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ABSTRACT 

At its primary level (nm scale) bone is a nanocomposite consisting of a mineral 

(hydroxyapatite) phase which gives bone its strength and an organic (type I collagen) phase 

giving bone its fracture toughness.  Hydroxyapatite, (HAP) Ca10(PO4)6(OH)2, is the most 

abundant mineral in the human body.  Bone tissue has a complex hierarchical structure spanning 

multiple length scales (cm to nm).   

Characterization of mineral composition in biomineralized tissues such as bone at their 

primary level, is very challenging and requires instrumentation with nanometer-scale spatial 

resolution.  Transmission electron microscopy (TEM) combines high spatial resolution with 

visual correlation of diffraction and elemental-composition data.  Electron energy-loss 

spectroscopy (EELS) is a sensitive technique used to probe electronic structure at the molecular 

level. TEM-based EELS is the only available technique that can provide information about the 

chemical and coordination environment of minerals with nm scale spatial resolution. 

Prior studies in our group has developed a method to create biomimetic HAP using 

biomineralization routes inside the clay galleries of montmorillonite clay modified with amino 

acids (in-situ HAPclay).  Incorporation of in-situ HAPclay into polymer scaffolds and seeding 

with human mesenchymal stem cells has enabled the cells towards differentiation into 

osteoblastic lineages without differentiating media. Because of the importance of these materials 

for bioengineering applications, TEM-EELS was used to evaluate differences and similarities 

among HAP, biomimetic in-situ HAPclay, modified MMT clay, and β-tricalcium phosphate.  

Osteogenesis imperfecta (OI), also known as brittle bone disease, is an inheritable disease 

characterized by increased bone fragility, low bone mass, and bone deformity caused primarily 

by mutation in collagen type I genes and is expressed as changes in structure and mechanics at 
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the macrostructural level of bone. Therefore the mineralization of HAP in OI bone and the 

molecular basis of OI bone disease makes this an interesting system for molecular-level 

investigations.  Small changes in the valence band and outer electronic structures of the diseased 

bone have been revealed through EELS.  These small changes observed in the electron energy-

loss spectra of the OI bone appear to play important biological roles towards development of the 

disease. 
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THE ROAD NOT TAKEN 

Two roads diverged in a yellow wood, 
And sorry I could not travel both 
And be one traveler, long I stood 
and looked down one as far as I could 
To where it bent in the undergrowth; 
 
Then took the other, as just as fair, 
And having perhaps the better claim,  
Because it was grassy and wanted wear; 
Though as for that, the passing there 
Had worn them really about the same, 
And both that morning equally lay 

In leaves no step had trodden black. 
Oh, I kept the first for another day! 
Yet knowing how way leads on to way, 
I doubted if I should ever come back. 
 
I shall be telling this with a sigh 
Somewhere ages and ages hence: 
Two roads diverged in a wood, and I- 
I took the one less traveled by, 
And that has made all the difference. 
 

  -Robert Frost 
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CHAPTER 1.  INTRODUCTION 

1.1. Scope of this dissertation 

Electron energy-loss spectroscopy (EELS) is used to investigate natural and synthetic 

bone systems, specifically molecular-level differences in healthy and osteogenesis-imperfecta 

diseased bone as well as a biomimetic hydroxyapatite biomineralized inside clay galleries and 

used for tissue-engineering applications.  This doctoral dissertation focuses on the use of EELS 

in TEM to compare the electronic structure of HAP mineral, specifically the low-loss Ca-M2,3 

edge and the P-L2,3 core loss edge in two different systems; synthetic HAP with biomimetic HAP 

and healthy with diseased human bone.  The first comparison is between synthetic HAP and 

HAP that has been biomineralized in clay galleries within a unique clay-polymer biomaterial 

developed by our group (in-situ HAPclay). The second comparison is between the HAP in 

normal healthy human bone (NHB) and human bone with osteogenesis imperfecta disease 

(OIHB).  This work represents a unique experimental EELS probe into molecular interactions in 

healthy and osteogenesis-imperfecta-diseased human bone and biomineralized HAP. 

This dissertation is organized in the following manner: 

 Chapter 1:  Introduction. This chapter presents a description of bone and its 

components, background information on the experimental lineage of the in-situ 

HAPclay biomaterial system that brought about this EELS investigation, and 

detailed background information on the healthy and diseased human bones as well 

as the implications of using a single sample for each experiment. The theory of 

EELS and the electronic information that can be acquired using this technique is 

also discussed. 
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 Chapter 2: This chapter presents the calculation of the fluence (electron dose) for 

each of the beam-probe sizes for the JEOL JEM-2100 LaB6 TEM used to obtain 

the EELS data presented in this dissertation in an effort to ensure the dose 

threshold or critical dose is not exceeded for the samples, thereby causing sample 

damage.   

 Chapter 3: This chapter presents the EELS comparison of low-loss Ca-M2,3 edges 

and P-L2,3 core loss edges between synthetic HAP and biomimetic in-situ 

HAPclay  

 Chapter 4: This chapter presents the EELS comparison of HAP mineral in healthy 

human bone and osteogenesis-imperfecta-diseased human bone with respect to 

low-loss Ca-M2,3 edges and P-L2,3 core loss edges. 

 Chapter 5:  This chapter summarizes of the major contributions of this work. 

 Chapter 6:  This chapter discusses possible future directions for this work 

1.2. Bone 

Bone is an integral part of the human body and functions as both an organ and a 

tissue.  As an organ, bone produces white and red blood cells, stores ions, and provides 

endocrine regulation of blood sugar.  There are two main configurations of bone: cancellous and 

compact. Cancellous (or trabecular) bone is found at the ends of long bones and in vertebrae and 

flat bones and is very porous (50-90% porosity).  Compact bone, also referred to as cortical 

bone, is more dense (5-10% porosity) than cancellous bone, and is found in the shafts of long 

bones and forming the shell around cancellous bone at joints and in vertebrae.   

Bone as a tissue gives the body shape/support and protection of vital organs.  Bone and 

other types of tissues are formed by living organisms through a complex process termed 
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biomineralization. Biomineralized tissues consist of mineral and organic phases.  Bone 

comprises approximately 60% mineral, an organic portion of 20% collagen and 10% non-

collagenous proteins, and 10% water.  The core component of bone, and the most abundant 

mineral in the human body, is hydroxyapatite (HAP).  Bone mineral [Ca10(PO4)6(OH)2] has 

similar composition to synthetic HAP, however, HAP in bone mineral is poorly crystallized, 

structurally disordered, and compositionally nonstoichiometric when compared to synthetic HAP 

[1, 2], 

Bone tissue has a complex hierarchical structure spanning multiple length scales (cm to 

nm) [3-5].  The hierarchical structure for compact bone is outlined in Fig. 1.1.  

 

Figure 1.1. Schematic representation of the hierarchical structure of bone. 
 

The structural unit of compact bone is the osteon. Osteons are small cylinders (diameter 

10-500 µm) composed of concentric lamellae.  Each lamella is made up of individual collagen 

fibers 3-7 µm in diameter. The collagen fibers are made up of fibrils approximately 500 nm in 
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width.  Each collagen fibril contains a staggered arrangement of collagen molecules (1.5 nm 

wide x 300 nm long) and HAP crystals, which produces a periodicity of 67 nm [6, 7]. The HAP 

resides in the hole zone between the ends of the collagen molecules [3, 8, 9], where the c-axes of 

the mineral crystals are oriented along the long axis of the bone and well-aligned with the 

collagen fibril axis [5, 10].  Microscopy and related techniques currently available to investigate 

the component structure at each level of hierarchy can be found in Table 1.1. 

Table 1.1. Microscopy and related techniques for investigating the structural components of bone 
hierarchical levels. 
 
Hierarchical Level Component Structures Size Range Techniques 
Macrostructure cortical bone cancellous 

bone 
>500 µm Light microscopy 

X-ray micro-computed tomography 
Microstructure Osteons 10-500 µm Light microscopy 

X-ray micro-computed tomography 
Scanning electron microscopy 

Sub-microstructure Lamella 3-7 µm Scanning electron microscopy 
Transmission electron microscopy 

Collagen fibers 1-2 µm Scanning electron microscopy 
Transmission electron microscopy 

Collagen fibrils <0.5 µm Scanning electron microscopy 
Transmission electron microscopy 

Nanostructure Collagen fibrils/ 
molecules 
HAP mineral phase 

<100 nm High resolution transmission 
electron microscopy 
Scanning transmission electron 
microscopy (STEM) 
Atomic force microscopy (AFM) 

Sub-nanostructure  <1 nm Scanning transmission electron 
microscopy 
Atomic force microscopy (AFM) 
STEM-Electron energy-loss 
spectroscopy (EELS) 
Energy-filtered transmission 
electron microscopy (EFTEM) 
Scanning transmission x-ray 
microscopy (STXM) 
Synchrotron 

 

Therefore, at its primary level (nm scale) bone is a nanocomposite of mineral and organic 

phases. The mechanical properties of bone are directly dependent on the individual properties of 
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the collagen and HAP [4, 11]. The mineral phase, HAP, gives bone its stiffness and strength. The 

organic matrix, comprising mainly type I collagen, gives bone its fracture toughness and 

ultimately determines its structural organization.  

1.3. Background of the biomineralized hydroxyapatite inside clay galleries sample used for 

EELS studies  

Bone-tissue engineering is the holy grail of regenerative medicine. Its focus is to address 

critical bone defects that cannot heal on their own due to events such as bone disease, trauma, 

infection, tumor removal, battlefield injuries, or hereditary bone abnormalities. This need for 

replacement or repair of damaged bone is the reason HAP and polymeric nanocomposites have 

been investigated as biomaterials for bone-tissue engineering.  Recent work in our group has 

created a synthetic route to produce biomimetic HAP biomineralized inside amino-acid-modified 

clay galleries within a polymer scaffold system for use in bone-tissue engineering applications 

[12, 13].   

In the early 1990s, Langer and Vacanti introduced tissue engineering as an 

interdisciplinary field applying principles of biology and engineering to development of 

functional biological substitutes for damaged tissues and organs [14].  Tissue engineering uses 

three-dimensional scaffolds seeded with cells as a “template” for tissue regeneration. Ideally, 

scaffold materials are biocompatible and biodegradable, with adequate mechanical properties as 

well as correct pore size and interconnected porosity so that they are suitable for seeded cells to 

proliferate and form the desired tissue. 

Scaffolds made from synthetic polymeric materials have been studied extensively 

because their properties can be controlled through synthesis routes. Synthetic polymer systems 

have good mechanical and degradation properties but poor biocompatibility and toxic 
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degradation products. Bio-polymer-based scaffolds have excellent biocompatibility and nontoxic 

degradation products, but poor mechanical strength and uncontrolled degradation rates. To 

overcome the poor attributes of synthetic polymeric and bio-polymeric systems, polymeric 

composite scaffolds have been investigated.  For example, HAP has been used to prepare 

polymeric composite scaffolds for bone-tissue-engineering studies due to its excellent 

osteoconductivity, nontoxicity, non-immunogenicity, and high biological affinity toward 

proteins.  

HAP biomaterials have been used successfully as bone substitutes in the treatment of 

defects in human bone tissue because they are bioactive and non-allergenic, and they have 

excellent biocompatibility [15] [16].  The poor mechanical properties and resorption rates of 

HAP bioceramics, however, have limited their use for repair or total hard-tissue replacement [17-

20].  

Hydroxyapatite coatings have been used on surfaces of metal implants to improve 

bonding with bone [21].  Hydroxyapatite ceramics synthesized using standard sintering methods 

have been used as replacements for bone grafts but lack the interconnected porosity needed for 

osteoconductivity [22].  Foam-gel synthesis techniques have improved porosity of HAP ceramics 

for bone-tissue-engineering materials [23].  Still, despite its many favorable characteristics, poor 

mechanical properties limit the use of HAP as a scaffold material. However, polymer-HAP 

composites have been synthesized using biomimetic processes to provide bioactive porous 

scaffolds that are osteoconductive and osteoinductive [24]. 

Polymer clay nanocomposite (PCN) systems are created when small quantities of 

organically modified montmorillonite (MMT) clay are added to polymers [25, 26]. The resulting 
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PCNs show improved material properties compared to the initial polymer system, including 

improved mechanical properties, decreased flammability, and enhanced degradation.  

Our group developed the “altered phase” model for PCNs based on experimental and 

simulation studies showing that molecular interactions among polymer, clay, and modifier 

components result in enhanced material properties of the polymer [27]. Localized interactions of 

polymer with intercalated nanoclay blocks alter the crystallization of the polymer.  The modifier 

backbone chain length and functional groups also have an effect on the intercalation (d-spacing) 

and nanomechanical properties of the PCN [28].  

Extending the application of PCNs to tissue engineering, MMT clay intercalated with 

unnatural amino acids was investigated [29]. Montmorillonite clay modified with 5-aminovaleric 

acid was found to be biocompatible in cell-culture experiments. Composite films of MMT clay 

modified with 5-aminovaleric acid and chitosan/polygalacturonic acid (ChiPgA) permitted rapid 

reproduction of human osteoblast cells in cell cultures, making them intriguing biomaterials for 

tissue-engineering applications.  Fourier transform infra-red (FTIR) spectroscopic investigations 

and molecular modeling simulations of clay-polymer and clay-organic-modifier interactions in 

PCNs were used to evaluate the extent of molecular interactions [30]. 

To use amino-acid-modified clays for bone-tissue engineering applications, HAP must be 

incorporated into the system. Our group has reported a novel biomineralization route of HAP in 

MMT clay modified with 5-aminovaleric acid (in-situ HAPclay) [13]. Transmission FTIR used 

to investigate the molecular interactions between modifier, clay, and HAP in the in-situ HAPclay 

system confirmed the formation of HAP within the modified MMT galleries. Chelation of 

dissociated carboxylic groups of the modified clay with calcium ions was observed through peak 

shifts in the corresponding spectra, and mineralization is thought to occur at the functional 
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groups of the amino-acid modifier within the clay galleries. Studies using X-ray diffraction 

(XRD) showed the formation of apatite in modified MMT clay with subsequent shifts in the 

corresponding apatite peaks in the in-situ HAPclay, indicating that the apatite formed within the 

in-situ HAPclay has a different lattice structure than HAP.  Films containing ChiPgA and in-situ 

HAPclay were used in cell-culture experiments with human osteoblast cells. Human osteoblast 

cells were found to adhere and cluster on the surface of the films, indicating good 

biocompatibility. 

In related work, the response of human mesenchymal stem cells (hMSC) to films and 

scaffolds formed from a ChiPgA/in-situ HAPClay composite were studied using imaging and 

assay techniques [31]. The in-situ HAPclay mediated the osteoinductive and osteoconductive 

response from hMSCs, which adhered to scaffolds and formed mineralized bone nodules on the 

films. 

In a recent study to investigate molecular interactions of PCN systems, molecular 

dynamics was used to construct representative models of 5-aminovaleric acid MMT clay and the 

corresponding in-situ HAPClay system [32].  Transmission electron microscopy, XRD, and 

FTIR were used to validate the models. Highly attractive and repulsive interactions were found 

between PO4
3-, MMT clay, and aminovaleric molecules as well as large non-bonding interactions 

which indicate influence of the environment surrounding PO4
3- in the in-situ HAPclay model. 

Considerable hydrogen bonding was found between the functional-group hydrogen atoms of the 

modifier and MMT clay in the in-situ HAPclay as compared to the 5-aminovaleric acid MMT 

clay indicating the HAP interaction with the clay was through the aminovaleric acid. 

Molecular modeling studies of biological mineral-organic nanocomposite systems have 

shown that mineral proximity influences the mechanical properties of the organic phase [33]. 
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Molecular interactions of ex-situ/in-situ HAP polymer composite interfaces have been studied 

using photoacoustic FTIR spectroscopy [34].  

In in-situ HAPclay, the unique morphology, structure, and stoichiometry of the 

biomineralized HAP relates to the molecular interactions between the nanoclay, amino acid 

modifiers inside the clay galleries, and biomineralized HAP.  Additional studies incorporating 

biomineralized in-situ HAPclay into polymer scaffold systems and seeding with human 

mesenchymal stem cells have resulted in the human mesenchymal stem cells being driven 

towards differentiation into osteoblastic lineages without the use of growth media. These 

demonstrated superior biological functions have indicated that this biomineralized in-situ 

HAPclay system is an effective component for tissue engineering bone-scaffold applications.  

1.4. Background of the healthy and diseased human bone samples used for EELS studies 

When the complex biomineralization process during bone formation is interrupted or the 

availability of components is limited by factors such as nutrition, age, or genetic mutation, 

diseases affecting bone structure occur.  One such genetic disease is osteogenesis imperfecta 

(OI).  Osteogenesis imperfecta (also known as brittle-bone disease) is an inheritable disease 

characterized by an increase in bone fragility, low bone mass, and bone deformity, and is caused 

primarily by mutation in collagen type I genes [35].  Sillence [36] and colleagues classified OI 

into four clinical types based on genetic, clinical and radiographic criteria, with type I (mild) 

being the least severe, type IV moderate, type III severe, and type II lethal. Approximately 90% 

of OI cases result from a variant in one of the two structural genes (COL1A1 and COL1A2) for 

type I procollagens. There is no known cure for OI. Patients are treated with various supplements 

in an attempt to manage the effects of the disease and increase quality of life. Osteogenesis 

imperfecta bone provides an interesting system for molecular-level investigations because the 
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abnormality is initiated by a variant at the molecular level within the structural genes and then 

expressed as changes in structure and mechanics at the whole-bone level. 

A series of PA-FTIR experiments performed in our group on healthy and OI-diseased 

human bone revealed information about the stoichiometry of HAP with respect to longitudinal 

and transverse directionality within the bone.  In the earliest reported study [37], directionality of 

the molecular interactions was probed using PA-FTIR spectroscopy by testing NHB (healthy) 

bone in the longitudinal and transverse directions.  Comparison of those PA-FTIR spectra 

indicated that the mineral in the longitudinal surface is more stoichiometric than its transverse 

counterpart and the surface area of the longitudinal section of bone appears to have more organic 

matter exposed with higher stoichiometry. Further PA-FTIR experiments comparing NHB and 

OIHB sample spectrum revealed a slightly altered mineral structure in OIHB [38].  These spectra 

also show that the OIHB mineral is more attachable to water and more non-stoichiometric than 

NHB, which is related to the altered mineral environment.  Additionally, it was found that OIHB 

has the same HAP orientational stoichiometry as NHB, i.e. the longitudinal direction is more 

stoichiometric than transverse.  The NHB and OIHB samples used in the EELS studies reported 

in this dissertation were from the same bone samples previously used in the PA-FTIR studies 

reported by our group in [37,38]. 

PA-FTIR spectroscopy can detect changes at the molecular level in the form of shifting 

of the frequency of functional groups specific to the strength or weakness of the corresponding 

bond.  This spectroscopic technique is limited in resolution from hundreds of nanometers into the 

micron range, which is essentially from the bulk of the sample.  In contrast, EELS in the TEM 

can provide information about the electronic structure of the material with high spatial resolution 

from a specific area.  
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Heathy human bone samples are relatively easy to obtain from tissue banks, while 

diseased bone such as those with OI are immensely more difficult to obtain.  There is a need for 

a more proactive effort to encourage patients with rare bone diseases to consider tissue donation.  

Donated OIHB tissue is in high demand and therefore in short supply in tissue banks. 

Availability of NHB and OIHB samples to non-medical researchers is very limited and, perfectly 

matched samples are next to impossible to obtain.  For this study, we were not able to procure 

perfectly matched NHB and OIHB samples from the available national tissue banks. Therefore, 

the bone samples used in study were selected to meet certain criteria which would help eliminate 

many of the factors that could potentially affect the formation of bone. The NHB and OIHB 

samples we obtained from NDRI were consistent in race (Caucasian), and gender (female), and 

similar in age (22 and 27 years old).  This age range was targeted to eliminate the role of post-

menopausal osteoporosis and other age related changes.  Availability of donated tissue played a 

large role in how the samples were chosen. Gender and race were easy to match, while finding a 

similar age was a little more difficult.  We acquired the healthy human femur early in the study 

and later we were not able to find the same bone type for the OIHB, as only the tibia was 

available.  The samples were matched according to the best available samples that closely fit the 

criteria. See Appendix A for a detailed description of each bone.   

The NHB and OIHB samples used in this study were obtained from National Disease 

Research Interchange (NDRI, Philadelphia, PA; www.ndriresource.org) on separate dates. Prior 

to obtaining the bone samples, our research protocol summary “Multi-scale Modeling of 

Mechanics of Bone: Experimental and Modeling Studies” was submitted to NDRI and the North 

Dakota State University Institutional Review Board (NDSU-IRB) for approval.  On 05/26/2009, 

the NDSU-IRB determined that our protocol did not require approval or certification of exempt 
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status as it did not fit the regulatory definition of “research involving human subjects” because 

the bone samples were collected from deceased individuals.  The letter summarizing the decision 

is included as Fig A.1. 

We acknowledge that the sample size (n=1 for NHB and OIHB) may not be adequate for 

addressing a host of important questions that arise and is insufficient for a statistical study.  For 

statistical reasons, increased numbers of OIHB samples and more closely controlled (matched) 

samples are required. In future work, a statistical study of multiple matched samples of NHB and 

OIHB can be performed if the samples are available. 

This dissertation represents an initial study using an EELS technique that has not been 

applied to OIHB and NHB for comparison of the electronic structure of the HAP mineral and we 

feel this is an important starting point. The results of this study are valuable because they provide 

new information about this disease as well as previously unreported information about the HAP 

mineral in healthy human bone. Specifically, changes to mineralization in OIHB have not been 

reported earlier and disclose a novel characteristic of the OI disease that needs to be addressed in 

therapies.  

1.4.1. Normal human bone sample 

On 08/05/2009 we obtained from NDRI a 22-cm proximal portion of a human femur (Fig 

A.2) from a 27-year-old Caucasian female whose cause of death was trauma due to a motor-

vehicle accident on 06/30/2006.  NDRI harvested the tissue and stored it frozen at -80C until our 

procurement. The NDRI donor summary is found in Fig A.2.1. 

1.4.2. Diseased human bone sample 

On 11/05/2012 we obtained a 21-cm distal portion of an osteogenesis-imperfecta 

diseased human tibia from NDRI (Fig A.3). The tibia from a 22-year-old Caucasian female 
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whose cause of death was an accidental overdose of methadone on 12/30/2005.  NDRI harvested 

the tissue and stored it at -80C until our procurement.  The NDRI donor summary is found in Fig 

A.3.1. 

1.5. Transmission electron microscopy and electron energy loss spectroscopy 

Characterization of mineral composition at the primary level of biomineralized tissues 

such as bone is challenging and requires instrumentation with nanometer-scale spatial resolution.  

Transmission electron microscopy (TEM) combines high spatial resolution with visual 

correlation of diffraction and elemental-composition data.  

Electron energy-loss spectroscopy (EELS) is a sensitive technique used to probe 

electronic structure at the molecular level [39]. The high-energy (>100 keV) electrons of a TEM 

pass through thin foil samples (<100 nm) and can be used to produce transmitted electron images 

and spectroscopic data from extremely small volumes of sample. Therefore, TEM-based EELS is 

the only technique available that can provide information about the chemical and coordination 

environment of minerals with nm scale resolution.  It has been used to measure the dielectric 

functions of semiconductors, superconductors, metals, and ceramics [40-43].   

The EELS spectrum represents the result of the disturbance created by the electrostatic 

interactions of the incident electron with the sample electrons, the spectrum consists of three 

unique regions: zero loss peak (ZLP), low loss (0-50 eV), and core loss (> 50 eV).   

The ZLP represents the elastically scattered electrons which have undergone no energy 

loss and or have an energy loss that is too small to measure.  The ZLP is the most dominant 

feature and used as a reference (0 eV). The width of the ZLP relates to the energy distribution of 

the emission source of the TEM and generally has a range from 0.2 -2 eV.  
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The low-loss region of the EELS spectrum (0-50 eV) represents the interaction of the 

incident electrons with the outer shell (valence) electrons of the sample atoms and reflects the 

solid-state character of the sample. This interaction produces single-electron and collective 

electron excitations. Single-electron excitations occur when a process in which an electron in the 

valence band of an insulator or a semiconductor material is excited into a low-energy unoccupied 

states above the Fermi level; these transitions are referred to as inter-band transitions. The 

dominant feature of the low-loss region results from excitation of collective resonances of 

valence electrons by the primary electron, known as a plasma resonance and taking the form of a 

longitudinal traveling wave [39].  The primary electron typically loses 5-30 eV when exciting a 

plasma resonance.  Energy of the plasmon peak is directly related to the density of valence 

electrons.  

Features in the core-loss region (>50 eV) of the EELS spectrum are called ionization 

edges. These arise from excitation of a core electron into unoccupied electron states through 

interaction with the incident electron beam.  Ionization-edge values indicate an energy-loss value 

equivalent to the critical ionization of that particular core electron from a specific element. The 

relative edge intensity can be used to measure the composition quantitatively.  

Fine spectral details that are routinely found 0-50 eV beyond the ionization edge are 

called electron loss near-edge structure (ELNES).  While ionization edges are due to electron 

transitions into unoccupied electronic states, ELNES is a reflection of the energy distribution of 

those unoccupied states (referred to as unoccupied density of states, DOS). Conditions of the 

local atomic environment (e.g., element-specific coordination, valency, and anisotropic density 

of states) affect ELNES and are used to elucidate electronic structure of materials [34]. 
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1.6. Theory of EELS 

Incident electrons passing through a sample in a TEM are scattered when they interact 

with the atomic nucleus or electrons of the material.  This interaction is governed by electrostatic 

(Coulomb) forces due to the charged nature of the particles involved. These interactions can be 

either elastic, where the incident electron responds to the field of the nucleus; or inelastic, where 

the incident electron interacts with surrounding electrons.  Interaction of an incident electron 

with an atomic nucleus results in an elastic scattering event.  This interaction usually produces an 

immeasurably small because the nuclear mass greatly exceeds the rest mass of an electron, 

causing very little energy to be exchanged.  Inelastic scattering is a result of the Coulomb 

interaction between the incident electron and atomic electrons.  Unlike the elastic scattering 

event, the mass of the incident electron and atomic electron are similar, allowing a measurable 

energy loss to be observed.  A typical inelastic scattering event results in energy losses ranging 

from a few electron volts to hundreds of electron volts. 

Plasmon excitation is the predominant form of inelastic scattering in solids, occurring 

when outer-shell electrons such as valence electrons in a semiconductor or insulator or 

conduction electrons in a metal are coupled together through electrostatic forces but are weakly 

bound to the atoms of the material.  As a result, their quantum states are delocalized, forming an 

energy band. 

A fast-moving electron passing through a solid displaces nearby atomic electrons by 

Coulomb repulsion, which in turn creates a region of positive potential that trails behind the 

electron and is called a correlation hole.  When the speed of the interacting electron exceeds the 

Fermi velocity, the response by the atomic electrons is oscillatory and results in regions of 

alternating positive and negative space charge along the electron path, a plasmon wake. The 



 

16 

wake periodicity in the direction of the electron trajectory is λω = ν/ƒp, where ƒp is a plasma 

frequency (Hz) given by 

                                                      2𝜋𝜋ƒ𝑝𝑝 =  𝜔𝜔𝑝𝑝 =  �𝑛𝑛𝑒𝑒
2

𝜀𝜀0𝑚𝑚
�
1
2�
      (1) 

where n is the density of the conduction or valence electrons and m is their effective mass.  The 

plasma frequency is on the order of 1016 Hz, which corresponds to the ultraviolet region within 

the electromagnetic spectrum [44]. 

The movement of the electron through the solid results in energy loss due to the 

backward attractive force of the positive correlation hole and is described by the creation of 

pseudoparticles (plasmons) with the energy quantum expressed as  

                                                         𝐸𝐸𝑝𝑝 = ℎƒ𝑝𝑝  = � ℎ
2𝜋𝜋
�𝜔𝜔𝑝𝑝     (2) 

where h is Planck’s constant and ƒ𝑝𝑝  is the plasmon frequency. Inelastic scattering of the 

transmitted electron can be considered a creation of a plasmon at each scattering occurrence and 

produces peaks in the low loss spectrum equivalent to the Ep and multiples of that energy. 

Plasmon energy values for most materials fall in the range of 5-30 eV energy loss and are 

generally greater than the band gap.  

The interaction of the electromagnetic wave property of the incident electron with the 

electrons of the sample allows the dielectric properties of the specimen to be elucidated through 

features in the energy-loss spectrum. The dielectric function is an intrinsic property of a material 

representing the response from the disturbance created through the interaction of the entire 

sample with the incident electron beam in the TEM. The dielectric function is a complex quantity 

dependent on both angular momentum, q, and frequency, ω, [ε(q,ω)]. This is the same response 

function that describes the interaction of photons with a solid and it allows correlation of energy 
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loss data with optical measurements in the visible/ultra-violet regions of the electromagnetic 

spectrum to properties such as refractive index, absorption, and reflection coefficients. The 

complete material response to the fast incident electron is known as the dielectric response 

function, represented by the imaginary part of the inverse dielectric function, Im[-1/ ε(q,E)]; it 

describes the form of the low loss EELS spectrum corrected for thickness. The energy loss 

function (ELF) is represented by 

                                                     𝐼𝐼𝐼𝐼 � −1
𝜀𝜀(𝐸𝐸)

� =  𝜀𝜀2
𝜀𝜀12+𝜀𝜀22

       (3) 

where ε(E) is a complex permittivity consisting of a real part (ε1) and an imaginary part (ε2) in 

the form ε= ε1 + iε2. 

The dielectric response function is related to the double-differential cross section which 

gives the exact form of the EELS spectrum as 

                                         𝑑𝑑2𝜎𝜎
𝑑𝑑ΩdE

≈
𝐼𝐼𝐼𝐼�− 1

𝜀𝜀(𝑞𝑞,𝐸𝐸)�

𝜋𝜋2𝑎𝑎0𝑚𝑚0𝑣𝑣2𝑛𝑛
 � 1
𝜃𝜃2+𝜃𝜃𝐸𝐸

2�     (4) 

where d2σ/dΩdE represents the total electron scattering cross section, a0 is the Bohr radius 

(ε0h/(πm0e2t)), ν is velocity, m0 is rest mass, n is density of free electrons, e is electron charge, θ 

is scattering angle, θE is characteristic scattering angle (E/(γm0ν2)), and γ is relativisitic 

correction ((1-ν2/c2)-1/2). 

After using Fourier log deconvolution to remove the multiple scattering effects from the 

low loss spectrum, the single scattering distribution function (SSD) can be obtained by 

integrating Eq. (4)  

                                            𝑆𝑆𝑆𝑆𝑆𝑆 =  2𝐼𝐼0
𝜋𝜋𝑎𝑎0𝑚𝑚0𝑣𝑣2  𝐼𝐼𝐼𝐼 � −1

𝜀𝜀(𝜔𝜔)
� ∫ 𝜃𝜃 𝑑𝑑𝑑𝑑

𝜃𝜃2+𝜃𝜃𝐸𝐸
2

𝛽𝛽
0     (5) 

where I0 is zero-loss intensity, t is sample thickness, and β is collection semi-angle of the 

spectrometer entrance aperture. Because the dielectric response function is a causal quantity, the 
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real part of the response function (Re[1/ ε(E)]) can be calculated from the imaginary part (Im[-1/ 

ε(E)]) by using Kramer’s-Kronig relations 

                                                     𝑅𝑅𝑅𝑅 � 1
𝜀𝜀(𝐸𝐸)

� = 1 − 2
𝜋𝜋
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where P is the Cauchy part of the integral and the dielectric function is ε = ε1 + iε2.  

Using experimentally obtained values of Im(-1/ ε) and the value of Re(1/ε), ε1 and ε2 can 

then be calculated from Eqs. (4) and (6) 
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Material properties such as AC conductivity provide insight into the electronic nature of 

materials [45]; AC conductivity (κ)  can be calculated from the dielectric functions ε1 and ε2 as  

                                                         ĸ =  𝐸𝐸𝜀𝜀2
2ħ

           (9) 

Collective electron excitations are represented by ε1 while the fine structure on ε2 plots indicates 

single-electron transitions. 
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CHAPTER 2. FLUENCE RATE CALCULATIONS FOR THE JEOL-JEM-2100 LAB6 

TRANSMISSION ELECTRON MICROSCOPE 

2.1. Introduction 

The TEM electron beam can cause radiation damage to the bulk structure or surface of 

the sample depending on the nature of the sample, the electron source, and acquisition 

parameters of the TEM.  The numerous electron-beam/sample interactions related to damage in 

the TEM and scanning transmission electron microscope have been studied extensively [1-3]. In 

short, mechanisms of electron-beam damage are complex and vary greatly with the sample 

material. Electron-beam damage is caused through two scattering mechanisms, elastic and 

inelastic.  

Elastic scattering represents electrostatic deflection of the incident electrons by the 

Coulomb field of each atomic nucleus in the sample.  Production of electron-diffraction patterns 

along with diffraction and phase-contrast images in the TEM are examples of useful functions of 

elastic scattering. When incident electrons transfer kinetic energy and momentum to the sample 

displacing atoms, this elastic scattering is termed knock-on damage.  Knock-on damage occurs at 

high radiation doses in metallic and semi-metallic samples at a threshold incident energy above 

200 keV for medium to heavy Z elements. However, electron-beam sputtering (displacement of 

surface electrons) has a lower threshold and is more common [4].  Electron sputtering occurs 

rapidly with use of a focused aberration-corrected electron probe is used where the current 

density routinely exceeds 106 A cm-2.   

Inelastic scattering represents Coulomb interaction of incident electrons with the atomic 

electrons that surround each nucleus in the sample.  It produces secondary electrons for TEM 

imaging, the emission of x-rays used for chemical analysis in energy dispersive x-ray 
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acquisitions, and electron-energy loss spectroscopy.  Electron-beam damage caused by inelastic 

scattering of the incident beam is called radiolysis or ionization damage and results from the 

breaking of chemical bonds in polymers and organic and inorganic materials. Under certain 

conditions beam damage can be observed visually; however, this is not always the case.  Having 

knowledge of the electron dose delivered at each illumination condition for the particular TEM 

being used is critical for the accuracy of the data required.  Field-emission TEM with or without 

aberration correction can easily produce current densities exceeding 106 A cm-2 which drastically 

increases the possibility of electron-beam damage occurring and ultimately changing the sample. 

With these high-resolution instruments “low-dose” techniques or direct-electron detection 

cameras are used to reduce the amount of electron dose the sample receives.   

Transmission electron microscopes with LaB6 emitters produce less beam-current density 

compared to the field-emission TEMs.  However, the possibility of damage still exists.  The 

electron dose and electron dose rate is unique to each instrument and the conditions used for 

imaging or data acquisition, e.g. EELS experiments. Therefore, it is in our best interest to 

determine if the dose rate exceeds the critical dose threshold of 100 x 106 electrons nm-2 for HAP 

[5].  The method of calculation of the electron dose and electron dose rate for each spot size 

available on the JEOL 2100-LaB6 TEM at North Dakota State University is reported in this 

chapter. 

In techniques such as x-ray micro-computed tomography, radiation damage is dependent 

on the energy absorbed by the sample and its mass.  Due to the required thinness (< 100 nm) of 

the samples for TEM/STEM experiments, almost all of the incident electrons pass through the 

sample.  The sample ionization cross-sectional area is extremely small; only a negligible portion 

of the electrons will be scattered laterally and eventually absorbed after multiple scattering 



 

25 

events. Therefore, the energy from inelastic scattering represents only a small portion of the total 

energy from the incident electron beam. The electron dose (fluence) is the number of incident 

electrons impinging on the sample during an exposure. It represents the strength of irradiation in 

the TEM/STEM experiment and is defined as the product of dose rate (fluence rate or current 

density) and exposure (illumination) time.  

For each beam-sensitive sample there is thought to be a “dose threshold” or “critical 

dose” at or below which beam damage is negligible [6].  Eddisford et al. [5] reported a critical 

dose threshold of 100 x 106 electrons nm-2 for hydroxyapatite. They identified a radiolytic 

damage process loss of phosphorus and oxygen in HAP by monitoring the Ca/P ratio using EDS 

or EELS which occurred at fluences above 100 x 106 electrons nm-2 at 200 kV in a field emission 

or LaB6 TEM.  

In this chapter, we calculate the fluence of the JEOL JEM-2100 LaB6 at all available 

beam probe sizes (spot sizes) to determine if any exceed the critical dose threshold of 100 x 106 

electrons nm-2 determined by Eddisford et al. [5] This is a critical value to obtain before we 

proceed with the subsequent EELS experiments in chapters 2 and 3 in order to establish that the 

beam conditions are not producing sample damage/alteration. 

2.2. Experimental 

These experiments were carried out using a JEOL JEM-2100 LaB6 TEM with the 

accelerating voltage set to 200 kV.  The TEM was operated in energy-dispersive x-ray mode and 

diffraction mode with a 2-cm camera length at 200,000x magnification, the same conditions used 

to acquire EELS data for the samples in Chapters 3 and 4. The beam-current density at the 

specimen was obtained from the read-out of the current density on the viewing screen without a 

sample inserted. The dose rate for each spot size condition was calculated using Equation 2.1. 
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magnification setting of the microscope and used as conversion factor to bring the screen 

distance (cm) to the sample distance (cm). The remaining terms are known conversion factors. 

2.3. Results 

The calculated electron dose rate and electron dose per 100-second acquisition at each 

spot size setting on the JEOL JEM-2100 LaB6 TEM is listed in Table 2.1. 

Table 2.1. Calculated electron dose rate and electron dose for JEOL-JEM-2100 LaB6 TEM at 
North Dakota State University. 

Spot Size (nm) Current Density �  𝑝𝑝𝑝𝑝
𝐶𝐶𝐶𝐶2� Dose Rate �

𝑒𝑒− 𝑠𝑠�
𝑛𝑛𝑛𝑛2� Dose/100s �𝑒𝑒

−

𝑛𝑛𝑛𝑛2� � 

0.5 0.4 1 x 103 1 x 105 

1.0 0.8 2 x 103 2 x 105 

2.0 1.6 4 x 103 4 x 105 

3.0 6.4 1.6 x 104 1.6 x 106 

5.0 16.0 4 x 104 4 x 106 

10 80 2 x 105 2 x 107 

15 188 4.7 x 105 4.7 x 107 

25 508 1.3 x 106 1.3 x 108 
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2.4. Conclusions 

The calculated dose rate for the JEOL JEM-2100 LaB6 operating under the conditions 

(10-nm spot size) set for EELS acquisition for the proceeding experiments was 2 x 105 e-/s/nm2.  

The electron dose for the a 100s acquisition was 2 x 107 e-/nm2.  This value is an order of 

magnitude less than the critical dose threshold for HAP (100 x 106 e-/nm2) reported previously 

[5].  Using a spot size of 15 nm or smaller under these conditions should place the electron dose 

below the critical dose threshold of 100 x 106 e-/nm2. Increasing the spot size to 25 nm increases 

the electron dose into the 108 range where the possibility exists for radiolytic damage and it is 

recommended to use damage-reduction methods such as low-dose technique, specimen cooling, 

reduction of the incident intensity, or reduced incident beam diameter [7]. 
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CHAPTER 3. PROBING ELECTRONIC STRUCTURE OF BIOMINERALIZED  
 

HYDROXYAPATITE INSIDE NANOCLAY GALLERIES 

 
This chapter presents a unique experimental probe into molecular interactions in complex 

biomineralized hydroxyapatite structures using EELS. Here we find that the small changes 

observed in the electron energy loss spectra appear to play important biological roles in 

biomineralized hydroxyapatite. The content of this chapter has been published in Payne, S. A.; 

Katti, K. S.; Katti, D. R.; Probing electronic structure of biomineralized hydroxyapatite inside 

nanoclay galleries. Micron, 103, 25-37, 2016. 

3.1. Introduction 

Through a complex process called biomineralization, living organisms form mineralized 

tissues for structural support and protection.  These mineralized tissues can be considered a 

nanocomposite consisting of a mineral and an organic phase.  Bone is one such mineralized 

tissue, comprising hydroxyapatite (Ca10(PO4)6(OH)2) (HAP) and collagen.  The need for 

replacement or repair of damaged bone has given researchers reason to investigate HAP and 

polymeric nanocomposites as biomaterials for tissue regeneration in bone tissue engineering. 

A novel mineralization route of HAP in montmorillonite (MMT) clay galleries modified 

with 5-aminovaleric acid has been reported [13].  Characterization of the 5-aminovaleric-acid-

modified MMT clay with mineralized HAP (in-situ HAPclay) by Fourier transform infra-red 

spectroscopy (FTIR) indicated formation of HAP within the modified MMT clay galleries.  

Further, x-ray diffraction (XRD) demonstrated that the lattice structure of the HAP in modified 

MMT clay differed from that of synthetically made HAP.  The in-situ HAPclay system was then 

incorporated into chitosan/polygalacturonic acid (ChiPgA) scaffolds and films for bone-tissue 

engineering studies [31].  When human mesenchymal stem cells (MSCs) were seeded on these 
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ChiPgA/in-situ HAPclay scaffolds and films, they produced mineralized nodules even without 

the osteogenic supplements normally needed for differentiation to osteoblasts.  The ChiPgA/in-

situ HAPclay nanocomposite elicits an osteoconductive and osteoinductive response from MSCs, 

indicating that this biomaterial system is promising for bone-tissue engineering applications.  In 

a related study, when polycaprolactone (PCL)/in-situ HAPclay composite films were seeded with 

MSCs, scanning electron microscopy (SEM) showed formation of matrix vesicles [52].  

Subsequent high-resolution transmission electron microscopy (TEM) studies showed vesicles 

containing highly crystalline minerals indicating that this system is favorable for bone mineral 

formation.  Molecular dynamic (MD) simulations were carried out on the HAP/5-aminovaleric 

acid/MMT system to determine the extent of the molecular interactions among the different 

components [32].  High attractive and high repulsive interactions were found between PO4
3- and 

MMT clay.  The large non-bonded interaction in the in-situ HAPclay indicates the influence of 

the neighboring environment on PO4
3-.  These computational studies provide a framework for 

materials design and selection for biomaterials to be used in tissue engineering.  

Identification of mineral composition is challenging in elucidating biomineralization 

processes because mineralization occurs on a level requiring instrumentation with nanometer-

scale spatial resolution. The only technique available to directly provide information about the 

chemical and coordination environment of minerals at nm scale spatial resolution is TEM-based 

electron energy-loss spectroscopy (EELS). Transmission electron microscopy provides high 

spatial resolution while allowing visual correlation to diffraction and elemental-composition 

data.  Electron energy-loss spectroscopy is a sensitive technique for probing electronic structure 

at the molecular level for a variety of materials [40, 43, 53, 54]. The EELS spectrum, created by 

electrostatic interactions of the incident electron with the sample electrons, consists of three 
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unique regions: zero loss peak (ZLP), low loss (0-50 eV), and core loss (> 50 eV).  Egerton 

(2011) provides a detailed description of the electron scattering phenomenon and applications to 

materials characterization. The ZLP represents elastically scattered electrons that have 

undergone immeasurably small or no energy loss, used as a reference (0 eV), and is the most 

dominant feature of the EELS spectrum. The width of the ZLP generally 0.2 – 2 eV, is related to 

energy distribution of the emission source of the TEM. The low-loss region (0-50 eV) represents 

the interaction of the incident electrons with the outer shell (valence) electrons of the sample 

atoms. The dominant feature of the low-loss region, resulting from excitation of the collective 

resonances of  valence electrons, is called a plasma resonance and it takes the form of a 

longitudinal traveling wave [39]  Features in the core-loss region (>50 eV) of the EEL spectrum 

are called ionization edges. These arise from the excitation of a core electron into the unoccupied 

electron states through interaction with the incident electron beam. Ionization edges are located 

at an energy loss value equivalent to the critical ionization of that particular core electron from a 

specific element. The relative edge intensity can be used to evaluate material composition 

quantitatively.  Fine spectral details routinely found 0-50 eV beyond the ionization edge are 

called electron loss near-edge structure (ELNES) and reflect the energy distribution of those 

unoccupied states (unoccupied density of states, DOS). Electron loss near-edge structure depends 

on the local atomic environment such as element-specific coordination, valence, and anisotropic 

density of states, which are used to elucidate electronic structure of materials.  Analytical TEM-

EELS has been used to investigate synthetic HAP systems and some types of mineralized tissue, 

e.g., natural apatite [55, 56] and carbonate from minerals of biological origin [57].  However, 

low-loss EELS with detailed interpretation of corresponding edges has seldom been employed.  

High angular annular dark field/TEM-EELS was used to investigate mineral-collagen 
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interactions in elephant-ivory dentin, which has a structure similar to bone, but detailed 

interpretation of the corresponding edges was not attempted [58].  Human enamel, peritubular 

dentin and intertubular dentin have been characterized using EELS/ELNES [59] and  near-edge 

structures have been compared for synthetic and biological bone specimens containing an anti-

osteoporotic drug [60].  

Because of the importance of these materials for bioengineering applications, TEM-

EELS was used to evaluate differences and similarities among HAP, biomimetic in-situ 

HAPclay, modified MMT clay and β-TCP. In particular, EELS low-loss transitions and ELNES 

of P-L2,3 edges were compared to determine if there are electronic structural differences. Here we 

report detailed experimental analysis of electron energy-loss spectra from synthetic HAP, 

biomimetic HAP created using biomineralization routes inside clay galleries (in-situ HAPclay), 

MMT clay and β-TCP systems. 

3.2. Materials and methods 

3.2.1. Materials 

Sodium montmorillonite (Na-MMT) clay (SWy-2, Crook County, Wyoming USA) with a 

cation exchange capacity of 76.4 meq/100g was obtained from the Clay Minerals Repository at 

the University of Missouri, Columbia. The modifier 5-aminovaleric acid and β-TCP were 

purchased from Sigma-Aldrich. For the preparation of HAP and in-situ HAPclay, sodium 

phosphate (Na2HPO4) was supplied by JT Baker and calcium chloride (CaCl2) by Electron 

Microscopy Sciences. Lacey carbon on 300 mesh copper grids were purchased from Ted Pella, 

Inc. 
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3.2.2. Methods 

Hydroxyapatite, modified MMT clay, and in-situ HAPclay previously prepared for use in 

other studies [13] were used for the current investigations.  Preparation of these materials has 

been described in detail [29, 31, 61, 62] and is summarized here.  

3.2.2.1. Preparation of HAP 

Hydroxyapatite was prepared using the wet precipitation method [63]: a 39.8 mmol 

solution of CaCl2 was added dropwise to a 23.8 mmol NaHPO4 solution in distilled water and 

stirred. The resulting slurry was centrifuged, decanted, washed with distilled water, dried, and 

sieved to produce HAP powder.   

3.2.2.2. Preparation of modified MMT clay 

To prepare modified MMT clay, Na-MMT clay was suspended in distilled water heated to 

60°C.  While stirring, 5-aminovaleric acid was added and the solution was stirred at 60°C for 1 

hour. The resulting mixture was centrifuged and the liquid decanted. The remaining slurry was 

washed with distilled water, centrifuged, decanted, dried at 70°C, and sieved to yield modified 

MMT clay powder.   

3.2.2.3. Preparation of in-situ HAPclay 

Modified MMT clay was stirred with a 23.8 mmol solution of NaHPO4 for 2 hours to 

ensure dispersion.  A 39.8 mmol solution of CaCl2 in distilled water was then added dropwise to 

the suspension and stirred for 8 hours while maintaining a pH of 7.4 by adding NaOH.  The 

solution was allowed to settle for 24 hours and the liquid was decanted. The precipitate was 

centrifuged to remove excess water and dried at 70°C.  The dried precipitate was then sieved and 

ground to yield in-situ HAPclay.  
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3.2.2.4. Sample preparation for TEM-EELS experiments 

Small amounts of HAP, in-situ HAPclay, β-TCP, and modified MMT clay were placed in 

separate test tubes. One to two milliliters of absolute ethanol was added to each and the test tubes 

were placed in a sonication bath for five minutes to disperse the particles. Approximately one 

microliter of each sample was transferred to a 300-mesh copper TEM grid with a lacey carbon 

support film. Torn filter paper was used to remove the excess liquid and the grids were air-dried 

prior to characterization by TEM-EELS. 

3.2.2.5. TEM-EELS characterization 

Brightfield images and EELS data from each sample were acquired using a JEOL JEM-

2100 LaB6 TEM equipped with a Gatan Orius SC1000 CCD camera and a Gatan ENFINA 1000 

electron energy loss spectrometer. All EELS spectra were recorded in diffraction mode with a 10 

nm probe size. The convergence angle (α) was 12.53 mrad and the collection semi-angle (β) was 

14.43 mrad.   Low-loss and core-loss spectra were collected using a 1 mm entrance aperture and 

a 0.1 eV/channel dispersion. Refer to Appendix D for concise procedures for acquiring EELS 

data.  All spectral data processing was completed using Gatan Microscopy Suite with 

DigitalMicrograph Software (DM) (ver. 1.85 1535).  Background contribution of the ZLP signal 

was removed from each core-loss spectrum by subtraction of a power-law fit to a window 

approximately 10 eV wide before the P-L2,3 edge. The x-axis window was situated so the 

background-subtracted spectrum did not intersect the energy-loss axis in the DM preview.  

Deconvolution of each P-L2,3 core loss spectrum was accomplished using the Fourier-ratio 

method to remove any effects of plural scattering. The P-L2,3 core loss spectra then were 

normalized to the intensity of the 138 eV peak and smoothed using a Savitzky-Golay function.  

Background subtraction and deconvolution of each low-loss spectrum was done in a single step 
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using the Fourier-log method.  Kramers-Kronig analysis was used to calculate the ε1 and ε2 plots 

and energy loss function (ELF) from each deconvolved low-loss spectrum using a refractive 

index of 1.63 with 100 iterations.  The low-loss spectra were normalized for intensity using the 

first major peak (~10 eV for ε1 and ε2, ~20 eV for ELF) and smoothed using a Savitzky-Golay 

function.  Energy positions for the peaks were determined by superimposing the calculated 

second derivative spectrum onto the original spectrum. 

3.3. Results and discussion 

Crystal structures of HAP (Fig 3.1a), β-TCP (Fig 3.1b), organically modified clay (Fig 

3.1c) and in-situ HAPclay (Fig 3.1d) are shown in Fig 3.1.  

 

Figure 3.1. Crystal structure of (a)HAP, (b) β-TCP, (c) amino acid modified nanoclay and (d) 
modified nanoclay-HAP. 
 

Representative TEM images of in-situ HAPclay, HAP, β-TCP, and modified MMT clay 

are shown in Fig. 3.2(a-h). The low-magnification image of in-situ HAPclay (Fig. 3.2a) shows 

clusters of grains. The higher-magnification image (Fig. 3.2b) reveals the lattice structure and 



 

35 

biomimetic rounded shapes interspersed within the clay sheets.  At low magnification, HAP (Fig. 

3.2c) appears similar to in-situ HAPclay (Fig. 3.2a); however, the rounded structures are not 

present (Fig. 3.2d). Elongated needle-like crystals of β-TCP (Fig. 3.2e) show lattice structure 

parallel to their long axis at higher magnification (Fig. 3.2f).  Modified MMT clay is entirely 

different from the other samples, with its agglomerated individual clay sheets (Fig. 3.2g); at 

higher magnification, the lattice pattern of the clay sheets is apparent (Fig. 3.2h).  Additional 

TEM images of in-situ HAPclay, HAP, β-TCP, and modified MMT clay can be found in 

Appendix F. 
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Figure 3.2. TEM images at low-magnification (left column) and high-magnification (right 
column). (a,b) in-situ HAPclay, (c,d) HAP, (e,f) β-TCP, and (g,h) modified MMT clay.  
 

3.3.1. Low-loss spectra 

Electron energy-loss spectroscopy analysis was performed on β-TCP, synthetic HAP, in-

situ HAPclay, and modified MMT clay. Two energy-loss ranges were chosen for analysis: (I) the 

low-loss region from 0-65 eV containing the Ca-M2,3 edge (Figs. 3.3-3.4) and (II) the core-loss 

region from 130-210 eV including the P-L1 and P-L2,3 ionization edges (Fig. 3.6).  
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Deconvolution by the Fourier-log method subtracted the ZLP and removed contributions 

from plural scattering for each of the low-loss spectra. The resulting energy loss function (ELF) 

plots for β-TCP, HAP, and in-situ HAPclay represent single scattering distribution (SSD) 

functions (Fig. 3.3).   

 

Figure 3.3. Energy Loss Function spectra of in-situ HAPclay, HAP, β-TCP, and modified clay. 
Peak A corresponds to the plasmon peak, and peaks B and B* correspond to the calcium M2,3 
edge. The spectra are separated vertically for clarity and bars denote peak position. 
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These spectra consistently show two main peaks located at approximately 23 eV and 36 

eV, labeled A and B respectively. Modified MMT clay spectra show a single peak at 23 eV.  

Corresponding peak positions from the energy loss function plots in Fig. 3.2 are summarized in 

Table 3.1. 

Table 3.1. Energy loss function peak positions (eV). 
 

In-situ HAPclay HAP β-TCP Modified MMT Clay 
Peak A 22.7 22.9 22.7 23.0 

Peak B* 29.8 28.7 28.5 -- 
Peak B 35.7 36.4 36.2 -- 

 

Peak A is attributed to the bulk plasmon as determined through ε1- ε2 comparison (Fig. 

3.4). A weak feature (B*) around 28 eV is present between peaks A and B.  Peaks B and B* 

correspond to the Ca-M2,3 ionization edge [64]. The modified MMT clay spectrum does not 

exhibit the peaks B and B* because calcium is absent.  Low-loss spectra among samples differ in 

the presence or absence of fine structure on the low-energy side of peak A. Table 3.2 summarizes 

peak shifts and peak A:B ratios in the ELF. 

Table 3.2. Energy loss function A:B ratio and peak shift (eV).  
 

In-situ HAPclay HAP β-TCP 
A:B Ratio ~1 <1 <1 
Peak B -0.7 0 -0.2 
Peak B* +1.3 +0.2 0 

 

Since peak B intensity varies, the A/B peak ratio of the in-situ HAPclay spectrum is close 

to one, while A/B peak ratios of HAP and β-TCP are less than one. Peak B of in-situ HAPclay is 

shifted (-0.5 eV) from β-TCP and (-0.7 eV) from HAP.  Peak B* of in-situ HAPclay is shifted 
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(+1.3 eV) from β-TCP and (+1.1 eV) from HAP. The spectra of β-TCP and HAP are similar to 

one another, but they differ markedly from the spectrum of in-situ HAPclay. 

3.3.2. Kramers-Kronig analysis 

Kramers-Kronig analysis was used to calculate ε1 and ε2 from the SSD spectrum of each 

sample:  ε1 represents collective electron excitations (bulk plasmon) (Fig. 3.4a); ε2 represents 

single-electron transitions (Fig. 3.4b). 

 

Figure 3.4. The real (ε1) part (a) and imaginary (ε2) part (b) of the complex dielectric function 
obtained from Kramers-Kronig analysis of the EEL spectra for in-situ HAPclay, HAP, β-TCP, 
and modified MMT clay.  Overlaid spectra are separated vertically for clarity. 

 

The ε1 and ε2 plots for each sample were compared to determine which features of the 

low-loss spectra were single transitions and which were due to bulk plasmon resonance.  The 

bulk plasmon resides around 23 eV.  The fine structure of the ε2 plots represents single-electron 
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transitions related to electronic structure (Fig. 3.4b).  Additional representative overlays of ε2 

spectra can be found in Appendix I. Single-electron transitions from the ε2 plots are summarized 

in Table 3.3. 

Table 3.3. Justifications of ε2 single-electron transitions (eV). 
 

In-situ HAPclay HAP β-TCP Mod. MMT Clay 
Assignment of Electron Transition 
Origin[Ref] 

1.0 -- -- --   
-- -- 3.0 --   

4.1 3.9 -- --   
5.8 -- -- --   
9.7 9.8 9.4 10.5 Exciton state [65, 66] 
13.3 12.5 -- -- Valence band at -12.9 eV to 

conduction band edge [67, 68] 
15.2 14.8 14.8 -- Valence band to exciton [67, 69] 
17.6 -- -- 17.4 Valence band to exciton [67, 69] 

-- 18.5 18.3 --   
19.5 -- -- --   
21.1 20.7 20.5 -- Valence band to exciton [69] 

-- 22.0 -- -- Valence band to exciton [68, 69] 
25.1 -- -- -- O 2s, P 3s to exciton[70-72]  
28.8 28.4 28.3 -- O 2s to exciton [69] 
30.9 30.6 -- --   
33.3 33.8 33.8 -- O 2s to conduction band [69] 

 

The modified MMT clay ε2 spectrum shows a major peak at 10.5 eV and a minor peak 

located at 17.4 eV.  No fine structure is seen on the low-energy side of the major peak. The β-

TCP ε2 spectrum is dominated by a narrow and very intense transition at 9.4 eV.  There is very 

little fine structure on the low-energy side of this peak, with a weak transition at 3.0 eV being the 

only discernible feature.  The ε2 spectra of HAP and in-situ HAPclay are similar, with β-TCP 

transitions around 9.8, 14.8, 20.5, 28.3 and 33.3 eV. There is more fine structure on the low-

energy side of the peak at 9.8 eV for HAP and in-situ HAPclay than for β-TCP. This 9.8 eV peak 

is broadened by the amount of fine structure located on the high-energy side. While there are 
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some overlapping transitions between HAP and in-situ HAPclay (3.9, 30.6 eV) that do not 

overlap with β-TCP, in-situ HAPclay has more unique transitions (1.0, 5.8, 13.3, 17.6, 19.5 and 

25.1 eV) than either of the other materials. 

The ε2 plots were used to calculate the high-frequency AC conductivity plots for in-situ 

HAPclay, HAP, β-TCP, and modified MMT clay (Fig. 3.5). The plots of in-situ HAPclay and 

HAP are similar to each other and quite different from β-TCP and modified MMT clay.   

 

 

Figure 3.5. Calculated high-frequency AC conductivity plots for in-situ HAPclay, HAP, β-TCP, 
and modified MMT clay. The overlaid spectra are separated vertically for clarity. 
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3.3.3. P-L2,3-edge spectra 

The P-L2,3-edge EELS spectra of β-TCP, HAP, and in-situ HAPclay express features in 

five energy-loss regions (Fig. 3.6), characterized by two sharp peaks located at 138-139 eV (A) 

and 146-147 eV (B), followed by a broader, more intense peak starting around 153 eV (C). 

Additional P-L2,3 edge overlays can be found in Appendix I. 

 

Figure 3.6. Overlay of the P-L2,3 core loss region (135-210 eV) obtained from in-situ HAPclay, 
HAP, and β-TCP. The spectra are separated vertically for clarity. The peak positions (A, B, C, 
and D) are denoted by vertical lines and discussed in the text.  
 

A weaker feature (A*) is often located as a shoulder on the high-energy side (+2-3 eV) of 

peak A.  The P-L1 ionization edge (D) is present around 189 eV.  The P-L2,3 edge is represented 

by two peaks, one at 136 eV (P-L3) and another peak within ~1 eV (P-L2) due to the transitions 

from spin-orbit split 2p electrons (2p_{3/2} and 2p_{1/2}) into the first unoccupied 3s-

antibonding state [73].  These peaks, while generally difficult to resolve, are most likely located 
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within the low-energy shoulder of peak A according to synchrotron-based X-ray absorption near-

edge structure (XANES) data reported for phosphorus reference compounds [73, 74].  Peak A, 

located in the 138-139 eV energy-loss region, has been attributed to transitions to the 3p-like 

antibonding state in the Si L-edge spectrum of SiO2, which is isoelectronic with PO4
3- [75].  

These transitions to dipole-forbidden 3p orbitals are made possible by the mixing of characters 

from other elements such as oxygen. Peak A*, located ~142 eV on the high-energy side of peak 

A, is a broad peak that is unique to calcium phosphates and due to transition of the phosphorus 

2p electron to calcium 3d empty orbitals [73], but also may be due to multiple scattering of the 

outgoing electron [76].  Peak B, located ~147 eV, is known as the d-state resonance or “shape 

resonance” peak; the energy position of this peak is sensitive to the molecular symmetry and to 

the local environment of the phosphorus [73, 77]. This peak is followed by a broad peak (C) 

starting at ~150 eV that corresponds to the position of the atomic cross-section maximum for the 

phosphorus 2p level relative to its respective 2p ionization edges [76, 78]. The P-L2,3 core loss 

region spectral features for β-TCP, HAP, and in-situ HAPclay as well as transition origins are 

summarized in Table 3.4. 

Table 3.4. P-L2,3 edge position (eV) and electronic transition assignments. 

Peak β-TCP HAP 
In-situ 
HAPclay Transition Origin [Ref] 

Peak A 139.7 
 

138.4 
 

137.8 Transitions to 3p-like anti-bonding state, allowable to 
dipole forbidden 3p orbitals due to mixed characters 
from oxygen [75] 

Peak A* 141.8 142.0 142.1 Phosphorus 2p to Ca 3d empty orbitals [73, 76] 

Peak B 147.8 
 

147.2 146.9 d-state shape resonance peak [73, 77] 

Peak C 153.1 154.3 154.1 Atomic cross-section maximum for the P 2p level 
[76, 78] 

Peak D 189.9 
 

190.4 190.3 
 

P L1 peak [64] 
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Table 3.5 compares the peak shift values for the sample materials. Peak A*, the P 2p to 

Ca 3d empty orbital transition, shows small differences in energy values among the three 

samples. 

Table 3.5. P-L2,3 shift values. 

 In-situ HAPclay shift (eV) HAP shift (eV) 

 β-TCP HAP β-TCP In-situ HAPclay 
Peak A -1.9 -0.6 -1.3 +0.6 
Peak A* +0.3 +0.1 +0.2 -0.1 
Peak B -0.9 -0.3 -0.6 +0.3 

Peak C +1.0 -0.2 +1.2 +0.2 
Peak D +0.4 -0.1 +0.5 +0.1 

 

The d-state shape resonance peak, labeled Peak B, shows a shift (-0.9 eV) when 

comparing in-situ HAPclay to β-TCP. There is very small change (-0.3 eV) in the Peak B energy 

position between in-situ HAPclay and HAP.  For the 2p level (peak C) in-situ HAPclay and HAP 

are shifted +1.0 eV and +1.2 eV respectively from β-TCP.  The P-L1 peak (D) of in-situ 

HAPclay and HAP show similar energy values while the P-L1 peak for β-TCP is shifted -0.4 to -

0.5 eV from in-situ HAPclay/HAP. 

3.4. Conclusions 

Clearly the HAP biomineralized inside clay galleries (in-situ HAPclay) is different 

morphologically from non-biomimetic HAP (Fig. 3.2). The rounded shapes seen in mineralized 

HAP with amino acid modified nanoclays resemble biogenic HAP in human bone. Shifts in the 

Ca-M2,3 ionization edge in the in-situ HAPclay and HAP in the ELF are indicative of changes to 

the Ca outer shell interactions providing support for molecular dynamics simulations that 

predicted large interaction energies with Ca [32, 79].  Further, changes to the valence band of the 
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in-situ HAPclay are observed compared to the non-biomimetic HAP.  Experimentally observed 

changes in the ε2 spectra (Fig. 3.4) reflect subtle outer shell changes in the electronic structure as 

suggested through simulations; they result from biomineralization guided by weak non-bonded 

interactions between Ca and P from HAP and amino acid groups inside clay galleries.  Further, 

ε2 was used to calculate the high-frequency AC conductivity plots for in-situ HAPclay, HAP, β-

TCP, and modified MMT clay (Fig. 3.5.). Again subtle differences in the valence bands of Ca 

and P in the in-situ HAPclay are observed. The near-edge structure of the P-L2,3 edge was also 

analyzed. Extremely subtle changes resulting from transitions to the 3p-like anti-bonding state, 

allowable to dipole-forbidden 3p orbitals due to mixed characters from oxygen [75] (Table 3.3). 

Thus these EELS studies elucidate the small changes that occur in the valence band and outer 

electronic structures of HAP mineralized inside clay galleries (in-situ HAPclay). It is interesting 

to note the biological implications of these differences are significant. The biomineralized in-situ 

HAPclay used in scaffold systems exhibits superior biological functions, driving human 

mesenchymal stem cells towards differentiation into osteoblastic lineages without the use of 

differentiating media [31, 80].  
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CHAPTER 4. AN ELECTRON ENERGY-LOSS SPECTROSCOPIC STUDY OF 

MOLECULAR INTERACTIONS IN NORMAL AND OSTEOGENESIS IMPERFECTA 

DISEASED HUMAN BONE 

 

This chapter presents a unique experimental probe into molecular interactions in normal 

and osteogenesis imperfecta diseased human bone using EELS. Here we find that the small 

changes observed in the electron energy loss spectra appear to play important biological roles 

when comparing the normal and diseased bone. Small changes in the valence band and outer 

electronic structures of the diseased bone have been revealed through EELS.  These subtle 

changes in the electronic structure of the OI diseased bone are caused through a genetic mutation 

within the collagen which affects HAP mineralization and results in the fragility of bone at the 

macroscale.  

4.1. Introduction 

Bone tissue has a complex hierarchical structure spanning multiple length scales (cm to 

nm).  At its primary level, bone is a nanocomposite of mineral and organic phases.  The mineral 

phase is hydroxyapatite [HAP, Ca10(PO4)6(OH)2], which gives bone its stiffness and strength.  

The organic matrix comprises mainly type I collagen, giving bone its fracture toughness and 

ultimately determining its structural organization.  The mechanical properties of bone are 

directly dependent on the individual properties of the collagen and the HAP [1-3].  

Osteogenesis imperfecta (OI), also known as brittle bone disease, is an inheritable disease 

characterized by increased bone fragility, low bone mass and bone deformity caused primarily by 

mutation in collagen type I genes.  The mineralization of HAP in OI bone and the molecular 

basis of OI bone disease has generated extensive research interest [4].  Approximately 90% of OI 

cases result from a variant in one of the two structural genes (COL1A1 or COL1A2) for type I 
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procollagens, expressed as changes in structure and mechanics at the whole-bone level, making 

OI an interesting system for molecular-level investigations. 

Recent photoacoustic Fourier transform infra-red (Pa-FTIR) spectroscopic investigations 

of healthy human bone in the longitudinal and transverse directions have shown that bone 

mineral in longitudinal section is more stoichiometric than in transverse section [5].  Bone 

mineral was also found to be more structurally disordered and compositionally non-

stoichiometric compared to synthetic HAP.  Additional Pa-FTIR experiments showed that OI 

bone mineral overall is more stoichiometric than in healthy human bone; OI bone has 

orientational stoichiometry of HAP similar to healthy human bone, with the longitudinal 

direction being more stoichiometric than the transverse direction [6]. 

Investigation of healthy and diseased bone at the primary mineral-collagen level requires 

nm-scale spatial resolution.  Transmission electron microscopy-based electron energy-loss 

spectroscopy (TEM-EELS) is the only technique available to provide direct information about 

the chemical and coordination environment of the HAP in the collagen matrix, combining visual 

correlation of elemental composition and diffraction data with high spatial resolution.  This 

sensitive technique has been used for molecular-level investigation of a variety of materials 

including minerals [7] [8].  A recent study reported the use of EELS to investigate the electronic 

structure of a biomimetic HAP synthesized using biomineralization routes inside the clay 

galleries of montmorillonite clay [9].  In this complex biomineralized HAP system, small 

changes identifiable in the EELS spectrum appeared to play an important role in the observed 

biological activity of the biomineralized HAP. 

The EELS spectrum is produced when the TEM incident electron beam interacts with 

electrons of the sample.  A detailed description of EELS technique and its applications to 
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materials characterization is provided by Egerton [10]; a brief summary follows.  Three distinct 

regions define the EELS spectrum: zero loss peak (ZLP), low-loss region (0-50 eV) and core loss 

region (>50 eV).   

The ZLP (0 kV) is the most prominent feature of the EELS spectrum, used as the 

reference, and represents elastically scattered electrons that have experienced no measureable 

energy loss.  The width of the ZLP, generally in the range of 0.2-2 eV, is related to energy 

distribution of the TEM emission source and reflects the energy resolution of the EELS detector.  

Interaction of incident electrons with the valence (outer-shell) electrons of sample atoms 

is represented in the low-loss region and is seen as both plasma oscillations and single electron 

transitions.  Plasma resonance, the dominant feature of the low-loss region, results from 

excitation of the collective resonances of valence electrons and takes the form of a longitudinal 

traveling wave [10].  Single-electron transitions are more subdued and reveal subtle changes in 

electronic structure.  

The core-loss region of the EELS spectrum is dominated by features termed ionization 

edges, attributed to excitation of a core electron into unoccupied electron states through beam-

sample interaction.  The location of an ionization edge corresponds to the energy-loss value of 

the critical ionization of a particular core electron from a specific element. Material composition 

can be evaluated quantitatively using the relative intensity of the ionization edge.  Additional 

ionization-edge features give insight into the molecular make-up of the material.  Electron 

energy-loss near-edge structure (ELNES) is fine spectral detail routinely found 0-50 eV beyond 

the ionization edge and reflects the energy distribution of those unoccupied orbitals. Electronic 

structure of materials can be elucidated from ELNES, which depends on the local atomic 

environment such as valence, anisotropic density of states, and element-specific coordination. 
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Investigations of normal and diseased bone ultrastructure using TEM have been 

extensively reported [11-14].  Analytical TEM-EELS has been used to investigate natural apatite 

systems [15, 16] [17], the effect of strontium on bone mineral composition [18], and the 

distribution of iron and calcium in bone cells [19, 20].  However, there are few reports of low-

loss EELS with detailed interpretation of the corresponding edges for natural healthy or diseased 

bone or for bone-like systems such as ivory dentin.  Mineral-collagen interactions in elephant-

ivory dentin were studied using high angle annular darkfield/TEM-EELS by Jantou-Morris [21], 

but a detailed interpretation of the corresponding low-loss spectra was not provided. Recently, 

TEM-EELS ELNES was used to characterize human enamel [22], and near-edge structures were 

compared for synthetic and biological bone specimens treated with an anti-osteoporotic drug 

[18]. 

This work characterizes and compares normal human bone (NHB) and osteogenesis 

imperfecta human bone (OIHB) using TEM imaging, EELS, ELNES, and field-emission 

scanning electron microscopy (FESEM).  Specifically, EELS low-loss transitions of Ca-M2,3 and 

ELNES of P-L2,3 edges were used to evaluate electronic structure differences among the 

following: synthetic HAP, NHB and OIHB.  Normal and OI bone were evaluated in both 

longitudinal and transverse orientations. Imaging with FESEM and TEM was used to compare 

structure. 

4.2. Materials and methods 

4.2.1. Materials 

Normal human cortical bone and OI human cortical bone were obtained from the 

National Disease Research Interchange (NDRI, Philadelphia, PA) having been stored in a -70°C 

freezer until acquisition.  The NHB was a femur of a 27-year-old female with no history of 
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metabolic disease.  The OIHB was from the tibia of a 22-year-old female, with patient height 

(170 cm) and weight (82 Kg) suggesting that the OI was type I (mild).  The diagnosis of OI was 

based on genetic testing. (Refer to Appendix A and B for additional information concerning 

NHB and OIHB obtained from NDRI) 

Calcium chloride (CaCl2) and sodium phosphate (Na2HPO4) used in the preparation of 

hydroxyapatite were supplied by Electron Microscopy Sciences (Hatfield, PA) and JT Baker 

(Phillipsburg, NJ), respectively. For SEM sample processing, sodium phosphate buffer and 2.5% 

glutaraldehyde in sodium phosphate buffer were purchased from Tousimis (Rockville, MD), and 

osmium tetroxide was purchased from Electron Microscopy Sciences (Hatfield, PA).  Lacey 

carbon on 300 mesh copper TEM grids were purchased from Ted Pella, Inc. (Redding, CA).  

4.2.2. Methods 

4.2.2.1. SEM sample preparation 

A diamond wafering blade (Buehler, Isomet 1000, Lake Bluff, IL) was used to cut 

transverse and longitudinal bone sections approximately 1000 microns thick from the mid-

diaphysis. Samples for SEM were fixed in 2.5% glutaraldehyde overnight, washed with sodium 

phosphate buffer, and post-fixed with 1% osmium tetroxide for 2 h, then were rinsed with buffer 

and dehydrated through a graded ethanol series, critical-point dried, and fractured in liquid 

nitrogen. Fractured samples were attached to aluminum mounts using silver paste, coated with 

carbon (Cressington 208C, Ted Pella, Inc., Redding, CA), and examined using a JSM-7600F 

field emission scanning electron microscope (JEOL-USA, Peabody, MA). 
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4.2.2.2. TEM EELS sample preparation  

4.2.2.2.1. Hydroxyapatite preparation 

HAP was prepared using the wet precipitation method [23, 24] was sonicated in absolute 

ethanol to disperse the particles. These particles were then collected on a TEM grid. 

4.2.2.2.2. NHB and OIHB bone preparation   

Mid-diaphyseal transverse (NHB-T and OIHB-T) and longitudinal (NHB-L and OIHB-L) 

sections ~500-600 µm thick were cut using a low-speed saw with a diamond wafering blade.  An 

ultrasonic disc cutter with boron-carbide slurry (Model 601, Gatan, Inc., Pleasanton, CA) was 

used to cut a 3-mm diameter disc from the center of each of the transverse and longitudinal 

sections (bone images and schematic representation of transverse and longitudinal directions 

found in Appendix B).  The discs were thinned manually to approximately half their original 

thickness using a disc grinder (Model 623, Gatan, Inc., Pleasanton, CA) with successively finer 

grit diamond paper (40, 15, 6, 3, 1 and 0.5 µm) and water.  The disc thickness was measured 

using a scanning electron microscope (JSM-6490LV, JEOL USA, Peabody, MA) and then the 

disc was ground from the opposite side to a thickness of approximately 20 µm.  A dimple 

approximately 15 µm deep was created using a dimple grinder (Model 656, Gatan, Inc., 

Pleasanton, CA) equipped with a phosphor bronze wheel and slurry of 2-4 µm diamond paste.  

The dimpled area was then polished with a felt wheel saturated with a 0.05 µm alumina polishing 

slurry.  The polished disc was placed in a precision ion polishing system (PIPS) dual-beam ion 

mill (Model 691, Gatan, Inc., Pleasanton, CA) and milled until a perforation formed. Additional 

information for TEM sample preparation procedures can be found in Appendix C.  
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4.2.2.3. TEM-EELS characterization 

Bright-field images and EELS data were obtained from with a JEOL JEM-2100 LaB6 

TEM with Gatan Orius SC1000 CCD camera and Gatan ENFINA 1000 electron energy loss 

spectrometer (refer to Appendix D for acquisition procedures).  All EELS spectra were collected 

in diffraction mode with probe size 10 nm.  The microscope convergence angle (α) was 12.53 

mrad and the collection semi-angle (β) was 14.43 mrad. Low-loss and core-loss spectra were 

recorded using a 1 mm entrance aperture and 0.1 eV/channel dispersion.  Spectral processing 

was completed using Gatan DigitalMicrograph (DM) (ver. 1.85 1535).  Background subtraction 

and deconvolution of core-loss spectra and low-loss spectra, along with the subsequent Kramers-

Kronig analysis of low-loss spectra used to calculate the energy loss function (ELF) (Fig. 4.3) 

and the ε1, ε2 (Fig. 4.4) plots and was performed as described previously [9].  The ZLP was 

subtracted and contributions from plural scattering were removed from each of the low-loss 

spectra through Fourier-log deconvolution.  The resultant ELF plots represent single scattering 

distribution (SSD) functions (Fig. 4.3).  For samples of NHB-T, OIHB-T, NHB-L, OIHB-L, and 

synthetic HAP, two energy-loss regions of each spectrum were selected for investigation: (I) the 

low-loss region (0-65 eV) containing the Ca-M2,3 edge (Figs. 4.3-4.4) and (II) the core loss 

region (130-210 eV) which includes the P-L1 and P-L2,3 ionization edges (Fig 4.5).  

4.3. Results and discussion 

4.3.1. FESEM imaging 

FESEM images (Fig. 4.1a-l) of the longitudinal and transverse surfaces of NHB and 

OIHB samples exposed through liquid nitrogen fracture, show distinct morphological 

differences.  Compared to NHB (4.1a,g), OIHB (4.1d,j) is rougher and has more longitudinal 

sections of Haversian canals (more osteons)  Higher magnification images of the transverse 
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surface of OIHB demonstrate a separation of fibrils from the mineral matrix (Figs. 4.1k,l) 

compared to the corresponding transverse NHB surface (Figs. 4.1h, i).  This reflects a weaker 

interaction between bone constituents, which relates to the altered collagen structure of the OI 

diseased bone and results in brittle bones that fracture easily. Additional FESEM images of 

OIHB and NHB can be found in Appendix E.  

 

 

Figure 4.1. FESEM images at low (left column), intermediate (middle column), and high (right 
column) magnification. (a-c) NHB-L, (d-f) OIHB-L, (g-i) NHB-T, and (j-l) OIHB-T. 
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4.3.2. TEM imaging 

Low magnification TEM images of NHB (Figs. 4.2a,e) and OIHB (Figs. 4.2c,g) show 

banding (additional TEM images of banding found in OIHB and NHB can be found in Appendix 

H) and fibril orientation in both longitudinal and transverse views.  Mineral atomic lattice 

patterns are seen in the higher magnification images (Figs. 4.2b,d,f,h) with the lattice being more 

prevalent in the longitudinal view (Figs. 4.2b,d).  In contrast to bone, synthetic HAP shows no 

banding and only mineral lattice (Figs 4.2i, j). Additional TEM images of OIHB (T,L) and NHB 

(T,L) can be found in Appendix G. 
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Figure 4.2. TEM images at low-magnification (left column) and high-magnification (right 
column). (a,b) NHB-L, (c,d) OIHB-L, (e,f) NHB-T, (g,h) OIHB-T, and (i,j) HAP. 
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4.3.3. Low-loss spectra 

ELF spectrum (Fig. 4.3) consistently display two main peaks around 23 eV (A) and 36 

eV (B); a weak feature (B*) is located between A and B near 28 eV. Peak A corresponds to the 

bulk plasmon, while peaks B and B* correspond to the Ca-M2,3 ionization edge [25].  The 

presence or absence of fine structure on the low-energy side of peak A differentiates the low-loss 

spectrum among samples.  Table 4.1 summarizes the peak positions for each of the ELF plots in 

Fig. 4.3.  Peak B* of OIHB-T and OIHB-L is shifted +0.6 eV from NHB-T, and NHB-L is 

shifted +0.5 eV from HAP. Peak B of OIHB-T is shifted -0.6 eV from HAP, OIHB-L is shifted -

0.4 eV from HAP, NHB-T is shifted -0.5 eV from HAP, and NHB-L is shifted -0.7 eV from 

HAP. The spectra appear similar for all bone samples but differ from the spectrum of HAP. 

Additional selected overlays of ELF spectra can be found in Appendix I. 

Table 4.1. Energy loss function peak positions (eV). 

 

Peak NHB-T NHB-L OIHB-T OIHBL HAP 
A 22.9 22.8 22.9 22.9 22.9 
B* 28.5 28.5 29.1 29.1 28.6 
B 35.9 35.7 35.8 36.0 36.4 
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Figure 4.3. Energy Loss Function spectra: (a) OIHB-L, NHB-L, OIHB-T, NHB-T and HAP; (b) 
overlay of OIHB-L, NHB-L, and HAP; (c) overlay of OIHB-T, NHB-T, and HAP. Bars denote 
peak position and the spectra separated vertically for clarity. 
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4.3.4. Kramers-Kronig analysis 

Kramers-Kronig analysis was used to calculate ε1 (Fig. 4.4a) and ε2 (Figs. 4.4b-d) from 

the SSD spectrum of each sample, where ε1 represents collective electron excitations and ε2 

represents single-electron transitions.  The bulk plasmon resonance was found to reside around 

23 eV.  Single-electron transitions related to electronic structure of the sample are represented by 

the fine structure of the ε2 spectra and are summarized in Table 4.2 with transition origins 

identified [26-33].  The ε2 spectra of NHB-L and OIHB-L (Fig. 4.4c) appear similar, while HAP 

shows more fine structure on the high-energy side of 10 eV.  The ε2 spectra of NHB-T and HAP 

are similar (Fig. 4.4d), while OIHB-T has less fine structure on the high energy side of 10 eV. 

Therefore, OIHB-T and OIHB-L are more like NHB-L than HAP; NHB-T is more similar to 

HAP. Additional overlays of select ε1 and ε2 spectra can be found in Appendix I. 
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Table 4.2. ε2 peak positions (eV). 

NHB-T NHB-L OIHB-T OIHB-L HAP Transition Origin [Reference] 
 1.1 1.7  1.0  

2.0 2.4 1.9 1.9 1.8 O 2p and P 3d with small contribution from 
P 3p and P 4d states [26] 3.1 3.5 3.0 2.9 3.8 

4.9 5.4 5.3 5.3 5.0 
O 2p and P 3p states with some P 4p, P 3d 
and O 2s contribution [26] 

6.3    6.3  

7.0 6.9 7.7 7.6 7.2 
O 2p and P 3s states with O 2s contributions 
[26] 

8.5 8.7     
9.7 9.4 9.6 9.2 9.0 Exciton state [27,28] 

10.9 10.6 10.0 10.0 10.0 
    11.1  
  11.4 11.7 11.8  

12.2 12.2   12.1 Valence band at -12.9 eV to conduction 
band edge [29,30] 12.8  13.1 13.1 12.8 

14.5 14.6 15.3 15.2 14.7 Valence band to exciton [29,31] 
16.1 15.9   16.2 Valence band to exciton [29,31] and O 2s 

contribution [26]   16.7 16.9  
18.2 18.4 18.6 18.4 18.6 Ca 3p contribution [26] 
20.2 20.2 20.2 19.2 20.5 Valence band to exciton [31]  
21.5 21.5 21.0 21.0 21.6 Valence band to exciton [31] 
22.3 22.2 22.3 22.4 22.2 Valence band to exciton [30,31] 

  22.8 22.7  
24.0 24.2   24.5  
25.1  25.0 25.0  O 2s, P 3s to exciton [32,33] 

25.8 25.9 26.4 26.7 26.1 
28.0 28.1 28.7 28.6 28.4 O 2s to exciton [31] 

 30.4 30.7  30.6  
31.8 31.9  31.1   
33.2 33.0 32.8 32.9 32.2 O 2s to conduction band [31] 
34.1  33.7 33.9 33.8 O 2s to conduction band [31] 
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Figure 4.4. The real (ε1) part (a) and imaginary (ε2) part (b) of the complex dielectric function 
obtained from Kramers-Kronig analysis of the EELS spectra for OIHB-L, OIHB-T, NHB-L, 
NHB-T and HAP. (c) and (d) represent ε2 spectra grouped into longitudinal and transverse 
orientation for comparison of single-electron transitions. Spectra vertically separated for clarity. 
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4.3.5. P-L2,3-edge spectra 

All core loss P-L2,3-edge spectra (Fig. 4.5a-c) have five energy-loss regions with major 

features characterized by two sharp peaks located at 138-139 eV (A) and 146-147 eV (B).  A 

broader more intense peak follows around 153 eV (C).  Peak A often has a weaker feature (A*) 

found as a shoulder approximately +2-3 eV from its high energy side. The P-L1 peak (D) is 

located around 189 eV.  Additional overlays of select P-L2,3-edge spectra can be found in 

Appendix I. 

 

Figure 4.5. Overlays of the P-L2,3 core loss region (135-210 eV) obtained from (a) NHB-T, 
OIHB-T, HAP, OIHB-L and NHB-L.  (b) HAP, OIHB-L and NHB-L. (c) NHB-T, OIHB-L and 
HAP. The spectra separated vertically for clarity and the peak positions (A-D) are indicated by 
vertical lines.  
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Two peaks, one at 136 eV (P-L3) and the other within ~1 eV (P-L2), comprise the P-L2,3 

ionization edge; they result from the transitions from spin-orbit split 2p electrons (2p{3/2}) and 

(2p_{1/2}) into the first unoccupied 3s antibonding state[34].  These ionization edges are 

difficult to resolve but synchrotron-based x-ray absorption near-edge structure (XANES) data 

reported for phosphorus reference compounds indicate that they are most likely located within 

the low-energy shoulder of peak A [35, 36]. Peak A (138-139 eV), has been attributed to 

transitions to the 3p-like antibonding state in the Si L-edge spectrum of SiO2, which is 

isoelectronic with PO4
3-, with these transitions to dipole-forbidden 3p orbitals made possible 

through mixing of characters from other elements such as oxygen [37].  Peak A*, located ~142 

eV on the high-energy side of peak A, is a broadened peak unique to calcium phosphates, and is 

due to transition of the P-2p electron to Ca-3d empty orbitals [36].  Sutherland et al [38] report it 

may be due to multiple scattering of the outgoing.  Peak B, positioned ~147 eV, is well-known as 

the d-state resonance or “shape resonance” peak [36, 39], the energy position of this peak is 

sensitive to the local environment and molecular symmetry of phosphorus.  Following is a broad 

peak (C) starting around 150 eV, which corresponds to the position of the atomic cross-section 

maximum for the phosphorus 2p level relative to its respective 2p ionization edges [38, 40].  The 

P-L2,3 core loss region spectral features for NHB-T, OIHB-T, NHB-L, OIHB-L and HAP as well 

as their corresponding electron transition origins are summarized in Table 4.3.  
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Table 4.3. P-L2,3 edge feature electronic transition origins (eV). 

Peak NHB-T OIHB-T NHB-L OIHB-L HAP Transition Origin [Reference] 
A 137.0 138.4 139.7 138.7 138.4 Transitions to 3p-like anti-bonding 

state, allowable to dipole forbidden 
3p orbitals due to mixed characters 
from oxygen [37] 

A* 141.9 142.8 142.2 142.7 142.1 Phosphorus 2p to Ca 3d empty 
orbitals [36,38] 

B 146.4 147.2 147.8 147.2 147.3 d-state shape resonance peak [36,39] 

C 153.9 153.8 152.8 153.8 154.1 Atomic cross section maximum for 
the 2p level [38,40] 

D 190.0 190.5 190.0 190.6 190.1 P L1 peak [25] 

 

Comparison of the edge values for Peak A show that OIHB-T and OIHB-L have similar 

energy values to HAP, while NHB-L is shifted +1.3 eV from HAP, and NHB-T has a lower 

energy shift (-1.4 eV) from HAP. The NHB-T and NHB-L edge values for A*are similar to HAP, 

while OIHB-T and OIHB-L are shifted to higher energy (+0.7 and +0.6 eV, respectively).  The 

d-shape resonance peak, labeled Peak B, shows that OIHB-T and OIHB-L agree closely with 

HAP, while NHB-T is shifted -0.8 eV and NHB-L is shifted +0.6 eV. For the 2p level (Peak C), 

NHB-L is shifted from NHB-T (-1.1 eV), OIHB-T (-1.0 eV), OIHB-L (-1.0 eV), and HAP (-1.3 

eV). Peak D (P-L1) values are similar for OIHB-T and OIHB-L, which differ from NHB-T, 

NHB-L, and HAP (+0.5 eV to +0.6 eV).  

4.4. Conclusions 

FESEM and HRTEM imaging revealed morphological differences between normal 

human bone and OI human bone, with the transverse-direction differences being more distinct 

and longitudinal-direction differences more subtle.  Areas of normal bone are still present within 

the OI sample.  
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Observed peak shifts of the Ca-M2,3 ionization edges in the ELF plots of OIHB (T,L) and 

NHB (T,L) indicate changes to Ca outer shell interactions.  Valence band changes within OIHB 

(T,L) are observed when compared to NHB (T,L) and HAP (Fig. 4.3 and Table 4.1). 

Changes in the ε2 spectra (Fig. 4.4) reflect single-electron transitions related to electronic 

structure, and subtle outer shell changes in electronic structure of Ca and P are observed.  The ε2 

spectra of OIHB (T,L) more closely resemble NHB-L than HAP, whereas NHB-T is more like 

HAP. 

Subtle changes/shifting were observed in the electronic near-edge structure of the P-L2,3 

edge of NHB (T,L), OIHB (T,L), and HAP (Fig. 4.5).  The P-L2,3 edge of OIHB (T,L) more 

closely resembles HAP than NHB(T,L).  Inner-core P excitation of OIHB (T,L) is more similar 

to stoichiometric HAP than NHB (T,L), therefore, the electronic structure of the P-L2,3 edge in 

OIHB (T,L) is different than NHB(T,L) and more like that of stoichiometric HAP.  These near-

edge structure shift changes are attributed to transitions to the 3p-like antibonding state, 

allowable to dipole-forbidden 3p orbitals due to mixed characters from oxygen [37].  The energy 

position of the d-shape resonance peaks is sensitive to the local environment and molecular 

symmetry of phosphorus; OIHB (T,L) resemble HAP more than does NHB (T,L).  

EELS studies elucidate the small changes in the valence band and outer electronic 

structure within the OIHB and NHB samples.  Ca-M2,3 ionization edge shifts in the ELF between 

OIHB and NHB indicate the Ca outer-shell interaction differences of the diseased bone. Single-

electron transitions related to electronic structure are represented through the fine structure of the 

ε2 plots.  The observed fine-structure changes between OIHB (T,L) and NHB(T,L) in the in ε2 

plots reflect subtle outer-shell interactions of the Ca and P. Changes in the EELS spectra directly 

reflect changes to the Ca and P environments within the samples.  Small changes in the valence 
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band and outer electronic structures of the diseased bone have been revealed through EELS.  

These subtle changes in the electronic structure of the OI diseased bone are caused through a 

genetic mutation within the collagen which affects HAP mineralization and results in the 

fragility of bone at the macroscale.  
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CHAPTER 5. SUMMARY AND CONCLUSIONS 

Electron energy-loss spectroscopy (EELS) was used to investigate the electronic structure 

and molecular interactions of biomimetic HAP that was prepared using biomineralization routes 

inside 5-aminovaleric modified clay galleries (in-situ HAPclay). The morphology of in-situ 

HAPclay is different from the morphology of non-biomimetic mineralized HAP as seen through 

SEM and TEM imaging. The rounded morphology of biogenic HAP in human bone is mimicked 

by mineralization of HAP within amino-acid-modified nanoclays. Shifts of the Ca-M2,3 

ionization edge in the in-situ HAPclay and HAP in the ELF are indicative of changes to the Ca 

outer-shell interactions, and changes to the valence band of the in-situ HAPclay are observed in 

comparison with the non-biomimetic HAP. Thus subtle changes to the outer-shell electronic 

structure enabled through biomineralization which was guided by weak nonbonded interactions 

between Ca and P from HAP and amino acid groups inside clay galleries (as suggested by 

simulations) are experimentally observed in the ε2 spectra. 

Further, ε2 was used to calculate the high-frequency AC conductivity plots for in-situ 

HAPclay, HAP, β-TCP, and modified MMT clay. Again, subtle differences in the valence bands 

of Ca and P in the in-situ HAPclay are observed. The near-edge structure of the P-L2,3 edge was 

also analyzed. Extremely subtle changes resulting from transitions to the 3p-like anti-bonding 

state, allowable to dipole forbidden 3P orbitals due to mixed characters from oxygen, are 

observed. These electron energy-loss spectroscopic studies elucidate the small changes that occur 

in the valence band and outer electronic structures of HAP when mineralized inside clay 

galleries. It is interesting to note the biological implications of these differences are significant as 

this biomineralized HAP used in scaffold systems has been shown to exhibit superior biological 
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functions resulting in mediation of human stem cells to differentiate into osteoblastic lineages 

without the use of differentiating media. 

EELS was used to probe the electronic structure of Ca and P in the HAP of normal 

(NHB) and osteogenesis-imperfecta-diseased human bone (OIHB) samples in the transverse (T) 

and longitudinal (L) directions.  Imaging with FESEM and TEM was used to determine 

morphological differences of the NHB (T,L) and OIHB (T,L).  

Observed peak shifts of the Ca-M2,3 ionization edges in the ELF plots of OIHB (T,L) and 

NHB (T,L) indicate changes to Ca outer-shell interactions. Valence band changes within OIHB 

(T,L) are observed when compared to NHB (T,L) and HAP. Changes in the ε2 spectra reflect 

single-electron transitions related to electronic structure, and subtle outer shell changes in 

electronic structure of Ca and P are observed.  The ε2 spectra of OIHB (T,L) more closely 

resemble NHB-L than HAP, whereas NHB-T is more like HAP. 

Subtle changes/shifting were observed in the electronic near-edge structure of the P-L2,3 

edge of NHB (L,T), OIHB (L,T), and HAP.  The P-L2,3 edge of OIHB (L,T) more closely 

resembles HAP than NHB (L,T).  Inner-core P excitation of OIHB (L,T) is more similar to 

stoichiometric HAP than NHB (L,T), therefore, the electronic structure of the P-L2,3 edge in 

OIHB (L,T) is different than NHB (L,T) and more like that of stoichiometric HAP. The energy 

position of the d-shape resonance peaks is sensitive to the local environment and molecular 

symmetry of phosphorus; OIHB (L,T) resembles HAP more than does NHB(L,T).  

EELS studies elucidate the small changes in the valence band and outer electronic 

structure of the OIHB and NHB samples.  Ca-M2,3-ionization edge shifts in the ELF between 

OIHB and NHB indicate Ca outer-shell interaction differences in the diseased bone. Single-

electron transitions related to electronic structure are represented through the fine structure of the 
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ε2 plots.  The observed fine-structure changes between OIHB (L,T) and NHB (L,T) in the ε2 

plots reflect subtle outer-shell interactions of the Ca and P. Changes in the EELS spectra directly 

reflect changes to the Ca and P environments within the samples that were created during 

biomineralization of HAP. The subtle changes in the electronic structure of the osteogenesis-

imperfecta-diseased bone are caused by a genetic mutation within the collagen which affects 

HAP mineralization and results in the bone fragility at the macroscale.  
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CHAPTER 6. MAJOR CONTRIBUTIONS 

EELS studies showed significant differences in valence band electronic structure of both 

Ca and P in-situ HAPclay (biomimetic) and HAP (synthetic). These experimental results are 

consistent with and validate molecular dynamic simulations which indicated the presence of 

significant non-bonded interaction of Ca and P in the in-situ HAPclay. The observed changes in 

the EELS spectra are experimental observations of the changes to the Ca and PO4
3- environments 

that were predicted through simulations. Therefore, small changes occurring in the valence band 

and outer electronic structure of in-situ HAPclay, shown exclusively by EELS, are significant 

because of the demonstrated superior biological functions of polymer scaffolds containing in-situ 

HAPclay.  

For healthy and OI-diseased bone, we compared the microstructure of healthy and 

osteogenesis-imperfecta-diseased human bone (using SEM and TEM) and the electronic 

structure of the two (using EELS), contributing to the understanding of the molecular basis of 

osteogenesis-imperfecta disease. Studies using EELS on healthy human bone and osteogenesis-

imperfecta-human bone show small changes in valence and outer-shell electronic structure 

within the diseased bone.  Changes in the EELS spectra directly reflect changes to the Ca and P 

electronic environments during the biomineralization process within the bone. The P electronic 

environment in OIHB (T,L) more closely resemble the stoichiometric HAP than non-

stoichiometric NHB (T,L). Therefore, subtle changes in the electronic structure of osteogenesis-

imperfecta-diseased bone are likely caused through biomineralization of HAP in the presence of 

the genetically mutated collagen molecules, disrupting the bone nanocomposite and forming the 

fragile bone that exemplifies this disease. 
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CHAPTER 7. FUTURE WORK 

The following are possible directions for future investigations of molecular interactions 

of healthy bone, OI diseased bone, and biomineralized tissue-engineered bone systems: 

 Use a focused-ion beam (FIB) or dual-beam system to mill bone samples and 

provide a more uniform sample thickness of bone for EELS analysis and TEM 

imaging. 

 Investigate normal human bone, diseased human bone, and biomineralized 

tissure-engineered bone systems with energy-filtered transmisson electron 

microscopy (EFTEM), which will provide element/chemical mapping at the 

nanometer scale and allow extraction of the corresponding edge data from 

selected areas. 

 Perform synchrotron scanning transmission x-ray microscopy (STXM) along with 

near-edge x-ray absorption fine structure (NEXAFS) which will provide increased 

resolution of the P-L2,3 and Ca-M2,3 edges of the HAP in healthy bone, OI 

diseased bone and biomineralized tissue-engineered bone systems. 

 Conduct EELS investigations of metastatic biomineralized collagen in tissue-

engineered bone systems for comparison to the healthy human bone and in-situ 

HAPclay data obtained in this study.  

 Design a device that could biopsy a sample of bone 100 nm in thickness and 3 

mm in diameter that could then be used in the TEM for EELS studies.  This type 

of device would address tissue donation issues for the rare bone diseases.  It also 

would be able to provide samples for statistical studies.  Another use would be to 

biopsy cancerous bone tumors for EELS investigations. 
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 Collaborate with a medical school or medical foundation that specializes in the 

treatment of osteogenesis imperfecta to obtain matched samples of healthy and 

diseseased human bone for statistical EELS studies. 
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APPENDIX A. HUMAN BONE SAMPLE INFORMATION 

A.1. NDSU internal review board compliance letter 

 

Figure A.1. NDSU IRB letter outlining board decision exempt status. 
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A.2. Healthy human femur 

 

 

Figure A.2. Healthy human femur as received from NDRI. 
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Figure A.3. Patient information sheet of healthy human femur obtained from NDRI. 
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A.3. Osteogenesis imperfecta diseased human tibia 

 

Figure A.4. Osteogenesis imperfecta diseased human tibia as received from NDRI. 
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Figure A.5. Patient information sheet of Osteogenesis imperfecta diseased human tibia obtained 
from NDRI. 
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APPENDIX B. PREPARATION OF BONE FOR TEM 

B.1. Images of bone samples prior to TEM preparation  

 

Figure B.1. Portion of healthy human femur used for TEM sample preparation.  
 

 

 

Figure B.2. Portion of osteogenesis imperfecta human tibia used for TEM sample preparation. 
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B.2. Schematic representation defining relation of direction of the incident TEM electron 

beam to bone sample.  

 

Figure B.3. Schematic representation of bone showing the direction of the TEM incident beam 
relative to longitudinal and transverse surfaces. 
 

B.3. Typical longitudinal and transverse bone surfaces 

 

Figure B.4. Longitudinal bone surface. 
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Figure B.5. Transverse bone surface. 
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APPENDIX C. TEM PREPARATION EQUIPMENT AND PROCEDURES 

Each of the procedures contained in this appendix was compiled exclusively by the 

author using thorough research, conversations with manufacturer representatives and sometimes 

trial and error. 

C.1. Buehler isomet 1000 low speed diamond saw 

 

Figure C.1. Buehler Isomet 1000 low-speed saw. 
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Figure C.2. Buehler low-speed saw equipped with diamond blade used for cutting 500-700 µm 
longitudinal and transverse sections from the stock bone samples. 
 

C.1.1. Buehler isomet 1000 low speed diamond saw operating procedure 

1. Secure diamond blade with collars and secure with set screw. 

2. Insert throat plate. 

3. Secure sample into holder that is appropriate for the sample size and shape. 

4. Secure sample holder onto the cutting arm and rotate until cut area is aligned with the 
diamond blade. 

 
5. Set tension weight to the 150 mark. 

6. Set speed to 125. 

7. Use dressing bar to clean the diamond blade (2-3 cuts). 

8. Lower the bone onto the diamond blade. 

9. Set the thickness (500-700 µm) of the section using the micrometer, adding 0.5 mm to 
account for the blade kerf. 

 
10. Start the blade motor. 
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11. Allow the blade to cut through the sample, if cutting is slow, increase speed and/or 
weight. 

 

 

Figure C.3. Buehler isomet 1000 low-speed saw cuts of transverse (large, curved) and 
longitudinal (square, small) bone.  
 
C.2. Gatan ultrasonic disc cutter model 601 

 

Figure C.4. Gatan ultrasonic cutting device model 601. 
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Figure C.5. Gatan ultrasonic cutting device used to cut 3 mm circular discs from the 500-700 µm 
bone section.  

 

C2.1. Gatan ultrasonic disc cutter model 601 operating procedure 

1. Assemble Tool.  Choose cutting tool desired and screw on to threaded insert of TPC 

tool, being sure to incorporate the copper washer.  Tighten carefully with circular 

wrench. 

2. Mount specimen.  Attach specimen to be cut to a portion of a glass microscope slide 

using Crystal Bond wax:  heat glass slide and aluminum weigh boat containing a small 

amount of wax on the hot plate at 130C.  Apply a bit of wax to slide with toothpick, and 

carefully but firmly press specimen into melted wax, rotating slightly for good wax 

coverage.  

3. Place the metal specimen table disc on the hot plate at 130C for about 5 minutes.  [Do 

not heat with the slurry ring in place as its O-ring will be damaged.]  Use a small 

amount of Crystal Bond to attach the glass slide with the specimen to the specimen 

table:  press carefully and move in small circles to get thin film of wax under entire 
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glass.  Remove from hot plate with forceps etc. and allow to cool.  If desired, slurry 

ring may be placed around specimen table and pressed in place.  Put the specimen table 

onto the magnetic base (no wax needed.) 

4. Zero the Dial Indicator.  Set the magnetic base on the TPC so that the glass slide (not 

the specimen) is beneath the cutting tool; the notches need not be aligned with the 

posts.  Lower the cutting tool onto the slide using either of the large knobs at right or 

left until the dial indicator stops changing and the horizontal indicator is aligned.  

Rotate the outer ring of the dial indicator to align the 0 µm mark with the dial needle.  

Note the reading on the small “coarse” dial; it should be 1, indicating the 1-mm 

thickness of the slide.  Raise the cutting tool and remove the magnetic plate. 

5. Center the specimen.  Plug the cord of the binocular into the TPC.  Place the magnetic 

plate on the binocular microscope, pressing the notches to the posts.  Center the 

specimen table/area of interest.  The center of the microscope crosshairs indicates the 

center of the cutting tool, with an accuracy of + 0.2 mm; the field of view is about 4 

mm diameter. 

6. Without moving the specimen table on the magnetic plate, transfer the magnetic base to 

the TPC platform, pressing the notches to the posts. 

7. Cut.  Using a spatula, place a small conical mound of cutting grit on the area of the 

specimen directly under the cutting tool.  Add 1-2 drops of water or slurry with pipette. 

8.  Lower the cutting tool into the grit until the horizontal reference indicator is aligned.  

The dial displays the thickness of the specimen plus wax layer. 

9. Switch on the power and adjust the cutting rate using the tuning knob.  Watch the dial 

indicator and listen to the sound to assess effectiveness of cutting.  The dial should 
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move quickly—usually when the sound is noisiest.  Add more water/slurry if the 

specimen begins to “smoke.”  If your specimen is much thicker than 1 mm, you may 

need to lower the cutting tool so that the horizontal reference indicator stays just below 

the lateral lines.  As you go through the specimen and contact the wax, cutting speed 

increases.  Cutting is complete when the dial movement slows or stops and the tone 

changes as the cutter contacts the glass slide.  You may notice the slurry suddenly drain 

away.  Cutting through a 1-mm specimen (other than glass) usually takes just a few 

seconds. 

10. Move to a new location and repeat steps 8-10 as desired.  Once all cuts are made, 

switch off the power.  Remove the specimen table, wash off the slurry, and remove the 

cut sample.  Sometimes samples migrate inside the cutting tool:  use a pipette to flush 

out carefully over a container. 

11. Detach the slurry ring (if used) and place the specimen table on the hot plate at 130C.  

Remove the remaining sample from the slide and the slide from the specimen table.  

Cool, then wipe with acetone to remove traces of wax.  Don’t get acetone on plastic or 

painted surfaces.  Use a new area or a fresh glass slide for additional samples.  

12. Clean.  If you are done using the TPC, remove the cutting tool with the circular wrench 

and flush it in running water.  Wipe off and be very careful not to lose the copper 

washer!  Dry and store the cutting tool and washer.  Thoroughly rinse and dry the 

specimen table and slurry ring.  Wipe down the TPC platform, dials, etc.  Turn off the 

hot plate. 



 

92 

 

Figure C.6. Transverse section of bone showing 3 mm disc cuts. 
 

 

Figure C.7. Longitudinal bone section with corresponding 3 mm disc. 
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C.3. Gatan disc grinder model 623  

 

Figure C.8. Gatan disc grinder model 623 (Note:  Turning the micrometer adjustment knob 
counter clockwise (CCW) retracts sample mount. Turning the micrometer adjustment knob 
clockwise (CW) extends sample mount.). 
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Figure C.9. Gatan disc grinder with sample holder. 
 
C.3.1. Gatan disc grinder model 623 operating procedure 

1. Zero the Disc Grinder for the mount you intend to use. 

a. place mount in Disc Grinder so that beveled edge goes in first and turn micrometer 
adjustment knob until flush to your eye. 

b. place a small drop of water around the opening and then cover with a glass slide. 

c. adjust the mount in or out with the micrometer adjustment knob to make the meniscus 
appear. 

d. an additional check is to use the glass slide on edge and run it across the surface to see 
if it “catches” on the mount, this will tell you if it is out too far. 
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e. Set scale to zero using the zeroing ring. 

d. Use sample removal tool to eject mount from the disc grinder. 

2. Determine thickness of ultrasonically cut disc with the SEM. 

3. Attach disc to metal mount cylinder with crystal bond. 

 a. place mount on 130°C hot plate. 

 b. touch small amount of crystal bond to surface. 

c. place disc onto crystal bond and move in circular fashion to thin out wax(note:  use 
cocktail stick to manipulate sample). 

d. remove from hot plate and allow to cool. 

e. remove excess wax using small amount of acetone and cotton applicator. 

4.  Place mount with sample into disc grinder and zero the sample by rotating the micrometer 
adjustment knob counter clockwise until the thickness of the sample as determined by SEM is 
achieved. It may be necessary to gently push mount into grinder to firmly seat. 

CAUTION: Damage from any abrasive paper can extend up to 3 times the micron size of the 
abrasive. 

Initial thickness should be around 500 µm. Target thickness for first side should be 
approximately 300 µm. 

Grinding Schedule for the First Side 

5.  Use 40 µm abrasive paper to remove enough of the sample to make it flat. (50-100 µm)  Use 
20 – 25 µm increments.  

Rinse away any residual abrasive material with a stream of distilled water from the sample and 
the abrasive paper or diamond lapping film before proceeding to the next step.  This is extremely 
important as any residual abrasive will make it impossible complete the next step. 

6. Use 15 µm abrasive paper to remove 75 µm in 25 µm increments.  

7. Use 6 µm diamond lapping film to remove 50 µm in 10 µm increments.  

8. Use 3 µm diamond lapping film to remove 15 µm in 5 µm increments. 

9. Use 1 µm diamond lapping film to remove 10 µm in 2.5 µm increments. 

10. Use 0.5 µm diamond lapping film to remove 3 µm. 
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Table C.1. Gatan disc grinding schedule for side #1. 

Paper Increments Remove Total Removed 

40 µm 20-25 µm 50-100 µm or Flat  

15 µm 25 µm 75 µm  

5 µm 10 µm 50 µm  

3 µm 5 µm 15 µm  

1 µm 2.5 µm 10 µm  

0.5 µm 1 µm 3 µm  

 

11.  Remove sample from metal stub by placing on 130°C hot plate and teasing it off with a 
cocktail stick. 

12.  Using a self-closing forceps, dip the sample into 100% acetone to remove any crystal bond. 
Take note of the polished side under a dissecting microscope. 

13.  Measure thickness with SEM. 

14.  Remount sample with the first side against the metal stub using the procedure from step 3. 

If initial thickness was 500 µm, the thickness of the disc should now be around 300 µm. 

Grinding Schedule for Second Side 

15.  Use 40 µm abrasive paper until thickness is 215 µm. (20 µm increments) 

Rinse away any residual abrasive material with a stream of distilled water from the sample and 
the abrasive paper or diamond lapping film before proceeding to the next step.  This is extremely 
important, as any residual abrasive will make it impossible complete the fine grinding. 

16.  Use 15 µm abrasive paper until thickness is 155 µm (remove 60 µm using 20 µm 
increments). 

17.  Use 6 µm diamond lapping sheet until thickness is 105 µm (remove 50 µm using 10 µm 
increments). 

18.  Use 3 µm diamond lapping sheet until thickness is 85 µm (remove 20 µm using 5 µm 
increments). 

19.  Use 1 µm diamond lapping sheet until thickness is 75 µm (remove 10 µm using 2.5 µm 
increments). 
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20.  Use 0.5 µm diamond lapping sheet until thickness is 70 µm (remove 5 µm using 1-2 µm 
increments) 

Table C.2. Gatan disc grinding schedule for side #2. 

Paper Increments Remove Total Removed 

40 µm 20-25 µm Until 215 µm  

15 µm 20 µm 60 µm (155 µm)  

5 µm 10 µm 50 µm (105 µm)  

3 µm 5 µm 20 µm (85 µm)  

1 µm 2.5 µm 10 µm (75 µm)  

0.5 µm 1 µm 5 µm (70 µm)  

 

Remove sample from metal stub as before and clean with 100% acetone, sample should 

be ready for dimple grinding.  

 

Figure C.10. SEM image showing the edge view of a disc thinned to approximately 100 µm 
using the Gatan disc grinder. 
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C.4. Gatan dimple grinder model 656  

 

Figure C.11. Gatan dimple grinder model 656. 
 

 

Figure C.12. Phosphor bronze grinding wheel and sample on the Gatan dimple grinder. 
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C.4.1. Gatan dimple grinder model 656 operating procedure 

Prior to dimpling, the zero of the Dial Indicator should always be checked. If the zero is not 
accurately set, the accuracy of the dimple will be affected. 

1. Adjust Zero of Dial Indicator.  

 a. Raise the platform to the upright position. 

  Remove the specimen mount from the magnetic turntable. 

  Check that both TABLE and ARM motors are turned off. 

 b. Set a load of 20 g on the Counterweight. 

 c. Lower the platform onto the raise/lower cam stop. 

  Make sure the Cam stop is in the “rear” position. 

d. Lower the micrometer end face by rotating the Micrometer Drive (clockwise, CW) 
until it bottoms against the base. 

e. Raise the micrometer end face by rotating the micrometer Drive counter-clockwise 
(CCW). 

 Rotate (several revolutions may be necessary) until the Dial Indicator needle 
registers and rotates one complete turn coming to rest at or near the 12 o’clock position. 

f. Verify the Digital Display Reading. 

 Rotate the Micrometer Drive (CW) to position the needle on “100” and see that 
the Digital Display reads 0.100 µm. Return the needle to zero. 

 

 Mounting Specimen 

2. After disc grinding to 40-70 µm, attach disc to metal mount cylinder with crystal bond. 

 a. place mount on 130°C hot plate. 

 b. touch small amount of crystal bond to surface. 

c. place disc onto crystal bond and move in circular fashion to thin out wax(note:  use 
cocktail stick to manipulate sample). 

d. remove from hot plate and allow to cool. 

e. remove excess wax using small amount of acetone and cotton applicator. 
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3. Positioning of Specimen 

 a. Place specimen mount and centering ring onto the magnetic turn-table. 

Make sure the specimen mount, centering ring and magnetic turn-table are wiped 
down prior to use 

 b. Gently position the microscope onto its mount and plug in the light. 

c. Move specimen mount/centering ring until the desired feature is centered in the cross-
hairs. 

d. Check to see if the feature stays centered when the sample is rotating by turning on the 
Turn Table motor. If it does not stay centered, adjust with the motor off and check again. 

4. Set Grinding by Dimple Depth 

 a. Place 15 mm Phosphor bronze grinding wheel on shaft. 

 b. Set the Counterweight load to 20 g and select a mid-range grinding speed. 

 c. Determine initial specimen thickness. 

 d. Check that both the Table and Arm motors are turned off. 

 e. Lower the micrometer end face by rotating the Micrometer Drive CW. 

  f. Carefully lower the grinding wheel onto the specimen face with the Cam. 

Cam in the back position is “raised” and Cam in the front position is “lowered”. 

g. Raise the micrometer end face by rotating the Micrometer Drive until the dial indicator 
needle has rotated one complete turn and just reaches zero.   Do not go past zero. 

h. Press Zero button to zero the Dimple Depth digital display. 

i. Lower the micrometer end face (CW rotation) until the Digital Display reads the 
required dimple depth.  Ex. If the initial thickness is 70 µm and you would like to have a 
final thickness of 20 µm, set the Digital Display to 50 µm. 

Note: The Dial Indicator will show the amount of material remaining to be 
removed. 

5. Coarse Dimple Grinding of Sample 

Coarse dimple grind the sample with the 15 mm phosphor bronze wheel to a thickness of 
20-25 µm using 2-4 µm diamond paste, 15-20 g load and low to medium speed. 
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a. After step 3 and 4, place a small amount of diamond compound onto the wheel and the 
specimen using a cocktail stick, then moisten with distilled water. 

b. Turn on both the Table and Arm motors. 

 Note: The specimen surface and grinding wheel must always remain wet with a 
dilute solution of diamond paste and water.  Maintain through addition of small amounts 
of diamond paste using a cocktail stick and water using a pipette. Approximately half 
way through the grind, clean wheel and sample and rewet with diamond paste and 
distilled water. 

c. When the Dial Indicator reaches zero, then stop motors and remove grinding disc and 
wash with distilled water to remove excess paste.  Also, wash sample thoroughly with 
copious amounts of distilled water.  

6. Dimple polish using 2-4 µm diamond paste. 

a. Following coarse dimple grinding, change to a felt wheel, wet the felt wheel with 
distilled water and create slurry with 2-4 µm diamond paste. As before, do not allow to 
dry out, monitor closely and add distilled water or diamond paste as needed. 

b. Dimple polish with the felt wheel for 3-5 min using 2-4 µm diamond paste, 20-25 g 
load and low to medium speed. This polish is to bring the thickness down to 
approximately 10 µm, which can be determined with transmitted light for most samples 

c. When finished thoroughly clean felt wheel and collar, dry out felt wheel and place 
back into labeled zip lock bag. 

7. Dimple polish using 0-2 mm diamond paste. 

Note:  To avoid contamination, use different felt wheels for each diamond paste and the 
Alumina suspension. The felt wheels for each diamond paste and Alumina suspension are 
stored in labeled zip lock bags. 

a. Following dimple polishing using 2-4 µm diamond paste, change to a new felt wheel, 
wet with distilled water and create slurry with 2-4 µm diamond paste. As before, do not 
allow to dry out, monitor closely and add distilled water or diamond paste as needed. 

b. Dimple polish with the new felt wheel for 5-6 min(or a thickness of 6-8 µm) using 0-2 
µm diamond paste, 20-25 g load and medium speed. 

c. When finished thoroughly clean felt wheel and collar, dry out felt wheel and place 
back into labeled zip lock bag. 

8. Dimple polish using 0.05 Alumina suspension 
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a. Following dimple polishing using 0-2 µm diamond paste, change to a new felt wheel, 
wet wheel and sample with Alumina suspension. As before, do not allow to dry out, 
monitor closely and more Alumina suspension as needed. 

b. Dimple polish with the new felt wheel for 8-10 min(or a thickness of 5 µm) using the 
Alumina suspension, 20-25 g load and medium speed. 

c. When finished thoroughly clean felt wheel and collar, dry out felt wheel and place 
back into labeled zip lock bag. 

 

Figure C.13. A 70 micron thick 3 mm disc after dimpling and polishing (<20 µm in depth) using 
the Gatan dimple grinder. 
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C.5. Gatan precision ion polishing system (PIPS) model 691 

 

Figure C.14. Gatan PIPS model 691 with argon tank. 
 
C.5.1. Gatan precision ion polishing system (PIPS) model 691 operating procedure 

1. Turn on Argon Tank. 
2. Remove sample holder/clamp by pressing and holding VENT button. 
3. Evacuate empty chamber by holding down VAC button until green light appears. 
4. Purge Guns. 

This needs to be done when the system has been off or after the chamber has been 
opened. 

a. Make sure HV is off to guns. 
b. Switch OFF the RIGHT gas control switch. 
c. Switch ON the LEFT gas control switch. 
d. Adjust gas flow to 1 x 10-4 torr. 
e. Turn OFF the LEFT gas control switch. 
f. Turn ON the RIGHT gas control switch. 
g. Adjust gas flow to 1 x 10-4 torr. 
h. Turn BOTH on gas control switches on and allow to purge for 15 min. 
i. Turn OFF LEFT and RIGHT gas switches and then turn HV ON. Confirm 

maximum beam current of <5 µa is obtained for each gun at 5.0 KeV 
 

5. Adjust Gas Flow. 
Remove specimen holder or screen before adjusting gas flow. 
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a. Turn OFF LEFT gas switch and leave RIGHT gas switch on. 
b. Set rotation speed to 3. 
c. Turn off BEAM MODULATOR. 
d. Press VAC button to evacuate airlock chamber. 
e. Toggle AIRLOCK control button to lower. 
f. Set HV Timer to 30 min and START. 
g. Adjust voltage to 5.0 
h. Adjust RIGHT needle valve CCW until pressure enters 1 x 10-4 torr range. 

Then slowly rotate needle valve CW until peak current is obtained. Make note of 
peak current value. 

i. Set operating range by rotating needle back CCW to a value of 85-90% peak 
value obtained in step h. Example: peak current is 90 operating range should be 
set to 76.5. 

j. Repeat step h and i for the LEFT gun. 
k. Turn both LEFT and RIGHT guns back on when finished. 

 
6. Ion-beam Milling 

a. Mount pre-thinned sample disc on a sample holder either clamp or glue type. 
b. Check beam alignment if necessary. 
c. Raise sample mount and VENT airlock chamber. 
d. Load sample holder into the sample mount inside the airlock chamber and lower it 

to the working position. 
e. Set the gun angles for each gun 
f. Set the rpm using the rotation speed control. 
g. Set the desired time interval on the digital process timer. 
h. Toggle the beam modulation switch to “Single”, “Double”, or “Off”. 
i. Press the START button on the HV Timer. 
j. Adjust the ion beam energy (keV) using the beam energy knob and watching the 

digital display readout. 
k. After milling is complete, unload the sample holder from the airlock chamber. 

Note:  The loads and speeds are suggested and work best for Si and Si based materials. 
Lower speeds and loads are necessary for brittle materials. For most metals and alloys, 
slightly higher loads and speeds work better. 
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Figure C.15. Bone sample milled to less than 100 nm thick near the center perforation using 
Gatan PIPS ion mill.  
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APPENDIX D. PROCEDURES FOR OBTAINING EELS DATA USING THE GATAN 

ENFINA SPECTROMETER ATTACHED TO A JEOL JEM-2100 TEM 

Each of the procedures contained in this appendix were compiled exclusively by the 

author using careful research and consultation with Gatan and JEOL applications personnel. 

 

D.1. Preparing a gain reference for the ENFINA camera 

1. Retract Orius Camera 

2. With TEM in IMAGING mode find a hole in the sample 

3. Setup even illumination across ENFINA CCD 

4. Go to EELS Acquisition and set dispersion to 0.0 eV/ch, start energy to 0.0 and aperture 

size 1 

5. Under EELS Acquistion options make sure Vertical binning set to 1x and Show Original 

Image for View is checked 

6. Set Exposure to 0.1 and hit View.  Intensity in the 2D spectrum should be centered, if 

not, adjust with start energy 

7. Illuminate the whole of the detector by increasing aperture (use 5 mm) you will need to 

center the beam with the SHIFTS (X,Y) to center on the aperture and bring the counts up 

to 20K using Condenser.  Allow to illuminate for 5 minutes to anneal the detector and 

remove any history. 

8. Stop SPECTRUM VIEW and check the temperature of the ENFINA 

9. Prepare GAIN REF using Target Intensity = 30000 and 100 Frames 

10. Acquire GAIN REF and wait until finished 

 

D.2. ENFINA spectrometer lens alignment procedure  

1. Set JEOL 2100-LaB6 conditions to 200kV and condenser aperture - 3 (Ap-3). 

2. Retract Orius camera. 

3. Three alignments:  Condenser/Voltage center/Beam Center. 

4. Condense Beam.  
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5. Switch to EDS mode and α-5, 10 nm spot size. 

6. Read in 2 cm camera length condition. 

7. PLA to center onto the entrance aperture (EA). 

8. Switch back to EDS mode to view then back to TEM mode.  

9. Find area of no sample in TEM mode. 

10. Use the following conditions for the TEM:  10,000X magnification, Ap-2, TEM mode, 
and no sample. 

11. Use the following conditions for the ENFINA: 3 mm EA, 0.3 ev/channel, 0.1 s 
exposure. 

12. Use brightness knob to remove saturation and if done correctly there should be a thin 
line near zero. 

13. Align focus using Fx, Fy, Sx, Sy, AccompA, AccompB. Value change for each axis 

should be within 0.5 eV of the previous value. 

14. Use ENFINA Filter Control panel to touch up focus if needed. 

15. Move to sample area. 

16. This procedure should only need to be done at the beginning of a session. 

D.3. ENFINA spectrometer EELS data acquisition procedure 

1. Set TEM conditions to: TEM mode, condenser Ap-3 and set eucentric sample height. 

2. Make sure Orius camera is retracted. 

3. Three alignments:  Condenser/Voltage Center/Beam Center. 

4. Find area of interest. 

5. Change to EDS mode and back to TEM mode.  Cycle multiple times. (This removes 
lens hysteresis). 

6. Set to EDS mode, α-5, 10 nm spot size. (Do not realign aperture). 

7. Change brightness to condense beam and then change to SA Diffraction mode (SA-
Diff) and Standard Focus. 
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8. Read in 2 cm camera length settings. (The diffraction pattern should be near the center) 

9. Set EFINA parameters to 0.1 s exposure, 0.3 eV/channel, and 1 mm EA. 

10. Check zero-loss peak (ZLP) and align if necessary.  Touch up Fy and Sx. 

11. Adjust PLA to center beam onto the EA of ENFINA. 

12. Acquire 100 frames at 0.1 s exposure for low loss spectrum acquisition. 

13. For core loss spectrum acquisition the exposure range can be up to 1.5 s. 

14. PLA must be used to adjust the beam onto the EA and increase the acquired counts. If 
the counts go over 30,000 the spectrum appears red and the exposure must be 
decreased.  
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APPENDIX E. FESEM IMAGES OF HUMAN BONE 

E.1. Comparison of healthy and osteogenesis imperfecta diseased human bone 

E.1.1. Longitudinal section 

 

Figure E.1. FESEM secondary electron image of longitudinal sections of human bone (x50 
original magnification). (A) healthy. (B) osteogenesis imperfecta.  
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Figure E.2. FESEM secondary electron image of longitudinal sections of human bone (x70 
original magnification). (A) healthy. (B) osteogenesis imperfecta.  
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Figure E.3. FESEM secondary electron image of longitudinal sections of human bone (x10,000 
original magnification). (A) healthy. (B) osteogenesis imperfecta.  
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Figure E.4. FESEM secondary electron image of longitudinal sections of human bone (x20,000 
original magnification). (A) healthy. (B) osteogenesis imperfecta.  
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Figure E.5. FESEM secondary electron image of longitudinal sections of human bone (x40,000 
original magnification). (A) healthy. (B) osteogenesis imperfecta.  
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Figure E.6. FESEM secondary electron image of longitudinal sections of human bone (x40,000 
original magnification). (A) healthy. (B) osteogenesis imperfecta.  
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Figure E.7. FESEM secondary electron image of longitudinal sections of human bone (x80,000 
original magnification). (A) healthy. (B) osteogenesis imperfecta.  
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Figure E.8. Comparison of secondary and low-angle backscattered electron images for identical 
areas of healthy longitudinal bone (x20,000 original magnification). (A) secondary electron 
image. (B) low-angle backscattered electron image.  
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Figure E.9. Comparison of secondary and low-angle backscattered electron images for identical 
areas of osteogenesis imperfecta longitudinal bone (x10,000 original magnification). (A) 
secondary electron image. (B) low-angle backscattered electron image.  
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Figure E.10. Comparison of secondary and low-angle backscattered electron images for identical 
areas of healthy longitudinal bone (x40,000 original magnification). (A) secondary electron 
image. (B) low-angle backscattered electron image.  
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Figure E.11. Comparison of secondary and low-angle backscattered electron images for identical 
areas of osteogenesis imperfecta longitudinal bone (x40,000 original magnification). (A) 
secondary electron image. (B) low-angle backscattered electron image.  
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Figure E.12. Comparison of secondary and low-angle backscattered electron images for identical 
areas of osteogenesis imperfecta longitudinal bone (x3,500 original magnification). (A) 
secondary electron image. (B) low-angle backscattered electron image.  
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Figure E.13. Comparison of secondary and low-angle backscattered electron images for identical 
areas of osteogenesis imperfecta longitudinal bone (x5,000 original magnification). (A) 
secondary electron image. (B) low-angle backscattered electron image.  
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E.1.2. Transverse section 

 

Figure E.14. FESEM secondary electron image of transverse sections of human bone (x50 
original magnification). (A) healthy. (B) osteogenesis imperfecta.  
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Figure E.15. FESEM secondary electron image of transverse sections of human bone (x70 
original magnification). (A) healthy. (B) osteogenesis imperfecta.  
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Figure E.16. FESEM secondary electron image of transverse sections of human bone (x250 
original magnification). (A) healthy. (B) osteogenesis imperfecta.  
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Figure E.17. FESEM secondary electron image of transverse sections of human bone (x750 
original magnification). (A) healthy. (B) osteogenesis imperfecta.  
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Figure E.18. FESEM secondary electron image of transverse sections of human bone (x10,000 
original magnification). (A) healthy. (B) osteogenesis imperfecta. 
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Figure E.19. FESEM secondary electron image of transverse sections of human bone (x20,000 
original magnification). (A) healthy. (B) osteogenesis imperfecta. 
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Figure E.20. FESEM secondary electron image of transverse sections of human bone (x40,000 
original magnification). (A) healthy. (B) osteogenesis imperfecta. 
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Figure E.21. FESEM secondary electron image of transverse sections of human bone (x40,000 
original magnification). (A) healthy. (B) osteogenesis imperfecta. 
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Figure E.22. FESEM secondary electron image of transverse sections of human bone (x80,000 
original magnification). (A) healthy. (B) osteogenesis imperfecta. 
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Figure E.23. FESEM secondary electron image of transverse sections of human bone (x100,000 
original magnification). (A) healthy. (B) osteogenesis imperfecta. 
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APPENDIX F. SELECTED TEM IMAGES OF UNMODIFIED CLAY, MODIFIED 

CLAY, HAP, IN-SITU HAPCLAY AND β-TCP  

F.1. Unmodified clay 

 

Figure F.1. TEM image of unmodified clay (x40,000 original magnification) showing clay 
sheets. 
 

 

Figure F.2. TEM image of unmodified clay (x100,000 original magnification). 
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Figure F.3. TEM image of unmodified clay (x200,000 original magnification).  
 

 

Figure F.4. TEM image of unmodified clay (x12,000 original magnification).  
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Figure F.5. TEM image of unmodified clay (x80,000 original magnification). 
 

 

Figure F.6. TEM image of unmodified clay (x200,000 original magnification). 
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F.2. Modified clay 

 

Figure F.7. TEM image of modified clay (x8,000 original magnification). 
 

 

Figure F.8. TEM image of modified clay (x12,000 original magnification). 
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Figure F.9. TEM image of modified clay (x80,000 original magnification). 
 

 

Figure F.10. TEM image of modified clay (x200,000 original magnification). 
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Figure F.11. TEM image of modified clay (x5,000 original magnification). 
 

 

Figure F.12. TEM image of modified clay (x200,000 original magnification). 
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Figure F.13. TEM image of modified clay (x40,000 original magnification). 
 

 

Figure F.14. TEM image of modified clay (x200,000 original magnification). 
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F.3. HAP 

 

Figure F.15. TEM image of HAP (x15,000 original magnification). 
 

 

Figure F.16. TEM image of HAP (x15,000 original magnification). 
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Figure F.17. TEM image of HAP showing lattice structure (x250,000 original magnification). 
 

 

Figure F.18. TEM image of HAP showing lattice structure (x300,000 original magnification). 
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Figure F.19. TEM image of HAP (x15,000 original magnification). 
 

 

Figure F.20. TEM image of HAP showing lattice structure (x200,000 original magnification). 
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Figure F.21. TEM image of HAP showing lattice structure (x200,000 original magnification). 
 

 

Figure F.22. TEM image of HAP (x30,000 original magnification). 
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Figure F.23. TEM image of HAP showing lattice structure (x200,000 original magnification). 
 

 

Figure F.24. TEM image of HAP showing lattice structure (x200,000 original magnification). 
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F.4. In-situ HAPclay 

 

Figure F.25. TEM image of in-situ HAPclay (x15,000 original magnification). 
 

 

Figure F.26. TEM image of in-situ HAPclay (x80,000 original magnification). 
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Figure F.27. TEM image of in-situ HAPclay showing lattice structure (x200,000 original 
magnification). 

 

 

Figure F.28. TEM image of in-situ HAPclay (x20,000 original magnification). 
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Figure F.29. TEM image of in-situ HAPclay (x80,000 original magnification). 
 

 

Figure F.30. TEM image of in-situ HAPclay showing lattice structure (x200,000 original 
magnification). 
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Figure F.31. TEM image of in-situ HAPclay showing lattice structure (x200,000 original 
magnification) 

 

 

Figure F.32. TEM image of in-situ HAPclay (x30,000 original magnification). 
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Figure F.33. TEM image of in-situ HAPclay showing lattice structure (x200,000 original 
magnification). 

 

 

Figure F.34. TEM image of in-situ HAPclay showing lattice structure (x200,000 original 
magnification). 
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F.5. β-TCP 

 

Figure F.35. TEM image of β-TCP (x15,000 original magnification). 
 

o  

Figure F.36. TEM image of β-TCP showing lattice structure (x200,000 original magnification). 
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Figure F.37. TEM image of β-TCP (x10,000 original magnification). 
 

 

Figure F.38. TEM image of β-TCP showing lattice structure (x200,000 original magnification). 
 



 

151 

 

Figure F.39. TEM image of β-TCP showing lattice structure (x200,000 original magnification). 
 

 

 

Figure F.40. TEM image of β-TCP showing lattice structure (x200,000 original magnification). 
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Figure F.41. TEM image of β-TCP (x20,000 original magnification). 
 

 

Figure F.42. TEM image of β-TCP showing lattice structure (x200,000 original magnification). 
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Figure F.43. TEM image of β-TCP (x80,000 original magnification). 
 

 

Figure F.44. TEM image of β-TCP showing lattice structure (x200,000 original magnification). 
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Figure F.45. TEM image of β-TCP (x15,000 original magnification). 
 

 

Figure F.46. TEM image of β-TCP showing lattice structure (x200,000 original magnification). 
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APPENDIX G. COMPARISON OF REPRESENTATIVE TEM IMAGES OF THE 

ACQUISITION AREAS OF EELS SPECTRA FROM HUMAN BONE 

G.1. TEM images of healthy and OI diseased human bone where EELS spectra were 

acquired, longitudinal sections 

 

Figure G.1. TEM image of longitudinal section of human bone (x40,000 original magnification). 
(A) healthy and (B) osteogenesis imperfecta. Arrows denote collagen fibrils. 
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Figure G.2. TEM image of longitudinal section of human bone (x200,000 original 
magnification). (A) healthy and (B) osteogenesis imperfecta. Arrows denote collagen fibrils and 
arrowheads denote HAP crystal lattice. 
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Figure G.3. TEM image of longitudinal section of human bone (x200,000 original 
magnification). (A) healthy and (B) osteogenesis imperfecta. Arrows denote collagen fibrils and 
arrowheads denote HAP crystal lattice. 
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Figure G.4. TEM image of longitudinal section of human bone (x200,000 original 
magnification). (A) healthy and (B) osteogenesis imperfecta. Arrows denote collagen fibrils and 
arrowheads denote HAP crystal lattice. 
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Figure G.5. TEM image of longitudinal section of human bone (x200,000 original 
magnification). (A) healthy and (B) osteogenesis imperfecta. Arrowheads denote HAP crystal 
lattice. 
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Figure G.6. TEM image of longitudinal section of human bone (x200,000 original 
magnification). (A) healthy and (B) osteogenesis imperfecta. Arrows denote collagen fibrils and 
arrowheads denote HAP crystal lattice. 
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Figure G.7. TEM image of longitudinal section of human bone (x200,000 original 
magnification). (A) healthy and (B) osteogenesis imperfecta. Arrowheads denote HAP crystal 
lattice. 
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G.2. TEM images of healthy and OI diseased human bone where EELS spectra were 

acquired, transverse sections 

 

Figure G.8. TEM image of transverse section of human bone (x40,000 original magnification). 
(A) healthy and (B) osteogenesis imperfecta. Arrows denote collagen fibrils. 
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Figure G.9. TEM image of transverse section of human bone (x200,000 original magnification). 
(A) healthy and (B) osteogenesis imperfecta. Arrows denote collagen fibrils and arrowheads 
denote HAP crystal lattice. 
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Figure G.10. TEM image of transverse section of human bone (x200,000 original magnification). 
(A) healthy and (B) osteogenesis imperfecta. Arrows denote collagen fibrils and arrowheads 
denote HAP crystal lattice. 
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Figure G.11. TEM image of transverse section of human bone (x200,000 original magnification). 
(A) healthy and (B) osteogenesis imperfecta. Arrowheads denote HAP crystal lattice. 
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Figure G.12. TEM image of transverse section of human bone (x200,000 original magnification). 
(A) healthy and (B) osteogenesis imperfecta. 
 
  



 

167 

APPENDIX H. TEM IMAGES SHOWING BANDING IN HUMAN BONE, 

LONGITUDINAL SECTION 

H.1. TEM images of banding in healthy and osteogenesis imperfecta diseased human bone 

 

Figure H.1. TEM images showing banding in longitudinal sections of human bone (x10,000 
original magnification). (A) healthy. (B) osteogenesis imperfecta. 
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Figure H.2. TEM images showing banding in longitudinal sections of human bone (x12,000 
original magnification). (A) healthy. (B) osteogenesis imperfecta. 
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Figure H.3. TEM images showing banding in longitudinal sections of human bone (x20,000 
original magnification). (A) healthy. (B) osteogenesis imperfecta. 
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Figure H.4. TEM images showing banding in longitudinal sections of human bone (x25,000 
original magnification). (A) healthy. (B) osteogenesis imperfecta. 
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APPENDIX I. SELECTED OVERLAYS OF EELS SPECTRA 

I.1. Overlays of ε1 spectra 

 

Figure I.1. ε1 spectra overlays of healthy human bone (longitudinal and transverse), osteogenesis 
imperfecta diseased human bone (longitudinal and transverse) and HAP. 
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I.2. Overlays of ε2 spectra 

 

Figure I.2. ε2 spectra overlays of healthy human bone (longitudinal and transverse), osteogenesis 
imperfecta diseased human bone (longitudinal and transverse) and HAP. 
 

 

Figure I.3. ε2 spectra overlays of longitudinal healthy human bone, longitudinal osteogenesis 
imperfecta diseased human bone and HAP. 
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Figure I.4. ε2 spectra overlays of transverse healthy human bone, transverse osteogenesis 
imperfecta diseased human bone and HAP. 
 

I.3. Overlays of ELF spectra 

 

Figure I.5. ELF spectra overlays of healthy human bone (longitudinal and transverse), 
osteogenesis imperfecta diseased human bone (longitudinal and transverse) and HAP. 
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Figure I.6. ELF spectra overlays of longitudinal healthy human bone, longitudinal osteogenesis 
imperfecta diseased human bone and HAP. 

 

 

Figure I.7. ELF spectra overlays of transverse healthy human bone, transverse osteogenesis 
imperfecta diseased human bone and HAP. 
 



 

175 

I.4. Overlays of P-L2,3 spectra 

 

Figure I.8. P-L2,3 spectra overlays of healthy human bone (longitudinal and transverse), 
osteogenesis imperfecta diseased human bone (longitudinal and transverse) and HAP.  
 

 

Figure I.9. P-L2,3 spectra overlays of β-TCP, in-situ HAPclay, and HAP. 
 


