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ABSTRACT  

 Wheat (Triticum spp.) is one of the most important cereal crops grown in the U.S., with 

an average of 50 million acres planted on an annual basis. Wheat is milled into flour or semolina, 

which is used to make bread, cookies, noodles, and pasta. Because some consumers eat raw 

flour, it is necessary for it to be free of pathogens including Escherichia coli and Salmonella 

enterica. The fecal matter of cattle and poultry often contains these bacteria and can contaminate 

wheat. Currently, there are no requirements for controlling E. coli and S. enterica in wheat, 

which has resulted in outbreaks of both pathogens. Thus, future research must focus on the 

development of processes that control these pathogens in wheat. Possibilities include feeding 

livestock probiotics, pasteurization, irradiation, and non-thermal plasma processing. The further 

development and implementation of these processes would decrease the safety risks associated 

with consuming raw wheat.  
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GENERAL INTRODUCTION 

 Wheat (Triticum spp.) is a cereal grain planted on an average of 50 million acres of land 

every year in the U.S. (United States Department of Agriculture Economic Research Service 

2017b). There are six classes of wheat produced in the U.S. including hard red spring wheat 

(Triticum aestivum L.), hard red winter wheat (Triticum aestivum L.), hard white wheat (Triticum 

aestivum L.), soft red winter wheat (Triticum aestivum L.), soft white wheat (Triticum aestivum 

L.), and durum wheat (Triticum durum Desf.). Each class of wheat has unique uses from cookies 

to spaghetti, and each class is grown in different regions of the U.S. Wheat flour and semolina 

(the products of milling wheat) are also used as ingredients in numerous products not commonly 

associated with wheat, including candy and sauces. Despite the numerous end uses, all wheat is 

currently grown outdoors and is exposed to pathogenic microorganisms including Escherichia 

coli and Salmonella enterica (Berghofer et al. 2003). This exposure can result in foodborne 

illness when flour or semolina is consumed without being properly cooked or baked. 

 E. coli and S. enterica are gram negative, rod-shaped, non-spore forming, facultative 

anaerobic bacteria that are practically ubiquitous in the environment (Government of Canada 

2014; 2011). Both of these bacteria are Enterobacteriaceae that cause illness in both humans and 

animals (i.e. they are zoonotic). There are seven serovars of E. coli that are of the upmost 

concern including O26, O45, O103, O111, O121, O145, and O157 because these serovars cause 

the majority of foodborne illnesses (Centers for Disease Control and Prevention 2015). These 

serovars of E. coli produce Shiga toxins when ingested by humans, and these toxins cause 

illnesses of varying degrees of severity from mild diarrhea to hemolytic uremic syndrome. One 

of the serovars of S. enterica that causes the majority of foodborne illness is Typhimurium 



2 
 

(Centers for Disease Control and Prevention 2016b). This serovar of S. enterica colonizes the 

intestines of humans when ingested and causes enterocolitis (Coburn et al. 2007).  

 Both E. coli and S. enterica colonize the digestive systems of livestock, which typically 

serve as the main host of these pathogenic bacteria (Winfield and Groisman 2003). These 

livestock animals shed these pathogens in their feces, which can contaminate nearby soil and 

water. Fields of wheat can be contaminated by the fecal matter in water, soil, and manure-based 

fertilizers. These pathogens can survive outside their hosts for prolonged amounts of time, which 

results in extended time-periods during which they can contaminate fields of wheat. E. coli can 

survive in sediment for 1.5 days and in soil for up to one week. S. enterica can survive in 

manure-based fertilizer for up to 21 days and in soil for up to one year. In addition, vectors 

including birds and flies can efficiently spread S. enterica over a wide geographic area within a 

short amount of time. Due to the numerous possible routes of E. coli and S. enterica 

contamination on wheat, about 1 % of wheat samples are typically contaminated by one or both 

of these pathogens (Berghofer et al. 2003; Richter et al. 1993). 

 Currently, control measures for these two pathogens are seldom utilized prior to milling 

wheat into flour or semolina. However, there are numerous control measures that could be 

utilized in the future provided more research is performed to demonstrate their efficacy. One 

proactive control measure that could be implemented is feeding livestock probiotics that compete 

with E. coli and S. enterica to decrease the levels of these pathogens shed in fecal matter. In 

addition, pasteurization, irradiation, and non-thermal plasma processing are reactive control 

measures that could be utilized to inactivate E. coli and S. enterica already on wheat prior to 

milling. 
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Regardless of the control measure implemented, the quality of the wheat must not be 

negatively affected by said control measure. If the control measure is detrimental to the quality 

of the wheat, it is unlikely that a miller would implement it. However, the lower temperature 

ranges of some of the control measures previously mentioned should maintain the functionality 

of the starch and protein in the wheat so that end use quality would not be sacrificed in exchange 

for an increase in safety. The main components of wheat quality that must be assessed following 

the application of a control measure are starch and protein (i.e. gluten) functionality. The 

functionality of starch in pasteurized wheat can be assessed using rapid viscosity analysis and 

determining the falling number of the wheat (U.S. Wheat Associates 2017). The functionality of 

protein in pasteurized wheat can be assessed using wet gluten analysis and by determining the 

mixing profile of the flour with water using a farinograph. Utilizing these quality assessments 

will ensure that control measures utilized maintain the functionality of the starch and protein in 

the wheat. 

Implementation of a control measure for E. coli and S. enterica in wheat prior to milling 

would effectively reduce the risk of foodborne illness from consumption of completely raw or 

improperly processed wheat products. This reduction of risk would lower the economic burden 

of the associated foodborne illnesses. While the implementation costs of this control measure 

will exist, costs associated with recalls would be greatly reduced (if not eliminated) (Golan et al. 

2000). In addition, costs to consumers would be minimized (Scharff 2015). Thus, the 

implementation of a control measure would lead to an overall increase in the level of safety 

associated with consuming wheat products and a decreased economic burden. 
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LITERATURE REVIEW 

Wheat 

 Wheat (Triticum spp.) kernels, such as the one shown in Figure 1, are the fruit of wheat 

plants in the grass (Gramineae) family (McCluskey 2011). Wheat kernels are also known as the 

caryopsis of a wheat plant. This portion of the wheat plant serves as a means to grow more wheat 

plants. Wheat is the second most commonly produced cereal crop in the U.S. (corn ranking first) 

with an average of 50 million acres planted each year (United States Department of Agriculture 

Economic Research Service 2017b). In the U.S., there are six classes of wheat divided by kernel  

hardness, color, and growth season (McCluskey 2011). These six classes include hard red spring 

wheat (Triticum aestivum L.), hard red winter wheat (Triticum aestivum L.), hard white wheat 

(Triticum aestivum L.), soft red winter wheat (Triticum aestivum L.), soft white wheat (Triticum 

aestivum L.), and durum wheat (Triticum durum Desf.). All classes of wheat aside from durum 

are hexaploid (AA, BB, and DD genomes) wheats with 42 chromosomes. Durum wheat is a 

tetraploid (AA and BB genomes) wheat that has 28 chromosomes. Table 1 provides an overview 

of some of the differences between the six classes of wheat. 

Table 1. Characteristic differences between the six U.S. classes of wheat according to the U.S. 

Wheat Associates (2017). 

Wheat class 

Test weight 

(lb bu-1) 

Grain 

moisture 

(%) 

Protein 

contenta 

(%) 

Ash 

contentb 

(%) 

Falling 

number 

(s) 

Hard red spring 61.6 12.1 14.0 1.54 381 

Hard red winter 60.3 11.2 12.6 1.53 401 

Hard white 63.2   9.6 12.0 1.52 400 

Soft red winter 58.4 12.9   9.8 1.48 306 

Soft white 60.6   9.3 10.2 1.36 336 

Durum 60.4 11.5 13.6 1.59 380 
a12 % moisture basis 
b14 % moisture basis 
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Figure 1. Cross sectional diagram of a wheat kernel. From Grain gallery (http://grain-

gallery.com/en/wheat/images) by GoodMills Innovation GmbH, licensed under CC BY 2.0. 

Reprinted without changes from GoodMills Innovation GmbH (2015). 

Hard Wheat 

 Hard wheat classes including hard red spring wheat, hard red winter wheat, and hard 

white wheat are utilized for different purposes, and are grown in different regions of the U.S. 

(U.S. Wheat Associates 2013). There are typically about 30 to 35 million acres of hard wheat 

planted per year in the U.S. (United States Department of Agriculture Economic Research 

Service 2017b). The average yield of hard wheat is around 40 bushels per acre, which is sold for 

around $4 per bushel. Hard red spring wheat is grown mainly in Minnesota, North Dakota, South 

Dakota, and Montana. This class of hard wheat is utilized for a variety of baked goods including 

hearth bread, bagels, pizza crust, rolls, and croissants. Hard red winter wheat is grown mainly in 
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California, Montana, North Dakota, South Dakota, Nebraska, Colorado, Kansas, and Texas (U.S. 

Wheat Associates 2013). This class of hard wheat is utilized in numerous products including pan 

breads, hard rolls, flat breads, Asian-style noodles, and tortillas. Hard white wheat is mainly 

produced in Colorado, Kansas, and Nebraska (U.S. Wheat Associates 2013). This class of wheat 

is typically utilized in Asian-style noodles, tortillas, flat bread, and pan bread. For all three 

classes of hard wheat, there are numerous analyses performed to determine grain grade and 

overall quality as shown in Table 2. 

Table 2. Quality assessment analyses for all six U.S. classes of wheat. 

 

Hard red 

spring 

Hard red 

winter 

Hard 

white 

Soft red 

winter 

Soft 

white Durum 

Grain grade       

Test weight X X X X X X 

Damaged kernels X X X X X X 

Foreign material X X X X X X 

Shrunken and broken kernels X X X X X X 

Total defects X X X X X X 

Wheat of other classes X X X X X X 

Vitreous kernels X     X 

Flour/semolina quality       

Milling extraction X X X X X X 

Moisture X X X X X X 

Ash X X X X X X 

Protein X X X X X X 

Color X X X X X X 

Gluten index X X X X X X 

Wet gluten X X X X X X 

Falling number X X X X X X 

Starch pasting profile X X X X X  

Starch damage X X X X X  

Solvent retention capacity    X X  

Dough quality       

Farinograph X X X X X  

Alveograph X X X X X X 

Extensigraph X X X X X  

Mixograph      X 

Baking/cooking quality       

Pan bread X X X X X  

Sponge cake     X  

Cookies    X X  

Steamed bread   X  X  

Noodles   X  X  

Pasta      X 
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Soft Wheat 

There are two classes of soft wheat in the U.S. including soft red winter wheat and soft 

white wheat (U.S. Wheat Associates 2013). About eight million acres of soft wheat are planted 

each year in the U.S. (United States Department of Agriculture Economic Research Service 

2017b). The average yield for soft wheat is around 67 bushels per acre, which is sold for around 

$4 per bushel. Soft red winter wheat is grown in numerous states including Missouri, Arkansas, 

Louisiana, Mississippi, Alabama, Illinois, Indiana, Ohio, Kentucky, Tennessee, Georgia, South 

Carolina, North Carolina, and Virginia. This class of soft wheat is typically utilized in products 

including flat bread, pretzels, pastries, crackers, and cookies. Soft white wheat is grown mainly 

in the North-Western U.S. including Washington, Oregon, and Idaho (U.S. Wheat Associates 

2013). This class of soft wheat is often used to make Asian-style noodles, flat breads, and cakes.  

Durum Wheat 

Durum wheat is grown mainly in North Dakota and Montana (U.S. Wheat Associates 

2013). On average, there are about two million acres of durum wheat planted every year in the 

U.S. (United States Department of Agriculture Economic Research Service 2017b). The typical 

yield of this class of wheat is about 44 bushels per acre, which is sold for an average of $6 per 

bushel. This class of wheat is very high in protein and has a notable amber color. In addition, the 

gluten strength of this class of wheat makes it ideal for making pasta. In addition to pasta, this 

class of wheat is utilized to make Mediterranean bread and couscous.  

Escherichia coli 

 Escherichia coli is a bacterium that is gram negative, rod-shaped, motile, non-spore 

forming, facultatively anaerobic, and a member of the Enterobacteriaceae family (Government 

of Canada 2014). There are numerous serovars of E. coli that are not harmful and are a part of 
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the natural flora of the digestive systems of animals and humans. However, serovar O157:H7, 

which is shown in Figure 2, was identified as a pathogen in 1982 (Centers for Disease Control 

and Prevention 2015). Including E. coli O157:H7, there are over 200 serovars of E. coli that 

produce Shiga toxins, and over half of these can cause illness in humans (Sondi and Salopek-

Sondi 2004; Fratamico et al. 2003). E. coli serovars are classified as enterotoxigenic E. coli, 

enterohemorrhagic E. coli, enteroaggregative E. coli, diffusely adherent E. coli, enteropathogenic 

E. coli, or enteroinvasive E. coli depending upon pathogenicity as shown in Figure 3 (Centers for 

Disease Control and Prevention 2015). 

 

Figure 2. Image of Escherichia coli O157:H7. From Escherichia coli 

(https://pixnio.com/science/microscopy-images/escherichia-coli/gram-negative-escherichia-coli-

bacteria-o157-h7-e-coli-o157-h7-bacterium) by Carr, J. H. Public domain. Reprinted from Carr 

(2017a). 
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Figure 3. Six pathogenicity schemes of Escherichia coli. ETEC = enterotoxigenic E. coli, EAEC 

= enteroaggregative E. coli, EIEC = enteroinvasive E. coli, EPEC = enteropathogenic E. coli, 

EHEC = enterohemorrhagic E. coli. From E. coli 

(https://commons.wikimedia.org/wiki/File:Pathovar_Ecoli.jpg) by Nougayrede, J.-P., licensed 

under CC BY-SA 2.5. Reprinted with modifications from Nougayrede (2007). 

Every year, about 265,000 people become ill due to E. coli infections in the U.S (Centers 

for Disease Control and Prevention 2015). E. coli O157:H7 is currently one of the serovars most 

commonly associated with illness (i.e. hemolytic uremic syndrome and hemorrhagic colitis) as it 

causes about 36 % of E. coli related illnesses in the U.S. However, non-O157 serovars including 

O26, O45, O103, O111, O121, and O145 are becoming an increasing cause for concern (Centers 

for Disease Control and Prevention 2015; Fratamico et al. 2003). E. coli O121 has been 

responsible for about 8 % of E. coli related illnesses, corresponding to about 3,000 cases, 

including cases in outbreaks due to contaminated flour (Brooks et al. 2005).  
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Pathogenicity of Enterohemorrhagic Escherichia coli 

 Some serovars of E. coli have infectious doses as low as 10 cells (Schmid-Hempel and 

Frank 2007). Enterohemorrhagic E. coli is one of the most dangerous pathotypes of E. coli. To 

cause illness, enterohemorrhagic E. coli  must attach to the enterocytes of a host and produce 

Shiga toxins (Karmali 2004). These toxins are Shiga toxin type 1 (Stx1), Shiga toxin type 2 

(Stx2), or variations of Stx1 and Stx2. These toxins are proteins with molecular weights around 

70 kDa (Karmali 2004), and they are some of the most potent toxins produced by bacteria 

(Melton-Celsa 2014). Structurally, Stx1 and Stx2 are AB5 toxins with five identical B subunits 

and one active A subunit (made up of two parts – A1 and A2) as shown in Figure 4 (Karmali 

2004). In general, Stx2 is more commonly produced by E. coli than Stx1. 

  

Figure 4. Pictorial representation of the structure of a Shiga toxin including the A1, A2, and B 

subunits. Based on Shiga toxin and its use in targeted cancer therapy and imaging by Engedal, 

N., Skotland, T., Torgersen, M. L., and Sandvig, K. (2011). 

A1 

A2 

B B 
B 
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The spatial arrangement of the six subunits facilitates the purpose of each type of subunit 

(Karmali 2004). The B subunits form a donut shape with an α-helix pore in the middle. The B 

subunits in the pentamer serve as binding units, and they bind strongly to the 

globotriaosylceramide (Gb3) receptor and weakly to the globotetraosylceramide (Gb4) receptor 

present on human endothelial cells. There are two to three binding sites (numbered one through 

three) for Gb3 on every B subunit that facilitate this interaction. However, binding site number 

two is most commonly associated with this interaction. Despite this, binding at all three sites is 

required for optimal binding between Stx1 or Stx2 and a Gb3 receptor.  

The A subunit, the active unit, is non-covalently bound to the B subunit pentamer 

(Karmali 2004). The active site of the A subunit is a glutamic acid at position 167. After the 

Shiga toxin has bound to and entered a target cell (via Gb3 receptors), the A subunit inhibits 

protein synthesis by removing an adenine from the 28S rRNA (present in the 60S ribosome) 

using N-glycosidase. The region of the A subunit that is sensitive to trypsin (amino acids 248-

251) allows for cleavage of this subunit into A1 (a subunit) and A2 (a peptide) that remain 

connected via a disulfide bridge. The glycosidase activity remains in the A1 subunit, and the A2 

peptide keeps the A1 subunit connected to the B subunits. In Stx2, the purpose of the A2 peptide 

also includes blocking the Gb3 binding site. 

 Stx1 and Stx2 are different in terms of structure as shown in Figure 5 (Melton-Celsa 

2014). The B subunits of Stx1 and Stx2 differ by 2 amino acids (69 amino acids in Stx1 and 71 

amino acids in Stx2), which results in different binding patterns. In addition, the A subunit of 

Stx1 is composed of 293 amino acids, whereas the A subunit of Stx2 has 4 additional amino 

acids located at its C terminus for a total of 297 amino acids.  
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Stx1 and Stx2 also differ in their levels of cytotoxicity (Melton-Celsa 2014). Stx2 is 100 

to 400-fold more lethal than Stx1 (as determined using a mouse model where mice ingested Stx1 

and Stx2). One reason for this is that the endothelial cells in the renal system are 1,000 times 

more sensitive to the effects of Stx2 as compared to those of Stx1. The reason(s) for this have yet 

to be completely defined. However, it has been demonstrated that both types of toxins have 

similar enzymatic activity, and both bind Gb3, but in vitro research has demonstrated that the 

binding affinities of these two toxins for Gb3 are different. 

 

 

Figure 5. Shiga toxin types one and two. A: Shiga toxin type 1; B: Shiga toxin type 2; C: Shiga 

toxin type 1 B subunits bound to a globotriaosylceramide receptor; D: Shiga toxin type 2 B 

subunits bound to a globotriaosylceramide receptor. In A and B, the A subunits are dark blue, 

and the B subunits are shown in a variety of colors. In C and D, the B subunits are shown in a 

variety of colors. From Shiga toxins as multi-functional proteins: Induction of host cellular stress 

responses, role in pathogenesis and therapeutic applications by Lee, M.-S., Koo, S., Jeong, D. G, 

and Tesh, V. L., licensed under CC BY 4.0. Reprinted without changes from Lee et al. (2016).  
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 The severity of illness caused by Shiga toxins varies depending upon the immune status 

of the person infected by E. coli and experiencing Shiga toxin intoxication. While most people 

experience cramps and diarrhea, some experience a much worse sequelae known as hemolytic 

uremic syndrome, which is potentially fatal (Melton-Celsa 2014). This condition includes the 

following symptoms: kidney failure, thrombocytopenia, and hemolytic anemia. The people most 

affected by hemolytic uremic syndrome include young children, older adults, and those with 

compromised immune systems (Centers for Disease Control and Prevention 2017b). There are 

currently no vaccines or targeted treatments available to prevent or treat Shiga toxin 

intoxications (Karmali 2004). However, utilization of a Gb3 receptor analogue has been 

suggested as it would provide another set of Shiga toxin receptors, and in doing so reduce the 

number of Shiga toxins bound to endothelial cells. 

Presence of Escherichia coli in Wheat 

Since E. coli is a zoonotic bacteria, it poses a unique set of problems in terms of the food 

supply (Karmali 2004). Ruminant animals including cattle and sheep carry this pathogen in their 

digestive system (Sargeant et al. 2007). These animals are polygastric animals, and their first 

stomach is called a rumen as shown in Figure 6. This stomach facilitates the fermentation of the 

plants they eat so they can be further digested by the other organs in the digestive system. These 

animals are the main reservoir of E. coli, even when they appear healthy (Sánchez et al. 2009). 

For example, Leomil et al. (2003) determined that up to 80 % of cattle are infected with E. coli. 

In addition, over 100 serotypes of enterohemorrhagic E. coli have been isolated from cattle 

(Karmali and Goglio 1994).  

E. coli is shed in the fecal matter of these animals, which can contaminate food, soil, and 

water in multiple ways. First, when manure is used improperly as a fertilizer, it can lead to 
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contamination of the wheat crop it is used to fertilize (Solomon et al. 2002). However, even if the 

manure is handled and composted as legally required, E. coli may still be present. This has 

become a problem with increasing frequency. Second, when floods occur, irrigation water can 

easily become contaminated with feces directly or become contaminated through contact with 

water that has previously been contaminated such as surface runoff. E. coli can survive for long 

periods of time in water, so utilization of contaminated water for irrigation of cereal crops that 

will be used in the food chain can cause E. coli outbreaks.  

 

Figure 6. Polygastric digestive system with the following flow of digestion: Esophagus  rumen 

 reticulum  omasum  abomasum. From Abomasum 

(https://commons.wikimedia.org/wiki/File:Abomasum(PSF).png) by Foresman, P. S. Public 

domain. Reprinted from Foresman (2008).  

E. coli grows and thrives in a host such as a ruminant due to the constant warm 

temperature, free amino acids, and available sugars (Winfield and Groisman 2003). After being 

shed or otherwise removed from a host, E. coli faces numerous unfavorable conditions including, 
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but not limited to, insufficient available nutrients, variable temperature, variable pH, and osmotic 

stress. Exposure to these unfavorable conditions can result in the inactivation of many of the E. 

coli cells. However, those cells that do survive can become dormant (possibly viable but not 

culturable) and be resuscitated and multiply when conditions are favorable. While this is 

possible, it is unlikely that E. coli will survive the transition from host to secondary environment 

for an extended time in large numbers. However, research has shown that E. coli can survive in 

manure-amended soil for up to 231 days depending upon the temperature of the soil (Jiang et al. 

2002). This can become an issue when E. coli is present in the soil and manure is utilized as a 

fertilizer, even if the manure is aged properly. 

The most common serovar of E. coli in the food chain is O157:H7 (Andrews 2014). 

However, the “Big Six” non-O157 serovars including O26, O45, O103, O111, O121, and O145 

can also contaminate food including wheat (Hsu et al. 2015). The prevalence of these “Big Six” 

serovars of E. coli in the food chain are as follows: 26 % (O26), 22 % (O103), 19 % (O111), 6 % 

(O121), 5 % (O45), and 4 % (O145) (Gould et al. 2013). The exact prevalence of these six 

serovars of E. coli in wheat has not yet been analyzed and published. 

When wheat is contaminated prior to harvest, the E. coli is mainly present on the outside 

layers of the kernel including the bran and germ (Hocking 2003). This E. coli can contaminate 

milling equipment and to a lesser extent, the milled end-products. The end-products, refined 

flour and semolina, do not support the growth of E. coli, but this pathogen can survive in flour 

and semolina if it is present following processing. Berghofer et al. (2003) determined the 

frequency of E. coli contamination in commercial wheat samples throughout the milling process. 

They determined that it is most often present in tempered wheat (14 % positive) followed by 

wheat germ (11 % positive), bran (4 % positive), and lastly refined flour (1 % positive). 



16 
 

Tempering of wheat increases the moisture content and water activity of the wheat to a level that 

can facilitate microbial growth beyond that present on wheat prior to this treatment (Hocking 

2003). In addition, milling removes the outer, more highly contaminated layers of the wheat 

kernel (i.e. germ and bran), which results in refined flour having a lower level of E. coli 

contamination. Research on the prevalence of E. coli O157 and the “Big Six” in flour is 

relatively sparse. However, there have been multiple recent outbreaks of E. coli O121 and O26 in 

flour from multiple milling companies in multiple countries including the U.S. and Canada 

(Schroder 2017; U.S. Food and Drug Administration 2016). 

Other trends in the occurrence of E. coli in wheat have been noted in wheat. First, Richter 

et al. (1993) tested over 4,000 U.S. wheat samples and discovered that 12.8 % of them were 

positive for E. coli. Second, contamination of wheat with E. coli takes place at the slowest rate 

during the spring. Third, out of all six U.S. classes of wheat, durum wheat has the highest level 

of E. coli contamination (17 %), and hard red winter wheat has the lowest level of E. coli 

contamination (6.7 %). 

Salmonella enterica 

Salmonella spp. including S. enterica, shown in Figure 7, cause a foodborne illness called 

salmonellosis in humans (Silva et al. 2014; Jackson et al. 2013). S. enterica is a member of the 

Enterobacteriaceae family, gram negative, rod-shaped, facultatively anaerobic, motile, and non-

spore forming. This species of Salmonella has over 2,600 serovars, many of which infect animals 

and humans. S. enterica is often divided by subspecies (I - enterica, II - salamae, III - arizonae, 

IV - diarizonae, V- houtenae, or VI - indica) or host preference (generalist, host-restricted, or 

host-adapted). Typically, subspecies I generalists cause salmonellosis in humans (Silva et al. 

2014; Huston et al. 2002). Subspecies II-VI are typically only present in the environment and 
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cold-blooded animals (Government of Canada 2011). Generalist Salmonella spp. are more 

persistent, genetically diverse, and typically possess a plasmid coding for increased virulence 

(Dandekar et al. 2014; Silva et al. 2014). After subspecies and host preference, S. enterica can be 

further classified by serotype depending upon the antigens present on the outside of the 

bacterium. These antigens include the flagellar antigen, oligosaccharide antigen, and 

polysaccharide antigen.  

 

Figure 7. Image of Salmonella enterica. From Salmonella 

(https://pixnio.com/science/microscopy-images/salmonellosis-salmonella/gram-negative-bacilli-

or-rod-shaped-salmonella-sp-bacteria) by Carr, J. H. Public domain. Reprinted from Carr 

(2017b). 

On an annual basis, S. enterica causes 1.2 million food-related illnesses that result in 

19,000 hospitalizations and ultimately takes the lives of 450 people (Centers for Disease Control 

and Prevention 2016b). The two serovars responsible for most of these cases are S. enterica 

Typhimurium and S. enterica Enteritidis.  
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Pathogenicity of Salmonella enterica 

S. enterica  is present in a variety of locations and living hosts including soil, water, 

animals, and humans (Silva et al. 2014). The serovar most commonly associated with 

salmonellosis in humans due to contaminated wheat is S. enterica Typhimurium, which is a 

zoonotic generalist. However, many different serovars and strains are present in a variety of 

animals as shown in Table 3. Despite the numerous types of S. enterica, transmission pathways 

remain a commonality. For example, horizontal transmission of S. enterica from animals to 

humans via fecal matter is very common. In addition, it is possible for S. enterica to be 

transmitted from a mother to her offspring via vertical transmission (Hanson et al. 2016; Silva et 

al. 2014). S. enterica is also a part of the normal flora in the gastrointestinal systems of reptiles, 

though it is asymptomatic in this location (Clancy et al. 2016; Silva et al. 2014). Furthermore, 

transmission via vectors including rodents, worms, and insects is possible and allows for S. 

enterica to survive when moving between hosts (Silva et al. 2014). 

Table 3. Serovars of Salmonella enterica present in various animals.  

Animal S. enterica serovars Source 

Passerine birds Typhimurium DT40 and 

Typhimurium DT56v 

(Silva et al. 2014; Tizard 2004) 

Chickens Typhimurium and Enteritidis (Jackson et al. 2013) 

Cattle Typhimurium, Newport, and Dublin (Hanson et al. 2016; Jackson et al. 2013) 

Pigs Typhimurium, Newport, Infantis, 

Cholerae, and Uganda 

(Jackson et al. 2013; Forshell and 

Wierup 2006) 

Sheep Abortus (Forshell and Wierup 2006) 

Horses Abortus (Forshell and Wierup 2006) 

 

Illness from S. enterica infections in humans is due to oral ingestion of the pathogen, 

which results in one of four diseases: chronic asymptomatic carriage (as previously mentioned in 

reptiles), enteric fever (typhoid fever), bacteremia, and enterocolitis (diarrhea) (Coburn et al. 

2007). The most common diseases caused by S. enterica are enteric fever and enterocolitis. The 

three serovars of S. enterica that cause most enteric fever cases include Typhi, Sendai, and 
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Paratyphi. Bacteremia is caused largely by S. enterica serovars Dublin and Choleraesuis in 

humans. Most S. enterica serovars cause enterocolitis in humans. The infectious dose of S. 

enterica depends upon the serovar ingested and the strength of the immune system of the person 

ingesting this pathogen, but is typically 105 cells and 103 cells for typhoidal and non-typhoidal 

serovars, respectively (Government of Canada 2011). 

Enteric fever occurs when S. enterica Typhi is ingested and colonizes the ileum and 

cecum of the small and large intestines, respectively (Coburn et al. 2007). This pathogen 

colonizes the intestines because it out-competes the natural flora present in these organs. Once 

colonized, this pathogen crosses the epithelium of the intestine through bacteria-mediated 

endocytosis. This takes place when this pathogen invades the M-cells of the Peyer’s patches in 

the intestine and is taken up through dendritic cells. Following these events, S. enterica Typhi 

gains access to the circulatory system and is spread via the reticuloendothelial system. This 

pathogen then resides in the granulomatous foci in splenocytes and hepatocytes. S. enterica 

Typhi also survives in phagocytes, which plays a major role in its pathogenicity. This pathogen 

survives in cells in a Salmonella containing vacuole, which is a membrane-bound organelle that 

protects it from endosomal fusion with the oxidase complex present in phagocytes. This disease 

requires up to two weeks to manifest in a human following ingestion of the pathogen. The typical 

symptoms of this disease include fever, diarrhea, headache, nausea, and constipation.  

Similar to enteric fever, enterocolitis occurs when S. enterica colonizes the intestines of 

humans (Coburn et al. 2007). The serovars that cause enterocolitis colonize the apical epithelium 

of the intestines. Subsequently, they cause inflammation, crypt abscesses, edema, epithelial 

necrosis, and fluid secretion. S. enterica Typhimurium causes the most severe enterocolitis in the 

caudal ileum, cecum, and proximal colon. This serovar recruits neutrophils within 1 hour of 
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infection, which is the traditional signifier of this type of disease. Then, protein-rich exudates are 

secreted into the lumen of the intestine by S. enterica, which causes irritation. This disease 

occurs within six to 72 hours of ingestion of S. enterica and causes abdominal pain and diarrhea 

that may or may not be bloody. Symptoms can last for up to seven days but are typically self-

limiting.  

Presence of Salmonella enterica in Wheat 

 The primary source of S. enterica is food-producing livestock, which test positive for S. 

enterica up to 90 % of the time (Forshell and Wierup 2006). However, the predominance of S. 

enterica depends upon the geographic region and the type of livestock. The main types of 

livestock that serve as reservoirs of this pathogen and could potentially contaminate wheat 

include the following: sheep, pigs, poultry, horses, and cattle. When livestock is infected with S. 

enterica, it is shed through the feces and can contaminate anything it touches. This contaminated 

fecal matter can contaminate wheat, soil, and water in the same ways previously discussed for 

the contamination of wheat, water, and soil with E. coli. In addition, S. enterica can be spread 

through the trading of livestock and the trade of meat that has not been heat treated. 

 S. enterica is essentially ubiquitous, and can survive longer outside a host than E. coli 

(Winfield and Groisman 2003). This ability to survive outside a host allows S. enterica to move 

from host to host without becoming inactive during short passages through the environment. For 

example, S. enterica present in manure is culturable for up to 21 days after being deposited onto 

a field as fertilizer. This pathogen can also survive in a septic system for up to 15 days. In 

addition, S. enterica can survive for an extended period in water regardless of its temperature, 

which could cause S. enterica outbreaks if the irrigation water used to water a field of wheat is 

contaminated. S. enterica can even survive when the salinity of the water increases dramatically. 
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When soil is contaminated with S. enterica, it is possible for this pathogen to survive and 

continue multiplying for one year, which can contaminate the crops growing in the soil. In 

addition, S. enterica has been known to persist in poultry houses for more than one year. This 

can result in the spread of S. enterica when poultry manure is utilized as fertilizer on wheat 

fields. 

Furthermore, flying animals including flies and birds serve as vectors for S. enterica 

(Winfield and Groisman 2003). These vectors spread this pathogen very quickly throughout the 

environment including on fields of wheat. In addition, S. enterica can survive in the digestive 

systems of flies for the duration of their lifetime (four weeks) and infect livestock including dairy 

cattle and poultry. Outbreaks of salmonellosis have been linked to these vectors, which 

demonstrates their effectiveness at spreading S. enterica. 

  In one study by Berghofer et al. (2003), S. enterica was not present on any of 650 

Australian wheat samples prior to milling. In addition, for these same 650 samples, no end 

products of milling (bran, flour, etc.) were positive for S. enterica. However, Richter et al. (1993) 

identified that 1.3 % of over 4,000 U.S. wheat samples (subsamples from all six U.S. wheat 

classes) tested positive for S. enterica. This research group also identified that S. enterica 

contamination of wheat occurs the least in the summer months. In addition, out of all six U.S. 

wheat classes, soft red winter wheat has the highest level of S. enterica contamination (2.3 %), 

whereas durum wheat has the lowest S. enterica contamination level (0.3 %).  

Detection and Identification Methods 

 There are numerous methods in use for detecting and identifying E. coli and S. enterica 

that could be utilized for whole grain wheat, wheat flour, semolina, and environmental samples. 

The methods vary in limit of detection, cost, skill level required, and time required. Table 4 
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provides a general overview of these characteristics for some of the commonly utilized detection 

and identification methods.  

Table 4. Commonly utilized methods for the detection and identification of Escherichia coli and 

Salmonella enterica. 

Method 

Limit of 

detection 

(CFU mL-1) Cost 

Skill 

level 

required 

Time 

required 

(days) 

Traditional cultures 10 $ Low 7 

Enzyme-linked immunosorbent assays  105 $$ Moderate 1 

Pulsed-field gel electrophoresis  1 $$ Moderate 1 

Polymerase chain reaction  1 $$ Moderate 1 

Immunosorbent magnetic separation  1 $$ Moderate 1 

Whole genome sequencing  1 $$$ High 1 

 

Culture-Based Methods 

Traditionally, the presence of E. coli has been determined using culture-based methods 

(Fratamico et al. 2003). Biochemical identification traditionally follows culturing and can be 

used to positively confirm that E. coli is present in a sample. There are multiple different types of 

media that can be used for the culture of the E. coli including eosin methylene blue agar as 

shown in Figure 8 (U.S. Food and Drug Administration 2017). Next, biochemical analyses 

(indole test, methyl red test, Voges-Proskauer test, and citrate utilization test) are typically 

performed to confirm that E. coli is present. For samples that are positive, serotype analysis is 

typically performed. Serotyping of E. coli relies on two antigens on its surface (Fratamico et al. 

2003). The first antigen is the O antigen, which is present on the surface polysaccharide that is a 

part of the lipopolysaccharide in the cell membrane. The second antigen is the H antigen, which 

is present on the protein in the flagellum. These antigens agglutinate with an antiserum to 

provide the serotype of the bacterium. 
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Figure 8. Escherichia coli colonies growing on eosin methylene blue agar. From Photograph of 

E. coli colonies on EMB agar (https://commons.wikimedia.org/wiki/File:Coli_levine.JPG) by 

Witmadrid. Public domain. Reprinted from Witmadrid (2009). 

Similarly, S. enterica can be detected using traditional culture methods. In fact, the U.S. 

Food and Drug Administration recommends that traditional culture techniques followed by 

biochemical tests be used for S. enterica detection in food processing facilities such as wheat 

mills (U.S. Food & Drug Administration 2007). This method includes pre-enrichment, isolation 

in Rappaport-Vassiliadis broth, and selective culture on xylose lysine deoxycholate agar, which 

is shown in Figure 9. Following these steps, the S. enterica is identified on the agar 

(morphological identification), and biochemical testing is typically performed (lactose 

fermentation, sucrose testing, Voges-Proskauer testing, and citrate utilization testing). In 

addition, if the samples are presumptively positive on the agar chosen, serological polyvalent 
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flagellar or Spicer-Edwards serological testing and serological somatic testing are typically 

performed.  

 

Figure 9. Salmonella enterica colonies growing on xylose lysine deoxycholate agar. From 

Salmonella species growing on XLD agar 

(https://commons.wikimedia.org/wiki/File:Salmonella_species_growing_on_XLD_agar_-

_Showing_H2S_production.jpg) by Werther, licensed under CC BY 2.0. Reprinted without 

changes from Werther (2012). 

These culture-based methods are very time consuming (five to seven days), require 

trained personnel, and are not always ideal for production facilities (Abirami et al. 2016). 

However, traditional culture-based methods allow for further analysis of isolates as the isolates 

can be kept, which is necessary for high-quality epidemiological research (Marder 2017). Also, 

culture-based methods produce fewer false-negatives, are relatively inexpensive, and can be 



25 
 

either quantitative or qualitative depending upon the methodology utilized (Mangal et al. 2016; 

Gouws et al. 1998). 

Enzyme Linked Immunosorbent Assays 

 Enzyme-linked immunosorbent assay methods are much faster and may be easier to 

perform than culture-based methods (Shen et al. 2014). Most enzyme-linked immunosorbent 

assay methods have a limit of detection around 105 to 107 colony-forming units (CFU) mL-1. This 

is much higher than would be ideal for detecting E. coli on wheat because E. coli has a very low 

infectious dose (100 cells or less). However, when enzyme-linked immunosorbent assay methods 

are paired with beacon gold nanoparticles and immunomagnetic nanoparticles the limit of 

detection is 6.8x102 to 6.8x103 CFU mL-1. In addition, this method requires only three hours to 

complete.  

There are five main steps to detecting E. coli in samples using an enzyme-linked 

immunosorbent assay paired with beacon gold nanoparticles and immunomagnetic nanoparticles 

(Shen et al. 2014). First, the immunomagnetic nanoparticles, E. coli antibody, and beacon gold 

nanoparticles are prepared. Second, the immunomagnetic nanoparticles are mixed with the 

sample, and the E. coli complexed to the nanoparticles is separated from the remaining solution 

using a magnetic plate. Third, the beacon gold nanoparticles are added to the complex that was 

separated, and excess beacon gold nanoparticles are removed. Fourth, streptavidin-horseradish 

peroxidase is added, and excess is magnetically removed. Fifth, the amount of E. coli in the 

sample is quantified spectrophotometrically. 

These enzyme-linked immunosorbent assay methods can also be utilized for the detection 

of S. enterica (Lee et al. 1990). One enzyme-linked immunosorbent assay method available for 

the detection of S. enterica Typhimurium utilizes a monoclonal detector antibody that does not 
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react with other species of bacteria and only reacts with one other serovar of S. enterica. The 

limit of detection for this method is 10 cells per 25 g sample. This method requires a step of 

enrichment (which accounts for the very low limit of detection), but no selective culture, which 

cuts down the total time required for detection. The main steps in this process after enrichment of 

the sample include applying the sample to a microtitration plate coated in monoclonal antibodies 

specific for S. enterica Typhimurium, addition of immunoglobulin G-horseradish peroxidase, 

addition of the 3,3’,5,5’-tetramethyl benzidine substrate solution, and analysis of the results by 

determining the optical density spectrophotometrically.  

Pulsed-Field Gel Electrophoresis 

 Pulsed-field gel electrophoresis is another detection and identification method, and it is 

utilized by PulseNet to provide scientists with a “DNA fingerprint” of a bacterium such as E. coli 

or S. enterica (Centers for Disease Control and Prevention 2017c; 2013). This method can be 

used to identify the subtype of a bacterium, but it does not always discriminate amongst closely 

related serotypes. Despite these things, this method is currently the gold standard for 

epidemiological investigations due to its ease of use and high rate of usage. However, it is slowly 

being replaced by methods with higher discriminatory power. 

This procedure has seven main steps shown in Figure 10 that take 24 to 26 hours from 

start to finish. The process begins with an enrichment and selective culture. For E. coli, this is 

done by growing E. coli on trypticase soy agar with 5 % defibrinated sheep blood, and 

subsequently incubating for 14 to 18 hours. For S. enterica, enrichment is performed in buffered 

peptone water followed by selective culture on a peptone and yeast extract agar. 
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Figure 10. Outline of the steps required to perform pulsed-field gel electrophoresis according to 

the Centers for Disease Control and Prevention (2013). 

Polymerase Chain Reaction 

 Polymerase chain reactions can be utilized to detect if E. coli or S. enterica is present in 

wheat samples. This method amplifies specific sections of DNA to detect these bacteria at low 

concentrations (Molina et al. 2015). There are multiple types of polymerase chain reactions, but 

the main four steps of these reactions include DNA extraction, denaturation of extracted DNA, 

annealing of specially chosen primers to sections of DNA of interest, and primer extension by 

DNA polymerase (McClean 1997). This process can be repeated up to 35 times in a thermal 

cycler to obtain larger quantities of DNA. The DNA is then analyzed using gel electrophoresis.  

Multiplex polymerase chain reactions utilize sets of multiple primers to detect the 

presence of multiple organisms at the same time (McClean 1997). Specially designed sets of 

primers are utilized to do this. These primers are specifically designed so that they identify genes 

unique each bacterium of interest. If the primers used identify highly conserved genes, it may not 

be possible to discriminate between different species or serotypes of bacteria.  

Real-time reverse-transcriptase polymerase chain reactions are another type of 

polymerase chain reactions that can be utilized to detect the presence of bacteria (Hedican et al. 

2009). This method allows for both the detection and quantification of a pathogen in a short time 
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when coupled with either fluorescent dyes or DNA probes to provide a real-time analysis 

(Mangal et al. 2016). When the proper primers are utilized, this method is fast, has a detection 

limit of 5 CFU per 25 g sample (though this depends upon sample matrix), is quantitative, and 

provides more information than culture-based methods (Law et al. 2014). However, there are 

some draw backs to real-time reverse-transcriptase polymerase chain reactions including cost, 

requiring trained personnel, and false positives due to complex sample matrices (despite use of 

ethidium monoazide or propidium monoazide) (Bustin and Nolan 2004). 

Immunosorbent Magnetic Separation 

Immunosorbent magnetic separation is a detection method that utilizes specialized beads 

to capture bacteria (Varshney et al. 2005). These beads are immunosorbent magnetic particles 

that are 50 to 150 nm in diameter and have a mass of 0.5 µg. The surface of these particles is 

coated with antibodies that interact with the antigens present on the outside of the bacterium of 

interest (e.g. E. coli), which make them ideal for detecting specific serovars of a bacterium. The 

main steps in this separation technique include mixing the immunosorbent magnetic particles 

with the sample, separating the immunomagnetic particles that have complexed with the 

pathogen from the sample matrix using a magnet, washing, and enumerating the pathogen using 

plate culture techniques. An enrichment step may be added to the beginning of this procedure to 

decrease the limit of detection; however, this will increase the time required to perform the 

method. 

This method can be utilized for detecting bacteria including E. coli. However, there are 

currently no immunosorbent magnetic particles that target the antigens present on S. enterica, so 

this method cannot be utilized for the detection of S. enterica. Regardless of the target pathogen, 

the capture efficiency of this method increases as the concentration of said pathogen decreases 
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(Varshney et al. 2005). Immunosorbent magnetic separation can be coupled with other detection 

methods including polymerase chain reactions to confirm the presence of E. coli colonies 

growing on plates. Limits of detection for this method are as low as 1 CFU per 25 g sample. 

However, the matrix of the sample plays a major role in the detection limit of immunosorbent 

magnetic separation.  

Whole Genome Sequencing 

 Whole genome sequencing is growing in popularity as a detection and identification 

method for bacterial pathogens including E. coli and S. enterica. This method has higher 

discriminatory power than any other detection method as it provides the entire genome of a 

bacterium (Phillips et al. 2016). There are many steps in this detection method (especially when 

performed de novo) as shown in Figure 11, but they are divided into wet-lab preparation and 

genome assembly, which can be followed by population genomics if desired (Ekblom and Wolf 

2014). Once the genome is completely sequenced, numerous types of information can be 

obtained including copy number variation, single nucleotide polymorphisms, insertion-deletions, 

and sequence repeats. 

Whole genome sequencing is becoming increasingly popular because combining this 

information with epidemiological traceback information allows for a deeper understanding of 

foodborne outbreaks such as those due to contaminated wheat (Jackson et al. 2016). This 

facilitates proper clustering of cases and identification of the source of the outbreak. In addition, 

proper utilization of this information decreases the time required to perform the outbreak 

investigation, increases the number of cases linked to a source, and increases the number of 

clusters detected. 
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Figure 11. General overview of the steps involved in whole genome sequencing. Based on A 

field guide to whole-genome sequencing, assembly, and annotation by Ekblom and Wolf (2014). 

Options for Preventative Controls in Flour 

There are many control measures that are effective at inactivating E. coli and S. enterica, 

however, the best control measure must be chosen for the matrix being treated (in this case, 

whole grain wheat). Control measures range from using probiotics in the feed of cattle to 

pasteurizing wheat prior to milling as shown in Figure 12. One of the main concerns in choosing 

a control measure is choosing one that makes the wheat safe, but also maintains its quality. For 
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example, high temperatures of traditional pasteurization methods can damage the functionality of 

the protein and starch in grain (Shah et al. 2017). Control measures that inactivate E. coli and S. 

enterica in wheat are being researched with increasing frequency due to the increasing emphasis 

being placed upon food safety in grain. Typically, wheat is milled into flour or semolina for use 

in other products including bread, cookies, cakes, pasta, and noodles. These baking processes 

inactivate E. coli and S. enterica, greatly reducing the risk of foodborne illness. However, people 

often consume raw flour when they bake at home, which can result in illness.  

 

Figure 12. Measures for controlling Escherichia coli and Salmonella enterica on wheat. 

Reduction of Escherichia coli and Salmonella enterica Shed in the Feces of Livestock 

 Reduction in the shedding of E. coli in the feces of ruminant animals could be utilized in 

the future to control the level of this pathogen in the food chain (Sargeant et al. 2007). This 

would minimize the amount of E. coli entering the environment that could end up on wheat. To 

achieve this, the resistance of ruminant animals to the growth of E. coli must be increased. 

Multiple methods for accomplishing this have been discussed including use of probiotics, 

vaccinating the animals, utilization of antimicrobials, adding sodium chlorate to an animal’s 
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drinking water, and use of bacteriophages. The methods that show the most promise as control 

measures include utilization of probiotics and the addition of sodium chlorate to an animal’s 

water. First, probiotics (in this context) are microorganisms that are fed to animals with the intent 

of promoting the growth of beneficial gut microbes that will make the animal healthier and 

inhibit pathogen growth. Multiple probiotics have been utilized on a trial basis including 

Lactobacillus acidophilus and Propionibacterium freudenreichii. Feeding cattle these probiotics 

has been shown to reduce the shedding of E. coli O157. It is possible that probiotics could be 

utilized to reduce the shedding of other serovars of E. coli, but this has yet to be studied and 

published. Second, when sodium chlorate has been added to the drinking water of cattle, it 

resulted in a three to four log reduction of E. coli in fecal shedding. Once again, only results for 

E. coli O157 were specifically analyzed and published, but it is likely that the level of other E. 

coli serovars shed by cattle were also reduced using this method. Reducing the fecal shedding of 

E. coli in cattle would reduce the risk of E. coli contamination of wheat when manure is spread 

on wheat fields. 

The use of probiotics has also shown promise in reducing the fecal shedding of S. 

enterica Typhimurium in mouse models (Deriu et al. 2013). It may be possible to utilize E. coli 

Nissle 1917 as a probiotic because it competes with S. enterica Typhimurium for iron. Both 

microorganisms scavenge for iron using similar mechanisms when there are low levels of iron 

available, such as during the inflammatory response of a host. The initial mechanism utilized by 

both bacteria is the production and utilization of siderophores (chelators with a high affinity for 

iron) to acquire iron from the environment. However, during the inflammatory response of 

humans, siderophores are not efficient enough to sustain the iron requirement of these 

microorganisms. Due to this, these microorganisms perform salmochelin-mediated acquisition of 
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iron. Oral administration of non-pathogenic, commensal E. coli Nissle 1917 to mice reduces 

fecal shedding of S. enterica Typhimurium. This takes place because this strain of E. coli out 

competes this serovar of S. enterica for iron. In addition to inhibiting S. enterica Typhimurium 

growth, E. coli Nissle 1917 also reduces the inflammation of the intestines caused by this 

pathogen. Overall, utilization of this strain of E. coli as a probiotic appears to be a viable option 

for reducing the fecal shedding of S. enterica Typhimurium, but more research must be 

completed in other animal models to prove its efficacy. A reduction in the amount of S. enterica 

shed in the feces of animals would result in less wheat being contaminated with S. enterica 

provided this is the source of contamination. 

Traditional Pasteurization 

Traditional pasteurization involves the treatment of foods with heat for a predetermined 

amount of time (Fellows 2009). Pasteurization conditions (time and temperature) are determined 

by the pH of the food in conjunction with the predetermined goal of pasteurization whether that 

be to inactivate an enzyme and/or inactivate a specific microbial population. This control 

measure is performed as a continuous process (which is likely to be preferred in the wheat 

milling industry) or as a batch process. There are multiple types of pasteurization including low 

temperature long time (63 °C for 30 minutes), high temperature short time (72 °C for 15 

seconds), ultra-pasteurization (138 °C for 2 seconds), and ultra-high temperature pasteurization 

(138 °C for more than 2 seconds). As the temperature of the treatment increases, the time 

required to inactivate E. coli and S. enterica decreases.  

Pasteurization is performed as a vat process, tunnel process, or with the product in its 

container (Fellows 2009). It is likely that wheat would be pasteurized in a tunnel process as this 

would be the most efficient in a mill. Four types of heat exchangers utilized for traditional 
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pasteurization include plate heat exchangers, tube heat exchangers, triple tube heat exchangers, 

and tube and shell heat exchangers. Despite the effectiveness of pasteurization for inactivating 

pathogenic microorganisms including E. coli and S. enterica, this control measure can be 

detrimental to the functional, nutritional, and sensory characteristics of the material being 

treated. This would be detrimental to the end-use quality of wheat, so these methods may not be 

a viable option for inactivating E. coli and S. enterica on wheat. Traditional pasteurization 

methods have long been utilized as a control measure in the food industry, but they have not 

been utilized in the milling industry most likely due to the negative effects on wheat quality 

incurred from the high temperatures utilized during this control measure. 

Vacuum Steam Pasteurization 

 Vacuum steam pasteurization has shown promise on a research scale for the inactivation 

of E. coli and S. enterica on low moisture foods including grain (Shah et al. 2017). This control 

measure utilizes decreased pressure in combination with moderate temperatures (as compared to 

other pasteurization methods) to inactivate pathogenic bacteria. Temperatures used for this 

control measure range from 60 to over 100 °C.  

The main steps in this process include pre-heating (to facilitate homogenous treatment 

during pasteurization), pasteurization, and cooling (if needed) (Shah et al. 2017). The 

pasteurization step is divided into four steps: initial application of the vacuum to reduce pressure, 

pre-vacuum, pasteurization, and post vacuum. All steps in the process can be adjusted to suit the 

matrix of the material being pasteurized. One complete cycle of vacuum steam pasteurization 

typically takes between 20 and 25 minutes.  

This method has proven effective at reducing the E. coli O157:H7 and S. enterica 

Enteritidis PT 30 loads on quinoa, flaxseed, and sunflower kernels (Shah et al. 2017). When 
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Shah et al. (2017) pasteurized these crops at 75 °C for one minute, 5.40 to 5.89 log reductions of 

E. coli O157:H7 were achieved. At these same vacuum steam pasteurization conditions, 4.01 to 

5.48 log reductions of S. enterica Enteritidis PT 30 were attained for these crops. Due to the 

proven effectiveness of vacuum steam pasteurization for the inactivation of E. coli O157:H7 and 

S. enterica Enteritidis PT 30 on other low moisture crops, it may prove effective for the 

inactivation of these bacterial pathogens on wheat. 

Irradiation 

 Irradiation is the application of radiation that can come from many sources including, but 

not limited to, gamma rays and electron beams (Fan et al. 2017). This irradiation causes the 

bonds in the DNA of bacteria to break, resulting in defects and ultimately bacterial inactivation. 

In this process, gamma rays are emitted from radioisotopes of multiple different elements 

including cesium 137 and cobalt 60; or electron beams are produced by equipment including an 

electron accelerator that generate high-energy electron beams. Gamma rays cannot be applied at 

dose rates that are as high as electron beam dose rates due to process limitations. However, 

gamma rays can penetrate further into grain than electron beams, making them more effective. 

Although, if only the surface of the grain must be treated, electron beam irradiation would be 

more efficient.  

In the U.S., treatments of up to 8 kGy of irradiation can legally be applied to food 

products such as wheat (Fan et al. 2017). This method has proven effective at reducing the 

pathogenic load of both E. coli and S. enterica on seeds including alfalfa. The overall efficiency 

of this method depends upon the surface morphology of the seed being treated. For example, a 

treatment of 4 to 12 kGy of electron beam irradiation is unable to inactivate all E. coli on mung 

bean seeds, fenugreek seeds, and clover seeds. While there has been research on the irradiation 
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of wheat for many purposes, thorough research has not been published on its effectiveness for 

reducing pathogenic load. In addition, irradiation is currently considered a food additive, so 

extensive use of this control measure would need to be accompanied by consumer education to 

ease fears and worries. 

Non-Thermal Plasma Processing 

 Another up-and-coming control measure for pathogens is non-thermal plasma processing 

(Liao et al. 2017). This method utilizes unheated plasma, which is ionized gas that contains 

charged particles, reactive oxygen and nitrogen species, ultraviolet photons, and excited 

molecules. These chemical species cause the inactivation of bacteria including E. coli and S. 

enterica. This preventative control is performed at low temperatures, which would maintain the 

functional quality, sensory characteristics, and nutritional value of the wheat being treated. Due 

to the this, it could possibly be applied to whole grain wheat, flour, and semolina. In addition, 

this method does not produce toxic byproducts and it is relatively inexpensive. However, the 

surface topography of the grain would play a major role in the efficiency of this control measure. 

For example, the crease of wheat kernels may greatly reduce its effectiveness. Further research is 

needed to demonstrate the effectiveness of this control measure for all six U.S. wheat classes. 

Recent Outbreaks Due to Contaminated Flour 

 According to the Centers for Disease Control and Prevention (2011), a foodborne 

outbreak is “an incidence in which two or more persons experience a similar illness after 

ingestion of a common food, and epidemiologic analysis implicates the food as the source of the 

illness.” There are typically multiple foodborne E. coli and S. enterica outbreaks in the U.S. 

every year, but not many are due to wheat (Centers for Disease Control and Prevention 2017a). 

In the U.S., cases associated with foodborne outbreaks are identified using the FoodNet system, 
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which the Centers for Disease Control and Prevention coordinates. This organization tracks 

outbreaks of foodborne illness due to 10 pathogens including E. coli and S. enterica. Recent 

outbreaks of these two pathogens due to wheat products are summarized in Table 5. 

Table 5. Recent Escherichia coli and Salmonella enterica outbreaks in wheat products. 

Bacterial pathogen Location Year Wheat product Cases 

E. coli O121 and O26 U.S. (24 states) 2015 Flour 63 

E. coli O121 Canada 2016 Flour 28 

S. enterica Agona U.S. (15 states) 2008 Puffed wheat cereal 28 

S. enterica Typhimurium New Zealand 2008 Flour 75 

 

Escherichia coli 

 In 2015, there was a multistate outbreak of E. coli O121 and O26 in flour (Centers for 

Disease Control and Prevention 2016a). This outbreak began on December 21, 2015 and 

officially ended on September 5, 2016. In this outbreak, there were 63 cases across 24 states in 

the U.S. including 17 hospitalizations and one case of hemolytic uremic syndrome. There were 

no deaths associated with this outbreak. The source of this outbreak was contaminated flour 

milled in Kansas City, Missouri that people consumed raw in batters and/or dough. The serovars 

of E. coli involved in this outbreak were determined using whole genome sequencing. This 

outbreak was relatively long because flour is typically bought, stored, and utilized over an 

extended time period. The company responsible for milling the flour put out a series of three 

recalls, each more extensive than the previous one, in accordance with all information regarding 

the outbreak as it became available.  

 In 2016, there was another outbreak of E. coli O121 in flour, which took place in Canada 

(Canadian Food Inspection Agency 2017). A recall of possibly contaminated flour was initially 

issued on May 11, 2017, and this recall was expanded on May 26, 2017 as the outbreak 

investigation progressed and more information became available. This outbreak included 28 

cases across the providences in Canada including Alberta (5 cases), British Columbia (12 cases), 
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Newfoundland and Labrador (5 cases), Ontario (1 case), and Saskatchewan (4 cases) (Entis 

2017). Fortunately, there were no deaths due to this outbreak. Throughout this investigation, it 

was determined that the contaminated flour was produced between October 14, 2016 and 

November 3, 2016. Despite this short production span, the duration of this outbreak was over six 

months due to the shelf life of flour. This outbreak also affected numerous other products that 

utilize this company’s flour, which resulted in secondary recalls.  

Salmonella enterica 

 There have been very few multistate outbreaks of S. enterica in wheat products in the 

U.S., but there was an outbreak of S. enterica Agona in puffed wheat cereal in 2008 (Centers for 

Disease Control and Prevention 2008). This outbreak included 28 cases across 15 states. This 

outbreak did not include any deaths, but it did include eight hospitalizations. The onset of illness 

for these 28 cases of salmonellosis began on January 1, 2008 and proceeded through April 10, 

2008. The contaminated cereal was produced at a facility in Minnesota. The presence of S. 

enterica Agona was detected through routine testing at the cereal processing company, which 

resulted in a recall of the product. Pulsed-field gel electrophoresis was utilized to create the 

outbreak cluster as all cases involved had indistinguishable pulsed-field gel electrophoresis 

patterns that were identical to those of the isolates from the Minnesota processing facility.  

 In addition, there was an outbreak of S. enterica Typhimurium in wheat flour in New 

Zealand in 2008 (McCallum et al. 2013). This outbreak was due to the consumption of raw 

wheat flour. Once again, pulsed-field gel electrophoresis was utilized to identify the outbreak 

cluster after indistinguishable pulsed-field gel electrophoresis patterns were identified in isolates 

from unopened bags of flour and isolates from the ill humans. Throughout this outbreak, there 

were 75 cases identified that included 12 hospitalizations and no deaths. The onset of illness for 
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these cases ranged from October 13, 2008 to January 28, 2009. Cases were reportedly ill for 

anywhere between two and 21 days. The contaminated flour was produced between September 

and October 2008. All flour produced during these dates was recalled in response to the outbreak 

investigation. 

Hazard Analysis and Critical Control Point 

 Hazard Analysis and Critical Control Point (HACCP) plans are utilized in the food 

industry to prevent foodborne illness and injuries (U.S. Food & Drug Administration 2017). 

These plans are coupled with other practices including good agricultural practices, good 

manufacturing practices, and standard operating procedures. The combination of these 

preventative measures reduces the risk of illness and/or injury due to consuming unsafe food. 

Food, including wheat flour and semolina, can be unsafe due to physical, chemical, and/or 

biological hazards. HACCP plans seek out and mitigate the risks associated with all three types 

of hazards. There are seven main principles involved in the implementation and maintenance of 

HACCP plans including the following: hazard analysis, critical control point identification, 

establishment of critical limits, monitoring of critical control points and their associated critical 

limits, establishment of corrective actions, establishment of verification procedures, and the 

maintenance of all records associated with a HACCP plan. The development of a HACCP plan 

involves representatives from all areas involved in the manufacturing of a product. In addition, 

HACCP plans incorporate numerous types of information relevant to the product from its origin 

to the time of its consumption (i.e. farm to fork). While not all this information will be directly 

written in the HACCP plan, it may be a part of a risk analysis that demonstrated the need for 

hazard control in the form of a HACCP plan. 
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 Although HACCP plans are relatively new to the wheat milling industry, they are being 

implemented with increasing frequency. One HACCP plan that is readily available is a Generic 

HACCP Plan for Millers of Grains, oilseeds & Pulses developed by the Canadian Grain 

Commission (2017). This HACCP plan begins with a finished product description that very 

specifically outlines the characteristics of grain and its uses, which provides necessary 

background information for identifying and controlling all hazards. In addition, this HACCP plan 

outlines the process through which grain goes through prior to being sold. Outlining this entire 

process is vital to identifying the steps where hazards may be controlled. In this plan, numerous 

types of physical, chemical, and biological hazards are identified and addressed. Some examples 

include pathogenic bacteria on packaging materials, nails and wood slivers on pallets, pathogenic 

bacteria and mold on the grain, pesticide residues on the grain, physical hazards (e.g. glass, 

metal, and rocks) in the grain, and pathogenic bacteria in water utilized during the milling 

process. After identifying all hazards, the plan goes step-by-step through the mitigation of each 

hazard. While HACCP plans must be tailored for each grain processing facility, this plan 

provides a good representation of what a HACCP plan should include.  

Mitigating Foodborne Illness in the Home 

 Though HACCP plans are a commonplace for mitigating the risk of foodborne illness in 

food production facilities, there are often few guides developed specifically for consumers to 

utilize in their homes for specific products. One exception to this is that the Home Baking 

Association developed a guide for baking safely at home. This guide is called Baking Food 

Safely 101 (Home Baking Association 2018), and is readily available online. In this guide, there 

are six simple safety steps provided along with an easy to follow checklist that empowers home 

bakers to bake safely. These six simple steps are outlined in Figure 13 below. In addition, this 
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guide also provides a list of temperatures that various baked goods should reach while baking. 

For example, cheesecakes should be baked to 150 °F, stuffing and casseroles should be baked to 

165 °F, custard pies should be baked to 175 °F, yeast breads should be baked to 200 °F, and 

cakes should be baked to 210 °F. While this guide is not as comprehensive as a HACCP plan, it 

does provide consumers with things they can do to minimize their risk of becoming ill while 

baking at home. 

 

Figure 13. Six simple steps for baking safety at home according to the Home Baking Association 

(2018). 

Economic Burden of Foodborne Illness 

The burden of foodborne illness reaches far and wide, which is clearly demonstrated in 

the economic burden of these events. The annual cost of foodborne illness due to 15 specific 

pathogens including E. coli O157:H7, non-O157 E. coli, and S. enterica is estimated by the 

United States Department of Agriculture Economic Research Service (United States Department 

of Agriculture Economic Research Service 2017a). The economic burden of these pathogens is 

analyzed for these specific pathogens because they account for over 95 % of foodborne illness 

and associated deaths in the U.S. These cost estimates account for medical costs, productivity 
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loss, premature death, and the willingness of people to pay for a reduced risk of mortality. These 

costs are predominately paid by consumers when foodborne illness occurs.  

 The outcomes of foodborne illness of E. coli O157 and non-O157 serovars include the 

following: did not visit a physician and recovered, visited a physician and recovered, 

hospitalized, hospitalized and recovered without hemolytic uremic syndrome, hospitalized with 

hemolytic uremic syndrome and recovered, hospitalized with both hemolytic uremic syndrome 

and end stage renal disease but recovered and later died prematurely, hospitalized and died but 

did not have hemolytic uremic syndrome, and hospitalized and died from hemolytic uremic 

syndrome (United States Department of Agriculture Economic Research Service 2017a). The 

estimate for the annual cost of foodborne illness due to E. coli O157:H7 was $271,418,609 in 

2013 (an updated value is not available). This included a total of 63,153 cases including 2,138 

hospitalizations and 20 premature deaths. As the outcome of these cases increased in severity, 

the estimated case cost increased. For example, the estimated cost of a case that recovered 

without visiting a physician was $31.80, but the cost of a case that was hospitalized and died 

from hemolytic uremic syndrome was $8,713,339.69. The costs associated with non-O157 E. 

coli cases have been less despite a higher total case count. The estimate for the total annual cost 

due to these pathogens in 2013 was $27,364,561 (an updated value is not available). This 

included a total of 112,752 cases including 271 hospitalizations and 1 premature death. Once 

again, as the outcome of these cases became more severe, the estimated case cost increased. For 

example, the estimated cost of a case that recovered without visiting a physician was $31.80, but 

the cost of a case that was hospitalized with both hemolytic uremic syndrome and end stage renal 

disease but recovered and later died prematurely was $6,807,151.81. 
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 There are four outcomes for foodborne illness due to nontyphoidal salmonellosis 

including the following: did not visit a physician and recovered, visited a physician and 

recovered, hospitalized, hospitalized and recovered, and hospitalized but died (United States 

Department of Agriculture Economic Research Service 2017a). The overall cost estimate of 

foodborne nontyphoidal salmonellosis was $3,666,600,031 in 2013 (an updated value is not 

available). This cost was due to a total of 1,027,561 cases including 19,336 hospitalizations and 

378 premature deaths. In 2013, the estimated economic burden of a case that recovered but did 

not visit a physician was $56.53, but the economic burden of a case that was hospitalized and 

died was $8,657,357.03.  

In addition to the costs that consumers pay, firms producing wheat and other food 

products also incur costs related to foodborne illness (Golan et al. 2000). First, implementation 

costs including the development of food safety plans (e.g. HACCP plans) and training of 

employees are paid by firms. These costs are paid initially to set up food safety methods. Second, 

operation costs related to foodborne illness mitigation are also paid by firms and include the cost 

of equipment, record keeping, food safety system(s), and microbiological testing. These costs are 

paid regardless of if foodborne illness occurs, but they could increase if consumers become ill. 

Third, firms also pay prevention costs – costs associated with foodborne illness mitigation 

strategies, product liability, failure costs due to recalls, logistic expenses, and losses in brand 

equity. Ideally, firms would incur minimal prevention costs if all HACCP plans and other food 

safety systems (if applicable) are implemented and maintained properly. However, this is rarely 

the case as no food processing facility or process is perfect. Even though recalls happen, it is 

possible to minimize costs by acting quickly to minimize risk of illness and maintain consumer 
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loyalty. Overall, there are many elements that determine the cost of foodborne illness incurred by 

a firm.  

There are also costs of food safety that the public health sector is responsible for. These 

include, but are not limited to, disease surveillance, outbreak response, regulation, and consumer 

information costs (Scharff 2015). If it were not for research on foodborne illness mitigation, 

quick responses, and surveillance, there would likely be a much greater cost of foodborne illness 

due to an increased rate of illness. These costs are both proactive and reactive in the case of 

foodborne illness. As such, these costs can increase as the number of cases of foodborne illness 

increase. However, as with HACCP system implementation, it is likely that money spent on the 

proactive costs in this sector would reduce the reactive costs. 
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OVERALL SUMMARY AND FUTURE RESEARCH 

Summary 

 The six classes of wheat grown in the U.S. are all different in terms of composition and 

end-uses. In addition, they are all grown in different areas of the U.S. and have a variety of 

associated quality analyses. Despite all these differences, they are all at risk for both E. coli and 

S. enterica contamination. Wheat can easily be contaminated by these pathogenic bacteria 

because it is grown outside. E. coli and S. enterica are present in animal manure, soil, and water; 

all of which can easily contaminate wheat. Due to these factors, about 1% of wheat is 

contaminated with E. coli and/or S. enterica. 

 While the infectious dose of E. coli is much lower than that of S. enterica, both pose a 

threat to human health. E. coli produces one of the most dangerous bacterial toxins, known as 

Shiga toxin, when inside a host. This toxin inhibits protein synthesis, which causes cell death and 

numerous symptoms from diarrhea to kidney failure. S. enterica does not produce a toxin but 

invades the endothelial cells of humans most often causing enterocolitis. Despite these 

differences between E. coli and S. enterica, both are dangerous to human health and must be 

controlled in the wheat milling industry to decrease the rate of foodborne illness due to 

contaminated wheat products.  

 Due to the uses of wheat flour and semolina, control measures utilized to mitigate the risk 

of E. coli and S. enterica on wheat must inactivate these bacterial pathogens without damaging 

the functional polymers present in the wheat kernels. Regardless of the control measure, it is 

likely that a very low temperature will need to be coupled with a long treatment time to meet 

these requirements. Low temperature pasteurization treatments, irradiation, and non-thermal 
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plasma processing could be options for controlling E. coli and S. enterica on wheat. However, 

more research must be performed before their implementation. 

Future Research 

 There is considerable introductory research that has been successfully published on 

wheat, E. coli, S. enterica, methods of detection and identification of bacterial pathogens, and 

methods of inactivating bacteria. Despite this, there is much to be done to decrease the risk of 

illness associated with consuming wheat products.  

To begin, it is vital to continue research on the abundance of E. coli and S. enterica on 

wheat. This research should include not only the prevalence of these bacteria on wheat, but also 

the specific strains present. It would also be beneficial to determine if there are geographic trends 

in the prevalence of these bacterial pathogens on wheat. This information would provide the 

basis for directing control methods, so they can be as effective as possible.  

Next, research must be done to assess the efficacy of probiotics, pasteurization, 

irradiation, and non-thermal plasma treatments for the prevention and inactivation of E. coli and 

S. enterica on wheat. This research should include optimization of these processes for each class 

of wheat (if it varies with class) and pathogen so that the transition to industry is as seamless as 

possible.  

Lastly, it would be greatly beneficial to determine the amount of money saved and 

overall decrease in E. coli and S. enterica outbreaks in wheat products due to the implementation 

of these control measures. This would provide a way to measure the success of these control 

measures and provide direction for further research by possible identifying areas that still need to 

be addressed. 

  



47 
 

LITERATURE CITED 

Abirami, N., Nidaullah, H., Chuah, L.-O., Shamila-Syuhada, A. K., Chandraprasad, S., Huda, N., 

Hasmaizal, H., and Rusul, G. 2016. Evaluation of commercial loop-mediated isothermal 

amplification based kit and ready-to-use plating system for detection of Salmonella in 

naturally contaminated poultry and their processing environment. Food Control. 70:74-

78. 

Andrews, J. 2014. CDC shares data on E. coli and Salmonella in beef. 

http://www.foodsafetynews.com/2014/10/cdc-shares-mass-of-data-on-e-coli-and-

salmonella-in-beef/#.WgETz4hrxPY (accessed 2017 November 11). 

Berghofer, L. K., Hocking, A. D., Miskelly, D., and Jansson, E. 2003. Microbiology of wheat 

and flour milling in Australia. Int. J. Food Microbiol. 85:137-149. 

Brooks, J. T., Sowers, E. G., Wells, J. G., Greene, K. D., Griffin, P. M., Hoekstra, R. M., and 

Strockbine, N. A. 2005. Non-O157 Shiga toxin–producing Escherichia coli infections in 

the United States, 1983–2002. J. Infect. Dis. 192:1422-1429. 

Bustin, S. A., and Nolan, T. 2004. Pitfalls of quantitative real-time reverse-transcription 

polymerase chain reaction. J. Biomol. Tech. 15:155-166. 

Canadian Food Inspection Agency. 2017. Updated food recall warning - various brands of flour 

and flour products recalled due to E. coli O121. http://www.inspection.gc.ca/about-the-

cfia/newsroom/food-recall-warnings/complete-listing/2017-05-

26/eng/1495854753520/1495854756704 (accessed 2017 November 11). 

Canadian Grain Commission. 2017. Generic HACCP plan for millers of grains, oilseeds & 

pulses. Winnipeg, Manitoba. 



48 
 

Carr, J. H. 2017a. Escherichia coli. https://pixnio.com/science/microscopy-images/escherichia-

coli/gram-negative-escherichia-coli-bacteria-o157-h7-e-coli-o157-h7-bacterium 

(accessed 2018 January 22). 

Carr, J. H. 2017b. Salmonella. https://pixnio.com/science/microscopy-images/salmonellosis-

salmonella/gram-negative-bacilli-or-rod-shaped-salmonella-sp-bacteria (accessed 2018 

January 22). 

Centers for Disease Control and Prevention. 2008. Multistate outbreak of Salmonella Agona 

infections linked to rice and wheat puff cereal (final update). 

https://www.cdc.gov/salmonella/2008/rice-wheat-puff-cereal-5-13-2008.html (accessed 

2017 November 15). 

Centers for Disease Control and Prevention. 2011. Foodborne disease outbreak 2011 case 

definition. https://wwwn.cdc.gov/nndss/conditions/foodborne-disease-outbreak/case-

definition/2011/ (accessed 2017 November 11). 

Centers for Disease Control and Prevention. 2013. Standard operating procedure for PulseNet 

PFGE of Escherichia coli O157:H7, Escherichia coli non-O157 (STEC), Salmonella 

serotypes, Shigella sonnei and Shigella flexneri. https://www.cdc.gov/pulsenet/pdf/ecoli-

shigella-salmonella-pfge-protocol-508c.pdf (accessed 2017 November 11). 

Centers for Disease Control and Prevention. 2015. E. coli (Escherichia coli). 

https://www.cdc.gov/ecoli/general/index.html (accessed 2017 November 11). 

Centers for Disease Control and Prevention. 2016a. Multistate outbreak of Shiga toxin-producing 

Escherichia coli infections linked to flour (final update). 

https://www.cdc.gov/ecoli/2016/o121-06-16/index.html (accessed 2017 November 11). 



49 
 

Centers for Disease Control and Prevention. 2016b. Salmonella questions and answers. 

https://www.cdc.gov/salmonella/general/index.html (accessed 2017 November 15). 

Centers for Disease Control and Prevention. 2017a. List of selected multistate foodborne 

outbreak investigations. https://www.cdc.gov/foodsafety/outbreaks/multistate-

outbreaks/outbreaks-list.html (accessed 2017 November 11). 

Centers for Disease Control and Prevention. 2017b. Shiga toxin-producing E. coli and food 

safety. https://www.cdc.gov/features/ecoliinfection/index.html (accessed 2017 November 

11). 

Centers for Disease Control and Prevention. 2017c. Pulsed-field gel electrophoresis (PFGE). 

https://www.cdc.gov/pulsenet/pathogens/pfge.html (accessed 2017 November 11). 

Clancy, M. M., Davis, M., Valitutto, M. T., Nelson, K., and Sykes, J. M. 2016. Salmonella 

infection and carriage in reptiles in a zoological collection. J. Am. Vet. Med. Assoc. 

248:1050-1059. 

Coburn, B., Grassl, G. A., and Finlay, B. 2007. Salmonella, the host and disease: A brief review. 

Immunol. Cell Biol. 85:112-118. 

Dandekar, T., Fieselmann, A., Fischer, E., Popp, J., Hensel, M., and Noster, J. 2014. Salmonella 

- how a metabolic generalist adopts an intracellular lifestyle during infection. Front. Cell. 

Infect. Microbiol. 4:1-11. 

Deriu, E., Liu, J. Z., Pezeshki, M., Edwards, R. A., Ochoa, R. J., Contreras, H., Libby, S. J., 

Fang, F. C., and Raffatellu, M. 2013. Probiotic bacteria reduce Salmonella Typhimurium 

intestinal colonization by competing for iron. Cell Host Microbe. 14:26-37. 

Ekblom, R., and Wolf, J. B. 2014. A field guide to whole‐genome sequencing, assembly and 

annotation. Evol. Appl. 7:1026-1042. 



50 
 

Engedal, N., Skotland, T., Torgersen, M. L., and Sandvig, K. 2011. Shiga toxin and its use in 

targeted cancer therapy and imaging. Microb. Biotechnol. 4:32-46. 

Entis, P. 2017. E. coli outbreak strain in several flour brands from Ardent Mills. 

http://www.foodsafetynews.com/2017/04/outbreak-strain-found-in-several-brands-of-

flour-from-ardent-mills/ (accessed 2017 November 11). 

Fan, X., Sokorai, K., Weidauer, A., Gotzmann, G., Rögner, F.-H., and Koch, E. 2017. 

Comparison of gamma and electron beam irradiation in reducing populations of E. coli 

artificially inoculated on mung bean, clover and fenugreek seeds, and affecting 

germination and growth of seeds. Radiat. Phys. Chem. 130:306-315. 

Fellows, P. J. 2009. Pages 381-395 in: Food processing technology - principles and practice. P. J. 

Fellows ed. Woodhead Publishing: Cambridge, UK. 

Foresman, P. S. 2008. Abomasum. 

https://commons.wikimedia.org/wiki/File:Abomasum_(PSF).png (accessed 2018 January 

29). 

Forshell, L. P., and Wierup, M. 2006. Salmonella contamination: A significant challenge to the 

global marketing of animal food products. Rev. Sci. Tech. Off. Int. Epiz. 25:541-554. 

Fratamico, P. M., Briggs, C. E., Needle, D., Chen, C.-Y., and DebRoy, C. 2003. Sequence of the 

Escherichia coli O121 O-antigen gene cluster and detection of enterohemorrhagic E. coli 

O121 by PCR amplification of the wzx and wzy genes. J. Clin. Microbiol. 41:3379-3383. 

Golan, E. H., Vogel, S. J., Frenzen, P. D., and Ralston, K. L. 2000. Tracing the costs and benefits 

of improvements in food safety. Agric. Econ. Rep. 791. 

GoodMills Innovation GmbH. 2015. Grain gallery. GoodMills Innovation GmbH. http://grain-

gallery.com/en/wheat/images (accessed 2017 January 20). 



51 
 

Gould, L. H., Mody, R. K., Ong, K. L., Clogher, P., Cronquist, A. B., Garman, K. N., Lathrop, 

S., Medus, C., Spina, N. L., Webb, T. H., White, P. L., Wymore, K., Gierke, R. E., 

Mahon, B. E., and Griffin, P. M. 2013. Increased recognition of non-O157 Shiga toxin-

producing Escherichia coli infections in the United States during 2000-2010: 

Epidemiological features and comparison with E. coli O157 infections. Foodborne 

Pathog. Dis. 10:453-460. 

Gouws, P. A., Visser, M., and Brozel, V. 1998. A polymerase chain reaction procedure for the 

detection of Salmonella spp. within 24 hours. J. Food Prot. 61:1039-1042. 

Government of Canada. 2011. Pathogen safety data sheets: Infectious substances - Salmonella 

enterica spp. https://www.canada.ca/en/public-health/services/laboratory-biosafety-

biosecurity/pathogen-safety-data-sheets-risk-assessment/salmonella-enterica.html 

(accessed 2017 November 15). 

Government of Canada. 2014. Pathogen sadety data sheet: Infectiour substances - Escherichia 

coli, enteroinvasive. https://www.canada.ca/en/public-health/services/laboratory-

biosafety-biosecurity/pathogen-safety-data-sheets-risk-assessment/escherichia-coli-

enteroinvasive.html (accessed 2017 November 15). 

Hanson, D. L., Loneragan, G. H., Brown, T. R., Nisbet, D. J., Hume, M. E., and Edrington, T. S. 

2016. Evidence supporting vertical transmission of Salmonella in dairy cattle. Epidemiol. 

Infect. 144:962-967. 

Hedican, E., Hooker, C., Jenkins, T., Medus, C., Jawahir, S., Leano, F., and Smith, K. 2009. 

Restaurant Salmonella Enteritidis outbreak associated with an asymptomatic infected 

food worker. J. Food Prot. 72:2332-2336. 



52 
 

Hocking, A. D. 2003. Microbiological facts and fictions in grain storage. p. 55-58. Proceedings 

of the Australian postharvest technical conference, Canberra. Canberra: CSIRO, 

Australia. 

Baking Food Safety 101. 2018. Home Baking Association: Topeka, Kansas. Pamphlet. 

Hsu, H., Sheen, S., Sites, J., Cassidy, J., Scullen, B., and Sommers, C. 2015. Effect of high 

pressure processing on the survival of Shiga Toxin-producing Escherichia coli (Big Six 

vs. O157:H7) in ground beef. Food Microbiol. 48:1-7. 

Huston, C. L., Wittum, T. E., Love, B. C., and Keen, J. E. 2002. Prevalence of fecal shedding of 

Salmonella spp. in dairy herds. J. Am. Vet. Med. Assoc. 220:645-649. 

Jackson, B. R., Griffin, P. M., Cole, D., Walsh, K. A., and Chai, S. J. 2013. Outbreak-associated 

Salmonella enterica serotypes and food Commodities, United States, 1998-2008. 

Emerging Infect. Dis. 19:1239-1244. 

Jackson, B. R., Tarr, C., Strain, E., Jackson, K. A., Conrad, A., Carleton, H., Katz, L. S., Stroika, 

S., Gould, L. H., and Mody, R. K. 2016. Implementation of nationwide real-time whole-

genome sequencing to enhance listeriosis outbreak detection and investigation. Rev. 

Infect. Dis. 63:380-386. 

Jiang, X., Morgan, J., and Doyle, M. P. 2002. Fate of Escherichia coli O157: H7 in manure-

amended soil. Appl. Environ. Microbiol. 68:2605-2609. 

Karmali, M. A., and Goglio, A. G. 1994. Recent advances in verocytotoxin-producing 

Escherichia coli infections. p. 17-24. International Symposium and Workshop on 

Verocytotoxin (Shiga-like toxin), Bergamo, Italy. Elsevier, Amsterdam, The Netherlands. 



53 
 

Karmali, M. A. 2004. Prospects for preventing serious systemic toxemic complications of Shiga 

toxin–producing Escherichia coli infections using Shiga toxin receptor analogues. J. 

Infect. Dis. 189:355-359. 

Law, J. W.-F., Ab Mutalib, N.-S., Chan, K.-G., and Lee, L.-H. 2014. Rapid methods for the 

detection of foodborne bacterial pathogens: Principles, applications, advantages and 

limitations. Front. Microbiol. 5:1-19. 

Lee, H. A., Wyatt, G. M., Bramham, S., and Morgan, M. 1990. Enzyme-linked immunosorbent 

assay for Salmonella Typhimurium in food: Feasibility of 1-day Salmonella detection. 

Appl. Environ. Microbiol. 56:1541-1546. 

Lee, M.-S., Koo, S., Jeong, D. G., and Tesh, V. L. 2016. Shiga toxins as multi-functional 

proteins: Induction of host cellular stress responses, role in pathogenesis and therapeutic 

applications. Toxins. 8:77. 

Leomil, L., Aidar-Ugrinovich, L., Guth, B., Irino, K., Vettorato, M., Onuma, D., and de Castro, 

A. P. 2003. Frequency of Shiga toxin-producing Escherichia coli (STEC) isolates among 

diarrheic and non-diarrheic calves in Brazil. Vet. Microbiol. 97:103-109. 

Liao, X., Liu, D., Xiang, Q., Ahn, J., Chen, S., Ye, X., and Ding, T. 2017. Inactivation 

mechanisms of non-thermal plasma on microbes: A review. Food Control. 75:83-91. 

Mangal, M., Bansal, S., Sharma, S. K., and Gupta, R. K. 2016. Molecular detection of foodborne 

pathogens: A rapid and accurate answer to food safety. Crit. Rev. Food Sci. Nutr. 

56:1568-1584. 

Marder, E. P. 2017. Incidence and trends of infections with pathogens transmitted commonly 

through food and the effect of increasing use of culture-independent diagnostic tests on 



54 
 

surveillance - foodborne diseases active surveillance network, 10 U.S. sites, 2013–2016. 

Morbidity Mortal. Wkly. Rep. 66:397-403. 

McCallum, L., Paine, S., Sexton, K., Dufour, M., Dyet, K., Wilson, M., Campbell, D., 

Bandaranayake, D., and Hope, V. 2013. An outbreak of Salmonella Typhimurium phage 

type 42 associated with the consumption of raw flour. Foodborne Pathog. Dis. 10:159-

164. 

McClean, P. 1997. Polymerase chain reaction (or PCR). 

https://www.ndsu.edu/pubweb/~mcclean/plsc431/cloning/clone9.htm (accessed 2017 

November 11). 

McCluskey, P. J. 2011. Wheat. http://plainshumanities.unl.edu/encyclopedia/doc/egp.ag.075 

(accessed 2017 November 16). 

Melton-Celsa, A. R. 2014. Shiga toxin (Stx) classification, structure, and function. Microbiol. 

Spectrum. 2. 

Molina, F., López-Acedo, E., Tabla, R., Roa, I., Gómez, A., and Rebollo, J. E. 2015. Improved 

detection of Escherichia coli and coliform bacteria by multiplex PCR. BMC Biotechnol. 

15:48. 

Nougayrede, J.-P. 2007. E. coli. https://commons.wikimedia.org/wiki/File:Pathovar_Ecoli.jpg 

(accessed 2018 January 31). 

Phillips, A., Sotomayor, C., Wang, Q., Holmes, N., Furlong, C., Ward, K., Howard, P., Octavia, 

S., Lan, R., and Sintchenko, V. 2016. Whole genome sequencing of Salmonella 

Typhimurium illuminates distinct outbreaks caused by an endemic multi-locus variable 

number tandem repeat analysis type in Australia, 2014. BMC Microbiol. 16:211. 



55 
 

Richter, K., Dorneanu, E., Eskridge, K., and Rao, C. 1993. Microbiological quality of flours. 

Cereal Foods World. 

Sánchez, S., García-Sánchez, A., Martínez, R., Blanco, J., Blanco, J., Blanco, M., Dahbi, G., 

Mora, A., de Mendoza, J. H., and Alonso, J. 2009. Detection and characterisation of 

Shiga toxin-producing Escherichia coli other than Escherichia coli O157:H7 in wild 

ruminants. Vet. J. 180:384-388. 

Sargeant, J., Amezcua, M., Rajic, A., and Waddell, L. 2007. Pre‐harvest interventions to reduce 

the shedding of E. coli O157 in the faeces of weaned domestic ruminants: A systematic 

review. Zoonoses Public Health. 54:260-277. 

Scharff, R. L. 2015. The high costs of foodborne illness. 

http://www.fshn.chhs.colostate.edu/outreach/lfs/files/The%20High%20Cost%20of%20Fo

odborne%20Illness%20-%20Scharff.pdf (accessed 2017 November 15). 

Schmid-Hempel, P., and Frank, S. A. 2007. Pathogenesis, virulence, and infective dose. PLoS 

Pathog. 3:e147. 

Schroder, E. 2017. Ardent Mills expands recall of flour products. http://www.world-

grain.com/articles/news_home/World_Grain_News/2017/05/Ardent_Mills_expands_reca

ll_of.aspx?ID=%7BB28D6FA0-337A-4030-A957-33B922FEE4D3%7D (accessed 2017 

November 11). 

Shah, M. K., Asa, G., Sherwood, J., Graber, K., and Bergholz, T. M. 2017. Efficacy of vacuum 

steam pasteurization for inactivation of Salmonella PT 30, Escherichia coli O157: H7 

and Enterococcus faecium on low moisture foods. Int. J. Food Microbiol. 244:111-118. 



56 
 

Shen, Z., Hou, N., Jin, M., Qiu, Z., Wang, J., Zhang, B., Wang, X., Wang, J., Zhou, D., and Li, J. 

2014. A novel enzyme-linked immunosorbent assay for detection of Escherichia coli 

O157: H7 using immunomagnetic and beacon gold nanoparticles. Gut Pathog. 6:14. 

Silva, C., Calva, E., and Maloy, S. 2014. One health and food-borne disease: Salmonella 

transmission between humans, animals, and plants. Microbiol. Spectrum. 2:1-9. 

Solomon, E. B., Yaron, S., and Matthews, K. R. 2002. Transmission of Escherichia coli 

O157:H7 from contaminated manure and irrigation water to lettuce plant tissue and its 

subsequent internalization. Appl. Environ. Microbiol. 68:397-400. 

Sondi, I., and Salopek-Sondi, B. 2004. Silver nanoparticles as antimicrobial agent: A case study 

on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 275:177-182. 

Tizard, I. 2004. Salmonellosis in wild birds. Semin. Avian Exot. Pet Med. 13:50-66. 

U.S. Food & Drug Administration. 2007. Bacteriological analytical manual: Chapter 5 

Salmonella. 

https://www.fda.gov/food/foodscienceresearch/laboratorymethods/ucm070149.htm 

(accessed 2017 November 11). 

U.S. Food & Drug Administration. 2017. HACCP principles & application guidelines. 

https://www.fda.gov/Food/GuidanceRegulation/HACCP/ucm2006801.htm (accessed 

2018 March 8). 

U.S. Food and Drug Administration. 2016. FDA investigated multistate outbreak of Shiga toxin-

producing E. coli infections linked to flour. 

https://www.fda.gov/Food/RecallsOutbreaksEmergencies/Outbreaks/ucm504192.htm 

(accessed 2017 November 11). 



57 
 

U.S. Food and Drug Administration. 2017. BAM 4: Enumeration of Escherichia coli and the 

coliform bacteria. 

https://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm064948.htm#c

onventional (accessed 2017 November 11). 

U.S. Wheat Associates. 2013. Wheat classes. http://www.uswheat.org/wheatClasses (accessed 

2017 November 16). 

United States Department of Agriculture Economic Research Service. 2017a. Cost estimates of 

foodborne illness. https://www.ers.usda.gov/data-products/cost-estimates-of-foodborne-

illnesses/ (accessed 2017 November 16). 

United States Department of Agriculture Economic Research Service. 2017b. Aquaculture. 

https://www.ers.usda.gov/topics/crops/wheat/ (accessed 2017 November 16). 

Varshney, M., Yang, L., Su, X.-L., and Li, Y. 2005. Magnetic nanoparticle-antibody conjugates 

for the separation of Escherichia coli O157:H7 in ground beef. J. Food Prot. 68:1804-

1811. 

Werther, J. 2012. Salmonella species growing on XLD agar. 

https://commons.wikimedia.org/wiki/File:Salmonella_species_growing_on_XLD_agar_-

_Showing_H2S_production.jpg (accessed 2018 January 29). 

Winfield, M. D., and Groisman, E. A. 2003. Role of nonhost environments in the lifestyles of 

Salmonella and Escherichia coli. Appl. Environ. Microbiol. 69:3687-3694. 

Witmadrid. 2009. Photograph of E. coli colonies on EMB agar. 

https://commons.wikimedia.org/wiki/File:Coli_levine.JPG (accessed 2018 January 29). 

 


