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ABSTRACT 

One of the major challenges in the High Performance Computing (HPC) clusters, Data 

Centers, and Cloud Computing paradigms is intelligent power management to improve energy 

efficiency. The key contribution of the presented work is the modeling of a Power Aware Job 

Scheduler (PAJS) for HPC clusters, such that the: (a) threshold voltage is adjusted judiciously to 

achieve energy efficiency and (b) response time is minimized by scaling the supply voltage. The 

key novelty in our work is utilization of the Dynamic Threshold-Voltage Scaling (DTVS) for the 

reduction of cumulative power utilized by each node in the cluster. Moreover, to enhance the 

performance of the resource scheduling strategies in first part of the work, independent tasks 

within a job are scheduled to most suitable Computing Nodes (CNs). First, our research analyzes 

and compares eight scheduling techniques in terms of energy consumption and makespan. 

Primarily, the most suitable Dynamic Voltage Scaling (DVS) level adhering to the deadline is 

identified for each of the CNs by the scheduling heuristics. Afterwards, the DTVS is employed 

to scale down the static, as well as dynamic power by regulating the supply and bias voltages. 

Finally, the per node threshold scaling is used attain power saving. Our simulation results affirm 

that the proposed methodology significantly reduces the energy consumption using the DTVS. 

The work is further extended and the effect of task consolidation is studied and analyzed. 

By consolidating the tasks on a fewer number of servers the overall power consumed can be 

significantly reduced. The tasks are first allocated to suitable servers until all the tasks are 

exhausted. The idle servers are then turned off by using DTVS. The Virtual Machine (VM) 

monitor checks for under-utilized, partially filled, over-utilized, and empty servers. The VM 

monitor then migrates the tasks to suitable servers for execution if a set of conditions is met. By 

this way, many servers those were under-utilized get free and are turned off by using DTVS to 
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save power. Simulations results confirm our study and a substantial reduction in the overall 

power consumption of the cloud data center is observed. 
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1. INTRODUCTION 

In this chapter, the introduction to the research that we have performed during Ph.D. is 

discussed. Our research focus was on the reduction in energy consumption in clusters, data 

centers, and Cloud computing facilities. In our research studies, we focused on the resource 

scheduling techniques that can be used to minimize the energy consumption in computing 

paradigms. We also investigated Dynamic Power management (DPM) techniques that can be 

incorporated in the scheduling algorithms such that the energy consumed by these giant 

computing facilities is further reduced. In the first case, we incorporated Dynamic Threshold 

Voltage Scaling (DTVS) and Dynamic Voltage Scaling (DVS) in the scheduling algorithms and 

in the second study we studied the effect of task consolidation on the overall energy consumption 

of the cloud data center.    

1.1. Energy Efficiency in Cluster and Cloud Computing using Voltage Scaling 

With the enormous progression in computer technology, the need for power awareness 

has rapidly increased. Whether it’s supercomputing center, cluster computing, or a large-scale 

data center, the minimization of energy consumption is a serious concern [1.1]. Implementation 

of energy efficient workstations is an indispensable need of the day due to the rising energy cost 

and environmental impacts. The demand for the reduction in energy consumption is even higher 

in large clusters, because the annual power budget of the cluster is approximately equal to the 

cost of a new server [1.2]. 

Cluster computing can be defined as a single system image of multiple computing 

resources combined together through networks, software, and hardware to handle complex 

computations [1.1]. The High Performance Computing (HPC) clusters are widely used to render 
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remarkable computing capabilities for scientific, as well as commercial applications [1.3]. 

Rigorous and complex research problems, such as complex image generation, molecular level 

design, and weather modeling can be solved using clusters, super computers, distributed 

computers, cloud, and grids [1.4]. The need for efficient processing of the aforementioned tasks 

has escalated the demand of cluster deployment to a significant level. However, despite the 

benefits cluster computing offers, a key challenge is the reduction in energy consumption.  

Energy consumption of data centers, grids, and computer clusters is getting doubled 

almost every five years (since last 15 years). It is estimated that almost 50% of the operational 

expenses within a data center accounts for the energy cost [1.1, 1.5].  

This paper presents an empirical approach to reduce response time and energy 

consumption while maintaining high performance using resource scheduling algorithms. The 

Dynamic Threshold-Voltage Scaling (DTVS) and Dynamic Voltage Scaling (DVS) are the two 

major techniques employed to minimize the power budget of a large scale cluster [1.6]. In the 

DVS, the supply voltage, VDD, is scaled down to a discrete number of voltage levels without 

violating the task’s deadline for energy saving. Alternatively, the DTVS manages both the 

leakage and dynamic power by adjusting the VDD and bias voltage (VBS) simultaneously, to 

improve power saving at increased activity levels. The operational voltage of the Computing 

Nodes (CNs) can be decreased by employing DTVS. 

Previous works [1.7, 1.8] focuses solely on exploiting DVS to achieve energy savings. 

However, the work presented here hinges on introducing DTVS along with DVS to further 

minimize the energy consumption. The incorporation of DTVS and DVS produces significant 

improvement in energy saving regardless of the scheduling heuristic and workload. Simulation 

results affirm that our scheme produces better results than the current state of the art 
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methodologies in terms of energy consumption. Moreover, the performance of the heuristics is 

also improved without violating targeted deadlines of the tasks. 

In the recent years, numerous techniques have been presented to minimize the power 

consumption in clusters. Kriourov et al. [1.9] and Lang et al. [1.10] introduced slack in the 

execution time of jobs to achieve the aforementioned goal. Nevertheless, the proposed technique 

increases the overall execution time (makespan) of jobs giving rise to a tradeoff between 

performance and energy consumption. The outcome of the above mentioned approach is 

undesirable especially in a real time job scheduling environment, where meeting the deadline is 

critical. A major research challenge is to focus on both the goals: (a) meeting deadline constraint 

and (b) minimizing the energy/power consumption of computing cluster.  

This work hinges on the parametric model of Estimated Energy Dissipation (EED) to find 

an appropriate DVS level. Nevertheless, the deadline constraint is not compromised that makes 

the scheduler efficient in terms of energy consumption. To circumvent the aforementioned 

problems, the PAJS perform the following three steps to accomplish Energy Minimization 

Procedure (3EMP): 

1. Resource Allocation: Identify the jobs (set of tasks) to be allocated to CNs and a set of 

task-to-node assignment is then formed. 

2. Resource Matching: The algorithms dictate a CN-task pair that can meet the user 

defined deadline constraint. 

3. Resource Scheduling: The algorithms determine the order of execution of tasks and the 

respective DTVS and DVS levels for each CN-task pair. 
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The key contribution of the work presented in this paper is the modeling and 

implementation of the PAJS, a task scheduler equipped with the DTVS and DVS modules. The 

notable contributions are apportioned as: 

 We focus on minimizing the energy consumption using four defined DVS levels while 

maintaining the targeted deadlines.  

 Eight heuristic based job scheduling algorithms are used to achieve energy efficient 

allocation of tasks to CNs.  

 We have shown the adaptability of DTVS with the energy aware scheduling techniques. 

The results affirm that DTVS, when incorporated with DVS, further lowers the energy 

consumption as compared to the non-DTVS compliant version of the scheduling 

algorithms. 

The analytical model proposed in this paper is implemented using MATLAB and 

analyzes eight probative task scheduling algorithms on the basis of: (a) makespan and (b) energy 

consumption. The PAJS methodology proposed here employs the set of eight heuristics based on 

greedy, recursive, and genetic algorithms. To maintain a fair comparison among the considered 

algorithms, the system parameters, such as the number of tasks and their respective deadlines, 

and execution time of tasks are kept similar. The eight heuristics performed are G-Min, G-Max, 

MinMax, G-Deadline, UtyFunc, ObjFunc, and two naturally motivated genetic heuristics, 

namely GenAlgo and GenAlgo-DVS. To investigate our simulations, variance in CNs and tasks 

heterogeneity is considered. To extend the scope of our analysis and evaluate the best solution on 

different data sets, the workload is varied from small sized workload (100 tasks) to large sized 

workload (100,000 tasks).  
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1.2. Energy Efficiency using Virtual Machine/Task Consolidation 

The dual influence of increasing cloud computing data center energy consumption and 

increasing energy costs has raised the significance of cloud computing data center efficiency as a 

policy to decrease costs, accomplish size and indorse environmental responsibility. The data 

centers are the most integral part for most of Information Technology (IT) organizations. Many 

renowned organizations, such as Google, Microsoft, IMB, and Amazon have big data centers 

that contain thousands of computing servers around the world to provide fast and efficient cloud 

computing services to the customers [1.11]. The past decade has witnessed a phenomenal 

increase in the number of data centers, and the size of the existing data centers. The 

aforementioned situation have increased the word-wide power consumption that drive many 

research communities to carry out research on the data center energy consumption, energy 

efficient techniques for computing units, and power consumption prediction of the data centers 

[1.12-1.16]. In a study conducted by the Environmental Protection Agency (EPA) in 2006 [1.12] 

stated that the data centers are consuming more than 61 Tera Watt hour (TWh) of electricity per 

year that was 1.5% of the total power consumption of the whole US for the same year. The report 

also stated that the data center power consumption will have an annual growth of 16% over the 

next 10 years. Figure 1.1 shows the Emerson Network Power modeled energy consumption for a 

typical data center and evaluated how energy is used within the data center. The power usage is 

classified as either “demand-side” or “supply-side.” Demand-side systems are the servers, 

storage, communications and other IT systems that support the data center business. The supply-

side systems support the demand side. 

The propagation of Cloud computing has stemmed in establishing large-scale data 

centers. The American Society of Heating, Refrigerating and Air-Conditioning Engineers 
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(ASHRAE) [1.17], has published a trend that by 2014, the energy and infrastructure costs of the 

data center will contribute about 75% in the total data center cost, while IT will contribute the 

remaining 25% in the overall operating cost of the data center [1.18]. 

The computing resources quantity and hardware power inefficiency are not the only 

factors that result in tremendously energy consumption in the data centers. The inefficient use of 

data center resources, such as CPUs and memory play a big part in the increase of energy 

consumption.  

In [1.19], the authors collected a data from more than 5000 computing servers in a data 

center over a period of six-months and reported that the data center servers are usually not idle 

but the server utilization is rarely 100%. More than 90% of the servers were running at 10-50% 

utilization of their total 100% capacity. This phenomenon results in extra expenses on over 

provisioning that directly increase the total power consumption cost of the data center [1.19]. 

Moreover, handling and preserving over-provisioned data center’s resources result in increased 

Cost of Ownership (TCO). In another study [1.20], authors reported that if the data center servers 

are completely idle even then the power consumption is 70% of their total peak power 

consumption. Therefore, it is a known conclusion that the underutilization of the data centers 

servers is extremely inefficient with respect to the energy consumption.  

In [1.21], a comprehensive study is conducted that monitor energy consumption of 

Grid’5000 infrastructure. The authors reported significant opportunities for energy saving in the 

data center via techniques, such as switching servers on and off with respect to utilization or run 

the servers on low power mode. The data center’s energy consumption can be reduce by 

switching idle servers to low-power modes, such as hibernation or sleeping, this process will 

reduce idle power consumption. 
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Fig. 1.1. Data Center Energy Consumption Partition 

There are some other critical issues that arise from high energy consumption of 

computing resources, such as the power required by the cooling system operation of the data 

center. A report states that for each power Watt consumed by a computing entity or a server, data 

center has to consume another 0.5-1 Watt for the cooling system to keep the computing entity 

cool [1.22]. Moreover, higher the energy consumption by the data center’s infrastructure, higher 

is the carbon dioxide (CO2) emissions that contribute to the greenhouse effect [1.23]. One simple 

solution for the energy inefficiency in the data centers is to involve virtualization technology 

[1.24]. The virtualization technology provides opportunities to the Cloud providers to create 

several Virtual Machines (VMs) on a single physical computing server. This virtualization 

phenomenon improves the resource utilization and also increases the Return On Investment 
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(ROI). Moreover, the use of live migration [1.25], we can dynamically consolidate the VMs to 

the minimal number of physical servers according to their current resource requirements. 

1.3. Research Goals and Objectives 

The key contribution of the work presented in this thesis is the modeling and 

implementation of the PAJS, a task scheduler equipped with the DTVS and DVS modules. The 

notable contributions are apportioned as: 

 We focus on minimizing the energy consumption using four defined DVS levels while 

maintaining the targeted deadlines.  

 Eight heuristic based job scheduling algorithms are used to achieve energy efficient 

allocation of tasks to CNs.  

 We have shown the adaptability of DTVS with the energy aware scheduling techniques. 

The results affirm that DTVS, when incorporated with DVS, further lowers the energy 

consumption as compared to the non-DTVS compliant version of the scheduling 

algorithms. 

 Further, Virtual Machine/task consolidation for energy minimization while taking into 

account the CPU power and storage capacity of the individual server and the bandwidth 

of the links between servers is incorporated. 
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2. RELATED WORK 

In this chapter we discuss some of the work that is related to the research we have 

performed during Ph.D. 

2.1. Power Aware Resource Allocation in Computing Clusters 

In this section some of the works related to the energy efficient resource allocation 

schemes in data centers and computing clusters are presented. The power management 

mechanisms in cluster computing can be categorized as: (a) Dynamic Power Management 

(DPM), and (b) Static Power Management (SPM) [2.1]. The SPM technique employs a flash 

storage and a pair of low power embedded CPUs to limit the peak power consumption. Lang et 

al. [2.2] exploited Fast Array of Wimpy Nodes (FAWN) for achieving the benefits offered by the 

SPM. The FAWN methodology promises high efficiency when tested on nodes working at lower 

frequency. However, while solving non-parallelizable problems and working on indivisible data 

set size, the FAWN is inefficient [2.2]. 

In the recent years, significant attempts have been made to conserve energy consumption 

of clusters using the DPM. The technique proposed by Chaparro-Baqueero et al. [2.3] speculates 

the resource utilization and uses software along with power scalable modules to reduce the 

power consumption of the system [2.4, 2.5]. For brevity, we focus on the DPM that can be 

categorized into: (a) Dynamic Voltage Scaling (DVS) [2.6, 2.7], (b) Dynamic Frequency Scaling 

(DFS), and (c) Dynamic Voltage and Frequency Scaling (DVFS) [2.5, 2.8]. Kolodziej et al. [2.9] 

employed DVS scaling for intelligent power management. It is noteworthy that the DVS 

approach scales down the voltage level, VDD according to the need of the node. As soon as VDD is 

decreased, a net decrease in the energy consumption is observed. Though the aforementioned 
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method yields promising results in soft real time tasks, the energy optimization may not be 

significant in hard real time job scheduling, where the completion time of tasks is of foremost 

importance [2.9]. However, our proposed scheme achieves energy efficiency without violating 

the targeted deadlines of the jobs. 

In the DVFS approach, a node needs to be furnished with a DVFS unit to exploit the 

benefits of frequency and voltage scaling.  A node can be categorized in either of the two modes: 

(a) active mode or (b) idle/sleep mode. The node with minimum activity is assigned the sleep 

mode, whereas the node with high activity is assigned the active mode. In case the node in active 

mode is overloaded, it is assigned more voltage lines and clock speed [2.10]. A recent work by 

Beloglazov et al. [2.11] and Kliazovich et al. [2.12] exploited sleep mode for attaining the 

energy saving benefit in data centers for cloud computing. 

A similar approach is modeled in [2.9] and [2.13] for energy optimization using the 

Dynamic Voltage and Frequency Scaling (DVFS). Although the above mentioned approaches 

attempt to enhance energy efficiency in clusters, the DVFS is inherently limited. For each node 

the minimum voltage level is defined, below which the nodes operate incorrectly. The DVFS is 

an energy efficient technique employed by network designers to reduce the energy dissipation 

[2.7]. The DVFS adjust the clock frequency in real-time based on the operational voltage of a 

processor [2.14]. The key idea is to provide the circuit just enough of speed and voltage that is 

required to process the assigned workload [2.15]. The DVFS technique performs a transition 

from a high-power state (of the processor) to a low-power state, when the workload reduces 

[2.10]. The aim of the DVFS is to reduce the dynamic power [2.16]. However, the PAJS 

employs the DTVS technique to attain power conservation irrespective of the mode (active/idle) 

of the node. Therefore, our proposed work minimizes both the static and dynamic power losses. 



 

14 
 

A related approach to the DVFS is DFS. The DFS needs to be incorporated within the 

system utilizing it, for example speed step by Intel and VIA Technologies product called as Long 

Haul [2.13]. A dynamic change is made in frequency of the system and energy efficiency is 

achieved by scaling the clock speed dynamically. However, energy benefits of the DFS are 

limited, due to the fact that a reduction in the frequency reduces the speed of the system. 

Therefore, the overall performance is degraded. The majority of the modern day scientific work 

focuses on the DVS for intelligent power management [2.17].  

Alfonso et al. [2.18] proposed the CLUES (Cluster Energy Saving System) tool, an 

energy management strategy for HPC clusters. The aforementioned methodology adjusts the 

number of working nodes by extracting information about the activity of nodes. A check on the 

inactivity time of the node is observed and if the check is successful, the particular node is turned 

off. Although the aforementioned approach reduces power consumption by minimizing the count 

of active nodes, it is prone to configuration issues. Moreover, such an approach might prolong 

the job wait time because of two reasons: (a) the delay incurred due to the check on inactivity of 

nodes and (b) addition of new nodes in the scheduler. Contrary to this approach, the benefit of 

the work presented in this paper is that it does not need to put a check on the activity level to 

maximize energy saving.  

Valentini et al. [2.1] presents an extensive survey of the power management endeavors 

using the aforementioned methodologies. Surveys performed by Shuja et al. [2.14] and Usman et 

al. [2.10] present a collection of interesting examples of the recently developed Power 

management schemes. Nevertheless, this line of work is sound in comparison to the existing state 

of the art as the PAJS combines the benefits of DVS with DTVS to meet the sine qua non for 

high performance and energy-efficient cluster. 
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2.2. Energy Efficiency through VM Consolidation 

A number of literature works have been published that proposed solutions to reduce 

carbon dioxide emission amount of the Cloud data centers. One group of researchers focused on 

the reduction of energy consumption in a single data center or by only considering the hardware 

aspects of the data centers [2.21], [2.22]. The data centers are benefited from some renowned 

technologies, such as virtualization [2.23]. Among the virtualization techniques, there are VMs 

migration [2.26] and consolidation [2.28]. However, the main issue in the VM migration or 

consolidation is its complexity. Moreover, the VMs resumption and suspension causes system 

overloading [2.24]. Furthermore, these methodologies are more of a reactive methods rather than 

proactive and preventive. Therefore, preventive methods are more important and effective. As 

stated in the introduction that an idle server consumes almost half of the power compared to the 

power it consumes at peak load [2.20]. The authors of [2.27] introduce a dynamic right-sizing 

on-line algorithm that predicts how many servers will be required to execute the arriving 

workload of the data center. The experimental results of [2.27] stated that dynamic right-sizing 

achieves significant energy savings, but the technique requires different power levels of the 

servers and servers should be able to transit between different states. In a similar work [2.26], 

Green Open Cloud (GOC) architecture is proposed that has advance resource reservation for the 

users to increase the prediction of the arrived requests. The aforementioned technologies are 

implemented within a data center and aim to decrease the energy consumption, while the 

technologies do not specifically consider carbon emission. The reduction in the data center 

energy consumption will not unavoidably reduce the carbon footprint. The works presented in 

[2.19] and [2.25] reflect the availability of both non-polluting and polluting energy sources in a 
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single data center. The techniques use prediction-based scheduling algorithms to increase usage 

of green energy sources.  

The Green Scheduler considers the servers to be in an order [2.29, 2.30]. It then starts 

scheduling the tasks to first server from the pool until that server can execute no more tasks and 

is overloaded. The scheduler then schedules the tasks to the next server and so on. Servers that 

come last from the pool of servers are idle most of the time because of the fact that the tasks are 

scheduled to servers that come earlier in the pool. Consolidation of tasks is achieved at the time 

of allocation of tasks. Our work is different from Green scheduler as it has variable sized 

workload as compared to the fixed sized workload of Green scheduler. In addition our technique 

consolidates the tasks even after the allocation phase is over i.e. we migrate the tasks from one 

server to the other to minimize the energy consumption even if the task is in execution phase.  

The DENS [2.31] methodology selects the best-fir computing resources for the execution 

of tasks by considering the communication potential and load level of data center components. 

Its aim is to achieve balance between traffic demands, job performances, energy consumed by 

the data center, and the job QoS requirements. 

Round Robin [2.32] scheduler equally distributes the communicational and computing 

loads among the switches and servers. As a result no server is overloaded and the network traffic 

is balanced. This scheduler is least efficient in terms of energy consumption because all the 

switches and servers are busy most of the time. In our work the workload is exponentially 

distributed to mimic the real time arrival of workload. We are also incorporating consolidation of 

tasks whereas Round Robin is not using any type of consolidation technique.  
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3. POWER-AWARE RESOURCE ALLOCATION IN 

COMPUTER CLUSTERS USING DYNAMIC THRESHOLD 

VOLTAGE SCALING AND DYNAMIC VOLTAGE 

SCALING: COMPARISON AND ANALYSIS 

This paper
1
 has been published in Journal of Cluster Computing in Springer in 2015. The 

authors of the paper are Ahmad Fayyaz, Kashif Bilal, Saeeda Usman, and Samee U. Khan. 

3.1. Introduction 

With the enormous progression in computer technology, the need for power awareness 

has rapidly increased. Whether it’s supercomputing center, cluster computing, or a large-scale 

data center, the minimization of energy consumption is a serious concern [3.33]. Implementation 

of energy efficient workstations is an indispensable need of the day due to the rising energy cost 

and environmental impacts. The demand for the reduction in energy consumption is even higher 

in large clusters, because the annual power budget of the cluster is approximately equal to the 

cost of a new server [3.13]. 

Cluster computing can be defined as a single system image of multiple computing 

resources combined together through networks, software, and hardware to handle complex 

computations [3.33]. The High Performance Computing (HPC) clusters are widely used to render 

remarkable computing capabilities for scientific, as well as commercial applications [3.32]. 

                                                           
1 The material in this chapter was co-authored by Ahmad Fayyaz, Kashif Bilal, Saeeda Usman, 

and Samee U. Khan. Ahmad Fayyaz had primary responsibility for designing the system model, 

conducting experiments and collecting results. Ahmad Fayyaz also drafted and revised all 

versions of this chapter. 
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Rigorous and complex research problems, such as complex image generation, molecular level 

design, and weather modeling can be solved using clusters, super computers, distributed 

computers, cloud, and grids [3.35]. The need for efficient processing of the aforementioned tasks 

has escalated the demand of cluster deployment to a significant level. However, despite the 

benefits cluster computing offers, a key challenge is the reduction in energy consumption. 

Energy consumption of data centers, grids, and computer clusters is getting doubled almost every 

five years (since last 15 years). It is estimated that almost 50% of the operational expenses within 

a data center accounts for the energy cost [3.1, 3.33].  

This paper presents an empirical approach to reduce response time and energy 

consumption while maintaining high performance using resource scheduling algorithms. The 

Dynamic Threshold-Voltage Scaling (DTVS) and Dynamic Voltage Scaling (DVS) are the two 

major techniques employed to minimize the power budget of a large scale cluster [3.27]. In the 

DVS, the supply voltage, VDD, is scaled down to a discrete number of voltage levels without 

violating the task’s deadline for energy saving. Alternatively, the DTVS manages both the 

leakage and dynamic power by adjusting the VDD and bias voltage (VBS) simultaneously, to 

improve power saving at increased activity levels. The operational voltage of the Computing 

Nodes (CNs) can be decreased by employing DTVS. 

Previous works [3.17, 3.28] focuses solely on exploiting DVS to achieve energy savings. 

However, the work presented here hinges on introducing DTVS along with DVS to further 

minimize the energy consumption. The incorporation of DTVS and DVS produces significant 

improvement in energy saving regardless of the scheduling heuristic and workload. Simulation 

results affirm that our scheme produces better results than the current state of the art 
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methodologies in terms of energy consumption. Moreover, the performance of the heuristics is 

also improved without violating targeted deadlines of the tasks. 

In the recent years, numerous techniques have been presented to minimize the power 

consumption in clusters. Kriourov et al. [3.21] and Lang et al. [3.23] introduced slack in the 

execution time of jobs to achieve the aforementioned goal. Nevertheless, the proposed technique 

increases the overall execution time (makespan) of jobs giving rise to a tradeoff between 

performance and energy consumption. The outcome of the above mentioned approach is 

undesirable especially in a real time job scheduling environment, where meeting the deadline is 

critical. A major research challenge is to focus on both the goals: (a) meeting deadline constraint 

and (b) minimizing the energy/power consumption of computing cluster.  

This work hinges on the parametric model of Estimated Energy Dissipation (EED) to find 

an appropriate DVS level. Nevertheless, the deadline constraint is not compromised that makes 

the scheduler efficient in terms of energy consumption. To circumvent the aforementioned 

problems, the PAJS perform the following three steps to accomplish Energy Minimization 

Procedure (3EMP): 

1. Resource Allocation: Identify the jobs (set of tasks) to be allocated to CNs and a set of 

task-to-node assignment is then formed. 

2. Resource Matching: The algorithms dictate a CN-task pair that can meet the user 

defined deadline constraint. 

3. Resource Scheduling: The algorithms determine the order of execution of tasks and the 

respective DTVS and DVS levels for each CN-task pair. 
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The key contribution of the work presented in this paper is the modeling and 

implementation of the PAJS, a task scheduler equipped with the DTVS and DVS modules. The 

notable contributions are apportioned as: 

 We focus on minimizing the energy consumption using four defined DVS levels while 

maintaining the targeted deadlines.  

 Eight heuristic based job scheduling algorithms are used to achieve energy efficient 

allocation of tasks to CNs.  

 We have shown the adaptability of DTVS with the energy aware scheduling techniques. 

The results affirm that DTVS, when incorporated with DVS, further lowers the energy 

consumption as compared to the non-DTVS compliant version of the scheduling 

algorithms. 

The analytical model proposed in this paper is implemented using MATLAB and 

analyzes eight probative task scheduling algorithms on the basis of: (a) makespan and (b) energy 

consumption. The PAJS methodology proposed here employs the set of eight heuristics based on 

greedy, recursive, and genetic algorithms. To maintain a fair comparison among the considered 

algorithms, the system parameters, such as the number of tasks and their respective deadlines, 

and execution time of tasks are kept similar. The eight heuristics performed are G-Min, G-Max, 

MinMax, G-Deadline, UtyFunc, ObjFunc, and two naturally motivated genetic heuristics, 

namely GenAlgo and GenAlgo-DVS. To investigate our simulations, variance in CNs and tasks 

heterogeneity is considered. To extend the scope of our analysis and evaluate the best solution on 

different data sets, the workload is varied from small sized workload (100 tasks) to large sized 

workload (100,000 tasks).  
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The remainder of the paper is arranged as follows. Related work is elaborated in Section 

3.2. The problem formulation, system model, and implementation details of the PAJS are 

presented in Section 3.3. Discussion related to all of the heuristics is detailed in Section 3.4. 

Section 3.5 presents the simulation results and their comparison, while in Section 3.6 concluding 

remarks are presented. 

3.2.  Related Work  

The power management mechanisms in cluster computing can be categorized as: (a) 

Dynamic Power Management (DPM), and (b) Static Power Management (SPM) [3.32]. The 

SPM technique employs a flash storage and a pair of low power embedded CPUs to limit the 

peak power consumption. Lang et al. [3.22] exploited Fast Array of Wimpy Nodes (FAWN) for 

achieving the benefits offered by the SPM. The FAWN methodology promises high efficiency 

when tested on nodes working at lower frequency. However, while solving non-parallelizable 

problems and working on indivisible data set size, the FAWN is inefficient [3.22]. 

In the recent years, significant attempts have been made to conserve energy consumption 

of clusters using the DPM. The technique proposed by Chaparro-Baqueero et al. [3.10] 

speculates the resource utilization and uses software along with power scalable modules to 

reduce the power consumption of the system [3.11, 3.33]. For brevity, we focus on the DPM that 

can be categorized into: (a) Dynamic Voltage Scaling (DVS) [3.19, 3.34], (b) Dynamic 

Frequency Scaling (DFS), and (c) Dynamic Voltage and Frequency Scaling (DVFS) [3.30, 3.33]. 

Kolodziej et al. [3.20] employed DVS scaling for intelligent power management. It is 

noteworthy that the DVS approach scales down the voltage level, VDD according to the need of 

the node. As soon as VDD is decreased, a net decrease in the energy consumption is observed. 

Though the aforementioned method yields promising results in soft real time tasks, the energy 
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optimization may not be significant in hard real time job scheduling, where the completion time 

of tasks is of foremost importance [3.20]. However, our proposed scheme achieves energy 

efficiency without violating the targeted deadlines of the jobs. 

In the DVFS approach, a node needs to be furnished with a DVFS unit to exploit the 

benefits of frequency and voltage scaling.  A node can be categorized in either of the two modes: 

(a) active mode or (b) idle/sleep mode. The node with minimum activity is assigned the sleep 

mode, whereas the node with high activity is assigned the active mode. In case the node in active 

mode is overloaded, it is assigned more voltage lines and clock speed [3.31]. A recent work by 

Beloglazov et al. [3.8] and Kliazovich et al. [3.18] exploited sleep mode for attaining the energy 

saving benefit in data centers for cloud computing. 

A similar approach is modeled in [3.20] and [3.9] for energy optimization that uses the 

Dynamic Voltage and Frequency Scaling (DVFS). Although the above mentioned approaches 

attempt to enhance energy efficiency in clusters, the DVFS is inherently limited. For each node 

the minimum voltage level is defined, below which the nodes operate incorrectly. The DVFS is 

an energy efficient technique employed by network designers to reduce the energy dissipation 

[3.19]. The DVFS adjust the clock frequency in real-time based on the operational voltage of a 

processor [3.29]. The key idea is to provide the circuit just enough of speed and voltage that is 

required to process the assigned workload [3.12]. The DVFS technique performs a transition 

from a high-power state (of the processor) to a low-power state, when the workload reduces 

[3.31]. The aim of the DVFS is to reduce the dynamic power [3.7]. However, the PAJS employs 

the DTVS technique to attain power conservation irrespective of the mode (active/idle) of the 

node. Therefore, our proposed work minimizes both the static and dynamic power losses. 
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A related approach to the DVFS is DFS. The DFS needs to be incorporated within the 

system utilizing it, for example speed step by Intel and VIA Technologies product called as Long 

Haul [3.9]. A dynamic change is made in frequency of the system and energy efficiency is 

achieved by scaling the clock speed dynamically. However, energy benefits of the DFS are 

limited, due to the fact that a reduction in the frequency reduces the speed of the system. 

Therefore, the overall performance is degraded. The majority of the modern day scientific work 

focuses on the DVS for intelligent power management [3.26].  

Alfonso et al. [3.3] proposed the CLUES (Cluster Energy Saving System) tool, an energy 

management strategy for HPC clusters. The aforementioned methodology adjusts the number of 

working nodes by extracting information about the activity of nodes. A check on the inactivity 

time of the node is observed and if the check is successful, the particular node is turned off. 

Although the aforementioned approach reduces power consumption by minimizing the count of 

active nodes, it is prone to configuration issues. Moreover, such an approach might prolong the 

job wait time because of two reasons: (a) the delay incurred due to the check on inactivity of 

nodes and (b) addition of new nodes in the scheduler. Contrary to this approach, the benefit of 

the work presented in this paper is that it does not need to put a check on the activity level to 

maximize energy saving.  

Valentini et al. [3.32] presents an extensive survey of the power management endeavors 

using the aforementioned methodologies. Surveys performed by Shuja et al. [3.29] and Usman et 

al. [3.31] present a collection of interesting examples of the recently developed Power 

management schemes. Nevertheless, this line of work is sound in comparison to the existing state 

of the art as the PAJS combines the benefits of DVS with DTVS to meet the sine qua non for 

high performance and energy-efficient cluster. 
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3.3. Problem Formulation 

In this section, we discuss the basic parameters that affect the energy consumption of a 

cluster. For a CN two main modules are required to function: (a) voltage line and (b) clock 

speed, referred as frequency [3.24]. To address energy consumption issue, we want the system to 

be designed in a method that the above stated components of the framework are controlled 

judiciously. Both voltage and frequency share a linear relation (Eq. 3.1), such as, decreasing the 

voltage decreases frequency. As a result, fewer computation cycles per unit time increase the 

execution time of the tasks. The time taken by the cluster to execute all of the assigned tasks is 

referred to as makespan in the paper. 

𝑓 𝛼 𝑉 .                      (3.1) 

The total power consumption 𝑃𝑡 can be scripted as:  

    𝑃𝑡 = 𝑃𝑑 + 𝑃𝑠  ,           (3.2) 

where 𝑃𝑑 is the dynamic power and 𝑃𝑠 is the static power. 

The dynamic power in Eq. (3.3) signifies that power is a quadratic function of voltage. 

This implies that a reduction in the supply voltage of the system will reduce the power 

consumption in a quadratic function 

𝑃𝑑 = 𝐴 × 𝑉𝐷𝐷
2 × 𝑓𝐶𝐿𝐾 × 𝐶𝐸𝐹𝐹  ,       (3.3) 

where, 𝑓𝐶𝐿𝐾  is the clock frequency, 𝑉𝐷𝐷 is the supply voltage, 𝐴 represents the activity factor, and 

𝐶𝐸𝐹𝐹 is the effective switched capacitance.  

The energy consumption in a cluster is calculated using Eq. (3.4). To reduce the energy 

consumption, either the instantaneous power should be reduced or the computation time ought to 
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be decreased. Therefore, power factor becomes a significant metric in the design of energy 

efficient clusters. Consequently, the focus should be on the power management. 

𝐸𝑛𝑒𝑟𝑔𝑦 = 𝑃𝑜𝑤𝑒𝑟 ×  𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒.       (3.4) 

The DTVS procedure is illustrated with the help of a flow chart shown in Fig. 3.1. The 

motivation of using a power tracking mechanism is to monitor power consumption of each CN in 

the cluster. The power tracker/activity indicator module ascertains that the total power 

consumption level is within the tolerable bounds. When the total power consumed, Ptotal crosses 

its acceptable bounds, the DTVS module asserts the VTH and VDD scaling modules 

simultaneously, so as to regulate the total power 𝑃𝑡 of the cluster.  

 

Fig. 3.1. DTVS Mechanism 
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Table 3.1. Notation/ Acronyms and their Meanings 

Symbols Meaning Symbols Meaning 

DPM Dynamic Power Management G-Min Greedy Heuristic that schedule 

shortest task first DVS Dynamic Voltage Scaling  

PAJS Power-Aware Job Scheduler G-Max 
Greedy Heuristic that schedule 

longest task first 

4EMP 
4-Step Energy Minimization 

Procedure 

G-

Deadline 
The tasks with the shortest 

deadlines are scheduled to the CNs 

first in this Greedy Heuristic tij Run time of task ti on CNj  

CN Computing Node MinMax Greedy Heuristic that schedule 

tasks to the least efficient CNs VDD CN supply Voltage  

M Makespan ObjFunc Greedy Heuristic in which 

objective functions are employed 

to govern task allocation J Set of all ti  

ti i
th

 task ∈ 𝐽 UtyFunc Greedy Heuristic that schedule 

tasks based on a utility function CVB Coefficient of variation based  

deadi Deadline of ti GenAlgo Genetic Algorithm 

mti Memory requirement of ti 
GenAlgo-

DVS 

Genetic Algorithm that utilizes 

DVS 

mCNj Memory Available to CNj Ci 
Computational Cycles required by 

ti 

DVSk k
th

 DVS level I-ETE Index for ETE Matrix 

EED Estimated Energy Dissipation tijk Run time of task ti on CNj at DVSk 

ETE Estimated Time of Execution mj Run time of computing node CNj 

CN Set of CNs in CN allocation Energyidle Energy Consumed when CN is idle 

CNp Set of CNs in CN pool Energyj Energy Consumed by CNj 

CNj 𝑗𝑡ℎCN ∈ 𝐶𝑁 DTVS 
Dynamic Threshold and Voltage 

Scaling (DTVS) 

pij 
Power Consumed by CNj to 

execute ti 
µtask Average task execution time 

Esol The best solution Vtask Variance in execution time of tasks 

Cj Power Consumption of CNj NIS Naturally Inspired Solutions 

kidle Power scalar for idle CN VCN 
Variance in computing node 

heterogeneity 



 

32 
 

The power tracker/activity indicator also monitors if any CN in the cluster is idle. VTH of 

the idle CNs is increased and VDD is scaled down to a level that the CN is turned off, resulting in 

less power consumption. A list of acronyms and their meanings is summarized in Table 3.1. 

3.3.1. The System Model 

We present a holistic model of a high performance cluster in this section. The 

aforementioned is comprised of a collection of CNs and works on a set of tasks, referred as a job. 

Computing Nodes: The set of CNs in the cluster is denoted as, CN= {CN1, CN2…CNm}. It is 

assumed that each of the CNs is endowed with a DTVS as well as a DVS module. For the 

problem catered in this paper, we assume a constant and negligible transition time between 

successive levels of DVS as considered in [3.24]. 

Each CN is described by: 

 The instantaneous power dissipation of the CN, Cj.  The Cj may alter between Cj
min

 to 

Cj
max

, depending on the DVS level of the CN. The range of Cj is thereof defined as 0 < 

Cj
min 

< Cj
max

.  

 The specific computing node memory is abbreviated as mCNj. 

Tasks: Consider a job, J, which is a collection of tasks. The set J= {t1, t2, ………, tn}, where ith 

task is represented by ti. Each task in the job is characterized by: 

 The deadline, deadi that needs to be fulfilled by the task. 

 The computational cycles, Ci that a task needs to accomplish. 

 The memory requirement of the task, mti. 
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Preliminaries: We are given a set of CNs and a metaset of tasks, J. Each member of the set J has 

to be allocated to a CN such that the deadline constraint is not violated. A realistic task to node 

allocation is accomplished when: 

1. The runtime mj, of CNj, is less than or equal to deadi. 

2. Each task, ti ∈ J is mapped to at least one CNj if all the related constraints of each task are 

fulfilled. 

3. For a successful mapping, mCNj > mti is satisfied. In case the aforementioned inequality is 

not satisfied, ti cannot be assigned to CNj. 

3.3.2. Modeling the Energy-Makespan Minimization Problem 

Given a metaset of tasks J, and a pool of CNs, the problem statement such that: 

 The net power utilized by the CNs is minimized. 

 A minimization in makespan, M, of the metaset of tasks, J is achieved. 

The mathematical model of the problem statement can be expressed as: 

𝑚𝑖𝑛 ∑ 𝐶𝑖𝑗𝑥𝑖𝑗

𝑛

𝑖=1
      such that     𝑚𝑖𝑛𝑚𝑎𝑥 1 ≤ 𝑗 ≤ 𝑚 ∑ 𝑡𝑖𝑗𝑥𝑖𝑗

𝑛

𝑖=1
                                          

Obliged to the subsequent constraints from 3.5 through 3.9: 

xij ∈ {0,1}, where i = 1,2,… m and  j = 1,2,…. n                        (3.5) 

If ti → mj, ∀𝑖 , ∀𝑗: such that mCNj > mti, then xij,                          (3.6) 

(tijxij ≤ deadi) ∈ {0,1},        (3.7) 

tijxij ≤ 𝑑𝑒𝑎𝑑𝑖, ∀𝑖 , ∀𝑗, xij= 1,        (3.8) 

∏ (𝑡𝑖𝑗𝑥𝑖𝑗 ≤  𝑑𝑒𝑎𝑑𝑖) = 1, ∀𝑖 , ∀𝑗 , 𝑥𝑖𝑗 = 1.         𝑛
𝑖=1      (3.9) 
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A task, ti, from a job is assigned to CNj when the mapping constraint (3.5) equals 1.This 

can be expressed as when xij =1.  Constraint (3.6) juxtaposes an additional constraint on the 

mapping procedure. The aforementioned mapping can take place only when the CNj satisfy the 

memory requirement of ti. The Boolean relationship between the deadline of the task and its 

actual time of completion is depicted in constraint (3.7). Constraint (3.8) is adherence to the 

individual task deadline. The deadline constraint of the metaset is shown in (3.9) and is logically 

true if for each ti ϵ J, the deadline, deadi, is satisfied. The main aim of PAJS is energy 

minimization in computational clusters. In this paper, we discuss how to reduce makespan and 

minimize the system’s overall power consumption at the same time. The aforementioned 

parameters make the PAJS problem formulation a multi objective and multi constrained 

optimization problem. The formulation is similar to the Power Aware Task Allocation (PATA) 

and Energy-Aware Task Allocation (EATA), except for the additional constraints of the DTVS. 

The major difference between the PAJS and the mentioned techniques is that the domain of 

PAJS is wider in terms of capacity of resources and computations performed. 

3.4. Heuristics Implementation and Evaluation 

This section presents the execution behavior of the eight algorithms analyzed and 

implemented in the implementation of the PAJS. Fig. 3.2 depicts the control of the eight 

scheduling heuristics employed for the analysis process. The Estimated Time of Execution 

(ETE) matrix gives the task completion time on a specific node. The number of rows in the ETE 

depends on the tasks count in J, and the number of entries in CNp indicates the column length of 

the ETE. Each entry (i,j) of the ETE matrix corresponds to the estimated execution time of task i 

on node j. In the ETE matrix, the entries in a row signify the estimated completion time of a 

particular task on different nodes whereas, elements along a column depict the estimated 
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completion time of various tasks on a specified node. The Coefficient of Variance Based (CVB) 

method is employed for the generation of the ETE matrix [3.4]. The three parameters used to 

introduce heterogeneity in generation of the ETE matrix are: 

 The variance in Computing Nodes heterogeneity, VCN. 

 The variance in execution time of tasks, Vtask. 

 The average completion time of each 𝑡𝑖 ∈ 𝐽, µtask. 

The above listed heterogeneity parameters are incorporated in the generation of ETE 

matrix to imitate a workload that is supported in previous studies and is derived from real world 

applications [3.2, 3.4, 3.5, 3.16, and 3.24]. The probability distribution function used by the CVB 

is a gamma distribution, so it is necessary to define the shape parameter, 𝛼, and scale parameter, 

𝛽. The mean of the gamma distribution is µ =  𝛽𝛼 and the variance is, 𝑉 = 1/√𝛼.  

 

Fig. 3.2. Scheduling Heuristics used by the PAJS 
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However, the parameters 𝛼𝑡𝑎𝑠𝑘 , 𝛼𝐶𝑁 , 𝛽𝑡𝑎𝑠𝑘 , and 𝛽𝐶𝑁 in the gamma distribution are 

interpreted as µ𝑡𝑎𝑠𝑘 , 𝑉𝑡𝑎𝑠𝑘 , and 𝑉𝐶𝑁 in this paper. 

𝛼𝑡𝑎𝑠𝑘 = 1/𝑉𝑡𝑎𝑠𝑘
2 ,                     (3.10) 

𝛼𝐶𝑁 =  1/𝑉𝐶𝑁
2 ,                (3.11) 

𝛽𝑡𝑎𝑠𝑘 =  µ𝑡𝑎𝑠𝑘/𝛼𝑡𝑎𝑠𝑘,                (3.12) 

𝛽𝐶𝑁 = 𝐺(𝛼𝑡𝑎𝑠𝑘, 𝛽𝑡𝑎𝑠𝑘)/𝛼𝐶𝑁,                (3.13) 

where 𝐺(𝛼𝑡𝑎𝑠𝑘, 𝛽𝑡𝑎𝑠𝑘) is the gamma distribution’s sample number.  

The deadline, deadi for each task within a job 𝑡𝑖 ∈ 𝐽 is derived from the ETE matrix and is given 

as  

𝑑𝑒𝑎𝑑𝑖 =  
|𝑡𝑖|

|𝐶𝑁|
× 𝑎𝑟𝑔𝑗 𝑚𝑎𝑥(𝐸𝑇𝐸(𝑖, 𝑗)) × 𝑘𝑑 ,             (3.14) 

where parameter 𝑘𝑑 is used to tighten the deadline deadi [3.24]. 

3.4.1. Greedy Heuristics 

3.4.1.1. Greedy Heuristic Scheduling Algorithm (GHSA) 

The GHSA accomplishes resource scheduling for the algorithms discussed in the 

subsequent sections, i.e. Section 3.4.1.2 to 3.4.1.5. The methodology used by each of the above-

mentioned heuristics for scheduling J to CN varies. The pseudo-code of GHSA is presented in 

Algorithm 3.1. The inputs of the GHSA encompass 𝐸𝑇𝐸, 𝐶𝑁𝑝,  𝑑𝑒𝑎𝑑𝑖 ∀ 𝑡𝑖  ∈ 𝐽, and 𝐶𝑁. GHSA 

produces a J to CN mapping, M, and Esol subject to the inputs defined. 

The GHSA initiates the mapping procedure by assigning the first entry (task) of the ETE 

matrix to the best suitable CN. To ensure a feasible mapping the deadi constraint, stated in line 4 

should be satisfied. The mapping of ti to CNj is to adhere to the minimum possible level of DVS 
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scaling, DVSK (Table 3.2). Starting from DVS1, the DVSK is increased when deadi is not satisfied. 

The DVSK at which deadi constraint agrees, no further increments are applied to DVSK. In case 

the deadi is not met by the task even at the extreme DVS level (DVS4), then the particular ti is 

allocated to the next CN in the ETE matrix by GHSA. Line 10 illustrates that if the deadline is 

not compiled by GHSA in scheduling ti on any of the CNs, then a flag, dflag is activated. The dflag 

indicates the absence of a feasible solution for a specific ti. After the successful assignment of ti 

to a CN, both the execution time of ti and the energy consumption of CNj are recorded. Line 6 

corresponds to the addition of ETE (i,j) to mj. 

               Table 3.2.   Power Scales and Operational Speeds for Different DVS Levels  

DVS Level Power Scale Operational Speed 

1 0.3430 70% 

2 0.5120 80% 

3 0.7290 90% 

4 1.0000 100% 

 

Line 7 signifies the addition of EED (i,j) to Esol. For any feasible solution obtained, ti to 

CN mapping is processed and the energy consumed is computed. The idle time energy in Line 16 

is calculated by equation (3.15) that is: 

𝐸𝑛𝑒𝑟𝑔𝑦𝑖𝑑𝑙𝑒  =  𝐶𝑁𝑗  ×  𝑡𝑖𝑚𝑒𝑖𝑑𝑙𝑒  ×  𝑘𝑖𝑑𝑙𝑒 .                 (3.15) 

Where kidle is the DVSK level of an idle CN and timeidle is given by the equation (3.16) that is: 

   𝑡𝑖𝑚𝑒 𝑖𝑑𝑙𝑒 =  𝑀 −  𝑚𝑗 .        (3.16) 

From line 18 to 23, the run time tijk, for each task ti ∈ J on a particular CN at a specific 

DVSk level, is compared with the run time, mj, of that CN and the overall makespan, M. If tijk is 

greater than mj but less than M, this indicates that the CNj is idle. To conserve energy at this idle 

time of the CNj, the DTVS mechanism is employed to the node. 
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3.4.1.2. G-Min 

The name of the algorithm 3.2 suggests that the tasks are greedily scheduled based on the 

shortest task first and is named as G-Min. The goal of executing the tasks in aforementioned 

manner is to introduce a slack in scheduling of the tasks. The main benefit of using a slack is that 

it allows the scheduler to schedule the subsequent tasks with longer run-times without violating 

their individual deadlines. Input parameters of G-Min comprise of an ETE matrix. The output is 

thereof a rearranged ETE matrix, an EED matrix, and I-ETE. In Algorithm 3.2, R signifies a row 

in ETE matrix, whereas, Ci stands for the i
th

 column in ETE matrix. 

It is interesting to note that MinMax G-Deadline, G-Min, and G-Max share identical 

input and output parameters. Once the elements of the ETE matrix are rearranged, the GHSA is 

applied to the ETE matrix for evaluation purposes. The minimum power consumption is 

achieved by computing ETE for different DVS levels using the DVS methodology. 

3.4.1.3. G-Max 

The greedy heuristic that prefers to execute the longest task first is termed as G-Max and 

the scheduling mechanism is depicted in Algorithm 3.3. Therefore, the leftover tasks to be 

scheduled are the ones with the shorter execution times. First, each row is rearranged in 

ascending order. Then the rows are swapped in such a manner that the first column of the 

resulting ETE matrix is arranged in descending order. The crux behind this scheduling scheme is 

that the tasks with shorter execution times are more easily scheduled by GHSA without 

contravening the deadline constraint. 
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Algorithm 3.1:  Greedy Heuristic Scheduling Algorithm (GHSA)  

Input: 𝐸𝑇𝐸, 𝐶𝑁𝑝, 𝑑𝑒𝑎𝑑𝑖∀𝑡𝑖 ∈ 𝑗, 𝐶𝑁 

Output: 𝐽 𝑡𝑜 𝐶𝑁 𝑚𝑎𝑝𝑝𝑖𝑛𝑔, 𝐸𝑠𝑜𝑙 , 𝑀 

1: foreach 𝑡𝒊 ∈ 𝑗 do 

2: 𝐶𝑁𝑗 ∈ 𝐶𝑁do 

3: for 𝐷𝑉𝑆𝑘 = 1 𝑡𝑜 4 do 

4: if  𝑡𝑖𝑗𝑘 + 𝑚𝑗 ≤ 𝑑𝑒𝑎𝑑𝑖 then 

5: Assign 𝑡𝑖 𝑡𝑜 𝐶𝑁𝑗  𝑎𝑡 𝐷𝑉𝑆𝑘; 

6: 𝑚𝑗 ← 𝑚𝑗 + 𝐸𝑇𝐸(𝑖𝑗); 

7: 𝐸𝑠𝑜𝑙 ← 𝐸𝑠𝑜𝑙 + 𝐸𝐸𝐷(𝑖𝑗); 

8: end 

9: end 

10: if  𝑡𝑖 not assigned then 

11: 𝑑𝑓𝑙𝑎𝑔 ← 1; 

12: EXIT; 

13: end 

14: end 

15: foreach  𝐶𝑁𝑗 ∈ 𝐶𝑁 do 

16: 𝐸𝑠𝑜𝑙 ← 𝐸𝑠𝑜𝑙 + 𝐸𝑛𝑒𝑟𝑔𝑦𝑖𝑑𝑙𝑒; 

17: end 

18: foreach 𝑡𝑖𝑗𝑘 

19: if  𝑡𝑖𝑗𝑘 > 𝑚𝑗  and 𝑡𝑖𝑗𝑘 < 𝑀 

20: DTVS = 0; 

21: else 

22: DTVS = 1; 

23: end 
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Algorithm 3.2: G-Min 

Input: ETE 

Output: ETE, EED, I-ETE 

1: foreach row, 𝑅 ∈ 𝐸𝑇𝐸 do 

2: Sort R and corresponding row in I-ETE in ascending order; 

3: end 

4: ∀ 𝑅 ∈ 𝐸𝑇𝐸, interchange R’s such that C1 is in ascending order; 

5: Make similar changes in I-ETE with respect to step 4; 

6: INVOKE GHSA; 

Algorithm 3.3:  G-Max 

Input: ETE 

Output: ETE, EED, I-ETE 

1: foreach row, 𝑅 ∈ 𝐸𝑇𝐸 do 

2: Sort R and corresponding row in I-ETE in ascending order; 

3: end 

4: ∀ 𝑅 ∈ 𝐸𝑇𝐸, interchange R’s such that C1 is in descending order; 

5: Make similar changes in I-ETE with respect to step 4; 

6: INVOKE GHSA; 

Algorithm 3.4:  G-Deadline 

Input: ETE 

Output: ETE, EED, I-ETE 

1: foreach row, 𝑅 ∈ 𝐸𝑇𝐸 do 

2: Sort R and corresponding row in I-ETE in ascending order 

according to each ti’s deadi; 

3: end 

4: ∀𝑅 ∈ 𝐸𝑇𝐸, interchange R’s such that C1 is in ascending order on 

the basis of vector deadi; 

5: Make similar changes in I-ETE with respect to step 4 ; 

6: INVOKE GHSA; 
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3.4.1.4. G-Deadline 

In algorithm 3.4 the tasks are scheduled based on the criterion of their respective 

deadlines and is named as G-Deadline. The tasks scheduled first are the ones with the shortest 

deadlines. The task with less sensitive deadline constraint can be lingered on and scheduled later 

in the scheduling order. The working of the algorithm demands a two-step reordering procedure 

of the ETE matrix: (a) Initially, the ETE matrix is arranged such that the individual rows are in 

ascending order and (b) then a swapping of rows is done such that the elements in the first 

column are assembled in ascending order based on the task’s deadline. The GHSA is invoked 

once the ETE matrix is re-arranged, by the G-deadline scheduling routine. 

3.4.1.5. MinMax 

Scheduling of tasks in algorithm 3.5 is achieved on the basis of efficiency of CNs and is 

named as MinMax. The initial phase of MinMax allocated the task to the least efficient CNs. The 

main goal is to introduce a slack in the scheduling process. The next phase schedules the 

subsequent tasks on the most efficient CNs. Firstly, the rows in the ETE matrix are ordered in 

descending order. Finally, the swapping of rows is performed such that the first column is 

aligned in descending order based on task completion times. 

Algorithm 3.5:   MinMax 

Input: ETD 

Output: ETD, EED, I-ETE 

1: foreach row, 𝑅 ∈ 𝐸𝑇𝐸 do 

2: Sort R and corresponding row in I-ETE in ascending order; 

3: end 

4: ∀𝑅 ∈ 𝐸𝑇𝐸, interchange R’s such that C1 is in ascending order; 

5: Make similar changes in I-ETE with respect to step 4; 

6: INVOKE GHSA; 
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3.4.1.6. ObjFunc 

To ascertain a power efficient task to CN mapping the greedy heuristic objective function 

is employed, abbreviated as ObjFunc in the paper. This heuristic utilizes the following two 

objective functions for the above stated purpose: (a) task selection and (b) node selection. 

Algorithm 3.6 depicts the pseudo-code for ObjFunc. The inputs to ObjFunc comprises of 

𝐸𝑇𝐸, 𝐶𝑁𝑝,  𝑑𝑒𝑎𝑑𝑖 ∀ 𝑡𝑖  ∈ 𝐽, and 𝐶𝑁. The output renders J 𝑡𝑜 𝐶𝑁 mapping, M and the most 

optimized energy solution, 𝐸𝑠𝑜𝑙. The algorithm starts with the selection of a task for which a 

Select Task array (ST) is generated. The ST array has an entry for every ti that is to be assigned 

to one of the CN for the above said purpose. The following objective function is used for 

selection: 

𝑆𝑇 = 𝛼1(𝑇2,𝑖 − 𝑇1,𝑖) + 𝛼2(𝑁2,𝑘 − 𝑁1,𝑘) + 𝛼3
𝑇1,𝑖+𝑇2,𝑖

∑ (𝑇1,𝑗+𝑇2,𝑗)𝑗=1
+ 𝛼4 + 𝛼5 + 𝛼6  ,    (3.17) 

where T1,i and T2,i represent the minimal and second minimal estimated execution time of task, ti, 

respectively. N1,k is the most power-efficient and N2,k is the second most power-efficient CN for 

the execution of task ti, respectively. 

The components α1, α2, and α3 are the weight parameters and components α4, α5, and α6 

are scalars added to ST array in case the following conditions are satisfied: 

 α4 is added to the ST array if the most power-efficient CN is also the one with shortest tij. 

 α5 is added to the ST array if the second most power-efficient CN is also the one with 

shortest tij, or vice-versa. 

 The scalar α6 is added to the ST array if the second most power-efficient CN and the CN 

with second shortest tij are same.  
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Line 4 depicts the sorting of ST in descending order to ensure that ObjFunc schedules the 

most appropriate task first. In order to determine the most suitable CN for each task, Line 7 is 

coded and the result is recorded in CN select array, SN. 

For every task the selection function assigns a value to each CN using the objective 

function given by the following equation.  

𝑆𝑁 = 𝛽1𝑇1,𝐶𝑁𝑘,𝑡𝑖
+ 𝛽2𝑁1,𝐶𝑁𝑘,𝑡𝑖

+  𝛽3𝑙𝑜𝑎𝑑(𝐶𝑁𝑘) ,                      (3.18) 

where 𝑇1,𝐶𝑁𝑘,𝑡𝑖
 corresponds to the completion time of task ti on node 𝐶𝑁𝑘, 𝑁1,𝐶𝑁𝑘,𝑡𝑖

 corresponds to  

the instantaneous power consumption when task ti is executed on node 𝐶𝑁𝑘 and load (𝐶𝑁𝑘) is a 

value dependent on certain conditions. If ti satisfies deadi, the value of load (𝐶𝑁𝑘) equals zero 

otherwise, it is equal to mj-deadi. The intention behind this is to assign ti to the CN having the 

lowest SN value. The lowest level DVSk that CNj can be assigned is determined by ObjFunc at 

line 12. Once ti is scheduled on CNj, the energy consumption of CNj and the completion time of ti 

must be recoded. Next, line 13-14 adds ETE (ij) to mj and EED (ij) to 𝐸𝑠𝑜𝑙, respectively. If the 

condition at Line 10 is not satisfied even when CNj runs at the highest DVSk, then this indicates 

that a workable solution does not exit, and a flag is set.  

The net energy consumption of the solution is evaluated in case a feasible solution is 

achieved. The values of parameters α1 to α6 and β1 to β3 are presented in Table 3.3. In lines 25 to 

30, DTVS is employed to ensure power aware scheduling. The status of each 𝐶𝑁𝑘  is evaluated, 

if the check result in an idle status for the 𝐶𝑁𝑘, then DTVS is set to zero. Otherwise the value of 

DTVS is set to one. 
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Algorithm 3.6:   ObjFunc 

Input: 𝐸𝑇𝐸, 𝐶𝑁𝑝, 𝑑𝑒𝑎𝑑𝑖  ∀ 𝑡𝑖  ∈ 𝐽, and 𝐶𝑁 

Output: J 𝑡𝑜 𝐶𝑁 mapping 𝐸𝑠𝑜𝑙 , 𝑀 

1: foreach 𝑡𝑖 ∈ 𝐽 do 

2: Calculate STi 

3: end 

4: Sort ST in descending order; 

5: foreach 𝑡𝑖 ∈ 𝑆𝑇 do 

6: foreach 𝐶𝑁𝑗 ∈ 𝐶𝑁 do 

7: Calculate SNij; 

8: end 

9: 𝑗 ← 𝑎𝑟𝑔𝑗  𝑚𝑖𝑛(𝑆𝑁𝑖𝑗) 

10: for  𝐷𝑉𝑆𝑘 = 1 𝑡𝑜 4 do;  

11: if  𝑡𝑖𝑗𝑘 + 𝑚𝑗 ≤ 𝑑𝑒𝑎𝑑𝑖  then 

12: Assign 𝑡𝑖𝑡𝑜 𝐶𝑁𝑗 𝑎𝑡 𝐷𝑉𝑆𝑘;  

13: 𝑚𝑗 ← 𝑚𝑗 + 𝐸𝑇𝐸(𝑖𝑗); 

14: 𝐸𝑠𝑜𝑙 ← 𝐸𝑠𝑜𝑙 + 𝐸𝐸𝐷(𝑖𝑗); 

15: end 

16: end 

17: if  𝑡𝑖 not assigned then 

18: 𝑑𝑓𝑙𝑎𝑔 ← 1; 

19: EXIT 

20: end 

21: end 

22: foreach 𝐶𝑁𝑗 ∈ 𝐶𝑁do 

23: 𝐸𝑗 ← 𝐸𝑗 + 𝐸𝑖𝑑𝑙𝑒; 

24: end 

25: foreach 𝑡𝑖𝑗𝑘  

26: if  𝑡𝑖𝑗𝑘 > 𝑚𝑗  and 𝑡𝑖𝑗𝑘 < 𝑀 

27: DTVS = 0; 

28: else 

29: DTVS = 1; 

30: end 

31: end 
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3.4.1.7. UtyFunc 

For the task to CN assignment the heuristic utilizes a utility function and is abbreviated as 

UtyFunc. The purpose of using the utility function is that it determines the advantage obtained 

from each task to CN allocation. Algorithm 3.7 depicts the pseudo-code of UtyFunc. The inputs 

to UtyFunc are deadi ∀ ti ∈ J, ETE matrix, CN, and instantaneous power for each node. The 

output of UtyFunc is the J to CN mapping, Energysol, and makespan of the most energy efficient 

node. In Line 4, the UtyFunc iterates to compute the utility of every task for each of the CN and 

the corresponding DVS level. To correlate speed and execution time, the utility function is 

employed. The speed and utility can be depicted as: 

𝑆𝑝𝑒𝑒𝑑 (𝑉) =  
𝐾1(𝑉−𝑉𝑡)2

𝑉
 ,                                                       (3.19) 

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 =  (𝑆𝑝𝑒𝑒𝑑)𝑝  × (𝑇𝑖𝑚𝑒)𝑞,                                                (3.20) 

In eq. 3.20, p ascertains the comparative significance of the speed whereas q represents the 

relative importance of the completion time of the task. Based on the highest utility yielded by the 

CN and DVS level, the process of task assignment is concluded. However, it is noteworthy to 

mention that the assignment of ti to the highest utility CNj does not ensure the fulfillment of the 

deadline constraint. As depicted in Line 15, the utility of the particular ti-CNK pair is set to zero if 

the deadline is violated. The UtyFunc in such a scenario recognizes the CN-DVS level pair for 

the particular task that guarantees the next highest utility and allocates the task to the identified 

CN-DVS level pair. For a successful task allocation the power consumption of CNj and 

execution time of ti are added to Esol and mj, respectively. A dflag is set when a task is unable to be 

assigned to any of the CNs even though the deadline is satisfied. The main point behind enabling 

the dflag is to indicate an absence of a feasible solution. 
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Algorithm 3.7:  UtyFunc 

Input: 𝐸𝑇𝐸, 𝐶𝑁𝑝, 𝑑𝑒𝑎𝑑𝑖  ∀ 𝑡𝑖  ∈ 𝐽, and 𝐶𝑁 

Output:  𝐽 𝑡𝑜 𝐶𝑁,Esol, M 

1: foreach 𝑡𝑖 ∈ 𝐽 do 

2: foreach 𝐶𝑁𝑗 ∈ 𝐶𝑁 do 

3: for DVSk =1to 4do  

4: Calculate Utijk; 

5: end 

6: end 

7: end 

8: foreach 𝑡𝑖 ∈ 𝐽 do 

9: 𝑗, 𝑘 ⃪ 𝑎𝑟𝑔𝑗, 𝑘 max(𝑈𝑡𝑖𝑗𝑘); 

10: if   𝑡𝑖𝑗𝑘 +  𝑚𝑗  ≤ 𝑑𝑒𝑎𝑑𝑖  then 

11: Assign 𝑡𝑖  to 𝐶𝑁𝑗  at DVSk; 

12: 𝑚𝑗 ← 𝑚𝑗 + 𝐸𝑇𝐸(𝑖𝑗); 

13: 𝐸𝑠𝑜𝑙 ← 𝐸𝑠𝑜𝑙 + 𝐸𝐸𝐷(𝑖𝑗); 

14: else 

15: 𝑈𝑡𝑖𝑗𝑘
← 0; 

16: end 

17: if   𝑡𝑖 not assigned then 

18: 𝑑𝑓𝑙𝑎𝑔 ← 1 

19: EXIT 

20: end 

21: end 

22: foreach 𝐶𝑁𝑗 ∈ 𝐶𝑁do 

23: 𝐸𝑠𝑜𝑙 ← 𝐸𝑠𝑜𝑙 + 𝐸𝑖𝑑𝑙𝑒; 

24: end 

25: foreach 𝑡𝑖𝑗𝑘  

26: if   𝑡𝑖𝑗𝑘 > 𝑚𝑗  and 𝑡𝑖𝑗𝑘 < 𝑀 

27: DTVS = 0; 

28: else 

29: DTVS = 1; 

30: end 

31: end 
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Table 3.3. Parameters used in Task Select Array and CN Select Array 
Parameters Value 

β1 0.0970764 

β2 0.4008180 

β3 0.7734070 

α1 0.5206560 

α2 0.3819580 

α3 0.0431519 

α4 0.1605830 

α5 0.5223390 

α6 0.6965640 

 

In case an acceptable solution is found the UtyFunc algorithm, then determines the net 

energy consumption in a similar manner as GHSA and ObjFunc. The application of DTVS is in 

the same way as discussed for GHSA and ObjFunc. 

3.4.2. Genetic Algorithms 

A class of evolutionary algorithm that employs searching and optimization techniques is 

known as Genetic algorithms. The main objective is to find the most suitable solution among a 

randomly generated population. In order to achieve the above stated objective, we first randomly 

generate an initial population of solutions using the genetic algorithm. The genetic algorithm 

performs the following four steps recursively until it encounters a halting condition.  

1. Solution Ranking: The solutions ranking is based on their Distance from Origin (DFO). 

2. Solution Grading: The solutions with the same DFO are then checked for their Distance from 

Line (DFL). 

3. Reproduction: The solutions with the highest ranking are improved through mutation and 

crossover. 
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4. Substitution: The solutions with lowest rank are discarded and substituted by the newly 

produced solutions.  

The traversal and completion of the above stated steps, completes a generation. The 

halting condition is verified soon after the appraisal step. In genetic algorithm, each solution 

produced by the algorithm is characterized by a chromosome. Fig. 3.3 represents a chromosome.

 The chromosome depicts information about each task and its mapping on a specific CN. 

A CN may be assigned more than one task. The scheduling order of the task recalls the Step 3 of 

EMP and is attained by invoking GenAlgo or GenAlgo-DVS. Both of these are explained in the 

subsequent text. 

The PAJS framework utilizes distance from origin (DFO) approach to rank the solutions 

produced. One particular solution dominates the other solution if its DFO value is less as 

compared to others. The PAJS framework is multi-Objective and examines two metrics: a) 

makespan, and b) energy consumption.  

A generalized multi-objective optimization function can expressed as follows: 

𝑚𝑖𝑛 𝐹(𝑦) =  (𝑓1(𝑦), 𝑓2(𝑦), … … … , 𝑓𝑛(𝑦))𝑇      | 𝑦 ∈ 𝑆                                                   

𝑦 =  (𝑦1, 𝑦2, … … … , 𝑦𝑛)𝑇 ,                   (3.21) 

where (𝑦1, 𝑦2, … … . . , 𝑦𝑛) are the optimization parameters, 𝑓1(𝑦), 𝑓2(𝑦), … . , 𝑓𝑛(𝑦) are the 

objective functions, and S is the parameter or solution space. The solution space S is mapped 

onto Y, by F. Fig. 3.4 shows the dominated solutions. The solutions with the same DFO are 

compared by taking DFL, which is a 45˚ angle line, to ensure an equal importance of each 

metric. Moreover, PAJS is also capable of producing diversity in its objectives weights by 

modifying the slope of the straight line employed to determine DFL.  
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The solutions are ranked based on the Pareto optimality that uses non-dominated sorting 

for the ranking purpose [3.14]. First, the non-dominated solutions are figured out. These 

solutions are given the highest rank i.e. they are represented by one and removed from the 

population. Now, in the reduced set of population the same procedure is repeated to identify the 

non-dominated solutions. The result obtained by doing so is given a rank two, and the solutions 

with this particular rank are removed from the population pool. This process is repetitive and it 

goes on until the entire population of solutions is ranked as shown in Fig. 3.4.  

To maintain genetic diversity the genetic algorithm employs two genetic operators: a) 

Crossover and b) Mutation. The genetic operator, crossover, is a used to exchange information 

between two parent chromosomes. GA-Algo performs a two cut-point crossover technique. The 

same points are selected in both the parent chromosomes to be the cut points. 

Swapping of information is performed amongst the two cut points to create child 

chromosomes as illustrated in Fig. 3.5. It is evident from the child chromosomes that the 

swapping of tasks has been performed between the two cut points in the parent chromosome. 

Mutation is a genetic operator that ensures diversity in solution along the generations. In order to 

figure out the best solution, the tasks in a solution are reassigned randomly to a different CN. 

This strategy incorporates heterogeneity and explores the most energy saving mapping of a task 

onto a CN. 
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    Fig. 3.3. Chromosome Representation 

 

Fig. 3.4. Representing Pareto Ranking in the PAJS Framework 

 

Fig. 3.5. Crossover 
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3.4.2.1. GA-Algo 

To maintain diversity in the generated population, algorithm 3.8 is employed and is 

termed as GA-Algo. In order to provide effective guidance in choosing the best solution cluster 

of CNs are created. Algorithm 3.8 illustrates the procedure of GA-Algo. 

 Initializations 

GA-A algorithm comprises of inputs such as ETE matrix, 𝑑𝑒𝑎𝑑𝑖 ∀ 𝑡𝑖  ∈ 𝐽, CNp, and 

instantaneous power. Initial solutions are randomly generated by GA-A (Line2) and then 

GenAlgo or GenAlgo-DVS is invoked for the evaluation of the initial solutions generated. 

 Solution Evaluation (Line 3-5) 

Either of the GenAlgo or GenAlgo-DVS is invoked, the initial solutions are evaluated 

until the halting condition, and the two energy minima’s are calculated: a) the local energy 

minima, Emin, and b) the global energy minima, ℇmin for every generation. 

 Aggregating diversity (Line 10-14) 

The solutions with the most dominating rank are chosen for reproduction using genetic 

operator’s crossover or mutation. However, in each cluster Clusm, the solutions with lowest rank 

are discarded and replaced by the newly reproduced high-ranked solutions. As previously 

described GA-A involves GenAlgo or GenAlgo-DVS for the evaluation of the solution. In case a 

solution with energy efficiency better than the previous solutions is found, zero is assigned to k2 

to terminate the inner while loop and Energymin is updated. Otherwise the value of k2 is 

incremented.  
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 Cluster Ranking (Lines 15-23) 

In any of the cluster if the local energy minima become less than the global minima, k1 is 

assigned zero. Otherwise the value k1 is incremented. Cluster ranking based on the solution 

Algorithm 3.8:  GA-Algo 

Input: 𝐸𝑇𝐸, 𝐶𝑁𝑝, 𝑑𝑒𝑎𝑑𝑖∀ 𝑡𝑖  ∈  𝐽 

Output:  𝐽 𝑡𝑜 𝐶𝑁 𝑚𝑎𝑝𝑝𝑖𝑛𝑔, ℇ𝑚𝑖𝑛, 𝑀 

1: Generate Clus; 

2: Initial Solutions Generation; 

3: INVOKE GenAlgo / GenAlgo-DVS; 

4: while 𝑘1 ≤ 𝑘1,𝑚𝑎𝑥 do 

5: while 𝑘2 ≤ 𝑘2,𝑚𝑎𝑥 do 

6: Ranking of  Solutions; 

7: Solution Reproduction carried out; 

8: INVOKE GenAlgo/GenAlgo-DVS; 

9: if any 𝑆𝑛 ∈ 𝐶𝑙𝑢𝑠𝑚 Improved then 

10: 𝑘2 ← 0; 

11: else 

12: INCREMENT 𝑘2 

13: end 

14: end 

15: if Any 𝐶𝑙𝑢𝑠𝑚 ∈ 𝐶𝑙𝑢𝑠 Improved then 

16: 𝑘1 ← 0; 

17: else 

18: INCREMENT 𝑘1; 

19: end 

20: Rank Clusters; 

21: Cluster Reproduction carried out; 

22: INVOKE GenAlgo/GenAlgo-DVS; 

23: end 
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quality is performed. Considering the cost of nodes making the clusters, cluster domination, 

Clusdom is used to rank the clusters. Mathematically, Cdom can be expressed as: 

𝐶𝑙𝑢𝑠𝑑𝑜𝑚(𝑎, 𝑏) = 𝑚𝑎𝑥(𝑥 ∈ 𝑁𝐼𝑆(𝑥)) ∑ 𝐷𝑂𝑀(𝑥, 𝑦)𝑦∈𝑁𝐼𝑆(𝑏)  ,  (3.22) 

𝐶𝑙𝑢𝑠𝑟𝑎𝑛𝑘[𝑎] = ∑ 𝐶𝑙𝑢𝑠𝑑𝑜𝑚(𝑎, 𝑏)𝑏∈𝐶,∀𝑎≠𝑏 .                 (3.23) 

The above expressions reveal that the sum of Clusdom value for each cluster can be used 

to rank the clusters. Once the clusters are ranked, the reproduction of cluster is performed in a 

similar manner to reproduction of solutions, to establish diversity in out experimental setup, the 

reproduced clusters are improved using mutation and crossover to report the best chromosome as 

the final solution. 

3.4.2.2. GenAlgo 

To cater the task scheduling and evaluation of solutions produced by GA–Algo (step 3-4 

of EMP) GenAlgo is employed. Algorithm 3.9 depicts the pseudo-code for GenAlgo. The input 

consists of an ETE matrix, deadi ∀ ti ∈ J, Clus, CNp and CN. The output are 𝐸𝑆𝑛
and M. 

 Solution Evaluation (Lines 1-3) 

Before scheduling the task on the nodes available in each cluster Clus, every solution in 

Clus is evaluated iteratively. Because the task scheduling is not carried out yet, so the energy 

consumption of Solun is set as zero.  

 Task Scheduling (Line 4-8) 

Iterations are performed through Solun to figure out the most appropriate CN. It is 

observable that feasibility of CN is satisfied only if the deadline constraint is not violated. When 

a successful allocation takes place, the energy dissipation and runtime of ti is added to CNj’s total 

energy consumption 𝐸𝑆𝑛
 and runtime (mj) respectively. 
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 Invalid Solutions: (Line 9-10) 

Taking into consideration the deadline constraint, a solution is termed as invalid if the 

aforementioned condition is not satisfied.  

 DTVS Mechanism: (Line 15-20) 

It can be gathered from the above description of GenAlgo that it does not consider CN’s 

DVS level. The DTVS mechanism is employed to conserve the energy of the nodes that are in 

idle mode. 

3.4.2.3. GenAlgo-DVS 

In Algorithm 10 the CN’s DVS module is exploited and is termed as GenAlgo-DVS due 

to the fact that DVS levels are used in the algorithm. The technique used for task evaluation and 

scheduling is similar to GenAlgo, with the exception that the mode power level is now governed 

by its DVS level. 

The main intuition behind GenAlgo-DVS is that it will enable the programmer to analyze 

the energy consumption (using DVS module) and compare it to GenAlgo. Though the input and 

output parameters of both GenAlgo and GenAlgo-DVS are the same, except that the later uses 

two additional variables. The two variables introduced are ta and k. The variable k determines the 

DVS level and ta determines whether the task has been allocated or not.   

If a task cannot be assigned at any of the DVS level due to the deadline constraint, then it 

is said to be as invalid. A zero value of ta signifies that the task has not been scheduled to any 

CN, however a 1 determines a successful assignment.  

From line 23 to 28, the run time tijk, for each task ti ∈ J on a particular CN at a specific 

DVSk level, is compared with the run time, mj, of that CN and the overall makespan, M. If tijk is 
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greater than mj but less than M, this indicates that the CNj is idle. To conserve energy at this idle 

time of the CNj DTVS mechanism is employed on the node. 

Algorithm 3.9:  GenAlgo 

Input:  𝐸𝑇𝐸, 𝐸𝐸𝐷, 𝑑𝑒𝑎𝑑𝑖 ∀ 𝑡𝑖 ∈ 𝐽, 𝐶𝑙𝑢𝑠, and 𝐽 

Output:  𝐸𝑆𝑛
 ∀ 𝑆𝑛 ∈ 𝐶𝑙𝑢𝑠 and 𝑀 

1: foreach 𝐶𝑙𝑢𝑠𝒎 ∈ 𝐶𝑙𝑢𝑠 do 

2: foreach 𝑆𝑜𝑙𝑢N ∈ 𝐶𝑚 do 

3: 𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑛
← 0; 

4: foreach 𝑡𝑖 ∈ 𝐽do 

5: if  𝐸𝑇𝐸(𝑖𝑗) + 𝑚𝑗 ≤ 𝑑𝑒𝑎𝑑𝑖then 

6: Assign 𝑡𝑖  to 𝐶𝑁𝑗; 

7: 𝑚𝑗 ← 𝑚𝑗 + 𝐸𝑇𝐸(𝑖𝑗) 

8: 𝐸𝑆𝑛
← 𝐸𝑆𝑛

+ 𝐸𝐸𝐷(𝑖𝑗); 

9: else 

10: 𝑆𝑜𝑙𝑢𝑛is invalid; 

11: end 

12: end 

13: end 

14: end 

15: foreach 𝑡𝑖𝑗𝑘  

16: if  𝑡𝑖𝑗𝑘 > 𝑚𝑗 and 𝑡𝑖𝑗𝑘 < 𝑀 

17: DTVS = 0; 

18: else 

19: DTVS = 1; 

20: end 

21: end 
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Algorithm 3.10: GenAlgo-DVS 

Input:  𝐸𝑇𝐸, 𝐸𝐸𝐷, 𝑑𝑖 ∀𝑡𝑖 ∈ 𝑇, 𝐶, and 𝑇 

Output:  𝐸𝑠𝑜𝑙  ∀ 𝑆𝑛 ∈ 𝐶𝑙𝑢𝑠 and 𝑀 

1: foreach 𝐶𝑙𝑢𝑠𝑚 ∈ 𝐶𝑙𝑢𝑠 do 

2: foreach 𝑆N ∈ 𝐶𝑙𝑢𝑠𝑚 do 

3: 𝐸𝑆𝑛
← 0; 

4: foreach 𝑡𝑖 ∈ 𝑇 do 

5: 𝑡𝑎 ← 0; 

6: 𝑘 ← 1; 

7: while 𝑡𝑎 = 0 & 𝑘 ≤ 4 do 

8: if 𝑡𝑖𝑗𝑘 + 𝑚𝑗 ≤ 𝑑𝑖 then 

9: Assign 𝑡𝑖  to 𝐶𝑁𝑗 at 𝐷𝑉𝑆𝑘; 

10: 𝑡𝑎 ← 1; 

11: 𝑚𝑗 ← 𝑚𝑗 + 𝑡𝑖𝑗𝑘  

12: 𝐸𝑆𝑛
← 𝐸𝑆𝑛

+ 𝐸𝐸𝐷(𝑖𝑗); 

13: else 

14: 𝑘 ← 𝑘 + 1; 

15: end 

16: end 

17: if 𝑡𝒂 = 0 then 

18: 𝑆𝑜𝑙𝑢𝑛 is invalid; 

19: end 

20: end 

21: end 

22: end 

23: foreach 𝑡𝑖𝑗𝑘  

24: if   𝑡𝑖𝑗𝑘 > 𝑚𝑗 and 𝑡𝑖𝑗𝑘 < 𝑀 

25: DTVS  = 0; 

26: else 

27: DTVS  = 1; 

28: end 

29: end 
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3.5. Simulation Results and Discussion 

The MATLAB is very efficient at performing operations and solving large sized matrices 

[3.25]. Therefore, the heuristics discussed in this paper were implemented using MATLAB.  The 

ETE matrices used in our simulations had dimensions as large as 100,000 tasks by 20 Machines. 

The simulations were performed on 3.4 GHz Core i7 processor with 8 GB of RAM. 

The objectives for our simulation study are 

 To measure the Energy consumption and Makespan for different sets of tasks on a pool 

of machines using the eight scheduling heuristics. 

 To measure and compare the results of energy consumption of the discussed eight 

heuristics while employing DTVS and without employing DTVS. 

 To study the effect of change in system parameters on the performance of all heuristics. 

The summary of system parameters is presented in Table 3.4. 

Table 3.4. Summary of System Parameters 

System Parameters 

Deadline scaling variable kd (1, 1.3, 1.8) 

Variance in task execution time Vtask (0.1, 0.15, 0.35) 

Variance in CN heterogeneity VCN (0.1, 0.15, 0.35) 

Number of tasks (workloads) |T| (100; 1000; 10,000; 100,000) 

Average execution time μtask 10 

Number of Computing Nodes |CN| 20 

Number of DVS levels employed DVSk 4 

Number of DTVS levels employed DTVSk 2 
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3.5.1. Workload 

The simulation experiments are divided in three categories on the basis of workload (the 

total number of tasks) namely small sized, medium sized, and large sized workloads. The 

simulations that were executed for 100 and 1000 tasks were placed in small sized workloads. The 

simulations executed for 10,000 tasks were placed in medium sized workloads, and for large 

sized workloads 100,000 tasks were considered in the simulations. The GenAlgo and GenAlgo-

DVS were not computed for the large and medium sized workloads because of their large 

execution times [3.24].  

The workload ETE matrix was generated using CVB ETE generation method as 

discussed in section 3.4. The variance in tasks, Vtask, and variance in CNs, VCN, ranged between 

0.1 and 0.35 while a value of 10 was set for µtask, the mean task execution time as in previous 

studies [3.24]. To incorporate the variance in the generation of ETE workload, the parametric 

values are chosen from real world applications as mentioned in [3.2, 3.4, 3.5, 3.16, 3.24]. As 

discussed in section 3, the deadline scaling parameter kd is used to induce heterogeneity in 

deadlines deadi, and is ranged from 1 to 1.8 [3.24]. The number of computing nodes, CNs, was 

set to 20 for all workloads in our simulations [3.4]. The number of DTVS and DVS levels was 

chosen to be 2 and 4, respectively [3.24]. The number of DTVS levels can be increased but 

having 2 DTVS levels serves better due to the fact that the CNs are either busy in executing 

some task or they are idle. The reduction in energy consumption is the main goal when the 

Computing Nodes (CNs) are idle. In the active mode the major energy savings are achieved by 

using various DVS levels.  
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3.5.2. Results and Discussion 

The simulations were carried out on small, medium, and large sized workloads by 

varying three parameters namely, VCN, Vtask, and kd. The aforementioned parameters are varied 

for our simulations and their results are compared. The simulations were carried out fifteen times 

for each set of parameters (27 sets of parameters are obtained by varying VCN, Vtask, and kd), 

making a total of 405 simulations for all of the workloads and parameters. Table 3.5 summarizes 

the workloads and their respective set of parameters used for simulations.  

The graphs of the simulation results give a great deal of information. The bold black 

horizontal line in all of the following graphs represents the grand mean of all of the heuristics. 

The black box represents the mean of the individual heuristic. The ±1 and ±1.5 times the 

standard deviation is represented by the gray box and black whiskers, respectively. Whereas the 

hexagons represent the outliers and the asterisk is used to represent extremes. 

 Table 3.5. Summary of Workloads and Parameters Considered for Simulations 

Category No. of tasks, No. of CNs System parameters 

Small sized 

workloads 

100 tasks, 20 CNs VCN = 0.1, Vtask = 0.1 and kd = 1 

100 tasks, 20 CNs VCN = 0.1, Vtask = 0.1 and kd = (1, 1.3,1.8) 

1000 tasks, 20 CNs VCN = 0.1, Vtask = 0.1 and kd = 1 

1000 tasks, 20 CNs VCN = 0.35, Vtask = 0.35 and kd = 1.8 

Medium sized 

workloads 

10,000 tasks, 20 CNs VCN = 0.1, Vtask = 0.35 and kd = 1 

10,000 tasks, 20 CNs VCN = 0.1, Vtask = 0.1 and kd = 1 

Large sized 

workloads 
100,000 tasks, 20 CNs VCN = 0.1, Vtask = 0.1 and kd = 1 
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3.5.2.1. Small Sized Workloads 

100 tasks:  

We started the evaluation of the heuristics with the small sized workload. Fig. 3.6 shows 

the makespan comparison of all of the heuristics for 100 tasks. GenAlgo performed best for this 

workload while MinMax and UtyFunc were amongst the worse, when comparing makespan. The 

GenAlgo depicts the least makespan than any of the other heuristics, because GenAlgo does not 

employ DVS methodology. The G-Min, G-Max, and G-Deadline employ DVS scheme and 

exhibit almost similar results in terms of makespan. In terms of energy consumption without 

using the DTVS scheme on this workload, the comparison is depicted in Fig. 3.7. The G-Max, 

G-Deadline, and G-Min utilized the least amount of energy and produced similar results when 

scheduling 100 tasks. ObjFunc produced results with minimum standard deviation and having a 

lower amount of maximum and minimum energy consumption. MinMax, ObjFunc, UtyFunc, 

and GenAlgo all had average energy consumption that was more than the grand mean. It can be 

observed that all the heuristics produced results with minimum outliers due to the small sized 

workload. 

Introducing the DTVS scheme in all of the heuristics rendered lower mean energy 

consumption. The DTVS scheme improves mean energy consumption for all of the heuristics by 

31.09%. The results using the DTVS for 100 tasks are depicted in Fig. 3.8. The UtyFunc 

reported lower minimum and maximum energy consumption values and had highest standard 

deviation. These simulations were executed for a tighter deadline scaling parameter kd, leaving 

less slack to be utilized for DTVS. The G-Min, G-Max, and G-Deadline have similar results with 

minimum mean energy consumption for scheduling 100 tasks. All heuristics using the DTVS had 

improved average energy consumption as compared to the results without using the DTVS. The 
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tasks having shortest execution times are allocated first when G-Min greedy heuristic is 

employed, while G-Max heuristic schedules those tasks first that have longest execution times. 

The tasks with lowest deadline di are scheduled first when G-Deadline is employed. 

The results for energy consumption for these heuristics are compared and depicted in Fig. 

3.9 and Fig. 3.10 with different values of deadline scaling parameter kd. The lower the value of 

the deadline scaling parameter kd, tighter are the deadlines for the tasks. 

The mean energy consumption with and without using the DTVS decreases when 

deadline scaling parameter (ki) is varied from 1 to 1.3, and mean energy consumption slightly 

increases when kd is varied from 1.3 to 1.8. From aforementioned discussion, it can be inferred 

that when kd is increased from 1 to 1.3, then mean energy consumption for G-Deadline, G-Min, 

and G-Max is decreased because of the fact that they make better use of the DVS and DTVS as 

compared to their counterparts. The MinMax heuristic reported large energy consumption 

because the tasks are scheduled to least efficient CNs first. On contrary, the mean energy 

consumption for these heuristics is slightly increased by varying kd (1.3 ≤ kd ≤1.8) because of the 

fact that the use of DVS for very loose deadlines results in very large makespan. 
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Fig. 3.6. Makespan for 100 Tasks (Vtask = 0.1, VCN = 0.1, kd = 1) 

 

 

Fig. 3.7. Energy Consumption (without DTVS) for 100 Tasks (Vtask = 0.1, VCN = 0.1, kd = 1) 
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Fig. 3.8. Energy Consumption (with DTVS) for 100 Tasks (Vtask = 0.1, VCN = 0.1, kd = 1) 

 

 

Fig. 3.9. Energy Consumption (without DTVS) for 100 Tasks with Various Values of kd 
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The energy consumed by each heuristic is calculated by taking product of makespan and 

the instantaneous power of the CN to which the task is scheduled. Therefore, the mean energy 

consumption with loose deadlines is increased.  

 

Fig. 3.10. Energy Consumption (with DTVS) for 100 Tasks with Various Values of kd 

1000 tasks:  

Fig. 3.11, 3.12, and 3.13 compare makespan, energy consumption without using DTVS, 

and energy consumption with using DTVS, for 1000 tasks, respectively. The GenAlgo 

outperformed all of the other heuristics in terms of makespan because it did not employ DVS and 

utilized the voltage at maximum available level. The MinMax schedules the tasks on least 

efficient CNs first. The MinMax and UtyFunc have large makespan while scheduling 1000 tasks. 

The ObjFunc and GenAlgo-DVS both have a mean makespan almost equal to the grand mean of 

all of the heuristics. The results for energy consumption for the G-Max, G-Deadline, and G-Min, 

are almost similar as they were for 100 tasks with G-Min having lowest value of mean energy 

consumption (1.6%) than the G-deadline and G-Max. The GenAlgo produced better results for 
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scheduling 1000 tasks as compared to scheduling 100 tasks due to its convergence for large sized 

workloads. When the DTVS is employed, MinMax revealed better performance as compared to 

the mean energy consumption without using the DTVS. The mean energy consumption with 

using the DTVS for all of the heuristics was improved by 17.65% when compared to mean 

energy consumption without using the DTVS. The performance of GenAlgo was degraded most 

when DTVS was employed amongst all the heuristics. This is due to the fact that the mean 

makespan for GenAlgo is lowest with low standard deviation resulting in less room for 

improvement. 

The results for the G-Deadline, G-Min, and G-Max are compared without DTVS and 

with DTVS with high PE and task heterogeneity and loose deadline. The G-Deadline proved to 

the best amongst the three heuristics considered for the mean energy consumption without using 

the DTVS while scheduling 1000 tasks. This is due to the fact that the G-Deadline heuristic 

schedules the tasks with shortest deadlines first and making the deadlines larger has little effect 

on its performance. 

 

Fig. 3.11. Makespan for 1000 Tasks (Vtask = 0.1, VCN = 0.1, kd = 1) 
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Fig. 3.12. Energy Consumption (without DTVS) for 1000 Tasks (Vtask = 0.1, VCN = 0.1, 

kd = 1) 
 

 

 

Fig. 3.13. Energy Consumption (with DTVS) for 1000 Tasks (Vtask = 0.1, VCN = 0.1, kd = 1) 
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Fig. 3.14. Energy Consumption (without DTVS) for 1000 Tasks (Vtask = VCN = 0.35, kd = 1.8) 

It can be observed from Fig. 3.14 that all of the three heuristics have lower minimum and 

larger maximum values for energy consumption that result in high standard deviation with high 

CN and task heterogeneity. There is an improvement of 46.60% in terms of energy consumption 

when DTVS is employed in these heuristics with same system parameters as depicted in Fig. 

3.15. G-Max outperformed the other two heuristics and G-Deadline revealed worst performance. 

The heuristics performed well when DTVS is employed because of the diversity in CN speeds 

and task execution times as a result of increasing the task and CN heterogeneity. 
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Fig. 3.15. Energy Consumption (with DTVS) for 1000 Tasks (Vtask = VCN = 0.35, kd = 1.8) 

 

 

Fig. 3.16. Energy Consumption (without DTVS) for 10,000 Tasks (VCN = 0.1, kd = 1,  

Vtask = 0.35) 
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3.5.2.2. Medium Sized Workloads 

10,000 tasks: 

For medium sized workloads, we first compare the energy consumption of G-Deadline, 

G-Min, G-Max, and ObjFunc for high task heterogeneity with low CN heterogeneity and tight 

deadline. The comparisons of mean energy consumption of these heuristics without employing 

DTVS and using DTVS are plotted in Fig. 3.16 and Fig. 3.17, respectively.  

Fig. 3.16 reveals that ObjFunc produces better results with lower standard deviation and 

mean energy consumption. The G-Deadline has mean energy consumption almost equal to the 

grand mean of the above listed heuristics. G-Min performed worst among these heuristics 

consuming 10.10% more energy than ObjFunc for scheduling 10,000 tasks.  

The G-Min revealed significant improvement in energy consumption as compared to the 

other three heuristics, when DTVS was employed. There is a large slack in schedules of G-Min 

due to the fact that G-Min schedules the shortest tasks first.  

The DTVS utilizes these slacks for improvement in the mean energy consumption. The 

G-Max schedules largest tasks first, leaving small tasks at the end to be scheduled.  Therefore, 

small slack in schedules impose a limitation on performance of DTVS for G-Max. An 

improvement of 27.18% is observed in the mean energy consumption by using DTVS in these 

four heuristics.  

When scheduling 10,000 tasks we compared the results of the G-Max, G-Min, MinMax, 

G-Deadline, ObjFunc, and UtyFunc for makespan and energy consumption with and without 

employing DTVS in Fig. 3.18, 3.19, and 3.20, respectively. The G-Max, G-Deadline, and G-Min 

have the lowest makespan and are similar to each other. The MinMax has slightly higher 
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makespan than the G-Max, G-Deadline, and G-Min. ObjFunc and UtyFunc produced worst 

results in terms of makespan (please see Fig. 3.18).  

 

Fig. 3.17. Energy Consumption (with DTVS) for 10,000 Tasks (VCN = 0.1, kd = 1,  

Vtask = 0.35) 
 

 

Fig. 3.18. Makespan for 10,000 Tasks (Vtask = VCN = 0.1, kd = 1) 



 

71 
 

 

Fig. 3.19. Energy Consumption (without DTVS) for 10,000 Tasks (Vtask = VCN = 0.1, kd = 1) 

 

 

Fig. 3.20. Energy Consumption (with DTVS) for 10,000 Tasks (Vtask = VCN = 0.1, kd = 1) 

The mean energy consumption for scheduling 10,000 tasks without deploying DTVS is 

depicted in Fig. 3.19. Fig. 3.20 shows the mean energy consumption with DTVS scheme. By 

comparing Fig. 3.19 and Fig. 3.20, it is revealed that a significant improvement in the mean 
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energy consumption of MinMax is achieved when DTVS is used. There is a decrease of 10.98% 

in the mean energy consumption of all of the heuristics with the deployment of DTVS. There is 

an improvement of 31.71% in mean energy consumption of the MinMax heuristic, which is 

significant when considering 10.98% improvement for all of the heuristics collectively.  

 

3.5.2.3. Large Sized Workloads 

100,000 tasks: 

The ObjFunc produced best results in terms of mean energy consumption and mean 

makespan for large sized workloads, because ObjFunc considers multiple tasks and multiple CNs 

in its objective function when assigning the tasks to the CNs. The results for makespan and 

energy consumption (without DTVS) for large sized workloads are depicted in Fig. 3.21 and 

3.22, respectively. UtyFunc produced results with large makespan and mean energy consumption 

because it considers the relative importance of speed and the execution time of the tasks, 

simultaneously. This results in a tradeoff between makespan and energy consumption, failing to 

produce better results. The G-Max, G-Deadline, and G-Min, all produced similar results with 

lower value of mean energy consumption and mean makespan than the grand mean.  

UtyFunc revealed significant improvement in the mean energy consumption when DTVS 

was used. Overall 31.53% reduction in mean energy consumption of all of the heuristics is 

observed by using DTVS scheme. The results for mean energy consumption with DTVS are 

depicted in Fig. 3.23. 

On the basis of the results obtained in this section we can safely draw a conclusion that 

irrespective of the workload size the heuristics G-Deadline, G-Min, and G-Max exhibits better 

results in terms of energy savings. If we categorize the workload size we observe that the 
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GenAlgo-DVS reported better results for small sized workload. Nevertheless, for large sized 

workload ObjFunc produces promising results. 

 

Fig. 3.21. Makespan for 100,000 Tasks (Vtask = VCN = 0.1, kd = 1) 

 

 

Fig. 3.22. Energy Consumption (without DTVS) for 100,000 Tasks (Vtask = VCN = 0.1, kd = 1) 

 



 

74 
 

 

 

Fig. 3.23. Energy Consumption (with DTVS) for 100,000 Tasks (Vtask = VCN = 0.1, kd = 1) 

3.6. Conclusions 

With the growing demand of HPC for heavy computations, the power cost of the 

aforementioned is acting as a limiting factor and needs to be controlled and overcome using 

power-aware system solutions. This paper underlines the role of voltage level of nodes in 

cluster’s power consumption and presents a methodology, termed as PAJS, that combines 

energy-efficient job scheduling with node awareness. We have analyzed and compared eight task 

scheduling techniques. The role of power optimization in modern HPC is emphasized and the 

proposed PAJS approach optimizes the tradeoff between energy efficient nodes (to reduce the 

amount of energy consumed) and performance aware patterns (to minimize the makespan). G-

Max, G-Deadline and G-Min performed better for all sized workloads as compared to other 

heuristics. The minimum overall reduction in the energy consumption using DTVS was 10.98%. 

Nevertheless, the maximum energy savings using DTVS is 31.71% as compared to when DTVS 



 

75 
 

was not employed. For small-sized workloads GenAlgo-DVS also yielded better results in terms 

of mean makespan and mean energy consumption. However, for large-sized workloads ObjFunc 

performed well in addition to G-Max, G-Deadline, and G-Min. 

The simulation results approve the superior performance of all the heuristics of the 

proposed methodology (PAJS) in terms of reduction in the makespan and energy consumption of 

the nodes comprising the HPC. The work presented here is not just restricted to clusters but can 

easily be adapted to grids, workstations, and datacenters. Both on the practical and theoretical 

point of view, we have introduced a coherent framework for the optimization of power in various 

resource scheduling strategies in HPC. 
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4. ENERGY EFFICIENT RESOURCE SCHEDULING 

THROUGH VM CONSOLIDATION IN CLOUD 

COMPUTING 

This paper
1
 is to be submitted in a reputed cloud computing journal. The authors of the 

paper are Ahmad Fayyaz, Muhammad Usman Shahid khan, and Samee U. Khan. 

4.1. Introduction 

The dual influence of increasing cloud computing data center energy consumption and 

increasing energy costs has raised the significance of cloud computing data center efficiency as a 

policy to decrease costs, accomplish size and indorse environmental responsibility. The data 

centers are the most integral part for most of Information Technology (IT) organizations. Many 

renowned organizations, such as Google, Microsoft, IMB, and Amazon have big data centers 

that contain thousands of computing servers around the world to provide fast and efficient cloud 

computing services to the customers [4.1]. The past decade has witnessed a phenomenal increase 

in the number of data centers, and the size of the existing data centers. The aforementioned 

situation have increased the word-wide power consumption that drive many research 

communities to carry out research on the data center energy consumption, energy efficient 

techniques for computing units, and power consumption prediction of the data centers [4.2-4.6]. 

In a study conducted by the Environmental Protection Agency (EPA) in 2006 [4.2] stated that the 

data centers are consuming more than 61 Tera Watt hour (TWh) of electricity per year that was 

                                                           
1 The material in this chapter was co-authored by Ahmad Fayyaz, Muhammad Usman Shahid 

Khan, and Samee U. Khan. Ahmad Fayyaz had primary responsibility for designing the system 

model, conducting experiments and collecting results. Ahmad Fayyaz also drafted and revised all 

versions of this chapter. 
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1.5% of the total power consumption of the whole US for the same year. The report also stated 

that the data center power consumption will have an annual growth of 16% over the next 10 

years. Figure 4.1 shows the Emerson Network Power modeled energy consumption for a typical 

data center and evaluated how energy is used within the data center. The power usage is 

classified as either “demand-side” or “supply-side.” Demand-side systems are the servers, 

storage, communications and other IT systems that support the data center business. The supply-

side systems support the demand side. 

The propagation of Cloud computing has stemmed in establishing large-scale data 

centers. The American Society of Heating, Refrigerating and Air-Conditioning Engineers 

(ASHRAE) [4.7], has published a trend that by 2014, the energy and infrastructure costs of the 

data center will contribute about 75% in the total data center cost, while IT will contribute the 

remaining 25% in the overall operating cost of the data center [4.8]. 

The computing resources quantity and hardware power inefficiency are not the only 

factors that result in tremendously energy consumption in the data centers. The inefficient use of 

data center resources, such as CPUs and memory play a big part in the increase of energy 

consumption.  

In [4.9], the authors collected a data from more than 5000 computing servers in a data 

center over a period of six-months and reported that the data center servers are usually not idle 

but the server utilization is rarely 100%. More than 90% of the servers were running at 10-50% 

utilization of their total 100% capacity. This phenomenon results in extra expenses on over 

provisioning that directly increase the total power consumption cost of the data center [4.9]. 

Moreover, handling and preserving over-provisioned data center’s resources result in increased 

Cost of Ownership (TCO). In another study [4.10], authors reported that if the data center servers 
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are completely idle even then the power consumption is 70% of their total peak power 

consumption. Therefore, it is a known conclusion that the underutilization of the data centers 

servers is extremely inefficient with respect to the energy consumption.  

 

Fig. 4.1. Data Center Energy Consumption Partition 

In [4.11], a comprehensive study is conducted that monitor energy consumption of 

Grid’5000 infrastructure. The authors reported significant opportunities for energy saving in the 

data center via techniques, such as switching servers on and off with respect to utilization or run 

the servers on low power mode. The data center’s energy consumption can be reduce by 

switching idle servers to low-power modes, such as hibernation or sleeping, this process will 

reduce idle power consumption. There are some other critical issues that arise from high energy 

consumption of computing resources, such as the power required by the cooling system 
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operation of the data center. A report states that for each power Watt consumed by a computing 

entity or a server, data center has to consume another 0.5-1 Watt for the cooling system to keep 

the computing entity cool [4.12]. Moreover, higher the energy consumption by the data center’s 

infrastructure, higher is the carbon dioxide (CO2) emissions that contribute to the greenhouse 

effect [4.13]. One simple solution for the energy inefficiency in the data centers is to involve 

virtualization technology [4.14]. The virtualization technology provides opportunities to the 

Cloud providers to create several Virtual Machines (VMs) on a single physical computing server. 

This virtualization phenomenon improves the resource utilization and also increases the Return 

On Investment (ROI). Moreover, the use of live migration [4.15], we can dynamically 

consolidate the VMs to the minimal number of physical servers according to their current 

resource requirements. 

The rest of the paper is arranged as follows. Related work is elaborated in Section 4.2. 

The system model, problem formulation, and implementation details of the VM Consolidation 

model are presented in Section 4.3. Section 4.4 presents the simulation results and their 

comparison, while in Section 4.5 concluding remarks are presented. 

4.2. Related Work 

A number of literature works have been published that proposed solutions to reduce 

carbon dioxide emission amount of the Cloud data centers. One group of researchers focused on 

the reduction of energy consumption in a single data center or by only considering the hardware 

aspects of the data centers [4.19], [4.20]. The data centers are benefited from some renowned 

technologies, such as virtualization [4.21]. Among the virtualization techniques, there are VMs 

migration [4.23] and consolidation [4.24]. However, the main issue in the VM migration or 

consolidation is its complexity. Moreover, the VMs resumption and suspension causes system 
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overloading [4.15]. Furthermore, these methodologies are more of a reactive methods rather than 

proactive and preventive. Therefore, preventive methods are more important and effective. As 

stated in the introduction that an idle server consumes almost half of the power compared to the 

power it consumes at peak load [4.18]. The authors of [4.25] introduce a dynamic right-sizing 

on-line algorithm that predicts how many servers will be required to execute the arriving 

workload of the data center. The experimental results of [4.24] stated that dynamic right-sizing 

achieves significant energy savings, but the technique requires different power levels of the 

servers and servers should be able to transit between different states. In a similar work [4.23], 

Green Open Cloud (GOC) architecture is proposed that has advance resource reservation for the 

users to increase the prediction of the arrived requests. The aforementioned technologies are 

implemented within a data center and aim to decrease the energy consumption, while the 

technologies do not specifically consider carbon emission. The reduction in the data center 

energy consumption will not unavoidably reduce the carbon footprint. The works presented in 

[4.17] and [4.22] reflect the availability of both non-polluting and polluting energy sources in a 

single data center. The techniques use prediction-based scheduling algorithms to increase usage 

of green energy sources. 

The Green Scheduler considers the servers to be in an order [4.30, 4.31]. It then starts 

scheduling the tasks to first server from the pool until that server can execute no more tasks and 

is overloaded. The scheduler then schedules the tasks to the next server and so on. Servers that 

come last from the pool of servers are idle most of the time because of the fact that the tasks are 

scheduled to servers that come earlier in the pool. Consolidation of tasks is achieved at the time 

of allocation of tasks. Our work is different from Green scheduler as it has variable sized 

workload as compared to the fixed sized workload of Green scheduler. In addition our technique 
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consolidates the tasks even after the allocation phase is over i.e. we migrate the tasks from one 

server to the other to minimize the energy consumption even if the task is in execution phase.  

The DENS [4.32] methodology selects the best-fit computing resources for the execution 

of tasks by considering the communication potential and load level of data center components. 

Its aim is to achieve balance between traffic demands, job performances, energy consumed by 

the data center, and the job QoS requirements. 

Round Robin [4.33] scheduler equally distributes the communicational and computing 

loads among the switches and servers. As a result no server is overloaded and the network traffic 

is balanced. This scheduler is least efficient in terms of energy consumption because all the 

switches and servers are busy most of the time. In our work the workload is exponentially 

distributed to mimic the real time arrival of workload. We are also incorporating consolidation of 

tasks whereas Round Robin is not using any type of consolidation technique.  

4.3. VM/Task Consolidation Methodology 

Underutilization of servers in a data center is a major cause of higher power 

consumption. Higher number of running servers results in higher power consumption. Therefore, 

optimal utilization of servers will result in lesser number of turned on servers and high power 

efficiency. There is a growing interest in reducing energy consumption of data centers. Cloud 

data centers use virtualization technology to host multiple virtual machines (VMs) on a single 

physical server. 

Virtual Machine (VM) placement and scheduling are important characteristics of data 

center that consolidate the servers resulting in cutback of the amount of hardware usage. The 

general approach for handling the VM placement problem is to have a mathematical 

representation or a metric of resource utilization. Mapping a VM correctly to a PM is based on 
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the capacity of the PM and the resource requirements of the VM. VM placement is an important 

research domain in data centers where provisioning is performed manually. By applying efficient 

VM placement algorithms, Cloud providers are able to enhance energy efficiency. 

Most of the methodologies proposed in the literature only considered CPU utilization 

(defined in MIPS) as a decision metric for the above stated approaches. Approaching the 

problem with a single varying parameter and keeping other parameters static solves the problem 

in the controlled environment. However, the assumption of non-varying parameters reduces the 

effectiveness of the proposed methodologies in real environment. Therefore, there is a need of 

research endeavors that are not based on a single parameter. In this regard we aim to carve a 

strategy that considers the following constraints, all at once. 

 CPU constraints 

 Memory constraints  

 Bandwidth constraints 

4.3.1. System Model 

 

Power consumption 𝑃(𝑢) is defined as a function of CPU utilization [4.26]. 

𝑃(𝑢) = 𝑓. 𝑃𝑚𝑎𝑥 + (1 − 𝑓). 𝑃𝑚𝑎𝑥 . 𝑢,                    (4.1) 

where 𝑃𝑚𝑎𝑥 is the power consumed by computing servers, the fraction of power used by idle 

server is given by 𝑓 and CPU utilization is denoted by 𝑢. 

Total energy consumption by a server is given by (Eq. 4.2). The CPU utilization may 

vary with respect to time due to variability in workloads 

𝐸 =  ∫ 𝑃(𝑢(𝑡)) 𝑑𝑡
.

𝑡
.                      (4.2) 
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4.3.2. Problem Formulation 

Consider a cloud consisting of S servers, each having its own memory. Let the i-th server 

be denoted by Si and let 𝐷𝑖 denote the total memory capacity of Si. Suppose that the i-th server 

has a set of VMs, V = {v1, v2, v3, …., vM}, where M represents the total number of VMs at a 

particular server at a given time.  𝑉𝑀𝑗
𝑖 denotes j-th VM on the i-th server. Suppose 𝑑𝑗

𝑖 is the 

memory consumed by the 𝑉𝑀𝑗
𝑖 and 𝐴𝑀𝑖 is the available memory at Si, such that 

𝐴𝑀𝑖 =  𝐷𝑖 − ∑ 𝑑𝑗
𝑖

𝑀

𝑗=1
                                               (4.3) 

∑ 𝑑𝑗
𝑖

𝑀

𝑗=1
   =     𝑑𝑖                      (4.4) 

where 𝑑𝑖 is the total memory being used by all the VMs at Si at any time. 

Each 𝑉𝑀𝑗
𝑖 has some CPU requirement, i.e., the CPU utilization of  𝑉𝑀𝑗

𝑖 is given by 𝐶𝑃𝑈𝑗
𝑖, 

while the overall consumed CPU utilization of the server Si is represented by 𝑐𝑝𝑢𝑖. 

∑ 𝐶𝑃𝑈𝑗
𝑖

𝑀

𝑗=1
=  𝑐𝑝𝑢𝑖         (4.5) 

𝐶𝑃𝑈𝑎𝑣𝑎𝑖𝑙 =  𝐶𝑃𝑈𝑖 −  𝑐𝑝𝑢𝑖        (4.6) 

where 𝐶𝑃𝑈𝑖 is total CPU power and 𝐶𝑃𝑈𝑎𝑣𝑎𝑖𝑙  is the available CPU power of the server Si. 

The Data Center Network (DCN) is the communicational backbone of the cloud 

computing [4.27]. We consider Fat-tree DCN architecture in our study because of its better 

performance in terms of throughput and average network delay [4.28]. The Fat-tree DCN 

architecture is switch-centric network topology consisting of k pods. There are k servers and k 

switches within each pod. The switches are ordered in two successive layers of k/2 switches. The 

lower layer (edge layer) switches are linked to k/2 servers and k/2 upper layer (aggregation layer) 
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switches in each pod. Each aggregation layer switch in the pod is linked to k/2 core level 

switches, out of the total of (k/2)
2
 core level switches. The Fat-tree DCN architecture is shown in 

Figure 4.2. Let the power consumed at core level switches be denoted by Pcore, power consumed 

by the aggregation level switches by Pagg, and at the edge level switches by Pedge, respectively. In 

addition the total power consumed by all the servers is given by 𝑃𝑠𝑒𝑟 where 𝑃𝑗
𝑖 is the power 

consumed by  𝑉𝑀𝑗
𝑖. 

𝑃𝑠𝑒𝑟 = ∑ .𝑆
𝑖=1 ∑ 𝑃𝑗 

𝑖𝑀
𝑗=1                                                             (4.7) 

The bandwidth required by 𝑉𝑀𝑗
𝑖 on server Si is represented by 𝐵𝑊𝑗

𝑖 and the bandwidth of 

the slowest link, l, between two servers is denoted by 𝐵𝑊𝑙. Suppose that the utilized bandwidth 

of the link l at any given time is denoted by 𝐵𝑊𝑙
𝑢𝑡𝑖𝑙𝑖𝑧𝑒𝑑. The free bandwidth on the slowest link, 

𝐵𝑊𝑓𝑟𝑒𝑒 is then given as 

𝐵𝑊𝑓𝑟𝑒𝑒 =  𝐵𝑊𝑙 −  𝐵𝑊𝑙
𝑢𝑡𝑖𝑙𝑖𝑧𝑒𝑑       (4.8) 

 

Fig. 4.2. Fat-Tree DCN Architecture [4.28] 
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   Table 4.1.   Notation/ Acronyms and their Meanings 

Symbols Meaning Symbols Meaning 

DPM Dynamic Power Management DTVS 
Dynamic Threshold Voltage 

Scaling 

DVS Dynamic Voltage Scaling DVFS 
Dynamic Voltage and frequency 

Scaling 

Si i-th server AMi Available memory at Si 

Di Total memory capacity of Si 𝑑𝑖 
Total memory used by all the 

VMs at Si 

 𝑉𝑀𝑗
𝑖 j-th VM on the i-th server 𝐶𝑃𝑈𝑗

𝑖 CPU utilization of  𝑉𝑀𝑗
𝑖 

𝑑𝑗
𝑖 Memory consumed by the 𝑉𝑀𝑗

𝑖 𝑐𝑝𝑢𝑖 
Overall CPU utilization of the 

server Si 

𝑃𝑗
𝑖 Power consumed by  𝑉𝑀𝑗

𝑖 𝐶𝑃𝑈𝑖 Total CPU power of the server Si 

𝐵𝑊𝑗
𝑖 

Bandwidth required by 𝑉𝑀𝑗
𝑖 on 

server Si 
𝐶𝑃𝑈𝑎𝑣𝑎𝑖𝑙 

Available CPU power of the 

server Si 

Pagg 
Consumed by the aggregation 

level switches 
𝑃𝑠𝑒𝑟 

Total power consumed by all the 

servers 

𝐵𝑊𝑓𝑟𝑒𝑒 
Free bandwidth on the slowest 

link 
Pedge 

Power consumed by edge level 

switches 

𝐵𝑊𝑙
𝑢𝑡𝑖𝑙𝑖𝑧𝑒𝑑 Utilized bandwidth of the link l Pcore 

Power consumed by core level 

switches 

𝐵𝑊𝑙 Bandwidth of the slowest link DCN  Data Center Network 

 

Our goal is to solve the multi-objective optimization problem with multiple constraints. 

The problem can be formulated as follows: 

 The overall power consumption on both the servers and the switches in the DCN is 

minimized. 

Mathematically 

min (𝑃𝑠𝑒𝑟)    +     𝑚𝑖𝑛 ∑(𝑃𝑐𝑜𝑟𝑒 , 𝑃𝑎𝑔𝑔 , 𝑃𝑒𝑑𝑔𝑒) 

and 
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𝑚𝑖𝑛 ∑𝑚𝑡𝑗  
𝑖

𝑛

𝑖=1

 

Subject to the following constraints 

𝐵𝑊𝑗
𝑖  ≤   𝐵𝑊𝑓𝑟𝑒𝑒         (4.9) 

𝐶𝑃𝑈𝑗
𝑖  ≤   𝐶𝑃𝑈𝑎𝑣𝑎𝑖𝑙        (4.10) 

∑ 𝑑𝑗
𝑖

𝑀

𝑗=1
   ≤     𝐷𝑖       (4.11) 

 𝑠𝑖𝑧𝑒(𝑉𝑀𝑗
𝑖) ≤ 𝐴𝑀𝑖        (4.12) 

∑ 𝐶𝑃𝑈𝑗
𝑖

𝑀

𝑗=1
≤ 𝐶𝑃𝑈𝑖        (4.13) 

Constraint (4.9) makes sure that the free BW is more than the BW required by the VM 

for allocation / migration. Similarly, constraint (4.10) is there to ensure that there is enough CPU 

power available for the incoming VM. The memory consumed by all the running VMs must be 

less than the total memory of the server and is depicted as constraint (4.11). In constraint (4.12), 

the size of the VM must be less than the available memory of server where the VM is being 

allocated and/or migrated. Constraint (4.13) guarantees that the CPU power consumed by all the 

running VMs must be less than the total CPU power of the server. 

4.3.3. VM Consolidation Methodology 

The task/VM scheduling is a two-step process. First the tasks arriving at the VM monitor 

(one server acts as VM monitor) are allocated to the servers in the cloud computing data centers. 

The tasks, as they arrive, are allocated to the servers starting from one side of the fat-tree 

network. The first server in the network is allocated tasks until anymore allocation of tasks  
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Algorithm 4.1: VM Consolidation 

Definitions: S= set of server machines, tag = status of server, Maxvm = maximum number of 

Virtual machines that can be hosted a machine, £ = list of over utilized servers, ¥= list of filled 

servers, µ = list of under-utilized servers, £ = list of not filled servers, Þ = list of OFF servers 

1. for each s ∈  S do 

2.     e  ← getEnergyCosumption(s) 

3.     vmc ← getHostedVMCount(s) 

4.    if e > 0.9 then 

5.       £ ← £ . 𝑎𝑝𝑝𝑒𝑛𝑑(s) 

6.   else if e > 0.5 and vmc = Maxvm 

7.       ¥← ¥ . 𝑎𝑝𝑝𝑒𝑛𝑑(s) 

8.   else if e < 0.5 and vmc = Maxvm 

9.        µ ← µ . 𝑎𝑝𝑝𝑒𝑛𝑑(s) 

10.    else if  e > 0.1 and vmc < Maxvm 

11.        Ω ← Ω . 𝑎𝑝𝑝𝑒𝑛𝑑(s) 

12.    else  

13.        Þ ← Þ . 𝑎𝑝𝑝𝑒𝑛𝑑(s) 

14.     end if 

15. end for  

16. for each s ∈ £ do 

17.      vm  ←getVM(s) 

18.      oh ← getServerfromNotFilledOrOffLists(Ω, Þ) 

19.      if oh != NULL then 

20.          if  migrateVM(vm,oh) then 

21.              £ ←£.remove(s) 

22.              reemoveServerFromNotFilledOrOffLists(Ω, Þ,oh) 

23.         else 

24.            goto Line 18 

25.       end if 

26. end for 

27. for each s ∈ Ω do 

28.      while vm  ←getVM(s) 

29.            oh ← getServerfromNotFilledLists (Ω,s) 

30.            if oh != NULL then 

31.                 if !migrateVM(vm,oh) then 

32.                      goto Line 29 

33.                end if 

34.            else 

35.                  Break 

36.           end if 

37.      end while 

38.     if vm == NULL then 

39.         Ω ← Ω.remove(s) 

40.     end if 

41. end for 
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overload the server. Further, the tasks are allocated to the next server and son on until all the 

tasks are exhausted. Virtual machines are created for the execution of each task allocated to the 

servers based on the CPU power and memory requirement of each task.  The task continues to be 

executed on this VM until it is completed or migrated.  

Second, when the pool of tasks to be allocated is exhausted, VM/task migration is 

initiated. In this step the VM monitor periodically checks al the servers for the under-utilized 

servers. The process for migration is depicted in Algorithm 4.1. A server that is loaded with tasks 

such that its 90% of its total capacity is being utilized in the execution of tasks is termed as 

overloaded. We consider 90% utilization of server by tasks as overloaded because we leave 10% 

of CPU power for the server’s own operations. On the other hand we consider a server being 

under-utilized if 30% of the CPU capacity is used by the tasks execution. The servers those are 

assigned no tasks are turned off using DPM and DTVS to reduce the energy consumption in the 

idle mode.  

When the VM monitor is done calculating the utilization if servers, it then migrates tasks 

from under-utilized servers to those running servers that can complete the tasks within the 

deadlines of the tasks. Here a delay is incurred due to the migration process and is dependent on 

the slowest link between the servers. Therefore, before migrating the task the estimated time to 

migrate and the time of execution at the target server is calculated so as to check whether the 

task’s deadline can be met at the targeted server. If this condition is satisfied then the task is 

migrated and the server from which the task is migrated is turned off by using DTVS. The set of 

conditions that need to be satisfied for a migration to take place are listed and explained in the 

problem formulation. If the migrations are increased then the links and switches will experience 

congestion as all the traffic will be routed through the switches. Therefore the power consumed 



 

94 
 

by the communication links and the switches is increased. On the contrary, the power of servers 

is reduced by migrating tasks from under-utilized servers and turning them off. Migration of 

tasks even when they are in execution is termed as task consolidation. 

4.4. Performance Evaluation 

4.4.1. GreenCloud Simulator 

We used the GreenCloud simulator to implement our proposed methodology for the 

purpose of performance evaluation. GreenCloud simulator was developed as an extension of the 

Network Simulator NS2 [4.29]. It captures the communication processes of the data center at the 

packet level. GreenCloud simulator provides users with a tool that monitors the energy 

consumed by servers, switches, and communication links within a cloud computing data center. 

Dynamic Voltage and Frequency Scaling (DVFS) and Dynamic Power Management (DPM) are 

the two energy efficient optimization techniques that are used by the simulator but in our 

proposed work we incorporate Dynamic voltage Scaling (DVS) and Dynamic Threshold Voltage 

Scaling (DTVS) in the GreenCloud simulator to further achieve reduction in energy consumption 

of the cloud data center. 

The deadline based model is deployed for the execution of the workload in the simulator. 

The size of the tasks within the workload is kept variable so as to mimic the real time workloads.  

4.4.2. Simulation Scenario 

In our simulation setup we used the Fat-tree DCN architecture because of its better 

performance in terms of throughput and average network delay. The Fat-tree architecture is 

switch-centric network topology consisting of n pods as shown in Fig. 4.2 and explained in 

Section 4.3.2. To interconnect the servers inside the racks we used links with a bandwidth of 
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1Gigabit Ethernet (GE) while for the interconnection of the core, aggregation, and edge layer 

switches we used 10 GE links. To make the workload more realistic the GreenCloud workload is 

exponentially distributed.  

4.4.3. Simulation Results 

The simulation results are evaluated in terms of the power consumption of the cloud data 

center. Three scheduling techniques namely Green Scheduler, Round Robin, and Random 

scheduling are implemented. The results are then compared with the same scheduling techniques 

when VM/task consolidation is incorporated in them. It is important to note here that in the 

Green scheduler the consolidation of VMs/tasks is achieved at the time of allocation of tasks. It 

then starts scheduling the tasks to the first server from the pool until it becomes overloaded. In 

addition, the Green scheduler technique has fixed size workload but we considered a variable 

sized workload when we used task consolidation. The second technique, Round Robin scheduler, 

equally distributes the communicational and computing loads among the switches and servers. 

As a result no server is overloaded and the network traffic is balanced. Therefore, there is more 

room for performing VM consolidation in this technique as compared to the Green scheduler. 

Tasks are also scheduled randomly on different servers just for the purpose of comparison with 

our proposed work. The Random scheduler is included as a reference so that we can then 

calculate how much improvement in power consumption is achieved after VM migration is 

performed. 

The results for the power consumption of the switches and servers are plotted 

individually against the changing load of the data center from 30% to 90% in figure 4.3 and 

figure 4.4. Figure 4.3 depicts power consumption of all the servers in the data center with the 

changing load of the cloud data center. It can be observed that the power consumption of the 
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servers has decreased significantly after performing VM migration. As the load in the data center 

increases, the number of task migrations is decreased because all of the servers then work near to 

their full capacity, leaving less or no space for VM migrations and as a result power consumption 

is slightly increased. In addition, it can also be noted that the scheduling techniques have higher 

power consumption when VM migration is not performed.  

 

Fig. 4.3. Power Consumption of all Servers 

In Figure 4.4, the results are plotted for the power consumption of all the switches in the 

cloud data center. When we perform VM migration in the data center, the network traffic 

increases due to the fact that many tasks are being transferred from one server to the other 

through the communication links and the switches. This causes congestion at the links and the 

switches. Due to the increased load, the communication links and switches consume more power 

than they would consume in the absence of VM migration. The results in Figure 4.4 affirm our 

intuition as it can be observed that the power consumption has increased when task migration is 
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performed. It can also be noted that as the load of the data center increases the power 

consumption in case of VM migration is decreased because with the increase in the load of the 

data center there is less room for VM migration. The power consumption at the switches and the 

communication links is almost uniform when VM migration is not performed in the 

aforementioned schedulers. 

 

 Fig. 4.4. Power Consumption of all Switches and Communication Links 

Finally we plot the total power consumption of all the switches and servers (the net sum 

of power consumption of servers, switches and the communication links) in the cloud data 

center. Figure 4.5 depicts the results of the net power consumption of the data center both with 

and without task migration. By combining the effect of the power consumption of the servers and 

the switches we are still achieving power savings although the switches and the communication 

links were using more power when VM migrations increased. When the load of the data center is 
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increased the net power consumption decreases because at this point the power consumed by the 

switches and communication links is significantly decreased as depicted in fig 4.4. 

 

Fig. 4.5. Net Sum of Power Consumption of Switches and Servers in the Data Center 

4.5. Conclusion 

The work is further extended and the effect of task consolidation is studied and analyzed. 

By consolidating the tasks on a fewer number of servers the overall power consumed can be 

significantly reduced. The tasks are first allocated to suitable servers until all the tasks are 

exhausted. The idle servers are then turned off by using DTVS. The Virtual Machine (VM) 

monitor checks for under-utilized, partially filled, over-utilized, and empty servers. The VM 

monitor then migrates the tasks to suitable servers for execution if a set of conditions is met. By 

this way, many servers those were under-utilized get free and are turned off by using DTVS to 
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save power. Simulations results confirm our study and a substantial reduction in the overall 

power consumption of the cloud data center is observed. 
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5. CONCLUSIONS 

With the growing demand of HPC for heavy computations, the power cost of the 

aforementioned is acting as a limiting factor and needs to be controlled and overcome using 

power-aware system solutions. This paper underlines the role of voltage level of nodes in 

cluster’s power consumption and presents a methodology, termed as PAJS, that combines 

energy-efficient job scheduling with node awareness. We have analyzed and compared eight task 

scheduling techniques. The role of power optimization in modern HPC is emphasized and the 

proposed PAJS approach optimizes the tradeoff between energy efficient nodes (to reduce the 

amount of energy consumed) and performance aware patterns (to minimize the makespan). G-

Max, G-Deadline and G-Min performed better for all sized workloads as compared to other 

heuristics. The minimum overall reduction in the energy consumption using DTVS was 10.98%. 

Nevertheless, the maximum energy savings using DTVS is 31.71% as compared to when DTVS 

was not employed. For small-sized workloads GenAlgo-DVS also yielded better results in terms 

of mean makespan and mean energy consumption. However, for large-sized workloads ObjFunc 

performed well in addition to G-Max, G-Deadline, and G-Min. 

The simulation results approve the superior performance of all the heuristics of the 

proposed methodology (PAJS) in terms of reduction in the makespan and energy consumption of 

the nodes comprising the HPC. The work presented here is not just restricted to clusters but can 

easily be adapted to grids, workstations, and datacenters. Both on the practical and theoretical 

point of view, we have introduced a coherent framework for the optimization of power in various 

resource scheduling strategies in HPC. 

The work is further extended and the effect of task consolidation is studied and analyzed. 

By consolidating the tasks on a fewer number of servers the overall power consumed can be 
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significantly reduced. The tasks are first allocated to suitable servers until all the tasks are 

exhausted. The idle servers are then turned off by using DTVS. The Virtual Machine (VM) 

monitor checks for under-utilized, partially filled, over-utilized, and empty servers. The VM 

monitor then migrates the tasks from under-utilized servers to suitable servers for execution if a 

set of conditions is met. By this way, many servers those were under-utilized get free and are 

turned off by using DTVS to save power. Simulations results confirm our study and a substantial 

reduction in the overall power consumption of the cloud data center is observed. 

 

 

 

 

 

 

 


