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ABSTRACT 

Biological applications for silicon nanocrystals (SiNCs) have recently gained more 

attention because of silicon’s low toxicity. But, to be able to use SiNCs in applications such 

as biological sensors, labeling or drug delivery we need to understand their transport in 

different environments and their interaction with cell membrane. I will review some 

different methods for the synthesis of, and I will give an accounting of encapsulating SiNCs 

with PEGylated phospholipids to make them soluble in water. I also studied the free 

diffusion of these micelles in water, as well as their restricted diffusion and interaction with 

giant unilamellar vesicles (GUVs). I studied their restricted diffusion in oil emulsions. I 

was able to calculate the diffusion coefficient for a large number of micelles moving freely 

in water. I also measured the effect of water on the SiNC micelles intensity and observed 

the difference between the restricted diffusion in liposomes and emulsions. 
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CHAPTER 1. INTRODUCTION 

Semiconductors are now widely used in microelectronic circuits and in 

optoelectronic devices such as light-emitting diodes, photovoltaic devices, and light 

detectors, etc.[1] Semiconductor materials are characterized by band gaps between 0.5 and 

3 eV, which makes them ideal materials for many electronic and optical applications. The 

ability to control a semiconductors band gap could open the door to many new applications. 

Semiconductor nanocrystals give us this ability to change and control the band gap 

compared to the bulk semiconductors. We can change the semiconductors energy gap over 

quite a wide range based on a mechanism known as quantum confinement. Quantum dots 

(QDs) are very tiny particles on the order of a nanometer in size. They are composed of a 

hundred to a thousand atoms comprised from an element, such as silicon or germanium, or 

a compound, such as CdS or CdSe.  

 

 

 

 

 

Solving Schrodinger’s equation for a particle in a box gives equation (1.1), which 

is showing that the energy gap is inversely proportional with the radius of the dot squared 

(Figure 1). So, we can control the energy gap by changing the size of the quantum dot. 
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n = 2 

n = 3 

E 
n = 3 

n = 2 

n = 1 

Figure 1: Schematic for a particle in a box and the quantum confinement effect. 
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 Through the process of photoluminescence, a change of the energy gap changes 

the wavelength of the light emitted. Size-tunable material properties are typically found 

when the so-called Bohr exciton radius is larger than the physical size of the semiconductor 

material. They are typically characterized by bandgaps between 0.5 and 3 eV, which makes 

them ideal materials for many electronic and optical applications.[1, 2]  

Nanomaterials have tremendous potential in biological applications and drug 

delivery. Cd-based QDs have been used in the targeted in-vivo imaging of tumors. 

However, Cd poses problems because of the potential toxicity at low concentration, with 

recent studies indicating that cadmium-ion release is a major concern.[3] One solution is 

to apply a biocompatible coating to the core, which has been shown to decrease the 

cytotoxicity of these QDs. Beyond this approach, new heavy-metal free QDs are needed 

for in vivo applications. Silicon is nontoxic in its elemental form compared to group II-VI 

and IV-VI QDs. Si-QDs were claimed to be at least 10 times safer than Cd-based QDs 

under UV irradiation.[3] One of the major obstacles for applications of silicon 

nanocrystals, however, is oxidative degradation in the biological environment. Studies 

have shown that surface functionalization and PEGylated-micelle encapsulation of Si-QDs 

can overcome this problem.[4] 

Although silicon nanocrystals (SiNCs) are gaining more attention, their transport 

and interaction with cell membranes is not well understood. To be able to study their 

diffusion inside cells, we studied their free diffusion first and then studied their diffusion 

inside artificial cells; giant bilayer liposomes. There are many synthesis methods available 

for silicon nanocrystals. Non-thermal plasma synthesis is the method used to create the 
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SiNCs that we used here. In Chapter 2, we explained in detail the different synthesis 

methods. To be able to study SiNC diffusion in water, however, we first need to make them 

soluble in water. To do so, we encapsulated the SiNCs with PEGylated phospholipids, 

which surround the QDs and make them water-soluble. Next, we recorded videos under 

photoluminescent observation for the free diffusion of these micelles, and using a Matlab 

code we were able to track the particles trajectories and obtain their diffusion coefficients 

for further study. Optical measurements were generated using visible/NIR fluorescence 

imaging and an inverted Olympus microscope attached to Electronic Multiplied Charged 

Coupled Device (EMCCD). The next step was to prepare the giant unilamellar vesicles 

(GUVs) that mimic the structure of the cell membranes. We used the gentle hydration 

method to prepare them and introduce our micelles into the liposomes. We then recorded 

more videos for the restricted diffusion of these micelles inside the GUVs using the 

previous setup and then started analyzing this data using Matlab to obtain position vs. time 

data. Finally, we studied the restricted diffusion of the same SiNC micelles inside water-

in-toluene emulsions. We explain the method we used to prepare the emulsions in details 

in Chapter 4.  We recorded videos for micelle diffusion and were able to track the particles 

inside the emulsions and calculate the distance of the micelle from the interfaces and study 

the potential effect of the interface on the diffusion of the micelles near the boundary. 
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CHAPTER 2. NANOCRYSTAL SYNTHESIS 

2.1. Chemical Etching 

The most frequently used method for the preparation of porous silicon is the 

chemical etching or the electrochemical etching of silicon wafers. In this method, a silicon 

wafer is electrochemically polarized in an electrolyte containing hydrofluoric acid. The 

wafer dissolves slowly, forming cavities that percolate throughout the sample producing 

porous silicon. Removal of the formed nanocrystal can be done by sonication in a solvent 

bath or the material can be left intact for further study.[5] 

2.2. Laser Ablation in Liquids (LAL) 

Making silicon nanocrystals by laser ablation in liquids (LAL) requires a two-stage 

process. The first stage is the nanosecond laser ablation of a silicon target in chloroform, 

which induces the formation of large composite polycrystalline particles (20-100 nm). The 

second stage is the ultrasonic post treatment of the silicon nanoparticles (SiNPs) in the 

presence of HF, which disintegrates them and releases small individual nanocrystals (NCs). 

A p-type cz-silicon wafer with a resistivity of 10-20 Ω is typically ultrasonicated 

in deionized water and then ethanol for 1 hour. The wafer is then immersed in CHCl3 and 

targeted by a pulsed Nd:YAG laser (355nm, 40ns pulse duration, 5 KHz repetition rate). 

Twenty scans is typically sufficient to see a brownish color in the liquid. After evaporating 

the chloroform, a post treatment for the precipitate is needed to obtain small size 

monocrystalline silicon nanoparticles. This post physicochemical treatment is achieved by 

exposure to isopropanol, HF and hexane (3:1:3) under continuous ultrasonication. Testing 

of these SiNPs by transmission electron microscopy (TEM) and by high resolution TEM 
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(HRTEM) at 100 and 200 kV coupled with Raman scattering measurements are used to 

confirm the size and crystallinity of the SiNCs.[6] 

2.3. Solution Based  

In the solution-based method, thermal decomposition of HSQ (hydrogen 

silsesquioxane) is achieved by heating under a flow of argon and hydrogen gas to a peak 

temperature of 1100-1400°C, depending on the desired nanocrystal size. The second step 

is to grind the brown/black glassy product into a brown powder with a grain size of 200 

nm. HF and HCL are then used to etch the oxide to yield hydride-terminated SiNCs, which 

are then centrifuged to isolate the NCs from the HF. To reduce the impact of oxidization - 

which affects the photophysical properties of NCs - requires a passivation step, which is 

achieved by rinsing the light brown precipitate in ethanol and toluene and then dispersing 

it in 8 mL of 1-dodecene and 2 mL of 1-octadecene. The resulting cloudy brown dispersion 

is heated to 190 °C for 8 h, producing a clear dark-orange dispersion. After washing and 

dispersing in toluene, the concentrated nanocrystal dispersions are heated under vacuum 

for 24 h at 200 °C to remove the excess ligand. Finally, the nanocrystals are dispersed in 

toluene again for further study.[7] 

2.4. Laser Pyrolysis 

The laser pyrolysis method combines vapor-based and solution-phase process using 

inexpensive commodity chemicals to produce SiNPs at high rates (20-200 mg/h). CO2 laser 

induced pyrolysis of silane produces particles with an average diameter of 5 nm. These 

SiNPs were prepared and later reduced by etching with mixtures of hydrofluoric acid (HF) 

and nitric acid (HNO3). There are some problems associated with passivation so that these 

particles are not well dispersed in most solvents and do not have stable photoluminescence 
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(PL). The PL intensity tends to decay with time while the PL peak shifts. Surface 

functionalization was essential to produce particles with good properties. The surface 

functionalization has two approaches. The first is hydrosilylation of Si-H surfaces, and the 

second is silanization of Si-OH surfaces. Modifying the surface of the etched luminescent 

silicon nanoparticles allows the formation of a stable colloidal dispersion of these particles 

in different solvents.[8]  

2.5. Ion Implantation 

The ion implantation synthesis method requires a complex setup. A silicon ion 

source is accelerated through a fixed electrostatic potential towards a magnetic mass-

spectrometer which filters undesired ion species. Second, uniform irradiation is introduced 

through a beam or scanning system that is contained in a special chamber. This special 

chamber is important to control essential parameters such as vacuum level, sample position 

and temperature. The ions will hit the sample substrate to a specific depth depending on 

their energy. The substrate used for producing SiQDs is often silicon dioxide. Once the 

ions reach the limit of supersaturation of the solid, they will nucleate SiNCs.[5] 

2.6. Sol-Gel Pyrolysis 

Enhancement of SiNC optical properties is important for applications and has been 

studied extensively. Some methods used for the synthesis of SiNCs can be expensive and 

the SiNCs produced have a broad size distribution and a low density. The sol-gel pyrolysis 

method uses tetraethylorathosilicate HSi (OCH2CH3) or HSi(OR)3, which is commercially 

available. The first step is hydrolyzation with water for the hybrid silicon alkoxide, which 

substitutes the OR group with a silanol Si-OH group. The second step is condensation for 

the previous mixture to react to form a siloxane (Si-O-Si) bonded network. The last step is 
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pyrolysis at a temperature above 1000 °C where the Si-H moieties present react to H2 and 

Si-Si bonds. The Si-Si bonds reorganize and form SiNCs.[5] 

2.7. SiOx/SiO2 Stoichiometric Annealing 

Forming precise nanometer-sized silicon crystals has always been a challenge. One 

of the first methods to control the size was a SiO/SiO2 superlattice approach. The approach 

uses molecular beam epitaxy and UV-ozone oxidation to grow precise nanometer-sized 

amorphous silicon layers between SiO2 layers. Thermal evaporation of SiO powder is done 

at 1000 °C under high vacuum. Oxygen is added through the growth process to control the 

stoichiometry. The next step is to anneal the layers at 1100 °C in a nitrogen atmosphere. 

Because of the instability of nonstoichiometric oxides such as SiOx at high temperature, 

they decompose into the two stable components Si and SiO2 [5]: 

                                                ��� →  �
�  ��₂ + �1 −  �

� � ��.                                      (2.1) 

2.8. Solution Method via Reverse Micelles 

A one-pot synthesis was able to present an efficient method for fabricating colloidal 

SiQDs with a modifiable surface. Allyl trichlorosilane were used as a surfactant and 

reactant to surround self-assembling halogenated silane precursors (SiX4, X= Cl, Br) in 

toluene as shown in figure 2. The trichlorosilane formed a reverse micelle around the SiX4 

core and then was treated with LiAlH4 to yield SiQDs with alkene groups attached to the 

surface. Transmission electron microscopy (TEM), high resolution TEM (HRTEM) and 

quantum yield measurements have been used to characterize the SiQDs.[9]  
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Figure 2: One-pot synthesis of alkene coated SiQDs and further functionalization via 

thiol-ene click chemistry.[9] 

 

2.9. Low Pressure Non-thermal Plasma 

The different states of matter generally found on earth are solid, liquid, and gas. Sir 

William Crookes, an English physicist, identified plasma in 1879. The word "plasma" was 

first applied to an ionized gas by Dr. Irving Langmuir, an American chemist and physicist, 

in 1929. A plasma consists of a collection of free moving electrons and ions - atoms that 

have lost electrons. Energy is needed to strip electrons from atoms to make a plasma. The 

energy can be of various origins: thermal, electrical, or light (ultraviolet light or intense 

visible light from a laser). With insufficient sustaining power, plasmas recombine into a 

neutral gas. A plasma can be accelerated and steered by electric and magnetic fields, which 

allows it to be controlled and applied. Plasma research is yielding a greater understanding 

of the universe. It also provides many practical uses: new manufacturing techniques, 

consumer products and the prospect of abundant energy, more efficient lighting, surface 

cleaning, waste removal, and many more application topics. Plasmas can be classified as 

“thermal” or “non-thermal” based on the temperature and thermal equilibrium between the 

electrons, ions and neutrals. In thermal plasmas, the electrons and gas temperature are in 

equilibrium with each other, like in the sun and lightning. In the non-thermal plasmas, the 
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electrons and gas temperatures are not in equilibrium with each other, like the aurora 

borealis.[10] 

In its early years, this work was motivated by particle formation occurring as a 

contamination problem, both in semiconductor processing and in the manufacture of solar 

cells. Hence, the initial main thrust of studying particle formation in plasmas was to avoid 

the nucleation of particles.[11-13] The most important contribution of this method has been 

that nanocrystals can be generated at gas temperatures as low as room temperature and the 

approach has yielded silicon nanocrystals several tens of nanometers in size. Due to their 

size these nanoparticles have been investigated for electronic device applications in 

nanoparticle-based transistors.[5] 

The main principle of plasma discharge is that when an electric field is applied to a 

gas under low pressure, electrons easily get accelerated to energies sufficient to 

electronically excite and ionize the surrounding gas atoms. In steady state, the ionization 

produced by energetic electrons will precisely balance the charge carrier losses through 

diffusion to the wall, recombination, and other processes. 

Non-thermal plasmas are typically characterized by very hot electrons with 

temperatures between 20000-50000 K (~2-5 eV) and significantly colder positive ions and 

neutral molecules, whose temperatures are very effective in dissociating precursor gas 

molecules.[14, 15] They also lead to a buildup of electric field within the plasma wherever 

the plasma is in contact with boundaries such as reactor walls or the surfaces of 

nanoparticles. An interesting feature of the non-thermal plasma method is the selective 

ability of the temperature; the nanocrystals will be at several hundreds of Kelvin while the 

gas temperature will be much lower. This makes nonthermal plasmas attractive for the 
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synthesis of nanocrystals of covalently bonded semiconductors such as group IV and III-

V semiconductors. Studies on silicon nanoparticles suggest that the crystallization 

temperature of particles with diameters of 4, 6, 8, and 10 nm are 773, 1073, 1173, and 1273 

K respectively.[16] Thus, it is quite surprising that nanocystals requiring such high 

crystallization temperature are formed in plasmas at low gas temperature. In newer 

approaches they determined that the gas temperatures were between 420 and 520 K, which 

is significantly lower than the crystallization temperatures reported for small silicon 

nanoparticles. The only logical conclusion from this observation is that the nanoparticles 

in the plasma are at significantly higher temperatures than the surrounding gas. 

The typical reactor consists of a quartz tube with 9.5 mm outer diameter and 6.8 

mm inner diameter, mounted on a gas delivery line and exhaust system with ultratorr 

connectors as shown in Figure 2. Radiofrequency (RF) power is applied to the system using 

two ring electrodes.[17] 

 

Figure 3: Schematic of a synthesis reactor with a digital image of the argon-silane 

plasma.[17]  
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The plasma is typically generated at a pressure of 187 Pa, but luminescent 

nanocrystals have also been obtained at pressures as high as 2000 Pa. Most of the 

experimental results presented were obtained at a pressure of 1.4 Torr since it was found 

that under these conditions the largest yield of nanocrystals could be achieved. Typical gas 

flow rates at 1.4 Torr are up to 100 sccm of Ar, around 15 sccm of SiH4 (5 % dilution in 

either He or Ar), and a few sccm of additional hydrogen. The residence times of gas in the 

plasma, calculated on the basis of the gas flow velocity, are between a few tens of 

milliseconds to less than 5 ms. In figure (3), it can be seen that the plasma consists of two 

regions. In the part upstream of the electrodes, the plasma emission appears weaker than 

in the region downstream of the two electrodes. Also, significant growth of silicon film in 

the reactor tube can be observed upstream of the electrodes, while the growth is much less 

significant downstream of the ring electrodes. This suggests that very fast nucleation and 

precursor consumption occurs upstream of the electrodes.[17] 

Plasma power plays a crucial role in this process. RF current and voltage have been 

measured to estimate the actual power consumption in the discharge, giving a value of 30 

W. Given the very small discharge volume (2 cm3), a considerable power density is 

achieved in the plasma region. A filter placed downstream of the discharge collects the 

particles produced in the plasma. The filter is made of a fine stainless steel mesh (400 

wires/in.) and a few minutes of deposition are sufficient to completely coat the filter.[5] 

2.10. Conclusion 

 We reviewed different methods used to produce SiNCs, touching on the advantages 

and disadvantages of each. The ultimate goal of these methods is to produce a broad range 

of sizes with stable and high-intensity photoluminescence at the lowest cost. In this work, 
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we used plasma-synthesized SiNCs because of their uniform size distribution and high 

quantum yield.  
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CHAPTER 3. PHOTOLUMINESCENCE PROPERTIES 

Silicon nanocrystals (SiNCs) have many conceivable applications based on 

photoluminescence. To realize these applications, we require two photoluminescent 

properties; stability and efficiency. Stability in solution is important for dealing with 

colloidal silicon nanocrystals in different solvents. Also, silicon reacts with oxygen to form 

a silicon oxide layer, which affects the photoluminescence. Efficiency has important 

implications for determining the ability to use these SiNCs in different applications. This 

section will focus on the stability and efficiency of the SiNCs synthesized by the non-

thermal plasma method. In our case, we are measuring the efficiency through the quantum 

yield; �� = # �� �������  !"�� #
# �� ������� $%��&% #. Measuring the QY allows us to evaluate how bright the 

photoluminescence (PL) will be. For drug delivery and biological applications, it is 

important that the SiNCs do not react with oxygen, so that they show a stable emission and 

a high quantum yield. The higher the quantum yield, the more opportunities will be 

available for different applications of SiNCs.  

3.1. Stability 

As we mentioned earlier, we need to produce stable SiNCs for different 

applications, and surface passivation is very effective for reducing the reaction of SiNCs 

with oxygen. A thermal liquid hydrosilylation reaction is the method used for the ligand 

passivation of the SiNCs, and using 1-dodecene as ligand for the passivation process allows 

SiNCs to be dispersed in most common organic solvents. Figure 4 illustrates the SiNC 

passivation process. The passivation process is always below 100% because of steric 

hindrance, and hence there will always be some dangling bonds. This incomplete 

passivation could allow oxygen to react with SiNCs. The reaction with oxygen can affect 
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the surface composition, changing the effective size with a blue shift that can reach 200 

nm in the PL spectral emission.[18] 

 

Figure 4: Illustration of a SiNC passivated with alken group (R) (octadecene, dodecene, 

and styrene). 

3.2. Quantum Yield Measurement 

The quantum yield of the plasma synthesized SiNCs used in this study was 

measured to be around 50 % immediately after synthesis.[19] Quantum yield is defined as 

the ratio of the number of photons that are emitted to the number of photons absorbed. To 

determine the QY of SiNCs we need to simultaneously record the absorption and emission 

spectra of a SiNC solution. To do this, we placed the solution in an integrating sphere, 

which was connected to an Ocean Optics QE65000 spectrometer through an optical fiber. 

We calibrated the spectrometer’s spectral response with a calibration lamp; Ocean Optics 

halogen light source (HL-2000-CAL-ISP). A baseline was first collected for a vial 

containing pure solvent using an Omicron PhoxX® laser with wavelength of 375 nm. After 

subtraction of the reference baseline, the photoluminescence spectra of SiNCs dispersed in 
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hexane and sealed under a nitrogen atmosphere was collected. We take an average of three 

separate spectral measurements for both the sample and the reference. A typical PL after 

subtraction is shown in Figure 5. The QY value can be calculated by dividing the integrated 

of PL spectrum by the integrated absorption spectrum.
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Figure 5: The Absorption and emission of a typical quantum yield measurement. The 

LED absorption is negative because of the background subtraction. 
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CHAPTER 4. FREE AND RESTRICTED DIFFUSION OF SiNCS 

In this section, I report on the diffusion of the silicon nanocrystals (SiNCs) in 

different environments. First, I will give details about the theoretical basis of our 

experiments to study the diffusion of the micelles in different environments.  

We studied the diffusion of micelles and nanocomposite particles in three different 

environments: free in water, confined inside giant unilamillar vesicles (GUVs), and inside 

water/toluene emulsions. First, I will report on the methods we used to make the SiNCs 

soluble in water by encapsulating them with PEGylated phospholipids. Second, I will 

report on the method we used to make GUVs. Third, I will report the experimental 

procedures we used to make the W/O emulsion. And finally, I will report on what we found 

by studying the micelle diffusion in these different environments.  

4.1. Theoretical Background  

Dropping a solid sphere in a fluid will make it accelerate until the drag force 

balances the gravitational force and the sphere reaches terminal velocity. This drag force 

is given by the following equation known as Stokes’ law[20]: 

'� = 6)*+,. (4.1) 

The gravitational force is given by the equation: 

'- =  .
/  ) +/ 01 2. 

(4.2) 

When force balance happens, both equations will equal each other and the sphere will 

reach a terminal velocity νt :  

,� =  2 4�01 2
9 *  

(4.3) 
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Combining Stokes’ law and the Einstein equation will help us to understand the diffusion 

of such particles. Observing a spherical polymer colloid with an optical microscope shows 

that such particles move continuously in a random manner. This motion is termed 

Brownian motion after Robert Brown, a botanist, who observed the same phenomenon for 

plant pollen in 1827. Brownian motion results from collisions between the molecules of 

the fluid and the colloidal particles. In such a random walk, the mean square displacement 

is proportional to the number of steps and thus the time:  

〈789:;〉� = = :. (4.4) 

Where, 789:; is the displacement vector after time t and = is a constant. The equation of 

motion can be written as: 

	 >�78
>:� +  ? >78

>: = '874�>@	. 
(4.5) 

Here, it is assumed that there is a drag force on the particle proportional to the velocity, 

with a drag coefficient ?. For a sphere of radius 4 in a liquid of viscosity η, this is given by 

Stokes’ law: 

? = 6)*+. (4.6) 

Furthermore, with 7� =  A� + B� + C� = 3 A�, we can write >9A�; >:⁄ = 2 A9>A >:;⁄ , so 

multiplying equation (4.5) by x and rearranging yields:  

?
2 >9A�;

>: =  A '&$�#�! −  	A >�A
>:� . 

 

(4.7) 
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With:  

A >�A
>:� = >

>: FA >A
>:G −  F>A

>:G
�

. 
(4.8) 

we get  

?
2 >〈9A�;〉

>: =  〈A '&$�#�!〉 −  	 >
>: 〈A >A

>:〉 − 	 〈F>A
>:G

�
〉. 

(4.9) 

The first and second term on the right hand side will time average to 0 because the direction of the 

random force and the velocity are random and uncorrelated with the position. So the equation 

becomes: 

>〈9A�;〉
>: = 2 HI

? . 
(4.10) 

and the total mean square displacement will be given by the following equation: 

〈97;�〉  =  6 HI
?  :. 

(4.11) 

Using the Einstein Formula 

J =  HI
? . 

(4.12) 

We get what is called the Stokes-Einstein equation: 

JKL =  HI
6)*+�

 . 
(4.13) 

This previous equation gives the diffusion coefficient of a colloid in a fluid and is the one 

we use to determine the radius of the micelles. Combining Equations (4.11) and (4.12) 

gives the diffusion coefficient as a function of mean square displacement in three 

dimensions [20]:  
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J =  〈97;�〉
6: . 

(4.14) 

In our setup we apply the previous equation to determine the diffusion coefficient but 

projected to two dimensions as follows: 

J =  〈97;�〉
4: . 

(4.15) 

4.2. Experimental Procedures 

4.2.1. Free Diffusion of Micelles 

Preliminary experiments have recently been performed to understand the use of 

monodisperse, stable SiNCs for biological applications. To achieve that, we need to 

perform surface passivation to allow SiNCs to be stable in aqueous environments. We used 

polyethylene glycol (PEG) grafted phospholipids [1,2-dimyristoyl-sn-glycero-3-

phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (ammonium salt)], 

purchased through Avanti Lipids and solvated in chloroform. A 270 μL solution of 0.1 % 

SiNCs in chloroform was put in a 2 mL vial with 200 μL of PEGylated phospholipids in 

chloroform. Subsequently, 330 μL of chloroform was added while stirring the mixture. 

Next the mixture was moved into a 50 mL round-bottom flask and attached to Buchi rotary 

evaporator (R210) set to rotate at 40 rpm for 2-3 hours followed by pulling vacuum of (17 

kPa) for 15 minutes to make sure that the solvent was completely evaporated. An image of 

the setup is shown in figure 6. The flask was removed and hydrated with 2 mL of distilled 

water and allowed to incubate overnight. During this time, the encapsulation of the SiNCs 

took place.[4]  

The next step is to remove the larger micelles for better contrast and tracking of the 

small ones. I used two reduction techniques to eliminate undesired large particles. The first 
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one is by filtration in which we used an Advantec polypropylene in-line filter holder, a Pall 

hydrophilic polypropylene membrane filter, and a 1 mL syringe. We filtered the micelles 

through the hydrophilic membrane to get rid of micelles with a size bigger than 200 nm. 

The second method that I used to separate the small-sized micelles from the large ones is 

centrifugation in an Eppendorf centrifuge 5424 at a speed of 5000 rpm for 5 minutes. 

 
 

Figure 6: Actual setup for encapsulating SiNCs by PEGylated phospholipids. 
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The next step is to prepare slides in order to observe the free diffusion of the 

micelles in water. I cleaned two slides with soap and DI water and dried them under flowing 

nitrogen to ensure cleanliness. I covered the sides of one slide with a tiny layer of vacuum 

grease and after putting a drop of the small-sized micelles on the slide, I sandwiched the 

drop between the two slides. I then have the drop squeezed and sandwiched between the 

two slides and sealed from air to decrease the evaporation and the movement of the whole 

drop (Figure 7). 

Figure 7: Illustration of how we are preparing the slides to prevent drying. 

After preparing the slides, digital movies of the diffusion of the micelles were 

collected using an inverted Olympus microscope attached to Princeton ProEM Electronic 

Multiplied Charged Coupled Device (EMCCD). To be able to track the micelles in water 

via their PL, I used an X-Cite® 120Q excitation light source, which uses a 120-watt lamp 

to deliver rich spectral excitation energy and uniform wide-field fluorescence microscope 

illumination to the micelles (Figure 8). 

Grease 

on the 

perimeter 

The 

droplet 
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Figure 8: Actual setup of the inverted microscope and epifluorescence method used to 

collect optical data. 

4.2.2. Making Liposomes Using Gentle Hydration Method 

 After preparing the SiNCs micelles, the next step was to use giant bilayer liposomes 

as a model for a real biological cellular membrane to examine the interaction between the 

micelles and the cellular membrane. Liposomes were formed using a 9:1 ratio of (L-α-

phosphatidylcholine:L-α-phosphatidylglycerol or PC:PG) lipid mixture in chloroform. 

Chloroform and methanol were added to achieve a 2:1 (chloroform:methanol) solvent ratio 

for a total amount of 100 μL in a glass vial. The mixture was hand stirred for five minutes 

and then put it in a round-bottom tube. The mixture was dried by manual rotation under 
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the influence of a pure nitrogen flow at a 45-degree angle for 4-5 minutes. I added one to 

two milliliters of the micelles and then stored the mixture overnight at 37 °C. [21] 

 The above method that I used to make the liposomes is called gentle hydration. In 

other studies, the liposomes and micelles are prepared separately then mixed, while we 

report hydration of the dry layer of lipid mixture with the micelles in water, which allows 

the liposomes to encapsulate more micelles in a shorter amount of time. 

4.2.3. Making of Emulsions 

The common emulsion to make is an oil-in-water (O/W) emulsion, where the oil 

droplets collide in the water environment and are surrounded by surfactant. In our 

experiment we needed to examine the interaction between SiNC micelles and emulsion 

walls, so we needed to make a stable water-in-oil (W/O) emulsion. A surfactant or 

emulsifier is used to surround the water droplets as a shell within the oil environment.[22] 

Here, I used sorbitan monostearate (Span® 60) as a surfactant. Span60 has a 

hydrophilic-lipophilic balance (HLB) of 4.7, which means that it is soluble in oil (or 

toluene in our case). First, I prepared a solution of 0.5 % of Span60 in 2 mL of toluene and 

stirred it for 2 minutes by hand until it was totally dissolved. Then, I added 50 μL of our 

micelles to 500 μL of Span60/toluene solution (10 %). We then stirred it for another 2 

minutes and we achieved the desired emulsion. 

4.3. Results and Discussion 

In this section I report on the three cases of diffusion that I studied. The first is the 

free diffusion of SiNC micelles in water. The second is the restricted diffusion of SiNC 

micelles inside GUVs. The third case is the diffusion of SiNCs inside emulsions. 
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First, I studied the free diffusion of the encapsulated SiNCs in water. I described 

the recording of digital movies in the previous section. To analyze these videos, I used a 

Matlab code that we modified (Appendix A). This code was able to track the micelles 

through each video frame, giving us a data sheet of mean square displacement (MSD) as a 

function of time. A graph of the MSD versus time for 268 micelles is shown in Figure 8 

(left). According to Equation (4.16), we were able to determine the diffusion coefficient 

values for different micelles as: 

J =  〈97;�〉
4: . (4.16) 

We could then determine the radius of these micelles using the Stokes-Einstein equation: 

J =  HI
6)*+�

 , (4.17) 

where H = 1.38 O 10Q�/ 	�R2 SQ�RQT, I = 300 R, * is the viscosity, D is the diffusion 

coefficient and Rh is the hydrodynamic radius of the micelle.  

We determined the viscosity of the solution by calculating it from the previous 

equation using a micron-sized colloid of known radius by measuring the diffusion 

coefficient. We calculated the viscosity for two cases: “old” micelles in water solution, 

with * = 1.156 	V4, and a newer batch in water with * = 1.273 	V4. Both values are 

slightly higher than the viscosity of pure water, which is expected.   

From the hydrodynamic size of a large number of such micelles, we then plotted a 

graph of the normalized photoluminescence intensity, I, vs. the hydrodynamic radius, Rh 

(Figure 9).  
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Figure 9: (left) The MSD versus time. (middle) The MSD versus the diffusion coefficient 

multiplied by time. (right) The normalized photoluminescence intensity versus the 

hydrodynamic radius. 

Second, I studied the diffusion of micelles inside giant unilamellar vesicles 

(GUVs). After the liposomes encapsulated the micelles, I placed a drop of the solution 

between two clean slides with grease around the perimeter and started to record movies for 

the diffusion. Though squeezing of the droplet and surrounding it with grease was helpful 

in preventing the flow in the whole droplet through drying effects, the liposomes 

themselves were still moving slowly. This movement was problematic for tracking the 

micelles so we were not yet able to process all the recorded videos. The liposomes formed 

in sizes ranging from 5-200 μm. A medium (~ 20 μm) liposome can be seen in the bright 

field image shown in Figure 11(d). For the liposome videos that we could process, we were 

able to see the difference between the diffusion of the micelles inside the liposomes and 

emulsions, which is represented in Figure 10. 
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Figure 10: (a) The free diffusion of a micelle in water. (b) The restricted diffusion of a 

micelle inside an emulsion. (c) The restricted diffusion of a micelle inside a liposome. 

 

Third, I studied the diffusion of micelles inside emulsions as shown in Figure 10(b). 

I noticed that the movement of the micelles inside emulsions is different from that inside 

liposomes, as shown in Figure 10(c). Hence, I modified our code to measure the distances 

between the walls of the emulsion and the micelle and then graphed the data as histograms 

to study the position probability of the micelles to understand if there is an attractive-

potential effect that obligates the micelles to keep moving close to the walls. Although the 

trajectories suggest that this may indeed be the case, this code is still being refined and 

such work will not reported in this thesis. 
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Figure 11: (a) TEM image that shows 1 silicon nanocrystal. (b) TEM image that suggests 

the QDs are surrounded with polymer ligand (micelle). (c) Images of two different 

micelles moving along the wall of emulsion. (d) Photo shows micelle moving inside 

liposome.  

4.4.   Conclusion 

 In conclusion, through my work on the diffusion of the micelles in water I 

determined the hydrodynamic radius for different micelles and found that the 

photoluminescence intensity scales with the hydrodynamic radius of the micelles. Also, I 

compared two batches of micelles we made at different times and it showed different trends 

in intensity, as shown in figure 9. This difference could reflect the effect of water on the 

micelles because the old batch of the micelles stayed in water longer than the newer one. 

 The comparison between the data of the micelles inside the liposomes and the 

emulsions showed a difference in their movement and tendency for the micelles to move 

beside the walls of emulsions, which is clear by comparing figure 10(b) for a micelle inside 

an emulsion and figure 10(c) for a micelle inside a liposome. Similar behavior was 

observed for a large number of micelles in each scenario. Although we suspect that this 
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difference is due to an attractive potential well around the wall of the emulsion, more 

investigation is needed to confirm this hypothesis.  
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APPENDIX A. MATLAB TRACKING CODE 

Some of this Matlab code contains modified programs from [142,143]. 

 

PARTICLE TRACKING 

 

fname = '2015 April 30 16_55_28_Substack (1-10000)_1.tif'; 

%info = iminfo(fname); 

out = 0; 

set = 10; %you can change this according to the number of img in a complete set(number 

of images that are sequentially tracked correct) 

MaxGap = 1.5000; %you can change this according to the max # of imgs that can be 

fixed. 

time = 0.0; 

dt = 0.05; 

counter = 1; 

num_images = 1000; 

r2 = 0; 

stdev = 19.5;%17.4,18.5,18.2 

for k = 1:num_images 

    A = imread(fname, k); 

    aa = double(A); 

    %b=bpass(aa,0,4); 

    pk = pkfnd3(aa,18000,11);%*9 & 2 for small 

    cnt = cntrd3(aa,pk,2);%2.3333 for smallcomin 

    nop = size(cnt); 

    numberofparticles=nop(1); 

    for l = 1:numberofparticles 

    out(counter,4) = time; 
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    out(counter,1) = cnt(l,1); 

    out(counter,2) = cnt(l,2); 

    out(counter,3) = cnt(l,3); 

    counter = counter + 1; 

    end 

    time = time + dt; 

end 

rows_out = size(out,1); 

PredictedOut = out(1,:); 

  

for j = 2:rows_out 

    x_j = out(j,1); 

    y_j = out(j,2); 

    t_j = out(j,4); 

    x_jj = out(j-1,1); 

    y_jj = out(j-1,2); 

    t_jj = out(j-1,4); 

    delta_t = round(100*(t_j-t_jj))/100; 

    delta_x = x_j - x_jj;  

    delta_y = y_j - y_jj; 

  

    if delta_t <= MaxGap 

       for m = 1:round(delta_t/dt); 
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            Ly = delta_y/delta_t; 

            Lx = delta_x/delta_t; 

            x_m = x_jj + (Lx*dt*m); 

            y_m = y_jj + (Ly*dt*m); 

            t_m = t_jj + dt*m;             

            V = [x_m y_m -1 t_m];         

            PredictedOut = [PredictedOut;V]; 

        end 

         

    else 

        N = out(j,:); 

        PredictedOut = [PredictedOut; N]; 

    end 

     

end 

temp = zeros(set,2); 

Avg = zeros(set,2); 

rows = size(PredictedOut,1); 

counter = 0; 

  

%var = 0; 

%testVar = zeros(1,2); 
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j=0; 

for i = 1:rows 

        xo = PredictedOut(i,1); 

        yo = PredictedOut(i,2);     

         

        if(i+set-1<=rows) 

             

            if i>j 

                for j=i+1:i+set-1 

             

                    delta_t = round(100*(PredictedOut(j,4)-PredictedOut(j-1,4)))/100; 

                    xj = PredictedOut(j,1); 

                    yj = PredictedOut(j,2); 

             

                    if delta_t > MaxGap 

                        temp = zeros(set,2); 

                        t_j = 0; 

                        r2 = 0; 

                        xo = PredictedOut(j,1); 

                        yo = PredictedOut(j,2); 

                         

                         

                    else 
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                        r2 = ((xj - xo)^2)+((yj - yo)^2); 

                        temp(j-i+1,1) = j-i; 

                        temp(j-i+1,2) = r2; 

                     

                    end 

                end 

                Avg = Avg+temp; 

                %testVar = [testVar;temp]; 

                temp = zeros(set,2); 

                counter = counter + 1; 

                %var = [var;j];                 

            end 

             

        end 

         

end 

  

%RGB = imread('2015 March 26 13_01_42_Substack (1-10000)_Substack (1).png'); 

%imshow(RGB); 

  

%Rmin = 5; 

%Rmax = 200; 
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%[center, radius] = imfindcircles(RGB,[Rmin Rmax],'Sensitivity',0.9); 

  

% Display the circle 

%viscircles(center,radius); 

  

% Display the calculated center 

%hold on; 

%plot(center(:,1),center(:,2),'yx','LineWidth',2); 

%hold off; 

  

HistogramData = []; 

for l = 1:size(PredictedOut,1); 

Distance = 97 - (sqrt((111-PredictedOut(l,1))^2 + (113- PredictedOut(l,2))^2)); 

  

HistogramData = [HistogramData; Distance]; 

end 

  

  

Avg = Avg/counter; 

  

  

param.mem=6000; 

param.dim=2; 
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param.good=10; 

param.quiet=1; 

particles=track(out,100,param);%1.5 for small 

 

 

 


