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ABSTRACT 

Stenotrophomonas maltophilia has both negative and positive attributes by being a 

human pathogen and plant growth promoting rhizobacterium. This study sought to determine if 

environmental and clinical isolates of S. maltophilia are phenotypically distinct.  A total of 18 S. 

maltophilia isolates from clinical and environmental sources were investigated. Under normal 

growing conditions, S. maltophila isolates did not enhance growth of canola seedlings. However, 

under sodium chloride stress (6 decisiemens per meter or 0.33% NaCl), canola seedlings 

inoculated with S. maltophilia isolates had significantly (P < 0.05) higher number of root 

branches (isolate D457), root length (D457, CDC 2004-33-01-01 and CDC 2007-23-08-03) and 

stem length (D457, CDC 2005-37-11-04 and CDC 2011-01-42) than the “no bacteria” control. A 

number of S. maltophilia isolates protected canola plants from the growth limiting effects of 

Leptosphaeria maculans and Burkholderia cenocepacia. No clear evidence was found between 

clinical and environmental isolates based on phenotypic data.  
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INTRODUCTION 

Soil bacteria that associate with plants may confer neutral, beneficial, or inhibitory effects 

on their host. Plant growth promotion involves different bacterial relationships. Some of these 

relationships include symbiosis, colonization of plant intercellular tissues and cyanobacteria 

(Glick, 2012). Bacteria plant growth promotion could be either direct or indirect. Directly, they 

help in the acquisition of resources as well as plant growth hormone levels regulation. On the 

other hand, they promote plant growth and development by protecting the plant from harmful 

agents (Glick, 2012). The use of beneficial microorganisms in Agriculture has gained 

prominence recently. This is due to concerns over the harmful effects chemicals used on food 

produce may pose (Whips, 2001). 

Stenotrophomonas play an important role in nature, particularly in biogeochemical 

cycling, and in recent times, they have also been used in applied microbiology and biotechnology 

(Ikemoto et al., 1980). The biotechnological interest in S. maltophilia stems from their potential 

plant growth promoting properties, their use in biological control of plant fungal pathogens, their 

capability to degrade xenobiotic compounds and their potential to decontaminate the soil 

(Suckstorff and Berg 2003, Hayward et al. 2009).  

The ability of Stenotrophomonas isolates to control fungal infections in plants has been 

widely documented (Dunne et al., 1997, Suckstorff and Berg 2003, Hayward et al. 2009, Zhang 

and Yuen, 2000). For example, S. maltophilia strain W81, isolated from the rhizosphere of field-

grown sugar beet, produced the extracellular enzymes chitinase and protease and inhibited the 

growth of the phytopathogenic fungus Pythium ultimum in vitro, resulting in reduction of 

damping-off of soil-grown sugar beet (Dunne et al., 1997). Zhang and Yuen (2000) also reported 

S. maltophilia isolate C3 to be a biological control agent, active in part through chitinase activity. 
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This bacteria strain was effective in inhibiting germination of conidia of Bipolaris sorokiniana 

(Sacc.). In the Nile Delta of Egypt, some strains of S. maltophilia (PD3532, PD3533, PD3534) 

have been demonstrated to have the potential to control brown rot of potato caused by the 

bacterium Ralstonia solanacearum (Messiha et al., 2007). Suckstorff and Berg (2003) found that 

three strains of S. maltophilia could enhance plant growth in a dose-dependent manner in 

strawberry seedlings. They also found a positive correlation between plant growth enhancement 

and the production of the plant hormone, indole-3-acetic acid (IAA) in plants grown in vitro. 

On the other hand, some S. maltophilia isolates cause disease in humans, including 

pneumonia, bacteremia, urinary tract infections, wound infections, bronchitis, endocarditis, 

meningitis, eye infections and catheter-associated infections (Schaumann et al., 2001; Brooke et 

al., 2007; Brooke, 2012). This pathogen has been shown to be an opportunistic bacterium usually 

associated with respiratory infections in immunocompromised individuals (Brooke, 2012) and 

has become a microbe of concern in hospitals in recent years. S. maltophilia is the third most 

common nosocomial non-fermenting Gram-negative bacilli after Pseudomonas aeruginosa and 

Acenitobacter species in patients in intensive care units. In addition, there are many multi-drug 

resistant strains of S. maltophilia that affect humans.  More cases of drug-resistant S. maltophilia 

infections have been reported in the last decade, and high case/fatality ratios in susceptible 

populations have characterized these cases (Sader and Jones, 2005). Although S. maltophilia is 

naturally an environmental bacterium, its transition to an important nosocomial pathogen has 

likely been driven by natural selection and adaptation.  

Extensive studies have been conducted on S. maltophilia-plant interactions but only a few 

of them have focused on using phenotypic data to compare clinical and environmental isolates. 

The overarching goal of this research was therefore to determine if environmental isolates of S. 
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maltophilia are phenotypically distinct from clinical isolates. One of the ways to achieve this 

goal was to determine if the clinical isolates retain or lose their plant growth promotion 

properties once they leave the hospital environment through experiments conducted under 

normal and sodium chloride stress conditions. In addition, the variability among S. maltophilia 

isolates in their ability to protect canola seedlings against the harmful effects of the blackleg 

fungus, Leptosphaeria maculans and the plant pathogenic bacterium Burkholderia cenocepacia 

(K56-2) was investigated. In order to generate information on genetic relatedness of the isolates 

used in this study, phylogenetic analysis was conducted. 
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LITERATURE REVIEW 

History and clinical significance of Stenotrophomonas maltophilia 

First isolated in 1943, S. maltophilia was initially called Bacterium bookeri and was 

subsequently classified as a member of the genus Pseudomonas in 1961 (Denton and Kerr, 1998, 

Looney et al., 2009) and then Xanthomonas in 1983 (Palleroni and Bradbury, 1993) and finally 

Stenotrophomonas in 1993 (Denton and Kerr, 1998). The genus Stenotrophomonas currently 

consists of four species, but only S. maltophilia is known to cause infection in human beings 

(Looney et al., 2009). It has become an important hospital related pathogen which has resulted in 

crude mortality rates. These mortality rates have been reported to range from 14 to 69% in 

patients who develop bacteremia (Yang et al., 1992, Victor et al., 1994). S. maltophilia has been 

associated with a variety of diseases, including pneumonia, bacteremia, urinary tract infections, 

wound infections, bronchitis, endocarditis, meningitis, eye infections and catheter-associated 

infections (Schaumann et al., 2001; Brooke, 2012). However, the two most common diseases 

caused by S. maltophilia are bacteremia and pneumonia with infection occurring through an in-

dwelling catheter or ventilator, respectively (Senol, 2004).  

S. maltophilia has over the years been described to have built resistance against many 

antibiotics. It has been isolated from aqueous environments in and outside the hospital. S. 

maltophilia has been recovered from a wide range of sources such as soils, plant roots, animals, 

invertebrates, water treatment distribution systems, waste water plants, sink holes, bottled water, 

tap water, rivers, washed salads, faucets, ice machines and hand washing soap (Brooke, 2008, 

Berg, 2009, Berg et al., 2005, Denton et al., 1998, Ivanov et al., 2005, Nakatsu et al., 1995). In 

the hospital environment, S. maltophilia has been associated with surfaces of materials used in 

intravenous cannulae, prosthetic devices, dental unit waterlines and nebulizers (Denton et al., 
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2003, Hutchinson et al., 1996, Lidsky et al., 2002, O’Donnell et al., 2005). Susceptible 

individuals (both children and adults) can be infected through direct contact with the source 

(Brooke, 2012), and even the hands of health care personnel have been reported to transmit 

nosocomial S. maltophilia infection in an intensive care unit (Schable et al., 1991). 

S. maltophilia is the third most common nosocomial non-fermenting Gram-negative 

bacilli (Sader and Jones, 2005) in the intensive care unit (ICU). Lockhart (2007) reported that 

from 1993 to 2004, S. maltophilia was one of the organisms most isolated from patients in the 

intensive care unit in the US and formed 4.3% of a total of 74,394 Gram-negative bacillus 

isolates. S. maltophilia also accounted for 0.6% to 0.9% of all bloodstream infections reported 

from the United States, Canada and Latin America from 1997 through 1999 (Diekema, 1999 ). In 

another study, it was shown that chronic obstructive pulmonary disease (COPD) patients with 

severe acute exacerbation were commonly infected with MDROs and S. maltophilia was isolated 

from 3.0 % of this cohort. Further, it has been demonstrated that this pathogen accounts for 6.75 

% and 1.11 % of the cases of ventilator-associated pneumonia and hospital-acquired pneumonia, 

respectively (Weber et al., 2007).  

S. maltophilia in relation to other microbes 

Phylogenetically, S. maltophilia belongs to the family, Xanthomonadaceae, which is 

made up of five genera, Xylella, Xanthomonas, Pseudoxanthomonas, Lysobacter and 

Stenotrophomonas which are closely related but are of diverse origin. Of these genera, 

Xanthomonas and Xyllela are known to cause diseases in plants. Pseudoxanthomonas has been 

associated with breaking down of hydrocarbon-contaminated soils into a form which is not toxic 

(Nayak et al. 2009). Lysobacter and Stenotrophomonas on the other hand, have been described 
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to promote plant growth. They colonize the rhizosphere of plants and have the ability to produce 

antibiotics that have been applied in biological control of plant diseases (Hayward et al., 2009). 

Microbiology of S. maltophilia 

S. maltophilia is a Gram-negative obligate aerobe and a bacillus with polar flagella 

(Brooke, 2012). S. maltophilia cells occur singly or in pairs and may be straight or slightly 

curved with non-sporulating bacilli that are 0.5 to 1.5 mm long (Denton and Kerr, 1998). S. 

maltophilia colonies are smooth and are white to pale yellow in color (Denton and Kerr, 1998). 

Although standard microbiological data refer to S. maltophilia as an oxidase-negative bacterium, 

recent data analysis of a collection of 766 isolates indicated that approximately 20 % of these 

strains were actually oxidase positive (Carmody et al., 2011). At a low temperature of 5°C or a 

high temperature of 40°C, S. maltophilia does not grow. The   optimal temperature for its growth 

is 35°C (Denton and Kerr, 1998). Most strains of S. maltophilia require methionine or cysteine 

for growth (Ikemoto et al., 1980, Marraro and Mitchell, 1974). In nutrient-poor aqueous 

environments, the bacterium has the ability to survive (Denton and Kerr, 1998). 

Identification of S. maltophilia can be challenging and complex because this bacterium is 

commonly co-isolated with other microorganisms (e.g., P. aeruginosa, Staphylococcus aureus, 

Acinetobacter baumanii, Escherichia coli, Enterobacter species and Candida albicans) in 

samples recovered from patients (Araoka et al., 2010, Gülmez and Hasçelik, 2005, Tseng et al., 

2009). To improve the isolation of this pathogen from polymicrobial cultures or environmental 

specimens, a number of selective media have been designed (Denton et al., 2000, Kerr et al., 

1996). Vancomycin, imipenem, amphotericin B (VIA) medium is one medium which has been 

suggested for isolation of S. maltophilia from environmental and clinical sources (Kerr et al., 

1996) to replace the Xanthomonas maltophilia Selective Medium (XMSM) described for 
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isolation of Xanthomonas maltophilia from bulk soil and plant rhizosphere (Juhnke and des 

Jardin 1989). The preparation of XMSM medium is complicated and expensive. In addition, it is 

time-consuming and above all, not specific for environmentally recovered isolates of S. 

maltophilia (Kerr et al., 1996). VIA medium has been shown to be less inhibitory to S. 

maltophilia. However, in preventing the growth of other bacteria like maltose fermenters, they 

are more selective than XMSM. S. maltophilia from various sources have been cultured using 

VIA medium. 

Pathogenicity of S. maltophilia 

The S. maltophilia genome sequence of suggests that this pathogen is not highly virulent 

but has capacity for environmental adaptations and these presumably contribute to its persistence 

in vivo (Crossman et al., 2008). Factors that may promote the ability of this bacterium to 

colonize the respiratory tract and plastic surfaces (e.g., catheters and endotracheal tubes) 

including positively charged surface are flagella and fimbrial adhesins, with the latter being 

associated with biofilm formation (Jucker et al., 1996, Waters et al., 2007).  

A bacterial biofilm consists of a microbial community embedded in an extracellular 

polysaccharide matrix or extracellular polymeric substances (EPS) (Flemming and Wingender, 

2010). Biofilms have been reported to form about 65% of nosocomial infections (Potera, 1999). 

For biofilms to form, bacterial cells adherence is needed. A study has shown that the S. 

maltophilia, SM33 needs 2 h after inoculation to adhere to polystyrene surfaces and form 

biofilms within 24 hours (Di Bonaventura, 2004). S. maltophilia can form biofilms on its own or 

together with other species and once growing in biofilms, it is more resistant to phagocytes and 

antibiotics (Martinez and Baquero, 2002). S. maltophilia engages in cell-to-cell signaling 

(quorum sensing) through the diffusible signaling factor (DSF), a molecule found in the 
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Xanthomonas and Xylella signaling systems (Crossman et al., 2008, Fouhy et al., 2007). 

Disruption of DSF signaling leads to diminished biofilm development, loss of motility, reduced 

production of extracellular proteases, and increased susceptibility to certain antibiotics and heavy 

metals (Fouhy et al., 2007). 

Other factors which may contribute to S. maltophilia colonization or infection of host 

include the production of protease and lipase, shown to be involved in bacterial pathogenesis in 

other genera, and several other extracellular enzymes including DNase, RNase, gelatinase, 

esterase and proteinase (Travassos et al., 2004, O’Brien and Davis, 1982, Travis et al., 1995). 

Evidence suggests that proteinases are not only to provide a source of free amino acids or simple 

sugars for bacterial survival and growth (Travis et al., 1995) but are also capable of destroying 

host proteins (Windhorst et al., 2002). The S. maltophilia protease coded for by the StmPr1 gene 

is able to breakdown the protein components of collagen, fibronectin, and fibrinogen and thus 

may contribute to local tissue damage and hemorrhage (Windhorst et al., 2002).  

Lipopolysaccharide (LPS) is a major component of the outer membrane of most Gram-

negative bacteria and serves as a virulence determinant. S. maltophilia has been shown to have 

LPS. The LPS is made up of lipid A, core oligosaccharide and O-antigen (Wang and Quinn, 

2010). A bi-functional enzyme has been shown to be encoded in the spgM gene in S. maltophilia. 

This enzyme has both phosphoglucomutase and phosphomannomutase activities. These activities 

are necessary for O-polysaccharide chain assembly (Brooke et al., 2008). Consequently, spgM 

mutants exhibit a modest increase in susceptibility to diverse antimicrobials and prove to be 

completely avirulent in infection experiments performed with animal host models (Brooke, 

2012). 
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Another feature that supports the development of infectious manifestations is the 

immunostimulatory effect of S. maltophilia.  Stimulation by the lipid A component of 

lipopolysaccharide of peripheral-blood monocytes and alveolar macrophages to produce tumor 

necrosis factor α (TNFα) plays a part in the pathogenesis of airway inflammation (Waters et al., 

2007). S maltophilia also induces interleukin-8 expression and polymorphonuclear leucocyte 

recruitment (Waters et al., 2007). Flagella are highly immunostimulatory (Prince, 2008) and it is 

thought that decreased expression of flagella may protect the bacteria from the host immune 

response. Loss of motility, likely due to attenuated expression of flagella, appears to be a 

common mechanism of adaptation to the cystic fibrosis airways for S. maltophilia. 

Epidemiology and risk factors 

Notwithstanding the fact that S. maltophilia comes second after P. aeruginosa as the 

most common non-fermentative gram-negative bacteria isolated from clinical specimens, its 

isolation was considered unusual in the diagnostic microbiology laboratory until recently 

 (Blazevic, 1976, Holmes et al., 1979). There have also been reports of S. maltophilia 

carriage in humans. For example, a fecal carriage rate of 6.0% (14 out of 218 stool samples) was 

detected in outpatients with diarrheal illness or people they came into contact with (Von 

Graevenitz and Bucher, 1983).  

The rate of S. maltophilia isolation has been increasing since the early 1970s as revealed 

by surveys in several continents and this may be a reflection of an increasing population of 

patients at risk and the result of advances in medical technologies and treatment (Tan et al., 

2008, Rolston et al., 2005). S. maltophilia isolation rate varies between hospitals and geographic 

regions (Fedler et al., 2006). In England and Wales, the annual number of blood isolates 

increased between 2000 and 2006 by 93% to 773 cases, and a Taiwanese tertiary-care hospital 
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reported an 83% increase from 5.3 to 9.8 episodes per 10,000 discharges from 1999 to 2004 (Tan 

et al., 2008). A German study in 34 intensive-care units (ICUs) between 2001 and 2004 showed 

an increasing rate of S. maltophilia infections in some units and a decrease in others (Meyer et 

al., 2006). A Spanish study (late 1990s) reported isolation rates between 3.4 and 12.1 per 10,000 

admissions (DelToro et al., 2002). The rate of S. maltophilia isolations rose from less than 2 in 

1972 to 8 in 1984 per 10,000 admissions at the M.D. Anderson Cancer Center (Houston, Texas) 

(Elting and Bodey, 1990). At the Mayo Clinic in 1987, incidence rates of S. maltophilia infection 

was from 12.8 in 1984 to 37.7 per 10,000 patient discharges (Marshall et al., 1989) while, the 

annual isolation rate doubled from 7.1 to 14.1 per 10,000 patient discharges at the University of 

Virginia Hospital from 1981 to 1984 (Denton and Kerr, 1998).  

Risk factors associated with S. maltophilia include underlying malignancy (Calza et al., 

2003), the presence of in-dwelling medical devices (Metan et al., 2006), prolonged 

hospitalization, ICU stay, chronic respiratory disease (Waters et al., 2013; Waters et al., 2011), 

and compromised host immune system (Calza et al., 2003). Long-term therapy involving use of 

broad-spectrum antibiotics has also been found to be an independent risk factor for 

stenotrophomonad infection (Paez and Costa, 2008). 

Comparison between clinical and environmental isolates of S. maltophilia 

To determine the mechanisms responsible for the S. maltophilia pathogenicity in humans, 

recent studies have looked into the differences between environmental and clinical isolates of the 

bacterium (Brooke, 2012) and also to characterize those which may have biotechnological 

potential. In one of such studies, 40 S. maltophilia isolates from clinical and environmental 

settings were investigated. In this study, various phenotypic and genotypic fingerprinting 

methods were used to characterize and distinguish the variability among clinical and 
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environmental isolates of S. maltophilia (Berg et al., 1999). They noticed a great diversity among 

S. maltophilia isolates studied and their findings agreed with other previous studies. This study 

reported a wide range of heterogeneity (Minkwitz and Berg, 2001) in physiological parameters, 

which was confirmed by genotypic studies (Chatelut et al., 1995; Hueben et al., 1997). High 

intraspecific diversity was revealed, but various DNA-based fingerprinting methods of the 

phenotypic and genotypic features did not reveal any clustering patterns by origin. Minkwitz and 

Berg (2001), however, were able to distinguish between clinical and environmental (aquatic and 

plant-associated) strains using 16S rDNA sequencing. 

In a study to analyze the global distribution of mutation frequencies in 174 S. maltophilia 

samples from clinical as well as non-clinical environments, Kerr et al. (1996) found that low 

mutation frequencies were common among environmental S. maltophilia strains whereas strong 

mutators were found only among isolates with a clinical origin. These results indicate that 

clinical environments might select bacterial populations with high mutation frequencies, likely 

by second-order selection processes, a natural selection process in which certain locations on a 

genome affect the expression of genes rather than coding for proteins.  

Many studies have reported species specific antifungal features between environmental 

and clinical isolates. Environmental isolates tend to have higher antifungal activity in vitro than 

clinical isolates (Minkwitz and Berg, 2001, Suckstorff and Berg, 2003). To further demonstrate 

the differences between environmental and clinical isolates of S. maltophilia, two isolates, 

K279A (clinical isolate from a cystic fibrosis patient) and R551-3 (environmental isolate of plant 

origin), whose genomes have been sequenced (Brooke, 2012), were explored. Highly variable 

content of genomic islands has been revealed by sequencing data for S. maltophilia isolates 

K279a and R551-3 (Rocco et al., 2009). In K279a, 41 genomic islands have been identified 

http://jcm.asm.org/search?author1=Arite+Minkwitz&sortspec=date&submit=Submit
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while R551-3 harbors 36 islands. The two isolates have been reported to possess different gene 

islands with corresponding genes that interact differently with the environment (Rocco et al., 

2009). The two isolates have some genes with the same function (Brooke, 2012). 

The antimicrobial and plant growth promoting properties of S. maltophilia 

In nature, Stenotrophomonas species play a very important role. They are mostly 

involved in the bio-geochemical element cycle. In addition, in recent years, they have been 

applied in microbiological and biotechnological fields (Ikemoto et al., 1980). The 

biotechnological interest in S. maltophilia stems from their potential plant growth promotion 

effects, their use in biological control of plant fungal pathogens, their capability to degrade 

xenobiotic compounds and their potential to decontaminate the soil (Berg et al. 1994, Hayward 

et al. 2009). In recent times, the call for use of biological control methods is on the ascendancy. 

This is as a result of public concerns over the use of chemicals in plant propagation. In order to 

address this, new ways which are less harmful are needed in control of plant diseases. There are 

different ways in which biological control occurs such as antibiosis, siderophores production, 

competition for colonization sites and nutrients, induction of plant resistance mechanisms, 

inactivation of pathogen germination factors, degradation of pathogenicity factors such as toxins 

and parasitism that may involve the production of extracellular cell wall-degrading enzymes 

(chitinase and β-1,3 glucanase that can lyse pathogen cell walls) (Keel and Defago, 1997). Plant 

growth promoting rhizobacteria (PGPR) enhance plant growth indirectly, either by suppression 

of pathogens or reduction of their deleterious effects; associative N2 fixation; promoting 

mycorrhizal function; regulating ethylene production and releasing phytohormones and 

decreasing metal toxicity (Whips, 2001).  
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The ability of Stenotrophomonas strains to suppress fungal pathogens associated plant 

diseases has been shown in many studies (Berg et al. 1994, Berg, 1996, Minkwitz and Berg, 

2001, Dunne et al., 1997, Hayward et al. 2009, Zhang and Yuen, 2000). S. maltophilia has been 

found to produce extracellular enzymes such as chitinases and proteases which inhibit fungal 

growth.  

Canola production and distribution 

Canola (Brassica napus L., and Brassica rapa L.) is one of the major oilseed crops grown 

in Europe, Asia, Australia, Canada and the United States. Canola is the most important oilseed 

crop in Canada and is now second only to soybean as the most important source of vegetable oil 

in the world (Raymer, 2002). Canola is considered a new crop in the United States with B. napus 

L. being the most dominant, grown largely as a spring-planted crop. More than 90% of B. napus 

L. production in the United States occurs in North Dakota (Del Río et al., 2007).  

Diseases of canola 

Blackleg (phoma stem canker) caused by Leptoshaeria maculans (Desmaz) and 

Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum (Lib.) de Bary, are the two major 

fungal diseases that affect canola production (Del Rio et al., 2007). Other pathogens which cause 

diseases in canola include Rhizoctonia solani Kühn, Fusarium avenaceum (Corda:Fr.) Sacc., and 

Alternaria brassicae (Berk.) Sacc. (Beatty and Jensen, 2002). The effects of blackleg include 

lodging, early senescence and seedling death. Blackleg is widespread in most regions where 

canola is grown. Since 1950, blackleg has caused serious economic losses in canola and rapeseed 

production in Europe and this disease virtually caused the collapse of the rapeseed and canola 

industry in Western Australia in 1972 (Beatty and Jensen, 2002).  
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Blackleg is caused by a complex of at least two species of Leptosphaeria: L. maculans 

(Desmaz.) Ces. & de Not. (anamorph Phoma lingam (Tode:Fr.) Desmaz.), and L. biglobosa 

Shoemaker and Brun. (Howlett et al., 2001, Williams and Fitt, 1999). Leptosphaeria maculans is 

by far the more damaging of the two and has been reported from almost all canola and oilseed 

rape growing regions of the world except China (Fitt et al., 2006).  The two pathotypes are 

differentiated by their ability to produce pigment in culture, growth rate of colony, molecular 

characteristics and disease reaction on B. napus (Howlett et al., 2001; Williams and Fitt, 1999). 

These species were previously referred to as highly and weakly virulent forms of a single 

pathogen (L. maculans), until the latter was determined to be a different species (Howlett et al., 

2001). Isolates of L. maculans have been subdivided based on their reaction with differential 

cultivars Westar, Glacier and Quinta, into pathogenicity groups PG2, PG3 and PG4 (Howlett et 

al., 2001). In North Dakota, PG1 (L. biglobosa), PG2, PG3, PG4 and PGT, have been identified, 

with PG2 isolates causing 92% of L. maculans infections between 2002 and 2004 (Markell et al., 

2008). 

Symptoms and signs of blackleg 

The blackleg pathogen usually induces its first symptoms on the leaves of the host. 

Lesions may appear at the seedling stage or anytime until the crop matures (Markell et al., 2008). 

As leaf lesions expand, small black fruiting bodies called “pycnidia” are formed. Lesions also 

form on stems, usually, near where an infected leaf was attached. The most vulnerable stage of 

the stem to blackleg infection is the four-to-six leaf stage (Markell et al., 2008). Stem lesions 

show a sunken appearance and may rapture and girdle the stem resulting in the characteristic 

“blackleg” symptoms (Markell et al., 2008). 
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Disease cycle 

Blackleg on canola is usually considered a monocyclic disease (West et al., 2001) 

initiated by sexual spores (ascospores) produced by fruiting bodies called pseudothecia on 

infected canola stubble. Infection of seedlings occurs through wounds or stomata on young 

leaves or cotyledons and the pathogen then moves into the intercellular spaces between the 

mesophyll cells. Following ascopore infection, pycnidia are produced which in turn produce 

asexual spores called conidia (Markell et al., 2008). The conidia are rain-dispersed and are 

responsible for localized spread of blackleg. 

Management of blackleg 

Currently, blackleg of canola is managed mainly through the use of fungicides and crop 

rotations since there are no commercially available resistant cultivars (Bradley et al., 2006). 

Other management options include the use of certified disease-free seed and control of weed 

hosts such as volunteer canola and wild mustard (Markell et al., 2008). 

 

 

 

 

 

 

 

 

 

 



16 
 

MATERIALS AND METHODS 

Bacterial isolates 

18 clinical and environmental isolates of Stenotrophomonas maltophilia were used (Table 

1). Burkholderia cenocepacia (K 56-2) and Escherichia coli (DH5α) were used as positive and 

negative controls respectively. The CDC S. maltophilia isolates were provided by Dr. Judith 

Noble-Wang while the ATCC isolates were purchased from the American Type Culture 

Collection, Manassas, VA, USA. 

Fungal isolate and plant material 

The fungal strain used in this study was Leptosphaeria maculans, the causal pathogen of 

blackleg in canola. L. maculans belongs to the pathogenicity group (PG) 4, a subdivision of 

pathotype A (the aggressive and highly virulent cause of stem cankers in canola). Westar, a 

commercially planted Brassica napus (canola) cultivar which is susceptible to blackleg was 

used. Seeds of Westar and inoculum of L. maculans were kindly provided by Dr. Luis Del Rio 

Mendoza of the Plant Pathology Department of North Dakota State University. 
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Table 1: Name, source and origin of S. maltophilia isolates and other bacterial strains used in this 

study 

Isolate Name 
y
 Origin Source 

ATCC 700475 Patient ATCC 

BAA 2423 (K279a) Patient ATCC 

BAA 84 (D457) Patient ATCC 

CDC 2007-07-01 Patient, Blood CDC 

CDC 98-43-10 Patient CDC 

CDC 2011-09-42 Patient CDC 

CDC 2013-11-01 Patient CDC 

CDC 2004-33-31 Patient, Trachea CDC 

CDC 2004-33-01-01 Sublingual Sensor (Device) CDC 

CDC 2005-37-11-04 Respiratory Therapy Device CDC 

CDC 2007-23-08-03 Sink (Environmental) CDC 

CDC 92-03-30 RO Water (Environmental) CDC 

CDC 90-15-60 Tap Water (Environmental) CDC 

ATCC 51331 Patient, CF lung ATCC 

ATCC 49 49130 Patient, Clinical isolate ATCC 

ATCC 13270 Soil (Environmental)  ATCC 

ATCC 13637 Patient ATCC 

ATCC 17666 

E. coli (DH5alpha)                                                               

B. cenocepacea (K 56-2) 

Soil (Environmental)  ATCC 

Invitrogen 

y 
B. cenocepacea and E. coli were included as controls 
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ATCC isolates 

These were isolated from different environments. K 279a was isolated from blood culture 

of a patient suffering from cancer (Crossman et al., 2008). “D457 was isolated from bronchial 

aspirate, ATCC 17666 from contaminated tissue culture, ATCC 700475 from cerebrospinal fluid 

from an HIV-seropositive Rwandan refugee with primary meningoencephalitis, and  ATCC 

13637 from Oropharyngeal region of patient with mouth cancer” (www.atcc.org). ATCC 13270 

was isolated from soil environment (©Global Catalogue of Microorganisms). 

Media and culture conditions 

V8 Medium and others 

Agar was prepared according to Suckstoff and Berg (2003) [20g agar, 1L distilled water, 

pH = 6] with the following modifications. Agar was made up of 10g agar (Difco) in 1L of 

distilled water (1%) and autoclaved. 10ml of agar were dispensed into 15 ml test tubes and stored 

in a cool dry place until used for canola plant growth. L. maculans was grown on V8 medium 

(200ml V8 juice, 3g CaCO3, 15g Agar and 800ml tap water). Conidia were harvested after 3 days 

and suspended in sterile distilled water. The suspension was kept on ice until use. 

Bacterial cultures 

Freezer stocks of bacterial isolates were streaked on Luria Bertani (LB) plates and 

incubated at 37ºC overnight. A colony from each isolate was inoculated in 5 ml LB broth and 

incubated at 37 ºC, and 230 rpm for 16 hours. After incubating, bacterial cultures were 

centrifuged at 5000 x g for 5 min. The supernatant was discarded and the pellets/cells were 

suspended in 5 ml distilled water to wash and centrifuged at 5000 x g for 5 min. Cells were then 

suspended in 5ml distilled water.  

 

http://www.atcc.org/
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Germination and treatment of canola seedlings 

Canola seeds were placed in a 9 cm sterile glass petri dish with layers of sterile tissue paper 

soaked with sterile distilled water for 4 days at 25 ºC in the dark for germination. For the non-

stress experiment, 10 canola seedlings were placed in sterile petri plate for each isolate. The 5 ml 

bacterial suspensions, at 10
6
cfu/ml as was described above were thoroughly vortexed and added 

to the seedlings in the various petri dishes. All seedlings were carefully submerged in the 

bacterial suspension for 4 hours. Thereafter, the seedlings were washed in sterile distilled water 

and inoculated on agar in test tubes. For the stress experiment, canola seedlings were primed by 

transferring seedlings into a fresh sterile 9 cm glass petri dish with layers of sterile tissue paper 

soaked with moderate salinity rate of 6 decisiemens per meter (0.33%) NaCl 

(www.canolacouncil.org) for 24 hour at 25 ºC. The primed seedlings were rinsed in sterile 

distilled water and thereafter treated in the same way as the non-stress treatment described 

above. Growth parameters (number of root branches, root and stem length) were recorded after 

one week of incubation at 25 ºC and 16/8 photoperiod conditions as described for strawberry by 

Suckstorff and Berg (2003). Using a pair of forceps, canola plants were carefully removed from 

test tubes onto a clean paper towel. Root and stem lengths were measured by the use of a ruler 

and a pair of calipers.  Each bacterial isolate was tested in triplicates. 

Challenge assays 

Based on preliminary results from one run of non-stressed condition, three isolates of S. 

malltophilia, namely, ATCC 13637, ATCC 13270 and CDC 2007-07-01 and the isolates, K279a 

and D457 which have whole genome sequences were assessed for their suitability to protect 

against the bacterium Burkholderia cenocepacia and the fungus L. maculans using the cv. 

Westar of canola as a host plant. To accomplish this, four day old canola seedlings were 

http://www.canolacouncil.org/
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inoculated with 5 ml of each of the five S. maltophila isolates for two hours after which 5 mls of 

either Burkholderia cenocepacia or L. maculans was applied for an additional two hours. This 

experiment was carried out under three separate conditions: 1.) four hour  exposure period to 

Burkholderia cenocepacia and L. maculans; 2.) canola seedlings inoculated with 5 mls S. 

maltophilia initially and subsequently exposed to 5 ml of Burkholderia cenocepacia or L. 

maculans and 3.) canola seedlings initially inoculated with 5 ml of Burkholderia cenocepacia or 

L. maculans and subsequently exposed to 5 ml of S. maltophila isolates for 2 hours. For each S. 

maltophilia isolate, 12 tubes were employed and these were replicated three times. Here again, 

stem and root length as well as the number of root branches of canola seedlings were the 

parameters recorded. 

gyrB sequencing and analysis 

Freezer stocks of bacterial isolates were streaked on Luria Bertani (LB) plates and 

incubated at 37ºC overnight. A single colony from each isolate plate was inoculated into a 50µl 

PCR reaction master mix that contained reagents as follows: 5X Go Taq Buffer, 10 mM dNTP, 

25 mM MgCl2, XgyrB1F - 5
1
- ACG AGT ACA ACC CGG ACA A - 3

1
, a threefold XgyrB1R - 

5
1
- CCC ATC ARG GTG CTG AAG AT - 3

1 
(Yamamoto et al., 2000), GoTaq Polymerase and 

distilled water).  The reaction was run for 40 cycles under the following thermocycling 

conditions: denature at 95 ºC for 30 sec., annealing at 55 ºC for1 min., and extension at 72 ºC for 

2 min. Amplified PCR products were confirmed by running an agarose gel at 100 volts for 45 

minutes. The gel images were visualized by Ultraviolet light using flourchem software 

(FluorChem™ Q System), Bio-Techne, USA. PCR products were purified using Exosap and 

incubated at 37
o
C for 15 minutes and 80

o
C minutes for 15 minutes and held at 4

o
C. Products 
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were diluted and sent to Macrogen USA for sequencing. The products were sequenced by 3730xl 

DNA analyzer using the Sanger sequencing analysis (capillary gel electrophoresis). 

Nucleotide sequences were analyzed using Geneious bioinformatics software 6.1 version 

(Biomatters Limited, Auckland, New Zealand). The sequences were edited to generate uniform 

lengths for each isolate for both forward and reverse sequences using the gyrBF and gyrBR 

primers. Other S. maltophilia and closely related genome sequences were searched in National 

Center for Biotechnology Information (NCBI). The K279a genome was used as a reference 

sequence. Concatenated isolate sequences were aligned to the reference sequence and edited to 

obtain the correct sequence length of 725 base pairs. The reference sequence was deleted after 

alignment. The forward and reverse sequences were aligned to generate each isolate sequence in 

whole.  Related genome sequences were also concatenated to 725 base pairs. Sequences were 

aligned into a file. Cluster analyses (neighbor-joining) were performed. 

Statistical analysis 

Data analyses were done using the general linear models procedure (Proc GLM) in 

statistical analysis software (SAS) version 9.3. The data were analyzed as one-way Analysis of 

Variance (ANOVA) with the randomized complete block design (RCBD). All inferences were 

conducted at 5% significance level. Treatments means were compared using the Bonferroni 

(Dunn)’s and Tukey’s tests at P ≤ 0.05. Before analysis, the difference between the median for 

each isolate and the “no bacteria” control was found and expressed as percentage change for the 

canola growth promotion experiment. For canola protection experiments, the raw data was 

analyzed without any prior manipulations. 

 

 

 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=9&ved=0CD8QFjAI&url=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2F&ei=nY_yVPHwOIqbyASx6oCgCg&usg=AFQjCNEtxijk1bbk_J3zghYe8TRBijQ4rw&sig2=Y041i1OK3VWlMGFunz-bxw
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=9&ved=0CD8QFjAI&url=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2F&ei=nY_yVPHwOIqbyASx6oCgCg&usg=AFQjCNEtxijk1bbk_J3zghYe8TRBijQ4rw&sig2=Y041i1OK3VWlMGFunz-bxw
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RESULTS 

The growth promotion potential of S. maltophilia isolates on canola seedlings under normal 

growing condition 

In order to determine the potential of S. maltophilia isolates to promote growth in canola, 

4 day old canola seedlings were inoculated overnight with bacterial cultures suspended in sterile 

distilled water. Percentage changes of the median in parameters measured were determined using 

the no bacterial control median as the initial and the isolate medians as the final under both 

stressed and non-stressed conditions.  

No significant differences were observed in number of root branches and root length in 

canola plants exposed to bacterial isolates relative to the “no bacterial” control (Figs. 1 & 2). 

Stem length of canola plants, however, was significantly (P < 0.05) lower in canola seedlings 

inoculated with isolate CDC 92-03-30, ATCC 17666, CDC 98-43-10, CDC 2013-11-01 and 

CDC 2011-09-42 than the “no bacterial” isolate (Fig. 3). 
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Fig. 1. Percentage change of the median in number of root branches of canola seedlings exposed 

to different S. maltophilia isolates. Vertical bars represent standard deviation. P - Patient;  

D – Device; E – environmental; HE – hospital environment isolate. 
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Fig. 2. Percentage change of the median in root length of canola seedlings exposed to different  

S. maltophila isolates. Vertical bars represent standard deviation. P - Patient; D – Device;  

E – environmental; HE – hospital environment isolate. 
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Fig. 3. Percentage change of the median in stem length of canola seedlings exposed to different 

S. maltophilia isolates. Vertical bars represent standard deviation. Isolates were compared using 

Bonferroni at P < 0.05. Isolates with no asterisk are not significantly different from the “no 

bacteria” control. P - Patient; D – Device; E – environmental; HE – hospital environment isolate. 

* Isolates differ significantly from the “no bacteria” control. 

 

The growth promotion potential of S. maltophilia isolates in canola seedlings grown under 

salt stress condition 

Canola seedlings inoculated with D457 had significantly (P < 0.05) higher number of 

root branches than seedlings which were not inoculated with bacteria (Fig. 4). Seedlings 

inoculated with S. maltophilia isolates, D457, CDC 2004-33-01-01 and CDC 2007-23-08-03 had 

significantly (P < 0.05) longer roots than the “no bacteria” control (Fig. 5). Canola seedlings 

inoculated with D457, CDC 2005-37-11-04 and CDC 2011-01-42 had the longest stems and 
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differed significantly (P < 0.05) from those of seedlings exposed to the “no bacteria” control 

(Fig. 6). 

 

Fig. 4. Percentage change of the median in number of root branches of NaCl stressed canola 

seedlings exposed to different S. maltophilia isolates. Vertical bars represent standard deviation. 

Isolates were compared using Bonferroni at P < 0.05. Isolates with no asterisk do not differ 

significantly from the no bacteria control. P - Patient; D – Device; E – environmental; HE – 

hospital environment isolate. 

*Isolate differs significantly from the “no bacteria” control. 
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Fig. 5. Percentage change of the median in root length of NaCl stressed canola seedlings exposed 

to different S. maltophilia isolates. Vertical bars represent standard deviation. Isolates were 

compared using Bonferroni at P < 0.05. Isolates with no asterisk are not significantly different 

from the “no bacteria” control. P - Patient; D – Device; E – environmental; HE – hospital 

environment isolate. 

* Isolate differs significantly from the “no bacteria” control.  
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Fig. 6. Percentage change of the median in stem length of NaCl stressed canola seedlings 

exposed to different S. maltophilia isolates. Vertical bars represent standard deviation. Isolates 

were compared using Bonferroni at P < 0.05. Isolates with no asterisk are not significantly 

different from the “no bacteria” control. P - Patient; D – Device; E – environmental; HE – 

hospital environment isolate. 

* Isolate differs significantly from the “no bacteria” control. 

 

The ability of S. maltophilia isolates to protect canola seedlings against L. maculans 

Inoculation of S. maltophilia and L. maculans on canola was done in three ways: 

i. Canola seedlings were first inoculated with L. maculans and then with S. maltophilia, 

ii. Canola seedlings were inoculated with S. maltophilia and L. maculans simultaneously 

iii. Canola seedlings were first inoculated with S. maltophilia and then with L. maculans 
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Canola seedlings exposed to L. maculans and then with S. maltophilia 

Significant differences (P < 0.0001) were found among isolates in all three parameters 

(number of root branches, root and stem length) investigated. Isolates D457, ATCC 13270, 

ATCC 13637, and ATCC 2007-07-01 protected canola seedlings from L. maculans-induced 

decrease in root branching. The mean number of root branches ranged from 1.3 in the L. 

maculans alone treatment to 5.1 in canola seedlings which were not inoculated with either 

pathogen (none) (Fig. 7). The longest roots (average of 1.9 cm) were observed in seedlings 

exposed to isolate ATCC 13637 and this differed significantly (P < 0.05) from seedlings exposed 

to the isolate K279a (average of 0.9 cm) and the L. maculans alone (average of 0.46 cm) 

treatment (Fig. 8). Canola seedlings inoculated with ATCC 13637, CDC 2007-07-01, ATCC 

13270 and D457 had significantly (P < 0.05) higher root length than the L. maculans alone 

treatment (Fig. 8).  The stems of canola seedlings exposed to S. maltophilia isolate ATCC 13270 

(average of 2.76 cm) were the longest and this differed significantly from those of seedlings 

inoculated with the L. maculans alone (average of 0.89 cm) (Fig. 9). Canola seedlings inoculated 

with D457, CDC 2007-07-01, K279a, ATCC13637 and ATCC 13270 had significantly (P < 

0.05) higher stem length than the L. maculans alone treatment (Fig. 9). 
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Fig. 7. Mean number of root branches of canola seedlings inoculated with L. maculans, then to S. 

maltophilia isolates. Mean separation was by Tukey’s at P < 0.05. P – patient; E – environmental 

isolate. 

* Isolates differ significantly from the “L. maculans alone” treatment.  
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Fig. 8. Mean root length of canola seedlings inoculated with L. maculans, then S. maltophilia 

isolates. Mean separation was by Tukey’s at P < 0.05. P – patient; E – environmental isolate. 

*Isolates differ significantly from the “L. maculans alone” treatment.  
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Fig. 9. Mean stem length of canola seedlings inoculated with L. maculans, then S. maltophilia 

isolates. Mean separation was by Tukey’s at P < 0.05. P – patient; E – environmental isolate. 

* Isolates differ significantly from the “L. maculans alone” treatment.  

 

Canola seedlings exposed to S. maltophilia and L. maculans simultaneously 

Significant (P < 0.0001) differences were found among S. maltophilia isolates in number 

of number of root branches, root length and stem length of canola seedlings. Canola seedlings 

which were not inoculated (none) had the highest number of root branches (average of 5.06) and 

this differed significantly from those of seedlings exposed to DH5α (average of 3.03) as well as 

those which were exposed to L. maculans alone (average of 1.33) (Fig. 10). Apart from DH5α, 

all isolates protected canola plants against L. maculans-induced decrease in root branching 

relative to the L. maculans alone treatment (Fig. 10). For root length, canola seedlings exposed to 

ATCC 13637 (average of 1.17 cm) and DH5α (average of 0.62 cm) were not protected against 

the effects of L. maculans (Fig. 11). However, seedlings inoculated with D457, CDC 2007-07-

01, K27a and ATCC 13270 had significantly higher root length than the L. maculans alone 

treatment (Fig. 11). The stems of canola seedlings exposed to ATCC 13637 (average of 1.86 cm) 
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and DH5α (average of 1.59 cm) did not differ statistically from those of L. maculans alone 

treatment (average of 0.89 cm) (Fig. 12). Seedlings inoculated with K279a, D457, CDC 2007-

07-01, and ATCC 13270 had significantly higher stems lengths than seedlings inoculated with L. 

maculans alone.  

  

Fig. 10. Mean number of root branches of canola seedlings inoculated with L. maculans + S. 

maltophilia isolates. Mean separation was by Tukey’s at P < 0.05. P – patient; E – environmental 

isolate. 

* Isolates differ significantly from the “L. maculans alone” treatment.   
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Fig. 11. Mean root length of canola seedlings inoculated with L. maculans + S. maltophilia 

isolates. Mean separation was by Tukey’s at P < 0.05. P – patient; E – environmental isolate. 

* Isolates differ significantly from the L. maculans alone treatment.  
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Fig. 12. Mean stem lengths of canola seedlings inoculated with L. maculans + S. maltophilia 

isolates. Mean separation was by Tukey’s at P < 0.05. P – patient; E – environmental isolate. 

* Isolates differ significantly from the “L. maculans alone” treatment.   

 

Canola seedlings first inoculated with S. maltophilia and then with L. maculans 

Significant (P < 0.0001) differences were observed in all three parameters investigated 

(number of root branches, root and stem length). Seedlings inoculated with D457, ATCC 13637, 

ATTC 13270 and K279a were protected against inhibition of root branching caused by L. 

maculans (Fig. 13). The number of root branches found in seedlings inoculated with CDC 2007-

07-01 was not statistically different from those found in the L. maculans alone treatment 

(Fig.13). 

The root length of canola seedlings exposed to isolates ATCC 13270 (average of 1.84 

cm), K279a (average of 1.66 cm), CDC 2007-07-01 (average of 1.49 cm) and D547 (average of 

1.46 cm) were significantly higher than those seedlings exposed to L. maculans alone (average of 

0.46 cm) (Fig. 14). Seedlings inoculated with ATCC 13637 had statistically similar root length 
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as the L. maculans alone treatment (Fig. 1.14). Like root length, stem length of canola seedlings 

inoculated with ATCC 13637 was statistically similar to that of the L. maculans alone treatment 

(Fig. 1.15). However, canola seedlings received protection against L. maculans when they were 

inoculated with D457, CDC 2007-07-01, K279a and ATCC 13270 (Fig. 15). 

 

Fig. 13. Mean number of root branches of canola seedlings inoculated with S.maltophilia 

isolates, then L. maculans. Mean separation was by Tukey’s at P < 0.05. P – patient;  

E – environmental isolate.  

*Isolates differ significantly from L. maculans alone treatment. 
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Fig. 14. Mean root lengths of canola seedlings inoculated with S. maltophilia isolates, then  

L. maculans. Mean separation was by Tukey’s at P < 0.05. P – patient; E – environmental 

isolate. 

* Isolates differ significantly from L. maculans alone treatment. 
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Fig. 15. Mean stem lengths of canola seedlings inoculated with S. maltophilia isolates, then  

L. maculans. Mean separation was by Tukey’s at P < 0.05. P – patient; E – environmental 

isolate. 

* Isolates differ significantly from L. maculans alone treatment. 

 

Protective capabilities of S. maltophilia against the effect of K 56-2 

The inoculation of S. maltophilia and K 56-2 was done in three ways: 

i. Canola seedlings were first inoculated with K 565-2 and then with S. maltophilia  

ii. Canola seedlings were inoculated with S. maltophilia and K 56-2 simultaneously 

iii. Canola seedlings were first inoculated with S. maltophilia and then with K 56-2 

Canola seedlings first inoculated with K 56-2 and then with S. maltophilia 

Significant differences were found in the number of root branches (P < 0.0015), root 

length (P < 0.0020) and stem length (P < 0.0057) of canola seedlings. The number of root 

branches that developed on seedlings inoculated with  isolates ATCC 13637 and K279a as well 

as “none” treatment was significantly higher than the K 56-2 alone treatment (Fig 16). Seedlings 
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inoculated with D457, CDC 2007-07-01 and ATCC 13270 had statistically similar root 

branching as the K 56-2 alone treatment (Fig. 16). Canola seedlings which were not exposed to 

any bacterium (none) and those exposed K279a had significantly longer roots than those of 

seedlings exposed to K56-2 only (Fig. 17).  The rest of the isolates had statistically similar root 

lengths as the K 56-2 alone treatment (Fig. 17). Canola seedlings inoculated with isolate K279a 

had the longest stems (average of 2.11 cm) and this significantly differed from those of seedlings 

exposed to the K56-2 alone treatment (average of 0.98 cm) (Fig. 18). Stems lengths of seedlings 

inoculated with the remaining isolates did not differ from those of the K 56-2 alone treatment 

(Fig. 18). 

 

Fig. 16. Mean number of root branches of canola seedlings inoculated with K 56-2, then  

S. maltophilia isolates. Mean separation was by Tukey’s at P < 0.05. P – patient;  

E – environmental isolate.  

*Isolates differ significantly from “K 56-2 alone” treatment. 
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Fig. 17. Mean root length of canola seedlings inoculated with K56-2, then S. maltophilia isolates. 

Mean separation was by Tukey’s at P < 0.05. P – patient; E – environmental isolate. 

* Isolates differ significantly from K 56-2 alone treatment. 
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Fig. 18. Mean root length of canola seedlings inoculated with K56-2, then S. maltophilia isolates. 

Mean separation was by Tukey’s at P < 0.05. P – patient; E – environmental isolate. 

* Isolates differ significantly from K 56-2 alone treatment. 

 

Canola seedlings inoculated with S. maltophilia and K 56-2 simultaneously 

Significant (P < 0.0001) were found in all three parameters investigated (number of root 

branches, root and stem length). Simultaneous inoculation of K56-2 and CDC 2007-07-01, 

DH5α, D547, K279a or ATCC 13637 resulted in significantly higher number of root branches 

than seedlings exposed to K 56-2 alone treatment (Fig. 19). Root branching among canola 

seedlings inoculated with ATCC 13270 did not differ statistically from the K 56-2 alone 

treatment (Fig 19). Seedlings which were inoculated with CDC 2007-07-01 and the “none” 

control had significantly higher root length than those seedlings exposed to K 56-2 alone (Fig. 

20). Seedlings inoculated with the rest of the isolates did not differ in root length from those of K 

56-2 alone (Fig. 20). Like root length, canola seedlings inoculated with  CDC 2007-07-01 and 
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“none” had the longest stems which differed significantly from stem lengths of seedlings 

inoculated with K56-2 only (Fig. 21).  

 

Fig. 19. Mean number of root branches of canola seedling inoculated with K 56-2 +  

S. maltophilia isolates. Mean separation was by Tukey’s at P < 0.05. P – patient;  

E – environmental isolate.  

* Isolates differ significantly from K 56-2 alone treatment. 
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Fig. 20. Mean root length of canola seedlings inoculated with K 56-2 + S. maltophilia isolates. 

Mean separation was by Tukey’s at P < 0.05. P – patient; E – environmental isolate.  

* Isolates differ significantly from K 56-2 alone treatment. 
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Fig. 21. Mean stem length of canola seedlings inoculated with K 56-2 + S. maltophilia isolates.  

Mean separation was by Tukey’s at P < 0.05. P – patient; E – environmental isolate. 

* Isolates differ significantly from K 56-2 alone treatment. 

 

Canola seedlings were first inoculated with S. maltophilia and then with K 56-2 

Significant differences were found in the number of root branches (P < 0.0001), root 

length (P < 0.0026) and stem length (P < 0.0013). Exposure of seedlings to ATCC 13637 

resulted in the highest number of canola root branches which significantly differed from those of 

seedlings exposed to K56-2 alone (Fig. 22). Seedlings exposed to the other isolates did not have 

significantly different number of root branches than the K 56-2 alone (Fig 22). Seedlings which 

were not inoculated with either of the pathogens had the longest roots and this was the only one 

that differed significantly from the K56-2 alone treatment (Fig. 23). For stem length, only 

seedlings which were inoculated with ATCC 13270 were significantly higher than seedlings 

inoculated with K56-2 alone (Fig. 24).    
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Fig.  22. Mean number of root branches of canola seedlings inoculated with S. maltophilia 

isolates, then K 56-2. Mean separation was by Tukey’s at P < 0.05. P – patient;  

E – environmental isolate.  

* Isolates differ significantly from K 56-2 alone treatment.  
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Fig. 23. Mean root length of canola seedlings inoculated with S. maltophilia isolates, then   

K 56-2. Mean separation was by Tukey’s at P < 0.05. P – patient; E – environmental isolate. 

* Isolates differ significantly from K 56-2 alone treatment. 
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Fig. 24. Mean stem length of canola seedlings inoculated with S. maltophilia isolates, then  

K56-2. Mean separation was by Tukey’s at P < 0.05. P – patient; E – environmental isolate. 

* Isolates differ significantly from K56-2 alone treatment. 

 

gyrB sequencing 

The aim of this part of the project was to determine the relatedness of the S. maltophilia 

isolates used in this study through phylogenetic analysis. This was done through gyrB primers as 

designed for Pseudomonas (Yamamoto et al., 2000). The gyrB gene is a housekeeping gene that 

encodes the DNA gyrase B-subunit. It is involved in negative supercoiling catalysis of DNA 

(Huang, 1996). Out of 18 isolates, 10 complete sequences were obtained and used to draw the 

phylogenetic tree. Efforts to get complete sequences for the other 8 isolates were unsuccessful 

after three attempts. Two separate clusters were observed (Fig. 26). The isolates written in bold 

are the S. maltophilia isolates used to build the phylogenetic tree. The isolates were evenly 

distributed in both clusters. Only two isolates were found to be closer to each other, S. 

maltophilia isolates, CDC 2007-07-01 and D457. In this study, D457 consistently promoted 
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canola growth grown under salt stress conditions in all parameters investigated. The isolate D457 

and CDC 2007-07-01 had similar results in canola protection experiments. The gyrB primers 

used had threefold degeneracy in the reverse primer.  

 

 
 

Fig. 25. A phylogenetic tree showing the relatedness of S. maltophilia isolates. The phylogenetic 

analysis was done via gryB sequencing.  
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DISCUSSION 

Stenotrophomonas maltophilia can be found in different environments such as soil, plant 

rhizosphere, surface water, food, drinking water, contaminated medical fluids or devices 

(Looney et al., 2009). S. maltophilia is unique in that on one side, it acts a nosocomial multidrug-

resistant pathogen associated with immuno-suppressed patients (Denton & Kerr, 1998) and on 

the other side, it is non-pathogenic to plants (Wolf et al., 2002) and has properties that enhance 

plant growth and development (Taghavi et al., 2009). S. maltophilia has been reported to be 

associated with a variety of plant species including canola (Berg et al., 1996). 

The overall purpose of this study was to determine the phenotypic differences between 

clinical and environmental isolates of S. maltophilia. As a first step, laboratory experiments were 

conducted to determine if clinical S. maltophilia isolates retain their plant-growth promoting 

properties or alternatively, if they lose them while under selection in the clinic. A total of 13 of 

the isolates were obtained from clinic sources while five environmental isolates were included. 

The results of gyrB phylogenetic analysis of the isolates revealed that two of them, CDC 2007-

07-01 and D457 are closely related. It was also noticed that one of the environmental isolates, 

ATCC 13637 was placed in the same cluster as clinical isolates, indicating that clustering did not 

depend on the source of isolates or that clinical and environmental isolates may be closely 

related. In a study, Adamek et al. (2011) also found through gyrB analysis that some clusters 

contained only clinical isolates while others contained environmental isolates but most clusters 

contained both. In our study, only one environmental isolate was included in the phylogenetic 

analysis due to a challenge in getting complete gene sequence for the second isolate. Out of all 

18 isolates, complete sequences were generated for 10 isolates. The inability to obtain complete 

sequences for the remaining eight isolates may have been caused by primer degeneracy in our 
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reverse primer. Primer degeneracy has been shown to cause problems during PCR amplification 

(Souvenir et al., 2003).  

In order to investigate whether clinical isolates of S. maltophilia promote plant growth, 

canola seedlings were inoculated with the isolates under normal and NaCl stress conditions. Soil 

salinity constitute a serious problem in crop production worldwide (Flowers, 2004), especially in 

production systems where irrigation is applied (Cicek and Cakirlar, 2002). High concentration of 

salt in the soil reduces plant growth and yield and also reduces/delays germination in seedlings 

through inhibition of water uptake or by affecting the balance of specific ions such as Na
+
, Ca

2+
 

and K
+
 (Yildirim et al., 2006). Finding adaptation and mitigating strategies that are inexpensive 

and easy to apply is therefore very crucial. This made the inclusion of salt stress in the plant 

growth experiment worthwhile. Our results show that under normal conditions, inoculation of 

canola seedlings with the isolates of S. maltophilia did not result in enhanced root growth or root 

branching. Canola stem length was negatively affected by some S. maltophilia isolates (CDC 92-

03-30, ATCC 17666, CDC 98-43-10, CDC 2013-11-01 and CDC 2011-09-42). Under NaCl 

stress conditions however, enhanced root and stem growth as well as root branching were 

observed across most of the isolates. Isolate D457 showed consistency in promoting growth in 

salt stressed canola seedlings. In a study on strawberry in Germany, it was reported that 

Stenotrophomonas strains promoted root growth and root hair development under normal 

growing conditions but a number of strains had a negative influence on stem length (Suckstorff 

and Berg, 2003). It is obvious that both similarities and inconsistencies exist between the results 

presented in the current study and those of Suckstorff and Berg (2003). It worth noting that the 

data reported in this study were taken one week after inoculation of canola seedlings with S. 

maltophilia isolates while Suckstorff and Berg (2003) recorded their data 5 weeks post 
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inoculation. The difference in the period during which strains were in contact with the plants 

differed between the two studies and this, coupled with the fact the different plants and strains 

were investigated could explain the disagreements in results. S. maltophilia promotes plant 

growth through a variety of mechanisms such as the production of IAA, nitrogen fixation (Park 

et al., 2005) and ability to produce anti-fungal metabolites (Minkwitz & Berg, 2001). Suckstorff 

and Berg (2003) found a positive correlation between plant growth promotion and the production 

of IAA and concluded that regardless of origin, Stenonotrophomonas stains can produce IAA in 

vitro and subsequently influence plant growth. Parameters such as stem and root length and root 

branching have been used in investigations as plant growth indicators (Suckstorff and Berg, 

2003). Results of plant growth promotion by S. maltophilia could potentially be influenced by 

factors such as proximity of bacterial isolates to the host plant. Root colonization after bacterial 

inoculation is therefore essential for growth promotion. The lack of growth promotion under 

normal (non-stress) condition could have been caused by low or lack of root colonization by the 

isolates.  

Our results suggest that S. maltophilia isolates might have played a role in plant recovery 

from salt stress. This is consistent with results of other previously published studies (Berg et al., 

2010, Roder et al., 2005; Mayak et al., 2004). Berg et al (2010) noted that the plant-promoting 

effect of Stenotrophomonas is much enhanced under salt stress conditions than in non-saline soil. 

S. maltophilia has been reported to exhibit tolerance to external osmolarity by the accumulation 

of certain osmoprotective compounds and can grow well under NaCl stress (Miller & Wood, 

1996). These compounds are produced in response to salt stress and protect biological structures 

like membranes and proteins. Achromobacter piechaudii, a plant growth promoting bacterium, 

has been reported to significantly increase the fresh and dry weights of tomato seedlings grown 
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in the presence of up to 172 mM NaCl salt, slightly increased the uptake of phosphorous and 

potassium and increased water use efficiency (Mayak et al., 2004). These activities may have in 

part, contributed to activation of processes involved in the alleviation of the effect of salt on the 

plants. Salinity has been reported to cause an increase in the rate of ethylene biosynthesis and 

this stress-induced ethylene inhibits root growth. Any factor capable of curbing the accelerated 

ethylene production can result in improvement in the growth of plants under salt stress. It has 

been reported that bacteria capable of producing 1-aminocyclopropane-1-carboxylic acid (ACC) 

can hydrolyze endogenous levels of ACC, an ethylene precursor into α-keto butyrate and 

ammonia (Hontzeas et al., 2004). The removal of ACC reduces the harmful effects of ethylene 

and this aids plants to recover from stress (Shah et al., 1997, Glick et al., 2007), leading to 

enhanced growth. The production of siderophores by S. maltophilia has also been reported to 

play a role in plant recovery from salt stress (Tank and Saraf, 2010). The actual mechanism (s) 

through which growth promotion in salt stressed canola seedlings occurred in this study was not 

investigated and this will be an interesting subject for future studies.  

In order to investigate the potential of S. maltophilia isolates to protect canola plants 

against the harmful effect of the fungus L. maculans, the causal pathogen of blackleg, a series of 

experiments were conducted with variable sequence of pathogen inoculations. The results show 

that growth of canola seedlings exposed to L. maculans was enhanced only when S. maltophilia 

isolates were present. On its own, L. maculans reduced canola root/stem length as well as root 

branching. The sequence of inoculation did not affect the protective ability of S. maltophila 

against L. maculans. The protective ability of S. maltophilia isolates reported here was based on 

the comparison of growth parameters of canola seedlings inoculated with S. maltophilia isolates 

and those of the non-treated control. Assessments of parameters such as conidia production and 
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mycelial growth of L. maculans with and without S. maltophilia isolates would have afforded a 

more direct inference to be made but this was outside the scope of this study. In future studies, it 

will be worthwhile to investigate these direct indicators of fungal growth inhibition. Mechanisms 

by which S. maltophilia acts as a biocontrol agent include antibiotic production (Jakobi and 

Winkelmann, 1996, O’Brien and Davies, 1982), extracellular enzyme activities such as protease 

and chitinase (Dunne et al., 1997, Kobayashi et al., 1995) and rhizosphere colonization potential 

(Juhnke et al., 1987, Dunne et al., 1997). Antifungal antibiotics maltophilin and xanthobaccins 

which are strain-specific have recently been reported (Jacobi et al., 1996, Nakayama et al., 

1999). Stenotrophomonas strains have also been shown to produce volatile organic compounds 

which can inhibit the growth of pathogenic fungi (Wheatley, 2002).  It is likely that S. 

maltophilia isolates like K279a and D457 which demonstrated high antifungal activity possess 

genes which code for effectors capable of inhibiting fungal growth.  

In this study, we also investigated the protective capability of S. maltophilia when 

challenged with the plant pathogenic bacterium Burkholderia cenocepacia (K 56-2). The results 

show that when canola seedlings were first inoculated with K 56-2 and later challenged with S. 

maltophilia isolates, K279a showed the greatest plant protection potential. Simultaneous 

inoculation of S. maltpohilia and K 56-2 had the greatest impact on the number of root branches 

as seedlings inoculated with D457, CDC 2007-07-01, K279a, ATCC 13637 and DH5α all had 

significantly higher root branching than the non-treated control. A possible explanation of this 

result could be that the simultaneous inoculation of the two bacteria might have caused the plant 

to be heavily stressed, resulting in more root branching in an effort to increase uptake of water 

and nutrients. This result should therefore be interpreted with caution. Unlike L. maculans, 
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inhibition of K 56-2 by S. maltophilia isolates seemed to be influenced by the sequence of 

inoculation. 

The results of this study did not provide evidence of clear differences between clinical 

and environmental isolates based on the growth data. The inclusion of more environmental 

isolates could have afforded a better comparison. The results demonstrate that isolates of S. 

maltophilia (clinical and environmental) promote plant growth but only plants were exposed to 

sodium chloride stress before bacteria inoculation. Under normal conditions, some S. maltophilia 

isolates caused reduction in the stem length of canola seedlings. Canola seedlings were protected 

by S. maltophilia isolates against the deleterious effects of L. maculans and this occurred 

irrespective of the sequence of pathogen inoculation. Similarly, S. maltophilia isolates 

demonstrated protective capability against growth inhibition effects of the plant pathogenic 

bacterium K 56-2, however, this seemed to be influenced by the sequence of bacteria 

inoculation. 

The results contribute vital information on S. maltophilia-canola interactions. With the 

use of irrigation in crop production increasing nowadays, the problem of soil salinity is expected 

to become more important. The discovery of plant growth promotion potential of S. maltophilia 

isolates under salt stress conditions in this study can therefore bring relief to crop growers who 

have salinity issues. The protective capability of S. maltophilia isolates against L. maculans and 

K56-2 makes them suitable candidates for use in biotechnology. Since some strains of S. 

maltophilia can cause disease in humans, the possible commercial application of this bacterium 

in crop production need to be authorized by appropriate regulatory agencies. 
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Future perspectives 

With the above findings, it would be relevant to conduct further experiments that will 

answer some of the questions raised. For example, quantifying the levels of IAA produced by S. 

maltophila isolates upon inoculation to canola seedlings and performing correlation analyses 

between IAA levels and growth promotion will be useful in explaining the mechanism of 

underlying canola growth promotion by S. maltophilia. IAA can be quantified using the 

colorimetric method described by Gordon & Weber (1951). This involves growing S. maltophilia 

isolates into cultures for five days, reading the supernatant at 530nm and using a standard curve. 

Under salt stress conditions, some bacteria are known to produce 1-aminocyclopropane-1-

carboxylic acid (ACC) which causes the depletion of stress-induced ethylene, thereby enhancing 

plant growth. ACC can be assayed as described by Bulens et al. (2011). Here again, correlation 

analyses could be carried out to establish the association between ACC production by S. 

maltophilia isolates (if any) and plant recovery from salt stress.  

Siderophores have also been reported to play a role in plant recovery from salt stress 

(Tank and Saraf, 2010). To determine the presence of siderophores, Blue Agar CAS Assay (blue 

Fe (III)) dye complex of CAS (chrome azurol S) and HDTMA (hexadecyltrimethylammonium 

bromide) for detection of gram-negative bacteria as described by Schwyn and Neilands (1987) 

can be used. This test involves testing for chelation change on CASS agar plates. An orange halo 

production causes the removal of Fe (III) from an Fe (III)–CAS–HDTMA complex, resulting in 

the dye turning blue. S. maltophilia isolates grown on the agar plate will show siderophore 

production by forming orange halos around bacterial colonies whiles those without orange halos 

lack siderophore production. 



56 
 

It would also be important to conduct an assessment of parameters such as changes in the 

ability of L. maculans to grow and reproduce in the presence of S. maltophilia by measuring 

mycelium and spore production. This would enable a more direct inference to be made on the 

ability of S. maltophilia to control L. maculans. In addition, parameters such as lesion 

development on stems and leaves of canola seedlings caused by L. maculans could be measured.  

Canola experiments can be carried out in the greenhouse or growth chamber with 

growing conditions of 20-30ºC, 16/8 hour period and humidity around 70%. The plants take 

approximately 3-4 months to mature when grown in soil (Kandel and Knodel, 2011). Where 

necessary, seeds can be stressed with an appropriate concentration of NaCl before planting in 

pots of soil. Parameters such as stem and root length of canola plants can be measured using a 

pair of calipers as well as the number of root branches counted. Other parameters that can be 

considered are fresh and dry weight. These weights will be useful in quantifying the amount of 

chlorophyll produced plants by exposed to S. maltophilia isolates. To reduce variation among 

replications or runs, all technical replicates, where possible, should be inoculated on the same 

day and data collections must also be done on the same day. 

Another thing to consider is repeating the canola protection experiment. The experiment 

was carried out in three set-ups: before, mix and after. However, data for the controls was 

collected for only the mix set-up due to time constraints. As a result of this, 2-way ANOVA 

analysis using timing and strain as factors could not be performed with the resultant inability to 

determine if interaction occurred between the factors. It will be worthwhile setting up 

experiments which will have all controls in each of the set-up timings in order to determine this 

interaction. 
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