

A GENERAL FRAMEWORK FOR DEVELOPING MULTI-SURFACE ENVIRONMENTS

A Thesis

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Zheng Huang

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Program:

Software Engineering

August 2015

Fargo, North Dakota

North Dakota State University

Graduate School

Title

A General Framework for Developing Multi-Surface Environments

 By

Zheng Huang

 The Supervisory Committee certifies that this disquisition complies with North Dakota

State University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

Dr. Jun Kong

 Chair

Dr. Changhui Yan

Dr. Yechun Wang

 Approved:

 8/10/2015 Brian Slator

 Date Department Chair

iii

ABSTRACT

Since multi-touch technique has been used widely for personal device, such as

smartphone, personal computer and tabletop, many forms of interaction are developed and

served for user’s daily usage. But forms of interaction can be barely found between tabletop and

smartphone. Therefore, we propose a general framework for facilitating developers and users to

develop multi-surface applications. Our general framework uses the smartphone as input and

output device to overcome limits and extends features of tabletop. We provide some applications

based on treating smartphones as both input and output devices to demonstrate the

implementation of our framework for smartphone on the tabletop.

iv

TABLE OF CONTENTS

ABSTRACT ... iii

LIST OF TABLES ... v

LIST OF FIGURES ... vi

INTRODUCTION .. 1

RELATED WORK ... 3

A GENERIC FRAMEWORK FOR CROSS-DEVICE INTERACTION 7

MODELING CROSS-DEVICE INTERACTION .. 12

MULTI-DEVICE INTERACTION .. 17

CONCLUSION ... 37

REFERENCES ... 38

v

LIST OF TABLES

Table Page

1. Overview of our framework ... 7

2. Mobile UI components ... 15

3. Inter-device interaction technique ... 17

vi

LIST OF FIGURES

Figure Page

1. A compound tag sticking to the back of smartphone .. 8

2. A 5-state model .. 12

3. System architecture ... 14

4. Message passing.. 16

5. AutoFill ... 19

6. Content customization .. 22

7. PhoneMap ... 24

8. Extended screen .. 26

9. Access control ... 29

10. Password protection .. 31

11. LockPattern ... 32

12. Gesture based interaction .. 34

13. Personalized gestures and tool tips ... 36

1

INTRODUCTION

Though electronic communication is developing fast, face-to-face meetings are still

important [Wu03], particularly in collaborative applications. With a large screen, tabletop

especially suits co-located group work. However, it is challenging to avoid interference during

simultaneous interaction in a multi-user environment. For example, each tabletop is only

equipped with one speaker, which inevitably causes interference if multiple users are play

multimedia contents simultaneously. In addition, one single virtual keyboard prevents multiple

users from engaging with data entry at the same time. For example, if user is using the virtual

keyboard to type characters, the other users have to wait until the current user finishing typing. In

order to solve these limitations completely, we choose personal smartphone as input and output

device to offer an alternative way to interact with the tabletop. Though a large screen of a

tabletop makes information accessible to multiple users, there are some problems remaining to

undermine the multi-user interaction, such as content orientation or physical reachable distance

[Shen06]. For instance, users are sitting around a tabletop. Consequently, the orientation of a

digital document that is suitable for one side is not appropriate for the other side. Furthermore,

the large size may give it hard time for a user who is seating over the reachable distance between

the hand and the content.

A cross-device interaction that integrates a mobile device and a tabletop overcomes the

interference issue by using a mobile device as an external controller, which produces multimodal

feedback and supports touch-based gestures. Briefly speaking, a tabletop provides a public space

for multiple users to browse contents while a mobile device extends the public space with

multimodal feedback.

2

Previous studies had explored the benefits of combining mobile devices and a large

display together and proposed intuitive gestures to support inter-device interaction. However,

few researchers focused on developing a generic framework for supporting inter-device

interaction.

Without losing generality, we implemented our framework taking advantage of these

benefits. In order to make a selection by tapping object on the smartphone screen, we made

smartphone screen “transparent” based on its movement on the tabletop. According to coordinate

of tapping on the smartphone, tabletop decides to fire specific events and sends mobile UI

components (table 1) messages to mobile. The smartphone receives UI components messages to

build corresponding UI on the smartphone.

The remainder of the paper is organized as the following. Chapter 2 discusses related

work. Chapter 3 overviews our framework. Chapter 4 provides a formal model to formalize

inter-device interaction. Chapter 5 presents different applications based on our framework,

followed by conclusion in Chapter 6.

3

RELATED WORK

Seminal works were proposed to support user-friendly inter-device interaction, such as

augmenting a computer with PDAs in the single display groupware [Mye01], exchanging

information between a personal device and a public display [Gre99], or offering a continuous

workspace including personal computers and information wall/table displays [Rek99]. With

diversified gesture modalities and multimedia feedback, modern mobile devices are natural to

augment a large display for co-located group work in many different applications, such as oil and

gas exploration [Sey13] or collaborative online shopping [Mut14].

One central theme in multi-device interaction is to minimize the effort of connecting two

devices for sharing information. Based on different sensing techniques, various solutions have

been proposed to address the device pairing issue. Those sensing techniques detected users’

actions and accordingly derived users’ intention to efficiently establish a virtual connection

between devices without manually entering network addresses.

 Touch-based sensing. The stitching pen gesture dynamically forged a connection

between two devices by continuously moving a pen from one device to another one

[Hin04].

 Radio based sensing. Based on the radio frequency transponder sensing technology,

ConnecTables combined two displays as a larger shared one when two devices moved

close to each other [Tan01].

 Accelerometer. Accelerometer data are useful to derive users’ actions, such as

determining a synchronous gesture of bumping two tablets to set up a connection

[Hin03] or recognizing a gesture pattern for authentication [Pat04]. Accelerometer is

often combined with other sensing techniques. Toss-it integrated an accelerometer sensor

4

(i.e., detecting users’ actions and estimating the strength or the trajectory of an action)

with a camera (i.e., identifying the location of each user based on infrared LED markers)

to determine a user’s intention [Yat05]. PhoneTouch synchronized a touch event

detected on an interactive surface with a bump event detected by an accelerometer sensor

on the mobile device [Sch10]. The synchronized events are used to connect the mobile

device with the surface. Hutama et al. [Hut11] correlate the angle of two touch points

with accelerometer data to distinguish different mobile devices on a tabletop.

 Acoustic sensing. Point&Connect [Pen09] offered an intuitive gesture by pointing the

source device to the intended target device. The intention of the user’s gesture is derived

by measuring the distance change based on acoustic signals.

 NFC. Touch & Interact used an NFC phone as a stylus to touch any position in a

dynamic display to establish a connection [Har08].

 Camera-based sensing. Visual markers are used to identify objects or devices. For

example, the SpotCodes system augmented a display with visual markers and a user

aimed his/her phone at a visual tag on the display to select an object [Mad04]. Instead of

using built-in cameras, some approaches explored the usage of an additional camera for

detecting users’ gestures [Lee08], recognizing infrared blinking signals to establish a

connection between a mobile device and a table surface [Wil07] or verifying camera

flashes to authenticate users [Sch08]. Rather than using a regular RGB camera, Ackad et

al. used a depth camera to track users and developed a handshaking procedure based on

color detection [Ack12]. In the multi-device interaction, consecutive color changes are

used to transfer data between devices, such as FlashLight that illuminated the area on the

5

tabletop below a mobile device [Hes10], or C-Blink that produced color blinks from a

mobile device [Miy04].

 Synchronous action on buttons. SyncTap synchronized button pressing and releasing

events on two devices to connect them together [Rek03]. Similarly, the Touch-and-

Connect framework [Iwa03] offered a two-button interface, which included a plug-

button and a socket-button. Two devices are connected by first pressing the plug-button

in the source device and then pressing the socket-button in the destination one.

Gesture interaction is intuitive and comfortable in the multi-device ecology [Kra10], and

various gestures are proposed to support inter-device interaction, such as Scoop-and-Spread

gesture [Aya00], the pen gesture of pick-and-drop [Rek97], the pouring gesture [Sey13], or

throw and tilt interaction [Dac09]. McAdam and Brewster proved that using mobile devices

together with a tabletop can sometimes produce better performance [Mca11]. With a built-in

camera, it is natural to use a mobile device as a remote controller to select and manipulate

objects in a distant display, such as sweep and point & shoot [Bal05], touch projector [Bor10],

SnapAndGrab for content sharing [Mau08], and remote operation based on display registration

[Pea09]. In addition, mobile device is useful to type in sensitive information for protecting

privacy in a public environment [Luc08].

User-defined gestures are known to be easy to learn and are more preferred by users

[Nac13]. Kray et al. [Kra10] systematically collected and analyzed a set of user-defined gestures

in three conditions, i.e., phone-to-phone, phone-to-tabletop, and phone to public display.

Focusing on tablet-sized devices, Kurdyukova et al. [Kur12] investigated three gesture

modalities (i.e., multi-touch gestures, spatial gestures and direct contact gestures) in three

conditions (i.e., iPad-iPad, iPad-tabletop, and iPad-public display).

6

The research about developing a generic framework that supports the design of cross-

device interaction in various applications has not been well explored to date. Based on the

PhoneTouch timing approach [Sch10], Schmidt et al. [Sch12] proposed a cross-device

interaction style, in which a mobile device was used as a stylus to manipulate contents on a

tabletop. However, this interaction style may associate a selected object with a wrong mobile

device due to the collision of touch events [Sch12]. On the other hand, our approach gives each

mobile device with a unique tag to assure a correct association between a user’s action and a

mobile device. Furthermore, our approach solved the sensitivity issue of a tabletop. Due to the

embedded infrared camera (i.e., the MS PixelSense technique), hand or finger movements, which

may not even touch the surface, can accidentally trigger users’ actions on tabletop contents.

Placing a mobile device on top of the tabletop not only tracks a user’s action but also prevents

accidental actions caused by hand/finger movements. Recently, Roudaki et al. [Rou14a, Rou14b]

implemented a bimanual cross-device interaction (called MobiSurf), in which the non-dominant

hand performed a coarse-grained selection through a pointer while the dominant hand held the

mobile device for a fine-grained interaction. However, pointers can easily get lost in reality and

thus limit the applicability of MobiSurf. Instead, our approach eliminates pointers. In addition,

our approach is featured with personalized touch-based gestures.

7

A GENERIC FRAMEWORK FOR CROSS-DEVICE INTERACTION

This paper proposes a generic framework that supports cross-device interaction among

multiple users. During the interaction, a user can be in one of the following four states (See

Table 1).

Table 1. Overview of our framework

User State Description User Actions

Initialization Set up the

communication

between a tabletop

and a mobile device

Place the compound NFC/Surface tag behind

the mobile device.

Cross-Device

interaction

Use a mobile device

as an external

controller

1. Place the mobile device on top of the

tabletop.

2. The mobile device functions as a look-

through mirror, which displays the

information underneath the mobile device,

during the movement.

3. The user taps the mobile device to select an

object and lifts the mobile device from the

tabletop.

4. Based on the user’s selection, the mobile

device delivers multimodal feedback (such as

vibration and speech) and the user uses touch-

based gestures on the mobile device to

remotely manipulate the selected object of the

tabletop

5. The user’s input is sent back to the tabletop

with visual feedback.

Tabletop and

mobile sharing

Transfer data between

a tabletop and a

mobile device

Place the mobile device on top of the tabletop.

The gesture of swiping away from the user

triggers the data transfer from the mobile

device to the tabletop, and vice versa.

Mobile and mobile

sharing

Transfer data between

two mobile devices

Place two mobile devices together and tap the

shared object on the source device to trigger

the data sharing

8

Initialization

In the beginning, a user is of the initialization state. In order to avoid tedious data entry

on a mobile device, we use the NFC technique to automatically set up a wireless connection

between a tabletop and a mobile device. More specifically, an NFC tag stores connection related

information (e.g., the IP address of the tabletop or the user ID), and a connection is automatically

set up when the NFC tag is moving close to the mobile device. In order to track each user’s

action, each user has a unique ID, which is defined through a visual tag. We stick the NFC and

visual tags together, and the visual tag directly faces the tabletop screen so that the tabletop can

read the visual tag. In summary, the initialization process sets up a communication between a

tabletop and a mobile device without user input.

Figure 1. A compound tag sticking to the back of a smart phone

Cross-Device Interaction

In the cross-device interaction, the tabletop serves as a public display that is accessible to

all users while a mobile device supplements a public display with a private working space. For

collaborative applications that involve multiple users, it is critical to track each user’s action,

which is correctly transferred to the corresponding mobile device held by the user. Our approach

9

attaches a unique visual tag to the back of each mobile device (See Figure 1). During the

interaction, the mobile device is placed on top of the tabletop, and the built-in infrared camera of

the tabletop continuously tracks the location of the mobile device. More specifically, the mobile

device works like a look-through lens, which displays the content of tabletop underneath the

mobile device. In order to select an object, the user moves the mobile device to the target object,

and taps the target object on the mobile device. Lifting the mobile device off the tabletop screen

actually triggers the selection. According to the application, a personal interface is present on the

mobile device, which allows users to enter data and perceive multimodal feedback through the

mobile device. Remotely manipulating tabletop contents on the mobile device avoids

interference among multiple users and protects users’ privacy. Distinct from existing techniques,

our approach is featured by supporting personalized touch gestures on the mobile device. In

order to remind a user about personalized gestures, tool tips are displayed in proximity to the

selected object on the tabletop.

Tabletop and mobile sharing

Our framework supports user-friendly and efficient data transfer between a tabletop and a

mobile device. When transferring data from a tabletop to a mobile device, the mobile device is

placed on top of the tabletop and works as a look-through lens. A user presses his/her finger on

the source file of the tabletop through the mobile device and then moves the mobile device

towards the user to complete the data transfer. On the other hand, a user moves the mobile device

away from the user to transfer data from a mobile device to the tabletop after selecting the source

file of the mobile device.

10

Mobile and mobile sharing

Transferring data between two mobile devices is triggered by placing them back to back.

The mobile sharing is implemented through the NFC technique…

 In summary, our framework supports cross-device interaction for collaborative

applications. Our approach has the following unique features.

 Personalized gestures. Several studies have reveals that the gestures that designers have

proposed may not be consistent with users’ expectation [Mos14, Sey13]. Personalized

gestures enable adaptation to the individual preference. It has been justified that user-

defined gestures achieved better memorability and higher user preference [Nac13]. Our

approach uses the $1 recognizer algorithm [Wob07] to recognize a user’s touch-based

gesture on the mobile device and returns the recognized command to the tabletop. Since

the recognition is implemented on the mobile device, it provides the flexibility to

personalize application dependent gestures for each individual on his/her personal device.

 Tooltips. Gestures, especially application dependent ones, are not visible to users. For

example, an oil and gas exploration application defined three gestures for data sharing,

i.e., pouring, flicking and camera gestures [Sey13]. However, an early design critique

revealed that the reaction to those gestures was not positive as users needed additional

training to memorize those gestures [Sey13]. In order to facilitate users to recognize

application-dependent gestures, our approach gives a tool tip that is displayed in

proximity to the selected object on the tabletop. The content of the tooltip is adapted to

the personalized gestures of each individual.

 Thin Client. In our approach, the mobile device interprets messages received from the

tabletop to automatically display a personal interface and returns a user’s input to the

11

tabletop. Since all application-related actions are actually performed at the tabletop, our

framework implements an application-independent thin client, which allows interface

developers to focus on the layout of UI components on the tabletop.

 Prevent accidental actions. The MS tabletop is equipped with infrared cameras, which

can detect users’ gestures even when users’ fingers or hands do not touch the screen. The

above sensing technique provides a rich design space, but it makes the sensing sensitive

to recognize users’ accidental actions. This issue is especially serious in a multi-user

environment. When one user manipulates tabletop contents, the action of swiping off the

screen by another user can interfere with the first user’s operation. In our approach, each

user uses his/her mobile device as a look-through lens to browse tabletop contents. The

look-through lens not only provides the flexibility to manipulate tabletop contents, but

also works as a shield to prevent accidental actions.

12

MODELING CROSS-DEVICE INTERACTION

Our framework is featured with cross-device interaction. We proposed a 5-state model to

formalize the cross-device interactions. This state model facilitates interface developers to

customizer our framework to develop a cross-device interface for a specific application.

In the beginning, a user is in the offSurface state, in which a user’s mobile device is off the

screen of a tabletop. In this state, a user simply uses his/her fingers to interact with the tabletop in

a traditional manner. When a user places his/her mobile on top of the screen, the user moves to

the StaticOnSurface state. A visual tag is attached to the back side of the mobile and closely

touches the screen, which allows the built-in infrared camera to read the tag. As specified in

Definition 1, each user has a unique tag to assure that the user’s actions are correctly transferred

to the corresponding mobile device.

Figure 2. A 5-state model

 The notations of TAGs and IDs represent the sets of tags and users, respectively.

Definition 1

 Bijective function pair: TAGs → IDs defines an association between a visual tag and a

user. Given a tag t, pair(t)=u if and only if visual tag t is paired with user u.

13

In summary, each user is identified with a unique tag. By placing a mobile device on a tabletop,

our framework automatically registers the mobile and associates the user and the corresponding

mobile together.

In order to browse the content, a user moves his/her mobile on top of the tabletop, which

transits a user to the MovingOnSurface state. By default, the mobile device functions as look-

through lens, which display the content beneath the mobile device. Such a design not only

prevents accidental actions due to the sensitivity of multi-touch screens, but also provides the

flexibility to provide personalized content of each individual user. More specifically, instead of

delivering the identical content to all users, each mobile device personalizes information

according to the user’s personal interest while he/she is browsing the tabletop. For example,

when users are browsing a map, someone is interested in restaurants while another is looking for

gas stations. Accordingly, taking the tabletop as a public space for displaying the map, additional

personalized information (such as restaurants or gas stations) overlays the public map on the

mobile device. After a user moves the mobile to the destination, the user can select an object by

clicking the object on the mobile touch screen, which moves the user to the Selected state. The

notion of WIDGETs indicates the set of UI components in a tabletop application.

Definition 2

 Partial and injective function association: WIDGETs → TAGs defines whether a GUI

widget is selected by a user or not. If wWIDGETs, then we write association (w) ↓ and say that

association (w) is defined to indicate that w is in the domain of association. If w is not in the

domain of association, we write association (w) ↑ and say that association (w) is undefined. A

GUI widget w is selected by a user if and only if association (w) ↓.

14

Formally speaking, a user u is in the Selected state if and only if ∃wWIDGETs,

pair°association(w)=u.

Our framework implements an event architecture to support cross-device interaction (See

Figure 3), and serves as a middleware to set up two-way communications between a tabletop and

a mobile device. Based on a user’s selection on a tabletop application, our framework generates a

message, which defines a mobile interface and is forwarded to the associated mobile device.

According to the received message, the associated mobile device automatically generates a

mobile interface (such as displaying a button) that allows the user to manipulate the selected

object through the mobile device. Upon the user’s input, the tabletop application is updated

accordingly. Such an event-driven design achieves a thin client which makes the mobile side

application-independent, and thus significantly reduces the development effort. From the

perspective of interface designers, they only need to define the inter-device interaction of each

UI components and the spatial relations of those UI components on the tabletop, while our

Tabletop

P
re

se
n

ta
ti

o
n

L
ay

er

Mobile Interface

UI Event

handlers P
re

se
n

ta
ti

o
n

L
ay

er
 Application UI Components

UI Event

Handlers

Tag

Tracking

C
o

m
m

u
n

ic
at

io
n

L
ay

er

Message

Send/Receive

New Client

Register

TCP/IP Socket Manager

B
u

si
n

es
s

L
ay

er

Message

Translator

B
u

si
n

es
s

L
ay

er

Message

Translator

C
o

m
m

u
n

ic
at

io
n

L
ay

er

Message Send/Receive

TCP/IP Socket Manager

Message

Generator

Message

Generator

UI

Element

Generator

Fr
am

ew
o

rk
 A

P
I

Figure 3. System architecture

A
p

p
lic

at
io

n

Mobile

A
p

p
lic

at
io

n
 In

d
ep

en
d

en
t

15

framework can handle the underlying communications. In other words, based on our framework,

one critical task is to specify a mobile interface that responds to a user’s action of clicking an

object on the tabletop through his/her mobile device.

Table 2. Mobile UI components

Mobile UI Components Description

speech Speak a text on mobile device

Lighting Flash the LED light

Beep Generate a beep sound

TextMode Display a textbox on the mobile device

Text Display textual contents on the mobile device

Image Show an image on the mobile device

Media Play a voice or video file

AlertDialogue Show a text alert message on mobile device

webLink Open a web page on the mobile device4

vibration Vibrate the mobile device

button Display the button on the mobile device

editText Display the editText on the mobile device

drawing Display the customize drawing view on the mobile device

linearLayout

Add a layout that arranges its children in a single column or a

single row on the mobile device.

Dropdown list

Add a spinner which provide a quick way to select one value

from a set on the mobile device.

The notation of MobileUIs indicates the set of mobile UI components that are supported

in our framework.

Definition 3

 Total function map: WIDGETs → 2MobileUIs defines the mobile UI components that are

displayed on the mobile device when a tabletop UI component w is selected. Given a GUI widget

w, map(w)=Ø if and only if w does not need cross-device interaction.

Based on Definition 3, a mobile interface is displayed on the associated mobile device,

which triggers the state transition to the manipulation state. For example, the tabletop application

has a login interface, which includes a UI component, called password, for a user’s input. In

16

order to protect a user’s privacy, we can define a mobile interface in the map function, i.e.,

map(password)={speech, vibration, editText}. Figure 4 illustrates a sample user case in which

our framework creates a private, text-entry interface on a mobile device. The sequence of the

control flow is described as follows: 1) The user selects the password edit field in a login

interface on the tabletop through a mobile device; 2) our framework raises the “ObjectSelect”

event; 3) The event handler in the tabletop application defines a mobile interface that includes

“Speech”, “Vibration”, and “editText”; 4) our framework packs the message and sends it to the

mobile application through the network; 5) the mobile application receives the message,

processes it, and produces the corresponding mobile interface; 6) The user types required

information on the mobile device; 7) the mobile application sends the user’s input back to our

framework on the tabletop; 8) the framework API receives the message and raises the

“returnValue” event; 9) the tabletop application handles the “returnValue” event and updates the

tabletop application accordingly.

Tabletop App. Framework API Mobile client App.

Raise the
"ObjectSelect" event

Handle the
"ObjectSelect" event

Define a mobile interface
(i.e., "Speech" &

"Vibration" & "editText")

Generate a message
Sequence and send it
to the user's mobile
phone through the

network

Receive the message
sequence

Translate messages in
the sequence

Create a "TextBox" on
the mobile screen and

generate vibration
and speak the

comment

Wait for user's input
on the textbox

Generate a message
sequence and send it

to the tabletop
(i.e., update the
textbox on the

tabletop)

Translate messages

Receive a message
sequence

handle the "returnValue"
event

Raise the
"returnValue" event

Update the passoword
eidt field on the tabletop

A user selects the

password edit field

User inputs
text into

the textbox

Figure 4. Message passing

17

MULTI-DEVICE INTERACTION

Table 3. Inter-device interaction technique

Issue Technique

Data Transfer Tabletop-to-Mobile Transfer: Transfer data from a tabletop to a

mobile device

Mobile-to-Tabletop Transfer: Transfer data from a mobile device

to a tabletop

Mobile-to-Mobile Transfer: Transfer data between two mobile

devices

Personalization Autofill: Make the personal data stored in a mobile device accessible

to applications on the tabletop

Content Customization: Personalize information on a mobile device

PhoneMap: Overlay personalized digital information on a map

through a mobile device

User Interface

Composition

Extended Screen: Use a mobile device as an extended screen to

issue commands

Authentication Access Control: Provide a lightweight access control to lock or

unlock tabletop content

Password: Input the password on the mobile device

LockPattern: Use touch-based gesture on a mobile device to

authenticate users

Localized & Private

Feedback

Multimodal feedback: Provide multimodal feedback on mobile

devices

Input Expressiveness PhoneGesture: Use touch-based gestures on a mobile device to issue

commands

Personalized Gesture (include tooltips)

Personalization

 Being a personal device, a smartphone stores much personal information, such as the

contacts, browsing history, bookmarks and etc. By identifying each user with a unique tag, our

framework can efficiently share personal information between a tabletop and a mobile device.

We implemented three technique

s to demonstrate personalization, i.e. autofill, content customization and PhoneMap.

Autofill

18

The autofill technique explores the feature of sharing personal information from a mobile

device to a tabletop. Since the tabletop represents a public space which makes it inapplicable to

store personal information in order to protect privacy, a user has to manually type in a web URL

even when the web site was already visited by the user in the past. Manual input is error prone

and time consuming, particularly when the URL link is long. In the above example, the autofill

technique allows a user to choose a web URL from his/her browsing history saved in the mobile

device and immediately displays the selected web site on the tabletop. Using selection to replace

free-style typing potentially reduces the error rate [Shn09]. We demonstrate the autofill

technique in Figure 5. Figure 5(a) shows the initial user interface after a user starts a web

browser on the tabletop. By placing a mobile device on top of the tabletop, the mobile device

functions as a look-through lens, which displays the tabletop content beneath the mobile device,

as shown in Figure 5(b). Once the user taps the address bar on the smartphone screen (See Figure

5(c)), our framework automatically produces a dropdown list on the mobile device by defining a

map between the address bar and the dropdown list according to Definition 3. The user can

choose a bookmark from the dropdown list on the mobile device, as presented in Figure 5(d).

Finally, the tabletop browser displays the website the user chooses (See Figure 5(e)).

19

(a) Initial user interface on the tabletop

(b) Moving the mobile device on top of the tabletop

Figure 5. Autofill

20

(c) Tapping the address bar on the mobile device

(d) Selecting a URL from a dropdown list on the mobile device

Figure 5. Autofill (continued)

21

(e) Content updated on the tabletop

Figure 5. Autofill (continued)

Content Customization

In co-located work, though users have a common goal, each one can have a unique

personal preference due to background, skill level, culture and etc. Our framework extends a

tabletop with multiple mobile devices, which provide personalized information to fit each user’s

need. For instance, a tabletop is placed in the lobby of an international company to introduce the

company (See Figure 6(a)). Since potential customers may have different interests, it is desirable

to supplement the public tabletop display with a mobile device. The supplementation is

especially useful in a multi-user environment since the customization on a personal mobile

device does not interfere with other users. In the above example, we translate sentences in

English to a different language that the user prefers to. Figure 6(b) shows the screenshot of

moving a mobile device to the destination and selecting a paragraph for reading. Then, the user

22

uses his mobile device to translate the selected paragraph from English to a different language

(See Figure 6(c)).

 (a). initial screen

 (b). Moving the smartphone to the content for customization

Figure 6. Content customization

23

(c). The mobile interface on the smartphone

Figure 6. Content customization (Continued)

PhoneMap

Our framework is distinct by browsing and manipulating tabletop contents through a

mobile device. By default, the mobile device displays the content beneath the mobile device

when a user is moving his/her mobile device on top of a tabletop. This design provides a flexible

design space to overlay personalized digital information on the mobile device when browsing the

tabletop. Based on our framework, we implemented a PhoneMap technique, which allows

multiple users to browse a map simultaneously while each one can view personal points of

interest through his/her mobile device without interrupting others. For example, during map

browsing, one user is looking for restaurants while another one is interested in gas stations.

Corresponding to the map displayed on a tabletop in Figure 7(a), the top mobile device shows

the default map while the bottom one overlays a personal point of interest on the default map in

Figure 7(b).

24

 (a). A map on a tabletop

 (b) Personal points of interest

Figure 7. PhoneMap

25

User Interface Composition

From the hardware perspective, a tabletop provides a large screen for sharing

information. However, traditional interfaces are not suitable for multi-user simultaneous

interaction. For example, if a user taps an action menu to issue a command on a specific

component of a tabletop application, other users cannot issue the same command to other

components. Furthermore, a tabletop only provides a virtual keyboard, which prevents users

from editing different components simultaneously on a tabletop. Our framework extends a

tabletop by moving commands to a mobile device so that each user can issue a command

independently and simultaneously.

Extended Screen

The extended screen technique provides an action menu on a mobile device to manipulate

a selected UI component on a tabletop. Figure 8(a) shows that a user selected a paragraph for

editing through his/her mobile device. The selection triggers to generate an action menu on the

associated mobile device (See Figure 8(b)). Using the mobile interface, the user can edit the

selected paragraph through his/her mobile device while other users can edit other components

simultaneously without interfering with each other. After the user taps the desirable command on

the mobile device (See Figure 8(c)), the contents on the tabletop is updated accordingly (See

Figure 8(d)). In summary, the extended screen technique takes a mobile device as an external

controller to manipulate tabletop contents without interfering with each other..

26

 (a) Selecting a paragraph through a mobile device

(b) Displaying an action menu on a mobile device

Figure 8. Extended screen

27

(c) Editing the selected paragraph

(d) Updating the tabletop accordingly

Figure 8. Extended screen (Continued)

28

Authentication

Authentication is a serious problem in front of a large shared screen. Due to privacy,

users do not desire to expose their personal information on a shared screen, such as username

and password. In addition, a shared screen requires a flexible access control mechanism so that a

component is locked when a user uses the component and is unlocked when a user releases it.

Access Control

In a multi-user environment, mutual exclusion has to be enforced so that only one user

can modify a piece of information at one time. Based on our framework, we implemented a

flexible access control mechanism on a tabletop. Figure 9(a) shows that a user locked a

paragraph by tapping the lock button through a mobile device. Then, a confirmation is displayed

on the mobile device and the tabletop is updated with an unlock icon (See Figure 9(b)). The lock

assures that only the user who successfully gets the lock can modify the locked paragraph. If

another user wants to modify the locked paragraph, an error message is displayed in Figure 9(c).

The locked paragraph can be modified by other users until it is unlocked by the user who locked

the paragraph.

29

(a) Locking a paragraph

l

(b) A successful lock

Figure 9. Access control

30

(c) A locked paragraph cannot be accessed by other users

Figure 9. Access control (Continued)

Password

In a public environment, anyone can view the information typed through a virtual

keyboard on a large screen. Our framework enhances the security by typing a password through

a mobile device. Figure 10(a) shows that a user tapped a login form. Instead of typing the

password directly on the tabletop, our framework generates a login form on the mobile device so

that the user can complete the login process on this/her mobile device to protect privacy, as

shown in Figure 10(b).

31

 (a) Tapping a login form

 (b) Completing the login on a mobile device

Figure 10. Password protection

32

LockPattern

Free style typing on a virtual keyboard is inefficient and error-prone. Therefore, new

techniques have been proposed to authenticate a user’s identity on mobile devices, such as

fingerprint or Android password pattern. Our framework implemented a LockPattern technique,

which allows a user to complete the login process through drawing instead of typing. After a user

tapped a login form (See Figure 10(a), a drawing panel (corresponding to the drawing

component in Table 1), which is displayed beside a traditional login form (See Figure 11(a)),

avoids typing a password. Instead, the user can draw a predefined sketch to verify the identity

(See Figure 11(b)). The predefined sketch replaces the user’s password and is stored in the user’s

own personal smartphone. The sketch is meaningless to others except the user himself/herself.

 (a) A drawing panel on the mobile device

 (b) Replacing free-style typing with drawing

Figure 11. LockPattern

33

Private Feedback

Normally, a shared tabletop can be used by multi-user. There is only one screen, one

virtual keyboard, and one speaker. Once two or more users did different operations, system may

give wrong feedbacks to the users. For example, users cannot play the different audio or video at

same time on the tabletop. Therefore, we introduce multimodal feedback technique in our

framework.

Multimodal feedback

Multimodal feedback technique implements mobile UI components (table 1) for

activating by touch-based event. Developer can build mobile UI components in order to match

different event. For example, Figure 10 (a) shows that the user taps a login from on the

smartphone, which fires an event on the tabletop. Tabletop sends corresponding mobile UI

components messages to the smartphone based on result of event. If the user taps a right object

(the login form Figure 10 (a)), smartphone receive the message about creating linearLayout,

editText, button, speech message Figure 10 (b). Multimodal feedback technique do not avoid

interference between multiple users, but it also helps developers easily build the unique UI on

smartphone in the tabletop application side based on requirement.

Input Expressiveness

 Gestures are the most popular interaction method on devices with a touch screen. Our

framework is featured by supporting personalized gestures. In other words, each user can define

his/her own set of gestures. Personalized gestures have been proven to increase the memorability

and user preference [Nac13].

34

PhoneGesture

Gestures potentially solve the fat finger error when tapping a button on a small touch

screen. The PhoneGesture technique provides a drawing panel on the mobile device and allows

users to issue a command by drawing a gesture instead of tapping a button. We extended the

example discussed in the Figure 8 with a set of gesture commands. After a user selected a

paragraph on the tabletop, a mobile interface is displayed on the associated mobile device, as

shown in Figure 12(a). The mobile interface includes two areas, the left area with an action menu

and the right one with a drawing panel. A user can draw a gesture within the right area.

Specifically speaking, an arrow gesture indicates the command of growing font size.

Accordingly, the tabletop is updated after the user issues this gesture (as shown in Figure 12(b)).

(a) Drawing a gesture to issue a command

Figure 12. Gesture based interaction

35

(b) Updating the tabletop accordingly

Figure 12. Gesture based interaction (Continued)

In order to cater to universal usability, experienced users prefer using a highly

customizable system. For example, the Dolphin browser allows users to define their personalized

gesture to open favorite websites. Our framework introduces personalized gestures to a multi-

device interaction environment. In other words, each user can create his/her personal set of

gestures. By recognizing the ID of a mobile device through a unique tag, our framework can

appropriately determine the semantics of an input gesture. Furthermore, our framework can

facilitate novel users to memorize personalized gestures by providing tooltips. Figure 13 presents

the tool tips of personalized gestures, corresponding to two individual users.

36

(a) User 1’s gestures

 (b) User 2’s gestures

Figure 13. Personalized gestures and tool tips

37

CONCLUSION

Our work provides fluid and seamless interaction between personal smartphones and a

shared tabletop. Especially, we implemented a generic framework that facilitates interface

developers to develop inter-device interactions. In summary, our contributions are summarized

as the following: (1) implementing a smartphone as a look-through lens when browsing tabletop

contents; (2) extending a tabletop through a mobile device with multimodal feedback; and (3)

supporting customizable gestures-based commands. Based on our framework, we implemented

various applications to justify the feasibility of our framework.

Our future work will focus on evaluating the usability of our framework with real-world

applications.

38

REFERENCES

[Ack12] C. J. Ackad, A. Clayphan, R. M. Maldonado, and J. Kay, “Seamless and Continuous

User Identification for Interactive Tabletops Using Personal Device Handshaking and Body

Tracking”, Proc. CHI EA, 2012.

[Aya00] Y. Ayatsuka, N. Matsushita, and J. Rekimoto, “HyperPalette: a Hybrid Computing

Environment for Small Computing Devices”, Proc. CHI '00 Extended Abstracts on Human

Factors in Computing Systems, pp.133-134, 2000.

[Bal05] R. Ballagas, M. Rohs, and J. Borchers, “Sweep and Point & Shoot: Phonecam-based

Interactions for Large Public Displays”, Proc. CHI EX. Abstracts, 2005.

[Bor10] S. Boring, D. Baur, A. Butz, S. Gustafson, and P. Baudisch, “Touch Projector: Mobile

Interaction Through Video”, Proc. CHI’10, 2010.

[Dac09] R. Dachselt and R. Buchholz, “Natural throw and tilt interaction between mobile phones

and distant displays", CHI Ext. Abstracts, 2009.

[Gre99] S. Greenberg, M. Boyle and J. Laberge, “PDAs and Shared Public Displays: Making

Personal Information Public, and Public Information Personal”, Pers. and Ubiq. Comp., vol. 3, p.

54–64, 1999.

[Har08] R. Hardy and E. Rukzio, “Touch & Interact: Touch-based Interaction of Mobile Phones

with Displays”, Proc. MobileHCI’08, pp.245-254, 2008.

[Hes10] T. Hesselmann, N. Henze and S. Boll, "FlashLight: Optical Communication between

Mobile Phones and Interactive Tabletops", Proc. ITS, 2010.

39

[Hin03] K. Hinckley, “Synchronous Gestures for Multiple Persons and Computers”, Proc.

UITS’03, pp.149-158, 2003.

[Hin04] K. Hinckley, G. Ramos, F. Guimbretiere, P. Baudisch, and M. Smith, “Stitching: Pen

Gestures that Span multiple Displays”, Proc. AVI’04, 2004.

[Hut11] W. Hutama, P. Song, C. Fu and W. Goh, "Distinguishing Multiple Smart-Phone

Interactions on a Multi-touch Wall Display using Tilt Correlation", Proc. CHI, 2011.

[Iwa03] Y. Iwasaki, N. Kawaguchi, and Y. Inagaki, “Touch-and-Connect: A Connection Request

Framework for Ad-hoc Networks and the Pervasive Computing Environment”, Proc.

PerCom’03, 2003.

[Kra10] C. Kray, D. Nesbitt, J. Dawson, and M. Rohs, “User-Defined Gestures for Connecting

Mobile Phones, Public Displays, and Tabletops”, Proc. MobileHCI’10, pp.239-248, 2010.

[Kur12] E. Kurdyukova, M. Redlin and E. Andre, “Studying User-defined iPad Gestures for

Interaction in Multi-display Environment”, Proc. IUI’12, pp.93-96, 2012.

[Lee08] H. Lee, H. Jeong, J. Lee, K. W. Yeom, H. J. Shin, and J. H. Park, “Select-and-Point: A

Novel Interface for Multi-Device Connection and Control Based on Simple hand Gestures”,

Proc. CHI '08 Extended Abstracts on Human Factors in Computing Systems, pp.3357-3362,

2008.

[Luc08] A. De Luca and B. Frauendienst, “A privacy-respectful input method for public

terminals", Proc. NordiCHI, 2008.

[Mad04] A. Madhavapeddy, D. Scott, R. Sharp, and E. Upton, “Using Camera-Phones to

Enhance Human-Computer Interaction”, Proc. UbiComp’04, 2004.

40

[Mar11] N. Marquardt, R. Jota, S. Greenberg, and J. Jorge, “The Continuous Interaction Space:

Interaction Techniques Unifying Touch and Gesture on and above a Digital Surface”, Proc. the

13th IFIP TC 13 international conference on Human-computer interaction - Volume Part III,

pp.461-476, 2011.

[Mau08] A.J. Maunder, G. Marsden and R. Harper, “SnapAndGrab – Accessing and sharing

contextual multi-media content using Bluetooth enabled cameraphones and large situated

displays", Proc. CHI, 2008.

[Mca11] C. McAdam and S. Brewster, “Using Mobile Phones to Interact with Tabletop

Computers”, Proc. ITS’11, 2011.

[Miy04] K. Miyaoku, S. Higashino, and Y. Tonomura, “C-Blink: A hue-difference-based light

signal marker for large screen interaction via any mobile terminal", Proc. UIST, 2004.

[Mos14] M. Mostafapour and M. Hancock, “Exploring Narrative Gestures on Digital Surfaces”,

Proc. ITS 2014, pp.5-14, 2014.

[Mut14] M. Muta, K. Mukai, R. Toumoto, M. Okuzono, J. Hoshino, H. Hirano, and S. Masuko,

“Cyber Chamber: Multiuser Collaborative Assistance System for Online Shopping”, Proc.

ITS’14, pp.289-294, 2014.

[Mye01] B. A. Myers, “Using handhelds and PCs together", Comm. ACM, 44:34–41, 2001.

[Nac13] M. A. Nacenta, Y. Kamber, Y. Qiang, and P. O. Kristensson, “Memorability of Pre-

designed and user-defined Gesture Sets”, Proc. CHI’2013, 2013.

[Pat04] S. N. Patel, J. S. Pierce and G. D. Abowd, “A gesture-based authentication scheme for

untrusted public terminals", Proc. UIST, 2004.

41

[Pea09] N. Pears, D.G. Jackson, and P. Oliver, “Smart phone interactions with registered

displays", IEEE Perv. Comp., 8:14–21, 2009.

[Pen09] C. Y. Peng, G. B. Shen, Y. G. Zhang, and S. W. Lu, “Point&Connect: Interaction-based

Device Pairing for Mobile Phone Users”, Proc. the 7th international conference on Mobile

systems, applications, and services, pp.137-150, 2009.

[Rek97] J. Rekimoto, “Pick-and-Drop: A Direct Manipulation Technique for Multiple Computer

Environments”, Proc. UIST’97, pp.31-39, 1997.

[Rek99] J. Rekimoto and M. Saitoh, “Augmented Surfaces: A spatially Continuous Work Space

for Hybrid Computing Environments”, Proc. CHI’99, pp.378-385, 1999.

[Rek03] J. Rekimoto, Y. Ayatsuka, and M. Kohno, “SyncTap: An Interaction Technique for

Mobile Networking”, Proc. 5th International Symposium on Mobile HCI, LNCS 2795, pp.104-

115, 2003.

[Rou14a] A. Roudaki, J. Kong, and G. Walia, “A Framework for Bimanual Inter-Device

Interactions”, Proc. DMS, 2014

[Rou14b] A. Roudaki, J. Kong, G. Walia, and Z. Huang, “A Framework for Bimanual Inter-

Device Interactions”, Journal of Visual Languages and Computing, 25(6), 727-737, 2014 (An

extension of the DMS conference publication).

[Sch08] J. Schoning, M. Rohs, and A. Kruger, “Using Mobile Phones to Spontaneously

Authenticate and Interact with Multi-Touch Surfaces”, Proc. Workshop on Designing Multi-

Touch Interaction Techniques for Coupled Private and Public Displays, 2008.

[Sch10] D. Schmidt, F. Chehimi, E. Rukzio and H. Gellersen, “PhoneTouch: A Technique for

Direct Phone Interaction on Surfaces”, Proc. UIST, pp.13-16, 2010.

42

[Sch12] D. Schmidt, J. Seifert, E. Rukzio and H. Gellersen, "A Cross-Device Interaction Style

for Mobiles and Surfaces", Proc. DIS, 2012.

[Sey13] T. Seyed, M. C. Sousa, F. Maurer, and A. Tang, “SkyHunter: A Multi-Surface

Environment for Supporting Oil and Gas Exploration”, Proc. ITS’13, pp.15-22, 2013.

[Shn09] B. Shneiderman and C. Plaisant, “Designing the user interface: strategies for effective

human-computer interaction”, Addison Wesley, 2009.

[Tan01] P. Tandler, T. Prante, C. Muller-Tomfelde, N. Streitz, and R. Steinmetz,

“ConnecTables: Dynamic Coupling of Displays for the Flexible Creation of Shared

Workspaces”, Proc. UIST’01, pp.11-20, 2001.

[Wil07] A. Wilson and R. Sarin, “BlueTable: Connecting Wireless Mobile Devices on

Interactive Surfaces Using Vision-Based Handshaking”, Proc. Graphics Interface 2007, pp.119-

125, 2007.

 [Wob07] J. O. Wobbrock, A. D. Wilson, and Y. Li, “Gestures without libraries, toolkits or

training: A $1 recognizer for user interface prototypes”, Proc. the ACM Symposium on User

Interface Software and Technology, pp.159-168, 2007.

[Wu03] M. Wu and R. Balakrishnan, “Multi-Finger and Whole Hand Gestural Interaction

Techniques for Multi-User Tabletop Displays”, Proc. UIST’03, pp.193-202, 2003.

[Yat05] K. Yatani, K. Tamura, K. Hiroki, M. Sugimoto, and H. Hashizume, “Toss-it: Intuitive

Information Transfer Techniques for Mobile Devices”, Proc. CHI’05, 2005.

[Shen06]C. Shen, K. Ryall, C. Forlines, A. Esenther, F. D. Vernier, K. Everitt, M. Wu, D.

Wigdor, M. R. Morris, M. Hancock, E. Tse, “Informing the Design of Direct-Touch Tabletops”,

IEEE Computer Graphics and Applications, (26)5. P. 36-46.

