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ABSTRACT

We consider an Ergodic Fading Broadcast Channel with one Legitimate receiver and one

Eavesdropper (BCoLoE) having arbitrary fading statistics, where the instantaneous Channel State

Information (CSI) are known only at the receivers (CSIR). The secrecy capacity of this channel

is characterized within 11 bits irrespective of fading statistics and Signal-to-Noise Ratios (SNRs).

This is achieved by deriving a new upper bound to the secrecy capacity of the channel and two

new lower bounds. The upper bound is derived by approximating Complementary Cumulative

Distribution Functions (CCDFs) of the two links by corresponding staircase functions. The smaller

lower bound, although looser, has a form which can be analytically compared with the upper bound

and facilitates the approximate secrecy capacity characterization. It is proved that, the so called

Binary Expansion Signaling with Reverse Stripping (BES-RS) scheme can achieve a secrecy rate

larger than both these lower bounds with the help of numerical computation for several BCoLoEs

with practical fading statistics.

We further characterize the secrecy capacity of a class of 2-user binary fading interference

channel (BFIC) and 2-user layered fading interference channel (LFIC), under the same assumptions

as for the wiretap channel. The secrecy capacity region for a very weak BFIC turns out to be

quadrangular while for LFIC it is polygonal. We explicitly characterize the corner points in both

the cases. The converse in either case is proved by dividing the set of upper bounds into two

carefully chosen regions depending on the values of ω - the weighting factor of the weighted sum

bounds. In case of LFIC each of the regions are also shown to be piece-wise linear. The achievability

on the other hand is proved by using capacity optimal code for a layered erasure wiretap channel

at both the transmitters and treating interference as erasure while decoding the signals at the

receivers. In addition, the achievability of the layered case also involves proper assignment of the

layers to the two transmitters based on some constraints. We also prove the secrecy capacity of

strong BFIC and LFIC as zero.
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1. INTRODUCTION

The purpose of any form of communication is to transfer information. But what is informa-

tion? From a system design perspective we might also be interested to know how much information

we are transferring or if it is at all possible to quantify the amount of information that is being

transferred and also how fast communication can take place. But before we go into more compli-

cated questions the ones we want to address first are the most primitive ones - what is information

and if at all it is possible to quantify it?

In that respect let us now consider a situation - Somebody tells you that tomorrow sun is

going to rise in the east. Do you get any information from that? Think about it, you will realise the

answer is no because it is something that you not only know about but also that it is certainly going

to happen. However if somebody tells you that the sun might not come out tomorrow because it’s

going to be cloudy - is that information? It certainly is because it does not remain cloudy everday

in general - so there is a ’cloud’ of uncertainity about it being cloudy the next day. Hence intuitively

it seems as if, if there is some uncertainity involved in a piece of message then it definitely contains

some information. Let us try to get some more intuition about what is information with another

example - this time we consider throwing of a fair coin. Do you know before tossing the coin what

the output will be, you can just guess but you don’t know it for sure. For a fair coin it has equal

probability of landing a heads or a tails hence it is difficult to make a guess and hence it has more

information (we will find that out shortly), however if it is biased to one side then at least you can

make a better guess. Thus it further cements the fact that more the uncertainity about an event

more is the information contained in it. From information transmission point of view, revealing

some fact to a person who already knows it, is pointless. Hence, information is always accompanied

by some amount of uncertainty to the event of interest.

The best way to model uncertainty and thus information is through Random Variables (RV).

Information content of a random variable is related to the amount of uncertainty associated with

that RV. But how are RV defined and do they have any classification? RV can either be discrete

or continuous depending on the values they can take. We define a discrete RV by its Probability

Mass Function (PMF), whereas a continuous RV is characterized by its Probability Distribution
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Function (PDF). So, its not unreasonable to predict that the information content of a RV should

be a function of the PMF or PDF of the RV. A set of such intuitive guidelines helps us to give a

mathematical definition for information and to quantify it. In information theory the information

contained in a RV is expressed in terms of entropy. It is very easy to get confused with entropy used

in thermodynamics however although the underlying meaning of entropy in either case remains the

same - its a measure of randomness of a system, it is used to define two completely different things

in the two contexts. In the next few sections we first show how information is mathematically

defined and quantified. Next some other definitions and some basic information theoretic results

are presented to provide the setting for information theoretic secure communication. Most of these

definitions and results are presented from [1].

1.1. Entropy

We mentioned earlier that the information contained in a random variable is called entropy

and the information contained in a RV depends on the uncertainity of the RV. Hence entropy is

the measure of uncertainity of a random variable. Let us now denote X as a random variable that

can take values from the alphabet X and has PMF defined as p(x) = P (X = x)∀x ∈ X , i.e. the

probability that X takes a value x ∈ X is p(x). Since we know that probability can take values

only in the range [0, 1] hence p(x) ∈ [0, 1]. Thus entropy is defined as follows

Definition 1 The entropy H(X) of a discrete random variable X is defined by

H(X) = −
∑
x∈X

p(x) log p(x), (1.1)

If the logarithm in 1.1 is to the base 2 then the resulting entropy is measured in bits however if

it is to the base e then entropy is measured in units of nats. If however the logarithm has any

other random base b then it is represented as Hb(X). Let us once again get back to the example of

coin toss. Let X represent the RV representing toss of a coin and let PX(x) be its PMF such that

PX(heads) = p and PX(tails) = 1− p. Hence the entropy of this random variable will be

H(X) = −p log p− (1− p) log (1− p), (1.2)

2



The figure 1.1 shows the variation of entropy with p. If p = 1 which essentially corresponds

to one always getting heads as an outcome of a toss has zero entropy which intuitively makes sense

if you always get heads then its a certain event and there is no uncertainity left in it and hence

information content or entropy is zero. Similar explaination goes when p = 0 which corresponds

to one always getting tails. However if p = 1
2 then it is the most uncertain situation with one

having no idea about the outcome of the toss and hence has maximum entropy of 1 bit. As p varies

in between these extreme values entropy follows the graph of figure1.1. We will next show that

mathematics supports the explaination that we have just provided and hence validates the nature

of the graph in figure 1.1.

Figure 1.1. Variation of Entropy for a Binary RV.

When p = 0 or 1 the entropy can be calculated as follows

H(X) = −1 log 1− (1− 1) log (1− 1) = 0− 0 = 0, (1.3)

where the second log term in equation 1.3 goes to zero because the rate of decrease of x is more

than rate of decrease of log x. Next we find the entropy for p = 1
2 ,

H(X) = −1

2
log

1

2
− (1− 1

2
) log (1− 1

2
) =

1

2
+

1

2
= 1, (1.4)

Thus we have successfully found a way to measure and quantify information. However we know

just to measure discrete RV what about continuous RV. The measurement of continuous RV is not

too different. For continuous RV the entropy term is known as differential entropy. It is defined as

3



follows

Definition 2 The differential entropy h(X) of a continuous random variable X with PDF fX(x)

is defined as

h(X) = −
∫
S
fX(x) log fX(x)dx, (1.5)

where S is the support set of the random variable.

We will next define two more entropy terms joint entropy and conditional entropy which will be

heavily used in our problem solving. When we have to define the entropy of a pair or more than one

random variable together then it is known as joint entropy. The formal definition goes as follows

Definition 3 The joint entropy H(X,Y ) of a pair of discrete random variables (X,Y ) with a joint

distribution is defined as

H(X,Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y), (1.6)

We have a similar definition for joint entropy if the RVs X and Y are continuous where the sum-

mation signs are replaced by integration and the PMFs with PDFs. Next we define the conditional

entropy of a random variable given another as the expected value of the entropies of the conditional

distributions, averaged over the conditioning random variable.

Definition 4 If (X,Y ) ∼ p(x, y), the conditional entropy H(Y |X) is defined as

H(Y |X)=
∑
x∈X

p(x)H(Y |X = x),

= −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x), (1.7)

One of the important properties of conditional entropy which will be of immense use in our

derivations later is that conditioning reduces entropy. Next we provide the chain rule of entropy

Definition 5 Let X1, X2, · · · , Xn be drawn according to p(x1, x2, · · · , xn). Then

H(X1, X2, · · · , Xn) =

n∑
i=1

H(Xi|Xi−1, · · · , Xn), (1.8)

4



Next we define the relationship between the entropy, joint entropy and conditional entropy by using

the chain rule

H(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y ), (1.9)

The naturalness of the definition of joint entropy and conditional entropy is exhibited by the fact

that the entropy of a pair of random variables is the entropy of one plus the conditional entropy of

the other. The concept of entropy plays the central role in information theory. Most of the other

information-theoretic terms are built on the definition of the entropy. Next, we consider another

key concept called mutual information.

1.2. Mutual Information

Mutual Information is the measure of information that one random variable has about

another. In other words it is the measure of the uncertainity that is left about a random variable

after knowing the other.

Definition 6 Consider two random variables X and Y with a joint PMF p(x, y) and the marginal

PMFs p(x) and p(y). The mutual information I(X;Y ) is given by

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
, (1.10)

Mutual Information can also be expressed in terms of entropy and conditional entropy as follows

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X), (1.11)

Thus mutual information is the reduction in the uncertainity of X due to the knowledge of Y or

vice versa. Thus from the relation shown in 1.11 we can easily see that

I(X;Y ) ≤ H(X) and I(X;Y ),≤ H(Y ) (1.12)

Also since conditioning reduces entropy so from equation 1.11 we can say that H(X) ≥ H(X|Y )

or H(Y ) ≥ H(Y |X) and hence I(X;Y ) ≥ 0. Figure 1.2 shows the relation between entropy,

conditional entropy, joint entropy and mutual information. Next we try to find out the relationship

between mutual information and entropy. So if we try to find out the mutual information between
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X with itself then we get

I(X;X) = H(X)−H(X|X) = H(X), (1.13)

Thus the mutual information of X with itself is same as its entropy. Hence entropy is sometimes

also known as self information. Since most of the things have been defined already it is now time

to focus on the rate of information transfer. Let us consider a simple channel with input X and

output Y . The channel is not affected by any external noise or interference hence Y should be same

as X, i.e. the receiver should receive whatever the transmitter has sent. The mutual information

between X and Y thus becomes

I(X;Y ) = H(Y )−H(Y |X) = H(X)−H(X|Y ) = H(X)− 0 = H(X), (1.14)

Figure 1.2. Relation Between Entropy, Conditional Entropy, Joint Entropy and Mutual Information

In equation 1.14 H(X|Y ) is equal to 0 due to the noiseless nature of the channel, which

makes sure that the output is the same as the input. However had X and Y been independent then

the mutual information between them would have been 0 as in that case H(X|Y ) = H(X). Thus the

mutual information between X and Y can vary between 0 and H(X) depending on the relationship

between X and Y , where H(X) is the maximum value that I(X;Y ) can have since conditional

entropy can never be negative and 0 is the minimum that it can have since I(X;Y ) ≥ 0. Thus

depending on the channel between X and Y we can also define I(X;Y ) as the mutual information of

the channel. From the above example, we can predict that the amount of information transferable
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is dependent on the mutual information of the channel.We will soon find out that if we try to

send information at a rate higher than the mutual information of the channel then the information

sent over the channel cannot be received reliably by the receiver. In the next section we formally

define channel capacity - the maximum rate at which information can be reliably transmitted over

a channel.

1.3. Channel Capacity

From the previous section it is pretty clear that any communication over a channel must

be associated with a rate at which information is being transferred over the channel and possibly

that rate is somehow related to the mutual information between the input and the output. Now

when that exchange of information, taking place over the channel happens at a rate such that the

receiver receives with minimum error then we can say that the rate is achievable. But then the

question is - is the achievable rate a constant or does it vary? Let us say, for example - Lucy designs

a transmission scheme on a channel such that she can achieve a rate of 5 bits per channel use and

it turns out that any rate greater than that does not provide reliable means of communication.

What does that mean? You can design a transmission scheme where you can achieve a rate upto 5

bits per channel use and nothing more than that. We define channel capacity of a channel as the

maximum achievable rate on a channel over all possible transmission schemes.

In information theory we characterize the channel capacity in two simple steps: First we find

an upper bound to the transmission rate of a channel and then we compare it with the achievable

rates derived for various transmission schemes. The different upper bounds derived serves as an

upper bound to all achievable rates. Now if any of these upper bounds coincide with the achievable

rate derived then that is our capacity. In other words capacity is the infimum of all upper bounds

and at the same time the supremum of all achievable rates. With this background we are now

ready for the formal definition of channel capacity and to find the capacity of some very popular

channels which will be of use later in solving the problems.

Definition 7 We define the information channel capacity of a discrete memoryless channel as

C = max
p(x)

[
I(X;Y )

]
, (1.15)

where the maximum is taken over all possible input distributions p(x).
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The definition for the continuous channel follows in the same spirit except for the fact that now

the PMFs are replaced with PDFs. We next find out the capacity of a Binary Symmetric Channel

(BSC) and a Binary Erasure Channel (BEC).

1.3.1. Binary Symmetric Channel (BSC)

The channel shown in figure 1.3 is a binary symmetric channel in which the input symbols

are transmitted to the receivers as it is with probability 1 − p whereas it is complemented with

probability p. The channel is binary because it can take inputs only from the field {0, 1}. Thus as

you can see that the channel is not reliable and there are chances for error to occur. However we

will soon show that even such a channel has a positive capacity rate of reliable transmission.

Figure 1.3. A Binary Symmetric Channel.

We first try to find a bound for I(X;Y ) and then try to achieve the bound

I(X;Y )= H(Y )−H(Y |X),

= H(Y )−
∑

p(x)H(Y |X = x),

= H(Y )−
∑

p(x)H(p), (1.16)

= H(Y )−H(p), (1.17)

≤ 1−H(p), (1.18)

where equation 1.16 follows from the fact that the channel Y |X is a binary channel,i.e. it can take

values only in {0, 1}, equation 1.17, is the result of the fact
∑
p(x) = 1 and H(p) is a constant value

for a particular p and is independent of the distribution of X. Finally since Y ∈ {0, 1} a binary
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field, the maximum entropy it can have is 1. Now that the upper bound is defined we can achieve

it if we use Bernoulli(1
2) distribution for X, i.e. for X both 0 and 1 occur with equal probability.

That will ensure that Y will also have a Bernoulli (1
2) distribution and hence we can achieve the

upper bound and thereby giving the capacity of BSC channel as 1−H(p).

1.3.2. Binary Erasure Channel (BEC)

Next we find the capacity of another channel known as the Binary Erasure Channel as

shown in figure 1.4. In this case the input is very similar to BSC it takes values only in {0, 1}

however the output is a little different in the sense that it can now take a value from the field

{0, 1, e} where e represents the erased channel state. With this small description of the channel in

hand we next try to calculate the capacity of the binary erasure channel as follows

C= max
p(x)

I(X;Y ),

= max
p(x)

[
H(Y )−H(Y |X)

]
,

= max
p(x)

[
H(Y )−H(p)

]
, (1.19)

where equation 1.19 is because of the channel configuration as shown in figure 1.4. Well the next

step is to find an input distribution so as to find the maximum of equation 1.19.

Figure 1.4. A Binary Erasure Channel.

The obvious first guess would be to have the ouput samples {0, 1, e} equally distributed so

that H(Y ) = log2 3 which is the maximum that one can get for a three sample discrete random

variable. But one can find out that there is no such input distribution with which you can get
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H(Y ) = log2 3. What we do next is we define an event E = {Y = e}, then using the chain rule of

entropy

H(Y ) = H(Y,E) = H(E) +H(Y |E), (1.20)

Let us define a distribution for X such that P (X = 1) = α and P (X = 0) = 1− α. Then we have

H(Y ) = H((1− p)(1− α), p, (1− p)α) = H(p) + (1− p)H(α), (1.21)

where P (Y = 1) = (1 − p)α, P (Y = 0) = (1 − p)(1 − α) and P (Y = e) = p for the above input

distribution. Now from equation 1.19 we can further write using equation 1.21

C= max
α

[
�

��H(p) + (1− p)H(α)−�
��H(p)
]
,

= max
α

(1− p)H(α),

= (1− p), (1.22)

where the maximum in equation 1.22 is achieved when α = 1
2 . Thus equation 1.22 gives the capacity

for a Binary Erasure Channel. The next section discusses about the popular channel models

considered for implementing physical layer security, its practicality and the problem considered in

this thesis.

1.4. Introduction to Physical Layer Security and Problem Statement

Wireless communication is one of the most ubiquitous discovery of modern technologies.

Cellular communication alone is accessible to an estimated 5 billion people, and this is but one,

of an array of wireless technologies that have emerged in recent decades. Wireless networks are

increasingly used for a very wide range of applications, including banking and other financial trans-

actions, social networking, and environmental monitoring, among many others. For this reason,

the security of wireless networks is of critical societal interest. Traditional methods of providing

security in such networks are impractical for some emerging types of wireless networks due to the

light computational abilities of some wireless devices, such as radio-frequency identification (RFID)

tags, certain sensors, etc., or due to the very large scale or loose organizational structure of some

networks. Also modern day existing security schemes such as authentication schemes, encryption

schemes or identification schemes and so on are based on the assumption of computational hard-
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ness, for example the assumption that factoring and computing discrete log is hard. But with

the processing power of modern day machines improving exponentially we might soon come across

adversaries with immense computing power and then the existing cryptographic algorithms might

no longer hold good. For these and other reasons, there has been considerable recent interest

in developing methods for secure data transmission that are based on the physical properties of

the radio channel (the so-called wireless physical layer). These results are based on information

theoretic characterizations of secrecy, which date to some of Claude Shannon’s early work on the

mathematical theory of communication [2]. Whereas Shannon’s work focused on symmetric key

encryption systems, perhaps a more relevant development in this area was Aaron Wyner’s work on

the wiretap channel, which introduced the idea that secrecy can be imparted by the communication

channel itself without resorting to the use of shared secret keys [3]. Wyner’s work dealt with a

degraded wiretap channel and in the next section we give an overview of the same as well as the

wiretap channel in general.

1.4.1. Introduction to Wiretap Channel

In [3] as shown in figure 1.5 Alice wants to transmit a confidential message to Bob while

keeping it secret from Eve. The objective now is two fold: Alice must encode the message M into

a codeword Xn of length n such that Bob, having received Y n can reliably recover the message,

i.e. P{M̂ 6= M} −−−→
n→∞

0. Note that a codeword of length n uses the channel n times,i.e. Xn =

{X1, · · · , Xn}, where Xi is sent in the ith channel use. Similarly, Y n = {Y1, · · · , Yn} and Zn =

{Z1, · · · , Zn} describe corresponding channel outputs at the legitimate receiver and eavesdropper

respectively. Also the message must be kept secret from Eve. Wyner defined secrecy in terms of

equivocation, or conditional entropy. He required that 1
nH(M |Zn) ≥ 1

nH(M)−ε,i.e. the knowledge

of the channel output Zn will not decrease the uncertainity about the message M .

Now there are several secrecy criterias in literature. Shannon’s work [2] dealt with per-

fect secrecy which is a very stringent criteria which requires the statistical independence of the

message M and the channel output Zn at Eve,i.e. there is no relationship between M and Zn.

Mathematically, I(M ;Zn) = 0. Wyner in [3] defined the concept of weak secrecy where the mutual

information between M and Zn satisfies the condition 1
nI(M ;Zn) −−−→

n→∞
0. This quantity describes

the information leaked about M to Eve in terms of a rate due to the normalization by the block

length n. The above definition of secrecy was further strengthened and was termed strong secrecy
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Figure 1.5. Wyner’s Wiretap Channel.

in [4] and[5]. Mathematically it was defined as I(M ;Zn) −−−→
n→∞

0 and the intution was to have the

total amount of information leaked to Eve vanish as n→∞.

Now with all the definition of secrecy for wiretap channel as above it is now time to find

out how secrecy capacity can be achieved. Recall that Alice must encode the message into a

codeword such that it is useful for Bob to recover the transmitted message (reliability) and at

the same time the same codeword is useless for Eve (security). These two requirements seem

to be conflicting and it is not obvious that it is possible to achieve both simultaneously. The

crucial idea for achieving the secrecy capacity is the following: Instead of using all of the available

resources for message transmission, a certain part of them are used for randomization by adding

“dummy” messages unknown to Bob and Eve. Specifically, for each confidential message Alice

wants to transmit, there are multiple valid codewords and a stochastic encoder chooses one of them

uniformly at random. The key idea is now to choose the randomization rate for each confidential

message such that it is almost same as Eve’s channel capacity. Thus, Eve will be saturated with the

useless information carried by the dummy variables, leaving no remaining resources for decoding

the confidential message itself.

Figure 1.6. A Model for a Gaussian Wiretap Channel.
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Figure 1.6 represents a general wire - tap channel. Mathematically it is defined as follows

Y =
√
S1X + U1

Z =
√
S2X + U2 (1.23a)

where X is transmitted signal by Alice whereas Y and Z are the signals received at Bob (the

intended receiver) and Eve (eavesdropper) respectively. U1 and U2 are the additive gaussian noises

at the two respective receivers. S1 and S2 according to information theoretic terminology are the

Channel State Information (CSI). This channel states can be fixed or time varying depending on

whether they are constant over time or they vary with time. Moreover there is further classification

based on the rate at which the channel states vary. In addition to that the receivers can derive

information about the channels from their respective received signals but the transmitter can get

information about the channels only if the receivers feedback about the same. So depending on how

fast the channel is changing it might or might not be always possible for the receivers to provide

a timely update about the channel states to the transmitters. Hence as we can see there can be

various classifications of the channels depending on their distributions as well as what information

is available where. Realistically speaking in most cases the channel might be varying fast enough

to prevent provide a timely update to the transmitter and hence the transmitter might be unaware

of the instantaneous channel states. In addition in a wiretap set up it is not justifiable to expect

the eavesdropper to provide with a feedback even if it can.

Figure 1.7. A Gaussian Interference Channel Model.
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1.4.2. Introduction to Interference Channel

There has been considerable effort in extending and generalizing concepts and results for

the wiretap channel to more complex multiuser scenarios which includes the very popular Inter-

ference Channel (IC) and a little less complicated version of it, the Z-Interference Channel (ZIC).

The interference channel (IC) describes the communication scenario in which multiple transmitter-

receiver pairs interfere with each other. Each sender is interested only in transmitting information

to its designated receiver. However, due to the open nature of the wireless medium, the trans-

mitted signals are received not only by the intended receivers but also by the other users. The

interference channel with confidential messages consider two transmitters Mallory and Alice who

wish to transmit their confidential messages M1 and M2 to their respective receivers Eve and Bob.

Because both transmissions interfere with each other, each transmitter must encode and transmit

its message in such a way that it is kept secure from the counterpart receiver. This is shown in 1.7.

The Z-Interference Channel as shown in figure 1.8, on the other hand is not much different from the

Figure 1.8. A Gaussian Z-Interference Channel Model.

Interference Channel except from the fact that now, due to topological location of the transmitters

and receivers the signal from one of the transmitter does not reach the unintended receiver,i.e. one

of the interfering links of the interference channel is absent and hence might turn out to be a little

simpler than an interference channel in general. A model of such a channel is shown in figure 1.8

where as it can be seen the link between Mallory and Bob is absent and hence any message M1

transmitted from Mallory is inherently secret. Hence here the concern is to keep M2 transmitted
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from Alice secret. Figure 1.7 shows a general gaussian interference channel. Mathematically, it can

be represented as follows

Y=
√
S11W +

√
S21X + U1

Z=
√
S12W +

√
S22X + U2 (1.24)

where W is the signal transmitted by Mallory and intended for Eve while X is the signal transmitted

by Alice and intended for Bob. Here Bob is the unintended receiver during communication between

Mallory and Eve while Eve plays the role of Bob (unintended receiver) during communication

between Alice and Bob. U1 and U2 are the additive gaussian noises at the two receivers. Sij∀i, j ∈

{1, 2} represents the channel state information from Txi to Rxj and as mentioned in the previous

subsection can have different properties based on whether it varies over time or is fixed. Besides

the CSI might be available at both the receiver and the transmitter, when fedback by the receiver

or might just be known at the receiver. With this background we next provide a brief review of

practical coding schemes that are used for physical layer security.

1.4.3. Practical Coding

Although most work on physical security are based on non-constructive random-coding

arguments to establish theoritical results but are of little practical significance however in recent

times designing of practical codes for physical layer security has gained momentum. Low-density

parity-check (LDPC) codes with nested graph [6], two-edge type LDPC codes in a scenario where

both the main and eavesdropping channel are Binary Erasure [7] has been seen to achieve exactly or

close to the theoretical secrecy capacity. Also LDPC codes with puncturing [8] and non-puncturing

[9] for Gaussian wiretap channel has yielded significantly close results. A LDPC code based Han

Kobayashi scheme was proposed for the Gaussian IC in [10], which has close to capacity performance

in the case of strong interference. In [11], a specific coding scheme was designed for the binary-

input binary-output Z- Interference Channel (ZIC) using LDPC codes, and an example was shown to

outperform time sharing of single user codes. Polar codes have also been shown to provide promising

results for Symmetric binary input memoryless degraded wiretap channel with weak secrecy criteria

in [12],[13],[14] and with strong secrecy criteria in [15] and for general wiretap channel with strong

secrecy criteria in [16]. A polar coding scheme that achieves the Han-Kobayashi inner bound for
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the 2-user Interference Channel (IC) was proposed in [17], and [18] used a similar scheme to achieve

the Han - Kobayashi region in the 2-user classical-quantum IC. In addition Lattice code has also

been used for both Gaussian as well as Rayleigh wiretap channels under the secrecy gain or weak

and strong secrecy criteria as in [19],[20],[21],[22].

1.4.4. Problem Statement

With a preface about the existing channel models, their various forms of security and the

practical coding for them, we are now ready to describe the progress we have made through the

work in this thesis in the general area of secret communication. In chapter 2, we consider a

Gaussian fading wiretap channel with no channel state information at the transmitter. This is a

very practical situation since in a wireless environment the channel is almost constantly changing

and that is captured by the fast fading nature of the channel that we are considering. In addition

we consider that the transmitter is not aware of the instantaneous value of the channel, in technical

terms we say there is no channel state information at transmitter (CSIT). For this setting we try

to find the secrecy capacity. We first find an outer bound for the channel and then achieve secrecy

rates within constant gap of the outer bound for an arbitrary distribution of the legitimate and

eavesdropper channel. This is the best result known till now for an arbitrary channel distribution

in fast fading Gaussian Wiretap channel. After making some significant progress in characterizing

the secrecy capacity of fading gaussian wiretap channel within constant bits, we next move on

to a more general multi-user scenario. In chapter 3, we next consider the fading IC problem

for the same setting as the wiretap channel,i.e. we consider a fast fading channel with arbitrary

distribution and no CSIT. Since the problem of determining the secrecy capacity in a fading IC

in general is one of the most complicated problems in the interference channel realm, so we first

consider a less complicated version of the channel. We consider a binary fading interference channel

(BFIC) where fading is characterised by the channel being either present or absent,i.e. erasure or

presence of the channel. The channel states being binary can only take values {0, 1} and so can the

inputs. We define strong and very weak BFIC in this chapter and characterize the exact secrecy

capacity for the same. This idea of solving a fading binary model before embarking on solving

the more general real fading channel problem is not at all arbitrary. It has been shown previously

to serve as a very potent first step in solving the general gaussian fading problem in [23] and [24]

while characterizing the approximate capacity of fading broadcast channel and fading ZIC channel
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respectively and in [25] while characterizing the secrecy capacity of fading wiretap channel. With

intuitions generated from the Binary model and armed with motivation from [23], [24] and [25] we

take the next logical step in the direction of solving the fading gaussian IC problem. In chapter 4,

we characterize the secrecy capacity for strong and very weak, both defined in the chapter, layered

fading interference channel (LFIC). In LFIC the fading characteristic of the channel is captured by

the random number of channels that are erased or survives at any time instant. In other words the

channel state information basically depicts the number of surving layers and is completely random.

The thesis is concluded in chapter 5, with strong intuitions for solving the gaussian fading IC

problem. It also explores the other directions in which this work can be further extended so as to

address the security demands of the time.

To finally sum up the contributions of this thesis, we can state the following :

1. We devise a concrete coding scheme that can achieve physical layer security in any arbitrary

fading wiretap channel within a constant number of bits, which is a first of its kind result in

wiretap channel.

• In this, we derive new lower bounds and a looser upper bound such that the gap between

them is comparable. Such comparision is unique in wiretap channel.

• With several numerical examples we show that the upper bound and the achievable rates

can be as close to as within 2 bits of each other.

2. We characterize the secrecy capacity for a strong and very weak fading binary and layered

interference channel. To the best of our knowledge, this is the sole result so far which can

provide significant intuition to solve the more general real fading interference channel problem

with secrecy constraint.

• In this, we show for both the binary and layered case that an optimal layered wiretap

channel code at both the transmitters with proper rates help achieve capacity.

• It is also shown that the key to achieving capacity is dependent on the proper allocation

of layers to the two transmitters based on the channel distribution.
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2. SECRECY CAPACITY OF THE FADING BROADCAST

CHANNEL WITHIN 11 BITS WITH ONLY CSIR

2.1. Introduction

Secrecy emerges as an additional but natural system design constraint because of the vul-

nerability of signals to eavesdropping in a wireless network. Multiple legitimate transmit-receive

pairs may need to maintain secrecy from one or more potentially malicious receivers in such a

network. The simplest communication scenario requiring secrecy is a three node network, where a

transmitter (Alice) communicates with a legitimate receiver (Bob) in the presence of an Eavesdrop-

ping node (Eve). The maximum rate at which the legitimate pair can communicate information

satisfying a suitable secrecy constraint is called the secrecy capacity of this network. Earliest formal

treatment of the secrecy capacity can be found in [26], [3]; the later considered a special case of the

aforementioned three node network, where the eavesdropper obtains a degraded version of the sig-

nal received by the legitimate user and called it wiretap channel (WC). In this chapter we consider

a general version of the wiretap channel called Broadcast Channel with one Legitimate receiver

and one Eavesdropper (BCoLoE), where Eve receives its signal via a separate channel that is not

necessarily dependent on the legitimate user’s channel. Evidently, the individual point-to-point

(PTP) capacity of both the receivers in the BCoLoE depends on the statistics of the corresponding

channel coefficients. Intuitively, it may seem that secrecy capacity can be achieved only if Bob has

a larger PTP capacity than Eve. Interestingly, on a fading BCoLoE that is not necessarily true.

If the instantaneous fading coefficients are known at the transmitter, the transmitter can choose

to transmit only during those channel realizations when the strength of the legitimate channel is

stronger than that of the eavesdropper. However, knowledge of the instantaneous fading coefficients

of communication links to both the legitimate user and eavesdropper might be impractical. On

one hand, it is unreasonable to assume that the malicious receiver/s will feedback their channel

coefficients to the transmitter. On the other hand, the main channel fading coefficients may change

sufficiently fast making it impossible for the legitimate receiver to feed it back to the transmitter

in a timely manner. This motivates us to address the No-CSIT problem in this chapter. How-
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ever, without the instantaneous CSI at the transmitter, the aforementioned selective transmission

technique cannot be implemented and devising an optimal transmit-receive strategy becomes more

challenging.

We will use the so called perfect secrecy criterion, where the equivocation rate is assumed

to be arbitrarily close to unity or equivalently the rate of information leakage to the malicious user

tends to zero asymptotically. This is in contrast to a relatively stronger secrecy constraint [27]

which assumes that the total information leakage to the malicious receiver goes to zero asymptot-

ically. The equivocation criterion was used by Wyner [3] to characterize the secrecy capacity of a

Discrete Memoryless WC (DM-WC), with a degraded eavesdropper. The restriction of a physically

degraded eavesdropper in Wyner’s model was later lifted and a two user broadcast channel with

both confidential and common messages were considered by Csciszar and Korner in [28]. Char-

acterization of the secrecy capacity for various other channel configurations has since then been

an active area of research. For instance, the secrecy capacity of SISO and MIMO BCoLoEs with

time-invariant communication links have been characterized in [29] and [30], [31], [32], respectively.

The BCoLoE and its different variations was investigated under differnt type of fading assumptions

as well. For instance, [33], [34] and [35] considered slow fading links, [36], [37], [38] assumed block

fading links, [39], [40] and [41] treated fast fading links whereas [42], [43] and [44] addressed a mixed

fading environment, where the legitimate receiver has a fixed channel but the eavesdropper has a

fast fading channel.

The authors in [33] studied a slow fading SIMO WC and derived an expression for outage

secrecy capacity assuming only main channel CSIT, which was extended in [34] and [35] for the

SISO BCoLoE. It was also established later that outage secrecy capacity can be larger than AWGN

secrecy capacity and positive outage secrecy capacity is achievable even if the average SNR of

the main channel is worse. Yuksel and Erkip derived the achievable DMT of MIMO wiretap

channel with Gaussian input and No-CSIT and complete CSIT. In [36], Gopala et al. considered a

block fading BCoLoE with asymptotically large coherence period and characterized ergodic secrecy

capacity both with complete CSIT and only main channel CSIT. Li et. al. in [39] characterized

the secrecy capacity of independent parallel BCoLoE and as a special case of it derived the secrecy

capacity of ergodic fading BCoLoE assuming complete CSIT. This result was extended by Liang

et. al. [38] to a BC with one confidential message and one common message and by Ekrem et.
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al. [41] to the case having two secret messages and one common message. Parallel channels with

only main channel CSIT has been studied in [40] in the context of a BC with multiple legitimate

receivers, one eavesdropper and where the transmitter either has a common secrect message for

all legitimate receivers or independent messages for them. Upper and lower bounds to the secrecy

capacity was derived which coincide for reversely degraded channel and channel with asymptotically

large number of receivers, respectively.

Motivated by the difficulty of availing instantaneous CSIT in fast fading channels, some

recent works assume partial [45], delayed [46] and imperfect [47] CSIT. For instance, in [46] the

authors have considered a fast fading BCoLoE with delayed CSIT and characterized the outage

throughput of the channel. In [47] the authors has characterized lower and upper bounds to the

ergodic secrecy capacity of BCoLoE with imperfect channel state estimates of only the main channel

which was extended in [48] to a BC with one common and two secret messages and in [49] to a

BC with multiple legitimate receiver and one eavesdropper. In contrast to these papers which

assume CSIT in some form or other, research articles which address the No-CSIT secrecy capacity

problem is surprisingly scarce. A fast fading BCoLoE with only statistical CSI at the transmitter

was considered in [25] and the exact ergodic secrecy capacity was characterized for a class of

channels known as the stochastically degraded channel. For general fading, only an upper bound to

the secrecy capacity was provided. A similar result was also reported in [50], where an achievable

secrecy rate expression was also established for Nakagami-m fading channels. However, no comment

on the proximity of this rate to the secrecy capacity of the channel was made. Characterization of

the No-CSIT secrecy capacity of a fast fading BCoLoE (FBCoLoE) is an open problem till date.

Infact, the secerecy capacity of a FBCoLoE even in presence of only main channel CSIT is not

known. However, with increasing demand of connectivity while on the move, fast fading scenarios

are abundant. Motivated by these factors, in this chapter, we characterize the secrecy capacity of

the FBCoLoE approximately within 11 bits with no instantaneous CSIT.

CSI at the transmitter is typically used to implement a transmission scheme which favors

the legitimate receiver with respect to the eavesdropper. For instance, the concept of injection

of artificial noise, was introduced in [51], [52] to achieve secrecy on fading BCoLoE, which was

later used in [53] and [54] assuming only main channel CSIT and in [55] assuming complete CSIT.

The main idea of noise injection is to transmit some noise signal into the orthogonal subspace
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to the receive signal space of the legitimate receiver, where the CSI of at least the main channel

is required at the transmitter to compute these subspaces. The transmitted noise thus does not

affect the legitimate receiver but only interferes with the eavesdropper. Similarly, in [39] and [36]

CSI of both receivers are used to selectively transmit only when main channel is better than the

eavesdropper. The transmission scheme in [40] utilizes only the main channel CSI to implement

a power allocation strategy that maximizes the average legtimate receiver rate with respect to

the average rate of eavesdropper. In absence of CSIT, the challenge is to devise good coding

schemes that are not dependent on instantaneous CSIT. In this chapter, we adopt a coding stategy

which utilizes statistical properties of channel coefficients. Evidently, a signal transmitted with

a particular power on a point-to-point fading channel is received at different SNRs with differnt

probability, depending on the distribution of the corresponding channel coefficients. In our scheme,

intuitively, informaion symbols are sent at carefully chosen signal levels so that the corresponding

received SNRs are good for decoding at the legitimate receiver with more probability than at the

eavesdropper. The contribution of this chapter can be summarized as follows:

• We derive an upper bound and two lower bounds to the secrecy capacity of a Fading Broadcast

Channel with one Legitimate receiver and one Eavesdropper (FBCoLoE) with arbitrary fading

distribution. Only fading statistics of both the channels are assumed at the transmitter and

instantaneous CSI are assumed at the receivers.

• We show that the upper bound and the smaller among the two lower bounds are within 11

bits to each other for all channel statistics and Signal-to-Noise Ratios (SNR), which in turn

imply that both the lower bounds are within 11 bits to the secrecy capacity of the channel.

Thus, the achievable scheme of this chapter provides a guaranted performance.

• We show that the BES-RS [56] scheme can achieve a secrecy rate which is better than both

the lower bounds.

• Finally, the aforementioned upper and lower bounds are computed for several BCoLoEs nu-

merically.

Since the derivation of the universal gap of 11 bits involves several loose bounding steps we expect

the actual gap to be much smaller. Indeed, in all of our numerical examples the actual gap between
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the upper and lower bound are found to be 2 bits or less. The rest of the chapter is organized as

follows: the Fading Gaussian Wiretap Channel (WC) model is described in Section 2.2 along with

the secrecy criterion and the notion of secrecy capacity within a constant number of bits. Section

2.3 summarizes the main contribution of this chapter and also provides an example to illustrate

the improved performance of the BES-RS scheme over simple Gaussian coding. The remaining

sections contain the proofs and verification of the results presented in section 2.3. It starts with

the proof of the new upper bound to the secrecy capacity in section 2.4, which is followed by the

proof of the two lower bounds provided in section 2.5. The fact that the upper and lower bounds

derived are within a constant number of bits is proved in section 2.6. In section 2.7, we compute

these aforementioned bounds numerically for several example BCoLoEs. Finally, we conclude the

chapter in Section 2.8.

Notations 1 We will denote the set of real, complex and natural numbers by R, C and N, re-

spectively. Let us denote the distribution of B ∈ {+1,−1}, a binary antipodal random vari-

able with Pr(B = +1) = p, by B(p). For a discrete random variable A with realizations com-

ing from {a1, a2, · · · , ak}, its Probability Mass Function (PMF) will be denoted by PA(.), i.e.,

PA(ai) = Pr(A = ai), ∀i. For an arbitrary real number a ∈ R, (a)+ represents the maximum

of a and zero, i.e., (a)+ = max{a, 0}. For a non-negative real number b, its logarithm with base

2 and e will be denoted by log(b) and ln(b), respectively. The distribution of a Circularly Symmet-

ric Complex Gaussian (CSCG) random variable with mean µ and variance σ2 will be denoted as

CN (µ, σ2). The distribution of a real Gaussian random variable with mean µ and variance σ2 will

be denoted by RN (µ, σ2). We will use “IID” to mean identically and independently distributed.

2.2. Channel Model and Some Preliminaries

Consider a fast fading Broadcast Channel (BC) with one transmitter (Tx/Alice), one le-

gitimate receiver (Rx1/Bob) and one unintended/malicious receiver (Rx2/Eve), as shown in figure

2.1. The relation between the input and outputs of the channel, at time t, can be written as,

Y ′t =
√
S1te

jθ1tXt + U ′1t (2.1)

Z ′t=
√
S2te

jθ2tXt + U ′2t, (2.2)
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Figure 2.1. Fading Gaussian Wiretap Channel.

where Xt ∈ C is the signal transmitted by Alice with unit average power constraint, i.e., E(|X|2) ≤ 1

and Y ′t , Z
′
t ∈ C represent signals received by Bob and Eve, respectively. In Fig. 2.1, (

√
Skt, θkt)

represents the magnitude and phase pair of the fading coefficient of the k-th receiver’s channel.

The fading coefficients, i.e., the (
√
Skt, θkt) pairs are assumed to change IID as

(√
Sk, θk

)
on every

channel use, for each k ∈ {1, 2}. Moreover, they are assumed to be independent across users,

i.e.,
(
S1t, θ1t

)
is independent of

(
S2t, θ2t

)
, ∀t ≥ 1. Instantaneous realizations of these random

coefficients are assumed to be available only at the respective receivers; the transmitter knows only

their statistics. U
′
1t and U

′
2t in equations (2.1) and (2.2) represent the additive noise at Bob and

Eve, respectively, where U
′
kt’s are IID as CN (0, 1) both across t and k. Removing the effects of

phase from equations (2.1) and (2.2) we get the following alternative input-output relations, 1

Yt =Y ′t e
−jθ1t =

√
S1tXt + U1t; (2.3)

Zt =Z ′te
−jθ2t =

√
S2tXt + U2t, (2.4)

where Ukt = U ′kte
−jθkt and U ′kt are identically distributed for all t and k. All the signals are complex

in these equations except the fading magnitudes,
√
Skt’s. As a result, each of these equations can

be visualized as a pair of real channels. For instance, Yt in equation (2.3) can also be written as

Yt = (
√
S1tXr,t) + Ur,1t + j(

√
S1tXq,t + Uq,1t), (2.5)

1It was shown in [28] that, the secrecy capacity of a Discrete Memoryless BCoLoE can be expressed in terms of
mutual information of the legitimate channel and the eavesdropper’s channel. Neither of which changes [1] if the
outputs are multiplied by scalars. Thus, the secrecy capacity of the BCoLoE does not change if the outputs are
multiplied by arbitrary scalars.
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where Yt = Yr,t + jYq,t, Xt = Xr,t + jXq,t and U1t = Ur,1t + jUq,1t. It is interesting to note

that, only the magnitudes of fading coefficients are sufficient to completely characterize the perfor-

mance of the channel. Statistical properties of the fading coefficients will be specified in terms of

their Complementary Cumulative Distribution Function (CCDF), denoted as F̄Sk(s), i.e., F̄Sk(s) =

Pr(Sk ≥ s), ∀s ≥ 0. A BCoLoE, as described above and shown in Fig. 2.1, will be referred to as a

(F̄S1(s), F̄S2(s))-BCoLoE.

The secrecy capacity of a (F̄S1(s), F̄S2(s))-BCoLoE is not known, for general joint distri-

bution of (S1, S2). However, if there exists a stochastic ordering between the two then the secrecy

capacity of the channel can be exactly characterized [25], [50].

Definition 8 (Stochastically stronger channel) Consider a pair of fading PTP channels - as

in equation (2.3) - with non-negative fading coefficients
√
Si and

√
Sj, where the CCDFs of Si

and Sj are denoted by F̄Si(s) and F̄Sj (s), respectively. The channel with coefficient Si is called

stochastically stronger than that with Sj, if

F̄Si(s) ≥ F̄Sj (s), ∀s ≥ 0. (2.6)

On a BCoLoE, if the legitimate user’s channel is stochastically stronger than that of the

Eavesdropper, then it is called a stochastically degraded BCoLoE.

The secrecy capacity of a stochastically degraded BCoLoE was computed in [25], [50] and is

given as:

Csts = ES1

[
log(1 + S1)

]
− ES2

[
log(1 + S2)

]
. (2.7)

Obviously, not all channels are stochastically degraded. In fact, there are stochastically non-degraded

channels for which the above expression has a negative value. For instance, consider a BCoLoE

with fading coefficients
√
S1 and

√
S2 and their CCDFs as shown in Fig. 2.3. Using the PMF of S1

and S2, which is provided in Table 2.2 of section 2.7 we get,

Csts =
∑

s∈{10,102,107}

[
PS1(s)− PS2(s)

]
log(1 + s),

=[−0.4] log(11) + [0.5] log(101) + [−0.1] log(1 + 107) = −0.71. (2.8)
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While the secrecy capacity of a general (F̄S1(s), F̄S2(s))-BCoLoE is an open problem, the authors

in [25] and [50]2, derived the following upper bound to the secrecy capacity of the BCoLoE:

Cs ≤ log e

∫ ∞
0

[
F̄S1(γ)− F̄S2(γ)

]+ dγ

1 + γ
, (2.9)

where Cs will denote the secrecy capacity of the BCoLoE, hereafter. Note that, in contrast to

the secrecy capacity expression for a BCoLoE with instantaneous CSI at the transmitter (CSIT)

that was derived separately in [39], [41] and [38], the upper bound in equation (2.9) does not have

any power allocation scheme at the input. This is because in the derivation of equation (2.9) only

CSIR is assumed. Moreover, it is not known how far this bound in (2.9) is from the actual secrecy

capacity of the channel with only CSIR. In this chapter, we answer this question by first proposing

an achievable scheme for the BCoLoE with CSIR only and then showing that it can achieve the

secrecy capacity of the channel approximately within 11 bits. The notion of achieving the secrecy

capacity approximately within a constant number of bits is defined in the next subsection, along

with the secrecy criterion used in this chapter and a definition of an achievable secrecy rate.

2.2.1. Approximate Secrecy Capacity Within a Constant Number of Bits

Given a message M(i), i ∈ {1, · · · , 2nrs}, the transmitter uses a stochastic encoder [28] to

convert the message into a codeword Xn ∈ Cs(n) and sends it through the channel, where Cs(n) is

the codebook. It is received at Bob as Y n and at Eve it is received as Zn. If the estimated message

at the legitimate receiver (Bob) is M(̂i), then the probability of detection error can be denoted as

Pe(n) = Pr(i 6= î). The secrecy of this message from Eve is measured in terms of equivocation rate,

i.e., 1
nh(M|Zn,S2), where S2 = {S2t}nt=1.

A secrecy rate rs is said to be achievable if there exists a sequence of codebooks {Cs(n)}

such that Pe(n)→ 0 and

h(M|Zn,S2)

h(M)
> 1− nδn, (2.10)

with δn → 0, as n → ∞. In the sequel, unless explicitly mentioned otherwise, a rate will always

mean secrecy rate, i.e., it satisfies (2.10). The secrecy criterion of (2.10) is well known in the

literature as the weak secrecy constraint. However, using a privacy amplification technique from [57]

2The upper bound in [50] is provided in terms of the Probability Density Functions (PDFs) of the channel
coefficients and looks different from (2.9). However, it can be easily shown that these two are different forms of the
same expression.
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Maurer et. al. [27] proved that, any rate that can be achieved under the weak secrecy constraint can

also be achieved under the more desirable strong secrecy [58] constraint. In the above definitions I(.),

h(.) and h(.|.) represent mutual information, average differential entropy and conditional average

differential entropy, respectively. The supremum - over all possible encoding-decoding strategies -

of all achievable secrecy rates is called the secrecy capacity of the channel.

In this chapter, we will characterize the secrecy capacity of BCoLoE approximately within

a constant number of bits, where the approximate secrecy capacity is a natural extension of ap-

proximate capacity used on channels without any secrecy constraints [59], [60].

Definition 9 (approximate secrecy capacity) If a coding scheme can achieve a secrecy rate rs,

where Cs − rs ≤ µ and Cs denotes the secrecy capacity of the BCoLoE, then the secrecy capac-

ity of the channel is said to be achievable approximately within µ bits.

2.3. Main Results

In this section, we derive an upper bound to the secrecy capacity of the BCoLoE which is

different from that in equation (2.9) and a couple of lower bounds as shown in Fig. 2.2. The newly

derived upper bound, despite looser than that derived in [25] and [61], is more easily computable

for arbitrary channel statistics and has a form comparable to a corresponding lower bound. The

lower bounds are actually lower bounds to the achievable secrecy rate of a coding scheme proposed

here for the BCoLoE. It is shown that the difference between the new/larger upper bound and the

smaller lower bound can not exceed 11 bits.

Theorem 1 The secrecy capacity, Cs, of the BCoLoE with fading statistics (F̄S1(.), F̄S2(.)) as

shown in Fig. 2.1, is upper bounded as follows:

CS ≤ log e

∫ ∞
0

[
F̄S1(γ)− F̄S2(γ)

]+ dγ

1 + γ
, rsu, (2.11)

≤
∑
n∈N

2[F̄S1(γn)− F̄S2(γn+1)] + log(1 + ρ)− log(e)

∫
Γ0

F̄S2(γ)

(1 + γ)
dγ , r̄su, (2.12)

where the set N is defined as

N = {n ∈ N : F̄S1(γn) > F̄S2(γn+1)}, (2.13)

26



γ0 = 0, γn = ρ22(n−1), n = 1, 2, 3, · · · (2.14)

Γn = [γn, γn+1), n = 0, 1, 2, · · · (2.15)

with ρ > 0 is an arbitrary real number which will be specified in the sequel.

Figure 2.2. Bounds to the Secrecy Capacity.

Evidently, for any given arbitrary CCDF pair, i.e., (F̄S1(γ), F̄S2(γ)), the upper bound in equation

(2.12) is easier to compute than the integral in (2.11).

Example 1 Let us consider a BCoLoE with the CCDFs of the fading coefficients as depicted in

Fig 2.3. Substituting the values of these CCDFs in equation (2.11) we get,

Cs ≤ log(e)

∫ 102

10

0.4dγ

1 + γ
,

= 0.4
(

log(1 + 102)− log(1 + 10)
)

= 1.28, (2.16)

Let us also compute the larger upper bound in equation (2.12) for this example. Substituting

ρ = 20 (e.g., see Theorem 4) in equation (2.14), we get γ1 = 20, γ2 = 80 and γ3 = 320. Plugging

this values in the CCDFs we see that F̄S1(γ1) = F̄S1(γ2) = 0.6, F̄S1(γk) = 0, ∀k ≥ 3 and F̄S2(γ2) =

0.2, F̄S2(γ3) = 0.1 which when substituted in equation (2.26), we get N = {1, 2} for this channel.

Using these values in (2.12) we have,

Cs ≤
2∑

n=1

2
[
F̄S1(γn)− F̄S2(γn+1)

]
+ log(1 + 20)

− log(e)

∫ 10

0

dγ

1 + γ
− log(e)

∫ 20

10

(0.2)dγ

1 + γ
,

= 2(0.4) + 2(0.5) + 0.8 log(21/11) = 2.55. (2.17)
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Note that, the fading statistics of the BCoLoE in Example 1 does not satisfy equation (2.6) and

therefore, the channel is not a stochastically degraded BCoLoE. Moreover, it is clear from equation

(2.8) that the secrect capacity optimal Gaussian input [25] fails to achieve a positive secrecy rate on

this BCoLoE. It makes us wonder if there exists an encoding scheme which can achieve a positive

secrecy rate on BCoLoEs for all channel statistics including the present one.

Figure 2.3. Ergodic Capacity of Eavesdropper’s Channel is Larger than that of the Legitimate
Receiver.

It is insightful to compare the above upper bound to the secrecy capacity of a wiretap

channel where both the desired and the eavesdropper’s links are binary erasure channels (BECs).

The secrecy capacity of such a Binary Erasure Wiretap Channel (BE-WTC) can be easily computed

from the result of [62], [28] to be given by

CBE−WTC = [ε̄d − ε̄e]+, (2.18)

where ε̄d = 1 − εd and ε̄e = 1 − εe and εd and εe are the erasure probabilities of the direct and

eavesdropper’s link, respectively. Comparing with the expression in (2.18), the upper bound in

Theorem 1 can be approximately interpreted as the sum of secrecy capacities of several BE-WTCs,

where each difference, [F̄S1(γn) − F̄S2(γn+1)], can be thought of as the secrecy capacity of the

BE-WTC at the n-th layer.

The secrecy capacity upper bound in Theorem 1 can be intuitively explained by visualizing

each of the real channels of the legitimate user as a collection of BECs with erasure probabilities
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{1 − F̄S1(γn)}n and each of the real channels 3 of the eavesdropper as a collection of BECs with

erasure probabilities {1− F̄S2(γn+1)}n. Subsequently, the BECs at layer n of the legitimate channel

and the eavesdropper’s channel together forms a BE-WTC at layer n. Note that, the secrecy

capacity of such a BE-WTC is [F̄S1(γn) − F̄S2(γn+1)]+, and therefore, only those BE-WTCs for

which the erasure probability of the eavesdropper is larger than that of the legitimate user appears

in Theorem 1.

Following this intuition, as an achievable scheme for this channel, we consider the so called

Binary Expansion Signaling (BES) [56], where each transmitted real symbol is formed by combining

several mutually independent antipodal symbols, i.e., if Xr represents the signal transmitted on a

real channel then,

Xr =
∞∑
l=1

xrl2
−l,∀ l, xrl ∈ {+1,−1}.

At the receiver, an estimate {x̂r,l}∞l=1 of these antipodal symbols are computed. Thus, the BES

scheme effectively converts a real channel into a sequence of binary symmetric channels. The

equivalent BSC from xr,n to x̂r,n will be sometime referred to as the n-th layer. The crossover

probability and the capacity of a BSC or layer depends on the instantaneous value of the fading

state. Averaging over these states we get the average rate of information transmittable via such a

BSC or layer. A subset, φ ⊆ N, of these layers are then carefully chosen to transmit information

symbols in such a manner that the information transmitted to the legitimate receiver is maximized

and simultaneously, the information leaked to the eavesdropper is minimized. At the receiver, a

symbol at layer n can be decoded either by treating all the lower layer symbols as noise, or it can be

decoded by first estimating the lower layer symbols and removing their contribution. Clearly, the

later is a better scheme and is called BES with reverse stripping (BES-RS) scheme. The following

theorem provides a lower bound to the secrecy rate achievable by the BES-RS scheme.

Theorem 2 The secrecy rate, RRS
BES, achievable by the BES-RS scheme, where information is

transmitted only via layers belonging to φ ⊆ N, can be lower bounded as:

RRS
BES ≥ 2

∑
n∈φ

ES1

[
r̂n,d(S1)

]
+ 2

∑
n∈φc

ES2

[
r̂n,d(S2)

]
− ES2

[
log(1 + S2)

]
, rsl, (2.19)

3Recall from equation (2.5) that, each of the communication links from transmitter to the legitimate receiver and
the eavesdropper is effectively a pair of real channels. This also explains the factor 2 in equation (2.12).
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where, denoting the entropy of a B(p) random variable by H(p) we have

r̂n,d(s) = 1−H(ε̂d(an(s))), (2.20a)

ε̂d(an(s)) = min[1/2, εd(an(s))], (2.20b)

εd(a) =
G(
√
a(1 + 2−d))−G(

√
a(1− 2−d))√

a
, (2.20c)

G(x) = xQ(x)−
1− exp(−x2

2 )
√

2π
, (2.20d)

Q(x) =
1√
2π

∫ ∞
x

e−
u2

2 du, (2.20e)

an(s) =
3

4
s2−2n = 3s2−2(n+1), (2.20f)

As mentioned before, the BES scheme effectively converts every real fading channel into

a sequence of random Binary Symmetric Channels (rBSCs), where the crossover probability of

each such rBSC depends on the instantaneous fading realization. In the computation of the cross-

over probability pn,d(s) for the n-th layer, all or a selected number of layers below it may appear

as interference. In equation (2.20), d represents the distance from the nearest lower layer which

appears as interference, while decoding the symbol from the n-th layer.

The first term on the RHS of equation (2.11) approximately represents the rate achievable

by the BES-RS scheme on a PTP fading channel. Intuitively, then it is natural to think that

the eavesdropper can extract
∑

n∈φ ES2

(
r̂n,d(S2)

)
bits per channel use from the transmitted sig-

nal. Therefore, the secrecy capacity will be the difference of the two, i.e.,
∑

n∈φ ES1

(
r̂n,d(S1)

)
−∑

n∈φ ES2

(
r̂n,d(S2)

)
. However, to derive the secrecy rate we need an upper bound on the maximum

rate extractable by the eavesdropper. Equation (2.39) in the proof of Theorem 2 provides such

an upper bound, i.e., the eavesdropper’s channel can not extract information at a rate more than

ES2

[
log(1 + S2)

]
−
∑

n∈φc ES2

(
r̂n,d(S2)

)
from the transmitter for such a signalling scheme. Thus,

the transmitter can send secret information at a rate which is larger or equal to the difference of

the aforementioned two rates.

In section 2.7, the lower bound from Theorem 2 will be numerically computed for several

specific BCoLoEs. In particular, it will be shown in Example 3 that the BES-RS scheme can achieve

a secrecy rate which is larger than or equal to 0.14 bits/channel use on the BCoLoE. Comparing
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with the upper bound to the secrecy rate computed in (2.16), it is clear that the BES-RS scheme

can achieve the secrecy capacity of the BCoLoE of Fig. 2.3 within 1 bit.

In general, it is desirable to compute the upper and lower bounds to the secrecy capacity

and compare them. There are two main difficulties at this point: 1) the lower bound of Theorem 2

is not easy to compute when the CCDFs of the channel are continuous functions, i.e., there are

infinitely many fading states; and 2) it is not clear if the difference between the upper and lower

bounds can be arbitrarily large or not. The first difficulty will be addressed by Theorem 3, where we

will derive an alternative lower bound which is easier to compute for any arbitrary fading statistics

of the channel. Moreover, the lower bound will be in a similar form to the larger upper bound in

Theorem 1. It will be used later in Theorem 4 to prove that the lower bound can not be further

than than 11 bits from the upper bound.

Theorem 3 Denoting the secrecy rate, achievable by the BES-RS scheme on the fast fading wiretap

channel with fading statistics (F̄S1(.), F̄S2(.)) as shown in Fig.2.1, by RRS
BES, it can be lower bounded

as:

RRS
BES ≥

∑
n∈φ

2[F̄S1(γn)− F̄S2(γn+1)]− log
1 + 4ρ

1 + ρ
−
∫

Γ0

F̄S2(γ)dγ

ln(2)(1 + γ)
− 2

∑
n∈φ

δn(S1, γn)

− 2
∑
n∈φc

δn(S2, γn+1) , r̃sl, (2.21)

where, φ is the set of layers on which information is transmitted and δn(Sk, α) for k = 1, 2 and

α > 0 are defined as

δn(Sk, α) =

∫ ∞
α

fSk(γ)H[ε̂d(an(γ))]dγ. (2.22)

In equation (2.22), H[p] represents the entropy of a B(p) random variable, an(γ) represents the

effective SNR faced by the symbol at the n-th layer and ε̂d(an(γ)) is the quantized crossover proba-

bility of the equivalent BSC at the n-th layer (e.g., see equation (2.20)). A detailed account of the

BES-RS scheme and these parameters are provided in Appendix A.1.

The secrecy rate achievable by the BES-RS scheme, RRS
BES, is a lower bound to the secrecy

capacity of the BCoLoE. As a result, the right hand side of equation (2.21) also serves as a lower

bound to the secrecy capacity of the BCoLoE. It is only natural to wonder how far this lower bound
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is to the secrecy capacity of the BCoLoE. In absence of an exact expression for the secrecy capacity,

this question can be answered only approximately, comparing the lower bound to the upper bound

provided in Theorem 1.

Theorem 4 The secrecy capacity of the BCoLoE with fading statistics (F̄S1(.), F̄S2(.)) as shown in

Fig. 2.1, can be achieved by the BES-RS scheme within 11 bits.

Proof 1 (outline) The Theorem is proved by comparing the upper bound and the lower bound

derived in Theorems 1 and 3, respectively. It is shown that the difference between the upper and

lower bounds is not more than 11 bits if ρ is set to 20. The theorem then follows from the fact that

difference between the lower bound and the secrecy capacity can not be larger than the difference

between the lower bound and the upper bound. In section 2.6, we will prove that the difference

between the RHS of equation (2.12) and the RHS of equation (2.21) can be bounded by 11 bits if we

choose ρ appropriately.

2.4. Proof of Theorem 1

The main idea of the upper bound is to partition the range [0, ∞) of the channel magnitudes

into several sub-intervals, i.e., [0, ∞) = ∪∞i=0Γi and then approximate the CCDFs of the two

channels carefully so that within each such sub-interval one of them is a stochastically degraded

version of the other. Finally, we retain only those sub-intervals where the eavesdropper’s channel

is stochastically degraded than the main channel.

Recall that, an upper bound to the secrecy capacity of an arbitrary fading wiretap channel

was derived in [25], [50] and is specified in equation (2.9), where Cs represents the secrecy capacity

of the BCoLoE. We expand the intergral from equation (2.9) using the partition from equation

(2.15) and get,

Rs≤ log e

∫ ∞
0

(
F̄S1(γ)− F̄S2(γ)

)+ dγ

1 + γ
,

= log e

∞∑
n=0

∫
Γn

(
F̄S1(γ)− F̄S2(γ)

)+ dγ

1 + γ
,

≤ log e

∫
Γ0

(
F̄S1(γ)− F̄S2(γ)

)+ dγ

1 + γ
+ log e

∞∑
n=1

∫
Γn

(
F̄S1(γn)− F̄S2(γn+1)

)+ dγ

1 + γ
, (2.23)
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where (2.23) follows from the fact that due to the non-increasing nature of the CCDFs of

S1 and S2, we have

F̄S1(γ)− F̄S2(γ) ≤ F̄S1(γn)− F̄S2(γn+1), ∀γ ∈ Γn.

Writing log(e) as 1
ln(2) and utilizing the fact that F̄Sk(γ) ≤ 1 for all γ ≥ 0 and k = 1, 2, into

equation (2.23) we have,

Rs≤
∫ ρ

0

(
1− F̄S2(γ)

)
ln(2)(1 + γ)

dγ +
∞∑
n=1

∫
Γn

(
F̄S1(γn)− F̄S2(γn+1)

)+
ln(2)(1 + γ)

dγ,

= log(1 + ρ)−
∫ ρ

0

F̄S2(γ)

ln(2)(1 + γ)
dγ +

∞∑
n=1

∫
Γn

(
F̄S1(γn)− F̄S2(γn+1)

)+
ln(2)(1 + γ)

dγ,

≤ log(1 + ρ)−
∫ ρ

0

F̄S2(γ)

ln(2)(1 + γ)
dγ +

∑
n∈N

[F̄S1(γn)− F̄S2(γn+1)]

∫
Γn

dγ

ln(2)(1 + γ)
, (2.24)

≤ log(1 + ρ)− log(e)

∫ ρ

0

F̄S2(γ)

(1 + γ)
dγ +

∑
n∈N

2[F̄S1(γn)− F̄S2(γn+1)], (2.25)

where in equation (2.24) we have used the following notation:

N = {n ∈ N : F̄S1(γn) ≥ F̄S2(γn+1)}. (2.26)

In equation (2.25) we have used the fact that
∫

Γn
dγ

1+γ = ln(1+γn+1)− ln(1+γn) ≤ 2 ln(2), ∀n ≥ 1.

2.5. Proofs of Theorem 2 and 3

We start by restating in Lemma 1 below, the rate achievable by the BES-RS scheme on a

PTP fading channel. Then in subsection 2.5.1, we will prove Theorem 2 and in subsection 2.5.2,

we provide the proof for Theorem 3.

Lemma 1 Consider a PTP fading channel with input X̃ and output T̃ , i.e., T̃ =
√
SX̃+U , where

S is a non-negative real random variable with arbitrary distribution and U ∼ CN (0, 1). Suppose, a

BES scheme is used at the input so that,

X̃ = X̃r + jX̃q = (X̃r,φ + X̃r,φc) + j(X̃q,φ + X̃q,φc), (2.27)

X̃φ = X̃r,φ + jX̃q,φ, X̃φc = X̃r,φc + jX̃q,φc , (2.28)
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X̃a,α =

√
3

2

∞∑
n∈α

xa,n2−n, a ∈ {r, q}, α ∈ {φ, φc}, (2.29)

φ ⊆ N, φc = N \ φ, (2.30)

and the components of {xr,n, xq,n}∞n=1 are IID as B(0.5) 4. Moreover, each symbol is decoded after

decoding and removing the lower layers. Then, for any arbitrary φ ⊂ N,

I(X̃φ; T̃ , S) = I(X̃φ; T̃ |S) ≥ 2
∑
n∈φ

ES [r̂n,d(S)], (2.31)

where r̂n,d(s) is as defined in equation (2.20).

Proof 2 An outline of the proof is provided in Appendix A.1 for completeness. The detailed proof

can be found in [56].

To achieve a secrecy rate the BES-RS scheme of [56] is modified in the following two aspects:

• Information symbols are transmitted only via a carefully selected set, denoted as φ, of layers.

• These layers are choosen so the average rate of information transmission is maximized to the

legitimate receiver and minimized to the eavesdropper.

2.5.1. Proof of Theorem 2: BES-RS Scheme Adopted to BCoLoE

We know from [28] that, for any choice of input, the difference of mutual information of

the legitimate channel and the eavesdropper channel represents an achievable secrecy rate. Thus,

if we denote the secrecy rate achievable, using the BES signal X̃φ from equation (2.28) as input,

by RRS
BES then,

RRS
BES = I(X̃φ; Ỹφ|S1)− I(X̃φ; Z̃φ|S2), (2.32)

where

Ỹφ =
√
S1X̃φ + U1, Z̃φ =

√
S2X̃φ + U2. (2.33)

4In the sequel, (̃.), (.)r and (.)q will be used to indicate a BES signal, real component and imaginary/quadrature
component of a signals (or symbols), respectively.
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The desired lower bound is subsequently obtained by replacing the first and second mutual infor-

mation terms by a corresponding lower and an upper bound, respectively. While the lower bound

follows directly from Lemma 1, the derivation of the upper bound is based on the following concept.

If we denote the rates supported by X̃φ and X̃φc on the eavesdropper’s channel by rφ and

rφc , respectively then, rφ+ rφc ≤ C2, where C2 is the ergodic capacity of the eavesdropper channel.

As a result, a lower bound to rφc leads to an upper bound to rφ if we use it in the previous inequality,

i.e., rφ ≤ C2 − rφc .

Note that, the BES-RS scheme used in this chapter transmits only via layers belonging to

the set φ, i.e., only via {xr,n, xq,n}n∈φ, where each component in this sequence is IID as B(0.5). To

complete the proof we now construct another antipodal sequence {wr,n, wq,n}n∈φc with components

IID as B(0.5). Moreover, this sequence is independent of X̃φ too. We denote by W̃φc , the following

BES signal,

W̃φc =W̃r,φc + jW̃q,φc ,

=

√
3

2

∑
n∈φc

wr,n2−n + j

√
3

2

∑
n∈φc

wq,n2−n. (2.34)

Now, let us consider a hypothetical scenario where the input to the BCoLoE is (X̃φ+W̃φc),

which is identically distributed to X̃ in Lemma 1. So, we invoke Lemma 1 with this input, S = Sk

and U = Uk for k = 1, 2 to obtain that,

2
∑
n∈φc

ES2 [r̂n,d(S2)] ≤I(W̃φc ; Z̃|S2), (2.35)

2
∑
n∈φ

ES1 [r̂n,d(S1)] ≤I(X̃φ; Ỹ |S1),

=I(X̃φ; Ỹφ +
√
S1W̃φc |S1), (2.36)

≤I(X̃φ; Ỹφ|S1), (2.37)

where Z̃ and Ỹ represents the corresponding output at the eavesdropper and the legitimate user,

respectively, i.e.,

Ỹ =
√
S1(X̃φ + W̃φc) + U1, Z̃ =

√
S2(X̃φ + W̃φc) + U2.
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In equation (2.36) we have used the notation from equation (2.33). Equation (2.37) is obtained

using the fact that additional independent noise at the receiver can not increase mutual informa-

tion. Next we will use the fact that, the ergodic capacity of a fading channel with no CSI at the

transmitters [63] represents the maximum mutual information between the input and output of the

channel, maximized over all possible input. Thus, using the expression for the ergodic capacity of

the eavesdropper’s link we get,

ES2 [log(1 + S2)]≥ I(X̃φ + W̃φc ; Z̃|S2),

= I(X̃φ, W̃φc ; Z̃|S2),

= I(W̃φc ; Z̃|S2) + I(X̃φ; Z̃|S2, W̃φc)

= I(W̃φc ; Z̃|S2) + I(X̃φ; Z̃φ|S2)

Or, I(W̃φc ; Z̃|S2)≤ ES2 [log(1 + S2)]− I(X̃φ; Z̃φ|S2). (2.38)

Now, substituting (2.35) into equation (2.38) and rearranging the various terms we get,

I(X̃φ; Z̃φ|S2) ≤ ES2 [log(1 + S2)]− 2
∑
n∈φc

ES2 [r̂n,d(S2)]. (2.39)

Finally, substituting equations (2.37) and (2.39) into equation (2.32) we get,

RRS
BES ≥2

∑
n∈φ

ES1 [r̂n,d(S1)] + 2
∑
n∈φc

ES2 [r̂n,d(S2)]− ES2 [log(1 + S2)].

2.5.2. Proof of Theorem 3

We prove this theorem by finding further lower bounds to the first two sum-rate terms in

the lower bound provided in Theorem 2. This results in a looser lower bound to RBES. However,

on one hand, it provides a more easily computable lower bound for arbitrary fading distributioins

and on the other hand, it’s form makes it easier to compare with the upper bound in Theorem 1,

which will be used later to prove an approximate secrecy capacity result. The proof is carried out

in two steps, in which we find lower bounds to the first and second terms on the RHS of equation

(2.19), respectively.
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Step 1: Using the definition from equation (A.4) we get,

∑
n∈φ

ES1 [r̂n,d(S1)]=
∑
n∈φ

ES1

[
1−H[ε̂d(an(γ))]

]
,

=
∑
n∈φ

∫ ∞
0

fS1(γ)
(

1−H
[
ε̂d(an(γ))

])
dγ,

≥
∑
n∈φ

∫ ∞
γn

fS1(γ)(1−H[ε̂d(an(γ))])dγ, (2.40)

≥
∑
n∈φ

F̄S1(γn)−
∑
n∈φ

2δn(S1, γn), (2.41)

where equation (2.40) follows from the non-negativity of the integrand and γn’s as defined in

equation (2.14). In equation (2.41) we have used the definition of the CCDF of S1 and the identity

from equation (2.22).

Step 2: Now, for the second term in (2.19), again using the definition from (A.4) we get

∑
n∈φc

ES2 [r̂n,d(S2)]≥
∑
n∈φc

ES2

[
1−H[ε̂d(an(γ))]

]
, (2.42)

=
∑
n∈φc

∫ ∞
0

fS2(γ)(1−H[ε̂d(an(γ))])dγ,

≥
∑
n∈φc

∫ ∞
γn+1

fS2(γ)(1−H[ε̂d(an(γ))])dγ, (2.43)

≥
∑
n∈φc

F̄S2(γn+1)−
∑
n∈φc

δn(S2, γn+1), (2.44)

≥
∞∑
n=1

F̄S2(γn+1)−
∑
n∈φ

F̄S2(γn+1)−
∑
n∈φc

δn(S2, γn+1), (2.45)

where equation (2.43) follows from the non-negativity of the integrand and γn+1’s as defined in

equation (2.14). In equation (2.44) we have used the definition of the CCDF of S2 and the identity

from equation (2.22). Before proceeding further, we simplify the first term on the right hand side

of equation (2.45) as follows:

2
∞∑
n=1

F̄S2(γn+1) = 2
∞∑
k=2

F̄S2(γk),
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≥ 1

ln(2)

∞∑
k=2

∫
Γk

F̄S2(γk)

(1 + γ)
dγ, (2.46)

≥ 1

ln(2)

∞∑
k=2

∫
Γk

F̄S2(γ)

(1 + γ)
dγ, (2.47)

=
1

ln(2)

∫ ∞
γ2

F̄S2(γ)

(1 + γ)
dγ,

=
1

ln(2)

∫ ∞
0

F̄S2(γ)

(1 + γ)
dγ − 1

ln(2)

∫ γ2

0

F̄S2(γ)

(1 + γ)
dγ,

= ES2 [log(1 + S2)]− 1

ln(2)

∫ γ2

0

F̄S2(γ)

(1 + γ)
dγ, (2.48)

where in equation (2.46) we have used the fact that
∫

Γn
dγ

1+γ = ln(1 + γn+1) − ln(1 + γn) ≤

2 ln(2), ∀n ≥ 1. Equation (2.47) follows from the fact that F̄S(γn) ≥ F̄S(γ), ∀Γn, n ∈ N. In

equation (2.48) we have used partial integration and assumed that the CCDF decays faster than

the increase of log(1 + γ) so that

lim
γ→∞

F̄S2(γ) log(1 + γ) = 0. (2.49)

Now, substituting equations (2.48) into equation (2.45) we get

∑
n∈φc

ES2 [r̂n,0(S2)]≥ ES2 [log(1 + S2)]−
∫ γ2

0

F̄S2(γ)dγ

ln(2)(1 + γ)
−
∑
n∈φ

F̄S2(γn+1)−
∑
n∈φc

δn(S2, γn+1).

(2.50)

The integral-term in equation (2.50) can be simplified more by breaking up the integral into the

two seperate integrals and then further upper bounding the CCDF in one of the integrals as is

shown below:

∫ γ2

0

F̄S2(γ)

(1 + γ)
dγ=

∫ γ1

0

F̄S2(γ)

(1 + γ)
dγ +

∫ γ2

γ1

F̄S2(γ)

(1 + γ)
dγ, (2.51)

≤
∫ ρ

0

F̄S2(γ)

(1 + γ)
dγ +

∫ 4ρ

ρ

1

(1 + γ)
dγ, (2.52)

=

∫
Γ0

F̄S2(γ)

(1 + γ)
dγ + ln

1 + 4ρ

1 + ρ
, (2.53)

where in equation (2.51) we have used the fact that 0 < γ1 < γ2 as mentioned in equation (2.14). In

equation (2.52) we have used the fact that maximum value of F̄S2(γ) is 1 and by definition γ1 = ρ

38



and γ2 = 4ρ. Now, substituting the inequality from equation (2.53) into (2.50) we get

∑
n∈φc

ES2 [r̂n,0(S2)]≥ ES2 [log(1 + S2)]−
∫ ρ

0

F̄S2(γ)dγ

ln(2)(1 + γ)
− log

1 + 4ρ

1 + ρ
−
∑
n∈φ

F̄S2(γn+1)

−
∑
n∈φc

δn(S2, γn+1). (2.54)

Finally, substituting equations (2.41) and (2.54) into equation (2.19) we get,

RRS
BES≥

∑
n∈φ

2
[
F̄S1(γn)− F̄S2(γn+1)

]
− 2

∑
n∈φ

δn(S1, γn)− 2
∑
n∈φc

δn(S2, γn+1)

− log (e)

∫
Γ0

F̄S2(γ)

(1 + γ)
dγ − log

1 + 4ρ

1 + ρ
. (2.55)

2.6. Proof of Theorem 4: The Constant Gap Result

As explained in the outline of the proof, it is sufficient to prove that the difference, RD,

between the upper bound in equation (2.12) and the lower bound in (2.21) can not be larger than

11.

Subtracting the RHS of equation (2.21) with φ = N , from the RHS of (2.12) we get,

RD = 2
∑
n∈N

δn(S1, γn)+2
∑
n∈N c

δn(S2, γn+1) + log (1 + 4ρ). (2.56)

We will import upper bounds to the first two terms from [56], however, will show the main steps

here for completeness. From the definition of δn(Sk, α) provided in (2.22) we have,

δn(S1, γn) =

∫ ∞
γn

fS1(γ)H[ε̂0(an(γ))]dγ,

=

∞∑
k=n

∫
Γk

fS1(γ)H[ε̂0(an(γ))]dγ,

≤
∞∑
k=n

∫
Γk

fS1(γ)H[ε̂0(an(γk))]dγ, (2.57)

≤
∞∑
k=n

H[ε̂0(3γk−n)] Pr
(
S1 ∈ Γk

)
, (2.58)

≤
∞∑
j=0

H[ε̂0(3γj)] Pr
(
S1 ∈ Γj+n

)
, (2.59)
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where in equation (2.57) we have used the fact that H[ε̂0(an(γ))] is a decreasing function of γ. As

a result, we have H[ε̂0(an(γ))] ≤ H[ε̂0(an(γk))] for all γ ∈ Γk. In equation (2.58) we have used the

fact that H[ε̂0(an(γk))] is a constant with respect to γ and we have used the expression for an(.)

from equation (2.20f) and equation (2.14). Then, using the inequality from (2.59) we get,

∑
n∈N

δn(S1, γn) ≤
∞∑
n=1

δn(S1, γn),

≤
∞∑
n=1

∞∑
j=0

H[ε̂0(3γj)] Pr
(
S1 ∈ Γj+n

)
,

=

∞∑
j=0

H[ε̂0(3γj)]

∞∑
n=1

Pr
(
S1 ∈ Γj+n

)
,

=
∞∑
j=0

H[ε̂0(3γj)]F̄S1(γj+1),

≤
∞∑
j=0

H[ε̂0(3γj)], (2.60)

Similarly, it can be shown that

∑
n∈N c

δn(S2, γn+1) ≤
∞∑
j=0

H[ε̂0(3γj)]. (2.61)

Substituting equations (2.60) and (2.61) into (2.56) we get

RD ≤ log (1 + 4ρ) + 4

∞∑
j=0

H[ε̂0(3γj)], (2.62)

where the RHS is independent of channel statistics and is a function of ρ only, since γj ’s are defined

in terms of ρ. So, we can numerically minimize the expression on the RHS of equation (2.62) and

see that the minimum value of 11 is attained when ρ = 20.

2.7. Fading Gaussian Wiretap Channels: Numeric Examples

In this subsection, we will compute the numeric values of the upper and lower bounds

provided in (2.11) and (2.19), respectively and the difference between those two, for several example

BCoLoEs. For computational convenience, most of the channel statistics will be assumed to have
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finite and small number of distinct fading states. Since the secrecy capacity of stochastically degraded

wiretap channels can be exactly characterized [25], in this section, we will consider channels which

are not stochastically degraded. Interestingly, for all the channels considered in this section, the

difference between these two bounds turns out to be much smaller than 11 bits.

Given the fading statistics, i.e., (F̄S1(.), F̄S2(.)) of a BCoLoE, the computation of the upper

bound in (2.11) is straightforward. For computing the lower bound in equation (2.19), we first

need to determine the optimal φ - the set of layers, through which information symbols are sent.

Recall from section 2.5 that, in the BES-RS scheme of this chapter we send information symbols

only via a selected set of layers. The n-th layer is chosen for transmission, i.e., n ∈ φ, if the

corresponding equivalent rBSC (e.g., see the proof of Lemma 1 in Appendix A.1) can on average

send more information to the legitimate user than it can to the eavesdropper. We know from

equation (2.20a) that the instantaneous rate of information transmission via layer n is r̂n,d(s), for

a particular realization s of the fading state on a PTP channel. Thus, we choose φ according to

the following rule:

φ =
{
n : ES1

[
r̂n,d(S1)

]
≥ max

(
τ,ES2

[
r̂n,d(S2)

])}
. (2.63)

Here, we also impose the condition that, a layer is only used if it can carry more information

than τ bits; in our computations, we choose τ = 10−3. Theoretically, an equivalent rBSC of the

BES scheme on a PTP fading channel can support a non-zero rate if its corresponding crossover

probability is smaller than 0.5. Clearly, the constraint which requires the average rate is larger

than τ , is stricter but more practical than the theoretical constraint.

We also use this criterion to determine the maximum number of layers, at each receiver,

which can carry an average information more than τ bits, i.e.,

n∗k = max
{
n : ESk

[
r̂n,d(Sk)

]
≥ τ

}
, k = 1, 2. (2.64)

Then define the complement of φ as follows:

φc =[1, max{n∗1, n∗2}] \ φ. (2.65)
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For brevity, we will denote the average rate of information that can be transmitted, via

layers in φ to the legitimate receiver by r̄1
φ and via layers in φc to the eavesdropper by r̄2

φc , i.e.,

r̄1
φ =2

∑
n∈φ

ES1

[
r̂n,d(S1)

]
, (2.66)

r̄2
φc =2

∑
n∈φc

ES2

[
r̂n,d(S2)

]
. (2.67)

We will also denote the ergodic capacity of the k-th receiver by Ck, for k = 1, 2 and the tighter

upper bound to the secrecy capacity, i.e., the RHS of (2.11), and the tighter lower bound to RRS
BES,

i.e., the RHS of (2.19), by rsu and rsl, respectively.

Figure 2.4. Eve’s SNR Fixed at 10 dB and Bob’s SNR is 25 dB with Probability 0.42.

Example 2 (Intermittent AWGN Channels) We start with an example where the ergodic capaci-

ties of both the PTP links of the BCoLoE are identical and therefore simple Gaussian input can

not achieve any positive secrecy rate. We consider a couple of BCoLoEs where the eavesdroppers

channel is time-invariant and the legitimate channel has one non-zero random state. Let the Prob-

ability Mass Functions (PMFs) of the channel states be as shown in Table 2.1. The corresponding

CCDFs for the fading coefficients are depicted in Fig 2.4, substituting these CCDF values in (2.11)

we get,

rsu =0.42
[

log(1 + 102.5)− log(1 + 10)
]

= 2.04,

r̄su =log
(1 + 20)

(1 + 10)
+ 2

2∑
n=1

[
F̄S1(γn)− F̄S2(γn+1)

]
= 3.01,

On the achievability side, we first compute the values of n∗k for k = 1, 2 and then determine φ and

φc for both the cases as shown in Table 2.1. The various components of the lower bound in equation
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(2.19) can be computed as follows:

r̄1
φ= 2(0.42)

5∑
n=3

r̂n,∞(102.5) = 1.51,

r̄2
φc= 2(1)

2∑
n=1

r̂n,2−n(10) = 2.28,

C2= log(1 + 10) = 3.46,

where r̄1
φ and r̄2

φc was defined in (2.66) and (2.67), respectively. Substituting these values in equation

(2.19) we get that a secrecy rate of rsl = 0.33 bits/channel use or better can be achieved by the BES-

RS scheme. It is evident that, the lower and upper bounds are within 2 bits from each other.

Consequently, we can conclude that the BES-RS scheme can achieve the secrecy capacity of these

channels within 2 bits.

Table 2.1. PMFs and Values of Intermediate Parameters for Example 2.

PMF \s 0 10 102.5

PS1(s) 0.58 0 0.42

PS2(s) 0 1.0 0

n∗1 n∗2 φ φc r̄1
φ r̄2

φc rsl rsu

5 3 {3,4,5} {1,2} 1.51 2.28 0.33 2.04

Example 3 (Achievability for Example 1) Let us consider a BCoLoE where each of the fading

link has multiple non-zero states. Assume that the PMF of the two channels are as shown in

Table 2.2, the corresponding CCDFs of the channel are shown in Fig. 2.3. Both the upper bounds

in Theorem 1 for this channel was also computed and is given in equations (2.16) and (2.17), from

which we get, rsu = 1.28 bits/channel use. Substituting the CCDFs in equation (2.64) we get, n∗1 = 5

and n∗2 = 13. However, computation of r̄1
φ and r̄2

φc suggest that we must choose φ = {1, 2, 3, 4} and

φc = {5, · · · , 13}. Using these parameters we next compute the various components of equation

(2.19) as follows:

r̄1
φ= 2(.4)

4∑
n=1

r̂n,4−n(10) + 2(.6)
4∑

n=1

r̂n,4−n(102) = 4.45.

r̄2
φc= 2(.1)r̂5,∞(102) + 2(.1)

13∑
n=5

r̂n,∞(107) = 1.45.

C2= (.8) log(11) + (.1)[log(101) + log(1 + 107)] = 5.76.
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Finally, substituting these values in (2.19) we get, rsl = 0.31. Comparing this lower bound with the

upper bound, rsu = 1.28, we see that the upper and lower bounds are within 1 bit, which in turn

imply that the BES-RS scheme can achieve a secrecy rate within 1.2 bits to the secrecy capacity of

the channel, as shown in Table 2.2.

Table 2.2. A BCoLoE with Eavesdropper’s Ergodic Capacity Larger than Main Channel Capacity.

PMF\s 10 102 107

PS1(s) 0.4 0.6 0

PS2(s) 0.8 0.1 0.1

n∗1 n∗2 φ φc r̄1
φ r̄2

φc rsl rsu

5 13 {1,2,3,4} {5,··· ,13} 4.45 1.45 0.14 1.28

Example 4 The CCDFs of the BCoLoE considered in this example is shown in Fig. 2.5 for this

example. Substituting the CCDF values into equation (2.11) we get

rsu =log(e)

∫ 105

102

(0.7)dγ

1 + γ
= 6.97.

r̄su =log(1 + 20)−
∫ 10

0

log(e)dγ

1 + γ
− .75

∫ 102

10

log(e)dγ

1 + γ

+ 2

7∑
n=2

[
F̄S1(γn)− F̄S2(γn+1)

]
= 8.63.

The PMF for the fading coefficients for this channel is provided in Table 2.3. Substituting the

largest fading state from both the links in equation (2.64) we get, n∗1 = 9 and n∗2 = 4. However,

computation of r̄1
φ and r̄2

φc suggest that we must choose φ = {3, · · · , 9} and φc = {1, 2}. Using these

parameters we next compute the various components of equation (2.19) as follows:

r̄1
φ= 2(.05)r̂3,∞(10) + 2(.7)

9∑
n=3

r̂n,∞(105) = 8.31.

r̄2
φc= 2(.25)

2∑
n=1

r̂n,2−n(10) + 2(.75)

2∑
n=1

r̂n,2−n(102) = 3.02.

C2= 0.25 log(1 + 10) + 0.75 log(1 + 102) = 5.86.

Finally, substituting these values in (2.19) we get, rsl = 5.47. Interestingly, on the BCoLoE, the

difference between the upper and lower bounds are within 1.5 bit, which in turn imply that the
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BES-RS scheme can achieve a secrecy rate within 1.5 bits to the secrecy capacity of the channel, as

shown in Table 2.3.

Figure 2.5. CCDFs of CWTC from Example 4

Table 2.3. A BCoLoE with Large Secrecy Capacity.

PMF\s 0 10 102 105

PS1(s) 0.25 0.05 0 0.7

PS2(s) 0 0.25 0.75 0

n∗1 n∗2 φ φc r̄1
φ r̄2

φc rsl rsu

4 9 {1,2} {3,··· ,9} 8.31 3.02 5.47 6.97

Example 5 (Intermittent AWGN versus Rayleigh Fading Channel) In order to model a practical

scenario, next, we consider a BCoLoE where the eavesdropper is assumed to face Rayleigh fading

and the legitimate channel has one non-zero SNR with certain probability. Since
√
S2 is Rayleigh

distributed, its square has an exponential distribution, which can be expressed as:

F̄S2(γ) =

 1, γ < 0

e−γ/Γ, γ ≥ 0
(2.68)

where the average SNR Γ = 16 dB for the Rayleigh fading eavesdropper channel. On the other

hand, the legitimate channel assume SNRs of 30 dB with probability 0.9 and 0 dB with probability

0.1. The CCDFs of the channel are shown in Fig. 2.6. In this case, the upper bound in equation

(2.11) evaluates to,

rsu = log(e)

∫ 103

4.2

(0.9− e−(0.03γ))

1 + γ
dγ = 6.39.
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On the achievability side, using equation (2.64) we get, n∗1 = 6. While theoretically n∗2 can be

arbitrary large, the expected rate supportable by n-th layer for n > n∗2 ≈ 7 is negligible. Computing

the average rates supportable by every layer of each user we choose φ = {1, · · · , 6} and φc = {7}.

Using these values in (2.66) and (2.67) we get,

r̄1
φ = 2(.9)

6∑
n=1

rn,d(103) = 8.20.

r̄2
φc = 2ES2 [r7,d(S2)] = 0.02.

C2 =

∫ d

0
(0.03)e−(0.03γ) log(1 + γ)dγ = 2.7, (2.69)

where to compute the various components of r̄2
φc in the above equation we have approximated the

CCDF, F̄S2(γ) by its quantized version as shown using dotted lines in Fig. 2.6. This provides an

underestimation of the actual values which can be improved by choosing the step sizes sufficiently

small. Finally, substituting these values in (2.19) we get the lower bound to RRS
BES as shown in

Table 2.4.

Figure 2.6. CCDFs of Legitimate Receiver and Eavesdropper when Ergodic Capacity of Eaves-
dropper is Greater than that of the Legitimate Receiver.

Table 2.4. Eve’s Channel Rayleigh Distributed.

n∗1 n∗2 φ φc r̄1
φ r̄2

φc rsl rsu

6 7 {1,··· ,6} {7} 8.20 0.02 5.52 6.39

Example 6 (Nakagami-m vs Rayleigh Fading Channel) In this final example we consider both the

channel to poses practical CCDFs; We assume that the eavesdropper channel faces Rayleigh Fading
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and the Legitimate channel faces Nakagami-m Fading. The CCDF of the legitimate channel is

defined as follows

F̄S1(γ) =

 1, γ < 0

1− F (m, mΩ γ
2), γ ≥ 0

(2.70)

where F (m, mΩ γ
2) is the incomplete gamma function with shape factor, m = 10 and spreading

factor, Ω = 500. These parameters results in an average SNR of 13.44 dB for the main channel.

The CCDF of Eve’s channel is as specified in equation (2.68) with average SNR Γ = 2dB. We first

compute the secrecy capacity upper bound using equation (2.11) as,

rsu = log(e)

∫ 102.92

0

(
1− F (10, 0.02γ2)− e−γ/Γ

)
1 + γ

dγ = 3.12.

Figure 2.7. CCDFs of Legitimate Receiver and Eavesdropper when Ergodic Capacity of Eaves-
dropper is greater than that of the Legitimate Receiver.

Since both the CCDFs have infinitely long tails, theoretically, n∗k is very large for both

k = 1, 2. However, it turns out that the legitimate receiver can extract non-negligible rates only

from layers below n∗1 ≈ 6 and Eve can extract non-negligible rates only from layers below n∗2 ≈ 7.

Equations (2.63) and (2.65) suggests a choice of φ = {1, · · · , 6} and φc = {7}. This choice leads

to the following rates:

r̄1
φ = 2

6∑
n=1

ES1 [rn,d(S1)] = 3.69.

r̄2
φc = 2ES2 [rn,d(S2)] = 1.28 ∗ 10−4.
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C2 =

∫ ∞
0

(0.63)e−(0.63γ) log(1 + γ)dγ = 1.39, (2.71)

The average rates - with respect to continuous fading states - in the above equations, are computed

using the same method as was stated in Example 5. Comparing the upper and lower bounds as

shown in Table 2.5 we see that, for this channel the difference is less than 1 bit.

Table 2.5. Nakagami-m vs Rayleigh Fading.

n∗1 n∗2 φ φc r̄1
φ r̄2

φc rsl rsu

6 7 {1,··· ,6} {7} 3.69 1.28 ∗ 10−4 2.30 3.12

2.8. Conclusion

In this chapter, we have proved that the BES-RS scheme can achieve the secrecy capacity of

an arbitrary BCoLoE within a constant number of bits that is independent of the fading statistics

or SNR. Although the new upper bound is looser than a previously derived upper bound, it is

easily computable for arbitrary fading distribution. The same holds for the smaller lower bound

among the two derived explicit lower bounds to the secrecy rate achievable by the BES-RS scheme

on the BCoLoE. The tighter lower and upper bounds however, when computable results in much

smaller gap between the two. For all the example BCoLoEs considered in this chapter, which

include Rayleigh and Nakagami-m distributions, the difference between the tighter bounds does

not exceed 2 bits. This result suggests that there might be a tighter comparable bounds and search

of those bounds forms an interesting path of future research. It was shown in [64] in the context

of a broadcast channels that, soft-decoding leads to a larger achievable rate for the BES scheme.

This result can be used on the BCoLoE as well. However, as mentioned by the authors in [64], the

improvement due to soft decision comes at the cost of increased decoding complexity. Moreover,

from the numerical computation of the two upper bounds for the example channels, it seems a large

part of the gap of 11 bits comes from the looseness of the larger upper bound.

We observed from the simulations that the secrecy capacity that can be achieved is related to

the dissimilarity between the channel statistics between the legitimate user and the Eavesdropper.

More dissimilarity between the CCDFs results in a larger secrecy capacity.
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3. SECRECY CAPACITY OF A CLASS OF BINARY

INTERFERENCE CHANNEL

3.1. Introduction

Wireless channels although very attractive due to its mobile nature and ease of implemen-

tation suffers from an accute problem related to the security of information being transmitted. Due

to the broadcast nature of wireless medium anything that is being transmitted not only reaches the

intended receiver but can also reach an unintended receiver, the problem becomes severe when the

nature of the information being transmitted is highly sensitive. Information theoretic approach to

secure information transfer first appeared in Shannon’s work in [26]. It was followed by Wyner’s

pioneering work on wiretap channel (WTC) [3] where he characterized the secrecy capacity of a

degraded WTC. The result of Wyner was later generalized by Csiszár and Körner in [28]. After

that followed a plethora of work for various WTC models such as Gaussian model [29], WTC with

multiple antennas [32],[31],[30], slow fading WTC [65],[33]. In literature we can also find work on

fast fading WTC with full channel state information at transmitters (CSIT)[66],[50],[67] or WTC

with fixed legitimate channel and fast fading eavesdropper channel with no CSIT [68] or fast fading

channel with no CSIT for any of the channels [69],[25]. The survey paper on WTC [70] summarises

most of the significant contributions in this regard.

In more recent times efforts has been made to study the security in more complex multi-user

network models such as Multiple Access Channels (MAC) [71],[72],[73],[74], Z-Interference Channel

(ZIC) [75],[76] and Interference Channel (IC) [77],[78],[79]. Both the ZIC and IC are typically more

practical network models. For example, when there are two users communicating in adjacent cells

via there respective base stations and are close enough, then they are bound to see interference

from each other giving a practical 2-user IC. On the other hand if one of the users is in between the

two base stations such that both the base stations can hear it whereas the other user is close to one

of the base station but far away from the other such that only the closer base station can hear it

then we get a practical 2-user ZIC. A ZIC channel is essentially an IC where one of the interfering

links is absent. Due to the inherent complexity in analysing an IC, a coarser metric known as secure
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degrees of freedom has been used to find the approximate capacity in[80],[81]. However, the results

obtained so far are mostly for channels having fixed gain. In a wireless environment where the

surroundings is constantly varying it is not practical to assume that the channels remain constant

throughout the transmission process. In addition the change in the wireless environment might

be too fast to provide a timely feedback to the transmitters about the channel states, hence the

transmitters cannot be expected to be aware of the instantaneous channel states and adjust their

transmission strategy accordingly. Furthermore, an unintended receiver - if malicious, cannot be

expected to provide feedback about its channel state even if it can. So finally taking into account

all these factors, we can safely comment that a fast fading wireless channel with no channel state

information at the transmitter (CSIT) captures all the practical assumptions needed to describe a

wireless channel model. Surprisingly, there has been very few results so far in finding the capacity

of such an IC without secrecy constraint and no results at all with secrecy constraint. Our result

on binary fading 2-user IC is a step towards filling that void in finding the secrecy capacity for

a more general Gaussian 2-user fading IC. The advantages of studying a binary fading model is,

it provides a simple physical layer representation for packet wireless network. It is also the most

simplistic initial approach in studying the more general fading Gaussian model. This kind of

technique is inspired from the determinstic approach introduced in [82] and was used in the study

of approximate capacity of fading Gaussian broadcast channel [83], fading Gaussian ZIC channel

[24] without secrecy constraint and to find the capacity of certain binary ICs [84] as a first step to

the study of fading Gaussian IC.

The rest of the chapter is organised as follows. Section 3.2 formally describes the channel

model followed by the introduction of notations used in this chapter. Section 3.3 presents the main

findings of this chapter.We further provide some remarks to aid form the intuitive picture about

the achievability of the secrecy capacity region for a very weak interference channel the definition

of which along with a few more will be given in the begining of the section. We state some lemmas

and prove them in Section 3.4. These lemmas are later used for the proof of our main results.

The proof of the secrecy capacity result for strong interference channel is provided in Section 3.5.

The proof of the secrecy capacity region result for very weak interference channel is divided into

two sections where Section 3.6 provides the strategy to achieve the various rate pairs which defines

the secrecy capacity region whereas Section 3.7 derives the upper bound of all the rates. This
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section also defines two regions and shows that the secrecy capacity region enclosed by the upper

bounds from those two regions matches with the achievable secrecy capacity region in Section 3.6.

In Section 3.8 we conclude the chapter.

3.2. Channel Model and Some Preliminaries

We consider a 2-user Binary Fading Interference Channel (BFIC) as illustrated in figure

3.1. The channel co-efficient from transmitter Txi to receiver Rxj at time instant t is denoted by

(Nij)t, i, j ∈ {1, 2}. We assume the channel co-efficients are either 0 or 1, i.e. Nij ∈ {0, 1}, and

they are distributed as Bernoulli random variables independent from each other and over time.

Furthermore we consider the channel co-efficients to be distributed as follows

Nii ∼ B(ε̄ii) and Nij ∼ B(ε̄ij), (3.1)

for 0 ≤ ε̄ii, ε̄ij ≤ 1, i, j ∈ {0, 1}, i 6= j. We define ε̄ii = 1− εii and ε̄ij = 1− εij .

At each time instant t, the transmit signal at Tx1 is denoted as Wt whereas that at Tx2

is denoted as Xt where Wt, Xt ∈ {0, 1} and the received signals at Rx1 and Rx2 are respectively

denoted as follows

Yt= (N11)tWt ⊕ (N21)tXt,

Zt= (N12)tWt ⊕ (N22)tXt, (3.2)

where all algebraic operations are in a binary field, denoted as, F2. The channel state information

(CSI) at time instant t is denoted by the quadruple

Nt =
{

(N11)t, (N12)t, (N21)t, (N22)t

}
, (3.3)

In this chapter we use capital letters to denote random variables (RVs), e.g. (Nij)t is a random

variable at time instant t, and small letters denote the realizations, e.g. (nij)t is a realization of

(Nij)t. For a natural number m, the vector Nm represents the following

Nm =
[
N1, N2, · · · , Nm

]T
, (3.4)
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Finally, we write the t - length output vectors as follows

(N11W ⊕N21X)t=
[
(N11W ⊕N21X)1, · · · , (N11W ⊕N21X)t

]T
,

(N12W ⊕N22X)t=
[
(N12W ⊕N22X)1, · · · , (N12W ⊕N22X)t

]T
, (3.5)

Figure 3.1. 2-User Binary Fading Interference Channel.

We next state the secrecy criterion to be followed in this chapter after defining the decoding

error probability. We assume that both the transmitters has secret messages to transmit. Let Mi

be the secret message to be transmitted by transmitter Txi where i = 1, 2. The transmitters want

to transmit at a rate Ri. Now let us suppose that Tx1 wants to transmit a message M1(k), k ∈

{1, 2, · · · , 2nR1}, then the transmitter chooses a codeword Wn from its codebook C1(n). Similarly

if Tx2 wants to transmit a message M2(l), l ∈ {1, 2, · · · , 2nR2} it does so by choosing a codeword

Xn from its codebook C2(n). Now both the receivers are assumed to be aware of the coding scheme

and the codebooks used by the transmitters. Next let us assume that M̂i is the estimate Rxi makes

about the message transmitted from Txi on observing the received signal, where i ∈ {1, 2}.An error

occurs when M̂i 6=Mi and the probability of decoding error is given by

λi = P [M̂i 6=Mi], i ∈ {1, 2}, (3.6)

A rate pair (R1, R2) is said to be achievable if there exists Ci(n), i ∈ {1, 2} such that

max (λ1, λ2)→ 0 and both

I(M1;Zn|Xn, Nn)< δ1, and

I(M2;Y n|Wn, Nn)< δ2, (3.7)
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is satisfied with arbitrarily small δ1 > 0 and δ2 > 0, as n → ∞. Note that the aforementioned

conditions are equivalent to an equivocation of 1 according to the definitions of [28], since

I(M1, Z
n|Xn, Nn) < δ1,

=⇒ h(M1) < h(M1|Zn, Xn, Nn) + δ1, (3.8)

h(M1|Zn, Xn, Nn)

h(M1)
> 1− δ′1, (3.9)

where the left hand side of the above equation represents the equivocation and δ
′
1 = δ1

h(M1) can be

made arbitrarily small. Similarly the other condition in (3.7) can be shown to have an equivocation

of 1 as well. The main contributions of the chapter are stated in the next section.

3.3. Main Results

This section provides the exact characterization of secrecy capacity region for a two user

strong and very weak BFIC. We first provide with some definitions.

Figure 3.2. The Secrecy Capacity Region of Very Weak Binary Fading Interference Channel.

Definition 10 A fading interference channel is called strong if both the interfering links are prob-

abilistically stronger than their corresponding direct links, mathematically, for BFIC it can be rep-

resented as follows : ε̄ij > ε̄ii, i ∈ {0, 1}, i 6= j, where ε̄ii is the probability that the direct link

is present whereas εii is the probability that the direct link is erased.Similar interpretations can

be done for ε̄ij and εij. It is called a moderately weak binary fading interference channel if both

the direct links are probablistically stronger than their corresponding cross link, mathematically

ε̄ii ≥ ε̄ij , i ∈ {0, 1}, i 6= j. However if the fraction of the direct link when it does not face any

interference is still greater than its corresponding cross link then we say that the channel is a weak
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interference channel, mathematically ε̄iiεji ≥ ε̄ij , ∀i, j ∈ {1, 2} and i 6= j. Finally a weak interfer-

ence channel for which β2 > β1 is called a very weak interference channel, where β2 and β1 are

defined as follows

β1 =
ε̄11ε̄21

ε̄22ε12 − ε̄21
and β2 =

ε̄11ε21 − ε̄12

ε̄22ε̄12
, (3.10)

With the definitions of β1 and β2 as shown in (3.10) we next characterize the secrecy capacity

for a very weak BFIC in theorem 5 while Lemma 2 gives the secrecy capacity for a strong fading

interference channel.

Theorem 5 The secrecy capacity region of a very weak two-user BFIC with no channel state

information at transmitter (CSIT), C(ε̄11, ε̄12, ε̄21, ε̄22) is the quadrangular region ABCD as shown

in figure 3.2 where the co-ordinates of the vertices are as follows

D(0, 0); A(ε̄11 − ε̄12, 0); B(ε̄11ε21 − ε̄12, ε̄22ε12 − ε̄21); C(0, ε̄22 − ε̄21), (3.11)

Remark 1 The achievability of the rates in points A and C are very intuitive. It just shows that if

one of the transmitter is silent then for the other transmitter the interference channel simply reduces

to a wiretap channel and it can then use capacity optimal layered erasure wiretap channel code with

a single layer to achieve the rates. However it might get a little tricky when both the transmitters

are transmitting. Although, it might not be difficult to visualise how the rates in point B can be

achieved. Let us take a closer look at figure 3.2, we see that as we move from point A towards

point B the rate of transmitter Tx1 slowly decreases while that for transmitter Tx2 increases, which

means as Tx2 begins its transmission Tx1 can no longer transmit on its direct link at a rate ε̄11 and

still have its message reliably decoded at its corresponding receiver but must suffer some loss. This

makes sense because as Tx2 starts its transmission it will interfere with the signal coming from Tx1

at receiver Rx1 and hence Rx1 cannot decode the whole signal coming from Tx1, if it still transmits

at a rate ε̄11. So we clearly see that unless Tx1 reduces its rate of transmission the signal that it

sends cannot be completely decoded by Rx1. But the question is how much should the reduction be.

Intuitively it makes sense to think that if Tx1 can transmit during the portion when the interfering

link is erased then it reaches Rx1 uninterfered and Rx1 can decode all the information. So the

loss in rate that Tx1 suffers is when both direct link and the interfering link to Rx1 is present, i.e.

ε̄11ε̄21. So if its rate of transmission, is ε̄11 − ε̄11ε̄21 = ε̄11ε21 then the message can be completely
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decoded by Rx1. Similar loss in rate will be incurred by Tx2 as well due to interference of signal

from Tx1 at Rx2. The secrecy rate achievability is once again based on the usage of optimal code

for binary erasure wiretap channel because once a receiver decodes the signal coming from its direct

transmitter and subtracts it from the received signal there exists a single layer wiretap channel from

the point of view of the other transmitter.

We next state the result for strong BFIC in lemma 2.

Lemma 2 The secrecy capacity of a strong two-user BFIC as shown in figure 3.1 with no channel

state information at the transmitter (CSIT) is zero.

In the following section we explain first the concept of ”alignment” and how it does not affect the

secrecy capacity region of an interference channel. The section further includes some lemmas along

with their proofs which are used later in section 3.5 and 3.7.

3.4. Key Lemmas

In this section we state and prove the lemmas which aids in the proof of the result for strong

interference channel (lemma 2) and the proof of the converse for very weak interference channel

(theorem 5). But prior to that we introduce the concept of ”alignment”.Since the two decoders at

the two receivers operate independently so the secrecy capacity region of any interference channel

depends only on the marginal distribution of the outputs conditioned on the inputs but not on the

joint conditional distribution [1]. With this knowledge we assume for the rest of the chapter that

the fading states (N11)t and (N12)t are ”aligned” with each other and so is (N22)t with (N21)t such

that P
[
(Nii)t · (Nij)t = 1

]
= min (ε̄ii, ε̄ij) ∀ t ≥ 0 and i, j ∈ {1, 2}, i 6= j. However the channel

states {(N11)t, (N12)t} and {(N22)t, (N21)t} are independent of each other and the inputs for all t.

The above assumption means if the realization of the weaker channel state among (Nii)t and (Nij)t

is 1 then the stronger one has to be 1 for all i, j ∈ {1, 2}, i 6= j. This however does not change the

capacity region as the marginal distribution is not affected by this assumption[24]. We next state

and prove the lemmas.

Lemma 3 Consider n uses of a memoryless channel described by an arbitrary random transfor-

mation PY,Z,T |X,S. Let Xn and Sn be the independent input and state sequences respectively. Then

the difference of the n-letter entropies can be written as a summation of single letter entropies as
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follows

h(Zn|Tn, Sn)− h(Y n|Tn, Sn) =
n∑
i=1

[
h(Zi|Zi−1, Y n

i+1, T
n, Sn)− h(Yi|Zi−1, Y n

i+1, T
n, Sn)

]
. (3.12)

Proof 3 The proof of the lemma involves writing the difference of n-letter entropies as a summation

of difference of entropies and simple application of chain rule of entropy . The proof is as follows

h(Zn|Tn, Sn)− h(Y n|Tn, Sn) =

n∑
i=1

[
h(Zi, Y n

i+1|Tn, Sn)− h(Zi−1, Y n
i |Tn, Sn)

]
, (3.13)

=

n∑
i=1

[
h(Zi, Z

i−1, Y n
i+1|Tn, Sn)− h(Zi−1, Yi, Y

n
i+1|Tn, Sn)

]
,

=

n∑
i=1

[
h(Zi−1, Y n

i+1|Tn, Sn) + h(Zi|Zi−1, Y n
i+1, T

n, Sn)

− h(Zi−1, Y n
i+1|Tn, Sn)− h(Yi|Zi−1, Y n

i+1, T
n, Sn)

]
, (3.14)

=
n∑
i=1

[
h(Zi|Zi−1, Y n

i+1, T
n, Sn)− h(Yi|Zi−1, Y n

i+1, T
n, Sn)

]
, (3.15)

where in equation (3.13) if the summation is completed by finding the terms for each value of i

then we get the difference of n-letter entropy term to the left, equation (3.14) follows from simple

application of chain rule of entropy. This concludes the proof of the lemma.

Lemma 4 Consider the Interference Channel as shown in figure 3.1. If the interference channel

satisfies the following constraints ε̄11 ≥ ε̄12 and ε̄22 ≥ ε̄21 and are ”aligned” ,i.e. a realization 1 for

the weaker channel state would ensure that stronger one is also 1 then the input forms the following

Markov Chain

Wi →
{

(lW )i−1, µ(Wn, Nn)
}
→
{

(sW )i−1, µ(Wn, Nn)
}
,

where l = (N11N̄21) and s = (N12N̄22).

Proof 4 In general Wi is correlated to
{

(lW )i−1, µ(Wn, Nn)
}

since the input is not necessarily

independently distributed over the several channel uses. So that explains the first part of the chain.

Now we know that ε̄22 ≥ ε̄21 which implies that ε22 < ε21. Besides since ε̄11 ≥ ε̄12 so we can safely
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say that ε̄11ε21 ≥ ε̄12ε22. Now due to the alignment of the channels we can write

{
(sW )i−1, µ(Wn, Nn)

}
= f

({
(lW )i−1, µ(Wn, Nn)

})
, (3.16)

since we can obtain
{

(sW )i−1, µ(Wn, Nn)
}

from
{

(lW )i−1, µ(Wn, Nn)
}

by replacing with 0 that

portion of the signal for which l is 1 but s is not. Next using the definition of data processing

inequality we know that for any two sets of correlated random variables {A,B} and an arbitary

function f(·), forms a Markov Chain, A→ B → f(B) thereby completing the proof of the Markov

Chain

Wi →
{

(lW )i−1, µ(Wn, Nn)
}
→
{

(sW )i−1, µ(Wn, Nn)
}
, (3.17)

We thus conclude the proof of the lemma.

We provide the proof of lemma 2 in the next section.

3.5. Proof of Lemma 2

The proof of the lemma invovles finding an upper bound on the rates, at which if transmitted

from the respective transmitters, information can be kept secret from the interfering receiver while

the intended receiver can reliably decode it. Let Ri be the rate achievable by transmitter Txi over

n channel uses, then

nRi = h(Mi), i = 1, 2, (3.18)

where Mi denotes the message at transmitter Txi. The derivation of the upper bound for R1 goes

as follows

nR1 − δ1= h(M1)− δ1, (3.19)

≤ h(M1|Zn, Xn, Nn), (3.20)

≤ h(Wn,M1|Zn, Xn, Nn), (3.21)

= h(Wn|Zn, Xn, Nn) + h(M1|Wn, Zn, Xn, Nn), (3.22)

= h(Wn|Zn, Xn, Nn), (3.23)

= h(Wn|Xn, Nn)− I(Wn;Zn|Xn, Nn),

= h(Wn|Nn)− I(Wn; Ỹ n|Nn), (3.24)

= h(Wn|Nn)− h(Wn|Y n, Nn) + h(Wn|Y n, Nn)− I(Wn; Ỹ n|Nn),
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≤ I(Wn;Y n|Nn)− I(Wn; Ỹ n|Nn) + δ
′
, (3.25)

=⇒ nR1 − δ
′
1= I(Wn;Y n|Nn)− I(Wn; Ỹ n|Nn), (3.26)

≤ I(Wn; Ŷ n|Nn)− I(Wn; Ỹ n|Nn), (3.27)

= h(Ŷ n|Nn)− h(Ỹ n|Nn), (3.28)

=
n∑
i=1

[
h
{
Ŷi|Ŷ i−1, Ỹ n

i+1, N
n
}
− h
{
Ỹi|Ŷ i−1, Ỹ n

i+1, N
n
}]
, (3.29)

=
n∑
i=1

[
h
{
Ŷi|Di, Ni

}
− h
{
Ỹi|Di, Ni

}]
, (3.30)

=
n∑
i=1

[
ε̄11 − ε̄12

]
h
{
Wi|Di, Ni

}
, (3.31)

≤ 0, (3.32)

where equation (3.19) follows from (3.18),the secrecy criterion for Tx1 −Rx1 pair as mentioned in

equation (3.8) gives equation (3.20), equation (3.21) is the result of the fact that additional random

variable does not reduce entropy. Equation (3.22) follows from the chain rule of entropy. Equation

(3.23) occurs because h(M1|Wn, Zn, Xn, Nn) = 0 since a receiver is assumed to reliably decode the

message that was sent by its corresponding transmitter from the received signal. Equation (3.24)

follows from the independence of random variables and Ỹ n = (N12W )n, h(Wn|Y n, Nn) ≤ δ
′

in

equation (3.25) and δ
′
1 = δ1 + δ

′
in equation (3.26), Equation (3.27) follows from the fact that inde-

pendent additive noise cannot increase mutual information, Ŷ n = (N11W )n in the same equation.

h(Ŷ n|Wn, Nn) = 0 and h(Ỹ n|Wn, Nn) = 0 results in equation (3.28). Equation (3.29) follows from

lemma 3, Di = {Ŷ i−1, Ỹ n
i+1, N

i−1, Nn
i+1} in equation (3.30). Since for strong interference ε̄11 ≤ ε̄12

and the entropy of a binary random variable is always non-negative hence we can upper bound

(3.31) by zero giving equation (3.32).

Similarly it can be proved that for strong interference the secret rate of transmission from

Tx2 can be upper bounded by 0 as is done for Tx1 in equation (3.32). So we find that there is no

non-negative upper bound to the secret rate of transmission for a strong BFIC from either of the

transmitters.Thus the overall secrecy rate for a single layer strong fading interference channel is

zero. This concludes the proof of lemma 2. We next provide the proof of theorem 5, however the

proof is subdivided into a converse and an achievability seperately. The next section provides the

achievability part of the proof while section 3.7 provides the converse.
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3.6. Achievability

In this section we prove the achievability of the secrecy capacity region given by theorem 5.

We see that proving the achievability of the corner points in figure 3.2 would ensure the achievability

of the entire region as the rest of the rate pairs on the boundary can be achieved by time sharing.

The achievability of point D is trivial and is hence ignored here.

3.6.1. Achievability of Points A and C

When Tx2(Tx1) remains silent then BFIC essentially reduces to a single layer erasure

wiretap channel where Rx2(Rx1) behaves as the eavedropper and Rx1(Rx2) as the legitimate

receiver. In this scenario using the scheme in [69] Tx1(Tx2) can achieve a rate {ε̄11−ε̄12}({ε̄22−ε̄21})

while Tx2(Tx1) remains silent, hence has a zero rate.This ensures the achievability of point A(C).

3.6.2. Achievability of Point B

Let the transmitted signal from both transmitters 1 and 2 be Bernoulli(0.5) distributed as

W = W̃ ∼ B(1
2) and X = X̃ ∼ B(1

2). We will first try to find the rates supported by the direct

links when the receivers use the concept of treating interference as erasure to reliably decode the

signals coming from their corresponding transmitter. Let r
′
1 represent the rate between Tx1−Rx1

and r
′
2 between Tx2 −Rx2. So r

′
1 can be calculated as follows

r
′
1= I(W̃ ; Ẏ , N), (3.33)

= I(W̃ ;N) + I(W̃ ; Ẏ |N), (3.34)

= I(W̃ ; Ẏ |N), (3.35)

= ε̄21I(W̃ ;N11W̃ ⊕ X̃|N) + ε21I(W̃ ;N11W̃ |N),

= ε21I(W̃ ;N11W̃ ⊕ X̃|N), (3.36)

= ε̄11ε21I(W̃ ; W̃ ),

= ε̄11ε21, (3.37)

where in equation (3.33) Ẏ = N11W̃ ⊕N21X̃, equation (3.34) is the result of chain rule of mutual

information, equation (3.35) follows from the fact that the inputs are independent of the channel

states, equation (3.36) follows from the fact that since interference is treated as erasure so whenever

N21 = 1, the signal is just ignored. Finally equation (3.37) results from the fact that W̃ ∼ B(1
2).
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Similarly it can be shown that r
′
2 = ε̄22ε12. From [28] we know that on a wiretap channel with

input A, legitimate receiver output B, eavesdropper signal C and a channel PBC|A(·), the secrecy

capacity achievable is given as

max
J→A→BC

{I(J ;B)− I(J ;C)}, (3.38)

It implies for each choice of (J,A) that satisfies the above Markov Chain , a secrecy rate of {I(J ;B)−

I(J ;C)} can be achieved on a wiretap channel. Using this result and the fact that interference

channel can be thought of as a combination of two wiretap channels, from the point of view of

each transmitter, we can find the achievable secrecy rate at each transmitter. Using J = A ≡ W̃ ,

B ≡ (Ẏ , N) and C ≡ (Ż, X̃,N) where Ż = N22X̃ ⊕ N12W̃ and denoting the corresponding

achievable secrecy rate by r1 we find the achievable secrecy rate at Tx1 as follows,

r1(ω)= I
{
W̃ ; Ẏ , N

}
− I
{
W̃ ; Ż, X̃,N

}
,

= I
{
W̃ ;N

}
+ I
{
W̃ ; Ẏ |N

}
− I
{
W̃ ;N

}
− I
{
W̃ ; X̃|N

}
− I
{
W̃ ; Ż|X̃,N

}
, (3.39)

= I
{
W̃ ; Ẏ |N

}
− I
{
W̃ ; Ż|X̃,N

}
, (3.40)

= ε̄11ε21 − I(W̃ ;N12W̃ |N), (3.41)

= ε̄11ε21 − ε̄12, (3.42)

where equation (3.39) follows from the chain rule of mutual information, the independence of the

channel states with inputs and the inputs among themselves results in equation (3.40), equation

(3.41) follows from (3.37). Finally equation (3.42) follows from the fact that W̃ ∼ B(1
2). Similarly

it can be shown using similar techniques and the result for wiretap channel that achievable secrecy

rate for Tx2 is ε̄22ε12 − ε̄21. The only change in this case will be the fact that J = A ≡ X̃,

B ≡ (Ż,N) and C ≡ (Ẏ , W̃ ,N).The next section provides the proof of the converse.

3.7. Converse

In this section we prove the outer bounds of theorem 5.The derivation of the outer bound

is heavily dependent on the proper application of the lemmas introduced in section 3.4 and proper

partioning of the ω region. We start with Fano’s Inequality and the secrecy criterion to first derive

the individual bounds, then we are going to prove the weighted bounds for the two regions described
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in subsections 3.7.1 and 3.7.2

R1 + β1R2≤ (ε̄11 − ε̄12), (3.43)

R1 + β2R2≤ β2(ε̄22 − ε̄21). (3.44)

The derivation of the upper bound of the achievable rate of transmitter Tx1 starts with

equation (3.18), which followed by the application of the secrecy criterion for the Tx1 −Rx1 as in

equation (3.8) yields (3.45)

nR1 − δ1≤ h(M1|Zn, Xn, Nn), (3.45)

≤ h(Wn,M1|Zn, Xn, Nn), (3.46)

= h(Wn|Zn, Xn, Nn) + h(M1|Wn, Zn, Xn, Nn), (3.47)

= h(Wn|Zn, Xn, Nn), (3.48)

= h(Wn|Xn, Nn)− I(Wn;Zn|Xn, Nn),

= h(Wn|Nn)− I(Wn; Ỹ n|Nn), (3.49)

= h(Wn|Nn)− h(Wn|Y n, Nn) + h(Wn|Y n, Nn)− I(Wn; Ỹ n|Nn),

≤ I(Wn;Y n|Nn)− I(Wn; Ỹ n|Nn) + δ
′
, (3.50)

=⇒ nR1 − δ
′
1= I(Wn;Y n|Nn)− I(Wn; Ỹ n|Nn), (3.51)

= h(Y n|Nn)− h(Y n|Wn, Nn)− h(Ỹ n|Nn), (3.52)

where equation (3.46) is the result of the fact that additional random variable does not reduce

entropy.Equation (3.47) follows from the chain rule of entropy. Equation (3.48) occurs because

h(M1|Wn, Zn, Xn, Nn) = 0 as it is assumed that the receiver can reliably decode its own message

from the recived signal. Equation (3.49) follows from the independence of the inputs and Ỹ n =

(N12W )n, h(Wn|Y n, Nn) ≤ δ
′

in equation (3.50) since the receiver should be able to find out

the transmitted codeword from the received signal with less than δ amount of error where δ → 0

as n → ∞ and δ
′
1 = δ1 + δ

′
in equation (3.51) and equation (3.52) follows from the fact that

h(Ỹ n|Wn, Nn) = 0.
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Now we simplify the first entropy term of equation (3.52) as follows

h(Y n|Nn)= h
{

(kW ⊕ kX)n, (lW )n, (mX)n|Nn
}
, (3.53)

= h
{

(kW ⊕ kX)n|Nn
}

+ h
{

(lW )n|(kW ⊕ kX)n, Nn
}

+ h
{

(mX)n|(lW )n, (kW ⊕ kX)n, Nn
}
,

≤ h
{

(kW ⊕ kX)n|Nn
}

+ h
{

(lW )n|Nn
}

+ h
{

(mX)n|Nn
}
, (3.54)

= h
{
Ȳ n|Nn

}
+ h
{

(lW )n|Nn
}

+ h
{

(mX)n|Nn
}
, (3.55)

where in equation (3.53), k = (N11N21) and m = (N21N̄11) whereas l has been defined before

in lemma 4, equation (3.54) follows from the fact that conditioning reduces entropy and Ȳ n =

(kW ⊕ kX)n in equation (3.55).The second entropy term of equation (3.52) is expressed in a more

compact form as follows

h(Y n|Wn, Nn) = h
{

(N21X)n|Nn
}

= h(Z̃n|Nn), (3.56)

where Z̃n = (N21X)n in equation (3.56). Therefore the bound for R1 can be written as follows

putting the simplifications of equations (3.55) and (3.56) back into (3.52)

nR1 − δ
′
1 ≤ h

{
Ȳ n|Nn

}
+ h
{

(lW )n|Nn
}
− h
{
Ỹ n|Nn

}
+ h
{

(mX)n|Nn
}
− h
{
Z̃n|Nn

}
.(3.57)

Proceeding as above we can similarly find the bound for R2 as follows

nR2 − δ
′
2 ≤ h

{
Z̄n|Nn

}
+ h
{

(tX)n|Nn
}
− h
{
Z̃n|Nn

}
+ h
{

(sW )n|Nn
}
− h
{
Ỹ n|Nn

}
, (3.58)

where Z̄n = (aW ⊕ aX)n, with a = (N22N12) whereas t = (N22N̄12) and s has been defined before

in lemma 4. Now finding the weighted sum bound by adding equation (3.57) with ω times of

equation (3.58) we get,

n(R1 + ωR2)− (δ
′
1 + ωδ

′
2)

≤ h
{
Ȳ n|Nn

}
+ ωh

{
Z̄n|Nn

}
+

[
h
{

(lW )n|Nn
}
− h
{
Ỹ n|Nn

}]
+ ω

[
h
{

(sW )n|Nn
}
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−h
{
Ỹ n|Nn

}]
+

[
h
{

(mX)n|Nn
}
− h
{
Z̃n|Nn

}]
+ ω

[
h
{

(tX)n|Nn
}
− h
{
Z̃n|Nn

}]
, (3.59)

Next we will try to simplify the pair of entropies inside each of the square braces seperately

using the Marton style expansion as follows,

h
{

(lW )n|Nn
}
− h
{
Ỹ n|Nn

}
=

n∑
i=1

[
h
{

(lW )i|(lW )i−1, Ỹ n
i+1, N

n
}
− h
{
Ỹi|(lW )i−1, Ỹ n

i+1, N
n
}]
,

(3.60)

=

n∑
i=1

[
h
{

(lW )i|Di, Ni

}
− h
{
Ỹi|Di, Ni

}]
, (3.61)

=
n∑
i=1

[
ε̄11ε21 − ε̄12

]
h
{
Wi|Di, Ni

}
, (3.62)

where equation (3.60) follows from lemma 3, Di = {(lW )i−1, Ỹ n
i+1, N

i−1, Nn
i+1} in equation (3.61).

Using the same lemmas as above and the same method of simplification we can simplify the

other entropy pair involving W as well to give us the following

h
{

(sW )n|Nn
}
− h
{
Ỹ n|Nn

}
=

n∑
i=1

[
ε̄12ε22 − ε̄12

]
h
{
Wi|Ei, Ni

}
, (3.63)

≤ −
n∑
i=1

ε̄12ε̄22h
{
Wi|Ei, Ni

}
, (3.64)

≤ −
n∑
i=1

ε̄12ε̄22h
{
Wi|Di, Ni

}
, (3.65)

where in equation (3.63) Ei = {(sW )i−1, Ỹ n
i+1, N

i−1, Nn
i+1}, equation (3.65) follows from lemma 4

where we have used µ(Wn, Nn) = {Ỹ n
i+1, N

i−1, Nn
i+1}. Thus combining equation (3.62) and (3.65)

together we can write the following

[
h
{

(lW )n|Nn
}
− h
{
Ỹ n|Nn

}]
+ ω

[
h
{

(sW )n|Nn
}
− h
{
Ỹ n|Nn

}]

≤
n∑
i=1

{[
ε̄11ε21 − ε̄12

]
− ωε̄12ε̄22

}
h
{
Wi|Di, Ni

}
, (3.66)

Now using the result in equation (3.62) and the fact that

[
h
{

(mX)n|Nn
}
− h

{
Z̃n|Nn

}]
can be

proved to be negative using similar methods as for equation (3.65) we can further simplify equation
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(3.57) to find the individual bound on R1 as follows

nR1 − δ
′
1≤

n∑
i=1

[
ε̄11ε̄21h

{
(X ⊕W )i|Y i−1, Nn

}
+ (ε̄11ε21 − ε̄12)h

{
Wi|Di, Ni

}]
,

≤
n∑
i=1

[
ε̄11ε̄21 + (ε̄11ε21 − ε̄12)

]
, (3.67)

=

n∑
i=1

[
ε̄11 − ε̄12

]
, (3.68)

where (3.67) follows from the fact that (ε̄11ε21 − ε̄12) > 0 and that entropy of binary random

variables can be upper bounded by 1. On dividing both sides of equation (3.68) by n and letting

n approach ∞ we get the bound on R1 as ε̄11 − ε̄12 by using the fact that δ
′
1 → 0 as n→∞.

We can similarly simplify equation (3.58) to get the individual bound on R2 just like as for

R1. Further the entropy terms involving X can be combined in a similar fashion as those for W

and simplified to give us the following

ω

[
h
{

(tX)n|Nn
}
− h
{
Z̃n|Nn

}]
+

[
h
{

(mX)n|Nn
}
− h
{
Z̃n|Nn

}]

≤
n∑
i=1

{
ω
[
ε̄22ε12 − ε̄21

]
− ε̄21ε̄11

}
h
{
Xi|Ci, Ni

}
, (3.69)

where Ci = {(tX)i−1, Z̃ni+1, N
i−1, Nn

i+1} in equation (3.69). So the weighted sum bound of equation

(3.59) can be further simplified using equations (3.66) and (3.69) as follows

n(R1 + ωR2)− (δ
′
1 + ωδ

′
2)

≤
n∑
i=1

[
h(Ȳi|Ȳ i−1, Nn) + ωh(Z̄i|Z̄i−1, Nn) +

{
(ε̄11ε21 − ε̄12)− ωε̄22ε̄12

}
h
{
Wi|Di, Ni

}
+
{
ω(ε̄22ε12 − ε̄21)− ε̄11ε̄21

}
h
{
Xi|Ci, Ni

}]
, (3.70)

≤
n∑
i=1

[
ε̄11ε̄21h

{
(X ⊕W )i|Y i−1, Nn

}
+ ωε̄22ε̄12h

{
(X ⊕W )i|Zi−1, Nn

}
+
{

(ε̄11ε21 − ε̄12)− ωε̄22ε̄12

}
h
{
Wi|Di, Ni

}
+
{
ω(ε̄22ε12 − ε̄21)− ε̄11ε̄21

}
h
{
Xi|Ci, Ni

}]
, (3.71)
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=
n∑
i=1

[
ε̄11ε̄21h

{
(X ⊕W )i|Y i−1, Nn

}
+ ωε̄22ε̄12h

{
(X ⊕W )i|Zi−1, Nn

}
+ ε̄22ε̄12(β2 − ω)h

{
Wi|Di, Ni

}
+ (ε̄22ε12 − ε̄21)

{
ω − β1

}
h
{
Xi|Ci, Ni

}]
, (3.72)

where equation (3.70) follows by applying the chain rule on the first two entropy terms of (3.59),

β1 & β2 in equation (3.72) is as has been defined in (3.10).

The weighting factor ω can take any positive real number, i.e. ω ∈ [0,∞). Since we are

finding the upper bound for the region when β2 > β1 so the the entire range of ω can be subdivided

as shown in figure 3.3.

Figure 3.3. The Range of ω Axis with it’s Subdivisions.

Now when ω ≤ β1 then from equation (3.72) we see that ω − β1 is less than 0 while for

ω ≥ β2 the term β2 − ω is less than 0. Thus for these regions one of the possible upper bound can

be obtained by eliminating the negative terms. However when β1 < ω < β2 there is no term in

equation (3.72) which is negative. With that insight now for further upper bounding the equation

in (3.72) we divide the whole range of ω into two overlapping regions. The regions are described

as below:

Region 1 : ω ∈ [0, β2)&

Region 2 : ω ∈ (β1,∞) (3.73)

We next find the tightest upper bounds for each of the regions and see if they match with the

equations (3.43) and (3.44).

3.7.1. Region 1: ω ∈ [0, β2)

Let us first find the tightest bound when the coefficient of h
{
Xi|Y i−1, Nn

}
in (3.60) is

negative, i.e. when ω ∈ [0, β1]. For this portion of region 1 the outer bound of equation (3.72) can

be further bounded as follows
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n
[
R1 + ωR2

]
− δ′≤

n∑
i=1

[
ε̄11ε̄21h

{
(X ⊕W )i|Y i−1, Nn

}
+ ωε̄22ε̄12h

{
(X ⊕W )i|Zi−1, Nn

}
+ ε̄22ε̄12(β2 − ω)h

{
Wi|Zi−1, Nn

}]
, (3.74)

≤
n∑
i=1

[
ε̄11ε̄21 + ωε̄22ε̄12 + ε̄22ε̄12(β2 − ω)

]
, (3.75)

=
n∑
i=1

(ε̄11 − ε̄12), (3.76)

=⇒ R1 + ωR2≤ (ε̄11 − ε̄12), (3.77)

where equation (3.74) follows from the fact that (ω − β1) < 0 when ω ∈ [0, β1] and hence can be

ignored for the purpose of upper bound, equation (3.75) is the result of the fact that binary entropy

can be upper bounded by 1 and that, all the other terms in (3.74) are non-negative. Equation (3.76)

uses the definition of β2 from (3.10) for simplification. Finally dividing both sides of equation (3.76)

by n and letting n→∞, we get equation (3.77).

Figure 3.4. The Variation of the Upper Bounds as ω Changes from 0 to β2 in Region 1.

In figure 3.4 the curved blue line shows how the bounds varies as ω goes from 0 to β1.

Looking at the figure one can say without doubt the slope of the bounds decreases and it slants

more towards the R1 axis as the value of ω moves away from 0 towards β1 giving the tightest

bound when ω = β1. Thus the tightest bound when ω ∈ [0, β1] is obtained by replacing ω by β1 in

equation (3.77) and is given as

R1 + β1R2≤ (ε̄11 − ε̄12). (3.78)
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Now we find the tightest upper bound for the rest of the values of ω in region 1 and compare it

with the bound of equation (3.78) to find the tightest bound for the entire portion of region 1.

Now when ω ∈ [β1, β2) the last two entropy terms in equation (3.72) are both positive, hence the

weighted sum bound can be further upper bounded as

n
[
R1 + ωR2

]
− δ′≤

n∑
i=1

[
ε̄11ε̄21 + ωε̄22ε̄12 + ε̄22ε̄12

{
β2 − ω

}
+ (ε̄22ε12 − ε̄21)

{
ω − β1

}]
,(3.79)

=
n∑
i=1

[
(ε̄11ε21 − ε̄12) + ω(ε̄22ε12 − ε̄21)

]
, (3.80)

=⇒ R1 + ωR2≤

[
(ε̄11ε21 − ε̄12) + ω(ε̄22ε12 − ε̄21)

]
, (3.81)

where equation (3.79) results from the fact that binary entropy can be upper bounded by 1 and

the fact that all of the terms are non-negative. In equation (3.80) the definitions of β1 and β2 as

given by (3.10) is used for the simplification and dividing both sides of equation (3.80) by n and

letting n→∞, gives equation (3.81).

Now as can be seen from equation (3.81) all the bounds pass through the point (ε̄11ε21 −

ε̄12, ε̄22ε12 − ε̄21) but so does the tightest bound of the ω ∈ [0, β1] region given by equation (3.78).

Now if we refer to figure 3.4 then the red curve shows the trace of the variation of the bounds as ω,

the slope, varies from β1 to β2. Now looking at the trace it is pretty much clear that the tightest

bound for even this subregion of region 1 will be given by equation (3.78) which is obtained by

placing ω = β1 in equation (3.81) followed by some simple algebraic simplification. Thus the overall

tightest bound for region 1 is given by (3.78) which concludes the proof of the bound in equation

(3.43).

3.7.2. Region 2: ω ∈ [β1,∞)

Now when ω varies between β1 to β2 we have already seen the bound as given by equation

(3.81), which does not change even for region 2. The red curve in figure 3.5 traces the variation

of the bounds as the slope varies from β1 to β2, each of them passing through the point (ε̄11ε21 −

ε̄12, ε̄22ε12 − ε̄21). It is then easily seen from the figure that the tightest of the bounds occur when

ω = β2 and is same as equation (3.86) after some algebraic simplification.

So with the tightest bound for ω ∈ (β1, β2] already derived we will now only concentrate on

the bounds for the subregion, ω ∈ [β2,∞). We start from equation (3.72) and find that (β2 − ω) is

67



Figure 3.5. The Variation of the Upper Bounds as ω Changes from β1 to ∞ in Region 2.

less than 0 when ω is in the range [β2,∞). Thus ignoring the negative term, equation(3.72) can be

further bounded as follows

n
[
R1 + ωR2

]
− δ′≤

n∑
i=1

[
ε̄11ε̄21h

{
(X ⊕W )i|Y i−1, Nn

}
+ ωε̄22ε̄12h

{
(X ⊕W )i|Zi−1, Nn

}
+ (ε̄22ε12 − ε̄21)

{
ω − β1

}
h
{
Xi|Y i−1, Nn

}]
, (3.82)

≤
n∑
i=1

[
ε̄11ε̄21 + ωε̄22ε̄12 + (ε̄22ε12 − ε̄21)

{
ω − β1

}]
, (3.83)

≤
n∑
i=1

ω(ε̄22 − ε̄21), (3.84)

=⇒ R1 + ωR2≤ ω(ε̄22 − ε̄21), (3.85)

where in equation (3.83) all the terms being positive the binary entropy for each of the terms has

been upper bounded by 1. Equation (3.84) uses the definition of β1 from (3.10) for simplification.

Finally equation (3.84) is obtained by dividing both sides of equation (3.83) by n and then letting

n→∞.

We refer back to figure 3.5 where the blue curve shows the variation of the bounds as ω,

the slope changes from β2 to ∞. It can be said without doubt that the tightest of all the bounds

occur when ω = β2 and is given as follows

R1 + β2R2≤ β2(ε̄22 − ε̄21), (3.86)
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Thus equation (3.86) gives the tightest of all the bounds for region 2 and proves the bound of

equation (3.44).

Remark 2 The tightest bound in region 1, i.e. when ω ∈ [0, β2) is obtained when the entropy term

h
{
Xi|Y i−1, Nn

}
goes to zero. Similarly the tightest bound for region 2, i.e. when ω ∈ (β1,∞) is

obtained when h
{
Wi|Zi−1, Nn

}
goes to zero. Intuitively speaking it is as if the tightest bound for

the two regions are obtained when only one of the users transmit while the other remains silent.

We gain nothing extra by transmitting from both the users simultaneously even when we can. Also

for the transmission scheme both the entropy terms can never go to zero given the constraints on β1

and β2. This observation might be helpful when we move on to the multi-layer scenario, meaning

for a multi-layer scenario it might be logical to give certain layers to user 1 and the rest to user 2

since giving the same layer to both the users does not give us any additional advantage.

3.8. Conclusion

It is shown in this chapter that for a fast fading 2-user binary interference channel the

secrecy capacity is zero for the class of fading IC defined as strong. It is also shown that for the

class defined as very weak LFIC we get non-zero secrecy rate. The result in this case suggest

that carefully transmitting from a transmitter when it does not see interference from the other

transmitter and then applying the layered erasure wiretap channel optimal code for binary channel

helps in achieving the secrecy rate. The result is important because of the practical channel

assumptions wherein a fast fading channel is considered without any channel state information at

the transmitter. Also it serves as the first step towards characterizing the secrecy capacity of the

real fading IC for which there is limited to almost no result due the complexity of the channel

model. However, the solution to this binary problem motivates us to consider the multi-layer

scenario, which is solved next in the following chapter and would be a step further towards solving

the real fading IC problem.
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4. SECRECY CAPACITY OF A CLASS OF LAYERED

INTERFERENCE CHANNEL

4.1. Introduction

It has been shown recently in[59] that by allowing multiple transmit-receive pair operate

in the same frequency band the overall throughput can be increased significantly. However, the

broadcast nature of a wireless channel can cause severe security issues in a multi-user scenario which

might supercede the attractive gains that it has to offer if the message being transmitted is of a

highly secure nature. The issue of security in such scenarios is becoming an increasingly challenging

problem due to the advancement in computational technologies which has evolved manifold in over

a decade or so. Information theoretic approach for secret communication started with Shannon’s

work in [26] which was followed by the pioneering work of Wyner in [3] determining the secrecy

capacity of a degraded wiretap channel (WTC). This was followed by a plethora of work in discrete

memoryless WTC, Gaussian WTC and slow fading WTC in [28], [29], [65], [33]. Some interesting

results in fast fading wiretap channel has also been pursued in [66], [50], [68], [25]. However none

of these results really treat a multi-user scenario.

Without secrecy constraint, there has been significant work in multi-user scenario too and

one such popular multi -user network model is the Interference Channel (IC). After the progress

made by Etkin, Tse and Wang recently in characterizing the capacity region of 2-user Gaussiann IC

within a single bit in [59] several important results have come to the fore. Some of them are from

the perspective of degrees of freedom (DoF) [85], [86], [87] while others for multiple input multiple

output (MIMO) Gaussian ICs [24], [88], [89], [90], [91]. The capacity of fading ICs has also been

studied in [92],[93] where the focus was on scenarios where full channel state information (CSI)

is available. Results on fast fading ICs with no CSI at transmitter (CSIT) has also been studied

for binary ICs in [84] and layered ICs in [94] and Z-Interference channel in [24]. But surprisingly

there has been very few work that addresses the issue of security in ICs. Some of the results as

in [80], [81] partially addresses the issue by describing a metric called secure degrees of freedom

which however is a coarse approximation of secrecy capacity of a channel and also the channel

70



considered in those works are not fast fading. There is another work as in [78], that finds it for a

special IC. Our findings on the other hand paves the way for a more general result. Although there

are results with constant channel gain and some partial ones with channel state varying slowly,

there seems to be almost no result for fast fading channels and that motivates the current problem.

The assumption that is made here is that there is no channel state information at the transmitter.

This makes sense once again, since for a fast changing channel the receiver might not be able to

provide the transmitter with a timely update about the state of the channel and without feedback

from the receiver the transmitter has no other means to know about the state of the channel. In

addition, an unintended receiver - if malicious would never provide a feedback about the state of

the channel. So taking into account all these factors, a fast fading wireless channel with no channel

state information at the transmitter (no CSIT) appears to be the most practical assumption.

Deterministic model of [82] is very useful to gain insight about multi-user network models

which paves the way towards characterization of the performance of a Gaussian channel. In the

deterministic channel model, a q-bit vector typically models the input and the effect of channel co-

efficient is modeled by removing a particular number of least significant bits which remain below the

noise floor even after getting multiplied by the channel gain. For example, if the channel gain is 2n,

then only n most significant bits of the input vector will reach the destination while the others will

remain below the noise floor and hence get erased. The fading nature of the communication channel

is captured by modelling this n to be random and varying which in turn imply that the number of

transmitted bits that survive till the destination is also random. If the bits are imagined as layers

then on a fading channel an arbitrary number of such layers get erased depending on the random

channel co-efficients. Such a layered model was used in [95] as a stepping stone to characterize

the approximate capacity of a 2-user fading broadcast channel, then in [96] to characterize the

sum capacity of a class of layered erasure one-sided IC and then also in [24] as an intial step before

finding the approximate capacity of a fading Z-IC. Our result on layered fading interference channel

(LFIC) is a further step forward towards sloving the more general Gaussian fading IC.

The rest of the chapter is organised as follows. Section 4.2 formally describes the channel

model followed by the introduction of notations used in this chapter and also states the secrecy

criterion to be followed in the solution of this problem. Section 4.3 presents the main findings of this

chapter.We further provide some remarks to aid form the intuitive picture about the achievability
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of the secrecy capacity region for a very weak layered fading interference channel (LFIC) and

also provide an outline of the outer bound. The section also includes some definitions about the

various types of ICs in the begining. We state some lemmas and prove them in Section 4.4. These

lemmas are later used for the proof of our main results. The proof of the secrecy capacity result

for strong LFIC is provided in Section 4.5. The proof of the secrecy capacity region result for very

weak LFIC is divided into two sections where Section 4.6 derives the upper bound of all the rates

whereas Section 4.7 provides the strategy to achieve the various rate pairs which defines the secrecy

capacity region. Section 4.6 is subdivided into three subsections where subsection 4.6.1 derives a

weighted sum bound while subsection 4.6.2 describes two regions and defines a superset to the

secrecy capacity region of very weak LFIC. Subsection 4.6.3 then proves that the region derived in

4.6.2 is a subset of the result given in Section 4.3. Section 4.7 also consists of two subsections 4.7.1

and 4.7.2 each of which derives the achievability scheme to achieve the rate pairs present in region

1 and 2 respectively. Both the regions are described in subsection 4.6.2. We finally conclude the

chapter with Section 4.8.

4.2. Channel Model and Some Preliminaries

We consider a 2-user Layered Fading Interference Channel(LFIC) as shown in Fig. 4.1,

where each user transmits a certain number of bits, say q, to its desired receiver and the bits

transmitted by the transmitters cause interference at the unwanted receivers. To model fading we

assume that the number of bits/layers on each link that survive (does not get erased) and reach

the destination is random [95]. Let us denote these random numbers corresponding to the different

links of the channel by (Nij)t, for i, j = 1, 2 as shown in Fig. 4.1, where t represents the time

index. Clearly, these are discrete random variables and can be completely characterized by their

Complementary Cumulative Distribution Functions (CCDF), denoted by F̄(Nij)t(l) for i, j = 1, 2

and 0 ≤ l ≤ q, where these CCDFs are defined as

F̄(Nij)t(l) = P ((Nij)t ≥ l) = F̄Nij (l), ∀l ≥ 0, (4.1)

We also assume that the various (Nij)t’s are mutually independent across i, j and t which

together with (4.1) implies that for any fixed i, j ∈ {1, 2}, (Nij)t’s are IID as Nij for all t ≥ 1 and

thus from now on we will no longer use the time index in the representation of the CCDFs. Except
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for the fundamental properties these CCDFs, F̄Nij (·), i, j = 1, 2 can be arbitrary. Instantaneous

values of Nij ’s are assumed to be known only at the respective receivers. Transmitters are assumed

to know the statistics, i.e., F̄Nij (l) for i, j ∈ {1, 2} and all l ≥ 0.

Figure 4.1. 2-User Layered Fading Interference Channel.

We next give a preview of the notations to be used in this chapter for vectors of length q

in a binary field represented as Fq2. The signal transmitted from Tx1 at time instant t would be

represented as Wt while that from Tx2 as Xt where both Wt and Xt are q-length vectors. Now

a q-length vector Aq would mean the sequence{A1, A2, · · · , Aq} where each of A1, A2, · · · , Aq ∈

F2 whereas a vector Ai2i1 where i1 < i2 would mean the sequence {Ai1 , · · · , Ai2}. Next (Ai)t

would represent the i-th component of the q-th length vector, (Aq)t at time instant t. Similarly

(Ai2i1)t would represent the sequence of binary components at the t-th instant as {(Ai1)t, · · · , (Ai2)t}

whereas (Ai2i1)t would represent the sequence of vectors, Ai2i1 from the first till the t-th instant as

{(Ai2i1)1, (A
i2
i1

)2, · · · , (Ai2i1)t}. The sub and superscript within the brackets represent the indices of

the vector components while those outside, represent the time indices. For a q-length vector at time

instant t, (A1)t represents the most significant bit (MSB) while (Aq)t represent the least significant

bit (LSB).

Now superposition of two such binary vectors not necessarily of the same length is modeled

by component-wise XOR operation, where the LSBs of the two vectors align with each other; for

instance, the XOR of Am and Bp with p < m will be denoted by Am ⊕Bp, where

Am ⊕Bp = {A1, · · · , Am−p, Am−p+1 ⊕B1, · · · , Am−1 ⊕Bp−1, Am ⊕Bp}, (4.2)
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In these notations, the received signals Yt and Zt during the t-th time instant at Rx1 and Rx2

respectively can be expressed as follows

Yt= (WN11 ⊕XN21)t,

Zt= (WN12 ⊕XN22)t, (4.3)

for all t ≥ 1. Finally, we use capital letters to denote random variables (RVs), e.g. (A)t is a random

variable at time instant t, and small letters denote the realizations, e.g. (a)t is a realization of (A)t.

We next state the secrecy criterion to be followed in this chapter after defining the decoding

error probability. We assume that both the transmitters has secret messages to transmit. Let Mi

be the secret message to be transmitted by transmitter Txi where i = 1, 2. The transmitters want

to transmit at a rate Ri. Now let us suppose that Tx1 wants to transmit a message M1(k), k ∈

{1, 2, · · · , 2nR1}, then the transmitter chooses a codeword Wn from its codebook C1(n). Similarly

if Tx2 wants to transmit a message M2(l), l ∈ {1, 2, · · · , 2nR2} it does so by choosing a codeword

Xn from its codebook C2(n). Now both the receivers are assumed to be aware of the coding scheme

and the codebooks used by the transmitters. Next let us assume that M̂i is the estimate Rxi makes

about the message transmitted from Txi on observing the received signal, where i ∈ {1, 2}.An error

occurs when M̂i 6=Mi and the probability of decoding error is given by

λi = P [M̂i 6=Mi], i = 1, 2, (4.4)

A rate pair (R1, R2) is said to be achievable if there exists Ci(n), i = 1, 2 such that

max (λ1, λ2)→ 0 and both

I(M1;Zn|Xn, Nn)< δ1 and

I(M2;Y n|Wn, Nn)< δ2, (4.5)

is satisfied with arbitrarily small δ1 > 0 and δ2 > 0, as n → ∞. Note that the aforementioned

conditions are equivalent to an equivocation of 1 according to the definitions of [28], since

I(M1, Z
n|Xn, Nn) < δ1,
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=⇒ h(M1) < h(M1|Zn, Xn, Nn) + δ1, (4.6)

h(M1|Zn, Xn, Nn)

h(M1)
> 1− δ′1, (4.7)

where the left hand side of the above equation represents the equivocation and δ
′
1 = δ1

h(M1) can be

made arbitrarily small. Similarly the other condition in (4.5) can be shown to have an equivocation

of 1 as well. The main contributions of the chapter are stated in the next section.

4.3. Main Result

In this section the explicit characterization of the secrecy capacity region of a strong and

a very weak LFIC is stated. However we first provide with some definitions so as to ease the

understanding of the results.

Definition 11 A layered intereference channel is called strong if both the interfering links are

stronger than their corresponding direct links, mathematically P (Nij ≥ l) ≥ P (Nii ≥ l), for all

l ∈ {1, · · · , q} and i, j = 1, 2; i 6= j where Nii represents the unerased fading channel states for the

direct links between Txi and Rxi and Nij , i 6= j represents the unerased fading channel states for

the cross links between Txi and Rxj. But if the direct links are stronger than their corresponding

interfering link then we call it as a moderately weak LFIC, mathematically, P (Nii ≥ l) ≥ P (Nij ≥

l), for all l ∈ {1, · · · , q} and i, j = 1, 2; i 6= j. Nii −Nji represents the number of uninterfered and

unerased direct link layers from Txi to Rxi. So if these uninterfered and unerased direct links for a

transmit receive pair are stronger than their corresponding cross links then we say that the channel

is a weak interference channel, mathematically for a LFIC, P (Nii −Nji ≥ l) ≥ P (Nij ≥ l) for all

l ∈ {1, · · · , q} and i, j ∈ {1, 2}; i 6= j. Finally we now define two channel parameters β1(l) and

β2(l) as follows

β1(l) =
α2(l)

[P (T ≥ l)− P (N21 ≥ l)
] and β2(l) =

[P (L ≥ l)− P (N12 ≥ l)
]

α1(l)
, (4.8)

where α2(l) = [P (N21 ≥ l) − P (N21 − N11 ≥ l)], T = (N22 − N12)+, α1(l) = [P (N12 ≥ l) −

P (N12 − N22 ≥ l)] and L = (N11 − N21)+. So if for a weak interference channel min(β2(l)) >

max(β1(l)), ∀l ∈ {1, · · · , q} then we call it as a very weak layered interference channel.

With the above definitions we now state the result for a very weak layered fading interference

channel in theorem 6 and a strong layered fading interference channel in lemma 5.
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Theorem 6 The secrecy capacity region of a very weak two-user LFIC with no channel state

information at transmitter (CSIT), C(N), is given by the polygonal region A0A1 · · ·AqBq · · ·B1B0O

as shown in figure 4.2 where the vertices Ais are given by the co-ordinates{
E[N11]− E[N12]−

∑
l∈A(ω)

α2(l),
∑

l∈A(ω)

[P (T ≥ l)− P (N21 ≥ l)]
}
, (4.9)

while Bis are given by{ ∑
l∈B(ω)

[P (L ≥ l)− P (N12 ≥ l)],E[N22]− E[N21]−
∑
l∈B(ω)

α1(l)
}
, (4.10)

where A(ω) is defined as
A(ω) =

{
l ∈ {1, · · · q}|ω > β1(l)

}
, (4.11)

and B(ω) as
B(ω) =

{
l ∈ {1, · · · q}|ω < β2(l)

}
, (4.12)

Figure 4.2. Secrecy Capacity Region of Very Weak Layered Fading Interference Channel.

Remark 3 The approach to finding the outer bound for the capacity region involves determination

of two carefully defined set of regions H(ω) and G(ω), where H(ω) is given as

H(ω) =

{
(R1, R2)|R1 + ωR2 ≤

{
E[N11]− E[N12]−

∑
l∈A(ω)

α2(l)
}

+ ω
{ ∑
l∈A(ω)

[P (T ≥ l)− P (N21 ≥ l)]
}}

, (4.13)
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and G(ω) is given as

G(ω) =

{
(R1, R2)|R1 + ωR2 ≤

{ ∑
l∈B(ω)

[P (L ≥ l)− P (N12 ≥ l)]
}

+ ω
{
E[N22]− E[N21]−

∑
l∈B(ω)

α1(l)
}}

, (4.14)

with A(ω) and B(ω) as defined in equations (4.11) and (4.12), respectively. Once these set of

regions are determined it will be further shown that the polygonal region as shown in figure 4.2

can also be represented by the following mathematical expression, in other words the following

mathematical expression does actually represent the secrecy capacity region of a very weak layered

fading interference channel,

R = ∩
ω∈[0,ω1)

H(ω) ∩
ω∈(γ1,∞)

G(ω) ∩ [0,∞)2, (4.15)

where ω1 = min {β2(l)} and γ1 = max {β1(l)}.

Remark 4 The β1(l)’s in A(ω) in equation (4.11) are ordered as γq < γq−1 < · · · < γ1 with their

corresponding permutation as ν such that γi = β1(ν(i)), i = {1, · · · , q}.The subscript i in Ai is

same as the subscript used for γis. Also γ0 → ∞ and γq = minβ1(l) ∀l ∈ {1, · · · , q}. Similarly,

the β2(l)’s in B(ω) are ordered as ω1 < ω2 < · · · < ωq with corresponding permutation as τ such

that ωi = β2(τ(i)), i = {1, · · · , q}. Once again the subscript i in the vertices Bi are same as the

subscripts for ωis. Finally, ω0 = 0 and ωq = maxβ2(l) ∀l ∈ {1, · · · , q}. Thus the entire range of ω

looks as shown in figure 4.3

Figure 4.3. The Range of ω With its Subdivisions.

Remark 5 The parameter α1(l) in G(ω) basically represents the probability that the l-th layer of

Tx1 is not erased by the cross channel and interferes with a certain layer of Tx2 while α2(l) in

H(ω) represents the probability that l-th layer of Tx2 interferes with a certain layer of Tx1.
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Remark 6 We take a closer look at the co-ordinates of the vertices as given in equations (4.9)

and (4.10) and see if we can make a comment about their achieveability. We see that to achieve

the points in Ai, Tx2 should transmit only in those layers which belong to the set A(ω). As a

result Rx1 faces interference only from those layers and hence Tx1 has to reduce its rate on those

layers which is confirmed by the presence of the term
∑

l∈A(ω)

α2(l) in the abscissa of Ai. Now as we

move from A0 towards Aq in figure 4.2 along the boundary of the polygon we see that A0 lies on

the R1-axis which means R2 = 0, hence A(ω) = φ, in other words Tx2 does not transmit, so Tx1

can fulfill its full capability without facing any interference from Tx2. Next A1 lies to the left of A0

in figure 4.2 meaning R1 co-ordinate is less in A1 compared to in A0 which would make sense as

in A1 point, R2 co-ordinate is non-zero meaning Tx2 has started transmitting and hence Tx1 has

to reduce its rate due to interference from Tx2’s transmission so that Rx1 can still reliably decode

its own message. Similar interpretations can be provided for the points Bis as to how Tx2 utilises

its full capacity when Tx1 is silent as in case of point B0 and then slowly reduces its rate as Tx1

starts transmitting on layers belonging to B(ω) starting from point B1 and moving upto Bq.

Figure 4.4. The Capacity Region of Example 7.

To further consolidate the understanding of the capacity region given by theorem 6 we next consider

a simple example. For the sake of simplicity, we consider a symmetric LFIC such that the direct

links N11 and N22 are distributed similarly as N1 and the cross links N21 and N12 are distributed

same as N0. In this symmetric purview α1(l) and α2(l) will be same and can be represented by

α(l) while β1(l) and β2(l) will be reciprocal to one another and can be represented by 1
β(l) and
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β(l) respectively, for all l ∈ {1, 2, · · · , q}. We next state the example and find the secrecy capacity

region for it using theorem 6.

Example 7 Consider a symmetric LFIC with CCDFs of its links as shown in table 4.1. It is clear

from the values that q = 3. Thus the corner points A0 to A3 can be determined from equation

(4.9) in theorem 6 as A0(1.35, 0), A1(1.305, 0.23), A2(1.105, 0.68) and A3 or B3(0.94, 0.94) while

the corner points B0 to B3 can be obtained from equation (4.10) as B0(0, 1.35), B1(0.23, 1.305),

B2(0.68, 1.105) and A3 or B3, as has been calculated earlier. Hence the polygonal region as shown

in figure 4.4 represents the capacity region for the example as given by theorem 6.

We next take a step further and define the set of regions H(ω) and G(ω) as given by

equations (4.13) and (4.14) respectively, as follows

H(ω) =

{
(R1, R2)|R1 + ωR2 ≤

{
1.35−

∑
l∈A(ω)

α(l)
}

+ ω
{ ∑
l∈A(ω)

[P (N1 −N0 ≥ l)− P (N0 ≥ l)]
}
, (4.16)

G(ω) =

{
(R1, R2)|R1 + ωR2 ≤

{ ∑
l∈B(ω)

[P (N1 −N0 ≥ l)− P (N0 ≥ l)]
}

+ ω
{

1.35−
∑
l∈B(ω)

α(l)
}
, (4.17)

The β(l)’s and 1
β(l) ’s can then be arranged as shown in figure 4.5, where ω1 and γ1 will be same as

β(2) and 1
β(2) for the example and the secrecy capacity region will be same as the following region

as claimed in remark 3

∩
ω∈[0,β(2))

H(ω) ∩
ω∈( 1

β(2)
,∞)

G(ω) ∩ [0,∞)2, (4.18)

Figure 4.5. The Order of β(l)s and 1
β(l)s in Example 7.
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So from equation (4.18) we observe that for defining the rate region for the example the

bound in (4.16) is used when ω ∈ [0, β(2)) and the one in (4.17) is used when ω ∈ ( 1
β(2) ,∞).Now if

we replace the inequalities in the equations (4.16) and (4.17) with equality then we get equation of

lines which represents the boundary of the rate region. Let us denote these lines by M(ω).

Table 4.1. Table Showing Various Parameter Values for Example 7

l 1 2 3

F̄N1(l) 0.9 0.6 0.4
F̄N0(l) 0.3 0.2 0.05
P (N1 −N0 ≥ l) 0.75 0.46 0.28
P (N1 − N0 ≥ l) −
F̄N0(l)

0.45 0.26 0.23

P (N0 −N1 ≥ l) 0.1 0.035 0.005
α(l) 0.2 0.165 0.045
β(l) 2.25 1.58 5.1

1
β(l) 0.4 0.63 0.2

Now if we go back to the defnition of A(ω) then we see that for all ω ∈ [0, 0.2], A(ω) = φ

and then from the bound in (4.16) we see that the lines M(ω) pass through the point A0(1.35, 0).

Similarly, the lines obtained when ω ∈ [0.2, 0.4] passes through the point A1(1.305, 0.23) and A(ω) =

{3}. Further when ω ∈ [0.4, 0.63], the lines M(ω) pass through A2(1.105, 0.68) and A(ω) = {1, 3}

while for ω ∈ [0.63, 1.58) the lines pass through A3 or B3(0.94, 0.94) with A(ω) = {1, 2, 3}. Among

these lines M(0.2) is special as it passes through both A0 and A1. The same is true for M(0.4)

and M(0.63); the former passes through A1 and A2 while the later passes through A2 and A3.

Similarly it can also be verified from the bound in (4.17) and the definition of B(ω) that for all

ω ∈ [5.1,∞), B(ω) = φ and the lines M(ω) pass through the point B0(0, 1.35). These lines pass

through B1(0.23, 1.305) for all ω ∈ [2.25, 5.1] and B(ω) = {3}, through B2(0.68, 1.105) for all

ω ∈ [1.58, 2.25] and B(ω) = {1, 3} and through A3 or B3(0.94, 0.94) for all ω ∈ [0.63, 1.58) where

B(ω) = {1, 2, 3}. Among these lines M(5.1) is special as it passes through both B0 and B1. The

same is true forM(2.25) and M(1.58); the former passes through B1 and B2 while the later passes

through B2 and B3.

The rate region defined by the weighted sum rate bounds in equation (4.16) corresponding to

ω = 0.2, 0.4, 0.63 and the bounds in equation (4.17) corresponding to ω = 1.58, 2.25, 5.1 is the same
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as given by equation (4.18) because all the constraints except for the ones used here are redundant.

This happens because for all ω ∈ [0, 0.2], M(ω)s pass through A0. However the slope of M(ω)

increases with increasing ω which means for any value of ω < 0.2 the line M(ω) has a slope less

than the slope of line segment A0A1 in figure 4.4. Thus the line M(0.2) gives the tightest bound

for ω ∈ [0, 0.2]. The same argument holds for all the other bounds for the other ranges of ω. Later

in the chapter we show that the region defined by the sets H(ω) and G(ω) for the predefined ranges

of ω are indeed piece-wise linear. Thus we see that the region defined by equation (4.18) is indeed

same as the one given by theorem 6 and the claim in remark 3 holds true for the example.

The next lemma states the result for a strong LFIC.

Lemma 5 The secrecy capacity of a strong two-user LFIC as shown in figure 4.1 with no channel

state information at the transmitter (CSIT) is zero.

The next section provides all the lemmas needed for the various proofs in this chapter and also

introduces the concept of ”alignment” for a layered interference channel.

4.4. Key Lemmas

In this section we state a number of lemmas and prove them which we use in the later

sections extensively. But before that we introduce the concept of channel ”alignment” for layered

interference channels like we did for the binary version of fading interference channel. The decoders

in this case too decodes independently as in the binary case and hence just depends on the marginal

distribution of the outputs conditioned on the inputs and not on the joint conditional distribution

of the outputs [1]. Thus any arbitrary distribution can be assumed for the direct and the interfering

links without changing the secrecy capacity region as long as the marginal distribution is unaffected.

With this prelude we next define F−1
T (x) = {inf v : FT (v) ≥ x} and the channel states from each

transmitter as [24]

(Nii)t = F−1
Nii

(Λt) and (Nij)t = F−1
Nij

(Λt), (4.19)

where i, j ∈ {1, 2} and i 6= j, t ≥ 1 and Λt is uniformly distributed on [0, 1]. Also FT (t) = P (T ≤ t)

is the cummulative distribution function for a random variable T . In general the layers for the

direct link and the cross link from a particular transmitter looks as shown in figure 4.6, where the

filled blocks represent the unerased layers while the unfilled blocks represent the erased layers. So

as it can be seen the unerased layers in general are random and does not have any ordering.
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Figure 4.6. The Unaligned Layers between the Direct and the Cross Link from a Transmitter.

The above definition of channel states however ensures that we introduce some ordering to

the erased and unerased layers without changing the capacity region. The new definition makes

sure that the presence of a particular layer in a weak channel guarantees the presence of the same

layer for the stronger channel in other orders the ”alignment” ensures that there can be no layer

which is present for the weaker channel but not for the stronger one as shown in figure 4.7. So

essentially figure 4.7 shows how 4.6 will look after ”alignment”. It was shown in [24] that this

definition of the channel states does not affect the marginal distribution and hence the secrecy

capacity region. We are now in a position to state the lemmas used in the rest of the chapter.

Figure 4.7. The Layers between the Direct and the Cross Link from a Transmitter after being
Aligned.

Lemma 6 Consider n uses of a memoryless channel described by an arbitrary random transforma-

tion PY,Z,T |X,S. Let Xn and Sn be the independent input and channel state sequences respectively.

Then the difference of the n-letter entropies can be written as a summation of single letter entropies

as follows

h(Zn|Tn, Sn)− h(Y n|Tn, Sn) =

n∑
i=1

[
h(Zi|Zi−1, Y n

i+1, T
n, Sn)− h(Yi|Zi−1, Y n

i+1, T
n, Sn)

]
, (4.20)

Proof 1 The proof of the lemma involves writing the difference of n-letter entropies as a summation

of difference of entropies and simple application of chain rule of entropy . The proof is as follows
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h(Zn|Tn, Sn)− h(Y n|Tn, Sn) =
n∑
i=1

[
h(Zi, Y n

i+1|Tn, Sn)− h(Zi−1, Y n
i |Tn, Sn)

]
, (4.21)

=
n∑
i=1

[
h(Zi, Z

i−1, Y n
i+1|Tn, Sn)− h(Zi−1, Yi, Y

n
i+1|Tn, Sn)

]
,

=
n∑
i=1

[
h(Zi−1, Y n

i+1|Tn, Sn) + h(Zi|Zi−1, Y n
i+1, T

n, Sn)

− h(Zi−1, Y n
i+1|Tn, Sn)− h(Yi|Zi−1, Y n

i+1, T
n, Sn)

]
, (4.22)

=
n∑
i=1

[
h(Zi|Zi−1, Y n

i+1, T
n, Sn)− h(Yi|Zi−1, Y n

i+1, T
n, Sn)

]
, (4.23)

where in equation (4.21) if the summation is completed by finding the terms for each value of i

then we get the difference of n-letter entropy term to the left, equation (4.22) follows from simple

application of chain rule of entropy. This concludes the proof of the lemma.

Lemma 7 Consider the Interference Channel as shown in figure 4.1. If the interference channel

satisfies the following constraints P (N11 ≥ l) ≥ P (N12 ≥ l) and P (N22 ≥ l) ≥ P (N21 ≥ l) and are

”aligned” ,i.e. presence of a layer for the weaker channel would ensure its presence for the stronger

one as well then the input forms the following Markov Chain

Wi →
{

(WL)i−1, µ(Wn, Nn)
}
→
{

(WS)i−1, µ(Wn, Nn)
}
, (4.24)

where L = (N11 −N21)+ and S = (N12 −N22)+.

Proof 5 In general Wi is correlated to
{

(WL)i−1, µ(Wn, Nn)
}

since the input is not necessarily

independently distributed over the several channel uses. So that explains the first part of the chain.

Now since P (N11 ≥ l) ≥ P (N12 ≥ l) and P (N22 ≥ l) ≥ P (N21 ≥ l) and the channel states are

”aligned” so
{

(WL)i−1, µ(Wn, Nn)
}

can also be written as
{

(WS)i−1, (WL
S+1)i−1, µ(Wn, Nn)

}
.

Thus we can obtain
{

(WS)i−1, µ(Wn, Nn)
}

from
{

(WL)i−1, µ(Wn, Nn)
}

when (WL
S+1)i−1 fraction

of the signal is replaced by 0 corresponding to the values of the channel states. Thus

{
(WS)i−1, µ(Wn, Nn)

}
= f

({
(WL)i−1, µ(Wn, Nn)

})
, (4.25)
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Now from the definition of data processing inequality we know that for any two sets of correlated

random variables {A,B} and an arbitary function f(·), there exists a Markov Chain, A → B →

f(B) thereby completing the proof of the Markov Chain

Wi →
{

(WL)i−1, µ(Wn, Nn)
}
→
{

(WS)i−1, µ(Wn, Nn)
}
, (4.26)

This concludes the proof of the lemma.

Lemma 8 For a q- bit layered erasure channel with input Xq and output XN where N represents

the randomly varying channel state having a CCDF F̄N (n) = P (N ≥ n) ∀n ∈ {1, · · · , q}, the

entropy of the ouput conditioned on the channel state is given by

h(XN |N) =

q∑
l=1

P (N ≥ l)h(Xl|X l−1), (4.27)

Proof 6 Applying the chain rule of entropy and then reversing the order of summation yields the

proof of the lemma. We proceed as follows,

h(XN |N) =

q∑
n=1

PN (n)h(Xn|N = n),

=

q∑
n=1

PN (n)h(Xn),

=

q∑
n=1

n∑
l=1

PN (n)h(Xl|X l−1),

=

q∑
l=1

q∑
n=l

PN (n)h(Xl|X l−1),

=

q∑
l=1

P (N ≥ l)h(Xl|X l−1), (4.28)

Lemma 9 Let X ∈ Fq2 be random vector and XQ represent a collection from X whose index

belongs to Q,i.e. XQ = {Xl : l ∈ Q}. N is a random variable independent of Q and has a CCDF,

F̄N (n) = P (N ≥ n) ∀n ∈ {1, · · · , q} then

h(XN |XQ) =
∑
l∈Qc

P (N ≥ l)h(Xl|X l−1, XQ), (4.29)
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Proof 7 We first apply the result of lemma 8 to expand the term h(XN |XQ) as follows

h(XN |XQ) =

q∑
l=1

P (N ≥ l)h(Xl|X l−1, XQ),

=
∑
l∈Qc

P (N ≥ l)h(Xl|X l−1, XQ), (4.30)

where equation (4.30) follows from the fact that h(Xl|X l−1, XQ) = 0 if l ∈ Q. This concludes the

proof of the lemma.

Lemma 10 Let A and B be two discrete random variables taking values in {1, 2, · · · , p} where

p ∈ N and h = min (A,B), then

E[h]− E[A] + E[A−B]+ = 0, (4.31)

Proof 8 We will divide it into two cases. In the first case let h = A, then

E[h]− E[A] + E[A−B]+ = E[A]− E[A], (4.32)

= 0, (4.33)

where equation (4.33) is the result of the fact that min(A,B) = A and E[0] = 0. Next we consider

the case when h = B. Then

E[h]− E[A] + E[A−B]+ = E[B]− E[A] + E[A−B], (4.34)

= E[B]− E[A] + E[A]− E[B], (4.35)

= 0, (4.36)

where equation (4.34) follows from the fact that min (A,B) = B, while equation (4.35) follows from

the linearity property of expectation operator. Finally combining the results of equations (4.33) and

(4.36) we conclude the proof of the lemma.

We prove the result of strong layered fading interference channel given by lemma 5 in the next

section.
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4.5. Proof of Lemma 5

The proof of the lemma involves finding an upper bound for the individual rates and then

showing that these rates cannot be upper bounded by anything other than zero. Let us assume

that Ri be the rate of transmission from Txi over n channel uses, then

nRi = h(Mi), i = 1, 2, (4.37)

where Mi denotes the message to be transmitted by Txi. So now the upper bound on R1 can be

derived as follows

nR1 − δ1= h(Mi)− δ1, (4.38)

≤ h(M1|Zn, Xn, Nn), (4.39)

≤ h(Wn,M1|Zn, Xn, Nn), (4.40)

= h(Wn|Zn, Xn, Nn) + h(M1|Wn, Zn, Xn, Nn), (4.41)

= h(Wn|Zn, Xn, Nn), (4.42)

= h(Wn|Xn, Nn)− I(Wn;Zn|Xn, Nn),

= h(Wn|Nn)− I(Wn; Ỹ n|Nn), (4.43)

= h(Wn|Nn)− h(Wn|Y n, Nn) + h(Wn|Y n, Nn)− I(Wn; Ỹ n|Nn),

≤ I(Wn;Y n|Nn)− I(Wn; Ỹ n|Nn) + δ
′
, (4.44)

where equation (4.38) follows from (4.37) whereas equation (4.39) follows from the secrecy criterion

for Tx1 − Rx1 pair as mentioned in equation (4.6), equation (4.40) is the result of the fact that

additional random variable does not reduce entropy. Equation (4.41) follows from the chain rule of

entropy. Equation (4.42) occurs because h(M1|Wn, Zn, Xn, Nn) = 0 since a receiver is assumed to

reliably decode its message from the received signal. Equation (4.43) follows from the independence

of the input random variables and Ỹ n = (WN12)n, h(Wn|Y n, Nn) ≤ δ
′

in equation (4.44).Then

using the fact δ
′
1 = δ1 + δ

′
in equation (4.45) we further simplify it as follows

nR1 − δ
′
1≤ I(Wn;Y n|Nn)− I(Wn; Ỹ n|Nn), (4.45)

≤ I(Wn; Ŷ n|Nn)− I(Wn; Ỹ n|Nn), (4.46)
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= h(Ŷ n|Nn)− h(Ỹ n|Nn), (4.47)

=
n∑
i=1

[
h
{
Ŷi|Ŷ i−1, Ỹ n

i+1, N
n
}
− h
{
Ỹi|Ŷ i−1, Ỹ n

i+1, N
n
}]
, (4.48)

=
n∑
i=1

[
h
{
Ŷi|Ei, Ni

}
− h
{
Ỹi|Ei, Ni

}]
, (4.49)

=
n∑
i=1

q∑
l=1

[
P (N11 ≥ l)− P (N12 ≥ l)

]
h
{
Wi|Ei, Ni

}
, (4.50)

≤ 0, (4.51)

where (4.46) follows from the fact that independent additive noise cannot increase mutual informa-

tion, Ŷ n = (WN11)n in the same equation. h(Ŷ n|Wn, Nn) = 0 and h(Ỹ n|Wn, Nn) = 0 results in

equation (4.47). Equation (4.48) follows from lemma 6, Ei = {Ŷ i−1, Ỹ n
i+1, N

i−1, Nn
i+1} in equation

(4.49). Equation (4.50) follows from lemma 8. Since for strong interference P (N11 ≥ l) ≤ P (N12 ≥

l) and the entropy of a binary random variable is always non-negative hence we can upper bound

(4.50) by zero as the value of equation (4.50) would otherwise be negative giving equation (4.51).

Similarly it can be shown using similar technique as above that R2- the rate of transmission

from Tx2, can be upper bounded by zero as well. This essentially proves that there is no non-

negative rate at which when coded we get secret information transmission. Thus the overall secrecy

rate for a multi - layered strong fading interference channel is zero. In the next two sections we

provide the proof of theorem 6. Its proof consists of two parts - one is the derivation of the upper

bound and the other is choice of proper coding technique so as to achieve the upper bound. We

prove the converse in the next section.

4.6. Converse

In this section we prove the converse to theorem 6. We divide the proof into three subsec-

tions. Subsection 4.6.1 starts with finding the upper bounds for the rate of transmission from Tx1

and Tx2 denoted as R1 and R2 respectively. In the same subsection we also find the weighted sum

bound of the rates for all values of the weighting factor ω. In subsection 4.6.2 we carefully divide

the range of ω into two overlapping regions, Region 1 and Region 2 and show that each of those

regions are piece wise linear. We also confirm that the region, R, formed by the combination of

all the regions defined in this section forms a superset to the secrecy capacity region of very weak

LFIC. Finally, in subsection 4.6.3, we show that the combination of the two regions along with the

the two axes forms a region R, which is subset to the polygonal region defined in theorem 6.
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4.6.1. Derivation of the Weighted Sum Bound

We start this subsection by first finding the individual upper bounds of R1 and R2 and then

combining them with a weighting factor to find the weighted upper bound. The derivation for R1

starts from equation (4.37) followed by the application of the secrecy criterion for Tx1 −Rx1 link

in (4.6) giving us the starting equation (4.52)

nR1 − δ1≤ h(M1|Zn, Xn, Nn), (4.52)

≤ h(Wn,M1|Zn, Xn, Nn), (4.53)

= h(Wn|Zn, Xn, Nn) + h(M1|Wn, Zn, Xn, Nn), (4.54)

= h(Wn|Zn, Xn, Nn), (4.55)

= h(Wn|Xn, Nn)− I(Wn;Zn|Xn, Nn),

= h(Wn|Nn)− I(Wn; Ỹ n|Nn), (4.56)

= h(Wn|Nn)− h(Wn|Y n, Nn) + h(Wn|Y n, Nn)− I(Wn; Ỹ n|Nn),

≤ I(Wn;Y n|Nn)− I(Wn; Ỹ n|Nn) + δ
′
, (4.57)

=⇒ nR1 − δ
′
1= I(Wn;Y n|Nn)− I(Wn; Ỹ n|Nn), (4.58)

= h(Y n|Nn)− h(Y n|Wn, Nn)− h(Ỹ n|Nn), (4.59)

where equation (4.53) is the result of the fact that additional random variable does not reduce

entropy.Equation (4.54) follows from the chain rule of entropy. Equation (4.55) occurs because

h(M1|Wn, Zn, Xn, Nn) = 0 as a receiver is assumed to reliably decode its message from the received

signal. Equation (4.56) follows from the independence of random variables and Ỹ n = (WN12)n,

h(Wn|Y n, Nn) ≤ δ
′

in equation (4.57) and δ
′
1 = δ1 + δ

′
in equation (4.58). Equation (4.59) is the

result of the fact that h(Ỹ n|Wn, Nn) = 0. Now we simplify each of the entropy terms seperately

as follows

h(Y n|Nn)

= h
{

(W k ⊕Xk)n, (WL)n, (XK)n|Nn
}
, (4.60)

= h
{

(W k ⊕Xk)n|Nn
}

+ h
{

(WL)n|(W k ⊕Xk)n, Nn
}

+ h
{

(XK)n|(WL)n, (W k ⊕Xk)n, Nn
}
,
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≤ h
{

(W k ⊕Xk)n|Nn
}

+ h
{

(WL)n|Nn
}

+ h
{

(XK)n|Nn
}
, (4.61)

= h
{
Ȳ n|Nn

}
+ h
{

(WL)n|Nn
}

+ h
{

(XK)n|Nn
}
, (4.62)

where in equation (4.60), k = min (N11, N21), K = (N21 − N11)+ and L has been defined before

in lemma 7, equation (4.61) follows from the fact that conditioning reduces entropy and Ȳ n =

(W k ⊕Xk)n in equation (4.62). Similarly

h(Y n|Wn, Nn) = h
{

(XN21)n|Nn
}

= h(Z̃n|Nn), (4.63)

where Z̃n = (XN21)n in equation (4.63). Therefore the bound for R1 can be written as follows

nR1 − δ
′
1 ≤ h

{
Ȳ n|Nn

}
+ h
{

(WL)n|Nn
}
− h
{
Ỹ n|Nn

}
+ h
{

(XK)n|Nn
}
− h
{
Z̃n|Nn

}
, (4.64)

Proceeding as above we can similarly find the bound for R2 as follows

nR2 − δ
′
2 ≤ h

{
Z̄n|Nn

}
+ h
{

(XT )n|Nn
}
− h
{
Z̃n|Nn

}
+ h
{

(WS)n|Nn
}
− h
{
Ỹ n|Nn

}
, (4.65)

where Z̄n = (Wm ⊕Xm)n, with m = min (N22, N12) whereas T = (N22 − N12)+ and S has been

defined before in lemma 7. Now finding the weighted sum bound by adding equation (4.64) with

ω times of equation (4.65) we get,

n(R1 + ωR2)− (δ
′
1 + ωδ

′
2)

≤ h
{
Ȳ n|Nn

}
+ ωh

{
Z̄n|Nn

}
+

[
h
{

(WL)n|Nn
}
− h
{
Ỹ n|Nn

}]
+ ω

[
h
{

(WS)n|Nn
}

−h
{
Ỹ n|Nn

}]
+

[
h
{

(XK)n|Nn
}
− h
{
Z̃n|Nn

}]
+ ω

[
h
{

(XT )n|Nn
}
− h
{
Z̃n|Nn

}]
,

(4.66)

Next we will try to simplify the pair of entropies inside each of the square braces seperately using

the Marton style expansion as follows,

h
{

(WL)n|Nn
}
− h
{
Ỹ n|Nn

}
≤

n∑
i=1

[
h
{

(WL)i|(WL)i−1, Ỹ n
i+1, N

n
}
− h
{
Ỹi|(WL)i−1, Ỹ n

i+1, N
n
}]
, (4.67)
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=
n∑
i=1

[
h
{

(WL)i|Di, Ni

}
− I
{
Ỹi|Di, Ni

}]
, (4.68)

=
n∑
i=1

q∑
l=1

[
P (L ≥ l)− P (N12 ≥ l)

]
h
{

(Wl)i|(W l−1)i,Di, Ni

}
, (4.69)

where equation (4.67) follows from lemma 6, Di = {(WL)i−1, Ỹ n
i+1, N

i−1, Nn
i+1} in equation (4.68)

and equation (4.69) is the result of lemma 8. Using the same lemmas as above and the same method

of simplification we can simplify the other entropy pair involving W as well to give us the following

h
{

(WS)n|Nn
}
− h
{
Ỹ n|Nn

}
≤

n∑
i=1

q∑
l=1

[
P (S ≥ l)− P (N12 ≥ l)

]
h
{

(Wl)i|(W l−1)i, Ei, Ni

}
, (4.70)

≤
n∑
i=1

q∑
l=1

[
P (S ≥ l)− P (N12 ≥ l)

]
h
{

(Wl)i|(W l−1)i, Ei, (WL
S+1)i−1, Ni

}
, (4.71)

≤
n∑
i=1

q∑
l=1

[
P (S ≥ l)− P (N12 ≥ l)

]
h
{

(Wl)i|(W l−1)i,Di, Ni

}
, (4.72)

where in equation (4.70) Ei = {(WS)i−1, Ỹ n
i+1, N

i−1, Nn
i+1}, equation (4.71) is the result of lemma

7. Thus combining equation (4.69) and (4.72) together we can write the following

[
h
{

(WL)n|Nn
}
− h
{
Ỹ n|Nn

}]
+ ω

[
h
{

(WS)n|Nn
}
− h
{
Ỹ n|Nn

}]
,

≤
n∑
i=1

q∑
l=1

{[
P (L ≥ l)− P (N12 ≥ l)

]
+ ω

[
P (S ≥ l)− P (N12 ≥ l)

]}
h
{

(Wl)i|(W l−1)i,Di, Ni

}
,

(4.73)

Similarly the entropy terms involving X can be combined in a similar fashion and simplified to give

us the following

ω

[
h
{

(XT )n|Nn
}
− h
{
Z̃n|Nn

}]
+

[
h
{

(XK)n|Nn
}
− h
{
Z̃n|Nn

}]
,

≤
n∑
i=1

q∑
l=1

{
ω
[
P (T ≥ l)− P (N21 ≥ l)

]
+
[
P (K ≥ l)− P (N21 ≥ l)

]}
h
{

(Xl)i|(X l−1)i, Ci, Ni

}
,

(4.74)

where Ci = {(XT )i−1, Z̃ni+1, N
i−1, Nn

i+1} in equation (4.74). So the weighted sum bound of equation

(4.66) can be further simplified using equations (4.73) and (4.74) as follows
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n(R1 + ωR2)− (δ
′
1 + ωδ

′
2)

≤
n∑
i=1

[
h(Ȳi|Ȳ i−1, Nn) + ωh(Z̄i|Z̄i−1, Nn)

+

q∑
l=1

{[
P (L ≥ l)− P (N12 ≥ l)

]
+ ω

[
P (S ≥ l)− P (N12 ≥ l)

]}
h
{

(Wl)i|(W l−1)i,Di, Ni

}
+

q∑
l=1

{
ω[P (T ≥ l)− P (N21 ≥ l)

]
+
[
P (K ≥ l)− P (N21 ≥ l)

]}
h
{

(Xl)i|(X l−1)i, Ci, Ni

}]
,

(4.75)

≤ n(E[k] + ωE[m]) +

n∑
i=1

q∑
l=1

[{[
P (L ≥ l)− P (N12 ≥ l)

]
− ωα1(l)

}
h
{

(Wl)i|(W l−1)i,Di, Ni

}
+
{
ω
[
P (T ≥ l)− P (N21 ≥ l)

]
− α2(l)

}
h
{

(Xl)i|(X l−1)i, Ci, Ni

}]
, (4.76)

= n(E[k] + ωE[m]) +
n∑
i=1

q∑
l=1

[
α1(l)

{
β2(l)− ω

}
h
{

(Wl)i|(W l−1)i,Di, Ni

}
+
[
P (T ≥ l)− P (N21 ≥ l)

]{
ω − β1(l)

}
h
{

(Xl)i|(X l−1)i, Ci, Ni

}]
, (4.77)

= n(E[k] + ωE[m]) + n

q∑
l=1

[
α1(l)

{
β2(l)− ω

}+
+
[
P (T ≥ l)− P (N21 ≥ l)

]{
ω − β1(l)

}+
]
,(4.78)

where equation (4.75) follows by applying the chain rule on the first two entropy terms of (4.66),

in equation (4.76) α1(l) and α2(l) has already been defined in section 4.3 and the expectation term

occurs by application of lemma 8 and the fact that the entropy of a binary random variable can

be upper bounded by 1. β1(l) and β2(l) in equation (4.77) is as defined in (4.8). Finally equation

(4.78) is the result of using the fact that the entropy of a binary random variable can be upper

bounded by 1. Now dividing both sides by n and letting n→∞, δ
′
1, δ

′
2 → 0 we get

R1 + ωR2≤ E[k] + ωE[m] +

q∑
l=1

α1(l)
{
β2(l)− ω

}+
+

q∑
l=1

[
P (T ≥ l)− P (N21 ≥ l)

]{
ω − β1(l)

}+
,

(4.79)

The range of ω is divided into two overlapping regions in the next subsection and then the bound

of (4.79) is simplified further for each of those regions and then they are shown to be piece-wise

linear.
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4.6.2. R is a Superset to the Secrecy Capacity Region of the Very Weak LFIC

In this subsection the entire range of ω is divided into two overlapping regions as shown in

figure 4.3 and are defined as follows

Region 1 : ω ∈ [0, ω1) &

Region 2 : ω ∈ (γ1,∞) (4.80)

where ω1 and γ1 are as defined in remark 4. Now we further simplify (4.79) for each of the above

regions and show that the bound for each of the regions is piece-wise linear.

4.6.2.1. Region 1: ω ∈ [0, ω1)

Starting from (4.79) we get

R1 + ωR2

≤ E[k] + ωE[m] +

q∑
l=1

α1(l)
{
β2(l)− ω

}
+
∑

l∈A(ω)

[
P (T ≥ l)− P (N21 ≥ l)

]{
ω − β1(l)

}
, (4.81)

= E[k] + ωE[m] +

q∑
l=1

{[
P (L ≥ l)− P (N12 ≥ l)

]
− ωα1(l)

}
+
∑

l∈A(ω)

{
ω
[
P (T ≥ l)− P (N21 ≥ l)

]
− α2(l)

}
,

≤

[
q∑
l=1

[{
P (k ≥ l) + P (L ≥ l)

}
− P (N12 ≥ l)

]
−
∑

l∈A(ω)

α2(l)

]

+ ω

[
E[m] +

∑
l∈A(ω)

[
P (T ≥ l)− P (N21 ≥ l)

]
−

q∑
l=1

α1(l)

]
, (4.82)

=
{
E[N11]− E[N12]−

∑
l∈A(ω)

α2(l)
}

+ ω
{
E[m] +

∑
l∈A(ω)

[P (T ≥ l)− P (N21 ≥ l)]−
q∑
l=1

α1(l)
}
,

(4.83)

=
{
E[N11]− E[N12]−

∑
l∈A(ω)

α2(l)
}

+ ω
{ ∑
l∈A(ω)

[P (T ≥ l)− P (N21 ≥ l)]
}
, (4.84)

where A(ω) in equation (4.81) is as defined before and it also uses the fact ω < β2(l),∀l ∈ {1, · · · , q}

when ω is in region 1. Equation (4.83) results from the fact
q∑
l=1

[
P (k ≥ l) + P (L ≥ l)

]
=
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E[N11].Equation (4.84) follows from lemma 10 with A = N12 and B = N22. We can further

see that the expression in (4.84) is same as the one in the H(ω) defined with respect to equation

(4.13) and hence region 1 can just be defined by the set H(ω). In the following lemma we show

that region 1 defined by the set H(ω) as ω varies from [0, ω1) is piece-wise linear.

Lemma 11 For region 1, except for H(γ0), H(γ1), · · · , H(γq), all other H(ω)’s are redundant, i.e.

∩
ω∈[0,ω1)

H(ω) = H(γ0) ∩H(γ1) ∩ · · · ∩H(γq), (4.85)

where γis for all i ∈ {0, 1, 2, · · · , q} and ω1 are all defined in remark 4.

Proof 9 For i = 0, · · · , q, the boundary of H(γi) and H(γi+1) intersects at

{
E[N11]− E[N12]−

∑
l∈A(ω)

α2(l),
∑

l∈A(ω)

[P (T ≥ l)− P (N21 ≥ l)]
}
, (4.86)

which is denoted as Ai as in figure 4.2. It can be easily verified from (4.84). If we next define an

interval Ωi = (γi, γi+1), then it is not difficult to see that H(ω) = H(γi), ∀ω ∈ Ωi. Thus we see

that the bound H(ω) is redundant to H(γi) and H(γi+1). Hence the lemma is proved.

4.6.2.2. Region 2: ω ∈ (γ1,∞)

Again starting from equation (4.79) we further simplify the bound for region 2 as follows

R1 + ωR2

≤ E[k] + ωE[m] +
∑
l∈B(ω)

α1(l)
{
β2(l)− ω

}
+

q∑
l=1

[
P (T ≥ l)− P (N21 ≥ l)

]{
ω − β1(l)

}
, (4.87)

= E[k] + ωE[m] +
∑
l∈B(ω)

{[
P (L ≥ l)− P (N12 ≥ l)

]
− ωα1(l)

}
+

q∑
l=1

{
ω
[
P (T ≥ l)− P (N21 ≥ l)

]
− α2(l)

}
,

=

[
E[k] +

∑
l∈B(ω)

[
P (L ≥ l)− P (N12 ≥ l)

]
−

q∑
l=1

α2(l)

]

+ ω

[
q∑
l=1

[{
P (m ≥ l) + P (T ≥ l)

}
− P (N21 ≥ l)

]
−
∑
l∈B(ω)

α1(l)

]
, (4.88)
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=
{
E[k] +

∑
l∈B(ω)

[P (L ≥ l)− P (N12 ≥ l)]−
q∑
l=1

α2(l)
}

+ ω
{
E[N22]− E[N21]−

∑
l∈B(ω)

α1(l)
}
,

(4.89)

=
{ ∑
l∈B(ω)

[P (L ≥ l)− P (N12 ≥ l)]
}

+ ω
{
E[N22]− E[N21]−

∑
l∈B(ω)

α1(l)
}
, (4.90)

where B(ω) in equation (4.87) is as defined before and the fact also used is ω > β1(l),∀l ∈ {1, · · · , q}

when ω is in region 2. Equation (4.89) results from the fact
q∑
l=1

[
P (m ≥ l) + P (T ≥ l)

]
= E[N22].

Equation (4.90) follows from lemma 10 with A = N21 and B = N11. The expression in (4.90) is

exactly same as the one in G(ω) defined for equation (4.14) and hence region 2 can essentially be

defined by the set G(ω). In the following lemma we show that region 2 defined by the set G(ω) as

ω varies from (γ1,∞) is also piece-wise linear.

Lemma 12 For region 2, except for G(ω0), G(ω1), · · · , G(ωq), all other G(ω)’s are redundant, i.e.

∩
ω∈(γ1,∞)

G(ω) = G(ω0) ∩G(ω1) ∩ · · · ∩G(ωq), (4.91)

where ωis for all i ∈ {0, 1, 2, · · · , q} and γ1 are as defined in remark 4.

Proof 10 The proof of lemma 12 is same as the proof of lemma 11 except for the change in

notations and the fact that G(ωi) and G(ωi+1) for all i ∈ {1, · · · , q} intersect at

{ ∑
l∈B(ω)

[P (L ≥ l)− P (N12 ≥ l)],E[N22]− E[N21]−
∑
l∈B(ω)

α1(l)
}
, (4.92)

The details of the proof is omitted to avoid repetition.

Region 1 and region 2 when combined together gives an upper bound for all the values of ω. It

thus defines the entire secrecy capacity upper bound region for a very weak LFIC, R, and can be

mathematically represented as shown in equation (4.15). Now since any achievable secrecy rate

pair for the very weak LFIC has to either satisfy the bounds in equations (4.84) or (4.90) or both

depending on the value of ω, so the secrecy capacity region of this channel will be a subset to the

region R.
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4.6.3. R is a Subset to C(N)

In this section we show that the region R is a subset of the polygonal region C(N). We

complete this proof by method of contradiction where we prove that a if a point lies outside the

region defined by C(N) then it violates one of the bounds among (4.84) or (4.90) depending on the

value of ω. This in turn by transposition logic would mean that if a rate pair belongs to R then it

must belong to the region C(N) which mathematically means

R ⊆ C(N), (4.93)

It is not difficult to see that the general shape of the polygon as shown in figure 4.2 is essentially

a combination of several quadrangles and a triangle as shown in figure 4.8. Then comparing the

co-ordinates of Ak with Ak+1 in region 1 (or Bk with Bk+1 in region 2) we see that Ak+1 will be

above Ak (Bk+1 will be below Bk) on the polygon and should be shifted a little bit to the left

with respect to Ak ( to the right with respect to Bk). Further, we represent the boundaries of

the piece-wisely linear regions 1 and 2, proved in lemmas 11 and 12, respectively by a straight

line, replacing the inequality in their definitions by equality. Let M(γi) be the lines representing

the boundaries of region 1 while M(ωi) be the lines for region 2 for all i ∈ {1, 2, · · · , q}. So for

example M(γq) represents the line A0A1, M(γq−1) represents the line A1A2 and so on in figure

4.8. SimilarlyM(ωq) represents the line B0B1,M(ωq−1) represents the line B1B2 and so on. Then

depending on the value of ω, if it is in region 1 then the lines M(γi) and M(γi+1) intersects at

the point given by equation (4.86) whereas if it is in region 2 then the lines M(ωi) and M(ωi+1)

intersect at the point given by(4.92). The points A0 and B0 lie on the R1 and R2 axis respectively.

Figure 4.8. Shape of the Polygonal Superset to R.
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Now let us consider a rate pair (R̄1, R̄2) and let us assume that the rate pair lies outside the

polygon shown in figure 4.8. Now if the rate pair lies outside the polygon then it has three options.

It can either lie outside all the quadrangles defined by AiAi+1Di+1Di where i ∈ {0, 1, · · · , q−1} but

clearly in that case it will violate the the bound from which we obtain the lineM(γq−i) by replacing

inequality with equality. Otherwise, it can lie outside the quadrangles defined by BjBj+1Ej+1Ej

where j ∈ {1, 2, · · · , q−1} but in that case it will violate the bound from which we obtained the line

M(ωq−j). If the above two conditions are not satisfied then its third option is, it has to lie outside

the triangle B0E1B1 but in that case it will violate the bound from which we obtained the line

M(ωq). This proves that if a rate pair lies outside the polygon, then it violates one of the bounds

defining region 1 or 2 and thereby lies outside region R. So now by application of transposition

logic we conclude our claim.

Remark 7 The intersecting point of the bounds of two regions would occur when γ1 < ω < ω1 and

the bound is given by

R1 + ωR2

≤ E[k] + ωE[m] +

q∑
l=1

α1(l)
{
β2(l)− ω

}+
+

q∑
l=1

[
P (T ≥ l)− P (N21 ≥ l)

]{
ω − β1(l)

}+
, (4.94)

= E[k] + ωE[m] +

q∑
l=1

{[
P (L ≥ l)− P (N12 ≥ l)

]
− ωα1(l)

}
+

q∑
l=1

{
ω
[
P (T ≥ l)− P (N21 ≥ l)

]
− α2(l)

}
, (4.95)

=

q∑
l=1

[{
P (k ≥ l) + P (L ≥ l)

}
− P (N12 ≥ l)− α2(l)

]

+ ω

q∑
l=1

[{
P (m ≥ l) + P (T ≥ l)

}
− P (N21 ≥ l)− α1(l)

]
,

=
{
E[N11]− E[N12]−

q∑
l=1

α2(l)
}

+ ω
{
E[N22]− E[N21]−

q∑
l=1

α1(l)
}
, (4.96)

where equation (4.94) is same as (4.79), equation (4.95) follows since for the given range of ω both{
β2(l) − ω

}
and

{
ω − β1(l)

}
are positive for all l ∈ {1, · · · , q}. Equation (4.96) results from the

fact
q∑
l=1

[
P (k ≥ l) +P (L ≥ l)

]
= E[N11] and

q∑
l=1

[
P (m ≥ l) +P (T ≥ l)

]
= E[N22]. Thus the bounds
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in this range of ω from both the regions intersect at the point

{
E[N11]− E[N12]−

q∑
l=1

α2(l),E[N22]− E[N21]−
q∑
l=1

α1(l)
}
, (4.97)

In the next section we try to achieve the dominant corner points that forms the vertices of the

polygonal region defining the secrecy capacity, thereby concluding the proof of theorem 6.

4.7. Achievability

In the previous section we proved that the secrecy capacity region of very weak LFIC is

contained in a polygon and it also characterizes the dominant corner points of the polygon. Each

side of this polygon joins the two adjacent corner points. From figure 4.8, it is clear that if a rate

pair representing the corner points of the polygon can be achieved by some coding scheme then

any rate pair on the line joining the corner points can be achieved by time sharing. As a result we

try to prove the achievability of the dominant corner points as shown in figure 4.8. We divide this

section into two parts, one showing the achievability of the corner points for region 1 and the other

for that of region 2.

4.7.1. Achievability of the Dominant Corner Points in Region 1

Tx1 uses a random codebook such that each entry of the codebook consists of Bernoulli(1
2),

i.e. Wl = W̃l ∼ B(1
2), ∀l ∈ {1, · · · , q}. On the other hand Tx2 uses a scheme in which it transmits

independent and identically distributed (IID) B(1
2) symbols only on layers that belongs to A(ω)

and remains silent for the other layers, i.e.X = X̂ such that

X̂l :

 X̂l ∼ B(1
2) if l ∈ A(ω),

φ if l ∈ Ac(ω),
(4.98)

where Ac(ω) = {1, · · · , q}\A(ω). We further go ahead and define another random variable X̃ ∈ Fq2

from X̂ defined above as follows

X̃l =

 X̂l if l ∈ A(ω),

B(1
2) if l ∈ Ac(ω),

(4.99)

This makes all the components of X̃ as IID B(1
2).
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Next we find the rates supported by the direct links from each of the transmitters, such

that when coded at those rates the intended receiver can decode his own message.

4.7.1.1. Rate of the codebooks at the transmitters

Let r
′
1(ω) represent the rate of the direct link from Tx1 to Rx1 and r

′
2(ω) represent the rate

of the direct link from Tx2 to Rx2. So first we try to calculate r
′
1(ω) as follows

r
′
1(ω)= I(W̃ ; W̃N11 ⊕ X̂N21 |N),

= h(W̃N11 ⊕ X̂N21 |N)− h(W̃N11 ⊕ X̂N21 |W̃ ,N),

= h(W̃N11 ⊕ X̃N21 |X̃Ac(ω), N)− h(X̃N21 |X̃Ac(ω), N), (4.100)

= h(W̃N11 ⊕ X̃N21

(N21−N11)++1
|X̃Ac(ω), N) + h(X̃(N21−N11)+ |X̃Ac(ω), N)

− h(X̃N21 |X̃Ac(ω), N), (4.101)

=

q∑
l=1

P (N11 ≥ l) +
∑

l∈A(ω)

P (N21 −N11 ≥ l)−
∑

l∈A(ω)

P (N21 ≥ l), (4.102)

= E[N11]−
∑

l∈A(ω)

α2(l), (4.103)

where equation (4.100) follows from the definition of X̃ in (4.99), simple application of chain rule

of entropy leads to equation (4.101), equation (4.102) is the result of application of both lemmas 8

and 9 and the fact that both X̃ and W̃ are B(1
2) for all l ≥ 1.

Similarly we can find r
′
2(ω) as follows

r
′
2(ω)= I(X̂; W̃N12 ⊕ X̂N22 |N),

= h(W̃N12 ⊕ X̂N22 |N)− h(W̃N12 ⊕ X̂N22 |X̂,N),

= h(W̃N12 ⊕ X̃N22 |X̃Ac(ω), N)− h(W̃N12 |N), (4.104)

= h(W̃m ⊕ X̃m, W̃ (N12−N22)+ , X̃(N22−N12)+ |X̃Ac(ω), N)− h(W̃N12 |N), (4.105)

= h(W̃m ⊕ X̃m|X̃Ac(ω), N) + h(X̃(N22−N12)+ |X̃Ac(ω), N) + h(W̃ (N12−N22)+ |X̃Ac(ω), N)

− h(W̃N12 |N), (4.106)

= h(W̃m|N) + h(X̃(N22−N12)+ |X̃Ac(ω), N) + h(W̃ (N12−N22)+ |N)− h(W̃N12 |N), (4.107)

=

q∑
l=1

P (m ≥ l) +
∑

l∈A(ω)

P (T ≥ l) +

q∑
l=1

P (N12 −N22 ≥ l)−
q∑
l=1

P (N12 ≥ l), (4.108)
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= E[m] +
∑

l∈A(ω)

P (T ≥ l)−
q∑
l=1

α1(l), (4.109)

=
∑

l∈A(ω)

P (T ≥ l), (4.110)

where equation (4.104) follows from the definition of X̃ in (4.99), m = min {N22, N12} in equation

(4.105) as before, simple application of chain rule of entropy and the fact that the inputs are IID

leads to equation (4.106). The first term in (4.107) follows from the fact that W̃m is identically

distributed as W̃m⊕X̃m while the third term follows from the fact that the inputs are independent.

T = (N22 − N12)+ in equation (4.108) and it occurs because of the application of lemmas 8 and

lemma 9 and the fact that both X̃ and W̃ are B(1
2) for all l ≥ 1. Equation (4.110) results from

using lemma 10 with A = N12 and B = N22.

Thus each of the receiver can decode it’s own message when their corresponding transmitter

uses a random codebook of rate E[N11] −
∑

l∈A(ω)

α2(l) for Tx1 and
∑

l∈A(ω)

P (T ≥ l) for Tx2. We

next find the achievable secrecy rate at each of the transmitters and observe if they match with

the corner points specified by equation (4.86).

4.7.1.2. Achievable Secrecy Rate

From [28] we know that on a wiretap channel with input A, legitimate receiver output B,

eavesdropper signal C and a channel PBC|A(·), the secrecy capacity achievable is given as

max
J→A→BC

{I(J ;B)− I(J ;C)}, (4.111)

It implies for each choice of (J,A) that satisfies the above Markov Chain , a secrecy rate of {I(J ;B)−

I(J ;C)} can be achieved on a wiretap channel. Using this result and the fact that interference

channel can be thought of as a combination of two wiretap channels one at each transmitter

we can find the achievable secrecy rate at each transmitter. Using J = A ≡ W̃ , B ≡ (Y,N)

and C ≡ (Z, X̂,N) and denoting the corresponding achievable secrecy rate by r1(ω) we find the

achievable secrecy rate at Tx1 when ω is in region 1 as follows,

r1(ω)= I
{
W̃ ;Y,N

}
− I
{
W̃ ;Z, X̂,N

}
,

= I
{
W̃ ;N

}
+ I
{
W̃ ;Y |N

}
− I
{
W̃ ;N

}
− I
{
W̃ ; X̂|N

}
− I
{
W̃ ;Z|X̂,N

}
, (4.112)
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= I
{
W̃ ;Y |N

}
− I
{
W̃ ;Z|X̂,N

}
, (4.113)

= E[N11]−
∑

l∈A(ω)

α2(l)− h{W̃N12 |X̂,N
}
, (4.114)

= E[N11]−
∑

l∈A(ω)

α2(l)−
q∑
l=1

P (N12 ≥ l), (4.115)

= E[N11]− E[N12]−
∑

l∈A(ω)

α2(l), (4.116)

where equation (4.112) follows from the chain rule of mutual information, equation (4.113) is the

result of the independence of the inputs, equation (4.114) follows from equation (4.103), lemma 8

is used for equation (4.115) along with the fact that W̃ ∼ B(1
2). Finally equation (4.116) matches

with the abcissa of (4.86).

Next using the same result of [28] we try to find the secrecy rate achievable by Tx2 but now

we use J = A ≡ X̂, B ≡ (Z,N) and C ≡ (Y, W̃ ,N), denoting the rate as r2(ω) we find the rate as

follows,

r2(ω)= I
{
X̂;Z,N

}
− I
{
X̂;Y, W̃ ,N

}
,

= I
{
X̂;Z|N

}
− I
{
X̂;Y |W̃ ,N

}
, (4.117)

=
∑

l∈A(ω)

P (T ≥ l)− h{X̂N21 |N
}
, (4.118)

=
∑

l∈A(ω)

P (T ≥ l)− h{X̃N21 |X̃Ac(ω), N
}
, (4.119)

=
∑

l∈A(ω)

P (T ≥ l)−
∑

l∈A(ω)

P (N21 ≥ l), (4.120)

=
∑

l∈A(ω)

[
P (T ≥ l)− P (N21 ≥ l)

]
, (4.121)

where equation (4.117) follows from application of chain rule of mutual information and then

cancellation of terms due to independence as in the other case,equation (4.118) follows from equation

(4.110),equation (4.119) follows from the definition of X̃ in (4.99), application of lemma 9 along

with the fact that X̃ ∼ B(1
2) gives equation (4.120). Finally equation (4.121) matches with the

ordinate in (4.86). Thus we see that all the corner points given by (4.86) in region 1 can be achieved

using the above strategy.

100



4.7.2. Achievability of the Dominant Corner Points in Region 2

Tx1 in region 2 uses a strategy similar to Tx2 in region 1, i.e. it uses the statistics of the

channel to find B(ω) and then transmits IID B(1
2) symbols only on those layers belonging to B(ω),

while remaining silent for the rest. Mathematically, W = Ŵ such that

Ŵl :

 Ŵl ∼ B(1
2) if l ∈ B(ω),

φ if l ∈ Bc(ω),
(4.122)

where Bc(ω) = {1, · · · , q}\B(ω). We further go ahead and define another random variable W̃ ∈ Fq2

from Ŵ defined above as follows

W̃l =

 Ŵl if l ∈ B(ω),

B(1
2) if l ∈ Bc(ω),

(4.123)

This makes all the components of W̃ as IID B(1
2).

Tx2 on the other hand uses a point-to-point (PTP) layered erasure channel capacity achiev-

ing code, Xl = X̃l ∼ B(1
2), ∀l ∈ {1, · · · , q}. Next Tx1 uses a random codebook of rate

∑
l∈B(ω)

P (L ≥

l) where L = (N11 − N21)+ and Tx2 uses a codebook of rate E[N22] −
∑

l∈B(ω)

α1(l). We will first

verify that each receiver can decode the message coming from its direct transmitter at the above

rates.

4.7.2.1. Rate of the codebooks at the transmitters

Now let us say that Rx1 can decode any message coming at a rate r
′′
1 (ω) or less from Tx1

while Rx2 can decode any message coming at a rate r
′′
2 (ω) or less from Tx2. Now,

r
′′
1 (ω)= I(Ŵ ; X̃N21 ⊕ ŴN11 |N),

= h(X̃N21 ⊕ ŴN11 |N)− h(X̃N21 ⊕ ŴN11 |Ŵ ,N),

= h(W̃N11 ⊕ X̃N21 |W̃Bc(ω), N)− h(X̃N21 |N), (4.124)

= h(W̃ k ⊕ X̃k, W̃ (N11−N21)+ , X̃(N21−N11)+ |W̃Bc(ω), N)− h(X̃N21 |N), (4.125)

= h(W̃ k ⊕ X̃k|W̃Bc(ω), N) + h(W̃ (N11−N21)+ |W̃Bc(ω), N) + h(X̃(N21−N11)+ |W̃Bc(ω), N)

− h(X̃N21 |N), (4.126)
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= h(X̃k|N) + h(W̃ (N11−N21)+ |W̃Bc(ω), N) + h(X̃(N21−N11)+ |N)− h(X̃N21 |N), (4.127)

=

q∑
l=1

P (k ≥ l) +
∑
l∈B(ω)

P (L ≥ l) +

q∑
l=1

P (N21 −N11 ≥ l)−
q∑
l=1

P (N21 ≥ l), (4.128)

= E[k] +
∑
l∈B(ω)

P (L ≥ l)−
q∑
l=1

α2(l), (4.129)

=
∑
l∈B(ω)

P (L ≥ l), (4.130)

where (4.124) follows from the fact that W̃l is same as Ŵl if l ∈ B(ω), k = min {N11, N21} in

equation (4.125) as defined before,simple application of chain rule of entropy and the fact that

the inputs are IID and are independent of each other leads to equation (4.126). The first term in

(4.127) follows from the fact that X̃k is identically distributed as W̃ k ⊕ X̃k while the third term

follows from the independence of W̃ and X̃. Equation (4.128) is the result of lemmas 8 and 9 and

the fact that X̃l, W̃l ∼ B(1
2), ∀l ∈ {1, · · · , q}. Finally equation (4.130) follows from lemma 10 with

A = N21 and B = N11. Next we prove the same for Rx2 as follows

r
′′
2 (ω)= I(X̃; X̃N22 ⊕ ŴN12 |N),

= h(X̃N22 ⊕ ŴN12 |N)− h(X̃N22 ⊕ ŴN12 |X̃,N),

= h(X̃N22 ⊕ W̃N12 |W̃Bc(ω), N)− h(W̃N12 |W̃Bc(ω), N), (4.131)

= h(X̃N22 ⊕ W̃N12

(N12−N22)++1
|W̃Bc(ω), N) + h(W̃ (N12−N22)+ |W̃Bc(ω), N)

− h(W̃N12 |W̃Bc(ω), N), (4.132)

=

q∑
l=1

P (N22 ≥ l) +
∑
l∈B(ω)

P (N12 −N22 ≥ l)−
∑
l∈B(ω)

P (N12 ≥ l), (4.133)

= E[N22]−
∑
l∈B(ω)

α1(l), (4.134)

where (4.131) follows from the fact that W̃l is same as Ŵl if l ∈ B(ω), simple application of chain

rule of entropy gives equation (4.132). Equation (4.133) follows from the fact that X̃l & W̃l ∼

B(1
2), ∀l ∈ {1, · · · , q} and the application of lemmas 8 and 9. Finally equation (4.134) confirms

that Rx2 can decode everything if Tx2 uses a codebook of rate E[N22]−
∑

l∈B(ω)

α1(l).
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4.7.2.2. Achievable Secrecy Rate

As in case of region 1 if we use the same concept and same A, B and C as was used for Tx1

in 4.7.1.2 then if r1(ω) represents the achievable secrecy at Tx1, then after the initial simplification

involving chain rule of mutual information and independence of the inputs we get,

r1(ω)= I
{
Ŵ ; ŴN11 ⊕ X̃N21 |N

}
− I
{
Ŵ ; ŴN12 |N

}
,

=
∑
l∈B(ω)

P (L ≥ l)− h(W̃N12 |W̃Bc(ω), N), (4.135)

=
∑
l∈B(ω)

P (L ≥ l)−
∑
l∈B(ω)

P (N12 ≥ l), (4.136)

where (4.135) follows from the fact that W̃l is same as Ŵl if l ∈ B(ω) and also from equation (4.130),

simple application of lemma 9 and the fact that W̃l ∼ B(1
2), ∀l ∈ {1, · · · , q} gives us (4.136) which

is same as the abcissa of the dominant corner points of region 2 given by equation (4.92).

Next let us represent the achievable secrecy rate of Tx2 as r2(ω), then applying the same

strategy as in region 1 for Tx2 and after the initial simplification as before we get,

r2(ω)= I
{
X̃; X̃N22 ⊕ ŴN12 |N

}
− I
{
X̃; X̃N21 |N

}
,

= E[N22]−
∑
l∈B(ω)

α1(l)− h(X̃N21 |N), (4.137)

= E[N22]−
∑
l∈B(ω)

α1(l)−
q∑
l=1

P (N21 ≥ l), (4.138)

= E[N22]− E[N21]−
∑
l∈B(ω)

α1(l), (4.139)

where (4.137) follows from equation (4.134), equation (4.138) follows from lemma 8 and the fact

that X̃l ∼ B(1
2), ∀l ∈ {1, · · · , q}. Equation (4.139) matches with the ordinate of the corner point

given by (4.92). Thus we see that all the corner points given by (4.92) in region 2 can be achieved

using the above strategy.

Moreover the intersection point of the two regions given by equation (4.97) can be achieved

by using any one of the strategies used for the two regions.
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4.8. Conclusion

In this chapter we have characterized the exact secrecy capacity of a strong and very weak

layered fading IC. This result is a first of its kind in fading interference channel where the trans-

mitters do not have any knowledge about the channel states. For the strong LFIC we determined

that it is not possible to get any secrecy rate if the interfering link is stronger (as per our definition)

than the direct link. While for the very weak case we found that a trade off in the rate of trans-

mission between the two transmitters can help achieve a positive secrecy rate. The achievability

involves careful distribution of the layers among the transmitters depending on the channel states.

It is followed by usage of a layered wiretap channel optimal code at both the transmitters and

treat interference as erasure to complete the scheme. This result suggests that although inherently

more complicated than the binary case in the previous chapter, the intuition obtained from the less

complicated binary helped in extending the result of the binary to multi-layer scenario. The hope

is may be the intuitions from the binary and layered fading IC can help in solving the real fading

interference channel problem.
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5. CONCLUSION AND FUTURE WORKS

Information theoretic secrecy model are mostly build of the very popular wiretap channel

(WC) model, first introduced by Wyner in [3]. Ever since then there has been several efforts to

solve the problem under various assumptions. The wiretap channel with a single transmitter and

two receivers- one legitimate and the other eavesdropper, might appear to be a relatively simple

channel. However the simplicity reduces when the channel starts varying with time 1 and the

transmitter is no longer aware of the instantaneous channel states. It is no wonder then that

although conserted efforts has been made to solve the problem on fading gaussian wiretap channel,

except for some special cases [25],[50] it was still largely open. In this thesis we address that

problem and characterize secrecy capacity of a fading gaussian wiretap channel within constant

number of bits for any arbitrary channel distribution. In the absence of an universal coding scheme

that can achieve the secrecy rates for any kind of channel distribution, this is the best effort that

has been made so far in characterizing the secrecy capacity. Figure 5.1 shows a practical wiretap

channel. For such a channel we show that secrecy can be achieved within 11 bits of the upper

bound irrespective of the channel distribution. However our simulation results show that in most

of the cases the gap between achievability and the upper bound is within a couple of bits. This

simulation result is further strengthened by some of the examples that we considered in chapter 2.

Figure 5.1. A Practical Wiretap Channel.

1In techincal terms such a channel is called a fading channel.
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From the single user model we move on to the multi-user model next as we consider a

2-user interference channel (IC). Interference channel is one of the known complicated models used

to study secrecy from information theoretic point.

Figure 5.2. A Practical Interference Channel.

It consists of two transmitters and two receivers. The transmit receive pairs are meant to

talk to each other, but due to the broadcast nature of wireless medium they get interfered from

the other receiver. Figure 5.2 shows a practical interference channel scenario. As can be seen in

this scenario BS1 is talking to its nearest user, user1 but user2 can also hear him due its proximity,

similarly user1 can also listen from BS2 as BS2 communicates with user2. Just like wiretap channel

several work caters to the problem of interference channel under several assumptions. However due

to the associated complexity that comes with a fading channel with no CSIT, no work is present

under these conditions. In order to reduce the complexity we consider a binary fading version of

the real fading IC in chapter 3. In that chapter we characterize the exact secrecy capacity for some

custom defined interference channel called the strong and very weak binary fading IC. We extend

the binary result to a multi-layer scenario in chapter 4 and characterize the capacity for a strong

and very weak fading IC. This kind of layered approach to finding the capacity of a real fading

channel has been used previously for a fading broadcast channel [56], fading ZIC [24] and fading

WC as seen in chapter 2.

The same approach has been taken here with an eye to solving the real fading problem for

interference channel as some future research effort. The current result also provides motivation to

solve the fading interference channel problem for the other regions defined in this thesis. It might
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be interesting to investigate if the current results provide some intuitions to solve the problem for

the other regions too. Due to the complicated nature of interfernce channel people often study a

variation of it where one of the interfering link is absent as shown in figure 5.3. Such a channel is

called the Z-Interference Channel (ZIC) due to its topological architecture.

Figure 5.3. A Practical Z - Interference Channel.

Figure 5.3 shows a practical ZIC. In this figure Alice is in between Bob and Eve and hence

both of them can listen to Alice creating a security concern whenever Alice wants to communicate

with Bob. However Mallory is closer to Eve but far away from Bob, so Bob cannot listen to her.

The communication between Mallory and Eve is thus inherently secured. Such a variation of the

interference channel under the same channel assumptions as has been considered in this thesis

might provide for another interesting future research problem.
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APPENDIX

A.1. Proof of Lemma 1

To prove this Lemma, we first establish a rate achievable by the BES scheme [56] on a real

channel. Since, a real fading complex channel is equivalent to two real fading real channels, the

desired result follows just by multiplying the achievable rate of the real channel by two. So, in

what follows, we consider a real PTP channel.

The BES scheme expresses a real symbol - to be transmitted - as a weighted sum of several

Binary antipodal symbols, i.e.,

X̃r =

√
3

2

∞∑
n=1

xr,n2−n, (A.1)

where xr,n ∈ {+1,−1} for all n ≥ 1 and
√

3
2 is a normalizing constant. The corresponding output

at the receiver on a PTP real fading channel with the square of the magnitude of the instantaneous

channel coefficient denoted by S, can be written as

T̃r=

√
3S

2

∞∑
n=1

xr,n2−n + Ur

=⇒ T̃ ′r=

∞∑
n=1

xr,n2−n +
2√
3S
Ur, (A.2)

where in the last equation T̃ ′r is obtained by scaling the output by the instantaneous channel

magnitude which is known at the receiver, Ur’s are IID as N(0, 0.5). In this scheme, xr,n is

typically referred to as the symbol transmitted via the n-th layer. Estimates of the antipodal

symbols {xr,n}∞n=1, denoted by {x̂r,n}∞n=1 are then extracted from the received real symbol, T̃ ′r, in

the following manner:
∞∑
n=1

x̂r,n2−n = max(−1,min[1, T̃ ′r]), (A.3)

where the above equation yields a unique solution for {x̂r,n}∞n=1, since any real number with modulus

less than or equal to one has a unique antipodal expansion. In this decoding scheme, an antipodal

symbol xr,n is estimated at the receiver as x̂r,n and therefore, at any given channel use, the real

fading channel is equivalent to a collection of random Binary Symmetric Channels (rBSCs); one
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for each value of n, i.e., xr,n → x̂r,n for all n ≥ 1. Subsequently, the crossover probabilities of all

such rBSCs can also be computed analytically and depends on the instantaneous value of S. It

was shown in Lemma 5 of [56] that if the crossover probability of the n-th layer for a instantaneous

channel S = s be denoted by pn,d(s), then it can be upper bounded as pn,d(s) ≤ ε̂d(an(s)), where

the expression for ε̂d(an(s)) is provided in equation (2.20b).

As stated earlier, in the above formulation, d represents the distance from the nearest lower

layer which appears as interference. For instance, for the decoding scheme of (A.3), d = 0, because

all the layers below the n-th layer apprears as interference to it.

The cross over probability pn,d(s), and therefore the rate supportable via a rBSC, denoted

by rn,d(s), is a function of the instantaneous channel state, S = s. Consequently, the average rate

- averaged over all channel states - achievable through the n-th layer of a real fading channel via

coding across time is given as

ES [rn,d(s)]= ES [1−H(pn,d(s))],

≥ ES [1−H(ε̂d(an(s)))] = ES [r̂n,d(s)], (A.4)

where r̂n,d(s) is defined as,

r̂n,d(s) , 1−H(ε̂d(an(s))), (A.5)

and H(p) represents the entropy of a B(p) random variable. Consequently, for any given set of these

mutually independent antipodal symbols such as {xr,n : n ∈ φ}, where φ is an arbitrary subset of

N, can achieve a overall rate which is greater than or equal to

∑
n∈φ

ES [r̂n,d(s)]. (A.6)

It can be concluded from equation (2.20) that the upper bound to the crossover probability

εd(a) is a decreasing function of d, which in turn implies that r̂n,d(s) is an increasing function of d.

Therefore, better rates can be achieved if the value of d can be made larger, which indeed can be

done by a modified version of the BES scheme called the BES with reverse stripping (BES-RS) [56].

In the BES-RS scheme, symbols are decoded starting from the deepest layer and before decoding

a higher layer symbol, contribution from lower-layer symbols are stripped off. As a result, d may
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have non-zero values leading to a smaller crossover probability which in turn results in a better

average rate that can be achieved through each layer in the presence of lower layer interference. In

particular, if all the symbols are intended for the same receiver, all the lower layer symbols can be

stripped off before decoding each layer, resulting in d =∞.

Since a complex channel like those in (2.3), can be visualized as a pair of two real channels

the rate achievable via layer n of such a channel will be twice of what is shown in equation (A.6).

This is summarized in Lemma 1, which follows from Lemma 5 and Theorem 4 of [56].
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