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ABSTRACT 

Sugarbeet (Beta vulgaris) is considered as one of the most viable alternatives to corn for 

biofuel production as it may be qualified as “advanced” biofuel feedstocks under the ‘EISA 

2007’.  Production of deep rooted sugarbeet may play a significant role in enhancing utilization 

of deeper layer soil water and nutrients, and thus may significantly affect soil health and water 

quality through recycling of water and nutrients. A model can be useful in predicting the 

sugarbeet growth, and its effect on soil and water quality.  

A sugarbeet model was developed by adopting and modifying the Crop Environment and 

Resource Synthesis-Beet (CERES-Beet) model. It was linked to the Cropping System Model 

(CSM) of the Decision Support System for Agrotechnology (DSSAT) and was termed as CSM-

CERES-Beet. The CSM-CERES-Beet model was then linked to the plant growth module of the 

Root Zone Water Quality Model (RZWQM2) to simulate crop growth, soil water and NO3-N 

transport in crop fields. For both DSSAT and RZWQM2, parameter estimation (PEST) software 

was used for model calibration, evaluation, predictive uncertainty analysis, sensitivity, and 

identifiability. The DSSAT model was evaluated with two sets of experimental data collected in 

two different regions and under different environmental conditions, one in Bucharest, Romania 

and the other in Carrington, ND, USA, while RZWQM2 was evaluated for only Carrington, ND 

experimental data.  

Both DSSAT and RZWQM2 performed well in simulating leaf area index, leaf or top 

weight, and root weight for the datasets used (d-statistic = 0.783-0.993, rRMSE = 0.006-1.014). 

RZWQM2 was also used to evaluate soil water and NO3-N contents and did well (d-statistic = 

0.709-0.992, rRMSE = 0.066-1.211). The RZWQM2 was applied for simulating the effects of 

crop rotation and tillage operations on sugarbeet production. Hypothetical crop rotation and 



 

iv 

tillage operation scenarios identified wheat as the most suitable previous year crop for sugarbeet 

and moldboard plow as the most suitable tillage operation method. Both DSSAT and RZWQM2 

enhanced with CSM-CERES-Beet  may be used to simulate sugarbeet production under different 

management scenarios for different soils and under different climatic conditions in the Red River 

Valley.   
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CHAPTER 1. INTRODUCTION 

Biofuel is defined as any fuel source that is derived from organic matter or biomass, 

which can then be used to produce heat and electricity, or used for transportation (Wang et al., 

2011). Based on their potential to reduce net greenhouse gas (GHG) emission, Energy 

Independence and Security Act (EISA) in 2007 classified biofuels into three categories called 

conventional, advanced, and cellulosic biofuels, offering 20%, 50%, and 60% reduction in GHG 

emission respectively. Currently, 97% of the biofuels produced in the US are corn-based ethanol, 

which may offer up to 40% reduction in GHG emission (Canter et al., 2016; Flugge et al., 2017; 

Hettinga et al., 2009; Wang et al., 2011). But as the production of biofuel continued to increase, 

industrial demands for corn increased substantially, resulting in higher corn prices (Ziska et al., 

2009). Rising corn prices encouraged current and potential ethanol producers to seek for 

alternative feedstock. Two crops, sugarbeet (Beta vulgaris) and sugarcane (Saccharum 

officinarum), are currently considered to be uniquely qualified as “advanced biofuels” under the 

EISA (Jessen, 2012). Compared to corn the use of sugarbeets for biofuel production also has less 

impact on food supply (Maung and Gustafson, 2011). 

Sugarbeets are grown in a wide range of temperate climatic conditions and in a wide 

variety of soils ranging from sandy to silty clay or loam soils with high organic matter content 

and/or high clay content (Cattanach, 1991). In the U.S., sugarbeet is grown in 11 states spreading 

across four regions – Michigan in the Great Lakes region, Minnesota and North Dakota in the 

Upper Midwest region, Colorado, Montana, Nebraska, and Wyoming in the Great Plains region, 

and California, Idaho, Oregon, and Washington in the Far West region (USDA/ERS, 2016). (Fig. 

1.1) (USDA/ERS, 2016). In 2016/17, about 57% of the nation’s total sugarbeet was produced in 

the Red River Valley (RRV) of western Minnesota and eastern North Dakota and its vicinity, 
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while another 31% was harvested in Idaho and Michigan (USDA/ERS, 2018).  (Table 1.1) 

(USDA/ERS, 2018).  

Due to increasing demands of sugarbeet for sugar and biofuel production, its cultivation 

in these areas continues to increase. Some varieties of sugarbeets are salt-tolerant (Katerji et al., 

2000), and the presence of salts in soils helps to mitigate the effect of soil-borne root rotting 

fungi to seedlings of sugarbeet (El-abyad et al., 1988). At the same time, deep-rooted sugarbeets 

are believed to hold potential for improving soil resource by complimenting other crops in the 

rotation and improving water and fertilizers use through nutrient recycling (Pates, 2011). In 

terms of water quality, deep-rooted sugarbeets are good at recovering nutrients from the soil 

profile and its long growing season favors the uptake of nutrients. Increased sugarbeet 

production thus may significantly affect soil and water quality. In those circumstances, models 

can play a vital role in understanding the plant growth processes and its impacts on soil and 

water quality in ways which will ultimately help to spread the production of sugarbeets in more 

economic ways.  

  

Figure 1.1. Sugarbeet production regions in the US (USDA/ERS, 2016a) 
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A number of sugarbeet growth models are currently available to describe its growth and 

yield. Some of these models are empirical and are developed based on the relationship between 

pre-harvested samples of sugarbeet and final yield. Examples of empirical models include 

PIEteR (Biemond et al, 1989; Smit et al., 1993), LUTIL (Spitters et al., 1989, 1990) and models 

developed by Modig (1992) etc. There are some other sugarbeet models, which are typically 

descriptive models that integrate the processes involved at different levels. These models assume 

that the system has a known structure, and the processes and components can be described 

mathematically. Some of these models are SUCROS (Spitters et al., 1989), GreenLab (Vos et al., 

2007), Broom’s Barn (Qi et al., 2005), Pilote (Taky, 2008), and CERES (Leviel, 2000) etc.  

Table 1.1. Sugarbeet acreage, and yield in the US regions. 

 Area Harvested Yield 
 2014/15 2015/16 2016/17 2014/15 2015/16 2016/17 
 (1000 acres) (tons/acre) 

Great Lakes       

Michigan 150.0 151.0 148.0 29.3 31.7 31.0 

Total 150.0 151.0 148.0 29.3 31.7 31.0 

Upper Midwest       

Minnesota 434.0 435.0 431.0 22.5 28.0 28.5 

North Dakota 214.0 206.0 211.0 23.8 27.9 28.9 

Total 648.0 641.0 642.0 22.9 28.0 28.6 

Great Plains:       

Colorado 29.3 27.3 27.5 31.3 35.1 34.6 

Montana 44.4 43.7 45.2 32.3 33.0 31.7 

Nebraska 45.9 46.8 47.0 29.1 28.4 32.4 

Wyoming 30.0 31.2 30.0 27.8 30.1 29.9 

Total 149.6 149.0 149.7 30.2 31.3 32.1 

Far West:       

California 22.5 24.7 25.2 42.6 44.2 44.2 

Idaho 169.0 172.0 170.0 37.3 38.3 38.9 

Oregon 7.2 7.7 10.2 34.4 38.6 40.0 

Total 198.7 204.4 207.3 37.8 39.0 39.7 

Total U.S. 1,146.3 1,145.4 1,147.0 27.3 30.9 31.4 

(Source:  USDA/ARS, 2018) 
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All the current sugarbeet models simulate only the plant growth and yield and have no 

components to model the agricultural management effects on soil and water quality (Ma et al., 

2012). All the current models are also restricted to the region and conditions for which they are 

developed (Vandendriessche and Ittersum, 1995). Decision Support System for Agrotechnology 

Transfer (DSSAT) provides a common platform for transferring production technology from one 

location to others by integrating the knowledge about soil, climate, crops, and management 

practices (IBSNAT, 1993a; Jones et al., 1998; Hoogenboom et al., 2010). Its crop simulation 

models are used for many applications, ranging from on-farm and precision management to 

regional assessments of the impact of climate variability and climate change (Jones et al., 1998). 

It has also been coupled with the Root Zone Water Quality Model (RZWQM) to simulate the 

effect of agricultural management practices (e.g., irrigation, fertilization, planting date, and crop 

rotation) on pesticide transport, water use efficiency, water quality and crop production 

(Saseendran et al., 2007; Ma et al., 2012). RZWQM2, a significant improvement from the early 

version of the RZWQM model, contains surface energy balance from the Simultaneous Heat and 

Water (SHAW) model (Flerchinger et al., 2012) and crop specific plant growth module from 

DSSAT. Currently, 23 crop growth modules from the DSSAT are linked to the (RZWQM2) to 

simulate crop yield, water flow, and transport of salts and nitrogen in crop field, though the 

current release of DSSAT (ver 4.7) have 42 specific crop models. However, no such physically 

based crop growth model has been developed for the deep-rooted sugarbeet.   
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1.1. Objectives 

There are three objectives in our research, which are: 

1) Develop a plant specific, DSSAT compatible sugarbeet growth model (CSM-CERES-

Beet), calibrate and validate the model using the available field observed data, and 

conduct uncertainty analysis for CSM-CERES-Beet using Parameter Estimation 

(PEST) software. 

2) Link the developed CSM-CERES-Beet model to RZWQM2, and analyze parameter 

sensitivity and identifiability of RZWQM2 for dryland sugarbeet modeling. 

3) Evaluate the effects of crop rotations and tillage operations on sugarbeet yield and 

soil and water quality.  
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CHAPTER 2. LITERATURE REVIEW 

2.1. Sugarbeet Growth Stages 

Sugarbeet (Beta vulgaris) plant comprises four major compartments called leaves, shoot, 

fibrous root and storage root. Fibrous root system contributes to crop growth whereas storage 

roots store sugar. The partitioning of assimilates within these compartments are crucial for the 

growth dynamics and yield of sugarbeets. Rate of solar radiation interception is also vital, which 

is controlled by the area of leaves.  The expansion of leaves is mostly important until full leaf 

cover is reached (Malnou et al., 2008). Therefore, any factors controlling the speed of leaf 

surface expansion are directly related to the final production. All these factors are strongly 

influenced by the production environment such as climate, irrigation, and fertilization (Milford et 

al., 1985).  

Sugarbeet is a biennial crop, where epigeal germination leads to rosette development in 

the first years and flowering during the second year for seed production. But root crops like 

sugarbeets are usually harvested before the onset of winter frost in the first year for sugar or 

biofuel production (Panella et al., 2014; Cooke and Scott, 1993). For plant growth modeling, 

sugarbeet is usually treated as an annual crop assuming it is grown for sugar yield and not for 

seed production (Fick et al., 1971; Hunt, 1974, Spitters et al., 1989, Leviel, 2000, Leviel et al., 

2001; Qi et al., 2005, Vos et al., 2007, Taky, 2008). For sugar production, sugarbeet’s growth 

can be divided into four major stages: germination and emergence, canopy development, storage 

root growth, and pre-harvest stages (Sugarbeet Production Guide, 2013).    

2.1.1. Germination and Emergence Stage 

Germination and emergence of sugarbeet are temperature and moisture sensitive. 

Germination does not occur until the soil temperature reaches 3 ºC and requires generous 
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presence of moisture at such low temperature (Guerif and Duke, 1998; Sugarbeet production 

guide, 2013). After germination and emergence, seedling growth is typically very slow due to 

slow appearance of leaves because of the cool temperatures. During this stage, the amount of 

solar radiation reaching the field is high, but most is wasted due to small sugarbeet canopy 

surface. This stage takes place for approximately 3 to 4 weeks. 

2.1.2. Canopy Development Stage 

The rate of appearance and the size of leaves also depend on temperature and increases as 

the weather gets warmer. During this stage, the photosynthate is used mainly to produce 

aboveground part of the plant, the leaves and stems, communally called the canopy. At canopy 

closure, when there is typically 3 times as much leaf surface as soil surface, light interception 

rate reaches its maximum. At this stage, 80-90% of the incident radiation can be captured if other 

factors are optimal (Sugarbeet production guide, 2013). The growth of crop foliage can be 

described by leaf area index (LAI) which can be expressed as an exponential function of the 

thermal time (Tbase of 3 ºC) from the point of emergence to the point where the sugarbeet plant 

starts to compete for light (Guerif and Duke, 1998). This stage usually takes place for 

approximately 6 weeks. 

2.1.3. Storage Root Growth Stage 

Although some root growth takes place during the canopy development stage, most of the 

root grows after the canopy development slows down. At this stage the dry weight gain of a 

sugarbeet plant concentrates beneath the soil's surface to prepare the plant for winter (Sugarbeet 

production guide, 2013). Under favorable conditions, the early growth of the storage root is 

relatively rapid. This rapid growth of the sugarbeet root usually begins after about 6 weeks of 

germination and continues to accumulate dry matter linearly throughout the growing season. Size 
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and depth of roots are affected by plant spacing at planting. Individual roots therefore become 

smaller or larger as the spacing between plants decreases or increases (Sugarbeet production 

guide, 2013).  

2.1.4. Pre-harvest Stage 

The pre-harvest stage usually occurs during early fall when decreasing light intensity and 

temperature result in lower rate of photosynthesis. At this stage, the plant directs nutrients and 

energy stores to the root as the last effort to prepare the plant for the cold season. But the amount 

of energy stores decreases gradually as the rate of photosynthesis decreases. It is around this time 

when farmers prepare to harvest the sugarbeets (Sugarbeet production guide, 2013). 

2.1.5. Growth Patterns of Sugarbeet Plant Parts 

For sugarbeet model development, the growth patterns of each part of the plant and the 

environmental factors affecting the growth needs to be well understood. From the discussions 

above, it is observed that the growth of leaves or canopy follows the laws of diminishing return 

pattern, where the development of canopy increases rapidly over time up to a certain period and 

then starts to decline slowly due to senescence of leaves and fibrous roots (Fig. 2.1). At this point 

most of the dry weight gain takes place on canopy. Growth of storage roots is slow during the 

early stages and accelerates after about 6 weeks of emergence. Soil temperature and solar 

radiation are the two most important factors affecting the growth and development during these 

stages. Solar radiation varies throughout the growing season with daily and seasonal changes in 

the sun’s position, limiting the rate of photosynthesis. Photosynthesis is the basis for all plant 

growth. Distribution of the product of photosynthesis, photosynthate, affects the development of 

the different plant parts of sugarbeet. Therefore, to develop a plant growth model, leaf area index 

or canopy coverage should be considered with importance (Sugarbeet Production Guide, 2013). 
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Figure 2.1. Seasonal growth curves for sugarbeet plant parts (adopted from Sugarbeet production 

guide, 2013). 

2.2. Current Sugarbeet Growth Models 

A number of sugarbeet growth models are currently available and the factors that 

contributed to the development of these models are: i) sugar yield forecasting with regard to 

production planning and economy, ii) incorporation of scientific knowledge and hypothesis 

testing in research, and iii) decision support systems at field level (Vandendriessche and 

Ittersum, 1995). The models that were developed based on these criteria were either empirical 

models or descriptive models. A review of the currently available sugarbeet growth models is 

given below: 

2.2.1. Empirical Models 

Empirical models are those that are developed based on the relationship between pre-

harvested samples and final yields. In general, these types of models are easy to use and 

successful when applied within the range of sites and weather circumstances for which they were 

developed and tested (France and Thomley, 1984; Thornley and Johnson, 1990; 
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Vandendriessche and Ittersum, 1995). The procedures and the extent of beet sampling for these 

types of model development followed the guidelines developed by sugarbeet companies (Church 

and Gnanasakthy, 1983; van der Beek, 1993).  

Some of these empirical models include PIEteR (Biemond et al., 1989; Smit et al., 1993), 

LUTIL (Spitter et al., 1989, 1990), and the models of Modig (1992) and Jaggard (1992). Among 

these models, models of Modig (1992) and Jaggard (1992) used linear regression of the 

dependent variables, while PIEteR (Biemond et al., 1989; Smit et al., 1993) used non-linear 

regression equations. The LUTIL model by Spitters et al. (1989, 1990) used simple regression 

methods. All these models consider weather data as a factor involved in model development, 

model developed by Modig, 1992 considered temperature (Modig, 1992) as a factor in model 

development, while models developed by Jaggard, 1992; LUTIL, PIEteR, and Day (1986) 

considered both solar radiation and temperature. LUTIL and the model developed by Modig 

(1992) also used sowing date as one of the factors, while PIEteR included soil as a factor 

(PIEteR). 

Although these empirical models are easy to use, they lack detailed description of the 

processes involved in sugarbeet growth which are important for research purposes. Based on 

underlying mechanisms and their interactions, descriptive models have been developed. 

2.2.2. Descriptive Models 

Descriptive models were developed to build better understanding of the processes and 

mechanisms involved in sugarbeet growth and development. These types of models describe the 

plant’s components and its growth processes at different stages in mathematical terms 

(Vandendriessche and Ittersum, 1995). Some of these descriptive models include SUBGRO 

(Fick, 1971), SUBGOL (Hunt, 1974), SIMBEET (Lee, 1983), SUBEMO (Vandendriessche, 
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1989), SUCROS (Spitters et al., 1989), dynamic sugarbeet model (Webb et al., 1997), CERES 

(Leviel, 2000) Broom’s Barn (Qi et al., 2005), and Green Lab (Vos et al., 2007) etc. Recently, 

Lemaire et al. (2008) proposed a morphogenetic model for sugarbeet adopting the underlying 

concepts of the GreenLab model. Another simplistic mechanistic model was developed by 

Gholipouri et al. (2009) for simulating the sugarbeet growth and sugar accumulation under 

potential production condition.  

2.2.2.1. SUBGRO 

SUgar Beet GROwth (SUBGRO) (Fick, 1971) is a mechanistic sugarbeet growth model 

following the concepts of the ELCROS model (de Wit, 1965). This is a specific sugarbeet 

growth model that was developed on the basis that the photosynthates from a reserve pool are 

partitioned for respiration, growth, and energy storage. In this model, total dry weight of the 

sugarbeet (𝑇𝐷𝑊𝐵) is estimated from the sugar content (𝑆𝑈𝐺𝐴𝑅) and the dry weight of the beet 

(𝐷𝑊𝐵): 

 𝑇𝐷𝑊𝐵 = 𝐷𝑊𝐵 + 𝑆𝑈𝐺𝐴𝑅 (2.1) 

where 𝑆𝑈𝐺𝐴𝑅 is simulated from sugar stored (𝑆𝑇𝑆𝑈𝐺) and the fraction of reserves (𝑅𝐸𝑆) in the 

beet. 

 𝑆𝑈𝐺𝐴𝑅 = 𝑆𝑇𝑆𝑈𝐺 + 𝑅𝐸𝑆 × (𝐷𝑊𝐵 + 𝑆𝑇𝑆𝑈𝐺)/𝑇𝐷𝑊 (2.2) 

where, 𝑇𝐷𝑊 is the total dry weight of the sugarbeet plant. 

SUBGRO simulates the growth rate of the beet and its storage root as the product of 

maximum relative growth rate (𝐷𝑊𝐵𝐶) and relative growth rate (𝑅𝐺𝑅) at the current soil 

temperature (𝑇𝑆). 

𝐺𝑅𝐵 = 𝐷𝑊𝐵𝐶 × 𝐴𝐹𝐺𝐸𝑁(𝑅𝐺𝑅, 𝑇𝑆) × 𝐴𝑀𝐼𝑁1 (
𝐴𝐹𝐺𝐸𝑁(𝐸𝑅𝐵𝐺, 𝑃𝑅𝐸𝑆),

𝐴𝐹𝐺𝐸𝑁(𝐸𝑊𝐶𝐵𝐺, 𝑅𝑊𝐶)
) (2.3) 
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where, 𝐸𝑅𝐵𝐺 is the limitation of the reserve level (𝑃𝑅𝐸𝑆), 𝐸𝑊𝐶𝐵𝐺 is the relative water content 

(𝑅𝑊𝐶) limitation and 𝐴𝑀𝐼𝑁1 is the minimum value among the real arguments. 

This model considered respiration as the percentage of carbohydrate produce only and 

did not include the effects of nitrogen on sugarbeet growth. This model also didn’t consider the 

dry matter loss from senescence.  

2.2.2.2. SUBGOL 

To overcome the limitations of SUBGRO model, Hunt (1974) later modified the model 

and developed SUBGOL, which includes a respiratory submodel simulating respiration 

processes during growth and maintenance periods. The model also included a component of the 

elementary leaf senescence, in which sugarbeet leaf senescence increases with leaf’s age and 

mutual shading of leaves. 

2.2.2.3. SIMBEET 

In 1983, Lee (1983) developed SIMulating sugarBEET (SIMBEET) to understand the 

connections among plant morphology, physiology, and the environmental factors. SIMBEET 

models the processes of photosynthesis, respiration, translocation, and senescence to simulate 

sugarbeet dry matter accumulation patterns in a one-hour time step. Each physiological 

development rate is estimated as the product of maximum possible growth rate and a series of 

factors that account for the effects of temperature, plant age, nitrogen, solar radiation, and 

nonstructural carbohydrate on the physiological rate.  

The maximum relative growth rate (𝑅𝐺𝑅) of the petioles, blades, crown, or top is 

simulated as a function of the dry weight of the particular plant part and the rate of change of dry 

weight per unit time. 

 𝑅𝐺𝑅 =
1

𝑤
×

𝑑𝑤

𝑑𝑡
 (2.4) 
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where, 𝑅𝐺𝑅 is the maximum rate of relative growth in grams of dry matter produced per grams 

of plant tissue per unit time, w is the dry weight of tissue and 
𝑑𝑤

𝑑𝑡
  is the rate of change of dry 

weight per unit time. 

For the physiological rates other than growth (photosynthesis, respiration, translocation 

and senescence), the maximum relative growth rate (𝑅𝑥𝑅) is estimated as a function of dry 

weight of the plant part and the rate of change of dry matter produced by physiological rate per 

unit time (
𝑑𝑤𝑥

𝑑𝑡
): 

 𝑅𝑥𝑅 =
1

𝑤𝑃𝑇
×

𝑑𝑤𝑥

𝑑𝑡
 (2.5) 

where, x represents photosynthesis, respiration, translocation, and senescence and PT represents 

the relevant plant tissue’s weight. 

This maximum relative growth rate is then multiplied by the grams of petiole, blade, 

crown and root per square meter of land area to get the final product as quantity of dry matter 

produced, converted, translocated or lost per unit time per unit area. When all the physiological 

factors are at optimum level the process operates at its maximum rate. Environmental factors are 

incorporated into actual growth rates of the respective plant parts. According to Lee (1983) the 

weakest component of the model is the translocation rate equations.  

2.2.2.4. SUCROS 

In 1989, Spitters et al. developed their SUCROS model based on the de Wit’s sugarbeet 

model (van Laar et al., 1992). SUCROS stands for Simple and Universal CRop growth 

Simulator. This model simulates the potential crop growth based on light interception, 

photosynthesis, respiration, and partitioning of assimilates between the organs of the plants for 

practical applications, such as studies of climate effects on production and water management. 

Several versions of SUCROS have been published for different crops (sugarbeet, potato, maize, 
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soybean etc.), each built on the original model (Spitters et al., 1989; Goudriaan and Van Laar, 

1994). The model inputs include daily climatic data such as radiation, minimum and maximum 

temperature, during the growing periods.  

The crop establishment simulator module of this model first describes the crop 

emergence. It then describes the early growth of the crop canopy by increasing the leaf area 

index (𝐿𝐴𝐼) which is an exponential function of the thermal time from the point of emergence to 

the point where sugarbeet plants start to compete for light (Guerif and Duke, 1998). This 

exponential early growth of sugarbeet leaves can be described using a four-parameter model (Eq. 

2.6). 

 𝐿𝐴𝐼 = 𝐿𝐴0 × 𝑁𝑃𝐿 × 𝑒𝑥𝑝[𝑅𝐺𝑅𝐿 × (𝑆𝑇 − 𝑆𝐸𝑀𝑅𝐸𝐺)] (2.6) 

where, 𝐿𝐴𝐼 is Leaf Area Index, 𝐿𝐴0 is the extrapolated leaf area per plant at emergence, 𝑁𝑃𝐿 

represents the number of plants emerged per unit area, 𝑅𝐺𝑅𝐿 is the initial growth rate of leaves 

(ºC day-1), 𝑆𝑇 is the sowing time, and 𝑆𝐸𝑀𝐸𝑅𝐺 is the thermal time needed for plant to emerge 

and is expressed as a temperature sum over a base temperature of 3 ºC since sowing date. 

For sugarbeet, Spitters et al. (1989) provided default values for these parameters which 

are 120°C day for 𝑆𝐸𝑀𝐸𝑅𝐺, 11.1 plants m-2 for 𝑁𝑃𝐿, 0.84 cm2 plant-1 for 𝐿𝐴0, and 0.156°C day-

1 for RGRL. These values are not constant and can vary depending on various factors like 

seedbed characteristics, weather condition and other emergence characteristics. 

Under ideal growth environment with ample supply of water and nutrients total growth 

rate of sugarbeet is calculated as a function of carbohydrate assimilation and requirement 

(Spitters et al., 1989): 

 𝐺𝑇𝑊 =  (𝐺𝑃𝐻𝑂𝑇 −  𝑀𝐴𝐼𝑁𝑇) / 𝐴𝑆𝑅𝑄 (2.7) 
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where, 𝐺𝑇𝑊 is the total growth rate of the crop (kg ha-1d-1), 𝐴𝑆𝑅𝑄 is assimilate (CH2O) 

requirement for dry matter production (kg kg-1), 𝐺𝑃𝐻𝑂𝑇 is the daily total gross assimilation 

(CH2O) (kg ha-1d-1), 𝑀𝐴𝐼𝑁𝑇 is the maintenance respiration (CH2O) of the crop (kg ha-1d-1). 

These parameters are determined by the following equations. 

 𝐺𝑃𝐻𝑂𝑇 =  𝐷𝑇𝐺𝐴 ×  30/44 (2.8) 

 𝑀𝐴𝐼𝑁𝑇 =  𝐴𝑀𝐼𝑁1(𝐺𝑃𝐻𝑂𝑇, 𝑀𝐴𝐼𝑁𝑇𝑆 ×  𝑇𝐸𝐹𝐹 ×  𝑀𝑁𝐷𝑉𝑆) (2.9) 

 𝐴𝑆𝑅𝑄 = 𝐹𝑆𝐻 × (1.46 × 𝐹𝐿𝑉 + 1.51 × 𝐹𝑆𝑇 + 𝐴𝑆𝑅𝑄𝑆𝑂 × 𝐹𝑆𝑂) +  1.44 × 𝐹𝑅𝑇 (2.10) 

where, 𝐷𝑇𝐺𝐴 is the daily total gross CO2 assimilation of the crop (kg ha-1d-1), 𝐴𝑆𝑅𝑄𝑆𝑂 is the 

assimilate requirement for dry matter production of storage organs (kg kg-1), 𝐹𝐿𝑉 , 𝐹𝑆𝑇 and 𝐹𝑅𝑇 

are the fractions of dry matter increase allocated to leaves, shoots, and roots respectively, 

𝐹𝑆𝐻 𝑎𝑛𝑑 𝐹𝑆𝑂 are the fractions of total dry matter allocated to the shoots and storage organs 

respectively, 𝑇𝐸𝐹𝐹 is the factor accounting for effect of temperature on maintenance respiration, 

𝑀𝐴𝐼𝑁𝑇𝑆 is the maintenance respiration of the crop at base temperature, and 𝑀𝑁𝐷𝑉𝑆 is the 

factor accounting for the effect of the development stage on maintenance respiration. 

Variability in emergence and early growth conditions in this model lead to a wide range 

of values for the parameters considered. Because of this, the simulation of the subsequent crop 

growth is also affected (Guerif and Duke, 1998). 

2.2.2.5. SOWAN 

SOWAN (Hendrickx, 1986) sugarbeet growth model was developed based on the 

components of SUCROS model. It connects dry matter of sugarbeet production with nitrogen 

and soil water balance. It included the procedures of SWATRE (Belmans et al., 1982), PAPRAN 

(Seligman and van Kuulen, 1981), and CERES (Ritchie, 1984) for soil water balance simulation 

and NITCROS (Hansen and Aslyng, 1984) and FIELD (Duffy et al., 1977) for nitrogen sub-
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module description. It can simulate soil water balance and soil profile nitrogen processes for 

several soil layers up to 120 cm depths.  

2.2.2.6. SUBEMO 

SUgar BEet MOdeling (SUBEMO) is another specific sugarbeet growth model 

developed by Vandendriessche (1989) to simulate dry matter and sugar production. It simulates a 

pool of carbohydrates in beet resulting from photosynthesis and restoration of dry matter from 

senescence leaves. These pools of carbohydrates are used to sustain respiration, growth and 

sugar accumulation. For dry matter partitioning the model used the empirical teleonomic 

partitioning hypothesis of allocating dry matter to different plant part under given environment in 

such a way that the plants attain an optimal specific growth rate. 

2.2.2.7. SIUCRA 

SIUCRA (Burke, 1992) is a model developed to specifically simulate sugarbeet growth 

and development in Ireland. The central routine of this model describes photosynthesis as a 

function of photosynthetically active solar radiation, temperature, LAI, and crop specific 

parameters. This model included the effects of water stress on sugarbeet growth and adjusted the 

carbohydrates produced daily based on the degree of water stress. In the next step, the model 

computes the maintenance respiration rate and carbohydrates available for growth and 

development. Partitioning of dry matter to various plant parts depends on the stage of growth and 

age of the plant.   

2.2.2.8. Webb et al. (1997) 

The dynamical model of Webb et al. (1997) was developed considering soil nitrogen 

content and solar radiation as the driving variables. This is a parsimonious model with only 14 

parameters, out of which 7 are associated with these driving variables. It models the crop as three 
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parts; the shoot, the storage root, and the fibrous systems. The amount and partitioning of 

assimilates needed for the growth of the crop is affected by the amount of light intercepted and 

soil nitrogen content (Fig. 2.2).  

  

Figure 2.2. Schematic diagram of the dynamical model to describe the growth of sugarbeet in 

relation to driving variables soil radiation and soil nitrogen (redrawn from Webb et al., 1997). 

In this model three differential equations were developed to estimate the rates of change 

in shoot, storage root, and fibrous root.  

 
𝑑𝑊𝑠

𝑑𝑡
= 𝑃2𝑘𝑓𝑆 − 𝑣𝑊𝑠 (2.11) 

 
𝑑𝑊𝑟

𝑑𝑡
= 𝑃(1 − 𝑃)𝑘𝑓𝑆 − 𝜌𝑊𝑟 (2.12) 

 
𝑑𝑊𝑘

𝑑𝑡
= (1 − 𝑃)𝑘𝑓𝑆 (2.13) 
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where, 𝑊𝑠, 𝑊𝑟 , and 𝑊𝑘 are the mass of shoot, fibrous roots and storage root respectively, 𝑘 is the 

conversion coefficient (kg M J-1), 𝑃 is the partitioning variables, 𝑆 is total incident radiation (MJ 

m-2), 𝑣 𝑎𝑛𝑑 𝜌 are the death rates of shoot and fibrous root respectively and 𝑓 is foliage coverage. 

The foliage cover, 𝑓 in this model is described by a modified Mitscherlich curve (Mead 

and Pike, 1975): 

 𝑓 = 𝑓𝑚𝑎𝑥 (1 − 𝑒−𝑊𝑠𝛾𝑒
−𝑘𝑓(𝑡−𝑡𝑠)

) (2.14) 

where 𝛾 the fraction of shoot mass 𝑊𝑠, 𝑡𝑠 is the time of sowing, 𝑘𝑓 is the rate of decreasing 

foliage cover and 𝑓𝑚𝑎𝑥 is the maximum foliage cover. 

Soil nitrogen partitioning variables (𝑃) and total incident radiation are modeled using the 

following two different functions. 

 𝑃 = 𝛼 +
𝛽

1+𝑒𝜎(𝑡−𝜇) (2.15) 

 𝑆 = (𝑎 + 𝑏𝑠𝑖𝑛 (
2𝜋(𝑡−𝑔)

365
)) (2.16) 

where, 𝛼 is the minimum value of 𝑃, 𝛽 is the maximum value of 𝑃 − 𝛼, 𝜎 is the rate parameter 

(T-1), t is the time, 𝑎 and 𝑏 are vertical displacement factor and amplitude respectively and 𝑔 is 

the horizontal displacement factor. 

This model describes the plant growth in relation to soil nitrogen and solar radiation. 

Between these two, soil nitrogen is more amenable to control. The amount of solar radiation 

intercepted can be managed changing the sowing date of the crop although early sowing may 

result in frost damage.  

2.2.2.9. STICS 

STICS (Simulator mulTIdisciplinary for Cultures Standard (Brisson et al., 1998)) is a 

generic daily time-step model, which has already been applied to a wide variety of crops like 
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maize, tomato, wheat, sugarbeet etc. This model has seven modules corresponding to the 

different mechanisms involved in plant growth. The original formulation of STICS describes the 

relationship between biomass production and intercepted radiation as a quadratic function. 

Among the seven modules available in STICS, some of them are dedicated to the management of 

environmental stresses, so that these processes can be easily implemented in the model. In the 

modified version of the STICS, thermal stress was added to improve the model simulation.  

2.2.2.10. CERES-Beet 

CERES (Crop Environment REsource Synthesis) was originally developed for maize by 

Jones and Kiniry (1986), but a sugarbeet version was developed by Leviel (2000). The CERES 

models provide a simple and coherent framework for the simulation of water, carbon, and 

nitrogen cycles in soil-plant systems. Over the past twenty years, these CERES-models have 

been widely used and tested in applications ranging from decision-aid in irrigation to global 

assessment of crop productivity (Rosenzweig and Parry, 1994). These models can simulate the 

succession of crops on a given field, and thus account for crop rotation effects.  

The phenology module of CERES-Beet model considers four events, which are sowing, 

germination, emergence, and harvest. This model considers germination as a function of soil 

moisture content and assumes that emergence occurs after 40 Growing Degree Days, with a base 

temperature of 3°C (noted GDD3). Net photosynthesis in the CERES-Beet is computed from 

intercepted photosynthetically active radiation (PARi) by means of a radiation use efficiency set 

to 2.8 g Dry Matter MJ PARi-1. PARi is computed from LAI using the classical Beer-Lambert 

law of radiation transmission in turbid media. The extinction coefficient it set to 0.65. 

Throughout the growing season the produced biomass is partitioned among shoot, leaf, and roots. 
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2.2.2.11. Broom Barn’s Model 

Another process-based model, Broom’s Barn sugarbeet growth model is a weather-driven 

daily time step simulation model (Qi et al., 2005). This model was developed from observations 

on beet crops grown at Broom’s Barn considering the integrated effects of the important 

environmental variables like temperature, radiation, rainfall, potential evapotranspiration (PET), 

and soil available water capacity (SAWC) (Fig. 2.3). Under favorable growing conditions 

incoming solar radiation and temperature are the main factors determining the dry matter 

increase and sugar yield. The model uses a set of mathematical equations to calculate the 

everyday values of the percent foliage cover, amount of solar radiation intercepted by the 

canopy, net total dry matter production using a feasible radiation use efficiency, and its 

partitioning to sugar yield. To account for the effects of soil water stress, a simple soil water 

balance model for a free draining soil profile is coupled to the beet growth model, tracking the 

everyday amount of soil water available within the root zone and the radiation use efficiency is 

reduced in proportion to the ratio between actual and potential crop evapotranspiration. 

 



 

21 

  

Figure 2.3. The components and controlling environmental variables in the Broom’s Barn 

sugarbeet growth simulation model (Redrawn from Qi et al., 2005).  

In this model the foliage/canopy cover is modeled following the formula of Werker and 

Jaggard (1997). 

 𝑓 = 𝑓0𝑒𝑥𝑝 (𝜇𝑚𝑖𝑛(𝑇 − 𝑇0) +
𝜇0−𝜇𝑚𝑖𝑛

𝑣
(1 − 𝑒−𝑣(𝑇−𝑇0))) (2.17) 

where, 𝑓0 is the canopy coverage at 50% of the seedlings emergence at 𝑇 = 𝑇0, 𝑇 is the 

accumulated temperature above 3º C, 𝑇0 is the accumulated temperature from sowing to 50% 

crop emergence, 𝜇0 and 𝜇𝑚𝑖𝑛 are initial and final net relative canopy coverage (d-1), and 𝑣 is the 

rate from 𝜇0 to 𝜇𝑚𝑖𝑛.  

To account for the soil water stress’ effect on crop canopy development, a stress factor 

was modeled as a logistic function based on the relative water content. 

 𝑓𝑠𝑡𝑟𝑒𝑠𝑠 =
2

1+𝑒𝑥𝑝{−𝑓𝑑𝑡(𝑄𝑟𝑒𝑙−0.02)}
− 1 (2.18) 
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where, 𝑓𝑑𝑡  is the stress response factor, 𝑄𝑟𝑒𝑙 is the fraction of transpirable water and is 

determined from the ratio of daily available water content and available water content at field 

capacity.  

The total dry matter (𝑊) (gm-2) in this model is determined by summing the daily values 

of dry matter increase (∆𝑊) between crop emergence (𝑡0) and final harvest (𝑡𝑓) whereas the final 

total sugar yield (𝑌) (gm-2) is attained with respect to W, as shown below: 

 𝑊 =
1

𝛾
𝑙𝑜𝑔 {1 + 𝛾𝜀 ∑ (𝑓𝑆

𝐸𝑎

𝐸𝑝
)

𝑡𝑓

𝑡=𝑡0
} (2.19) 

 𝑌 = 𝑊 −
1

𝑘
𝑙𝑜𝑔(𝑘𝑊 + 1) (2.20) 

where, the daily values of dry matter increase are modeled using the formula ∆𝑊 = 𝜀𝑓𝑆, where 

𝜀 is the intercepted radiation use efficiency (gMJ-1), 𝑓 is the fractional crop canopy cover and 𝑆 

is the global solar irradiation. In the equations, 𝛾 is the decaying coefficient of radiation 

conversion coefficient, 𝑘 is the sugar partitioning coefficient and 𝐸𝑝 and 𝐸𝑎 are potential and 

actual crop evapotranspiration respectively. 

The Broom’s Barn sugarbeet growth model with its original parameter estimation can 

closely simulate the total dry matter production and sugar yields for crops grown on soils with 

available water contents up to 18% by volume at field capacity (Qi et al., 2005).  

2.2.2.12. PILOTE 

PILOTE is a crop-soil interaction generic model, which was first developed for sorghum 

and sunflower (Mailhol et al., 1996, 1997), but can be applied for a large variety of crops. The 

sugarbeet version of PILOTE model was developed by Taky (2008). It is designed to predict the 

actual evapotranspiration and the yield of crops, through the modeling of the LAI. There are two 

different versions of PILOTE sugarbeet model, one with hydric stress and the other without 
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hydric stress. Daily biomass production (𝐼(𝑡)) at any day t in this model is computed using the 

following formula: 

 𝐼(𝑡) = 1 − 𝑒𝑥𝑝(−𝑘𝐵 − 𝐿𝐴𝐼(𝑡))  (2.21) 

where, 𝑘𝐵 is the Beer-Lambert law extinction coefficient, and 𝐿𝐴𝐼 is the leaf area index which is 

computed using the equation below: 

 𝐿𝐴𝐼(𝑡) = 𝐿𝐴𝐼𝑚𝑎𝑥 (
𝜏(𝑡)−𝜏𝑒

𝜏𝑚𝑎𝑥
)

𝛽

𝑒𝑥𝑝 [
𝛽

𝛼
(1 − (

𝜏(𝑡)−𝜏𝑒

𝜏𝑚𝑎𝑥
)

𝛼

)] (2.22) 

where, 𝐿𝐴𝐼𝑚𝑎𝑥 the potential maximum value of 𝐿𝐴𝐼 in non-limiting conditions, 𝜏𝑚𝑎𝑥 is the 

thermal time (in ̊C day) necessary to reach maximum 𝐿𝐴𝐼, 𝜏𝑒 is the thermal time (in ̊C day) of 

emergence, 𝛼 and 𝛽 are parameters. It is also possible to model growth and senescence 

separately, using two different values 𝛼1 and 𝛼2 depending on whether growth states are before 

or after 𝜏𝑚𝑎𝑥. Biomass repartition to root and leaves in this model is done with an empirical 

harvest index computation method. 

2.2.2.13. GreenLab 

A morphogenetic model for sugarbeet model was developed by Lemaire et al. (2008). 

This model is based on GreenLab (de Reffye and Hu, 2003), a generic plant growth model. In 

this model, the morphogenetic process generating plant structure is considered in the model 

given that plant structure plays an important role during growth, especially under stress 

conditions.  

The model’s main hypothesis was that the biomass produced by each leaf is stored in a 

common reserve pools and reallocated among all plant arts according to their sink strengths. 

Initial seeds and leaves are considered as sources, from where stored biomass is supplied to the 

leaf and the root system that act as sinks.  
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The driving variables of this morphogenetic model are mostly phytomer appearance, 

expansion, and leaf senescence. These variables allow the simulation of the growth based on 

biomass production and biomass partitioning. Based on the time unit of the morphogenetic 

sequence of the phytomer appearance, the ecophysiological functioning time unit, called growth 

cycle, is computed. At growth cycle n, the empirical equation of net dry matter production 𝑄𝑛 is 

given by: 

 𝑄𝑛=𝑃𝐴𝑅𝑛 𝜇 𝑆𝑝 (1 − 𝑒𝑥𝑝 (−𝑘𝐵
𝑆𝑛

𝑆𝑝)) (2.23) 

where, 𝑃𝐴𝑅 is the incident photosynthetically active radiation at cycle 𝑛, 𝜇 is an empirical 

coefficient related to the radiation use efficiency, 𝑆𝑝 is an empirical coefficient corresponding to 

a characteristic surface (related to the two dimensional projection of space potentially occupied 

by the plant onto x-y plane), 𝑆𝑛 is the total leaf surface area of the plant at cycle 𝑛 and  𝑘𝐵 is the 

Beer-Lambert extinction coefficient. The estimated value of 𝜇 is 1.23 g MJ-1, whereas the value 

of 𝑘𝐵 is measured 0.7 and the value of 𝑆𝑝is estimated 0.021 (m2) for the sugarbeet. 

At every growth cycle, the photosynthate (or dry matter) produced is allocated to 

different plant parts according to their relative demands called sink strengths. The sink strength 

of a plant part depends on its type (blade, petiole and root in sugarbeet) and varies from its 

initiation to maturity which corresponds to the end of its expansion. Sink strengths of these 

organs are barycentric coefficients and one of these values must be kept fixed for computational 

purpose. For this reason, Lemaire et al. (2008) imposes that the blade sink strength is equal to 1. 

Table 2.1 gives the sink strength of different plant parts developed for sugarbeet (Lemaire et al., 

2008). 
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Table 2.1. Sink strength of the different parts of sugarbeet plant. 

Parameter Description 
Estimated (E), Measured (M) 

or Fixed (F) 
Value 

𝒑𝒓 Root Sink Strength F 400 

𝒑𝒃 Blade Sink Strength F 1 (Reference Value) 

𝒑𝒑 Petiole Sink Strength E 0.4916 

𝒒𝒑 Petiole Sink Correction E 0.3894 

 

Preliminary evaluation of this model indicated that it can be adapted to analyze the 

biomass production and its distribution among different plant parts. But this model still needs to 

be fully validated, particularly among seasons. Specially, the leaf development scheme of several 

seasons and several stress conditions needs to be studied.  

2.2.2.14. Gholipouri et al. (2009) 

Gholipouri et al. (2009) developed another simple and dynamic mechanistic model to 

simulate sugarbeet growth and accumulation of sugar under potential production scenarios. The 

driving variables of this model are temperature and solar radiation. This model divides the plant 

growth stages depending on the leaf growth rate. These stages are: emergence to end of the first 

stage, leaf development and initiation of root biomass growth, end of leaf growth and root 

development and saturation. 

The crop growth rate in this model (𝐶𝐺𝑅, g m-2 d-1) is modeled as a function of radiation 

use efficiency (𝑅𝑈𝐸), solar radiation (𝐼𝑆𝑅𝐴𝐷, MJ m-2 d-1), and a temperature correction factor 

(𝑇𝐶𝐹): 

 𝐶𝐺𝑅 = 𝐼𝑆𝑅𝐴𝐷 × 𝑅𝑈𝐸 × 𝑇𝐶𝐹  (2.24) 

The value of TCF is estimated as 1 within a range of 10 to 25 ˚C average daily air 

temperature and is linearly decreased to 0 when average daily air temperature decreases from 10 

˚C to 0 ˚C or increases from 25 ˚C to 35 ˚C. 

Total dry mass increment (TDM) for each day is simulated using the formula: 
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 𝑇𝐷𝑀𝑖  =  𝑇𝐷𝑀(𝑖−1)  +  𝐶𝐺𝑅𝑖  (2.25) 

where, 𝑇𝐷𝑀(𝑖−1) is accumulated dry mass at previous time step (g dry mass m-2). 

This model can simulate the sugarbeet growth and yield with reasonable accuracy under 

different production scenarios. However, the model needs to be validated using more 

observations on a range of sugarbeet cultivars and on sites that have different growing seasons 

(Gholipouri et al., 2009). 

All these models have been developed for simulating the growth and yield of crop under 

different agro-climatic conditions. All these models vary in the number of parameters needed and 

their complexity. A summary of the currently available descriptive models is listed in Table 2.2. 
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Table 2.2. Summary of the currently available descriptive sugarbeet growth models. 

Model Name 

Model 

Type 

Generic/

Specific 

Model Scale 

Individual 

plant/Plot 

Partitioning Scheme 

Empirical/Dynamic 
Application Limitations References 

Broom 

Barn’s Model 
Specific Plot 

Model computes overall dry 

matter. No partitioning is 

calculated 

Simulate total crop 

growth and sugar 

yield 

Distinctive cultivar 

effects were not 

calibrated. Needs 

parameter adjustments 

for soil available water 

content of greater than 

18% by volume 

Qi et al., 2005 

CERES-Beet Generic Plot 

Empirical harvest index. Dry 

matter produced is 

partitioned as a function of 

the phonological 

development stage 

Can simulate 

sugarbeet growth 

under different soil 

and climatic 

conditions 

Effect of cold 

temperatures cannot be 

parameterized 

Leviel et al., 

2000 

Gholipouri et 

al., 2009 
Specific Plot 

Dry matter available for 

each day crop growth is 

partitioned as a crop specific 

function of development 

stage 

Sugarbeet growth 

and sugar 

accumulation 

simulation 

Need more validation 

for other sugarbeet 

genotypes 

Gholipouri et al., 

2009 

GreenLab Generic 
Individual 

plant 

Partitioning is done based on 

source-sink relationship and 

sink strengths. Tops and 

roots are considered to be 

the two sinks whereas initial 

seeds and leaves are the 

sources 

Describe the 

dynamics of source-

sink interaction 

during sugarbeet 

growth 

Limited efficiencies in 

environmental stress 

conditions 

Lemaire et al., 

2008 

PILOTE Generic Plot Empirical harvest index 
Simulates sugarbeet 

growth and yield 

Hydric stress is not 

included 
Taky, 2008 
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Table 2.2. Summary of the currently available descriptive sugarbeet growth models (continued). 

Model Name 

Model 

Type 

Generic/

Specific 

Model Scale 

Individual 

plant/Plot 

Partitioning Scheme 

Empirical/Dynamic 
Application Limitations References 

SIMBEET Specific Plot 
Empirical (Translocation 

rate equations are used.) 

Simulates crop 

growth, root sucrose 

storage and 

senescence 

Translocation rates is 

considered the poorest 

developed components 

Lee, 1983 

SIUCRA Specific Plot 

Partitioning depends on the 

stage of growth, and update 

the state of the crops  

Simulates crop 

growth and yield 

Test Reference Year 

(TRY) is needed to run 

the model for yield 

prediction. TRY is a 

data file containing 

meteorological data for 

a typical year 

Burke, 1992 

SOWAN Generic Plot Empirical 

Simulates dry matter 

production under 

different soil and 

nitrogen conditions 

 Hendrickx, 1986 

STICS Generic Plot Empirical 

It simulates the 

behavior of soil-crop 

system within 1 year 

LAI is modelled with 

an empirical function 

Brisson et al., 

1998 

SUBEMO Specific Plot 

Empirical (Partitioning is 

based on teleonomic 

hypothesis.) 

Simulates dry matter 

and sugar 

production 

This model does not 

simulate emergence 

date 

Vandendriessche, 

1989 

SUBEMOpo Specific Plot 

Empirical (Partitioning is 

based on teleonomic 

hypothesis.) 

Simulates the 

potential sugarbeet 

growth 

More information is 

required for sucrose 

translocation and 

storage in sugarbeet 

Vandendriessche, 

2000 
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Table 2.2. Summary of the currently available descriptive sugarbeet growth models (continued). 

Model Name 

Model 

Type 

Generic/

Specific 

Model Scale 

Individual 

plant/Plot 

Partitioning Scheme 

Empirical/Dynamic 
Application Limitations References 

SUBGOL Specific Plot 

Empirical (partitioning is 

based on source-sink 

strength) 

Simulates sugarbeet 

growth and yield. 

Needs more validation 

regarding crop growth 

predictions under 

different respiratory 

coefficients 

Hunt, 1974 

SUBGRO Specific Plot Empirical 

Simulates sugarbeet 

growth and sugar 

accumulation 

Respiration is 

considered only as a 

percentage of 

carbohydrate produced 

Fick, 1971 

SUCROS Generic Plot 

Dry matter produced daily is 

partitioned among various 

plant organs as a function of 

the phonological 

development stage 

Simulates crop 

growth under 

different 

environmental 

conditions 

Production is simulated 

under ample supply of 

nutrients, and in pest, 

disease and pest free 

conditions 

Van Laar et al., 

1982 

Unnamed Generic Plot Empirical 

Estimates the 

behavior of soil-

water-nitrogen in the 

root zone from crop 

emergence to 

harvest 

Plant growth is not 

modeled in detail since 

the objective of the 

model is centered in the 

soil 

Frere et al., 1970 

Unnamed Specific Plot 

Empirical (allometric 

equation is used to describe 

the relationship between leaf 

and total weight) 

Simulates sugarbeet 

growth and yield 

No theoretical basis for 

the allocation of 

photosynthates among 

organs 

Patefield and 

Austin, 1971 

Webb et al. 

1997 
Specific Plot 

Dynamic partitioning of dry 

matter based on soil-N 

content 

Describes the 

partitioning of 

assimilates during 

sugarbeet growth 

based on soil-N 

Effects of 

environmental stresses 

were not considered 

Webb et al., 1997 
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Most of the current models concentrate on modeling the growth and yield of sugarbeet 

under ideal growth environments, none, but SIMBEET (Lee, 1983) assess the impacts of crop 

growth and management on soil and water quality. Such a model could be a point (one-

dimensional) model with emphasis on management effects on soil water quantity and quality, 

and crop production. Physically based RZWQM2 model can estimate the effects of crop growth 

on soil and water quality. This model is linked to a crop growth module from DSSAT, and can 

be used for better simulation of crop production in addition to soil water quality (Ma et al., 2005; 

2006). Deep rooted sugarbeet is not included in the DSSAT, and needs to be developed to work 

in linkage with RZWQM2 for soil and water quality assessment. 

2.3. Model Development 

To develop a sugarbeet model for estimating the impacts of sugarbeet growth on soil and 

water quality, adopting RZWQM is the best available approach because this specific model was 

developed for simulating agricultural management effects on crop production and soil and water 

quality (Ma et al., 2012). The generic plant growth module can be calibrated for any annual crop, 

although it has been used mostly for corn (Zea mays L.), wheat (Triticum aestivum L.) and 

soybean (Glycine max L.). RZWQM2, an upgraded version of RZWQM, included a crop specific 

plant growth module from the DSSAT for better simulation of crop growth along with soil and 

water quality assessment (Ma et al., 2012). Up to now, 42 crop models have been included in 

DSSAT (Hoogenboom et al., 2017). But RZWQMs is linked to an older version of DSSAT 

(version 4.0) that has only 23 crop models (Flerchinger et al., 2012; Ma et al., 2012). When 

DSSAT is used, the RZWQM2 feeds the daily soil moisture, soil N and evapotranspiration to the 

plant module and then retrieves daily N uptake and plant transpiration for its water and N 

balance (Ma et al., 2009).  
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The DSSAT model was originally developed by an international network of scientists, 

cooperating in the International Benchmark Sites Network for Agrotechnology Transfer project 

(Tsuji, 1998; Jones et al., 1998) to facilitate the application of crop models in a systematic 

approach to agronomic research. The DSSAT contains a number of independent programs that 

operate together to keep the crop simulation models at the center. In this original model, each 

individual crop had its own soil model components.  The revised DSSAT is a new cropping 

system model (DSSAT-CSM), which includes all crops as modules using a single soil model 

(Fig. 2.4).  

  

 

Figure 2.4. Overview of the components and modular structure of the DSSAT-CSM (Redrawn 

from Jones et al., 2003). 
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The DSSAT-CSM model has a main driver program, a land unit module, and module for 

the primary components that make up a land unit in a cropping system. The primary module 

contains the weather, soil, plant, soil-plant-atmosphere interface, and management components 

which collectively describe the time changes in soil and plants that occur on a single land unit in 

response to weather and management. 

Each of the modules has six operational steps which are initialization, season 

initialization, rate calculations, integration, daily output, and summary output. The main program 

controls when each of these steps is active, and when each module performs the intended tasks. 

This feature allows each module to read its own inputs, initialize itself, compute rates, integrate 

its own state variables, and write outputs completely independent from the operation of other 

modules (Kraalingen, 1995). 

In the DSSAT-CSM, there are two different ways of introducing new crops. In the first 

approach, a new module can be introduced for a crop by interfacing it with the plant module. 

This approach was used to interface the CERES and other crop models, which were operated as 

standalone crop models in DSSAT v3.5, such as cassava, potato, sunflower and sugarcane. In 

this approach, the model developer needs to code only for the crop growth module and adhere it 

to the interface of the Plant module and simply add it to the rest of the code. This approach is 

advantageous because it allows one to test a model from outside the DSSAT group. 

Second approach for introducing a new crop is the use of Crop Template approach. This 

method is usually implemented with CROPGRO template approach that allows the model 

developer to modify values in a Crop Template file without changing the code for crop growth 

module.  This approach has been used to develop models for a number of different crops like 

tomato (Scholberg et al., 1997), faba bean (Boote et al., 2002) and velvet bean (Hartkamp et al., 



 

33 

2002) etc. This approach of using a Crop Template is usually less prone to errors. To develop a 

sugarbeet growth model to interface it with DSSAT plant growth module, we adopted the first 

approach and used CERES-Beet model. 

2.4. Summary 

Many sugarbeet models have already been developed to describe the growth and 

development of sugarbeet. These models are either empirical or process based descriptive 

models. However, none of these models, but SIMBEET simulate the effects of sugarbeet growth 

on soil and water quality. RZWQM, developed by USDA-ARS, is a process-based model that 

simulates crop growth along with its impact on soil and water quality assessment. RZWQM2, a 

significant upgrade from earlier version of RZWQM, included the crop specific growth modules 

from DSSAT for better simulations of crop growth and its impacts on soil and water quality. 

Unfortunately, no sugarbeet model is currently available for DSSAT or RZWQM2. To develop a 

sugarbeet model for the assessment of its effect on soil and water quality, a crop growth model 

will first be developed from the existing models and coded for DSSAT. Once the sugarbeet 

model is successfully developed, calibrated, and incorporated to the DSSAT, it will be linked to 

RZWQM2 for the assessment of crop management on soil and water quality. 
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CHAPTER 3. MODELING GROWTH, DEVELOPMENT AND YIELD FOR 

SUGARBEET USING DSSAT1 

3.1. Abstract 

Sugarbeet (Beta vulgaris) is considered as one of the most viable feedstock alternatives to 

corn for biofuel production after herbicide resistant sugarbeet was deregulated by the United 

States Department of Agriculture in 2012. So far, only a few sugarbeet simulation models have 

been developed and are restricted to local regions. The Decision Support System for 

Agrotechnology Transfer (DSSAT) provides a common framework for a cropping system study 

and currently has plant growth modules for more than 40 crops. However, DSSAT currently does 

not include a model for sugarbeet. In this study, the Crop and Environment REsource Synthesis 

(CERES) Beet model was modified and incorporated into the current version of the Cropping 

System Model (CSM) to simulate growth, development, and yield for sugarbeet. The PEST 

optimizer was used for parameter estimation, transferability evaluation, and predictive 

uncertainty analysis. The sugarbeet model was evaluated with two sets of experimental data 

collected in two different regions and under different environmental conditions, one in Romania 

(Southeastern Europe) during 1997-1998 and the other in North Dakota, USA (North America) 

during 2014-2016. After model calibration for specific cultivars, the CSM-CERES-Beet model 

performed well for the simulation of leaf area index, leaf number, leaf or top weight, and root 

weight for both datasets (d-statistic = 0.783-0.993, rRMSE = 0.127-1.014). Although uncertainty 

analysis revealed that the calibrated CSM-CERES-Beet consistently over-predicted leaf numbers 

                                                 
1 This article is co-authored by Mohammad J. Anar, Zhulu Lin, Gerrit Hoogenboom, Vakhtang Shelia, William D. 

Batchelor, Jasper M. Teboh, Michael Ostlie, Blaine G. Schatz, and Mohamed Khan. Mohammad J. Anar had the 

primary responsibility for model development, data collection, model evaluation, and article write up. Dr. Zhulu Lin 

helped in model development, write up, and article proof reading. Drs. Gerrit Hoogenboom, Vakhtang Shelia, and 

William D. Batchelor helped in model evaluation, incorporation, and article proof reading. Drs. Jasper M. Teboh, 

Michael Ostlie, and Mohamed Khan helped in field experiment and proof reading. Blaine G. Schatz helped in field 

data analysis. 
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with false confidence, the model was successfully applied to simulate the yields for six different 

sugarbeet cultivars grown in North Dakota, USA in 2014-2016. CSM-CERES-Beet may be 

applied to simulate sugarbeet production for different soils under different management 

scenarios and climatic conditions in the Red River Valley and other regions.  

Keywords: Biofuel, Bioenergy; Crop and Environment REsource Synthesis (CERES); Cropping 

System Model; Decision Support System for Agrotechnology Transfer (DSSAT); Parameter 

Estimation (PEST) 

3.2. Introduction 

Sugarbeet (Beta vulgaris) is grown commercially for refining sucrose from its roots. 

Sugarbeet was first discovered as a potential sucrose source in 1802 in central Europe (Panella et 

al., 2014). Since then, it is grown around the world as a primary sucrose source alongside 

sugarcane. Sugarbeet’s contribution to the world’s sucrose production increased from 

approximately 37% in 1998-99 to 60% in 2010-11 (Sugarbeet Production Guide, 2013). 

Sugarbeets grown in the United States are currently found in regions encompassing 11 states and 

they tend to be grown in rotation with other crops (USDA/ERS, 2018). The total sugarbeet 

planting area in the U.S. was 1.16 million acres (0.469 million ha) in 2016/17. The Red River 

Valley (RRV) of western Minnesota and eastern North Dakota and its vicinity is the largest 

region in terms of sugarbeet production. In 2016/17, 57% of the nation’s total sugarbeets were 

produced in the RRV region, while 31% were produced in Idaho and Michigan (USDA/ERS, 

2018).  

Currently, 97% of the biofuels produced in the United States is corn-based ethanol, which 

may offer up to a 40% reduction in GHG emission (Canter et al., 2016; Flugge et al., 2017; 

Hettinga et al., 2009; Wang et al., 2011). Non-food grade sugarbeet (also known as energy beet) 
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is envisioned as one of the most viable feedstock alternatives for two major reasons (Maung and 

Gustafson, 2011; Nahar and Pryor, 2013; Vargas-Ramirez et al., 2013). One is that, compared to 

corn-based ethanol, the use of sugarbeet for biofuel production has less impact on the food 

supply; and the other is that sugarbeet has the potential to be designated as feedstock for 

advanced biofuel, which should offer at least 50% net greenhouse gas (GHG) emission reduction 

relative to gasoline (Foteinis et al., 2011; Jessen, 2012). It is reported that sugarbeet is the most 

utilized sucrose containing feedstock for commercial biofuel production in European countries 

(Grahovac et al., 2011; Nahar and Pryor, 2013; Vargas-Ramirez et al., 2013). In contrast, biofuel 

production from sugarbeet in the U.S is nonexistent. Therefore, tremendous opportunities exist to 

expand sugarbeet production into the nontraditional or underutilized planting areas in the US 

(Miyake et al., 2015), which, in turn, may cause environmental concerns such as soil health and 

water quality degradation.   

Dynamic crop simulation models for sugarbeet can play an important role in 

understanding plant growth processes (Webb et al., 1997), predicting crop yield, and helping 

producers and bio-refineries to make operation and business decisions (Tsuji et al., 1998; 

Vandendriessche and van Ittersum, 1995). When coupled with vadose zone hydrologic models, 

sugarbeet models can also be used to understand the plant-soil-water interactions in the field and 

to assess the impact on soil health and water quality of growing sugarbeets in nontraditional 

sugarbeet growing areas (Ma et al., 2012). A number of crop models are currently available for 

simulating sugarbeet growth and production. These models were developed based on either the 

empirical relationship observed between pre-harvested samples of sugarbeet and final crop yields 

or the various plant growth processes involved at different growing stages (Vandendriessche and 

van Ittersum, 1995). Empirical models include PIEteR (Biemond et al, 1989; Smit et al., 1993), 
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LUTIL (Spitters et a., 1989, 1990) and the model developed by Modig (1992). Process-based 

models include SUBGRO (Fick et al., 1971), SUBGOL (Hunt, 1974), SIMBEET (Lee, 1983), 

SUBEMO (Vandendriessche, 1989), SUCROS (Spitters et al., 1989), CERES-Beet (Leviel, 

2000; Leviel et al., 2003), Broom’s Barn (Qi et al., 2005), Green Lab (Vos et al., 2007), Pilote 

(Taky, 2008), and the model developed by Webb et al. (1997). Recently, a fodder beet (a 

sugarbeet cultivar) potential yield model was developed for the APSIM (Khaembah et al., 2017). 

Excellent reviews of sugarbeet models were provided by Vandendriessche and van Ittersum 

(1995) and Baey et al. (2014).  Most of these models are restricted to the regions and conditions 

for which they were developed (Vandendriessche and van Ittersum, 1995) and require different 

file and data structures and different modes of operation (Jones et al., 2003). For this reason, it is 

not appropriate to apply these models to regions and conditions for which they were not 

originally designed without proper evaluation (Baey et al, 2014).   

The Decision Support System for Agrotechnology Transfer (DSSAT) provides a common 

platform for transferring production technology from one location to others by integrating the 

knowledge about soil, climate, crops, and management practices (Hoogenboom et al., 2010; 

IBSNAT, 1993a; Jones et al., 1998, 2003; Marin et al., 2015; McNider et al., 2015). DSSAT 

crop model applications range from on-farm precision management to regional assessments of 

the impact of climate change and variability (Jones et al., 1998, 2003; Li et al., 2015). The 

DSSAT has also been coupled with the Root Zone Water Quality Model (RZWQM) to simulate 

the effect of agricultural management practices (e.g., irrigation, fertilization, planting date, and 

crop rotation) on pesticide transport, water use efficiency, water quality and crop production (Ma 

et al., 2005; Ma et al., 2006; Ma et al., 2012; Saseendran et al., 2007). The current release of 

DSSAT Version 4.7 incorporates process-based plant growth models for 42 specific crops but it 
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does not include sugarbeet (Hoogenboom et al., 2017). Therefore, the objectives for this study 

were: 1) to develop a plant specific model in DSSAT for sugarbeet simulation (i.e., CSM-

CERES-Beet), 2) to evaluate the performance of CSM-CERES-Beet with field data and the 

model’s transferability, and (3) to conduct uncertainty analysis for CSM-CERES-Beet using 

Parameter Estimation (PEST) software.   

3.3. Materials and Methods 

3.3.1. CSM-CERES-Beet  

The CERES-Beet model (Leviel, 2000; Leviel et al., 2003) was modified and adapted as 

a plant specific module for the Cropping System Model in DSSAT, referred as “CSM-CERES-

Beet”. We chose to adapt CERES-Beet into CSM-CERES-Beet mainly because a number of 

CERES models (including CERES-Maize) were previously incorporated into DSSAT. In 

addition, Baey et al. (2014) indicated that CERES-Beet provided an overall good prediction for 

plant growth and crop yield after comparing it with four other sugarbeet models, GreenLab (Vos 

et al., 2007), LNAS (Cournede et al., 2013), STICS (Brisson et al., 1998), and Pilote (Taky, 

2008).  

CERES-Beet is a daily step plant growth model, simulating a number of physiological 

processes such as phenological development, leaf, stem and root growth, biomass accumulation 

and partition, soil water and nitrogen transformations, nitrogen uptake and partitioning among 

plant components (IBSNAT, 1993a). The phenological development considers four major 

events: sowing, germination, emergence, and harvest. Of these four events, germination is a 

function of soil moisture content, and emergence occurs after 40 Growing Degree Days (GDD), 

with a base temperature of 3°C. Net photosynthesis is calculated from intercepted 

photosynthetically active radiation (𝑃𝐴𝑅) by means of radiation use efficiency. The intercepted 
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𝑃𝐴𝑅 is calculated from leaf area index using the classical Beer-Lambert law of radiation 

transmission in turbid media (Leviel, 2000). The extinction coefficient for Beer-Lambert law is 

set to 0.65. In the early stage of a growing season, photosynthates are primarily partitioned into 

leaves made up of sheaths and blades. Blade dry matter demand is calculated from potential leaf 

area growth assuming a specific leaf area of 50 g dry matter m-2, while sheath dry matter carbon 

demand is 80% of the leaf blade weight. After leaf partitioning, 85% of the remaining 

photosynthates are allocated to the roots (including the tap root), while the remaining 15% is 

allocated to the crown. In general, growth of leaves usually ceases after 1500 GDD3 (GDD with 

a base temperature of 3 C), when the tap root becomes the main recipient of the partitioned 

photosynthates. Thereafter, virtually all of the dry matter (85%) is portioned to root tuber 

formation after 1500 GDD (Milford et al., 1988; Leviel, 2000). Final marketable sugarbeet yield 

is computed from total root dry matter assuming that 95% of root is harvested, and that roots 

have 82% moisture content (Leviel, 2000). 

When developing CERES-Beet from CERES-Maize, Leviel (2000) assumed that there is 

only one plant development stage that is initiated at emergence and continued to harvest date as 

determined by cultivar parameters. Compared to maize, sugarbeet has no maturity date thus no 

criterion was chosen to determine the harvest date. Crop compartments were renamed for 

sugarbeet as leaves (corresponding to maize stems), crowns (instead of husks), seeds (instead of 

kernel) and roots (Leviel, 2000).  

Like in other CERES models, genetic parameters G2 and G3 in CERES-Beet are related 

to seed growth and seed filling. Since CSM-CERES-Beet was developed for simulating only beet 

root production, not seed production, we redefined G2 and G3 to correspond to sugarbeet leaf 

expansion rate and maximum root growth rate, respectively. In CERES-Beet, potential leaf area 
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growth (𝑃𝐿𝐴𝐺) during the major leaf growth stage is simulated using the following two 

equations based on the total number of leaves (𝑇𝐿𝑁𝑂) produced at that stage (Leviel, 2000).  

 𝑃𝐿𝐴𝐺 = 3.0 × 170 × 𝑇𝐼 × 𝑚𝑖𝑛(𝐴𝐺𝐸𝐹𝐴𝐶, 𝑇𝑈𝑅𝐹𝐴𝐶, (1. −𝑆𝐴𝑇𝐹𝐴𝐶)) (3.1) 

𝑃𝐿𝐴𝐺 = 170 × 3.5/((𝑋𝑁 + 5.0 − 𝑇𝐿𝑁𝑂)2) × 𝑇𝐼 × 𝑚𝑖𝑛(𝐴𝐺𝐸𝐹𝐴𝐶, 𝑇𝑈𝑅𝐹𝐴𝐶, (1. −𝑆𝐴𝑇𝐹𝐴𝐶))  

  (3.2) 

where, 𝑇𝐼 is a fraction of the phyllochron interval (𝑃𝐻𝐼𝑁𝑇) that occurred as a fraction of the 

current daily thermal time (𝐷𝑇𝑇); 𝑋𝑁 is the number of leaves; AGEFAC, TURFAC, and  

SATFAC are the stress factors for nitrogen, soil water, and waterlogging respectively. In the 

CSM-CERES-Beet model constant 170 in Eqs (3.1) and (3.2) was replaced with 𝐺2, defined as 

“leaf expansion rate (cm2 cm-2 d-1)” to provide more flexibility to simulate variable rates in 

potential leaf growth for different beet cultivars. 

 Sugarbeet root growth was modeled by adapting the tuber growth equation in 

SUBSTOR-Potato (IBSNAT, 1993b) for sugarbeet root formation during the effective root 

growth periods. The modified equation for root growth (𝐺𝑅𝑂𝑅𝑇) in CSM-CERES-Beet is: 

 𝐺𝑅𝑂𝑅𝑇 = 𝐺3 × 𝑃𝐶𝑂2 ×
𝐸𝑇𝐺𝑇

𝑃𝐿𝑇𝑃𝑂𝑃
×  𝑚𝑖𝑛(𝐴𝐺𝐸𝐹𝐴𝐶, 𝑇𝑈𝑅𝐹𝐴𝐶, (1. −𝑆𝐴𝑇𝐹𝐴𝐶)) (3.3) 

where, 𝐺3 is the maximum root growth rate (g m-2 d-1), 𝑃𝐶𝑂2 is the effect of 𝐶𝑂2 on growth rate, 

𝐸𝑇𝐺𝑇 is the function of soil temperature on root growth, 𝑃𝐿𝑇𝑃𝑂𝑃 is the population density 

(plants m-2). 

 Besides redefining G2 and G3, we also made the following changes when developing 

CSM-CERES-Beet. First, in CERES-Beet, 𝐿𝐴𝐼 is calculated using the following equation: 

 𝐿𝐴𝐼 =  (𝑃𝐿𝐴 − 𝑆𝐸𝑁𝐿𝐴) × 𝑃𝐿𝑇𝑃𝑂𝑃 × 0.0001 (3.4) 

where, 𝑃𝐿𝐴 is the potential leaf area (cm2 plant-1); 𝑃𝐿𝑇𝑃𝑂𝑃 is the number of plants; and 𝑆𝐸𝑁𝐿𝐴 

is the daily normal leaf senescence (cm2 plant-1). In the original CERES-Beet equation, 𝑆𝐸𝑁𝐿𝐴 
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is set as zero, and only 𝑃𝐿𝐴 and 𝑃𝐿𝑇𝑃𝑂𝑃 are involved in 𝐿𝐴𝐼 calculation. To incorporate leaf 

senescence in CSM-CERES-Beet, 𝑆𝐸𝑁𝐿𝐴 was computed using the daily potential leaf 

senescence (𝑃𝐿𝐴𝑆) following SUBSTOR-Potato (IBSNAT, 1993b).  

 𝑆𝐸𝑁𝐿𝐴𝑖 = 𝑆𝐸𝑁𝐿𝐴𝑖−1 + 𝑃𝐿𝐴𝑆 (3.5) 

where, 𝑆𝐸𝑁𝐿𝐴𝑖  is the normal leaf senescence at the current day (cm2 plant-1) and 𝑆𝐸𝑁𝐿𝐴𝑖−1 is 

the normal leaf senescence at the previous day. 𝑃𝐿𝐴𝑆 is calculated using the following equation: 

 𝑃𝐿𝐴𝑆 = (𝑃𝐿𝐴 − 𝑆𝐸𝑁𝐿𝐴𝑖−1) × (1 − 𝑚𝑖𝑛(𝑆𝐿𝐹𝑊, 𝑆𝐿𝐹𝐶, 𝑆𝐿𝐹𝑇, 𝑆𝐿𝐹𝑁))  (3.6) 

where, 𝑆𝐿𝐹𝑊, 𝑆𝐿𝐹𝐶, 𝑆𝐿𝐹𝑇 and 𝑆𝐿𝐹𝑁 are the stress factors (ranging from 0-1) for water, solar 

radiation, temperature and nitrogen (IBSNAT, 1993b). 

Second, the number of the leaves grown (XN), used to calculate potential leaf area (PLA) 

and leaf area index (LAI), is computed as a function of cumulative phyllochron intervals or fully 

expanded leaves (CUMPH) following the AROID-Taro model (Singh et al., 1998): 

  𝑋𝑁 = 𝐶𝑈𝑀𝑃𝐻 + 1.0 (3.7) 

where 𝐶𝑈𝑀𝑃𝐻 on the current day, 𝐶𝑈𝑀𝑃𝐻𝑖, is calculated from the previous day’s values, 

𝐶𝑈𝑀𝑃𝐻𝑖−1 , using Eq. (3.8).  

 𝐶𝑈𝑀𝑃𝐻𝑖 = 𝐶𝑈𝑀𝑃𝐻𝑖−1 + 𝐷𝑇𝑇/(𝑃𝐻𝐼𝑁𝑇 × 𝑃𝐶) (3.8) 

where 𝐷𝑇𝑇 is the daily thermal time, 𝑃𝐻𝐼𝑁𝑇 is the phyllochron interval (i.e., the number of 

GDD required for new leaf emergence, ̊C), 𝑃𝐶 is a factor that is used to calculate the phyllochorn 

interval for the current day.   

Third, Harvest Index (𝐻𝐼) in the model is computed as the ratio between total dry matter 

of the root (𝑌𝑖𝑒𝑙𝑑) and total dry matter of the entire sugarbeet (𝐵𝑖𝑜𝑚𝑎𝑠𝑠 × 10 + 𝑌𝑖𝑒𝑙𝑑) 
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following the SUBSTOR-Potato (IBASNAT, 1993b) and AROID-Taro models (Singh et al., 

1998). 

 𝐻𝐼 =  
𝑌𝑖𝑒𝑙𝑑

((𝐵𝑖𝑜𝑚𝑎𝑠𝑠×10)+𝑌𝑖𝑒𝑙𝑑)
 (3.9) 

The input data required to run the CSM-CERES-Beet model are standard inputs required 

by DSSAT. They include site information, daily weather (daily solar radiation (SRAD (MJ m-2)), 

daily maximum and minimum temperature (̊C), and daily precipitation (mm)), soil profile 

characteristics, initial soil condition, cultivar characteristics, and field management practices 

(Hunt et al 2001; Hoogenboom et al., 2012) The primary field management practices include 

sugarbeet planting date, planting depth, and plant density, fertilizer application date and rate, 

tillage, irrigation, and residue incorporation. 

The cultivar coefficients for the CSM-CERES-Beet model include 𝑃1, 𝑃2, 𝑃5, 𝐺2, 𝐺3 and 

𝑃𝐻𝐼𝑁𝑇. Their definitions and units are listed in Table 3.1, along with other relevant DSSAT 

model parameters. 
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Table 3.1. CSM-CERES-Beet parameters. 

Parameter Definition Unit DSSAT file 

 

Genetic parameters 

 

  

P1 

Growing Degree Days (GDD) from the 

seedling emergence to the end of the 

juvenile phase 

̊C-d .CUL 

P2 Photoperiod sensitivity hr-1 .CUL 

P5 
Thermal time from pennicle initiation to 

physiological maturity 
̊C-d .CUL 

G2 
Leaf expansion rate during leaf growth 

stage 
cm2 cm-2 d-1 .CUL 

G3 Maximum root growth rate g m-2 d-1 .CUL 

PHINT 

Phyllochron interval, the interval in thermal 

time between successive leaf tip 

appearances 

 

̊C-d .CUL 

Ecotype parameter 

 
  

RUE Radiation use efficiency 
g plant dry matter 

MJ PAR-1 

.ECO 

 

DSGFT GDD during effective root growth period ̊C-d .ECO 

Species parameter 

 
  

PARSR Photosynthetically active solar radiation 
MJ SRAD m-

2day-1 

.SPE 

 

DSGT 
Maximum days from sowing to germination 

before seed dies 
days 

.SPE 

 

DGET 

Growing degree days between germination 

and emergence after which the seed dies 

due to drought 

̊C-d 
.SPE 

 

SWCG 
Minimum available soil water required for 

seed germination 
cm3 cm-3 

.SPE 

 

Root parameters 

 
  

PORM 
Minimum porosity required for supplying 

oxygen to roots for optimum growth 
 .SPE 

RLWR Root length to weight ratio  
.SPE 

 

Soil parameter 

 
  

SLPF Soil fertility factor  .SOIL 
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3.3.2. Field Experiment and Data 

3.3.2.1. Carrington Research and Extension Center, North Dakota, USA  

CSM-CERES-Beet was first evaluated with experimental data collected at the Carrington 

Research Extension Center (CREC) (47.510N, -99.123W), Carrington, North Dakota (ND), 

USA. A specific cultivar of sugarbeet (proprietary materials from Betaseed, Shakoppe, MN, 

denoted as CREC in this Chapter) was cultivated in rotation with other crops (not shown) in a 

randomized complete block design with four replicates, testing the effects of crop rotation and 

tillage practices on soil health and water quality. Twelve plots (12.3 m × 15.2 m) were cultivated 

for sugarbeet production in 2014, 2015 and 2016 (Fig. 3.1) using recommended practices (Khan, 

2014). The plots illustrated with an upward slanted cell fill pattern were planted with sugarbeet 

in 2014; the plots with a downward slanted fill pattern were planted in 2015; the vertical slanted 

filled plots were planted in 2016; and the plots with horizontal lines were planted in all 3 years. 

The soil properties of the Carrington, ND experimental plots (Table 3.2) and field management 

data for 2014 and 2016 (Table 3.3) are provided. Soil texture was determined using the 

hydrometer method, while soil organic matter (OM) content was determined by loss of weight on 

ignition at 360 °C, and the salts by a conductivity meter in a 1:1 soil:water suspension. All lab 

analyses were conducted at the Agvise Laboratories, Northwood, ND. A strong damaging wind 

gust (~ 22.5 m s-1) occurred around 65 days after planting during the 2015 growing season (July 

28-29, 2015). Since CSM-CERES-Beet was not designed to simulate the damages caused by 

unexpected events such as strong wind gusts or freezing temperature, the field management data 

and model simulation results for 2015 are not discussed in the main text but provided in the 

appendix. The minimum weather inputs required to run the CSM-CERES-Beet were collected by 
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the North Dakota Agricultural Weather Network (NDAWN) station located at Carrington, ND, 

USA (47.509N, -99.132W). 

 

Figure 3.1. Schematic of field experimental plots planted for sugarbeet in: 2014 (upward slanted 

fill), 2015 (downward slanted fill), 2016 (vertical fill) and all 3 years (horizontal fill). 

Table 3.2. Average soil characteristics of the experimental plots at Carrington Research 

Extension Center, North Dakota, USA. 

Depth (cm) % Sand % Silt % Clay Soil Type % OM 
EC 

mmhos/cm 

0-15 45 34 21 Loam 4.0 0.16 

15-30 47 36 17 Loam 3.6 0.25 

30-45 49 28 23 Loam   

45-60 53 28 19 Sandy loam   

60-120 65 25 10 Sandy loam   
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Table 3.3. Field management for sugarbeet experimental plots at Carrington Research Extension 

Center, North Dakota, USA. 

Field management 2014 2016 

Planting date May 27 May 12 

Planting stand 74,000 seeds ha-1 

(29,959 seeds ac-1) 

74,000 seeds ha-1 

(29,959 seeds ac-1) 

Fertilizer N as Urea: 112.08 kg ha-1 (100 lbs ac-

1) 

P as MAP: 22.42 kg ha-1 (20 lbs ac-1) 

S as AS: 11.21 kg ha-1 (10 lbs ac-1) 

N as Urea: 112.08 kg ha-1 (100 lbs ac-

1) 

P as MAP: 22.42 kg ha-1 (20 lbs ac-1) 

S as AS: 11.21 kg ha-1 (10 lbs ac-1) 

Fertilizer application 

date 

May 26 May 11 

Harvesting October 17 October 11 

 

Each year, 6 out of 12 plots were randomly selected to collect plant growth data from. In 

each plot, eight sugarbeet plant were harvested to collect samples of leaf, stems, and roots 

periodically for top and root mass measurements. Sample fresh and dry weights were measured, 

and leaf numbers were counted. The Leaf Area Index (LAI) was measured for each selected plot 

using the ground-based measurement method based on radiative transfer theory (Hemayati and 

Shirzadi, 2011). Field data were collected at 4 or 5 different dates during the 2014 growing 

season, at 8 different dates in 2015, and at 9 different dates in 2016. The 2016 dataset was used 

for model calibration and the 2014 and 2015 (discussed in Appendix) datasets for model 

evaluation.  

3.3.2.2. Bucharest, Romania  

CSM-CERES-Beet was also evaluated using field data collected in Bucharest, Romania, 

in 1997 and 1998 for a different cultivar, i.e, Emma, and different environmental conditions to 

evaluate the model’s transferability. The Romanian dataset was used for the original CERES-

Beet model development (Leviel, 2000). The soils in the experimental sites were reddish- brown 

forest soil with silt-clay texture (38 % clay), and pH value of 6.8. The study region climate is 

continental, with average temperatures of -1.2°C during the winter, 10.4°C during the spring and 
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autumn, and 21.3°C during the summer. Annual average rainfall is 550 mm (Leviel et al., 2003). 

Sugarbeet was planted on 29th April, 1997 and 4th April, 1998 in five experimental plots of 42 m² 

area that comprised 14 rows of crop, with a 50 cm row spacing. The nitrogen fertilization rate 

was 300 kg N ha-1. Irrigation was also applied to obtain plant growth and yields under non-

limiting water conditions. Further details on the field experiment and the experimental data that 

were collected can be found in Leviel (2000). 

3.3.2.3. Sugarbeet Field Data for Yield Simulation 

The CSM-CERES-Beet model was further applied to simulate the yields of five different 

sugarbeet cultivars (proprietary seed materials from Betaseed, Shakopee, MN and Crystal Beet 

Seed, Moorhead, MN) grown in Prosper and Hickson, ND, in 2016. Both cities are within 240 

km (~150 miles) from Carrington, ND. The soil type is clay loam in Prosper, ND, and silt clay in 

Hickson, ND. This study was conducted to evaluate different sugarbeet cultivars from different 

seed companies. The planting rate was 150,237 seeds ha-1 (60,825 seeds ac-1) at both sites. Urea 

was applied at the rate of 24.66 kg ha-1 two days before plantation and no irrigation was applied.  

The same five cultivars were planted at both sites and CSM-CERES-Beet was first 

calibrated for different cultivars using the Prosper, ND field data and then evaluated using the 

Hickson, ND data. Only cultivar parameters were calibrated, while other parameters were kept as 

the same as those calibrated for the 2016 Carrington dataset.  

3.3.3. Model Calibration and Evaluation  

CSM-CERES-Beet model calibration was conducted using PEST (Parameter 

ESTimation), which is a model independent parameter estimation software package (Doherty, 

2010). The objective function to be minimized by PEST was expressed as: 

 𝜙(𝑏) = [𝑦 − 𝑦′(𝑏)]𝑇 𝑄[𝑦 − 𝑦′(𝑏)]  (3.10) 
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where 𝑄 is a weight matrix, 𝑦 is a vector of field observations, 𝑦′(𝑏) is a vector of model outputs 

from the CSM-CERES-Beet model, based on parameter vector 𝑏, and collocated with the 

observations in 𝑦, and 𝑇 indicates matrix transpose. Parameters that minimize this equation were 

attained by solving the normal equations using the Gauss-Marquardt-Levenberg (GML) gradient 

search algorithm (Doherty, 2010).  

The Carrington calibration dataset comprised 35 field observations divided into four 

different observation groups (leaf number count, LAI, and top and root weights). On a given 

sampling date, the field observation for each group was taken as the average of the data 

collected. The Bucharest calibration dataset comprised 32 observations grouped into three 

different observation groups (LAI, leaf weight, and root weights). Each observation group 

formed a component of the objective function (Eq. 3.10). An inter-group weighting strategy was 

defined using the PEST utility PWTADJ1 (Doherty and Welter, 2010) such that all the groups 

contributed equally to the objective function at the beginning of the estimation process. This 

ensured that each observation group contributed equally to the process, irrespective of the 

number of observations per group, units of measure, and other confounding factors.  

Fifteen parameters were selected for adjustment by PEST based on prior knowledge of 

the model, which included that the CSM-CERES-Beet model was sensitive to these parameters. 

For these 15 parameters, default values as well as lower and upper bounds were specified based 

on literature reviews. All the adjustable parameters were log-transformed to strengthen the linear 

relationships between parameters and model simulated values (Doherty and Hunt, 2010). The 

truncated singular value decomposition (SVD) regularization method was used to ensure 

numerical stability and the level of truncation was calculated automatically based on a stability 

criterion (Aster et al., 2005; Moore and Doherty, 2005; Tonkin and Doherty, 2005).  
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3.3.4. Evaluation of Model Performance 

Best parameter values obtained from inverse modeling were used to run CSM-CERES-

Beet, and prediction errors were calculated for the calibration and evaluation datasets. Model 

performances were evaluated by comparing the simulated and average observed values of the 

sugarbeet root mass, top mass, leaf number and LAI. Various statistics have been used to assess 

DSSAT performance (Timsina and Humphreys, 2006; Rinaldi et al., 2007; Yang et al., 2014), 

and reviewed by others (Kobayashi and Salam, 2000). However, each statistic addresses only a 

specific aspect of a model’s performance and no single statistic provides an overall model 

evaluation. We calculated both relative root mean square error (𝑟𝑅𝑀𝑆𝐸) and index of agreement 

(𝑑) as indicators of model fit. 𝑟𝑅𝑀𝑆𝐸 is the root mean square error normalized to the mean of 

the observed values (Eq. 3.11): 

 𝑟𝑅𝑀𝑆𝐸 =
√

1

𝑚
∑ (𝑦𝑖−𝑦𝑖

′)2𝑚
𝑖=1

|𝑦|
 (3.11) 

where, 𝑦 is the mean of the observed values, 𝑦𝑖 is the observed value, 𝑦𝑖
′ is the simulated value 

and 𝑚 is the number of observations. The index of agreement is estimated using Eq. (3.12): 

 𝑑 = 1 −
∑ (𝑦𝑖−𝑦𝑖

′)
2𝑚

𝑖=1

∑ (|𝑦𝑖
′−𝑦|+|𝑦𝑖−𝑦|)2𝑚

𝑖=1

 (3.12) 

where the symbols are defined as the same in Eq. (3.11). The value of d varies between 0 and 1, 

with higher values indicating better fit (Legates and McCabe, 1999). 

3.3.5. Predictive Uncertainty Analysis 

Predictive uncertainty analysis of CSM-CERES-Beet was also conducted using the 

utilities associated with PEST. First, the prior uncertainty was established using the RANDPAR 

utility, which was employed to generate 1000 random parameter sets based on the prior 

covariance matrix of the 15 adjustable CSM-CERES-Beet parameters. The prior covariance 
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matrix was constructed by assuming that model parameters are normally or log-normally 

distributed and that their bounds span their 95% confidence intervals (Doherty, 2013). Next, 

these 1000 random parameters sets were used to run CSM-CERES-Beet and the outputs of these 

model runs were used to compute the 95% confidence intervals (CI’s) of various model 

predictions. 

Second, the posterior uncertainty of CSM-CERES-Beet was explored using the null space 

Monte Carlo calibration-constrained method, facilitated through using the RANDPAR and 

PNULPAR utilities. The premise of the null space Monte Carlo method is that the parameter 

space can be properly decomposed into orthogonal “calibration solution space” and “calibration 

null space” (Moore and Doherty, 2005). In this method, many random realizations of parameter 

sets are first generated using the RANDPAR utility in conjunction with the prior parameter 

covariance matrix (Doherty, 2016b).  For each realization, the calibrated parameter field is then 

subtracted from the randomly generated parameter field.  The resulting parameter difference is 

projected into the calibration null space, and the projected difference is then re-added to the 

calibrated parameter field.  These steps are implemented using the PNULPAR utility. For the 

posterior uncertainty analysis of the calibrated CSM-CERES-Beet, we used the RANDPAR and 

PNULPAR utilities to create 1000 random calibration-constrained parameter sets. These 

parameter sets were then used to run CSM-CERES-Beet and the outputs of these model runs 

were used to calculate the 95% CI’s.  The readers are referred to Doherty (2007; 2016a, b) and 

Doherty et al. (2010) for details about the null space Monte Carlo analysis method and the uses 

of the RANDPAR and PNULPAR utilities.  
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3.4. Results and Discussion 

3.4.1. CSM-CERES-Beet Calibration/evaluation and Uncertainty Analysis 

For calibration of the CSM-CERES-Beet model with the 2016 field experimental data 

collected at Carrington, ND, USA, the final PEST run required 8 optimization iterations and 242 

model runs. Based on stability criterion, the number of singular values used in SVD was 7 on an 

iteration-by-iteration basis. It reduced the total objective function by 45% and total sum of 

weighted squared residuals by 16%. The parameter values obtained from model calibration were 

then used for model evaluation with the 2014 field data. Table 3.4 lists the goodness of fit 

statistics for model calibration (2016) and evaluation (2014).  

In terms of d-statistics, the model did very well for all four plant growth variables (i.e., 

LAI, leaf number, dry top weight and dry root weight).  All of the d values were greater than 

0.924 for both model calibration and evaluation. In terms of  𝑟𝑅𝑀𝑆𝐸, the model did very well 

for model calibration and reasonably well for model evaluation. Most rRMSE’s were less than 

0.3 except for LAI in 2014. 

Table 3.4. CSM-CERES-Beet model calibration and validation using the CREC (USA) dataset. 

Observation 

Group 
Index of agreement (d) 

Relative root mean square error 

(rRMSE) 

 Calibration (2016) Evaluation (2014) Calibration (2016) Evaluation (2014) 

Leaf area index 0.981 0.971 0.188 0.318 

Leaf number 0.974 0.924 0.127 0.168 

Top weight 0.971 0.975 0.203 0.276 

Root weight 0.987 0.993 0.228 0.194 

Note: CREC – Carrington Research and Extension Center. 

The graphical comparisons of the model-simulated and observed plant growth variables 

are also shown in Fig. 3.2 for 2016 and Fig. 3.3 for 2014, along with the prior and posterior 95% 

CI’s for model simulations of these plant growth variables. The model-simulated values in both 

2014 and 2016 tracked the median values of the observed variables except for leaf numbers in 
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2016, for which the CSM-CERES-Beet slightly over-predicted the median observed values for 

most of the growing season (Fig. 3.2(b))  

It is not surprising that the prior 95% CI’s are wider than the posterior ones for all model 

predictions (Fig. 3.2 and Fig. 3.3). The model calibration process was able to reduce model 

predictive uncertainties by constraining those model parameters that have significant bearing on 

model predictions into a narrower space (Moore and Doherty, 2005). It should be noted that only 

parametric uncertainty is considered in our predictive uncertainty analysis.  

It is also interesting to notice that the posterior CI’s of leaf number are narrower than 

those of other plant growth variables and yet CSM-CERES-Beet consistently over-predicted the 

leaf numbers almost throughout the entire growing season (see Fig. 3.2b). This implies that the 

model has false confidence in simulating sugarbeet leaf numbers and requires further testing with 

different data sets of data and might require further model improvement. CSM-CERES-Beet 

follows the AROID-Taro model (Singh et al., 1998) to simulate leaf numbers (Eq. (3.7) and 

(3.8)) because sugarbeet and taro have similar number of total leaves (approximately 22-30) per 

mature plant (Fick, 1971; Goenaga, 1995).  
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Figure 3.2. Model-simulated and observed values of (a) leaf area index (LAI), (b) leaf number, 

(c) top weight, and (d) root weight for model calibration (2016) and their 95% confidence 

intervals (CI’s). Notes: Observed values are plotted in the boxplots with the medians shown as 

the lines within the boxes, the 25th and 75th percentiles as the tops and bottoms of the boxes, and 

the 5% and 95% percentiles as the whiskers below and above the boxes.   

  

 

(a) (b) 

(c) (d) 
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Figure 3.3. Model-simulated and observed values of (a) leaf area index (LAI), (b) leaf number, 

(c) top weight, and (d) root weight for model validation (2014) and their 95% confidence 

intervals (CI’s). Notes: Observed values are plotted in boxplots with the medians shown as the 

lines within the boxes, the 25th and 75th percentiles as the tops and bottoms of the boxes, and the 

5% and 95% percentiles as the whiskers below and above the boxes. 

 3.4.2. CSM-CERES-Beet Transferability 

To examine CSM-CERES-Beet’s transferability, the model’s performance was also 

evaluated with the experimental data collected in Bucharest, Romania, in 1997 and 1998 (Table 

3.5). Two tests were performed. First, the model calibrated for the 2016 Carrington data was 

evaluated for the Bucharest 1997 and 1998 datasets. Secondly, the model was calibrated for the 

1997 Becharest data and evaluated for the Bucharest 1998 data. The goodness-of-fit statistics (d 

and rRMSE) for each case are shown in Table 5. The first set of d and rRMSE values (Columns 2 

(a) (b) 

(c) 
(d) 
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& 4) were calculated when the model was calibrated with the 2016 Carrington dataset, while the 

second set of d and rRMSE values (Columns 3 & 5) were calculated when the model was re-

calibrated with the 1997 Bucharest dataset.  

Table 3.5. CSM-CERES-Beet model evaluation using the Bucharest (Romania) dataset.  

Observation 

Group 
Index of agreement (d) 

Relative root mean square error 

(rRMSE) 

 

1997 data 

 

 

Calibrated with 

2016 Carrington 

data  

Calibrated with 

1997 Bucharest 

data 

Calibrated with 

2016 Carrington 

data  

Calibrated with 

1997 Bucharest 

data 

Leaf area index 0.974 0.980 0.227 0.202 

Leaf weight 0.860 0.917 0.541 0.428 

Root weight 0.902 0.983 1.014 0.356 

 

1998 data 

 

 

Calibrated with 

2016 Carrington 

data 

Calibrated with 

1997 Bucharest 

data 

Calibrated with 

2016 Carrington 

data 

Calibrated with 

1997 Bucharest 

data 

Leaf area index 0.967 0.912 0.533 0.394 

Leaf weight 0.836 0.783 0.351 0.566 

Root weight 0.979 0.955 0.257 0.424 

 

Two observations may be made after inspecting the goodness of fit statistics in Table 3.5. 

First, the CSM-CERES-Beet model was able to match the Bucharest dataset reasonably well 

regardless of which dataset was used to calibrate the model. The d statistics were all greater than 

0.85, except for the 1998 Bucharest leaf weight. Most rRMSE but four were less than 0.5. 

Second, CSM-CERES-Beet only performed slightly better when it was calibrated using the 1997 

Bucharest dataset compared to calibration using the 2016 Carrington dataset.   

The graphical comparison of model-simulated with the observed plant growth variables 

for the Bucharest dataset is shown for 1997 in Fig. 3.4 and for 1998 in Fig. 3.5. In 1997, the 

model performed exceptionally well in simulating LAI, for which the model calibrated with the 
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Carrington dataset performed even better than the one calibrated with the Bucharest dataset (Fig. 

3.4a). However, both models consistently under-predicted leaf weight late in the season (Fig. 

3.4b). The model calibrated with the Carrington dataset over-predicted the root weight almost 

throughout the growing season, while the model calibrated with the Bucharest dataset did very 

well (Fig. 3.4c). This is not surprising because the cultivars were different in these two 

experiments and genetic coefficients derived for the CREC cultivar were different than those 

calibrated for the Emma cultivar planted in Bucharest (Table 3.6). In 1998, the model did better 

in terms of simulating leaf weight (Fig. 3.5b, but under-predicted LAI after leaf senescence later 

in the season (Fig. 3.5a). Both calibrations did reasonably well in terms of simulating root weight 

(Fig. 3.5c).  
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Figure 3.4. Graphical comparisons of model-simulated and observed values of (a) leaf area 

index, (b) leaf weight, and (c) root weight in 1997 (Bucharest, Romania). 
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Figure 3.5. Graphical comparisons of model-simulated and observed values of (a) leaf area 

index, (b) leaf weight, and (c) root weight in 1998 (Bucharest, Romania). 

A comparison of the parameter values calibrated with the 2016 Carrington and the 1997 

Bucharest datasets is shown in Table 3.6. Out of the 15 adjustable parameters, five parameters 

had taken different values when CSM-CERES-Beet was calibrated for the two different 

cultivars. The parameters with different values are italicized in Table 3.6. Four parameters (i.e., 

𝑃1, 𝐺2, 𝐺3, and 𝑃𝐻𝐼𝑁𝑇) are genetic parameters that are expected to vary by cultivar and 𝑅𝑈𝐸 

(radiation use efficiency) is a parameter that is expected to be different for different ecotypes 

within a species.  Table 3.6 shows that the CREC sugarbeet cultivar required smaller values for 

𝑃1 (thermal time from emergence to end of juvenile phase) and 𝑃𝐻𝐼𝑁𝑇 (phyllochron interval) 

than the Emma sugarbeet cultivar, indicating that the CREC cultivar requires less time to 
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complete its first stage of growth (emergence to end of juvenile phase) and less thermal time 

between successive leaf tip emergence. Compared to the Emma cultivar, the CREC cultivar 

required greater values for G2 (leaf expansion rate) and G3 (maximum root growth rate), 

indicating greater leaf expansion and root growth for the CREC cultivar. The CREC cultivar also 

has greater values for RUE. Leviel (2000) found 𝑅𝑈𝐸 values ranged from 2.47 to 4.2 gMJ-1 

among sugarbeet cultivars, but the reasons are not well understood (Li et al., 2002). These results 

indicate that the CSM-CERES-Beet model can be used for different environments and climates, 

however, genetic coefficients must be developed for each cultivar (see also Confalonieri et al., 

2016).  

Table 3.6. CSM-CERES-Beet calibrated parameters for the two study sites.  

Parameter (unit) 
Initial 

value 

Lower 

bound 

Upper 

bound 

Calibrated values 

by the CREC 

dataset 

Calibrated values 

by the Bucharest 

dataset 

P1 (̊̊ C-d) 920 920 1100 940 969 

P2 (hr-1) 0.001 0.00 0.01 0.001 0.001 

P5 (C̊-d) 700 660 900 700 730 

G2 (cm2 cm-2d-1) 170 160 220 220 160 

G3 (g m-2day-1) 20 20 50 37.5 25.2 

PHINT (̊C) 38.9 38 49 42.0 43.4 

RUE (g plant dry matter 

MJ PAR-1) 
2.8 2.8 4.2 3.7 3.3 

DSGFT ( ̊C-d) 170 160 200 170 170 

PARSR (MJ SRAD m-2 

day-1) 
0.48 0.46 0.52 0.52 0.52 

DSGT (days) 40 35 45 40.0 40.0 

DGET (C̊) 150 140 160 150 150 

SWCG (cm3 cm-3) 0.02 0.01 0.04 0.02 0.02 

PORM (unitless) 0.05 0.01 0.10 0.05 0.05 

RLWR (unitless) 0.82 0.82 1.82 0.84 0.84 

SLPF (unitless) 1 0.7 1 1 1 

3.4.3. Sugarbeet Yield Simulation 

The calibrated CSM-CERES-Beet model can be used to simulate sugarbeet yield. Figure 

3.6 compares the model-simulated and observed yields for the sugarbeet planted in Carrington, 
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ND research plots, including the year 2015 which had a significant windstorm event that 

damaged the crop. The observed yields were the average fresh yields harvested from the twelve 

experimental plots. The CSM-CERES-Beet model output sugarbeet yields in terms of dry 

weight, which was converted into fresh yields assuming 82% moisture content in the beets. The 

model-simulated yield standard deviations were estimated based on prior uncertainty analysis 

described above. Figure 3.6 shows that the CSM-CERES-Beet model was able to closely 

simulate sugarbeet yield for 2014 and 2016. However, the model over-estimated sugarbeet yield 

for 2015, primarily because of the wind gust damage that occurred early in the growing season of 

2015 and resulted in lower observed yield for 2015.  

 

Figure 3.6. Observed and simulated yields of sugarbeet planted in Carrington Research and 

Extension Center, North Dakota, USA. Note: the vertical bars are average observed or model-

simulated yields and the short horizontal lines are standard deviations.  

The CSM-CERES-Beet model was also applied to simulate the yields of five different 

sugarbeet cultivars grown in Prosper and Hickson, ND, in 2016. The average observed and 

model-simulated yields for these five sugarbeet cultivars and the CREC cultivar planted in 2014-
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2016 are shown in Fig. 3.7. Figure 3.7a compared the observed vs. simulated yields for the six 

cultivars for model calibration, while Fig. 3.7b shows the yield comparison for model evaluation. 

The fact that the simulated vs. observed yields fall on or close to the 1:1 line (R2= 0.987 for 

calibration and R2= 0.933 for evaluation) is a good indication of CSM-CERES-Beet’s capability 

of simulating yields for different sugarbeet cultivars. Calibrated genetic parameters for the five 

cultivars used in Prosper and Hickson, ND are given in Table 3.7.  

  

Figure 3.7. Observed and simulated sugarbeet yields with CSM-CERES-Beet model for (a) 

model calibration, and (b) model evaluation for six sugarbeet cultivars planted in North Dakota, 

USA in 2014-2016. 

Table 3.7. Genetic parameters for the five cultivars used in Prosper and Hickson, ND. 

Parameter 

(unit) 
Cultivar A Cultivar B Cultivar C Cultivar D Cultivar E 

P1 (̊̊C-d) 940 990 990 960 970 

P2 (hr-1) 0.000 0.000 0.000 0.000 0.000 

P5 (C̊-d) 700 730 700 700 700 

G2 (cm2 cm-2d-1) 220 220 170 170 220 

G3 (g m-2day-1) 37.5 33.5 27.5 37.5 32.5 

PHINT (C̊) 38.90 43 43 39 43.40 

3.5. Conclusions 

CSM-CERES-Beet, the DSSAT compatible sugarbeet model, was developed based on 

modifications of the CERES-Beet. The model was evaluated against two sets of plant growth 

(a) (b) 
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data collected for different sugarbeet cultivars grown in two different regions and under different 

conditions – one in Romania (Southeastern Europe) during 1997-1998 and the other in North 

Dakota, USA (North America) during 2014-2016. After calibrating model parameters for 

specific cultivars, CSM-CERES-Beet performed well in simulating LAI, leaf number, leaf or top 

weight, and root weight for both datasets. The CSM-CERES-Beet model was also successfully 

applied to simulate the yields for five different sugarbeet cultivars grown in North Dakota, USA 

in 2016, with a range of observed yields between 56,670 to 82,719 kg/ha. The evaluation for the 

model’s transferability suggested that the model’s genetic parameters should be re-calibrated 

when CSM-CERES-Beet is used to simulate different sugarbeet cultivars.  

One limitation about the model is that uncertainty analysis revealed that the calibrated 

CSM-CERES-Beet consistently over-predicted leaf numbers with false confidence (i.e., small 

confidence intervals), although it did not affect the model’s capabilities in simulating sugarbeet’s 

yield. In the future, the developed model will be applied to simulate sugarbeet production under 

different management scenarios for different soils and under different climatic conditions in the 

Red River Valley. As the sugarbeet production may be expanded into the nontraditional planting 

areas in the region due to potential demand for biofuel production, the DSSAT model enhanced 

with the new sugarbeet module can be used to assess the associated environmental impacts. 
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CHAPTER 4. ANALYSIS OF PARAMETER SENSITIVITY AND IDENTIFIABILITY 

OF ROOT ZONE WATER QUALITY MODEL (RZWQM) FOR DRYLAND 

SUGARBEET MODELING2  

4.1. Abstract 

Sugarbeet is being considered as one of the most viable feedstock alternatives to corn for 

biofuel production since herbicide-resistant energy beets were deregulated by the USDA in 2012. 

Growing sugarbeets for biofuel production may have significant impacts on soil health and water 

quality in the north-central regions of the U.S., where 50% of the nation’s total sugarbeets were 

produced in 2015. Almost all the current sugarbeet models simulate only plant growth and yield 

but have no capability to simulate the effects of sugarbeet production on soil and water quality. 

The Root Zone Water Quality Model (RZWQM) is a widely used model that simulates crop 

yield, water flow, and transport of salts and nitrogen in crop fields. RZWQM is currently linked 

to 23 specific crop models in the Decision Support System for Agrotechnology Transfer 

(DSSAT) version 4.0, not including a sugarbeet model. In this study, the Crop and Environment 

REsource Synthesis (CERES) in RZWQM was adapted for sugarbeet simulation to model the 

soil and water quality impact of sugarbeet for biofuel production. The Beet model was then 

evaluated against dryland sugarbeet production at the Carrington Research and Extension Station 

(North Dakota) in 2014 and 2015. The PEST (Parameter ESTimation) tool in RZWQM was used 

for parameter estimation and sensitivity and identifiability analysis. The model did reasonably 

well in both 2014 (𝑑-statistic = 0.709 to 0.992; 𝑟𝑅𝑀𝑆𝐸 = 0.066 to 1.211) and 2015 (𝑑-statistic = 

                                                 
2 This article is co-authored by Mohammad J. Anar, Zhulu Lin, Liwang Ma, Patricia N. Bartling, Jasper M. Teboh, 

and Michael Ostlie. Mohammad J. Anar had the primary responsibility for model development, incorporation, 

evaluation and write up. Dr. Zhulu Lin helped in model evaluation, result analysis, and article write up. Drs. Liwang 

Ma and Patricia N. Bartling helped in model incorporation and result analysis and proof reading. Drs. Jasper M. Teboh 

and Michael Ostlie helped in field experiment and proof reading. 
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0.733 to 0.990; 𝑟𝑅𝑀𝑆𝐸 = 0.043 to 0.930) in terms of simulating leaf area index, top weight, root 

weight, soil water content, and soil nitrates. Under dry conditions, the most sensitive soil 

parameters were soil bulk densities and saturated hydraulic conductivities in different layers. 

Identifiability analysis also showed that three to five model parameters may be identifiable by 

calibration datasets. RZWQM enhanced with a sugarbeet module and its parameter analysis can 

be used for water use optimization under dryland conditions.  

Keywords: Biofuels, CERES, DSSAT, RZWQM, Sugarbeet. 

4.2. Introduction 

Biofuel is defined as any fuel source that is derived from biomass and can be used to 

produce heat, electricity, or transportation fuel (Wang et al., 2011). Based on their potential to 

reduce net greenhouse gas (GHG) emission, the Energy Independence and Security Act (EISA) 

of 2007 classified biofuels into three categories called conventional, advanced, and cellulosic 

biofuels, offering 20%, 50%, and 60% reduction in GHG emission respectively. Currently, 97% 

of the biofuels produced in the U. S. are corn-based ethanol, which may offer up to 40% 

reduction in GHG emission when compared with gasoline on an equivalent energy basis 

(Hettinga et al., 2009; Wang et al., 2011; Canter et al., 2016; Flugge et al., 2017). Two crops, 

sugarbeet (Beta vulgaris) and sugarcane (Saccharum officinarum), are currently considered to be 

uniquely qualified as “advanced biofuels” under the EISA of 2007 (Jessen, 2011). In addition, 

compared to corn, the use of non-food grade sugarbeets (or “energy beets”) for biofuel 

production has less impact on food supply (Maung and Gustafson, 2011; Nahar and Pryor, 2013; 

Vargas-Ramirez et al., 2013). 

Sugarbeet is grown in a wide range of temperate climatic conditions and in a wide variety 

of soils ranging from sandy to clay, silty clay or silty clay loam soils with high organic matter 
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and/or high clay content (Cattanach, 1991). In the U.S., sugarbeet is grown in 11 states spreading 

across four regions – Michigan in the Great Lakes region, Minnesota and North Dakota in the 

Upper Midwest region, Colorado, Montana, Nebraska, and Wyoming in the Great Plains region, 

and California, Idaho, Oregon, and Washington in the Far West region (USDA/ERS, 2016). In 

2015, about 50% of the nation’s total sugarbeets were produced in the Red River Valley (RRV) 

of western Minnesota and eastern North Dakota and its vicinity, while another 34% was 

harvested in Idaho and Michigan (USDA/ERS, 2016). 

It is reported that sugarbeet is the most utilized sucrose containing feedstock for 

commercial biofuel production in European countries (Grahovac et al., 2011; Nahar and Pryor, 

2013; Vargas-Ramirez et al., 2013). In contrast, there is no history of biofuel production from 

sugarbeets in the U.S. Hence, tremendous opportunities exist to expand sugarbeet production 

into the nontraditional sugarbeet planting areas in the U.S. and models can be very useful in 

understanding sugarbeet growth processes in the nontraditional planting areas and their effect on 

soil health and water quality. 

A number of crop models have been developed to describe sugarbeet’s growth and yield 

production. Models based on empirical relationships include PIEteR (Biemond et al, 1989; Smit 

et al., 1993), LUTIL (Spitters et al., 1989, 1990) and the model developed by Modig (1992). 

Examples of process-based models include SUBGRO (Fick et al., 1971), SUBGOL (Hunt, 

1974), SUCROS (Spitters et al., 1989), CERES-Beet (Leviel, 2000), Broom’s Barn (Qi et al., 

2005), Green Lab (Vos et al., 2007), Pilote (Taky, 2008), and the model developed by Webb et 

al. (1997), etc. Excellent reviews of sugarbeet models were provided by Vandendriessche and 

Ittersum (1995) and Baey et al. (2014). However, all these models, except SIMBEET (Lee, 

1983), simulate only plant growth and yield of sugarbeet and do not simulate agricultural 



 

66 

management effects on soil and water quality (see also Ma et al., 2012). One approach is to 

incorporate a sugarbeet growth model into the Root Zone Water Quality Model (RZWQM) to 

study the plant-soil-water interactions in sugarbeet fields. 

RZWQM, developed by USDA Agricultural Research Service, is a process-based, one-

dimensional, subsurface model based on the knowledge acquired of the physical, chemical, and 

biological processes in the root zone. It has been widely used for simulating agricultural 

management effects on crop production and soil health and water quality (Jaynes and Miller, 

1999; Ahuja et al., 2000; Saseendran et al., 2007; Malone et al., 2010; Ma et al., 2012). 

RZWQM2 is a significant upgrade from the earlier version of RZWQM (Ma et al., 2012). It 

incorporates surface energy balance from the SHAW (Simultaneous Heat and Water) model 

(Flerchinger et al., 2012) and the crop-specific growth modules from DSSAT (Decision Support 

System for Agrotechnology Transfer) (Jones et al., 2003). But, it currently does not include a 

sugarbeet module. A new CSM (Crop System Module)-CERES-Beet model has been recently 

incorporated into DSSAT by adopting CERES-Beet (Leviel, 2000; Anar et al., 2015), which can 

be readily linked to RZWQM2 (Anar and Lin, 2016). Therefore, the objectives of this study are 

1) to calibrate and validate RZWQM2 for modeling crop growth and soil water and nitrate 

contents in dryland sugarbeet fields, and (2) to evaluate the sensitivity and identifiability of 

RZWQM2 model parameters related to sugarbeet modeling using the Parameter Estimation 

(PEST) software (Doherty, 2005; 2010; 2016 a,b; Necpálová et al., 2015). 

4.3. Materials and Methods 

4.3.1. RZWQM and CSM-CERES-Beet 

Two approaches may be taken to develop a new crop growth module in RZWQM2 for 

sugarbeet. One is to parameterize the generic plant growth module in RZWQM2 for sugarbeet. 
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The other is to develop a crop specific plant growth module for sugarbeet in DSSAT, which, in 

turn, may be linked to the plant growth module of RZWQM2. Since no model was available in 

DSSAT for sugarbeet, Anar et al. (2015) modified and incorporated CERES-Beet (Leviel, 2000) 

into DSSAT 4.6.1 and the resultant sugarbeet model is termed CSM-CERES-Beet. Baey et al. 

(2014) showed that CERES-Beet provided an overall good prediction for plant growth and yield 

for sugarbeets after comparing CERES-Beet with four other sugarbeet models, namely, 

GreenLab (Vos et al., 2007), LNAS (Cournede et al., 2013), STICS (Brisson et al., 1998), and 

Pilote (Taky, 2008). 

CSM-CERES-Beet is a daily step process-based model, simulating a number of processes 

such as phenological development, growth of leaves, stems and roots, biomass accumulation and 

partition, soil water and nitrogen transformations, nitrogen uptake and partitioning among plant 

components (Leviel, 2000). CSM-CERES-Beet considers sugarbeet as an annual crop for beet 

production purposes and classified the phenology into four events: sowing, germination, 

emergence and harvest. In CSM-CERES-Beet, crop growth stages are distinguished based on 

degree-day threshold parameters (i.e. P1, P5, PHINT) with a base temperature of 3° C. During 

the early growth stages, 15 to 40 % of the daily dry matter produced is partitioned into root. 

After the full canopy development, 85% of the daily dry matter produced is partitioned into root 

tuber formation (Milford et al., 1988; Leviel, 2000). Final marketable sugarbeet yield is 

computed from total root dry matter assuming that 95% of root is harvested, and that roots have 

82% moisture content (Leviel, 2000). CSM-CERES-Beet was calibrated and validated using 

PEST (Doherty, 2016 a,b) against two sets of plant growth data collected for different sugarbeet 

varieties grown in two different regions – one in Romania and the other in North Dakota, USA 
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(see also Anar et al., 2015). CSM-CERES-Beet was then readily linked to RZWQM2 (version 

4.0 beta) to model sugarbeet production and its impact on soil and water quality. 

4.3.2. Field Experiment 

Field experiments for dryland sugarbeet cultivation were conducted at the Carrington 

Research Extension Center (CREC), Carrington, North Dakota, USA (Lat. 47.510, Long. -

99.123). CREC is located outside of RRV and is considered a nontraditional sugarbeet planting 

area. A specific cultivar of sugarbeet (proprietary materials from Betaseed, Shakoppe, MN) bred 

for biofuel purposes was cultivated in rotation with wheat, corn and soybeans (not shown) in a 

randomized complete block design with four replicates for testing the effects of crop rotation and 

tillage on soil health and water quality. A total of twelve plots with dimensions of 12.19 m × 

15.24 m (40 ft × 50 ft) were cultivated for dryland sugarbeet production. Soils of the 

experimental plots were loamy with an average pH of 7.0. Plots that were used for sugarbeet 

cultivation are shown in Fig. 4.1. Plots planted with sugarbeet in 2014 are shown with upward 

slanted fill, whereas those in 2015 are shown in downward slanted fill. Plots with horizontal fill 

were planted with sugarbeet in both 2014 and 2015. Field management data and soil profiles are 

provided in Tables 4.1 and 4.2. Soil texture was determined using the hydrometer method, while 

soil organic matter (OM) content was determined by loss of weight on ignition at 360 °C, and the 

salts by a conductivity meter in a 1:1 soil:water suspension. All lab analyses were conducted at 

the Agvise Laboratories, Northwood, ND. The weather data required to run RZWQM2 were 

collected from North Dakota Agricultural Weather Network (NDAWN) station located at 

Carrington, North Dakota, USA (Lat. 47.509, Long. -99.132). The required weather files (i.e., 

.met, .brk, and .sno) were then generated using RZWQM2’s weather generation wizard. 
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Figure 4.1. Schematic of field experimental plots planted with sugarbeet in: 2014 (upward 

slanted fill), 2015 (downward slanted fill), and both 2014 and 2015 (horizontal fill).  

Table 4.1. Field management for sugarbeet experimental plots at Carrington Research Extension 

Center, North Dakota, USA. 

Field management 2014 2015 

Planting date 27 May 1 June 

Planting density 98,842 seeds ha-1 (40,000seeds ac-1) 122, 932 seeds ha-1 (49,749 seeds ha-1) 

Fertilizer 

N as Urea: 112.08 kg ha-1 (100 lb ac-1) 

P as MAP: 22.42 kg ha-1 (20 lb ac-1) 

S as AS: 11.21 kg ha-1 (10 lb ac-1) 

N as Urea: 112.08 kg ha-1 (100 lb ac-1) 

P as MAP: 22.42 kg ha-1 (20 lb ac-1) 

S as AS: 11.21 kg ha-1 (10 lb ac-1) 

Fertilizer 

application date 
26 May 31 May 

Harvesting 17 Oct. 17 Oct. 

Table 4.2. Average soil characteristics of the experimental plots at Carrington Research 

Extension Center, North Dakota, USA. 

Depth 

(cm) 

% Sand % Silt % Clay Soil Type % 

OM 

EC 

(mmhos cm-1) 

0-15 45 34 21 Loam 4.0 0.16 

15-30 47 36 17 Loam 3.6 0.25 

30-45 49 28 23 Loam   

45-60 53 28 19 Sandy loam   

60-120 65 25 10 Sandy loam   
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Each year, 6 out of 12 plots were randomly selected to collect plant growth data. In each 

plot, eight sugarbeet plants were harvested for sampling of leaves, stems, and roots periodically. 

Both fresh weight and dry weights of the samples were measured. Leaf Area Index (LAI) was 

measured using the indirect ground-based measurement method based on radiative transfer 

theory (Breda, 2003). Soil water content (SWC) and soil nitrate concentration data were also 

collected from a number of different plots. Five plots in 2014 and 8 plots in 2015 were selected 

for SWC and soil nitrate data collection. Soil water contents in four different soil layers (0-15, 

15-30, 30-45, and 45-60 cm) were measured using in-situ neutron probes (Troxler, NC). Soil 

samples were also analyzed in laboratory periodically for soil profile nitrate concentrations in the 

four different layers. 

4.3.3. Parameter Estimation 

Nonlinear regression methods as implemented in PEST were used to estimate model 

parameters of RZWQM2 for sugarbeet modeling. Nonlinear regression method involves 

estimation of model parameters by minimizing an objective function using iterative optimization. 

The process ends when the objective function reaches a minimum value (Doherty, 2010). The 

objective function is expressed in general form as (Doherty, 2010): 

 Ф(𝑏) = [𝑦 − 𝑦′ (𝑏)]𝑇𝑄[𝑦 − 𝑦′(𝑏)] (4.1) 

where, 𝑄 is a weight matrix, 𝑦 is a vector of observations, 𝑦′(𝑏) is a vector of simulated values 

produced by the model based on parameter vector 𝑏, and 𝑇 indicates matrix transpose. Both y and 

𝑦′(𝑏) should have the same dimension. Parameters that minimize this equation are attained by 

solving the normal equations using the Gauss-Marquardt-Levenberg (GML) gradient search 

algorithm (Doherty, 2010). 
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The calibration dataset comprises 65 observations divided into 5 different observation 

groups: LAI (4), top weight (4), root weight (5), soil water content (32), and soil profile NO3--N 

content (20) (Table 4.3). On a given sampling date, the field observation for each group was 

taken as the average of the data collected. Each observation group formed a component of the 

objective function (Eq. 4.1). An inter-group weighting strategy was defined using the PEST 

utility PWTADJ1 (Doherty and Welter, 2010) such that all the groups contributed equally to the 

objective function at the beginning of the estimation process, irrespective of the number of 

observations per group, units of measurement, and other confounding factors. 

Table 4.3. Field observations included in RZWQM2 calibration and validation. 

Observation group (unit) Data source No. of 

observations 

(2014) 

No. of 

observations 

(2015) 

Leaf area index (unitless) Ground-based measurement 4 8 

Top weight (kg ha-1) Harvested top plant parts 4 8 

Root weight (kg ha-1) Harvested root 5 8 

Soil water content (cm3 cm-3) Neutron probe readings 32 24 

Soil profile nitrate (μg g-1) Laboratory analysis 20 20 

 

The twenty-seven parameters to be adjusted by PEST were selected based on prior 

sensitivity analyses of the model (Table 4.4). These adjustable parameters are anticipated to 

affect sugarbeet growth, soil water content, and nitrate concentrations in soils. For these 27 

adjustable parameters, initial values as well as lower and upper bounds were specified based on a 

literature review. All the adjustable parameters were log-transformed to strengthen the linear 

relationships between parameters and model simulated values (Doherty and Hunt, 2010). The 

truncated singular value decomposition (SVD) regularization method was used to ensure 

numerical stability (Aster et al., 2005; Moore and Doherty, 2005; Tonkin and Doherty, 2005; 

Nolan et al., 2011). 
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Table 4.4. RZWQM2 parameters adjusted by PEST for sugarbeet modeling. 

Parameter Definition Unit Depth 

(cm) 

Initial 

value 

Lower 

bound 

Upper 

bound 

Estimated 

value 

BD1 Bulk density g cm-3 0-15 1.531 1 2 1.438 

BD2 Bulk density g cm-3 15-30 1.084 1 2 1.091 

BD3 Bulk density g cm-3 30-45 1.102 1 2 1.106 

BD4 Bulk density g cm-3 45-60 1.000 1 2 1.00 

BD5 Bulk density g cm-3 60-90 1.793 1 2 1.873 

Ks1 Saturated hydraulic 

conductivity 

cm h-1 0-15 1 1 20 1.18 

Ks2 Saturated hydraulic 

conductivity 

cm h-1 15-30 1 1 20 1.04 

Ks3 Saturated hydraulic 

conductivity 

cm h-1 30-45 2 1 20 3 

Ks4 Saturated hydraulic 

conductivity 

cm h-1 45-60 2 1 20 3 

Ks5 Saturated hydraulic 

conductivity 

cm h-1 60-90 2 1 20 3 

P1 Growing Degree Days 

(GDD) from the 

seedling emergence to 

the end of the juvenile 

phase 

̊C d  950 950 1100 970 

P2 Photoperiod 

sensitivity 

  0.001 0.00 0.01 0.001 

P5 Thermal time from 

pennicle initiation to 

physiological maturity 

̊C d  700 660 900 700 

G2 Maximum possible 

seed growth number 
  900 700 1000 900 

G3 Seed filling rate 

during the linear 

vegetative filling stage 

mg 

seed-

1d-1 

 5.5 1 100 5.5 

PHINT Phyllochron interval, 

the interval in thermal 

time between 

successive leaf tip 

appearances 

̊C d  38.9 38 49 38.9 

RUE Radiation use 

efficiency 

g MJ-1  2.8 2.8 4.2 3.3 

PARSR Photosynthetically 

active solar radiation 

MJ m-2 

d-1 
 0.48 0.46 0.52 0.52 

SDSZ Maximum potential 

seed size 

mg 

seed-1 
 0.275 0.25 0.30 0.275 
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Table 4.4. RZWQM2 parameters adjusted by PEST for sugarbeet modeling (continued). 

Parameter Definition Unit Depth 

(cm) 

Initial 

value 

Lower 

bound 

Upper 

bound 

Estimated 

value 

RSGR Relative seed growth 

rate below which plant 

may mature early 

mg d-1  0.10 0.10 0.20 0.10 

RSGRT Number of 

consecutive days 

relative seed growth 

rate is below RSGR 

that triggers early 

maturity 

d  1 0.01 2 1 

CARBOT Number of 

consecutive days 

CARBO is less than 

.001 before plant 

matures due to 

temperature, water or 

nitrogen stress 

d  7 5 8 7 

DSGT Maximum days from 

sowing to germination 

before seed dies 

d  40 35 45 40 

DGET Growing degree days 

between germination 

and emergence after 

which the seed dies 

due to drought 

̊C d  150 140 160 150 

SWCG Minimum available 

soil water required for 

seed germination 

cm3 

cm-3 
 0.02 0.01 0.04 0.02 

PORM Minimum porosity 

required for supplying 

oxygen to roots for 

optimum growth 

  0.05 0.01 0.10 0.04 

RLWR Root length to weight 

ratio 
  0.82 0.82 1.82 0.84 

 

4.3.4. Parameter Correlation, Sensitivity and Identifiability 

Pre-calibration parameter correlations were obtained from the correlation coefficient 

matrix by employing a standard GML parameter estimation method implemented in PEST. The 

relative composite sensitivity of each parameter with respect to each observation group and the 
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entire calibration dataset at the beginning of the parameter estimation process was calculated 

based on the magnitude of the column of the Jacobian matrix corresponding to the ith parameter 

with each entry in that column multiplied by the squared weight associated with that observation 

group and the absolute value of that parameter using Eq. (4.2):  

 𝑠𝑖 = √(𝐽𝑇𝑄𝐽)𝑖𝑖 × |𝑣𝑖| (4.2) 

where 𝐽 is the Jacobian matrix, 𝑄 is the diagonal matrix whose elements are comprised of the 

squared weights of the observation, and |𝑣𝑖| is the absolute value of the parameter. The sensitivities 

of a parameter represent the amount of change in the model-simulated values per unit change in a 

parameter’s value (Poeter and Hill, 1997). 

Parameter identifiability represents the calibration dataset’s ability to constrain model 

parameters (Doherty and Hunt, 2009) and it is usually obtained through SVD of the weighted 

Jacobian matrix calculated based on initial parameter values (Necpálová et al., 2015). The 

premise is that the parameter space of a model can be properly decomposed into orthogonal 

“calibration solution space” and “calibration null space” (Moore and Doherty, 2005). The 

calibration solution space is a subset of parameter space comprising combinations of parameters 

that can be estimated uniquely by the calibration dataset, whereas the calibration null space can 

be thought of as combinations of parameters that cannot be estimated by the calibration dataset 

(Doherty and Hunt, 2009).  

Therefore, the identifiability of a parameter describes the degree to which that parameter 

can be determined uniquely by relating the contributions of each adjustable parameter to any of 

the eigenvectors spanning the calibration solution space. Since eigenvectors are normalized, the 

largest value of a parameter’s contribution to an eigenvector is 1.0. Parameters with low 

identifiability cannot be estimated because they have a large projection onto the calibration null 
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space, due to correlation with other parameters or low sensitivity to all observations. In contrast, 

parameters with an identifiability value of 1.0 can be uniquely estimated because they are 

entirely projected onto the calibration solution space. The identifiability of the ith parameter is 

calculated as the sum of the squared ith components of all eigenvectors spanning the calibration 

solution space (Doherty, 2010).  

In this study, the boundary between the calibration solution and null spaces was set at a 

specific singular value calculated using the SUPCALC utility (Doherty and Hunt, 2009; Doherty, 

2016b). PEST utility IDENTPAR was then used to compute the parameter identifiability for each 

of the observations (Doherty, 2016b). The number of singular vectors used to compute 

identifiability differed between the observation groups from 4 to 11 by means of the different 

number of field observations. Parameters with identifiability greater than 0.7 were considered to 

be identifiable with the available calibration dataset (Nolan et al., 2011; Necpálová et al., 2015). 

4.3.5. Model Evaluation 

Best parameters obtained from inverse modeling using 2014 dataset were validated with 

data from 2015. We calculated both relative root mean square error (𝑟𝑅𝑀𝑆𝐸) and index of 

agreement (𝑑) as indicators of goodness of fit. The 𝑟𝑅𝑀𝑆𝐸 is the root mean square error 

normalized to the mean of the observed values: 

 𝑟𝑅𝑀𝑆𝐸 =
√

1

𝑚
∑ (𝑦𝑖−𝑦𝑖

′)2𝑚
𝑖=1

|𝑦|
 (4.3) 

where, 𝑚 is the number of observations, 𝑦 is the mean of the observed values, 𝑦𝑖
′ is the model 

simulated value and 𝑦𝑖 is observed value. The index of agreement is estimated using the 

following equation: 
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 𝑑 = 1 −
∑ (𝑦𝑖−𝑦𝑖

′)
2𝑚

𝑖=1

∑ (|𝑦𝑖
′−𝑦|+|𝑦𝑖−𝑦|)2𝑚

𝑖=1

 (4.4) 

The index of agreement is more sensitive than traditional correlation measures to 

differences between observed and simulated means and variances. The value of d varies between 

0 and 1, with higher values indicating better fit (Legates and McCabe, 1999). 

4.4. Results and Discussion 

4.4.1. RZWQM2 Calibration  

The sugarbeet module in RZWQM2 was calibrated using 2014 field data collected at 

CREC. The PEST optimization required 9 optimization iterations and 433 model calls to 

minimize the objective functions. The number of singular values used in SVD ranged from 9 to 

20 on an iteration-by-iteration basis, based on a stability criterion. The total objective function 

was decreased by 34.2%. Table 4.5 summarizes the measures of the goodness of model 

prediction to the observations of crop growth, SWC, and soil nitrate content in 2014 and 2015. In 

general, the model did very well in terms of both d-statistic and rRMSE. The d-statistic ranged 

from 0.709 to 0.992 for model calibration and 0.733 to 0.990 for model validation, while the 

rRMSE took values of 0.066-1.211 for model calibration and 0.043-0.930 for model validation.  
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Table 4.5. RZWQM2 calibration and validation results for individual observation groups. 

Observation group Index of agreement (d) 
Relative root mean square error 

(rRMSE) 

 
Model 

calibration, 2014 

Model validation, 

2015 

Model 

calibration, 2014 

Model validation, 

2015 

Leaf area index 0.960 0.891 0.345 0.464 

Top weight 0.977 0.877 0.239 0.507 

Root weight 0.933 0.885 0.204 0.735 

Root yield   0.006 0.016 

SWC (0-15 cm) 0.894 0.863 0.139 0.193 

SWC (15-30 cm) 0.974 0.945 0.066 0.043 

SWC (30-45 cm) 0.826 0.989 0.132 0.044 

SWC (45-60 cm) 0.709 0.925 0.179 0.088 

Soil profile nitrate 0.992 0.990 0.203 0.214 

Soil nitrate (0-15 cm) 0.881 0.895 0.457 0.573 

Soil nitrate (15-30 

cm) 
0.926 0.903 0.856 0.930 

Soil nitrate (30-45 

cm) 
0.925 0.802 0.650 0.715 

Soil nitrate (45-60 

cm) 
0.825 0.733 1.211 0.710 

 

4.4.1.1. Plant Growth  

Simulation of plant growth in a water quality model is important because it affects the 

hydrology and chemical uptake in a plant-soil-water system. For this reason, plant growth 

variables (LAI, top weight, and root weight) were first calibrated against 2014 field observations 

and then validated against 2015 field observations. In 2014, the model showed a good fit for 

LAI, top weight, and root weight by closely tracking the medians of the observed values (Fig. 

4.2). In 2015, model’s performance was less than ideal when compared with the observed values 

(Fig. 4.3). The model was consistently over-predicting the observed values between 67th and 

100th days after planting for LAI, top weight and root weight (Fig. 4.3). This might be due to a 

strong wind gust (~ 22.5 m s-1) occurring around the 65th day after planting (28-29 July 2015). 

This less than satisfactory model performance in 2015 are also reflected in model evaluation 

statistics (Table 4.5). CSM-CERES-Beet is not designed to simulate the damage caused by 
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unexpected events such as strong wind gusts in the early plant development stage or freezing 

temperature close to harvesting. These limitations were also discussed in Leviel (2000). 

 

Figure 4.2. Model-simulated and observed values of (a) leaf area index, (b) top weight and (c) 

root weight for model calibration in 2014. Notes: Observed values are plotted in boxplots with 

the medians shown as the lines within the boxes, the 25th and 75th percentiles as the tops and 

bottoms of the boxes, the 5% and 95% percentiles as the whiskers below and above the boxes, 

and the plus signs (+) as outliers.   
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Figure 4.3. Model-simulated and observed values of (a) leaf area index, (b) top weight and (c) 

root weight for model validation in 2015. Notes: Observed values are plotted in boxplots with the 

medians shown as the lines within the boxes, the 25th and 75th percentiles as the tops and 

bottoms of the boxes, the 5% and 95% percentiles as the whiskers below and above the boxes, 

and the plus signs (+) as outliers.  

The calibrated model was also used to simulate the average sugarbeet root yields in 2014 

and 2015 (Fig. 4.4). In both years, the average observed yields along with their standard 

deviations were computed from the yields from all the twelve sugarbeet plots (Fig. 4.1). For the 

model-simulated root yields, the dry weights output by the model were converted to fresh yields 

assuming 82% moisture content in the beets. Fig. 4.4 shows that RZWQM2 did very well in 

simulating the average observed yields of sugarbeet in both years. The rRMSE was 0.006 in 2014 

and 0.016 in 2015 (Table 4.5).  
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Figure 4.4. Model-simulated and the average observed root yields of sugarbeet planted in 

Carrington Research and Extension Center, North Dakota, USA. Note: The short vertical lines 

above the average observed yields are standard deviations.   

 

4.4.1.2. Soil Water Content and Soil Nitrate 

Observed and simulated soil water content at four different soil depths up to 60 cm were 

plotted for 2014 (Fig. 4.5) and 2015 (Fig. 4.6). In 2014, soil water content was measured from 

five plots at the first sampling date and they were measured from two plots in other times. In 

2015, soil water content readings were taken from eight plots throughout the year.  

Fig.  4.5 shows that the model-simulated soil water content at the top two soil layers (0-

15 and 15-30 cm) followed the trends of the observed soil water content very well over the entire 

growing season of 2014 (Fig. 4.5(a) & 4.5(b)). The d-statistics for these two layers were 0.894 

and 0.974 and rRMSE were 0.139 and 0.066, respectively (Table 4.5). However, in the deeper 

two layers (30-45 and 45-60 cm), RZWQM2 over-predicted the SWC in the early part of the 

growing season and under-predicted the SWC in the latter part of the growing season. The 

deeper it goes, the greater is the degree of over- or under-prediction of the model-simulated SWC 
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(Fig. 4.5(c) and 4.5(d)). According to soil water balance provided by RZWQM2 (Table 4.6), the 

total transpiration in the sugarbeet plots at CREC accounted for ~60% of the total water losses in 

2014 and 2015 and the water loss through plant transpiration was about 5 times larger than that 

through soil evaporation. Land et al. (1999) and Martin and Watts (1999) argued that inaccurate 

simulation of ET and/or LAI might have contributed to over- or under-predictions of SWC (see 

also Malone et al., 2010). In the past, Jaynes and Miller (1999) observed that RZWQM under-

predicted ET mostly during dry conditions in September in a 4-year corn-soybean rotation field 

with clarion loam soil. Farahani et al. (1996), however, observed that RZWQM provided 

reasonable ET predictions although it tended to under-predict ET at smaller LAI values (<0.5) 

and over-predict ET at greater LAI values.  

Fig. 4.6 shows that, during the 2015 growing season, RZWQM2 was able to simulate the 

SWC’s in all four layers well up to around the 70th day after planting. After that, the model 

started to under-predict the SWC’s in the top layer (0-15 cm, Fig. 4.6(a)) and the bottom layer 

(45-60 cm, Fig. 4.6(d)), while maintaining good simulations for the middle two layers (15-30 and 

30-45 cm, Fig. 4.6(b) & (c)). Processes that affect soil water content include soil evaporation, 

crop transpiration, surface runoff, snowmelt, deep drainage, rooting depth and tile flow. Root 

development to deeper soils along with changes in LAI may alter ET in an ecosystem (Tanaka et 

al., 2004). Deep-rooted crops can maintain ET by absorbing water from deeper soils and 

maintain ET throughout the year (Jackson et al., 2000). ET from vegetation depends on LAI and 

leaf physiological characteristics (i.e. carboxylation ate) in conjunction with hydrological and 

meteorological variables (e.g., precipitation, radiation, temperature, wind speed, etc.).  

When a crop is small, actual evapotranspiration is also low. As the growing season 

progresses, LAI and rooting depth of the crop also increases allowing more evaporative surfaces 
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and deeper areas for extracting water for ET (Jackson et al., 2000; Tanaka et al., 2004). The 

ability of soil transmitting water to plant roots and the evaporative demand from the environment 

together determine actual crop evapotranspiration. Inaccurate simulation of LAI during the 

period of 70-100 days after planting may have contributed to the under-predictions of SWC’s in 

the top and bottom layers.  

 

 

Figure 4.5. Soil water content at different soil depths (a) 0-15 cm, (b) 15-30 cm, (c) 30-45 cm 

and (d) 45-60 cm in 2014. Notes: Observed values are plotted in boxplots with the medians 

shown as the lines within the boxes, the 25th and 75th percentiles as the tops and bottoms of the 

boxes, and the 5% and 95% percentiles as the whiskers below and above the boxes. 
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Figure 4.6. Soil water content at different soil depths (a) 0-15 cm, (b) 15-30 cm, (c) 30-45 cm 

and (d) 45-60 cm in 2015. Notes: Observed values are plotted in boxplots with the medians 

shown as the lines within the boxes, the 25th and 75th percentiles as the tops and bottoms of the 

boxes, and the 5% and 95% percentiles as the whiskers below and above the boxes. 

Table 4.6. Soil water mass balance for sugarbeet plots at Carrington Research and Extension 

Center, North Dakota, US. 

 

2014 

Initial day: 25 May 2014 

End day: 17 Oct. 2014 

2015 

Initial day: 31 May 2015 

End day: 17 Oct. 2015 

Variables 
Water 

gains (cm) 

Water losses 

(cm) 

Balance 

(cm) 

Water 

gains (cm) 

Water losses 

(cm) 

Balance 

(cm) 

Initial soil water 18.88   18.87   

Final soil water  11.60   11.49  

Total rainfall 32.97   21.46   

Total runoff  6.41   1.47  

Evaporation  5.65   4.27  

Transpiration  27.92   22.84  

Total drainage  0.27   0.25  

Total 51.85 51.85 0.00 40.32 40.32 0.00 
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As for soil nitrate, the RZWQM2 simulated nitrate concentration in the entire soil profile 

(namely “soil profile nitrate”) was plotted against the observed soil nitrate in Fig 4.7 (a, b) and 

nitrate concentrations at different soil depths are plotted in Fig. 4.8 and 4.9.  Overall, the model 

did very well in simulating the soil profile nitrate throughout the entire growing seasons of 2014 

(Fig. 4.7 (a)) and of 2015 (Fig. 4.7 (b)), especially during the early plant growth stages. The d-

statistic for model calibration (2014) and model validation (2015) were 0.987 and 0.990, 

respectively (Table 4.5). For soil nitrate contents at different depths, model did reasonably well 

considering that the model was calibrated against the observed soil profile nitrates only. The d-

statistics were 0.733-0.926 and rRMSE were 0.457-1.211 including both model calibration and 

validation periods (Table 4.5). In 2014, the model under-predicted the nitrate content in the top 

layer (0-15cm) and over-predicted the nitrate contents in the other layers (15-30cm, 30-45cm, 

and 45-60cm) during the early growing season (Fig. 4.8). In 2015, the model generally under-

predicted the soil nitrate contents in all but one layers (Fig. 4.9).  In addition, nitrogen mass 

balance in the soil profile (Table 4.7) shows that 63-66% of soil nitrogen input was from 

fertilization and 31-35% was from net mineralization of soil organic matters in 2014 and 2015.  
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Figure 4.7. Total soil profile NO3-N for (a) model calibration (2014) and (b) model validation 

(2015). Notes: The vertical bars and whiskers represent the standard errors for observed soil 

NO3-N contents in sugarbeet plots. 

 

 

 

 

 

 

 

 

 

(a) (b) 
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Figure 4.8. Soil NO3-N content at different soil depths (a) 0-15 m, (b) 15-30 cm, (c) 30-45 cm 

and (d) 45-60 cm in 2014. Notes: The vertical bars and whiskers represent the standard errors for 

observed soil NO3-N contents in sugarbeet plots. 

 

 

 

 

(c) (d) 
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Figure 4.9. Soil NO3-N content at different soil depths (a) 0-15 cm, (b) 15-30 cm, (c) 30-45 cm 

and (d) 45-60 cm in 2015. Notes: The vertical bars and whiskers represent the standard errors for 

observed soil NO3-N contents in sugarbeet plots. 
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Table 4.7. Soil nitrogen mass balance for sugarbeet plots at Carrington Research and Extension 

Center, North Dakota, US. 

 

2014 

Initial day: 25 May 2014 

End day: 17 Oct. 2014 

2015 

Initial day: 31 May 2015 

End day: 17 Oct. 2015 

Variables 

N gains 

(kg ha-1) 

N losses 

(kg ha-1) 

Balance 

(kg ha-1) 

N gains 

(kg ha-1) 

N losses 

(kg ha-1) 

Balance 

(kg ha-1) 

Initial soil N 2.37   2.18   

Final soil N  12.46   19.79  

Inorganic fertilizer 112   112   

Total plant N uptake  159.02   143.28  

Total denitrification  2.26   2.27  

Total N losses to 

drainage 
 0.53   0.42  

Nitrogen losses to 

runoff 
 2.25   1.00  

Greenhouse gas 

emission 
 0.48   0.43  

Net mineralization 62.67   53.01   

Total 177.00 176.96 0.04 169.19 169.19 0.00 

4.4.2. Estimated Parameter Values and Correlations 

Estimated parameter values obtained from model calibration are shown in Table 4.3. 

Through the SVD-based regularization procedure, PEST changed the values of 14 out of 27 

parameters. The parameter values changed most were: BD1, BD5, Ks1, Ks3, Ks4, Ks5, P1 and 

RUE. Except P1 and RUE, these parameters are bulk densities and saturated hydraulic 

conductivities of different soil layers that affect water and nutrient contents in the soil profile. P1 

is related to the length of the sugarbeet growth cycle from the seedling emergence to the end of 

juvenile phase, while RUE determines the radiation use efficiency of the crop that may vary from 

2.8 to 4.2 g plant dry matter MJ-1 for sugarbeet (Leviel, 2000).  

Table 4.8 displays the correlation coefficient matrix of RZWQM2 parameters for 

sugarbeet. A careful examination of Table 4.8 identified six parameter correlations with absolute 

value of correlation coefficient |r |≥ 0.8 (highlighted in the table). Among these six large 

parameter correlation coefficients only the correlation coefficient between BD2 and Ks2 
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exceeded the magnitude of 0.95, which is an indication of highly correlated parameters that may 

not be uniquely estimated in the inverse modeling process (Poeter and Hill, 1997).  

Incidentally, all the large parameter correlation coefficients (|r |≥ 0.8) identified in this 

study were negative, indicating that the strongly correlated parameters have opposite effect on 

each other. Among these six strongly or highly correlated parameter pairs, three pairs were 

between soil parameters related to soil water movement in the soils (i.e. BD2 vs. Ks2, BD5 vs. 

Ks5, and BD5 vs. Ks1). It is not surprising that the bulk densities and hydraulic conductivities of 

the same soil layers (e.g., BD2 vs. Ks2 and BD5 vs. Ks5) were strongly but negatively correlated 

to each other. This suggests that, when calibrating RZWQM2, it makes more sense to fix soil 

bulk density values while allowing the inverse modeling software such as PEST to automatically 

adjust soil hydraulic conductivities. Another two strongly correlated parameter pairs were 

between plant parameters (i.e., P1 vs. PHINT and RUE vs. PARSA). Only one strongly 

correlated parameter pair was between a soil parameter and a plant parameter (i.e., BD5 vs. 

PHINT).  
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Table 4.8. Correlation coefficient matrix of RZWQM2 parameters for sugarbeet modeling. 

Strong correlations (r > 0.8) are highlighted. 

 
BD1 BD2 BD3 BD4 BD5 Ks1 Ks2 Ks3 Ks4 Ks5 P1 P2 P5 G2 G3 

BD1 1.00 0.00 0.01 0.04 0.49 -0.48 0.01 -0.04 0.25 -0.29 -0.05 -0.02 -0.09 -0.01 -0.02 

BD2 
 

1.00 -0.63 0.62 -0.38 0.21 -0.98 0.28 0.75 0.48 -0.51 -0.17 -0.29 -0.17 -0.11 

BD3 
  

1.00 -0.72 0.41 -0.33 0.60 -0.74 -0.16 -0.49 0.28 0.05 0.07 0.05 0.03 

BD4 
   

1.00 -0.24 0.06 -0.57 0.61 0.27 0.51 -0.66 -0.11 -0.19 -0.11 -0.11 

BD5 
    

1.00 -0.88 0.45 -0.16 0.11 -0.82 0.21 0.19 0.31 0.19 0.13 

Ks1 
     

1.00 -0.30 0.14 -0.27 0.74 -0.06 -0.03 -0.18 -0.03 -0.02 

Ks2 
      

1.00 -0.24 -0.70 -0.55 0.48 0.21 0.30 0.21 0.11 

Ks3 
       

1.00 -0.16 0.29 -0.15 -0.01 0.03 -0.01 -0.01 

Ks4 
        

1.00 -0.11 -0.33 -0.01 -0.20 -0.01 -0.01 

Ks5 
         

1.00 -0.50 -0.18 -0.30 -0.18 -0.15 

P1 
          

1.00 0.12 0.73 0.12 0.08 

P2 
           

1.00 0.11 0.11 0.13 

P5 
            

1.00 0.02 0.16 

G2 
             

1.00 0.04 

G3 
              

1.00 

  
PHINT RUE PARSR SDSZ RSGR RSGRT CARBOT DSGT DGET SWCG PORM RLWR 

BD1 -0.47 -0.36 -0.22 -0.01 -0.02 -0.03 -0.01 -0.07 -0.06 -0.02 -0.07 -0.05 

BD2 0.53 0.31 0.19 -0.07 -0.10 -0.13 -0.09 -0.11 -0.10 -0.11 -0.11 -0.15 

BD3 -0.39 -0.23 -0.21 0.02 0.01 0.04 0.03 0.06 0.05 0.03 0.03 0.09 

BD4 0.34 0.18 0.15 -0.08 -0.11 -0.17 -0.06 -0.11 -0.09 -0.11 -0.08 -0.13 

BD5 -0.82 -0.51 -0.33 0.09 0.09 0.19 0.13 0.16 0.13 0.13 0.16 0.21 

Ks1 0.59 0.37 0.18 -0.02 -0.02 -0.04 -0.02 -0.06 -0.02 -0.02 -0.05 -0.07 

Ks2 -0.57 -0.27 -0.17 0.11 0.08 0.13 0.11 0.13 0.11 0.11 0.16 0.23 

Ks3 0.27 0.13 0.09 -0.01 -0.01 -0.03 -0.01 -0.02 -0.01 -0.01 -0.02 -0.03 

Ks4 0.10 0.05 0.05 -0.01 -0.01 -0.03 -0.01 -0.03 -0.01 -0.01 -0.01 -0.04 

Ks5 0.71 0.43 0.32 -0.11 -0.13 -0.15 -0.15 -0.17 -0.15 -0.15 0.11 0.13 

P1 -0.80 0.15 0.16 0.06 0.08 0.11 0.08 0.09 0.08 0.08 -0.31 0.52 

P2 -0.21 0.05 0.11 0.11 0.10 0.13 0.14 0.09 0.13 0.13 -0.08 0.06 

P5 -0.43 -0.23 -0.09 0.12 0.11 0.16 0.16 0.16 0.14 0.16 0.36 -0.70 

G2 0.07 0.04 0.04 0.02 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.03 

G3 0.08 0.07 0.05 0.01 0.01 -0.02 -0.02 -0.11 -0.06 0.03 0.09 0.17 
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Table 4.8. Correlation coefficient matrix of RZWQM2 parameters for sugarbeet modeling. 

Strong correlations (r > 0.8) are highlighted (continued). 

 
PHINT RUE PARSR SDSZ RSGR RSGRT CARBOT DSGT DGET SWCG PORM RLWR 

             

PHINT 1.00 -0.29 0.09 0.05 0.08 0.17 -0.11 0.12 0.10 0.13 0.11 -0.79 

RUE 
 

1.00 -0.89 0.02 0.05 0.21 0.03 0.05 0.08 0.17 -0.15 0.71 

PARSR 
  

1.00 0.03 0.04 0.05 -0.11 0.11 0.06 0.03 -0.16 0.53 

SDSZ 
   

1.00 0.01 0.11 0.13 0.09 0.01 0.03 0.03 0.03 

RSGR 
    

1.00 0.23 -0.02 0.06 0.09 0.11 0.01 0.01 

RSGRT 
     

1.00 0.12 0.08 0.03 0.08 0.08 0.08 

CARBOT 
      

1.00 0.07 0.05 0.03 0.05 0.05 

DSGT 
       

1.00 0.11 0.09 0.04 0.04 

DGET 
        

1.00 0.05 0.01 0.01 

SWCG 
         

1.00 0.17 -0.15 

PORM 
          

1.00 0.27 

RLWR                       1.00 

4.4.3. Parameter Sensitivity and Identifiability  

The relative sensitivities of parameters with respect to the five observation groups and all 

observations are plotted in Fig. 4.10. A close inspection of all six subfigures of Fig. 4.10 reveals 

that almost all the sensitive parameters, except for PHINT, with respect to any observation 

groups including plant growth variables (i.e., LAI, top and root weights) were soil bulk densities 

and saturated hydraulic conductivities of soils in different layers. This implies that the soil water 

content was a strong limiting factor to the sugarbeet growth at CREC. This shouldn’t be 

surprising because it was a dryland sugarbeet system without any use of irrigated water. The 

most sensitive parameters may be different when modeling irrigated conditions, under which soil 

water content may not be as a strong limiting factor for plant growth as under dry conditions. We 

should also note that the local sensitivity analysis conducted in this study was based on initial 
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parameter values. The diagnosis results may be different if calibrated parameter values are used 

or if global sensitivity analysis methods are used (Ferreira et al., 1995; Ma et al., 2000). 

Fig. 4.10 shows that besides soil property parameters, LAI and top weight were very 

sensitive to PHINT, a plant phenological parameter (Fig. 4.10(a) & (b)). PHINT, defined as 

phyllochron interval (Table 4.4), is the thermal time interval (or the sum of the degree days) 

required to grow the phytomer unit of successive leaves. Therefore, PHINT is directly related to 

the growth of phytomer units, a basic unit for the phenological development and vegetative 

growth of a crop. The development and growth of sugarbeet are actually characterized by the 

repeated formation, expansion, and subsequent senescence of the phytomer units (Wilhelm and 

McMaster, 1995). Fig. 4.10 also shows that root weight and soil nitrate are less sensitive to 

PHINT (Fig. 4.10(c) and (e)), while soil water content are not sensitive to PHINT at all (Fig. 

4.10(d)). Overall, the most sensitive parameters for sugarbeet under dry conditions include the 

bulk densities (BD1-5), saturated hydraulic conductivities (Ks1-5), and PHINT (Fig. 4.10(f)).  

The parameter identifiability with respect to the five observation groups and all 

observations is plotted in Fig. 4.11. Parameter identifiability represents the observation group’s 

ability to constrain the model parameters. The height of the vertical bars measures the 

parameter’s identifiability and the shades of different colors correspond to the individual 

contributions from each of all eigenvectors spanning the calibration solution space. Fig. 4.11 (a)-

(c) shows that the information contained in the observations of LAI, top weight and root weight 

was sufficient to estimate three RZWQM2 parameters – BD1 or BD2, Ks1, and PHINT – two 

were soil parameters and the other was a plant parameter. Four soil parameters (BD1-3 and Ks1) 

may be estimated by the observed soil water contents in the four soil layers (Fig. 4.11(d)), while 

only three soil parameters (BD3-4 and Ks1) may be estimated by the observed soil nitrate 
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concentrations. Overall, five RZWQM2 parameters may be identifiable by the entire calibration 

dataset (Fig. 4.11(f)). It is worth mentioning that Ks1 was identifiable by any of the observation 

groups (Fig. 4.11(a)-(f)), while PHINT was identifiable by any of the observations of plant 

variables such as LAI, top weight and root weight (Fig. 4.11(a)-(c)).  
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Figure 4.10. Bar plot of RZWQM2 relative composite sensitivities with respect to individual 

observations and to the entire calibration dataset based on their initial values. Parameter 

definitions are shown in Table 4.4.  

(b) 

(c) (d) 

(e) (f) 

(a) 
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Figure 4.11. Bar plot of RZWQM2 parameter identifiability at the beginning of the inverse 

modeling by selected observation groups.   

 

(b) 

(d) 

(f) 

(a) 

(c) 

(e) 
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4.5. Conclusions 

The CSM-CERES-Beet model was incorporated into RZWQM2 through a linkage to 

DSSAT. The RZWQM2 model was then applied to model dryland sugarbeets planted in the 

Carrington Research and Extension Center, North Dakota, USA, in 2014 and 2015. The model 

did reasonably well in both 2014 and 2015 in terms of simulating LAI, top weight, root weight, 

SWC, and soil nitrates. The d-statistic ranged from 0.709 to 0.992 in 2014 for model calibration 

and 0.733 to 0.990 in 2015 for model validation. The corresponding ranges for rRMSE were 

0.066-1.211 and 0.043-0.930, respectively. 

Soil water balance analysis shows that the water loss through plant transpiration was 

about 5 times larger than that through soil evaporation in the sugarbeet plots in 2014 and 2015 

and the total transpiration accounted for ~60% of the total water losses in both years. Soil 

nitrogen mass balance analysis shows that more than 60% of soil nitrogen input was from 

fertilization and 31-35% was from net mineralization of soil organic matters.  

Sensitivity analysis using PEST shows that, under dry conditions when soil available 

water becomes a strong limiting factor to sugarbeet growth, the most sensitive parameters were 

soil bulk densities and saturated hydraulic conductivities in different layers. The only sensitive 

plant parameter was PHINT that determines the thermal time needed for leaf appearance.  

Identifiability analysis shows that 3-5 model parameters may be identifiable by the calibration 

datasets that include observations of LAI, top weight, and root weight, as well as SWC’s and soil 

nitrate concentrations in four different soil layers. More interestingly, the saturated hydraulic 

conductivity in the top layer (Ks1) was identifiable by any of the observation groups, while 

PHINT was identifiable by any of the observations of plant variables such as LAI, top weight 

and root weight. Our study demonstrated that the sensitivity analysis methods of PEST, which 
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are based on linear theory, can be computed with modest computational burden and can readily 

accommodate parameter correlations.  

 In the future, the developed model will be applied to simulate sugarbeet production 

under different management scenarios for different soils and under different climatic conditions 

in the Red River Valley. As the sugarbeet production may be expanded into the nontraditional 

planting areas in the region due to potential demand for biofuel production, RZWQM2 enhanced 

with a sugarbeet module can be used to assess the associated environmental impacts.  
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CHAPTER 5. MODELING THE EFFECTS OF CROP ROTATION AND TILLAGE 

OPERATION ON SUGARBEET YIELD USING THE ROOT ZONE WATER QUALITY 

MODEL (RZWQM2)3 

5.1. Abstract 

Sugarbeet is considered to be one of the most viable alternatives to corn for biofuel 

production as it may be qualified as “advanced” biofuel feedstocks under the “EISA 2007”. 

Prudent crop rotation and tillage operations may significantly affect the production of deep-

rooted sugarbeet. Simulation of the effects of crop rotation and tillage operations on sugarbeet 

production will be helpful in proper management decision making. For simulating the effects of 

crop rotation and tillage operations on sugarbeet production, CSM-CERES-Beet, CSM-CERES-

Maize, CROPSIM-Wheat, and CROPGRO-Soybean models included in the RZWQM2 were 

calibrated and evaluated using the field experimental data of crop yield, soil water, and NO3-N 

content from the North Dakota State University Carrington Research Extension Center from 

2014-2016. Model performed reasonably well in simulating crop yield, soil water, NO3-N 

contents (𝑟𝑅𝑀𝑆𝐸 = 0.055-2.773, 𝑑 = 0.541-0.997). Five hypothetical crop rotations and 4 tillage 

operation scenarios were then generated to simulate their effects on sugarbeet yield and soil 

nitrate content. Twenty eight years (1990-2017) of model runs under these scenarios identified 

wheat as the most suitable previous year crop for sugarbeet. Among the tillage operations, 

moldboard plow performed better compared to other tillage methods. 

Keywords: Crop rotation, Root Zone Water Quality Model (RZWQM2), Sugarbeet, Tillage 

                                                 
3 This article is co-authored by Mohammad J. Anar, Zhulu Lin, Amitava Chatterjee, Mohamed Khan, Jasper M. 

Teboh, and Michael Ostlie. Mohammad J. Anar had the primary responsibility for model run, model evaluation and 

article write up. Dr. Zhulu Lin helped in result analysis, article write up, and proof reading. Drs. Amitava Chatterjee, 

Mohamed Khan, Jasper M. Teboh, and Michael Ostlie helped in field experiment, result analysis, and proof reading. 
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5.2. Introduction 

Bioenergy crops are popular renewable energy sources due to their capabilities of 

improving national energy security and mitigating greenhouse gas (GHG) emissions from fossil 

fuels. The Renewable Fuel Standard of the US Energy Independence and Security Act (EISA) of 

2007 has set a national target of 136 billion liters of renewable fuels by 2022, of which 61 billion 

liters are expected from advanced biofuels (USEPA, 2010). Under the EISA of 2007, advanced 

biofuels are classified as non-grain based biofuels derived from lignocellulosic biomass such as 

timber chips and perennial grasses, sugar crops such as sugarcane and sugarbeets, and waste 

materials including crop residues and urban waste (Congress, 2007). Currently the US is still 

reliant on corn, which is a grain-based source of bioethanol, but it is not sufficient to meet the 

renewable fuel targets. Furthermore, use of corn for biofuel production has a significant impact 

on food supply demand.  

Energy beets, a variety of sugarbeet (Beta vulgaris), are being considered for biofuel 

production because of their high sugar content that could potentially produce twice as much 

ethanol per acre compared to other feedstocks (corn or cellulose) (Shapouri et al., 2006; Panella, 

2010). Unlike conventional sugarbeets, energybeets are specialized non-food grade varieties 

(Maung and Gustafson, 2011; Kakani et al., 2012; Nahar and Pryor, 2013; Vargas-Ramirez et al., 

2013) grown mainly for industrial use including bioenergy production. The largest region for 

sugarbeet production in the US is in or close to the Red River Valley (RRV) of western 

Minnesota and eastern North Dakota, where 57% of the nation’s total sugarbeets were produced 

in 2016/17, while Idaho and Michigan contributed 31% of the total US production (USDA/ERS, 

2018). In the RRV, 650,000 acres of lands were cultivated for sugarbeets in 2016/17 

(USDA/ERS, 2018). Maung and Gustafson (2011) estimated this acreage would increase to 



 

100 

about half a million if ten to twenty 20-Million Gallon per year sugarbeet processing plants for 

biofuel production are built in the region. In 2011, sugarbeet production in the RRV region 

generated a direct economic impact of $1.7 billion (Bangsund et al., 2012). Considering the 

increasing demands and economic impacts of sugarbeet, identifying prudent agronomic 

management practices (i.e. crop rotation and tillage operations) and new production areas are 

important.  

Agronomic management practices like crop rotation and tillage practices can play a 

significant role in sugarbeet growth and yield by maximizing profits through proper utilization of 

fertilizers and soil nutrients. Crop rotation is effective in suppressing certain diseases, pests, and 

weeds of sugarbeet (Sugarbeet Production Guide, 2013). Tillage operations affect nutrient 

cycling by altering soil structure and the decomposition of crop residues and soil organic matter 

(Katupitiya et al., 1997). However, crop rotation or tillage operations may also result in a 

negative impact on sugarbeet yield if not prudently and timely decided. A positive or negative 

crop rotational and tillage operation response depends on many factors including soil moisture, 

fertility and compaction, plant residues, diseases, weeds, insects, or allelopathy (Havlin et al., 

1990; Hao et al., 2001).  

In the RRV region, sugarbeet production typically follows small grains, such as hard red 

spring wheat (HRSW) (Triticum aestivum L.). However, in the southern part of the RRV and in 

the Southern Minnesota Beet Sugar Cooperative growing area (Renville, MN), sugarbeet 

production generally follows a previous crop of corn (Zea mays). Sims (2004) reported a 

negative effect of corn residue on sugarbeet yield, although the effect appeared not to be related 

to nitrogen (N) availability. When corn directly follows sugarbeets, it is frequently not as 

productive as corn after soybeans or other rotational crops. This is referred to as corn-following-
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sugar beets (CFS) syndrome (Sims, 2004; Overstreet et al., 2007). Although deep-rooted 

sugarbeets are generally thought to hold potential for improving soil resources by complimenting 

other crops in the rotation and improving use of water and fertilizers, it is one of the few crops 

that do not host beneficial fungi called arbuscular mycorrhizae (Sims, 2004). Crops following 

sugarbeet are therefore more likely to suffer from nutrient deficiencies or be less resistant to 

drought stress due to lower colonization of beneficial mycorrhizal fungi. 

Following a typical HRSW crop, wheat residue had minimal or no effect on the following 

year’s sugarbeet root yield and quality (Sims, 2004). Wheat generally produces tremendous 

amounts of residue which can help to reduce soil erosion providing a protective barrier for the 

seedling. It can also help to conserve soil moisture and buildup of soil organic matter. If the N 

from wheat residue decomposition become available during the later state of sugarbeet growth, it 

will impact the quality of sugarbeet by increasing the impurities. 

 Another crop that has increased in acreage in the sugarbeet growing areas in the RRV is 

soybean (Glycine max). Currently, it is not recommended that sugarbeet be grown after a 

previous crop of soybean because leguminous crops like soybean leave less residues and more 

nitrogen in the soil compared to other crops in the rotation (Hao et al., 2001). Crop rotation 

research in the RRV reported reductions in both sugarbeet root yield and quality (recoverable 

sucrose per ton of beet) when grown after soybean compared to when grown after a small grain 

crop (Smith and Dexter, 1988). However, Soine and Severson (1975), Nordgaard et al., (1982), 

and Sims (2009) found little or no positive effect of a previous crop of soybean on sugarbeet root 

yield and quality.  

Tillage operations may affect crop yields by affecting soil physical, chemical, and 

biological processes. Tillage affects soil bulk density, hydraulic conductivity and penetration 



 

102 

resistance, therefore affecting water infiltration, internal drainage, and aeration of the soil (Jabro 

et al., 2010). It may also affect plant population, weed, pest, and disease infestation. Reduced or 

conservation tillage with increased surface residues prevents loss of organic matter from soil and 

may impact crop production (Havlin et al., 1990). 

Interactive uses of field experiment and ecosystem-level modeling can be useful in 

identifying proper and timely agronomic practices for sustainable agriculture and enhanced 

environmental quality. The models that are currently available to assess the impacts of 

agricultural management on water quality include CREAMS (Knisel, 1980), GLEAMS (Leonard 

et al., 1986), EPIC (Sharpley and Williams, 1990), NLEAP (Shaffer et al., 1991), and OPUS 

(Smith, 1992). However, none of these models simulate the impacts of root zone processes on 

water quality and are limited to a narrow range of agricultural practices (Hanson et al., 1998). 

The Root Zone Water Quality Model (RZWQM) was developed to address these concerns 

(Saseendran et al., 2007; Ma et al., 2012).  

The process-based RZWQM has been widely used for simulating agricultural 

management effects on crop production and soil and water quality (Ma et al., 2012). The model 

was applied to simulate the effect of agricultural management practices (irrigation, fertilization, 

planting date, and crop rotation) on pesticide transport, water use efficiency, water quality, and 

crop production (Jaynes and Miller, 1999; Saseendran et al., 2007; Malone et al., 2010). 

RZWQM2 is a significant upgrade from the early version of the RZWQM model. It contains 

surface energy balance from the SHAW (Simultaneous Heat and Water) model (Flerchinger et 

al., 2012) and the crop-specific growth modules from DSSAT (Decision Support System for 

Agrotechnology Transfer) (Jones et al., 2003). A new DSSAT based sugarbeet model (CSM-

CERES-Beet) has recently been incorporated to RZWQM2 (version 4.0) for simulating the 
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effects of sugarbeet growth on soil health and water quality (Anar et al., 2017). The objective of 

our current research is to simulate the effects of crop rotation and tillage operations on sugarbeet 

yield and soil nitrate content in the RRV and its vicinity. Although the RRV has its distinctive 

features, the lessons learned from this context can be extended to other regions in the US and 

around the world. 

5.3. Materials and Methods 

5.3.1. Experimental Site Description 

Field experiments were conducted at the Carrington Research Extension Center, 

Carrington, North Dakota (47.510N, -99.123W). Soils of the experimental plots were loam with 

an average pH of 6.8. Average soil profile characteristics of the study plots are listed in Table 

5.1. The climate of the study area is typically a continental climate with cold winters and hot 

summers, with average annual temperatures of 4.3 ̊C and precipitation of 477 mm. Average 

monthly higher precipitation (84 mm) is observed in June and average higher monthly 

temperature (26.6 ̊C) is observed in July. 

Table 5.1. Average characteristics of the soil profiles at Carrington Research Extension Center 

study area. 

Depth (cm) % Sand % Silt % Clay Soil Type % OM 
EC 

mmhos/cm 

0-15 45 34 21 Loam 4.0 0.16 

15-30 47 36 17 Loam 3.6 0.25 

30-45 49 28 23 Loam   

45-60 53 28 19 Sandy loam   

60-120 65 25 10 Sandy loam   
 

The weather inputs required to run RZWQM2 were collected from North Dakota 

Agricultural Weather Network (NDAWN) station at Carrington, ND (47.509N, -99.132W and 

Elevation 476 meter). Weather data for 1990 to 2017 were collected and the required .met, .brk, 

and .sno files were generated using the weather generating function of RZWQM2. 
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The experimental site consisted a total of 48 plots of 15.24m × 12.2m (50ft × 40ft) size. 

Sugarbeets were cultivated along with corn, soybean, and wheat. Cultivars of sugarbeet, corn, 

and wheat used for the crop rotation experiments are X401, DKC33-78RIB, and Prosper, 

respectively. For soybean, Dairy-Land 0404 variety was used for the first two years and Proseed 

3020 for the third year. A list of the planting date, harvest date, planting density, and fertilization 

rate for each crop is given in Table 5.2. Fertilizers were broadcasted on the surface one day 

before planting. All the crops were rain-fed with no irrigation.  

Table 5.2. Crop management details for the field experiment. 

Crop Crop 

management 

2014 2015 2016 

Corn Planting: 

Harvesting: 

Planting density: 

Fertilization: 

May 23 

Nov 03 

98,800 seeds ha-1 

N: 201 kg ha-1 

P: 22.42 kg ha-1 

S: 11.21 kg ha-1 

May 23 

Nov 03 

98,800 seeds ha-1 

N: 201 kg ha-1 

P: 22.42 kg ha-1 

S: 11.21 kg ha-1 

May 09 

Oct 24 

98,800 seeds ha-1 

N: 201 kg ha-1 

P: 22.42 kg ha-1 

S: 11.21 kg ha-1 

Soybean Planting: 

Harvesting: 

Planting density: 

Fertilization: 

Jun 02 

Oct 10 

494,000 seeds ha-1 

None 

Jun 04 

Oct 10 

494,000 seeds ha-1 

None 

May 19 

Oct 10 

494,000 seeds ha-1 

None 

Sugarbeet Planting: 

Harvesting: 

Planting density: 

Final Stand: 

Fertilization: 

May 27 

Oct 17 

121,030 seeds ha-1 

74000 seeds ha-1 

N: 112 kg ha-1 

P: 22.42 kg ha-1 

S: 11.21 kg ha-1 

Jun 01 

Oct 17 

121,030 seeds ha-1 

118,560 seeds ha-1 

N: 112 kg ha-1 

P: 22.42 kg ha-1 

S: 11.21 kg ha-1 

May 12 

Oct 11 

121,030 seeds ha-1 

Varied seeds/ha 

N: 112 kg ha-1 

P: 22.42 kg ha-1 

S: 11.21 kg ha-1 

Wheat Planting: 

Harvesting: 

Planting density: 

Fertilization: 

May 23 

Sep 03 

2.9 million seeds 

ha-1 

N: 168 kg ha-1 

P: 22.42 kg ha-1 

S: 11.21 kg ha-1 

May 23 

Sep 03 

2.9 million seeds 

ha-1 

N: 168 kg ha-1 

P: 22.42 kg ha-1 

S: 11.21 kg ha-1 

May 13 

Aug 26 

2.9 million seeds 

ha-1 

N: 168 kg ha-1 

P: 22.42 kg ha-1 

S: 11.21 kg ha-1 

For sugarbeet, samples of leaf, stem, and root were collected periodically for top and root 

mass measurements. Both fresh and dry weights of the samples were measured. Leaf area index 

(LAI) was measured using the ground-based measurement method based on radiative transfer 
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theory (Hemayati and Shirzadi, 2011). For other crops, final yield data were recorded at harvest. 

Soil water content (SWC) and soil nitrate concentration data were also collected from a number 

of different sugarbeet plots. Soil water contents in four different soil layers (0-15, 15-30, 30-45, 

and 45-60 cm) were measured using in-situ neutron probes (Troxler, NC). Soil samples were also 

analyzed in the laboratory periodically for soil profile nitrate concentrations in four different 

layers. 

5.3.2. Crop Rotation for Model Calibration and Evaluation 

For the calibration and evaluation of the models, 4 different crop rotation sequences from 

the field experiment were used. Table 5.3 lists the crop rotation sequences with their plot 

numbers used in model calibration and evaluation. In these field experiment scenarios, sugarbeet 

followed only wheat or sugarbeet, corn followed only sugarbeet, wheat followed soybean or 

corn, and soybean followed only corn as the previous crop (Table 5.3). In each sequence, the 

first-year crop was used for model calibration and the crops in the following two years were used 

for model evaluation.  

Table 5.3. Plots for the five crop rotation sequences. 

Sequences First Year Crop 

(2014) 

 

Second Year 

Crop (2015) 

Third Year Crop 

(2016) 

Plots  

A Soybean Wheat Sugarbeet 103, 210, 

305, 404 

B Sugarbeet Corn Soybean 101, 212, 

307, 402 

C Wheat Sugarbeet Corn 104, 110, 

205, 211, 304, 

306, 401, 409 

D Sugarbeet Sugarbeet Sugarbeet 109, 206, 

301, 411 
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5.3.3. Tillage Operations 

The effects of conventional tillage (CT) and no tillage (NT) were compared in the 

sugarbeet plots. Each sugarbeet plot was equally divided into two halves with CT performed in 

one half of the plot by disking to a depth of 7.5 cm and NT in the other half. Tillage was 

performed in the fall of the previous year. Before planting, a field cultivator was used for land 

preparation by cultivating the soil to a depth of 5 cm. 

5.3.4. Model Calibration 

Crop genetic parameters were calibrated for specific crop models available in RZWQM2 

v. 4.0, CSM-CERES-Maize for corn, CROPSIM-Wheat for wheat, CROPGRO-Soybean for 

soybeans, and CSM-CERES-Beet for sugarbeet. Only grain yields at harvest were measured for 

corn, wheat, and soybean in 214-2016. The crop genetic parameters for these crops were 

manually calibrated using the observed grain yields in 2014 and these calibrated parameters are 

listed in Tables 5.4-5.6. Although two varieties of soybean were used during the study period, 

only one set of parameters were calibrated. For sugarbeet, PEST was used to calibrate the 

cultivar parameters of CSM-CERES-Beet against field observations of LAI, top weight, and root 

weight throughout the growing season. Please refer to Anar et al. (2017) for detail discussion. 

For completeness, the calibrated cultivar parameters for sugarbeet are also listed in Table 5.7. 

Once the models were calibrated, they were evaluated for the following two years (2015 and 

2016) in all four crop rotation sequences. 
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Table 5.4. Cultivar parameter values for corn (DKC33-78RIB). 

Parameter name Calibrated value 

P1: Thermal time from seedling emergence to the end of juvenile phase (C̊-days) 120 

P2: Delay in development for each hour that daylength is above 12.5 hours (days hr-

1) 

0.40 

P5: Thermal time from silking to physiologic maturity (C̊-days) 860 

G2: Maximum possible number of kernels 850 

G3: Kernel filling rate (mg day-1) 18 

PHINT: Phyllochorn interval in thermal time between successive leaf tip 

appearance (C̊-days) 

34 

Table 5.5. Cultivar parameter values for wheat (prosper). 

Parameter name Calibrated value 

P1V: Days at optimum vernalizing temperature required to complete vernalization 28 

P1D: % reduction in development when photoperiod in 10 hr less than the threshold 

(P1DT=20hr) 

75 

P5: Grain filling duration phase (C̊-days) 500 

G1: Kernel number per unit canopy weight at anthesis (#/g) 35 

G2: Standard kernel size under optimum condition (mg) 60 

G3: Standard non-stressed dry weight of a single tiller at maturity (g) 4 

PHINT: Phyllochorn interval in thermal time between successive leaf tip 

appearance (C̊-days) 

60 

 

Table 5.6. Cultivar parameter values for soybean (dairy-land 0404). 

Parameter name Calibrated value 

CSDL: Critical short-day length below which reproductive development progresses 

with no day length effect (hr) 

14.84 

PPSEN: Slope of the relative response of development to photoperiod with time  

(hr-1) 

0.10 

EM-FL: time between plant emergence to flower appearance (C̊-days) 18 

FL-SH: Time between first flower and first pod (C̊-days) 10 

FL-SD: Time between first flower and first seed (C̊-days) 15 

SD-PM: Time between first seed and physiologic maturity (C̊-days) 37.59 

FL-LF: Time between first flower and end of leaf expansion (C̊-days) 17 

LFMAX: Maximum leaf photosynthesis rate at 30̊C (CO2m-2s-) 2.60 

SLAVR: Specific leaf area of cultivar under standard growth condition (cm2g-1) 280 

SIZLF: Maximum size of full leaf (cm2) 180 

XFRT: Maximum fraction of daily growth that is partitioned to seed and shell 1 

WTPSD: Maximum weight per seed (g) 0.19 

SFDUR: Seed filling duration for pod cohort at standard growth conditions (C̊-

days) 

23 

SDPDV: Average seed per pod under standard condition (#/pod) 2.20 

PODUR: Time required for cultivar to reach final pod load under optimal 

conditions (C̊-days) 

8 
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Table 5.7. Cultivar parameter values for sugarbeet (X401). 

Parameter name Calibrated value 

P1: Thermal time from seedling emergence to the end of juvenile phase (C̊-days) 940 

P2: Photoperiod sensitivity (hr-1) 0.001 

P5: Thermal time from pennicle initiation to physiological maturity (C̊-days) 700 

G2: Leaf expansion rate during leaf growth stage (cm2cm-2d-1) 220 

G3: Maximum root growth rate (g-m-2d-1) 37.5 

PHINT: Phyllochorn interval in thermal time between successive leaf tip 

appearance (C̊-days) 

43 

Soil bulk density and saturated hydraulic conductivity values for different soil layers, up 

to 120 cm, were calibrated using PEST based on average soil profile water content and nitrate 

content in the sugarbeet plots (Anar et al., 2017). Since we did not have measurements of soil 

water content at 1/3 bar suction head (1/3) or 15 bar suction head (15), the Brooks-Corey (BC) 

parameters were estimated based on soil texture classes according to Rawls et al. (1982) by the 

RZWQM2 model (Fang et al, 2010; Ma et al., 2012) (Table 5.8). Except for residual water 

content (r), other BC parameters (s, b, and ) were adjusted based on bulk density (b) by the 

model according to the relationships defined among the BC parameters (Ahuja et al., 2000; Ma 

et al., 2012). The water content at any suction head (e.g., 1/3, 15) could also be computed from 

these BC parameters. Table 5.8 lists the parameter values for soil hydraulic properties at different 

soil depths when the model was calibrated. 

Table 5.8. Brooks-Corey parameters used in simulations. 

Horizo

n 

Depth 

(cm) 

Bulk 

density  

b 

(g cm-3) 

Saturated 

hydraulic 

conductivit

y 

Ksat  

(cm h-1) 

Saturated 

water 

content 

s 

(cm3cm-

3) 

Residual 

water 

content 

r 

(cm3cm-

3) 

Bubblin

g 

pressure 

b  

(cm) 

Particle 

size 

distributio

n index  

 

1/3 bar 

water 

content 

1/3 

(cm3cm-

3) 

15 bar 

water 

content 

15 

(cm3cm-

3) 

15 1.438 1.18 0.413 0.027 2.17 0.217 0.156 0.083 

30 1.091 1.04 0.554 0.027 0.485 0.151 0.223 0.111 

60 1.106 3.00 0.548 0.027 0.517 0.137 0.242 0.120 

90 1.000 3.00 0.622 0.041 0.275 0.166 0.219 0.093 

120 1.873 3.00 0.293 0.041 2.736 0.463 0.068 0.048 
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5.3.5. Model Evaluation 

For the evaluation of the model performances we calculated both relative root mean 

square error (𝑟𝑅𝑀𝑆𝐸) and index of agreement (𝑑) as indicators of goodness of fit. The rRMSE is 

the root mean square error normalized to the mean of the observed values: 

 𝑟𝑅𝑀𝑆𝐸 =
√

1

𝑚
∑ (𝑦𝑖−𝑦𝑖

′)2𝑚
𝑖=1

|𝑦|
 (5.1) 

where, 𝑚 is the number of observations, 𝑦 is the mean of the observed values, 𝑦𝑖
′ is the model 

simulated value and 𝑦𝑖 is observed value. The index of agreement is estimated using the 

following equation: 

 𝑑 = 1 −
∑ (𝑦𝑖−𝑦𝑖

′)
2𝑚

𝑖=1

∑ (|𝑦𝑖
′−𝑦|+|𝑦𝑖−𝑦|)2𝑚

𝑖=1

 (5.2) 

The index of agreement is more sensitive than traditional correlation measures to differences 

between observed and simulated means and variances. The value of d varies between 0 and 1, 

with higher values indicating better fit (Legates and McCabe, 1999). 

5.3.6. Hypothetical Scenarios for Crop Rotation and Tillage Effects 

Since data for crop rotation and tillage effect on sugarbeet yield were not available for 

substantial periods of time, we generated hypothetical crop rotational and tillage operation 

scenarios to simulate their effects on sugarbeet yield and soil nitrate content. In the following 

crop rotation scenarios sugarbeet would follow corn, wheat, soybean, and sugarbeet as previous 

crop: 1) corn-sugarbeet-wheat-sugarbeet, 2) wheat-sugarbeet-corn-sugarbeet, 3) soybean-

sugarbeet-wheat-sugarbeet, 4) wheat-sugarbeet-soybean-sugarbeet, and 5) continuous sugarbeet. 

We ran the scenarios for 28 years from 1990-2017 to simulate the effects of each of the crops on 

sugarbeet yield and soil nitrate content. The 28 years weather input data were obtained from 

NDAWN weather station at Carrington, ND.  We used the same planting date, planting density, 
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planting depth, row width, and fertilization rate for all the years. Table 9 shows the planting 

management data for different crops used in the hypothetical crop rotation scenarios. 

Table 5.9. Crop management data used to run hypothetical crop scenarios. 

Crop management Corn Soybean Sugarbeet Wheat 

Planting: 

Harvesting: 

Planting density: 

Fertilization: 

May 23 

Nov 03 

98,800 seeds ha-1 

N: 201 kg ha-1 

P: 22.42 kg ha-1 

S: 11.21 kg ha-1 

Jun 02 

Oct 10 

494,000 seeds ha-1 

N: 50 kg ha-1 

May 27 

Oct 17 

74000 seeds ha-1 

N: 112 kg ha-1 

P: 22.42 kg ha-1 

S: 11.21 kg ha-1 

May 23 

Sep 03 

2.9 million seeds 

ha-1 

N: 168 kg ha-1 

P: 22.42 kg ha-1 

S: 11.21 kg ha-1 

To simulate the effects of tillage operations on sugarbeet yield, we selected four different 

tillage operation methods; moldboard plow (MP, to a depth of 15 cm), chisel plow (CP, to a 

depth of 13 cm), field cultivator (FC, to a depth of 10 cm), and no tillage (NT). Tillage 

operations were applied on the continuous sugarbeet rotation plots for the same 28 years from 

1990-2017. Crop management data for sugarbeet were same as described in table 5.9. 

5.4. Results and Discussion 

5.4.1. Model Calibration and Evaluation 

5.4.1.1 Crop Rotation Yield Evaluation 

Figure 5.1 shows the graphical comparisons of the observed and the model-simulated 

crop yields for the four crop rotation sequences in 2014-2016. For all the four rotation sequences, 

crop genetic parameters were calibrated in 2014 and the models were run continually for the 

following two years using the same calibrated parameters. Overall, the model performed well in 

simulating crop yields for all four crops in the four crop rotation sequences.  Table 5.10 shows 

that all 𝑟𝑅𝑀𝑆𝐸 were smaller than 0.25 and 𝑑-statistic were greater than 0.95.  However, the 

yields of all the crops (i.e., sugarbeet, corn, and wheat) planted in 2016, the last year of the 

rotation sequences, were overestimated by the crop models by 14.61-112.7%. A close inspection 
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of Fig. 5.1 reveals that the observed crop yields in 2016 were generally lower than those in the 

previous years. For example, the average grain yields of wheat were 4006.0 and 3458.66 kg ha-1 

in 2014 and 2015 respectively but was only 1724.47 kg ha-1 in 2016.  The yields of corn and 

sugarbeet were also lower in 2016. No soybeans were planted in 2016 in any of these four 

sequences. One of the reasons why the observed yield of sugarbeet was lower in 2016 was that 

the average final crop stands of sugarbeet were lower in 2016 (i.e., 46,574 plants ha-1) than those 

in 2014 (i.e., 74,000 plants ha-1) and 2015 (i.e., 98,800 plants ha-1). This may be also true for 

other crops. The other reason may be that the planting dates for all crops 10-20 days earlier in 

2016 compared to those in 2014 and 2015 (see Table 5.2).   
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Figure 5.1. Calibration and evaluation of the models for the crop rotation sequences, a) soybean-

wheat-sugarbeet (seq. A), b) sugarbeet-corn-soybean (seq. B), c) wheat-sugarbeet-corn (seq. C), 

d) continuous beet (seq. D). Notes: Crops models were calibrated in 2014 and evaluated in 2015 

and 2016. 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

(c) (d) 



 

113 

Table 5.10. Model evaluation results for crop rotation sequence yields, soil water content, and 

soil nitrate contents. 

Observations (year) Rotation Layer 𝒓𝑹𝑴𝑺𝑬 𝒅-statistics 

Yield (2014-2016) 

Seq A  0.242 0.982 

Seq B  0.147 0.997 

Seq C  0.118 0.997 

Seq D  0.100 0.949 

Soil Water Content 

(2016) 

Seq A 

0-15 cm 0.224 0.709 

15-30 cm 0.229 0.722 

30-45 cm 0.135 0.877 

45-60 cm 0.195 0.541 

Seq D 

0-15 cm 0.070 0.676 

15-30 cm 0.099 0.564 

30-45 cm 0.055 0.704 

45-60 cm 0.083 0.668 

Soil NO3-N (2016) 

Seq A 

0-15 cm 2.773 0.654 

15-30 cm 0.990 0.765 

30-45 cm 1.110 0.652 

45-60 cm 1.392 0.500 

Seq D 

0-15 cm 0.662 0.873 

15-30 cm 0.242 0.982 

30-45 cm 1.35 0.616 

45-60 cm 1.605 0.610 

 

5.4.1.2. Soil Water and NO3-N Contents 

The model was also evaluated for the soil profile water and NO3-N contents. The 

observed and the model simulated soil profile water contents in the sugarbeet plots for Sequences 

A and D are presented in Fig. 5.2, while the observed and the model simulated soil nitrate 

contents in the sugarbeet plots for Sequences A and D are presented in Fig. 5.3. The model 

evaluation statistics, 𝑟𝑅𝑀𝑆𝐸 and 𝑑-statistics, are listed in Table 5.10. As shown in Fig. 5.2 & 

5.3, the model simulated soil water contents and soil nitrate contents in the sugarbeet plots for 

both sequences reasonably well. As expected, the model did better in simulating soil water 

contents than soil nitrate contents. The rRMSE ranged between 0.055 to 0.229 for water soil 

water contents and 0.662 to 2.773 for soil nitrate contents, while the d-statistics ranged between 
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0.541 to 0.877 for soil water contents and 0.500 to 0.982 for soil nitrate contents (see Table 

5.10).   

It is worth noting that errors in computations of the model simulated soil water and NO3-

N may be introduced by lack of site specific specification of a single set (for different soil layers) 

of average bulk density and Ksat values to represent all experimental plots in the model, when 

there could be considerable spatial heterogeneity in observed soil properties across the field (Ma 

et al., 2007; Saseendran et al., 2007). Simulation errors in daily profile NO3-N concentration 

could also be due to uncertainties in the calibration for different soil organic and microbial pools 

and the extent to which these errors propagated into the daily mineralization of organic matter in 

the model (mainly through microbial processes) (Saseendran et al., 2007).  
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Figure 5.2. Soil profile water content (SWC) in sugarbeet plots in 2016: (a) layers 1 &2 & (b) 

layers 3 & 4 in Sequence A, and (c) layers 1 & 2 and (d) layers 3 &4 in Sequence D. Notes: The 

horizontal bars and whiskers represent the standard errors for observed soil water contents in 

sugarbeet plots. 

It is interesting to note that the soil water contents in the top two layers (Fig. 5.2a and 

5.2c) in the sugarbeet plots were more variable than those in the bottom two layers (Fig. 5.2b and 

5.2d) for both Sequences A and D. Although both were observed in the same year (2016), the 

soil water contents in the sugarbeet plots for Sequence A (grown after wheat, Fig. 5.2a and 5.2b) 

were more variable than those for Sequence D (continuous beet, Fig. 5.2c and 5.2d). Like soil 

water, the soil NO3-N contents in the top two layers (Fig. 5.3a and 5.3c) in the sugarbeet plots 

were more variable than those in the bottom two layers (Fig. 5.3b and 5.3d) for both Sequences 

A and D. Fig. 5.3 also shows that the soil NO3-N contents in the top two layers were greater than 

(a) 

(d) (c) 

(b) 
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those in the bottom two layers. It is also interesting to note that the soil nitrate contents in the 

bottom two layers in the sugarbeet plots for Sequence D (continuous beet) were much smaller 

than those for Sequence A (grown after wheat). This is may be due lower utilization of NO3-N 

by wheat in the previous year. In his research, Sims (2009) also observed greater NO3-N 

following wheat and soybean compared to that of sugarbeet.   

    

  
  

Figure 5.3. Soil profile NO3-N content in sugarbeet plots in 2016: (a) layers 1 &2 & (b) layers 3 

& 4 in Sequence A, and (c) layers 1 & 2 and (d) layers 3 &4 in Sequence D. Notes: The 

horizontal bars and whiskers represent the standard errors for observed soil water contents in 

sugarbeet plots. 

(a) (b) 

(d) (c) 
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5.4.1.3. Tillage Effects Evaluation 

The newly developed sugarbeet model, CSM-CERES-Beet, was also evaluated to 

simulate the effect of tillage operations (NT and CT) on sugarbeet yields in 2015 and 2016.  As 

shown in Fig. 5.4, the model did reasonably well in simulating sugarbeet yields under both 

tillage scenarios, except that the model over-predicted the sugarbeet yield in 2015 for NT. Fig. 

5.4 also shows that CT operations produced higher sugarbeet yields compared to NT operations 

in both 2015 and 2016. Tillage operations may have affected the final sugarbeet plant stand. 

Final average sugarbeet plant stands were approximately 46,574 and 15,675 (plants ha-1) for the 

CT and NT operation fields respectively. Unfortunately, final sugarbeet stands for tillage and no 

tillage operations were not recorded for 2015. A higher weeds infestation were also observed in 

the fields in 2016 production year.  

 

Figure 5.4. Effects of tillage operations on sugarbeet yields. Note: CT ̶ conventional tillage, NT – 

no tillage. 
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5.4.2. Effects of Crop Rotation on Sugarbeet Yield and Soil Nitrate 

Figure 5.5 shows the model-simulated sugarbeet yields after following different previous 

crops in the five hypothetical crop rotation scenarios. The average of the sugarbeet yields over 

the 28 years simulation period were also plotted as boxplot in Fig. 5.6 to compare the overall 

effects of the four previous crops on sugarbeet yield.  Fig. 5.6 shows that sugarbeet had the 

highest yield when the previous crop was wheat, while it had lowest yield when it followed 

soybean. The effect of corn and sugarbeet as previous crop is in-between. Overstreet et al. (2007) 

and Sims (2009) also observed greater sugarbeet yields when it followed wheat compared to 

following corn or soybean. In their research they also observed lowest sugarbeet yield when it 

followed corn, and slightly higher yield when it followed soybean. However, in our model 

simulations, sugarbeet had higher yields when following corn compared to following soybean.  

 

Figure 5.5. Sugarbeet yields following different crops (corn, wheat, soybean, and sugarbeet) in 

five hypothetical crop rotation scenarios. 
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Figure 5.6. Effects of previous crops on sugarbeet yields. 

Figure 5.7 compares the soil profile NO3-N contents in the top 60 cm in sugarbeet plots 

where sugarbeet was planted after four different previous crops. It suggests that when sugarbeet 

followed soybean in crop rotation, the plot would have highest NO3-N contents in all layers and 

for almost the entire growing season, except in the 45-60 cm layer during the early growing 

season (Fig. 5.7d). In the top two layers, soil NO3-N content dynamics in the sugarbeet plots are 

very similar throughout the entire growing season when sugarbeet followed corn, wheat, or 

continuous beet (Fig. 5.7a and 5.7b). However, in the deeper two layers, NO3-N contents in the 

continuous beet plots were much lower compared to other crops (Fig. 5.7c and 5.7d). Sims 

(2009) also observed higher NO3-N content in the first two layers when sugarbeet followed 

soybean in the crop rotation. 
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Figure 5.7. Comparisons of soil profile NO3-N within sugarbeet plots following corn, wheat, 

soybean, and sugarbeet in the five hypothetical crop rotation scenarios within a) 0-15 cm, b) 15-

30 cm, c) 30-45 cm, and d) 45-60 cm layers.   

5.4.3. Effects of Tillage Operations on Sugarbeet Yield and Soil Nitrate 

Effects of different tillage operations on sugarbeet yields are plotted in Fig. 5.8. Among 

these four tillage methods, sugarbeet field tilled with the MP method would produce slightly 

higher yield compared to those tilled using other tillage methods. Tarkalson et al. (2009) 

observed a slightly higher sugarbeet yield with MP compared to CP at a nitrogen fertilization 

rate of 112 kg ha-1. However, the differences in yield resulted from the different tillage methods 

(a) (b) 

(c) (d) 
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are not significant. Non-significant effects of different tillage operation methods on sugarbeet 

yields were also observed by some other studies conducted by Hao et al. (2001), Jabro et al. 

(2010), Tarkalson et al. (2012), and Larney et al. (2016). 

 

Figure 5.8. Effects of different tillage operations on sugarbeet yields. Notes: MP- Moldboard 

Plow, CP- Chisel Plow, FC- Field Cultivator, and NT- No Tillage. 

The difference observed in the sugarbeet yields under different tillage operation scenarios 

may be due to soil NO3-N availability (Hansen and Djurhuus, 1997; Catt et al., 2000; Mitchell et 

al., 2000; Thomsen, 2005; Askegaard et al., 2011). A comparison of the model simulated NO3-N 

content in the top 60 cm are plotted in Fig. 5.9. Fig. 5.9a and 5.9b show that the sugarbeet field 

that was tilled by MP, which reaches up to 15 cm, had the highest NO3-N contents in the upper 

two layers compared to those tilled by other methods (CP, FC, and NT) during the first 60-100 

days after planting. For the bottom two layers, there was no difference in soil NO3-N contents in 

the sugarbeet fields tilled using the four different tillage methods (Fig. 5.9c and 5.9d).  
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Figure 5.9. Comparisons of soil profile NO3-N within sugarbeet plots under four different 

hypothetical tillage operation scenarios within a) 0-15 cm, b) 15-30 cm, c) 30-45 cm, and d) 45-

60 cm layers. Notes: MP- Moldboard Plow, CP- Chisel Plow, FC- Field Cultivator, and NT- No 

Tillage. 

5.5. Conclusions  

Sugarbeet as an alternative biofuel source is getting popularity and its production within 

the RRV are increasing. A prudent crop rotation and tillage operation is essential for economic 

production of deep-rooted sugarbeet. Both crop rotation and tillage operation can significantly 

affect soil organic C and N accumulation and thus may affect sugarbeet productivity. A sound 

crop rotation is also the key component of effective pest management and stabilization of 

(a) (b) 

(c) (d) 
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sugarbeet yields. For these reasons, modeling the impacts of different crop rotation and tillage 

operation scenarios on sugarbeets production are very essential for prudent decision makings. In 

this research, four crop growth models from RZWQM2 v. 4.0 (CSM-CERES-Beet for sugarbeet; 

CSM-CERES-Maize for corn; CROPSIM-Wheat for wheat; and CROPGRO-Soybean for 

soybean) were used to assess the impacts of crop rotation and tillage operations on sugarbeet 

production.   

The crop growth modules for the four crops were first calibrated for field data in 2014 

and evaluated for 2015-2016 crop rotation sequences. Hypothetical crop rotation and tillage 

operation scenarios identified wheat most suitable crop before sugarbeet in the crop rotation 

scenarios. Among the tillage operations, moldboard plow (MP) at a depth of 15 cm performed 

much better compared to other tillage operations of chisel plow (CP), field cultivator (FC), or no 

tillage (NT). 

In future RZWQM2 model may be used for different soil and climatic conditions under 

different management scenarios in the Red River Valley for longer periods of observed data for 

better evaluation of the model performances. As the sugarbeet production may also be expanded 

into the nontraditional planting areas in the region due to potential demand for biofuel 

production, RZWQM2 can also be used to assess the associated environmental impacts and 

suitability for different crop rotation and management scenarios. 
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CHAPTER 6. CONCLUSIONS 

Greenhouse gas (GHG) emissions in the US have increased by approximately 1% each 

year in the last decade (USDOE/EIA, 2005). Renewable biofuel energy sources are getting 

popular because of their potential to reduce net GHG emission. The Energy Independence and 

Security Act (EISA) of 2007 classified biofuels into three categories called conventional, 

advanced, and cellulosic biofuels, offering 20%, 50%, and 60% reduction in GHG emission 

respectively. Currently, 97% of the biofuels produced in the US are corn-based ethanol, which 

can offer up to 40% reduction in GHG emissions. Sugarbeet is currently being considered to be 

uniquely qualified as “advanced biofuels” under the EISA.  

Modeling sugarbeet growth can be very useful for the sugarbeet growers and sugarbeet 

industries for predicting the yields and total acreage required to reach their production goals. At 

the same time, models that can simulate the effects of crop growth on soil and water quality will 

be helpful in predicting their impacts on soil health and environment, thus can play an important 

role in prudent decision makings. We first developed a sugarbeet model to be included in 

DSSAT (Decision Support System for Agrotechnology Transfer) by adopting and modifying the 

CERES-Beet model. The new sugarbeet model is named CSM-CERES-Beet, which was 

calibrated and evaluated against the available field data from Carrington Research Extension 

Center, North Dakota and Bucharest, Romania. The model did reasonably well in simulating 

LAI, top and root weight. Transferability of the model was also assessed applying the model to 

simulate the yields for five different sugarbeet cultivars grown in North Dakota, USA in 2016. 

The evaluation for the model’s transferability suggested that the model’s genetic parameters 

should be re-calibrated when CSM-CERES-Beet is used to simulate different sugarbeet cultivars. 



 

125 

The calibrated CSM-CERES-Beet model was then linked to RZWQM2 for the 

assessment of sugarbeet growth on soil and water quality. The model was applied to evaluate it 

for sugarbeet production at Carrington, ND study sites. The model was able to closely simulate 

the sugarbeet growth variables, and soil water and nitrate contents within 0-60 cm. The 

identifiability and sensitivity of the model parameters were also analyzed. RZWQM2 was also 

used to simulate the effects of crop rotation and tillage operations on sugarbeet production. The 

model was able to closely simulate the yields of the crop rotation scenarios studied at Carrington, 

ND. Hypothetical crop rotation and tillage operation scenarios identified wheat as most suitable 

previous year crop and moldboard plow as the best tillage operation method compared to other 

scenarios. 

One limitation of the model is that uncertainty analysis revealed that the calibrated CSM-

CERES-Beet consistently over-predicted leaf numbers with false confidence (i.e., small 

confidence intervals), although it did not affect the model’s capabilities in simulating sugarbeet’s 

yield. In future, works can be carried out to improve the leaf number equations in the developed 

CSM-CERES-Beet model for better simulations. In the future, the developed model will be 

applied to simulate sugarbeet production under different management scenarios for different 

soils and under different climatic conditions in the Red River Valley. As the sugarbeet 

production may be expanded into the nontraditional planting areas in the region due to potential 

demand for biofuel production, both the DSSAT and RZWQM2 model enhanced with the new 

sugarbeet module can be used to assess the associated environmental impacts. The developed 

models can also be used to assess the associated environmental impacts and suitability for 

different crop rotation and management scenarios. 
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APPENDIX. MATERIAL FOR CHAPTER 3 

Table A1. Field management for 2015 sugarbeet experimental plots at Carrington, North Dakota, 

USA. 

Field management 2015 

Planting date June 01 

Planting stand 122, 932 seeds ha-1 (49,749 seeds ac-1) 

Fertilizer N: 112.08 kg ha-1 (100 lbs ac-1) 

P: 22.42 kg ha-1 (20 lbs ac-1) 

S: 11.21 kg ha-1 (10 lbs ac-1) 

Fertilizer application date May 31 

Harvesting October 17 

 

Table A2. CSM-CERES-Beet model validation using the CREC (USA) 2015 dataset. 

Observation Group Index of agreement (d) 
Relative root mean square error 

(rRMSE) 

Leaf area index 0.931 0.444 

Leaf number 0.842 0.243 

Top weight 0.822 0.534 

Root weight 0.953 0.396 

Note: CREC – Carrington Research and Extension Center. 

For 2015, the CSM-CERES-Beet consistently over-predicted the observed values 

between the 67th to 100th days after planting for all four plant variables (Fig. A1). This might be 

caused by a strong wind gust (~ 22.5 m s-1) occurring around the 65th days after planting (July 

28-29, 2015). The CSM-CERES-Beet was not designed to simulate the damages caused by 

unexpected events such as strong wind gusts or freezing temperature, which was also noted by 

Leviel (2000) when discussing the limitations of CERES-Beet. 
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Figure A1. Model-simulated and observed values of (a) leaf area index (LAI), (b) leaf number, 

(c) top weight, and (d) root weight for model validation (2015) and their 95% confidence 

intervals (CI’s). Notes: Observed values are plotted in the boxplots with the medians shown as 

the lines within the boxes, the 25th and 75th percentiles as the tops and bottoms of the boxes, and 

the 5% and 95% percentiles as the whiskers below and above the boxes.   
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