2 m3 m4 e1min e2min e3min e4min e1max e2max ...

 e3max e4max bpm step_size cycle t

%The Resistance Values (which ranges from 0.00001 - 0.015)

r1 = 0.0015; r2 = 0.0015; r3 = 0.0015; r4 = 0.0015;

%The Mass Values (which ranges from 0.0001 - 0.01)

m1 = 0.001; m2 = 0.001; m3 = 0.001; m4 = 0.001;

%The Min Elastance Values (which ranges from 1 - 5)

e1min = 1; e2min = 1; e3min = 1; e4min = 1;

%The Max Elastance Values (which ranges from 10 - 50)

e1max = 20; e2max = 20; e3max = 20; e4max = 20;

%Heart Perimeters

bpm = 60; step_size = 0.001; cycle = 5;

218

G.3. dyss1.m

 This file handles model interaction with a MATLAB ordinary differential equation (ode) solver.

%Awesome script to run dyssynchrony

function [I1, I2, I3, I4] = dyss1(step,cycle,bpm,r1,r2,r3,r4,e1min,...

 e1max,e2min,e2max,e3min,e3max,e4min,e4max,m1,m2,m3,m4,t1,t2,t3,t4)

%global r1 r2 r3 r4 e1min e1max e2min e2max e3min e3max e4min e4max m1 ...

%m2 m3 m4 t1 t2 t3 t4 step cycle bpm t

t = 0:step:cycle;

min_e = .5;

volume = 10;

pressure = volume*min_e;

OPTIONS=odeset('MaxStep',1e-4);

[a2 b2]=ode23s(@ejection,t,[pressure 0 pressure 0 0 0 pressure volume ...

 volume 0 0 pressure pressure 0 0 6 100 volume volume min_e r1 r2 r3 ...

 r4 m1 m2 m3 m4],OPTIONS,[r1 r2 r3 r4 e1min e1max e2min e2max e3min ...

 e3max e4min e4max m1 m2 m3 m4 t1 t2 t3 t4 bpm]);

pe1= b2(:,1);

I1 = b2(:,2);

pe2= b2(:,3);

I2 = b2(:,4);

Ii = b2(:,5);

Io = b2(:,6);

LVP= b2(:,7);

V1 = b2(:,8);

V2 = b2(:,9);

Vi = b2(:,10);

Vo = b2(:,11);

pe3= b2(:,12);

pe4= b2(:,13);

I3 = b2(:,14);

I4 = b2(:,15);

LAP= b2(:,16);

AoP= b2(:,17);

V3 = b2(:,18);

V4 = b2(:,19);

W = b2(:,20);

R1 = b2(:,21);

R2 = b2(:,22);

R3 = b2(:,23);

R4 = b2(:,24);

219

M1 = b2(:,25);

M2 = b2(:,26);

M3 = b2(:,27);

M4 = b2(:,28);

assignin('base', 's', step);

t = t;

220

G.4. ejection.m

 This function defines the differential equations used within the MATLAB ode solver.

%This is ejecting stacked model

function [dy] = ejection(t,y,z)

global dI1

%defining variables

pe1 = y(1);

I1 = y(2);

pe2 = y(3);

I2 = y(4);

Ii = y(5);

Io = y(6);

LVP = y(7);

V1 = y(8);

V2 = y(9);

Vi = y(10);

Vo = y(11);

pe3 = y(12);

pe4 = y(13);

I3 = y(14);

I4 = y(15);

LAP = y(16);

AoP = y(17);

V3 = y(18);

V4 = y(19);

W = y(20);

R1= y(21);

R2= y(22);

R3= y(23);

R4= y(24);

M1 = y(25);

M2 = y(26);

M3 = y(27);

M4 = y(28);

%E1 = y(29);

%E2 = y(30);

%E3 = y(31);

%E4 = y(32);

%resistance dyssynchrony for each section of the heart

r1 = z(1);

r2 = z(2);

r3 = z(3);

221

r4 = z(4);

%elastance dyssynchrony for each section of the heart

e1min=z(5);

e1max=z(6);

e2min=z(7);

e2max=z(8);

e3min=z(9);

e3max=z(10);

e4min=z(11);

e4max=z(12);

% e1= e1max-e1min;

% e2= e2max-e2min;

% e3= e3max-e3min;

% e4= e4max-e4min;

%mass dyssynchrony for each section of the heart

m1 = z(13);

m2 = z(14);

m3 = z(15);

m4 = z(16);

%timing dyssynchrony for each section of the heart

t1 = z(17);

t2 = z(18);

t3 = z(19);

t4 = z(20);

%heart beats per minute

bpm = z(21);

% Defining constants

k1 = r1; %This is really resistance 1

k2 = r2; %This is really resistance 2

k3 = r3; %This is really resistance 3

k4 = r4; %This is really resistance 4

Ri = .01;

Ro = .01;

mi = .0002;

mo = .0002;

%LAP = 10;

%AoP = 100;

Clvp = .0001;

m1 = m1;

m2 = m2;

m3 = m3;

222

m4 = m4;

Rs = 2.5;

Cv = 100;

Ca = 20;

% Attain time varying parameters

[e1 de1] = getk(t+t1,e1min,e1max,bpm);

[e2 de2] = getk(t+t2,e2min,e2max,bpm);% for dyssynchrony create second offset elastance

[e3 de3] = getk(t+t3,e3min,e3max,bpm);

[e4 de4] = getk(t+t4,e4min,e4max,bpm);

% Writing differential equations

dpe1 = e1*(I1+pe1*(1/(e1)^2*de1)); % next four for elastance

%dpe2 = e1*(I2+pe2*(1/e1)^2*de1);

dpe2 = e2*(I2+pe2*(1/e2)^2*de2); % switch percent to the one above for dyssnchrony

dpe3 = e3*(I3+pe3*(1/e3)^2*de3);

dpe4 = e4*(I4+pe4*(1/e4)^2*de4);

dI1 = (1/m1)*(LVP-pe1-(k1*LVP)*I1); % flow for next four for mass

dI2 = (1/m2)*(LVP-pe2-(k2*LVP)*I2);

dI3 = (1/m3)*(LVP-pe3-(k3*LVP)*I3);

dI4 = (1/m4)*(LVP-pe4-(k4*LVP)*I4);

% if (LVP>AoP)

% Ro=.1;

% else

% Ro=1e3;

% end

Do=20*(-(.15/(.15+exp(-6*Io)))+1);

dIo = (1/mo)*(LVP-AoP-(Ro+Do)*Io); % next two for flow in/flow out

% if (LAP>LVP)

% Ri=.1;

% else

% Ri=1e3;

% end

Di=20*(-(.15/(.15+exp(-6*Ii)))+1);

dIi = (1/mi)*(LAP-LVP-(Ri+Di)*Ii);

Ilvp = Ii-Io-I1-I2-I3-I4; % flow balance

dLVP = (1/Clvp)*Ilvp; % for the capacitor

dLAP=(Ii-((AoP-LAP)/Rs))/-Cv;

223

dAoP=(Io-((AoP-LAP)/Rs))/Ca;

%w = LVP*(V1+V2+V3+V4) %work

dW = LVP*(I1+I2+I3+I4);

%Elastic power for each heart segment (ideal)

% dwe1=-e1*V1*I1*.00013;

% dwe2=-e2*V2*I2*.00013;

% dwe3=-e3*V3*I3*.00013;

% dwe4=-e4*V4*I4*.00013;

%Power disipated by myocardial resistance (dash pot)

dwr1=k1*LVP*I1^2*.00013;

dwr2=k2*LVP*I2^2*.00013;

dwr3=k3*LVP*I3^2*.00013;

dwr4=k4*LVP*I4^2*.00013;

%Derivative of the Power disipated by myocardial resistance

%ewr1=[0 diff(dwr1)];

%ewr2=[0 diff(dwr2)];

%ewr3=[0 diff(dwr3)];

%ewr4=[0 diff(dwr4)];

%Kinetic power of the mass of the heart

dwk1=m1*I1*9.81*10^-5;

dwk2=m2*I2*9.81*10^-5;

dwk3=m3*I3*9.81*10^-5;

dwk4=m4*I4*9.81*10^-5;

%w1 = (Vi*Ii^2/2 + Vi*(LAP-Ri*Ii) - Vo*Io^2/2 - Vo*(AoP-Ro*Io))/(V1+V2)

dy =

[dpe1;dI1;dpe2;dI2;dIi;dIo;dLVP;I1;I2;Ii;Io;dpe3;dpe4;dI3;dI4;dLAP;dAoP;I3;I4;de1;dwr1;dwr

2;dwr3;dwr4;dwk1;dwk2;dwk3;dwk4]; %ewr1;ewr2;ewr3;ewr4];

%The dy Solves for the integral of the inputted variables

%Q= diff (R1);

end

% function setGlobalAa1(dI1)

% global Aa1

% Aa1=dI1

224

G.5. getk.m

 This function generates elastance waveforms from supplied min and max elastance

values.

function [k,dk] = getk(t,Emin,Emax,bpm)

% global beat

% global t_old

t = mod(t,60/bpm);

a=1; %scales normal distribution to 1

b=.5*60/bpm; % centers the mean at 1/2 of the cycle

c=.23*b; %makes the spread of curve to 50% duty cycle

k=(Emax-Emin)*a*exp(-(t-b).^2 /(2*c.^2))+Emin;

dk=(Emax-Emin)*a*exp(-(t-b).^2 /(2*c.^2)).*(-2*(t-b)/(2*c.^2));

% % create elastance waveform

% t = mod(t,60/bpm);

% q = (Emax-Emin)*sin(2*pi*t*(60/bpm));

% w = .5*square(2*pi*t*(60/bpm)) + .5;

% k = q.*w + Emin;

% % t

%

% % create derivative of elastance waveform

%

%

% % this creates 5 points centered on k, and then offset by k-2, k-1, k+1,

% % and k+2... Add these together with weighting function to get 5 pt der.

%

% dq = 2*pi*(60/bpm)*(Emax-Emin)*cos(2*pi*t*(60/bpm));

% dw = .5*square(2*pi*t*(60/bpm)) + .5;

% dk = dq.*dw;

end

225

G.6. nineptder1.m

 This function computes specific derivatives for various data vectors within the model.

function [dxdt]=nineptder1(x,dt)

% Computes the derivative using algoritm from Numerical Analysis, 2ed.,

% Burden, Faires, Reynolds; pg.130

% fiveptder(x,fs)

% x is the input signal for derivative calculation

% fs is the sampling frequency

% computes numerical derivative dx/dt

%dt = 1/dt;

%We need the time derivative of AoF so what follows is a numerical

%5-point derivative

dxdt=ones(length(x),1);

a=length(x);

dxdt(1)=(x(2)-x(1))/dt;

dxdt(2)=(x(3)-x(2))/dt;

dxdt(a-1)=(x(a-1)-x(a-2))/dt;

dxdt(a)=(x(a)-x(a-1))/dt;

% 5 point Derivative for the third and fourth points

for i = 3:4

dxdt(i)=[1/(12*dt)] * [x(i-2) - 8*x(i-1) + 8*x(i+1) - x(i+2)];

end

% 5 point Derivative for the third and fourth points from the end

for i = a-3:a-2

dxdt(i)=[1/(12*dt)] * [x(i-2) - 8*x(i-1) + 8*x(i+1) - x(i+2)];

end

% 9 point Derivative

for i = 5:length(x)-4

dxdt(i)=[1/(840*dt)] * [3*x(i-4) - 32*x(i-3) + 168*x(i-2) - 672*x(i-1)...

 + 672*x(i+1) - 168*x(i+2) + 32*x(i+3) - 3*x(i+4)];

% previous algoritm is from Numerical Analysis, 2ed., Burden, Faires,

% Reynolds; pg.130

end

