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ABSTRACT 

Several statistical models were proposed by researchers to fulfill the objective of correctly 

predicting the winners of sports game, for example, the generalized linear model (Magel & Unruh, 

2013) and the probability self-consistent model (Shen et al., 2015). This work studied Bayesian 

Lasso generalized linear models. A hybrid model estimation approach of full and Empirical 

Bayesian was proposed. A simple and efficient method in the EM step, which does not require 

sample mean from the random samples, was also introduced. The expectation step was reduced to 

derive the theoretical expectation directly from the conditional marginal. The findings of this work 

suggest that future application will significantly cut down the computation load.  

Due to Lasso (Tibshirani, 1996)’s desired geometric property, the Lasso method provides 

a sharp power in selecting significant explanatory variables and has become very popular in 

solving big data problem in the last 20 years. This work was constructed with Lasso structure 

hence can also be a good fit to achieve dimension reduction. Dimension reduction is necessary 

when the number of observations is less than the number of parameters or when the design matrix 

is non-full rank. 

A simulation study was conducted to test the power of dimension reduction and the 

accuracy and variation of the estimates. For an application of the Bayesian Lasso Probit Linear 

Regression to live data, NCAA March Madness (Men’s Basketball Division I) was considered. In 

the end, the predicting bracket was used to compare with the real tournament result, and the model 

performance was evaluated by bracket scoring system (Shen et al., 2015). 
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1. BACKGROUND 

Sports data often refers to “win or lose” problem. A successful and efficient method to 

predict the winning team of a competition is to use generalized linear regression model (GLM). 

GLM is based on the concept of linear regression, which is a statistical approach for modeling the 

relationship between the response variable and the independent variable. One important aspect for 

GLM is the choosing of preferable link function, for example, the identity link, log link, etc. This 

research work was based on GLM and further combined several favorite modern statistical 

techniques. The application of this work initiated from sports data and would be able to apply to 

the expanded dataset. 

            For predicting binary outcomes, several researchers applied NCAA basketball tournament 

data due to the proper binary setup of “win or lose.” Magel & Unruh (2013) introduced the 

generalized linear model. Logit link was used to fit the model. This generalized linear model with 

logit link is a natural fit for binary data because of the approaching curve and bounding range. 

Figure 1 shows the standard logistic cumulative distribution function 𝐹(𝑥) and standard normal 

CDF 𝛷(𝑥). Note that 𝐹(𝑥) and 𝛷(𝑥) ∈ (0,1) for all 𝑥 ∈ ℝ. 

 

Figure 1. Logistic & Normal CDF 



 

2 

            Shen et al. (2015) introduced the probability self-consistency model with the Cauchy link. 

The probability self-consistency model was first presented by Zhang (2012). The study of Shen et 

al. (2015) was based on a binomial generalized linear regression with a Cauchy link on the 

conditional probability of a team winning a game given its rival team. 

Hua (2015) proposed a Bayesian inference by introducing logistic likelihood and 

informative prior. The study of Hua (2015) viewed Frequentist’s GLM into a Bayesian approach. 

The benefit was submitting the prior information on top of the quality generalized linear regression 

model. The GLM with logit link can be expressed as: 

𝑙𝑜𝑔 (
𝑝𝑖

1−𝑝𝑖
) = 𝜂𝑖 = 𝑥𝑖1𝛽1 + 𝑥𝑖2𝛽2 + ⋯ + 𝑥𝑖𝑑𝛽𝑑, 𝑖 = 1, … , 𝑛                     (1.1) 

Solving equation (1.1) w.r.t 𝑝𝑖, the result will then be: 

𝑝𝑖 =
𝑒𝜂𝑖

1 + 𝑒𝜂𝑖
 

Therefore, the likelihood function for given covariates and corresponding coefficients is: 

𝐿(𝑌|𝑋, 𝛽) = ∏ 𝑓(𝑦𝑖|𝜂𝑖)
𝑛
𝑖=1 = ∏ 𝑝𝑖

𝑦𝑖(1 − 𝑝𝑖)
1−𝑦𝑖

𝑛

𝑖=1
= ∏ (

𝑒𝜂𝑖

1+𝑒𝜂𝑖
)

𝑦𝑖

(
1

1+𝑒𝜂𝑖
)

1−𝑦𝑖𝑛

𝑖=1
    (1.2) 

The prior that Hua (2015) used was the winning probability of team seeding information. 

Schwertman et al. (1996) first used seed position to bracket NCAA Basketball Division I 

tournament. It seems reasonable that Hua (2015) involved seed winning probability as the prior 

because seeds were determined by a group of experts. For example, when seed 1 plays with seed 

16. Seed 1’s winning probability will be 
16

1+16
= 0.9412. By Delta method (Oehlert, 1992), the 

prior distribution can be fully specified, and it was regarding coefficient β. The posterior was then 

fully defined, and the sampling technique used was Metropolis algorithm. The bracketing 

probability matrix was developed after fitting the model, which represented the prediction result.   
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            As an extension of Shen et al. (2015) and Hua (2015), Shen et al. (2016) developed a 

Bayesian model using one other informative prior and generalized linear regression with logit link 

as well. The improvement from this study was from the prior part. The prior used in this study was 

historical information (competing results). Hua (2015) used winning probability generated from 

seed information. However, this information was not from the real counts. This prior was the 

information solely based on seed assignment. Shen et al. (2016) developed a new method of 

collecting previous game results. The actual counts of those results based on seeding setup were 

gathered, and the winning probability between seeds was defined based on all past season data on 

file. For example, we collected 15 years of data, and there was a total of 24 games played by seed 

1 versus seed 2. We count a total of 10 wins by seed 1. Hence the probability for seed 1 winning 

the game over seed 2 is 
10

24
= 0.417. By Delta method (Oehlert, 1992), the prior information in 

winning probability was transferred into coefficient β. Sampling Importance Resampling (SIR) 

algorithm was used to draw samples.  

            Hua (2015) and Shen et al. (2016) both used Bayesian inference with informative prior. 

These two studies worked well in NCAA’s basketball data and turned out to have good prediction 

accuracy. However, there is still improvement can be made on top of these studies. For live data 

like NCAA basketball tournament, team statistics, which are the covariates, have large dimension. 

A dimension reduction is necessary because of the limitation of games played (small sample size). 

With the help of dimension reduction, valuable information can also be provided to team coaches. 

The coaches can then be offered scientific knowledge that which team statistics are important. 

They can then emphasize on these techniques in their future training. To fulfill the need for 

dimension reduction, Lasso was proposed. 
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            The Lasso of Tibshirani (1996) estimates linear regression coefficients through 𝐿1 - 

constrained least squares. Similar to ordinary linear regression, Lasso is usually used to estimate 

the regression parameters 𝛽 = (𝛽1, … , 𝛽𝑑)′ in the model: 

  𝑦 = 𝜇 𝟙𝑛 +𝑋𝛽 + 𝜀                                                     (1.3) 

where 𝑦 is the 𝑛 × 1 vector of responses, 𝜇 is the overall mean, 𝑋 is the 𝑛 × 𝑑 design matrix, and 

𝜀 is the 𝑛 × 1 vector of errors. The error terms are independent and identically distributed, and 

they follow the normal distribution with mean 0 and unknown variance 𝜎2. The Lasso estimates 

are on top of the constraint of 𝐿1 norm. For convenience, Tibshirani (1996) viewed this as 𝐿1- 

penalized least squares estimates. They achieve 

𝑚ⅈ𝑛 { (𝑦̃ − 𝑥𝛽)′(𝑦̃ − 𝑥𝛽) + 𝜆 ∑ |𝛽𝑗| 
𝑑

𝑗=1
}                                    (1.4) 

for some 𝜆 ≥ 0, where 𝑦̃ = 𝑦 − 𝑦̅𝟙𝑛.  

            The penalty term in equation (1.4) is the critical part for Lasso. Tibshirani (1996) suggested 

that Lasso estimates can be interpreted as posterior mode estimates when the regression parameters 

have independent and identical Laplace (i.e., double-exponential) priors, which lead to the Bayes 

view of Lasso.  

            Park & Casella (2008) then proposed a fully Bayesian analysis using a conditional Laplace 

prior specification of the form: 

𝜋(𝛽|𝜎2) = ∏
𝜆

2√𝜎2

𝑝

𝑗=1
𝑒

−𝜆|𝛽𝑗|

√𝜎2                                               (1.5) 

and the noninformative scale-invariant marginal prior 𝜋(𝜎2) ⅈs proportⅈon to
1

𝜎2. Park & Casella 

(2008) also found out that the Bayesian Lasso estimates appear to be a compromise between the 

Lasso and ridge regression estimates (Hoerl & Kennard, 1970). Like Park & Casella (2008) 

mentioned, Bayesian lasso’s paths are smooth, like ridge regression, but are more similar in shape 
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to the Lasso paths, particularly when the 𝐿1  norm is relatively small. They also provide a 

hierarchical model which is ready for Gibbs sampler. Gibbs sampler, a sampling technique, was 

first described by Stuart & Geman (1984). Andrews & Mallows (1974) first developed the scale 

mixtures of Normal Distributions. X, double exponential, may be generated as the ratio Z/V where 

Z and V are independent, and Z has a standard normal distribution when 
1

2
𝑉2 is exponential. In 

other words, the Laplace prior can be expressed as a zero-mean Gaussian prior with an independent 

exponentially distributed variance.  

            Based on the representation of the Laplace distribution as a scale mixture of normal and 

exponential density: 

𝑎

2
𝑒−𝑎|𝑧| = ∫

1

√2𝜋𝑠
𝑒−

𝑧2

2𝑠

∞

0

 
𝑎2

2
𝑒−

𝑎2𝑠

2 𝑑𝑠, 𝑎 > 0                                  (1.6) 

Park & Casella (2008) suggests the following hierarchical representation of the full model: 

𝑦|𝜇, 𝑋, 𝛽, 𝜎2 ~ 𝑁𝑛(𝜇 𝟙𝑛 +𝑋𝛽 , 𝜎2I𝑛), 𝜇 𝑔𝑖𝑣𝑒𝑛 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑓𝑙𝑎𝑡 𝑝𝑟𝑖𝑜𝑟  

𝛽|𝜎2, 𝜏1
2, … , 𝜏𝑑

2 ~ 𝑁𝑑(𝑂𝑑, 𝜎2𝐷𝜏), 𝜎2, 𝜏1
2, … , 𝜏𝑑

2 > 0 

𝐷𝜏 = 𝑑𝑖𝑎𝑔(𝜏1
2, … , 𝜏𝑑

2) 

𝜎2, 𝜏1
2, … , 𝜏𝑑

2 ~ 𝜋(𝜎2) ∏
𝜆2

2

𝑑

𝑗=1

𝑒
−𝜆2𝜏𝑗

2

2  

            When calculating the Bayesian Lasso parameter (𝜆), Park & Casella (2008) proposed the 

empirical Bayes by marginal maximum likelihood. Casella (2001) proposed a Monte Carlo EM 

algorithm (Dempster et al., 1977) that complements a Gibbs sampler and provides marginal 

maximum likelihood estimates of Hyperparameters. Each iteration of the algorithm involves 

running the Gibbs sampler using a 𝜆 value estimated (E-M algorithm) from the sample of the 
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previous iteration. Casella (2001) produced the estimated posterior distribution and provided the 

convergence: 

𝜋̂(𝜃|𝑋, 𝜓̂) =
1

𝑀
∑ 𝜋(𝜃|𝑋, 𝜓̂, 𝜆(𝑗))

𝑀

𝑗=1
                                        (1.7) 

For any measurable set A, we have for each 𝑖 = 1, 2, ⋯ , 𝑑, 

∫ |
1

𝑀
∑ 𝜋(𝜃𝑖|𝑋, 𝜓̂, 𝜆(𝑗))

𝑀

𝑗=1
− 𝜋(𝜃𝑖|𝑋, 𝜓)| ⅆ𝜃𝑖

𝐴

→ 0                             (1.8) 

𝑎𝑠 𝑀, 𝑑 → ∞ 

            Bae & Mallick (2004) provided a process of applying the Bayesian Lasso to Probit model 

for Gene selection problem. The data is about gene expression level, hence the dimension of 

covariates (different genes) is very high.  

𝑋 = (
𝑋11 ⋯ 𝑋1𝑑

⋮ ⋱ ⋮
𝑋𝑛1 ⋯ 𝑋𝑛𝑑

) ,      𝑎 (𝑛 × 𝑑) 𝑚𝑎𝑡𝑟𝑖𝑥 

The response is a binary setup with “normal or cancer.” The probit model was assigned a Laplace 

prior for 𝛽 to promote sparsity, so that irrelevant parameters were set exactly to zero. Bae & 

Mallick (2004) then expressed the Laplace prior distribution as a scale mixture of normal priors, 

which is equivalent to a two-level hierarchical Bayesian model: 

𝜋(𝛽𝑖|𝜎
2) = ∫ 𝜋(𝛽𝑖|𝜆𝑖)𝜋(𝜆𝑖|𝛾)

∞

0
𝑑𝜆𝑖  ~ 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0, 𝛾−

1

2)                        (1.9) 

Bae & Mallick (2004) assign an exponential distribution for the prior distribution of 𝜆𝑖, which is 

equivalent to assigning a Laplace prior for 𝛽. Hence, their prior is as follows (The prior distribution 

of 𝛽): 

𝛽|Ʌ ~ 𝑁(𝑂, Ʌ) 

where 𝑂 = (0, … , 0)′, Ʌ = 𝑑𝑖𝑎𝑔(𝜆1, … , 𝜆𝑑) and 𝜆𝑖 is the variance of 𝛽𝑖. 
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Ʌ ~ ∏ 𝐸𝑥𝑝(𝛾)

𝑑

𝑖=1

 

The process is similar to the Lasso model but has added flexibility due to the choices of multiple 

𝜆s against one choice in the Lasso method. 
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2. INTRODUCTION 

For ordinary linear regression 𝑦 = 𝜇 + 𝑥′𝛽 + 𝜀, when the number of observations is less 

than the dimension of parameters 𝛽, 𝛽 = (𝛽1, 𝛽2, … , 𝛽𝑑)′, the design matrix X is non-full rank. 

Estimation of 𝛽 requires special treatment. A classical approach to solve the problem is the ridge 

regression operator which minimizes 

(𝑦 − 𝑋𝛽)′(𝑦 − 𝑋𝛽) + 𝜆‖𝛽‖2
2                                              (2.1) 

where 𝜆  is the tuning parameter, and ‖𝛽‖2
2  refers to the 𝐿2  norm such that ‖𝛽‖2

2 =

(∑ 𝛽𝑗
2

𝑑

𝑗=1
)

1/2

. Tibshirani (1996) proposed Least Absolute Shrinkage and Selection Operator 

(Lasso) which minimizes  

(𝑦 − 𝑋𝛽)′(𝑦 − 𝑋𝛽) + 𝜆‖𝛽‖1                                              (2.2) 

where 𝜆 is the tuning parameter controlling the power of shrinkage, ‖𝛽‖1 refers to the 𝐿1 

norm such that ‖𝛽‖1 = ∑ |𝛽𝑗|𝑑
𝑗=1 . Thanks to Lasso’s desired geometric property, it provides a 

much sharper power in selecting significant explanatory variables than the classical, alternative 

approach and has become very popular in dimension reduction in the past 20 years. Figure 2 shows 

the geometric property of Lasso under the constraint of two dimension 𝐿1 norm, which is |𝛽1|+ 

|𝛽2| ≤ 𝑡 for some 𝑡 > 0. 

 

Figure 2. The geometric expression for two dimensions 𝛽 
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The choice of 𝜆 is usually via cross-validation. Using a hierarchical Bayesian model and 

treating 𝜆  as a hyper-parameter, Park & Casella (2008) proposed a Bayesian approach for 

estimation of 𝛽 in ordinary linear regression above. 

Lasso may be easily extended to probit linear regression. Probit linear regression model 

was first introduced by Bliss (1934). The probit linear regression model uses probit link 𝛷−1(·), 

where 𝛷−1(·) is the inverse of the cumulative density function of standard normal. The probit 

linear regression model expresses as:  

𝛷−1(𝑝𝑖) = 𝑥𝑖1𝛽1 + 𝑥𝑖2𝛽2 + ⋯ + 𝑥𝑖𝑑𝛽𝑑,   𝑖 = 1, … , 𝑛                         (2.3) 

Let y be a binary response variable with the probability model Bernoulli (p). One way to 

state the model is to assume that there is a latent variable 𝑧 such that:  

𝑧 = 𝑥′𝛽 + 𝜀, 𝜀 ∼ 𝑁(0, 1)                                                (2.4) 

In probit model, we observe that: 

𝑦𝑖 = {
0, 𝑖𝑓 𝑧𝑖 ≤ 0
1, 𝑖𝑓 𝑧𝑖 > 0

                                                        (2.5) 

Note that 𝑧𝑖 > 0 ⇒  𝑥′𝛽 + 𝜀 > 0 ⇒  𝜀 > −𝑥′𝛽, then 

𝑃(𝑦 = 1) = 𝑃(𝑧𝑖 > 0) = 𝑃(𝜀 > −𝑥′𝛽) = 𝛷(𝑥′𝛽) 

The likelihood of the probit linear regression is simply: 

∏ 𝑝𝑦𝑖(1 − 𝑝)1−𝑦𝑖

𝑛

𝑖=1

 

∏ [𝛷(𝑥′𝛽)]𝑦𝑖[𝛷(−𝑥′𝛽)]1−𝑦𝑖
𝑛

𝑖=1
                                           (2.6) 

In the case where the number of observations is less than the dimension of 𝛽, i.e., the design 

matrix 𝑋 for the regression is non-full rank, like that in ordinary linear regression, one may apply 

Lasso for estimation of 𝛽, which minimize the negative of the log-likelihood: 
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− ∑ 𝑦𝑖 𝑙𝑜𝑔(𝛷(𝑋′𝛽))𝑛
𝑖=1 −  ∑ (1 − 𝑦𝑖) log(𝛷(−𝑋′𝛽))𝑛

𝑖=1 +  𝜆‖𝛽‖1                (2.7) 

where 𝜆 is again the tuning parameter. In this research work, we considered the Bayesian approach 

as proposed by Park & Casella (2008) for estimation of 𝛽 in the probit linear regression above. 

We applied a hybrid approach of full and Empirical Bayesian like Park & Casella (2008). When 

reaching to the sampling procedure, we used Gibbs Sampler and EM algorithm to acquire samples. 

Gibbs Sampler is named after Dr. Josiah Willard Gibbs and was first described by Stuart & Geman 

(1984). Expectation- maximization (EM) algorithm is used to find maximum likelihood (MLE) or 

maximum a posteriori (MAP) using an iterative method. EM was first explained by Dempster, 

Laird & Rubin (1977). Our contribution for this research work was in the EM step of estimating 

𝜆. We used the theoretical expectation derived from the conditional marginal directly instead of 

deriving from the sample mean of the random samples, which greatly cut down the computation 

load, and made the computation algorithm much more efficient. This more efficient EM 

computation algorithm did not lose any of the power and accuracy. 

A simulation was done to test the power of shrinkage and variation of the estimates. For an 

application of Bayesian Lasso probit linear regression to live data, we studied NCAA March 

Madness data as well. In the end, we also presented the previous full Bayesian model to bracket 

and made a comparison.  
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3. METHODOLOGY 

Based on the concepts from previous works and references, a new Bayesian Lasso model 

was developed. This new model used probit link of the generalized linear model with a full 

Bayesian setup. By proper setting up the hierarchical priors, this full Bayesian Model performed 

similar to the beneficial property of Lasso and automatically omit some covariates with less useful 

information. 

3.1. Bayesian Hierarchical Lasso Model 

            The same concept as inference was implemented here. Based on the information introduced 

from background part. We need to perform MLE based on the probit model, which is also the 

minimization of the negative log-likelihood. Adding up the Lasso shrinkage term 𝜆‖𝛽‖1, we try 

to minimize the following function:  

− ∑ 𝑦𝑖 log(𝛷(𝑋′𝛽))𝑛
𝑖=1 −  ∑ (1 − 𝑦𝑖) log(𝛷(−𝑋′𝛽))𝑛

𝑖=1 +  𝜆‖𝛽‖1                   (3.1) 

We know that the very last item  𝜆‖𝛽‖1 geometrically provide the “Lasso” property. To have this 

specific structure in the posterior function, we proposed Laplace distribution. Because if 

𝛽 ~Laplace(0,
1

𝜆
) , then the probability density function will have the following form: 

𝜆

2
exp(−𝜆|𝛽|) . If this term is extended to high dimension, then it can lead to 

∏ {
𝜆

2
exp(−𝜆|𝛽|)}

d

𝑖=1
= (

𝜆

2
)

𝑑

exp(−𝜆 ∑ |𝛽𝑖|
𝑑
𝑖=1 ). This can be rewritten to (

𝜆

2
)

𝑑

exp(−𝜆‖𝛽‖1), 

which happen to be the desired format. Hence, the problem simplified to construct Laplace 

distribution.  

            Tibshirani (1996) firstly suggested that the Bayesian approach involve a Laplace prior 

distribution of 𝛽. Genkin (2004) also proposed the similar structure for Lasso probit regression 
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model. First, 𝛽𝑗  need to arise from a normal distribution with mean 0, and variance 𝜏𝑗
2 , the 

distribution is as follows:  

𝑓(𝛽𝑗 |𝜏𝑗
2) =  

1

√2𝜋
 𝑒

−
𝛽𝑗

2

2𝜏𝑗
2
                                                   (3.2) 

The assumption of mean 0 indicates our belief that 𝛽𝑗 could be close to zero. The variance 𝜏𝑗
2 are 

positive constants. A small value of 𝜏𝑗
2  represents a prior belief that 𝛽𝑗  is close to zero. 

Conversely, a large value of 𝜏𝑗
2 represents a less informative prior belief. 

            Tibshirani (1996) suggested 𝜏𝑗
2  arises from a Laplace prior (double exponential 

distribution) with density 

𝑓(𝜏𝑗
2 |𝜆𝑗

2) =  
𝜆𝑗

2

2
 𝑒−

𝜆𝑗
2𝜏𝑗

2

2                                                 (3.3) 

Integrating out 𝜏𝑗
2 can lead us to the distribution of 𝛽𝑗 as follows: 

𝑓(𝛽𝑗 |𝜆𝑗) =  
𝜆𝑗

2
 𝑒−

𝜆𝑗|𝛽𝑗|

2                                                    (3.4) 

In other words,  

𝑓(𝛽𝑗|𝜆𝑗) = ∫ 𝑓(𝛽𝑗 |𝜏𝑗
2)

∞

0
𝑓(𝜏𝑗

2 |𝜆𝑗
2)𝑑𝜏𝑗

2~ 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0, 𝜆𝑗
−1)                (3.5) 

 

We need to prove the following result: 

If 𝑓(𝛽𝑗 |𝜏𝑗
2) =

1

√2𝜋𝜏𝑗
2

exp {−
1

2

𝛽𝑗
2

𝜏𝑗
2} and 𝑓(𝜏𝑗

2 |𝜆𝑗
2) =

𝜆2

2
exp {−

𝜆2

2
𝜏𝑗

2},  

then 𝑓(𝛽𝑗|λ) =
𝜆

2
exp{−𝜆|𝛽𝑗|}. 

            The proof of this result reported in Appendix A. 
𝜆

2
exp{−𝜆|𝛽|} is the density of Laplace 

distribution with location parameter 0 and scale parameter 
1

𝜆
. Hence, above process proves the 

density of double exponential distribution. 
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            Figure 3 shows the plot of Laplace density function together with normal density function. 

The smoother curve represents normal density, and the sharper curve represents Laplace density. 

 

Figure 3. Normal versus Laplace (Double Exponential) density 
 

            Noting from the proof of Laplace distribution, we can set up the proper priors to construct 

the new model. The new hierarchical model was defined to accommodate the probit distribution. 

Following is the hierarchical representation of the full model (Bayesian Lasso Probit Hierarchical 

Model): 

𝑦𝑖 = 𝟙(0,+∞)(𝑧𝑖) 

𝑧𝑖|𝛽 ~ 𝑁(𝑥𝑖
′𝛽, 1)  

𝛽|𝜏1
2,  … ,  𝜏𝑑

2 ~ 𝑁𝑑(𝑂𝑑, 𝐷𝜏), 𝑤ℎ𝑒𝑟𝑒 𝐷𝜏 = 𝑑𝑖𝑎𝑔(𝜏1
2,  … ,  𝜏𝑑

2) 

𝜏1
2,  … ,  𝜏𝑑

2 ~ 𝐸𝑥𝑝(
𝜆2

2
) 

𝜆 ~ π (𝜆)  ∝  c 

𝜏1
2,  … ,  𝜏𝑑

2 > 0 
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Based on probit model’s property, a latent variable 𝑧 is needed to construct the full model. 

This 𝑧 variable is the bridge or link between response variable and parameters. That is why we 

stated the following two lines into the full model: 

𝑦𝑖 = 𝟙(0,+∞)(𝑧𝑖) 

𝑧𝑖|𝛽 ~ 𝑁(𝑥𝑖
′𝛽, 1)  

Because of the probit link, 𝑧𝑖|𝛽 will be either larger than 0 or smaller than 0. For those 𝑧𝑖’s 

larger than 0, we will have 𝑦𝑖 equals 1; for those 𝑧𝑖’s smaller than 0, we will have 𝑦𝑖 equals 0. For 

the rest of the hierarchical lines, 𝜆 provides information to 𝜏 , 𝜏 provides information to 𝛽 and 𝛽 

decides the 𝑧𝑖’s. Figure 4 is the picturized model structure.   

 

Figure 4. Augmented Binary Probit Regression hierarchical model structure 

 

From the full model, the posterior can be fully specified. Due to the Bernoulli property, 

𝑌𝑖~𝑖𝑛𝑑  𝐵𝑒𝑟(𝑝𝑖). Due to the probit link, 𝑝𝑖 = 𝑃(𝑦𝑖 = 1) = 𝛷(𝑥𝑖
′𝛽). The posterior will then be 

𝑓(z,𝛽,𝜏,𝜆|y)  ∝  𝑓(y|z,𝛽,𝜏,𝜆) × 𝑓(z,𝛽,𝜏,𝜆). We have conditional independency for 

term 𝑓(y|z,𝛽,𝜏,𝜆), hence 𝑓(y|z,𝛽,𝜏,𝜆) = 𝑓(y|z). Similarly based on the conditional independency, 

𝑓(z,𝛽,𝜏,𝜆) = 𝑓(z|𝛽) × 𝑓(𝛽|𝜏) × 𝑓(𝜏|𝜆) × π(𝜆).  The posterior then can be further expressed as 
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𝑓(z,𝛽,𝜏,𝜆|y)  ∝  𝑓(y|z) × 𝑓(z|𝛽) × 𝑓(𝛽|𝜏) × 𝑓(𝜏|𝜆) × π(𝜆). The posterior is in detail proportion to 

the following term: 

∏{[𝑇𝑁(𝑥𝑖
′𝛽, 1,0, +∞)]𝑦𝑖 × [𝑇𝑁(𝑥𝑖

′𝛽, 1, −∞, 0)](1−𝑦𝑖)}

𝑁

𝑖=1

× 𝜑(𝛽; 0, 𝐷𝜏) × ∏
𝜆2

2

𝑑

𝑗=1

𝑒
−𝜆2𝜏𝑗

2

2 × 𝑐 

where TN represents truncated normal density, 𝜑(. ) represents normal density. 

3.2. Computation 

            The Gibbs sampling is a Markov Chain Monte Carlo (MCMC) method of simulating a 

random sample from a multivariate posterior. Based on this concept, two sampling techniques 

were proposed. One is full Bayesian Gibbs Sampler, and the other one is Hybrid Bayesian with 

EM algorithm.  

3.2.1 Full Bayesian Gibbs Sampler 

            After we discovered the exact format of the posterior, we need to get information from the 

posterior. That is, in other words, sampling. We have four parameters, so we need to derive four 

conditional densities.   

 (a).  𝑧𝑖| 𝜏, 𝛽, 𝜆, 𝑦𝑖 = [𝑇𝑁(𝑥𝑖
′𝛽, 1,0, +∞)]𝑦𝑖 × [𝑇𝑁(𝑥𝑖

′𝛽, 1, −∞, 0)](1−𝑦𝑖)   where 

𝑇𝑁(𝑥𝑖
′𝛽, 1,0, +∞) =

𝑒𝑥𝑝(−
1

2
(𝑧𝑖−𝑥𝑖

′𝛽)
′
(𝑧𝑖−𝑥𝑖

′𝛽))

√2𝜋𝛷(𝑥𝑖
′𝛽)

𝟙(0,+∞)(𝑧𝑖)                       (3.6) 

𝑇𝑁(𝑥𝑖
′𝛽, 1, −∞, 0) =

𝑒𝑥𝑝(−
1

2
(𝑧𝑖−𝑥𝑖

′𝛽)
′
(𝑧𝑖−𝑥𝑖

′𝛽))

√2𝜋𝛷(−𝑥𝑖
′𝛽)

𝟙(−∞,0)(𝑧𝑖)                       (3.7) 

(b).   𝛽|𝜏, 𝑧, 𝜆, 𝑦 ∝ ∏ 𝜑(𝑧𝑖; 𝑥𝑖
′𝛽, 1)𝑁

𝑖=1 × 𝜑(𝛽; 0, 𝐷𝜏) 

𝛽|𝜏, 𝑧, 𝜆, 𝑦 ~ 𝑁(𝐴−1𝑋′𝑍, 𝐴−1), 𝑤ℎ𝑒𝑟𝑒 𝐴 = 𝐷𝜏
−1 + 𝑋′𝑋                         (3.8) 

(c).  𝜏2|𝑧, 𝛽, 𝜆, 𝑦 ∝ 𝜑(𝛽; 0, 𝐷𝜏) × ∏
𝜆2

2

𝑑

𝑗=1
𝑒

−𝜆2𝜏𝑗
2

2  

𝜏𝑗
−2|𝑧, 𝛽, 𝜆, 𝑦  ~  𝐼𝐺(µ𝑗, 𝜆2) 𝑤𝑖𝑡ℎ µ𝑗 = 𝜆|𝛽𝑗|

−1
                               (3.9) 
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 (d).  𝜆|𝜏, 𝛽, 𝑧, 𝑦 ∝ ∏
𝜆2

2

𝑑

𝑗=1
𝑒

−𝜆2𝜏𝑗
2

2 × ( π(𝜆)=c ) 

𝜆|𝜏, 𝛽, 𝑧, 𝑦 ~ 𝐺𝑎𝑚𝑚𝑎(𝑑 + 1,
1

2
∑ 𝜏𝑗

2𝑑
𝑗=1 )                                 (3.10) 

            For deriving 𝜆|𝜏, 𝛽, 𝑧, 𝑦, this is still under providing full prior information of 𝜆. If it is 

impossible or unwilling to specify the prior for 𝜆, E-M algorithm can be implemented for the 

calculation.  

3.2.2 Hybrid Bayesian  

            This method is the hybrid of both Full and Empirical Bayesian. The difference for this 

hybrid Bayesian computation process is from the parameter 𝜆 . We do not have any prior 

distribution for 𝜆. The updated posterior will then be treated as the likelihood, and the complete 

log-likelihood is as follows: 

∑ {𝑦𝑖𝑙𝑜𝑔 [𝑇𝑁(𝑥𝑖
′𝛽, 1,0, +∞)] + (1 − 𝑦𝑖)𝑙𝑜𝑔[𝑇𝑁(𝑥𝑖

′𝛽, 1, −∞, 0)]}
𝑁

𝑖=1
−

1

2
∑

𝛽𝑗
2

𝜏𝑗
2

𝑑
𝑗=1 −

log ((2𝜋)
𝑑

2) − ∑ log(𝜏𝑗)𝑑
𝑗=1 − 𝑑𝑙𝑜𝑔2 + 𝑑𝑙𝑜𝑔(𝜆2) −

𝜆2

2
∑ 𝜏𝑗

2𝑑
𝑗=1               (3.11) 

where 

𝑇𝑁(𝑥𝑖
′𝛽, 1,0, +∞) =

𝑒𝑥𝑝 (−
1
2

(𝑧𝑖 − 𝑥𝑖
′𝛽)′(𝑧𝑖 − 𝑥𝑖

′𝛽))

√2𝜋𝛷(𝑥𝑖
′𝛽)

𝟙(0,+∞)(𝑧𝑖) 

𝑇𝑁(𝑥𝑖
′𝛽, 1, −∞, 0) =

𝑒𝑥𝑝 (−
1
2

(𝑧𝑖 − 𝑥𝑖
′𝛽)′(𝑧𝑖 − 𝑥𝑖

′𝛽))

√2𝜋𝛷(−𝑥𝑖
′𝛽)

𝟙(−∞,0)(𝑧𝑖) 

 

            Under the condition of all the information from the previous iteration, the E-step only 

focused on the very last term of the above equation. Since we know the conditional marginal 
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distribution of 𝑓(𝜏𝑗
2), we do not need to take the sample mean as the expected value; this will 

highly reduce the computation load. We have 
1

𝜏𝑗
2 follows the Inverse Gaussian distribution. 

Note that 𝐸[𝜏𝑗
2|𝑦,  𝜆, 𝛽] =  

1

𝑗

+
1

𝜆2 =
|𝛽𝑗𝜆|+1

𝜆2  , then  

E step: Q(𝜆|𝜆(𝑘−1)) = 𝑑(𝑙𝑜𝑔𝜆2) −
𝜆2

2
∑ 𝐸[𝜏𝑗

2|𝑦,  𝜆(𝑘−1), 𝛽]𝑑
𝑗=1 + 𝑡𝑒𝑟𝑚𝑠 𝑛𝑜𝑡 𝑖𝑛𝑣𝑜𝑙𝑣𝑖𝑛𝑔 𝜆 

M step: 𝜆(𝑘) = (2𝑑)1/2 (∑
𝜆(𝑘−1)|𝛽𝑗

(𝑘−1)
|+1

(𝜆(𝑘−1))2

𝑑

𝑗=1

)

−1/2
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4. NUMERICAL EXPERIMENTS 

Based on the structure of the model, this Bayesian Lasso should perform like ordinary 

Lasso which have great power in dimension reduction (set some coefficient exact to 0). A 

simulation study was applied to evaluate the efficiency of the model in dimension reduction.  

4.1. Simulation 

4.1.1 Data Generation 

            The NCAA March Madness data will have more than ten years of the result and 15 team 

statistics as the covariates. Thus, we will randomly generate these team statistics’ data with a 16 

years setup. The data will then be stored in a 1024 by 15 matrix. To ensure the data is closer to the 

“real-world,” some of the covariates are dependent, and some are independent. To avoid the noise 

of dimension reduction from data generation, we will check the data and make sure the mean of 

each independent variable is away from 0. Example data generation of the fifteen covariates are as 

follows: 

𝑥1 ~ 𝑁(3, 12)                      𝑥2 ~ 𝑁(𝑋1, 12)                      𝑥3 ~ 𝑁(𝑋2, 22)               𝑥4 ~ 𝑈𝑛𝑖𝑓(5, 10)  

𝑥5 ~ 𝑈𝑛𝑖𝑓(𝑥4, 𝑥4 + 3)      𝑥6 ~ 𝑁(3.5, 12)                    𝑥7 ~ 𝑁(𝑋6, 12)               𝑥8 ~ 𝑥4 + 𝑥7 

𝑥9 ~ 𝑈𝑛𝑖𝑓(𝑥8, 𝑥8 + 3)      𝑥10 ~ 𝑈𝑛𝑖𝑓(𝑥9, 𝑥9 + 1)      𝑥11 ~ 𝑁(5, 12)                𝑥12 ~ 𝑁(𝑋11, 12) 

𝑥13 ~ 𝑁(𝑋12, 22)                𝑥14 ~ 𝑈𝑛𝑖𝑓(5, 10)               𝑥15 ~ 𝑈𝑛𝑖𝑓(𝑥14, 𝑥14 + 3) 

 

            It is essential to set some coefficients to zero before modeling so that we could verify the 

power of this model in dimension reduction. We expected, after model fit, those zero coefficients 

could be detected. In other words, the dimension reduction efficiency could be verified. Based on 

this designed setup, Table 1 shows the coefficients’ true values: 
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 Table 1. Coefficient true values (𝛽) 

𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 𝛽9 𝛽10 𝛽11 𝛽12 𝛽13 𝛽14 𝛽15 

4 -4 5 7 -6 0 0 0 0 0 0 0 0 0 0 

 

We have 𝛽′ = (4, −4,5, 7, −6, 0, 0, … , 0); there are a total of 10 0s assigned to covariates from 

the 6th to the 15th.  

            Based on equation  𝑝𝑖 = 𝛷(𝑥𝑖
′𝛽). The probability vector can be obtained. The probability 

vector should be 1024 × 1 . The response data can then be generated using this weighted 

probability vector. That is, generate a random binomial distribution of n=1 using the associated 

probability vector. The response data vector would also be 1024 × 1, and the values are either 0 

or 1.  

4.1.2 Results 

            For the Gibbs Sampler process, we need a reasonable iteration count. For this simulation 

process, we chose 270,000 as the number of iterations due to the large lag to converge, and 20,000 

as the number of burn-in. We need to burn first 20,000 samples to remove the unstable ones. After 

the first 20,000 burned, we choose 250 as the slicing range to remove the correlation. That will 

leave us 
270,000−20,000

250
= 1000 samples. Table 2 is the summary information regarding 𝜆. 

Table 2. Summary table for posterior distribution of 𝜆 (Gibbs Sampler) 

Min Q1 Median Mean Q3 Max S.D. 

0.1960 0.5401 0.6623 0.6787 0.7921 1.6522 0.1952 

 

            The estimate of 𝜆 under Gibbs Sampler procedure is 0.6787. The standard deviation of the 

𝜆 samples is 0.1957, which is relatively small. That means theses samples are stable and vary 
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around the sample mean 0.6787. The simulation study from Park & Casella (2008) also suggested 

that 𝜆s maintain in this range. Table 3 provides other summary for the coefficients: 

 

 Table 3. Summary table for posterior distribution of coefficients 𝛽 (Gibbs Sampler) 

Posterior Summaries 

Parameter N True value Mean Std.Dev 

Deviation 

2.5%tile 97.5%tile 

𝛽1 1000 4 3.7035 0.8325 2.1188 5.2545 

𝛽2 1000 -4 -3.8061 0.8095 -5.3352 -2.2797 

𝛽3 1000 5 5.0722 1.0386 3.1024 7.0238 

𝛽4 1000 7 5.8721 1.7886 2.5043 9.2839 

𝛽5 1000 -6 -5.8790 1.2655 -8.2550 -3.5115 

𝛽6 1000 0 -0.1001 0.2698 -0.6623 0.4210 

𝛽7 1000 0 -0.7518 1.2195 -3.7927 1.1280 

𝛽8 1000 0 1.1584 1.2727 -0.8094 4.2870 

𝛽9 1000 0 -0.0454 0.5098 -1.1142 0.9897 

𝛽10 1000 0 -0.2427 0.4809 -1.2415 0.7298 

𝛽11 1000 0 0.1223 0.2381 -0.3398 0.5933 

𝛽12 1000 0 0.0983 0.2012 -0.2875 0.5162 

𝛽13 1000 0 0.0297 0.1029 -0.1714 0.2339 

𝛽14 1000 0 -0.0714 0.2485 -0.5534 0.3998 

𝛽15 1000 0 -0.0336 0.2270 -0.5060 0.3935 

 

            The estimated 𝐷𝜏 (Gibbs Sampler) is as follows: 

𝐷
^

𝜏 = 𝑑𝑖𝑎𝑔(10.50,11.25,13.10,14.46,14.11,3.93,5.42,5.82,4.36,4.13,3.82,3.46,3.67,3.91,4.04) 

            For using EM (Hybrid Bayesian), the setup part remains the same. The difference is that 

instead of sampling 𝜆 with a flat prior, each iteration we input the theoretical value from expected 

maximization. Table 4 provides the summary for posterior distribution of 𝜆 and Table 5 provides 
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the summary information for coefficients 𝛽. For the samples of 𝜆, they vary around 0.5580 with 

standard deviation 0.0965. This still complies with the simulation study from Park & Casella 

(2008). The computation speed was noticeably faster when using an Empirical Bayesian MAP 

when compared with the previous Gibbs Sampler technique.  

 

Table 4. Summary table for posterior distribution of 𝜆 (EM) 

Min Q1 Median Mean Q3 Max S.D. 

0.3578 0.4845 0.5460 0.5580 0.6211 0.9617 0.0965 

 

Table 5. Summary table for posterior distribution of coefficients 𝛽 (EM) 

Posterior Summaries 

Parameter N True value Mean Std.Dev 

Deviation 

2.5%tile 97.5%tile 

𝛽1 1000 4 3.5771 0.6616 2.4011 4.8946 

𝛽2 1000 -4 -3.6826 0.6325 -4.9252 -2.5460 

𝛽3 1000 5 4.9124 0.8097 3.5103 6.5340 

𝛽4 1000 7 5.6344 1.5386 2.4827 8.7454 

𝛽5 1000 -6 -5.6971 1.0071 -7.7677 -3.9931 

𝛽6 1000 0 -0.0862 0.2560 -0.5988 0.4163 

𝛽7 1000 0 -0.7867 1.1927 -3.6387 1.1440 

𝛽8 1000 0 1.1897 1.2264 -0.7098 4.1629 

𝛽9 1000 0 -0.0664 0.5069 -1.0596 1.0518 

𝛽10 1000 0 -0.2191 0.4795 -1.2069 0.6961 

𝛽11 1000 0 0.1175 0.1571 -0.1817 0.4352 

𝛽12 1000 0 0.0807 0.1444 -0.2068 0.3494 

𝛽13 1000 0 0.0368 0.1015 -0.1680 0.2418 

𝛽14 1000 0 -0.0677 0.2441 -0.5897 0.3984 

𝛽15 1000 0 -0.0352 0.2284 -0.5080 0.4242 
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            The estimated 𝐷𝜏 (EM) is as follows: 

𝐷
^

𝜏 = 𝑑𝑖𝑎𝑔(10.33,10.47,12.54,14.61,14.60,3.76,5.33,6.09,4.12,4.17,3.95,3.70,3.67,3.82,3.79) 

            From the simulation results above, this computation method tends to have smaller variance 

compare to Gibbs Sampler regarding estimation.  

            This Bayesian Lasso Probit model successfully made the dimension reduction and set all 

those “zero coefficients” to 0 no matter which computation method to use. Furthermore, a model 

consistency check was proposed by repeatedly drawing samples and calculate the variance of the 

estimates.    

4.1.3 Consistency and Variation 

            This simulation was done for 30 times to verify the stability of the results. The coefficients 

estimation results were stored in Table 6. The standard deviation for all coefficients was very small 

hence proved of the consistency and concluded the simulation has small variation. Boxplots for 

these 15 coefficients were also provided in Figure 5. These boxplots present a visual way to check 

the consistency. 

 

Figure 5. Boxplots for 30 simulations of 𝛽 
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Table 6. Simulation consistency result 

 Iteration Stability 

Para

mete

r 

1 2 3 …  28 29 30 Mean Var 

𝛽1  3.45(0.61)  3.27(0.72)  3.09(0.64) …  2.67(0.68)  4.23(0.90)  3.81(0.76)  3.3280 0.1454 

𝛽2 -3.68(0.61) -3.50(0.73) -3.31(0.64) … -2.87(0.67) -4.50(0.91) -4.06(0.77) -3.5586 0.1587 

𝛽3  5.09(0.69)  4.80(0.86)  4.58(0.74) …  4.02(0.79)  6.16(1.08)  5.57(0.93)  4.9078 0.2799 

𝛽4  6.22(1.78)  5.92(1.94)  5.67(1.57) …  5.08(1.56)  7.59(2.13)  6.89(1.82)  6.1036 0.3955 

𝛽5 -6.14(0.87) -5.81(1.07) -5.54(0.90) … -4.87(0.91) -7.42(1.24) -6.73(1.04) -5.9367 0.3948 

𝛽6  0.26(0.26)  0.26(0.26)  0.25(0.31) …  0.21(0.29)  0.35(0.37)  0.30(0.31)  0.2640 0.0013 

𝛽7 -1.22(1.27) -1.13(1.29) -1.07(1.21) … -0.85(1.15) -1.45(1.51) -1.30(1.27) -1.1170 0.0226 

𝛽8  0.73(1.29)  0.68(1.30)  0.64(1.25) …  0.49(1.20)  0.84(1.59)  0.77(1.34)  0.6573 0.0087 

𝛽9 -0.13(0.70) -0.06(0.66) -0.06(0.75) … -0.04(0.73) -0.18(1.06) -0.14(0.81) -0.1042 0.0017 

𝛽10  0.42(0.68)  0.34(0.64)  0.33(0.68) …  0.26(0.69)  0.54(0.97)  0.46(0.76)  0.3831 0.0048 

𝛽11  0.06(0.26)  0.05(0.25)  0.05(0.24) …  0.04(0.24)  0.11(0.30)  0.08(0.25)  0.0585 0.0005 

𝛽12  0.09(0.23)  0.08(0.24)  0.08(0.26) …  0.08(0.25)  0.09(0.35)  0.09(0.26)  0.0874 0.0001 

𝛽13 -0.16(0.11) -0.14(0.10) -0.14(0.12) … -0.12(0.12) -0.20(0.15) -0.17(0.12) -0.1480 0.0005 

𝛽14  0.08(0.23)  0.10(0.23)  0.08(0.24) …  0.08(0.23)  0.11(0.28)  0.10(0.25)  0.0916 0.0002 

𝛽15 -0.27(0.20) -0.27(0.20)  0.25(0.20) … -0.22(0.20) -0.34(0.25) -0.30(0.22) -0.2683 0.0007 

 

 

4.2. Live Data 

            NCAA’s “March Madness” refers to the Division I Men’s Basketball tournament with 

single-elimination on each game. March Madness is an American tradition that sends millions of 

fans into a synchronized frenzy each year. It is this chaos that gives the tournament the nickname 

of “March Madness.” Based on American Gaming Association (AGA)’s report (2015), about 40 

million people filled out 70 million March Madness brackets (Moyer, 2015). The bracketing hence 
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draws high attention every year and is indeed an excellent real-world case for this entire statistical 

modeling procedure.  

4.2.1. The Playing Rule and Structure 

The March Madness is currently featuring 68 college basketball teams. After the games of 

first four, a 64 teams’ data structure would be pulled. The 64 teams are divided into four regions, 

which are East Region, South Region, Midwest Region, and West Region. Each region has an 

equal number of 16 teams. For those 16 teams in each region, every team is provided a seeding 

position ranked from 1 to 16 by a professional committee. The tournament setting is always seed 

1 versus seed 16, seed 2 versus seed 15, seed 3 versus seed 14 and continuous to seed 8 versus 

seed 9. It is noted that the seeds of the first round add up to 17. After a total of six rounds, namely, 

Round64 (Rd64), Round32 (R32), Sweet16, Elite8, Final4 and the championship, the national title 

will be awarded to the team that wins six games in a row. It is easy to discover that there are a total 

of 63 games played each year (NCAA Basketball Championship, 2018). In Rd64, 64 teams play 

32 games. In Rd32, 32 teams play 16 games. 16 teams play 8 games in Sweet16, 8 teams play 4 

games in Elite8, 4 teams play 2 games in Final4, and 2 teams fight for the Championship. The 

calculation will then be 
64

2
+

32

2
+

16

2
+

8

2
+

4

2
+

2

2
= 32 + 16 + 8 + 4 + 2 + 1 = 63 . Figure 6 

shows the NCAA Men’s Division I Basketball Tournament bracket and complete tournament 

results in the 2017-2018 season.  
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Figure 6. NCAA 2018 March Madness bracket with complete tournament results (This template 

is downloaded from http://i.turner.ncaa.com/sites/default/files/external/printable-

bracket/2018/bracket-ncaa.pdf) 

http://i.turner.ncaa.com/sites/default/files/external/printable-bracket/2018/bracket-ncaa.pdf
http://i.turner.ncaa.com/sites/default/files/external/printable-bracket/2018/bracket-ncaa.pdf
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4.2.2. Qualifying Procedure 

There are more than three hundred eligible Division I basketball teams. However, only 68 

teams can make it into the March Madness. Teams that receive a bid to NCAA tournament are 

broken into two categories: Automatic bids, and at-large bids (2017 to 2018 Season NCAA 

Basketball Tournament, 2018). In Division I, there are 32 conferences. Hence, 32 teams qualify 

for automatic bids granted to the winner of the conference tournament championship. Ivy League 

used to be an exception (no conference tournament) but conducted its first postseason tournament 

in 2017.  Table 7 shows the Automatic qualifiers in 2018 March Madness. 

Table 7. Automatic qualifiers for the 2018 NCAA March Madness 

Conference Team Conference Team 

American East UMBC (24-10) Mid-American Buffalo (26-8) 

AAC Cincinnati (30-4)  MEAC NC-Central (19-15) 

Atlantic 10 Davidson (21-11)  Missouri Valley Loyola-Chicago (28-5) 

ACC Virginia (31-2)  Mountain West San Diego State (22-10)  

Atlantic Sun Lipscomb (23-9) Northeast LIU-Brooklyn (18-16) 

Big 12 Kansas (27-7)  Ohio Valley Murray State (26-5) 

Big East Villanova (30-4)  Pac-12 Arizona (27-7) 

Big Sky Montana (26-7)  Patriot Bucknell (25-9)  

Big South Radford (22-12) SEC Kentucky (24-10)  

Big Ten Michigan (28-7) Southern UNCG (26-7) 

Big West CS-Fullerton (20-11) Southland Stephen F. Austin (28-6) 

Colonial Athletic Charleston (26-7)  SWAC Texas Southern (15-19) 

Conference USA Marshall (24-10)  Summit League SDSU (28-6) 

Horizon League Wright State (25-9)  Sun Belt Georgia State (24-10)  

Ivy League Penn (24-8)  West Coast Gonzaga (30-4) 

MAAC Iona (20-13) WAC New Mexico St. (28-5) 
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            The remaining 36 bids are at-large bids granted by the NCAA Selection Committee. The 

Committee will select what they feel are the best 36 teams that did not receive automatic bids. 

Even though each conference receives only one automatic bid, the selection committee may select 

any number of at-large teams from each conference (NCAA basketball selection process, 2018). 

The at-large teams come from the following conferences: Atlantic Coast Conference (ACC), 

Southeastern Conference (SEC), Big 12 Conference, Big East Conference, Big Ten Conference, 

American Athletic Conference (AAC), Pacific 12 conference (Pac-12), Atlantic 10 Conference 

(A-10) and Mountain West Conference. Table 8 is at-large qualifiers in 2018 March Madness 

(2018 NCAA Basketball Tournament, 2018). 

Before the final 64 teams bracket filled out, eight teams need to play first four. The winners 

of these games advanced to the Rd64 and seeded as 11 or 16. The First Four games played in 2018 

March Madness are shown in Table 9 (2018 NCAA Basketball Tournament, 2018). 

4.2.3. Bracket Scoring System 

            Two types of scoring systems will be considered to evaluate the performance of using 

Bayesian Lasso model. One is doubling scoring system, and the other is the simple scoring system 

(Shen et al. 2015). Based on the brackets structure, there are six rounds in the tournament. Under 

the simple scoring system, each correct pick will be granted one point. For doubling scoring 

system, the right pick for the first round will be awarded one point, two points for the second round 

and continue doubling to the final round with 32 points. Table 10 is the summary of the scoring 

system.  
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Table 8. At-large qualifiers for the 2018 NCAA March Madness 

Conference Team Conference Team 

ACC N. Carolina Big 12 Kansas St. 

ACC Duke Big 12 Texas 

ACC Clemson Big 12 Oklahoma 

ACC Miami (Fla.) Big East Xavier 

ACC Va. Tech Big East Creighton 

ACC NC State Big East Seton Hall 

ACC Florida St. Big East Butler 

ACC Syracuse Big East Providence 

SEC Tennessee Big Ten Purdue 

SEC Auburn Big Ten Michigan St. 

SEC Florida Big Ten Ohio St. 

SEC Arkansas AAC Wichita St. 

SEC Texas A&M AAC Houston 

SEC Missouri Pac-12 UCLA 

SEC Alabama Pac-12 Arizona St. 

Big 12 Texas Tech A-10 Rhode Island 

Big 12 W. Virginia A-10 St. Bona. 

Big 12 TCU Mountain West Nevada 

 

Table 9. First Four games in 2018 NCAA March Madness 

At-large Automatic At-large Automatic 

East Region (11) East Region (16)  Midwest Region (11) West Region (16) 

St. Bona. LIU Brooklyn Arizona St.  NC Central 

UCLA Radford Syracuse Texas So. 
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Table 10. Scoring System 

 Rd64 Rd32 Sweet16 Elite8 Final4 Championship Total 

Number 

of games 

32 16 8 4 2 1 63 

Simple 1 1 1 1 1 1 63 

Doubling 1 2 4 8 16 32 192 

 

4.2.4. Bracketing              

            The simulation construction was based on the Live Data (NCAA March Madness). We 

have a total of 16 years of data, and the prediction was made with the previous 16 years of data 

information. Hua (2015) suggested using the following 16 covariates in Table 11. For real 

application of our Bayesian Lasso Model, we used the same covariates.  

Table 11. Covariates used in the model 

FGM Field Goals Made Per Game in Regular Season 

3PM 3-Point Field Goals Made Per Game in Regular Season 

FTA Free Throws Made Per Game in Regular Season 

ORPG Offensive Rebounds Per Game in Regular Season 

DRPG Defensive Rebounds Per Game in Regular Season 

APG Assists Per Game in Regular Season 

PFPG Personal Fouls Per Game in Regular Season 

SEED Seed Number 

ASM Average Scoring Margin 

SAGSOS Sagarin Proxy for Strength of schedule (Sagarin ratings) 

ATRATIO Assist to Turnover Ratio in Regular Season 

Pyth Pythagorean Winning Percentage (Pomeroy ratings) 

AdjO Adjusted Offensive Efficiency (Pomeroy ratings) 

AdjD Adjusted Defensive Efficiency (Pomeroy ratings) 
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            We used the first 16 years of data to fit the model and then used our advanced sampling 

technique to draw samples efficiently. This process includes Gibbs Sampler and EM algorithm. 

Time series plot and ACF plot for selected coefficient parameters were provided. Figure 7 refers 

to parameters of coefficient β for FGM and Pyth. Figure 8 provides the parameter 𝜏1& 𝜏15.  

 

 

Figure 7. Diagnostic plots for FGM and Pyth 
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Figure 8. Diagnostic plots for 𝜏1& 𝜏15 

 

            Based on the information from the time series plot and ACF plot. We decided to burn in 

10,000 and slice every 50. That leaves us 
60,000−10,000

50
= 1000 samples. Our estimates were based 

on these 1000 effective samples. The summary estimation of 𝜆 was provided in Table 12. 

 

Table 12. Posterior summaries for 𝜆 (March Madness 2018 with Gibbs) 

Min Q1 Median Mean Q3 Max S.D. 

0.0904 0.1832 0.2230 0.2336 0.2734 0.9537 0.0750 

 

            The samples of 𝜆 range from 0.0904 to 0.9537 with a very small standard deviation 0.0750. 

We concluded the 𝜆 sampling was stable. Figure 9 presented an overall view of the samples of 

tuning parament 𝜆. 
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Figure 9. 𝜆 after burn-in and slicing (March Madness 2018 with Gibbs) 

            The posterior summary (coefficients 𝛽 estimation) were given in Table 13:  

Table 13. Posterior summaries for 𝛽 (March Madness 2018 with Gibbs) 

Parameter N Mean Std.Dev 

Deviation 

2.5%tile 97.5%tile 

SEED 1000 0.2562 0.1762 -0.0827 0.6136 

FGM 1000 3.5207 1.5580 0.7602 6.6113 

AdjO 1000 26.7509 5.4913 15.9663 36.9251 

AdjD 1000 -24.6345 5.2714 -34.6332 -13.5878 

ASM 1000 -0.3753 0.2830 -0.9522 0.1794 

SAGSOS 1000 -6.2021 2.9522 -12.2208 -0.3990 

Pyth 1000 1.8987 1.9892 -1.4140 6.0931 

3PM 1000 0.0152 0.4152 -0.7861 0.7772 

FTA 1000 -0.2929 0.6641 -1.5763 0.9413 

ORPG 1000 0.3613 0.5338 -0.6239 1.3955 

DRPG 1000 -1.2840 1.1468 -3.5003 0.8541 

APG 1000 -1.5345 0.8822 -3.2936 0.1424 

PFPG 1000 -0.2752 0.7775 -1.7579 1.2768 

ATRATIO 1000 -0.1587 0.6563 -1.4813 1.1106 
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            From the result in Table 12, quite a few coefficients were set to 0. That is also to indicate 

some useless information from the covariates. For example, for covariate 3PM, the estimated value 

was 0.0152 and the 95% credible interval was from -0.7861 to 0.7772, which covers 0. This 3PM 

was reduced. Because of Bayesian inference, the estimate was all from samples. Hence, we do not 

have coefficient set precisely to 0 as LASSO. But for those coefficients needed to be deduced, the 

estimate should be close to 0. The same sample was also drawn using EM algorithm. There was 

no noticeable difference since this was only the difference between computation technique. 

Summaries were stored in Table 14, Figure 10 and Table 15. 

 

Table 14. Posterior summaries for 𝜆 (March Madness 2018 with EM) 

Min Q1 Median Mean Q3 Max S.D. 

0.1483 0.1802 0.1918 0.1939 0.2063 0.2852 0.0201 

 

 

Figure 10. 𝜆 after burn-in and slicing (March Madness 2018 with EM) 
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Table 15. Posterior summaries for 𝛽 (March Madness 2018 with EM) 

Parameter N Mean Std.Dev 

Deviation 

2.5%tile 97.5%tile 

SEED 1000 0.2735 0.1855 -0.0551 0.6526 

FGM 1000 3.6697 1.5776 0.6847 6.6294 

AdjO 1000 28.1478 4.9242 18.4729 37.4487 

AdjD 1000 -26.1025 4.6936 -35.3224 -16.7845 

ASM 1000 -0.4312 0.2981 -0.9910 0.1711 

SAGSOS 1000 -6.8253 2.9309 -12.6829 -1.1044 

Pyth 1000 1.7056 1.8917 -1.6937 5.8784 

3PM 1000 0.0178 0.4037 -0.8128 0.8132 

FTA 1000 -0.2973 0.6957 -1.7113 1.0527 

ORPG 1000 0.3488 0.5428 -0.7113 1.3987 

DRPG 1000 -1.3940 1.1817 -3.7738 0.8126 

APG 1000 -1.5776 0.9385 -3.4280 0.2591 

PFPG 1000 -0.3021 0.7828 -1.8316 1.2140 

ATRATIO 1000 -0.1939 0.6635 -1.4914 1.1072 

         

            Based on the design matrix (data information) of the latest year (NCAA Men’s Basketball 

2017 to 2018 Season)’s data information, the bracketing was provided. Table 16 is the Probability 

Matrix for South Region. 
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Table 16. Probability matrix for 2018 NCAA March Madness South Region Bracketing 

     Round     

Seed 

R64 R32 S16 E8 F4 Champ 

1 0.9807 0.8484 0.6924 4.9523e-
01 

3.5966e-
01 

2.4198e-
01 

16 0.0192 0.0024 0.0002 1.4706e-
05 

9.0253e-
07 

4.3333e-
08 

8 0.5355 0.0847 0.0372 1.2211e-
02 

4.0043e-
03 

1.1075e-
03 

9 0.4644 0.0643 0.0260 7.7244e-
03 

2.2897e-
03 

5.6644e-
04 

5 0.6500 0.3861 0.1094 4.7669e-
02 

2.0981e-
02 

8.0021e-
03 

12 0.3499 0.1548 0.0280 8.4311e-
03 

2.5292e-
03 

6.3360e-
04 

4 0.6717 0.3454 0.0893 3.5876e-
02 

1.4497e-
02 

5.0535e-
03 

13 0.3282 0.1135 0.0172 4.3821e-
03 

1.1061e-
03 

2.3091e-
04 

6 0.5226 0.2418 0.0759 1.9020e-
02 

6.5729e-
03 

1.9272e-
03 

11 0.4773 0.2098 0.0620 1.4421e-
02 

4.6895e-
03 

1.2824e-
03 

3 0.8800 0.5277 0.2059 6.5323e-
02 

2.7963e-
02 

1.0385e-
02 

14 0.1199 0.0206 0.0018 1.2855e-
04 

1.2614e-
05 

9.8976e-
07 

7 0.5138 0.1538 0.0756 2.0390e-
02 

7.5499e-
03 

2.3825e-
03 

10 0.4861 0.1371 0.0657 1.6812e-
02 

5.9735e-
03 

1.7871e-
03 

2 0.8900 0.6776 0.5040 2.5119e-
01 

1.5854e-
01 

9.0855e-
02 

15 0.1099 0.0314 0.0087 1.1638e-
03 

2.2016e-
04 

3.3921e- 

 

              

            Based on the probability matrix, the brackets were filled. Between two teams, we took the 

higher probability as the winner. That was the prediction based on Bayesian Lasso Probit Model. 

Figure 11 provided a detail prediction bracket. Based on the previous study, we have two different 

scoring systems (Shen et al. 2015). Table 17 was the scores using both scoring systems. 
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Figure 11. 2018 NCAA March Madness Brackets (Bayesian Lasso) (This template is 

downloaded from https://cdn-s3.si.com/s3fs-public/download/2018-ncaa-tournament-printable-

bracket-march-madness.pdf) 
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Table 17. Scoring 2018 March Madness Bracket (Bayesian Lasso) 

 Rd64 Rd32 Sweet16 Elite8 Final4 Championship Total 

Number 

of games 

32 16 8 4 2 1 63 

Simple 25 9 3 1 1 0 39/63 

Doubling 25 18 12 8 16 0 79/192 

 

            We had about 62% accuracy when evaluated using single scoring system, about 41% 

accuracy when evaluated using the double scoring system. This result was reasonable but not super 

outstanding. That is due to one big upset that one seed 16 team won number 1 seed in the first 

round. The South region was the region that has the lowest correct prediction. The region top four 

turned out to be Kansas State, Kentucky, Loyola Chicago, and Nevada. The seeding was 9, 5, 11 

and 7. No top four seeds entered the second round (Rd32). If we omit the South Region and only 

evaluate the other three regions, then the prediction accuracy was about 73% for the single scoring 

system and about 47% for the double scoring system. 

4.3. Comparison 

Hua (2015) and Shen et al. (2016) both used Bayesian inference with informative prior. 

Both studies need to include all covariates. Bayesian Lasso hence has an advantage over the 

previous method because the model reduced about half of the covariates. Bayesian Lasso promoted 

the calculation efficiency and further combined E-M algorithm, which makes the model even more 

efficient. The likelihood function in Shen et al. (2016) is the same as Hua (2015). By delta method, 

the prior in p can be transferred into 𝛽: 

𝛽~𝑀𝑉𝑁((X′X)−1𝑋′log (
𝑝

1−𝑝
) , (X′X)−1𝑋′𝑛𝑝̂(1 − 𝑝̂)𝑋(X′X)′)                     (4.1) 
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Hence, 

𝑓(β|data) ∝  MVN × ∏ (
exp(𝜂𝑖)

1+exp(𝜂𝑖)
)  𝑦𝑖  (

1

1+exp(𝜂𝑖)
)  1−𝑦𝑖

𝑛

𝑖=1
                        (4.2) 

Based on the information (probability matrix) provided from this model including 

informative prior. The estimation of coefficients 𝛽 can be obtained in table 18. The bracketing 

scoring was also presented in table 19 using the model introduced in Shen et al. (2016). The 

bracketing was also offered in Figure 12. 

 

Table 18. Posterior summaries for 𝛽 (March Madness 2018 with Full Bayesian) 

Parameter N Mean Std.Dev 

Deviation 

2.5%tile 97.5%tile 

SEED N/A N/A N/A N/A N/A 

FGM 10,000 1.8442 0.4176 1.0272 2.6722 

AdjO 10,000 18.0413 1.1314 15.8001 20.2207 

AdjD 10,000 -17.8434 1.0489 -19.8955 -15.7825 

ASM 10,000 0.2187 0.0756 0.0725 0.3685 

SAGSOS 10,000 5.8576 0.6657 4.5564 7.1584 

Pyth 10,000 -1.5674 0.3691 -2.2840 -0.8475 

3PM 10,000 0.0558 0.1125 -0.1656 0.2738 

FTA 10,000 0.7584 0.2025 0.3660 1.1534 

ORPG 10,000 -0.1591 0.1570 -0.4709 0.1498 

DRPG 10,000 0.6835 0.3467 -0.0010 1.3557 

APG 10,000 -1.0315 0.2674 -1.5494 -0.5149 

PFPG 10,000 -0.7960 0.2427 -1.2638 -0.3249 

ATRATIO 10,000 -0.4340 0.1884 0.0639 0.8059 

         

If we compare this estimation with the Bayesian Lasso, these full Bayesian estimations do 

not have many credible intervals cover 0, which is expected and do not have the power of 
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dimension reduction. The Bayesian Lasso model has beneficial sparsity property and hence can 

reduce the dimension. Bayesian Lasso reduced the dimension to four valid covariates. 

 

Table 19. Scoring 2018 March Madness Bracket (Full Bayesian) 

 Rd64 Rd32 Sweet16 Elite8 Final4 Championship Total 

Number 

of games 

32 16 8 4 2 1 63 

Simple 24 8 3 1 1 0 38/63 

Doubling 24 16 12 8 16 0 78/192 

 

Using fewer covariates, the Bayesian Lasso performed better than the full Bayesian and 

the enhanced the computation method also guaranteed the efficiency.   
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Figure 12. 2018 NCAA March Madness Brackets (Full Bayesian) (This template is downloaded 

from https://cdn-s3.si.com/s3fs-public/download/2018-ncaa-tournament-printable-bracket-

march-madness.pdf) 
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5. DISCUSSION 

            One significant contribution of this study was the computation efficiency by introducing 

EM algorithm and further using theoretical value for the expectation step. This EM algorithm can 

be extended to other conditional marginals. For example, Introduce E-M algorithm to the probit 

classifier. In this work, we sampled z from truncated normal distribution. We can also involve E-

M algorithm to do a soft clustering instead of sampling directly. We expect more efficient by 

introducing E-M to other conditional marginals.   

            For sampling the 𝛽 parameter, we derived the 𝛽 parameter follows a multivariate normal 

distribution which the calculation of matrix was required. Because of the large dimension, 

calculation of matrix was time-consuming and lack of efficiency. However, the transformation of 

the matrix dimension can be performed to make the computation faster. When n<<p and by 

Woodbury-Sherman-Morrison matrix, we can finish the calculation by transforming matrix to the 

smaller dimension 𝒏 instead of the original dimensions of the covariates 𝑝. 

In this research work, we studied Lasso with a probit Bayesian model. Lasso may also be 

extended to logistic linear regression. The logistic linear regression model uses logit link, and the 

model can be expressed as:  

𝑔(𝑝𝑖) = 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = log
𝑝𝑖

1−𝑝𝑖
= 𝜂𝑖 = 𝑥𝑖1𝛽1 + 𝑥𝑖2𝛽2 + ⋯ + 𝑥𝑖𝑑𝛽𝑑, 𝑖 = 1, … , 𝑛    

That leads to 𝑝𝑖 =
𝑒𝜂𝑖

1+𝑒𝜂𝑖
. The likelihood of the probit linear regression is simply: 

∏ 𝑝𝑦𝑖(1 − 𝑝)1−𝑦𝑖

𝑛

𝑖=1

 

∏ [
𝑒𝜂𝑖

1+𝑒𝜂𝑖
]

𝑦𝑖

[
1

1+𝑒𝜂𝑖
]

1−𝑦𝑖𝑛

𝑖=1
                                               (5.1) 
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One may apply LASSO for estimation of 𝛽 , which minimize the negative of the log-

likelihood: 

− ∑ 𝑦𝑖 𝑙𝑜𝑔 (
𝑒𝜂𝑖

1+𝑒𝜂𝑖
)𝑛

𝑖=1 − ∑ (1 − 𝑦𝑖) log (
1

1+𝑒𝜂𝑖
)𝑛

𝑖=1 +  𝜆‖𝛽‖1                     (5.2) 

We can then apply the Gibbs Sampler or Hybrid Bayesian with EM to sample. Due to logistic 

format, we will not have normal marginal distribution. The marginal will not have a specific 

distribution. However, by introducing SIR algorithm, the conditional marginals can still be 

sampled and further finish the computation of Gibbs Sampler process. 

            Bae & Mallick (2004) provided another application of the Bayesian Lasso Probit model, 

which was the Gene selection problem. The data was about gene expression level hence with large 

dimension. Bae & Mallick (2004) successfully reduced the dimension, and that was a real example 

of Bayesian Lasso solving big data problem. For big data, where n<<p, although cross-validation 

can fulfill the dimension reduction, it cannot successfully make a decision when the optimal 

dimension is happening to be in between of n and p.  
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APPENDIX A. PROOF 

1. Prove if 𝑓(𝛽𝑗  |𝜏𝑗
2) =

1

√2𝜋𝜏𝑗
2

exp {−
1

2

𝛽𝑗
2

𝜏𝑗
2} and 𝑓(𝜏𝑗

2 |𝜆𝑗
2) =

𝜆2

2
exp {−

𝜆2

2
𝜏𝑗

2},  

then 𝑓(𝛽𝑗|λ) =
𝜆

2
exp{−𝜆|𝛽𝑗|}. 

Proof: 

𝑓(𝛽𝑗|λ) = ∫
1

√2𝜋𝜏𝑗
2

exp {−
1

2

𝛽𝑗
2

𝜏𝑗
2

}

∞

0

𝜆2

2
exp {−

𝜆2

2
𝜏𝑗

2} ⅆ𝜏𝑗
2 

=
𝜆2

2√𝜋
∫

1

√2𝜏𝑗
2

exp {−(
𝜆2

2
𝜏𝑗

2 +
𝛽𝑗

2

2𝜏𝑗
2

)}

∞

0

ⅆ𝜏𝑗
2 

𝐿𝑒𝑡 𝑠2 =
𝜆

2
𝜏𝑗

2 𝑎𝑛𝑑 𝑎 =
1

2
𝜆|𝛽𝑗|, 𝑡ℎ𝑒𝑛 𝑓(𝛽|𝜆) =

𝜆

√𝜋
𝑒−2𝑎 ∫ exp {− (𝑠 −

𝑎

𝑠
)

2

}
∞

0

𝑑𝑠. 

𝑁𝑜𝑡𝑒 𝑡ℎ𝑎𝑡  ∫ exp {− (𝑠 −
𝑎

𝑠
)

2

}

∞

0

𝑑𝑠 = ∫ exp {− (𝑠 −
𝑎

𝑠
)

2

}

1

0

𝑑𝑠 + ∫ exp {− (𝑠 −
𝑎

𝑠
)

2

} 𝑑𝑠

∞

1

 

𝑎𝑛𝑑 𝑙𝑒𝑡 𝑠 =
𝑎

𝑢
, 𝑡ℎ𝑒𝑛 𝑑𝑠 =

−𝑎

𝑢2
𝑑𝑢, 𝑡ℎ𝑒𝑛 

∫ exp {− (𝑠 −
𝑎

𝑠
)

2

}

∞

0

𝑑𝑠 =  ∫ exp {− (
𝑎

𝑢
− 𝑢)

2

}

1

∞

(
−𝑎

𝑢2
𝑑𝑢) + ∫ exp {− (

𝑎

𝑢
− 𝑢)

2

} 𝑑𝑢

∞

1

 

=  ∫ exp {− (
𝑎

𝑢
− 𝑢)

2

}

∞

1

(
𝑎

𝑢2
𝑑𝑢) + ∫ exp {− (

𝑎

𝑢
− 𝑢)

2

} 𝑑𝑢

∞

1

 

=  ∫ exp {− (𝑢 −
𝑎

𝑢
)

2

}

∞

1

𝑑 (𝑢 −
𝑎

u
) = ∫ 𝑒−𝑡2

∞

0

𝑑𝑡 =
√𝜋

2
 

It follows 𝑓(𝛽𝑗|λ) =
𝜆

√𝜋
𝑒−2𝑎 √𝜋

2
=

𝜆

2
exp{−𝜆|𝛽|}. 
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2. 𝛽|𝜏, 𝑧, 𝜆, 𝑦 ∝ ∏ 𝜑(𝑧𝑖; 𝑥𝑖
′𝛽, 1)𝑁

𝑖=1 × 𝜑(𝛽; 0, 𝐷𝜏) 

Proof: 

Only the above two terms contain parameter 𝛽. We discovered the formula above is the product 

of normal prior with normal model. 

Note 𝑓(𝑧|𝛽) = (2𝜋)−1/2exp{−(𝑧𝑖 − 𝑥𝑖′𝛽)2/2} 𝑎𝑛𝑑 𝑓(𝛽) ∝ exp{−𝛽′𝐷𝜏
−1𝛽/2}, then 

∏ 𝑓(𝑧𝑖; 𝑥𝑖
′𝛽)

𝑁

𝑖=1

× 𝑓(𝛽; 𝐷𝜏) ∝  exp {−
(𝛽 − 𝐴−1𝑋′𝑍)′𝐴(𝛽 − 𝐴−1𝑋′𝑍)

2
} , 𝑤ℎ𝑒𝑟𝑒 𝐴 = 𝐷𝜏

−1 + 𝑋′𝑋 

Therefore, 𝛽|𝜏, 𝑧, 𝜆, 𝑦 ~ 𝑁(𝐴−1𝑋′𝑍, 𝐴−1) 

 

3.  𝜏2|𝑧, 𝛽, 𝜆, 𝑦 ∝ 𝜑(𝛽; 0, 𝐷𝜏) × ∏
𝜆2

2

𝑑

𝑗=1
𝑒

−𝜆2𝜏𝑗
2

2  

Proof: 

The two terms contain parameter 𝜏2 would be 𝜑(𝛽; 0, 𝐷𝜏) × ∏
𝜆2

2

𝑑

𝑗=1
𝑒

−𝜆2𝜏𝑗
2

2 . For This is 𝜏𝑗
2, we 

cannot write down any specific distribution. However, for 
1

𝜏𝑗
2, we have an explicit format because: 

𝑓(𝜏2|𝑧, 𝛽, 𝜆, 𝑦) ∝ ∏
1

√𝜏𝑗
2

𝑑

𝑗=1

exp (−
1

2
∑

𝛽𝑗
2

𝜏𝑗
2

𝑑

𝑗=1

) exp (−
𝜆2

2
𝜏𝑗

2)  

Let 𝑠𝑗 = 𝜏𝑗
−2, 𝑡ℎ𝑒𝑛 𝑑𝜏𝑗

2 = 𝑠𝑗
−2𝑑𝑠𝑗 . 𝑆𝑜 𝑓(𝑠|𝑧, 𝛽, 𝜆, 𝑦) ∝  ∏ 𝑠𝑗

−
3

2 exp {−
𝜆2(𝑠𝑗−µ𝑗)

2

2µ𝑗
2𝑠𝑗

}

𝑑

𝑗=1

.  

So 𝑠𝑗|𝑧, 𝛽, 𝜆, 𝑦  ~  𝐼𝐺(µ𝑗, 𝜆2) 𝑤𝑖𝑡ℎ µ𝑗 = 𝜆|𝛽𝑗|
−1

 . 
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4.  𝜆|𝜏, 𝛽, 𝑧, 𝑦 ∝ ∏
𝜆2

2

𝑑

𝑗=1
𝑒

−𝜆2𝜏𝑗
2

2 × ( π(𝜆)=c ) 

Proof: 

We have 𝜆 treated as flat prior. From the whole posterior, the condition density for 𝝀 will then be 

the product of exponential kernel. This is a gamma distribution. After transforming this 

exponential kernel into gamma format, we discovered that this density follows: 

𝑓(𝜆|𝜏, 𝛽, 𝑧, 𝑦) ∝ ∏
𝜆2

2

𝑑

𝑗=1

𝑒
−𝜆2𝜏𝑗

2

2 ∝ (𝜆2)𝑑 exp {−
𝜆2

2
∑ 𝜏𝑗

2

𝑑

𝑗=1

} 

𝜆|𝜏, 𝛽, 𝑧, 𝑦 ~ 𝐺𝑎𝑚𝑚𝑎(𝑑 + 1,
1

2
∑ 𝜏𝑗

2
𝑑

𝑗=1
) 
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APPENDIX B. R CODE FOR SIMULATION 

############################## 

########  Gibbs Sampler  ######## 

############################## 

library(mvtnorm) 

library(MASS) 

library(truncnorm) ## rtruncnorm(N0,mean=mu.z[y.data==0],sd=1,a=-Inf,b=0) 

library(statmod) ## rinvgauss(10,1,1) 

library(VGAM) ## rinv.gaussian(10,1,1) 

library(LearnBayes) 

## Prepare Simulation Data ## 

set.seed(100) 

n=1024 

d=15 

x1<-rnorm(n,3,1) 

x2<-rnorm(n,x1,1) 

x3<-rnorm(n,x2,2) 

x4<-runif(n,5,10) 

x5<-runif(n,x4,x4+3) 

x6<-rnorm(n,3.5,1) 

x7<-rnorm(n,x6,1) 

x8<-x4+x7+1 

x9<-runif(n,x8,x8+3) 

x10<-runif(n,x9,x9+1) 

x11<-rnorm(n,5,1) 
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x12<-rnorm(n,x11,1) 

x13<-rnorm(n,x12,2) 

x14<-runif(n,5,10) 

x15<-runif(n,x14,x14+3) 

X<-cbind(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15) 

X[1:5,] 

summary(x8) 

summary(x15) 

apply(X,2,mean) 

beta<-c(4,-4,5,7,-6,rep(0,10));beta 

length(beta) 

Xb<-X%*%beta                                

Xb 

# Obtain the vector with probabilities of success p using the probit link 

p<-pnorm(Xb) 

p 

y.data<-rbinom(1024,1,p) 

y.data 

length(y.data) 

## find some initial betas 

fit<-glm(y.data~0+X,family=binomial(link=logit)) 

summary(fit)  

## Z 

z<-rep(NA,n) 

N.sim<-270000 
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N1<-sum(y.data);N1 

N0<-n-N1;N0 

## beta 

beta<-matrix(NA,nrow=N.sim+1,ncol=d) 

beta[1,]<-c(4.3,-2.9,5.4,12.3,-10.5,0.3,-0.2,0,1.0,-0.5,0.4,-0.4,-0.09,-0.6,0.4) 

beta 

## tau 

tau.2<-matrix(NA,nrow=N.sim+1,ncol=d) 

tau.2[1,]<-c(rep(1,d)) 

tau.2 

## lamda 

lamda<-rep(NA,n) 

lamda[1]<-2 

lamda 

## sampling 

for (j in 1:N.sim){ 

  mu.z<-X%*%beta[j,] 

  z[y.data==0]<-rtruncnorm(N0,mean=mu.z[y.data==0],sd=1,a=-Inf,b=0) 

  z[y.data==1]<-rtruncnorm(N1,mean=mu.z[y.data==1],sd=1,a=0,b=Inf) 

  tau<-diag(tau.2[j,]) 

  E<-solve(solve(tau)+t(X)%*%X) 

  beta[j+1,]<-rmvnorm(1,E%*%t(X)%*%z,E) 

  tau.2[j+1,]<-1/rinv.gaussian(d,(lamda[j]^2/beta[j+1,]^2)^0.5,lamda[j]^2) 

  lamda[j+1]<-(rgamma(1,d+1,0.5*sum(tau.2[j+1,])))^0.5 

} 
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## estimation 

summary(lamda) 

plot(lamda)## very stable 

z 

beta[,1] 

tau.2[,1] 

ind<-seq(from=20000,to=270000,by=125) 

summary(lamda[ind])##estimate lambda 

sd(lamda[ind]) 

ts.plot(lamda[ind]);acf(lamda[ind]) 

colMeans(beta[ind,])##estimate beta 

colMeans(tau.2[ind,])##estimate tau 

newb<-beta[ind,] 

sd.beta<-rep(NA,15) 

for (k in 1:15){ 

  sd.beta[k]<-sd(newb[,k]) 

  } 

sd.beta##sd of beta estimates 

quantile(beta[ind,1],c(0.025,0.5,0.975)) 

quantile(beta[ind,2],c(0.025,0.5,0.975)) 

quantile(beta[ind,3],c(0.025,0.5,0.975)) 

quantile(beta[ind,4],c(0.025,0.5,0.975)) 

quantile(beta[ind,5],c(0.025,0.5,0.975)) 

quantile(beta[ind,6],c(0.025,0.5,0.975)) 

quantile(beta[ind,7],c(0.025,0.5,0.975)) 
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quantile(beta[ind,8],c(0.025,0.5,0.975)) 

quantile(beta[ind,9],c(0.025,0.5,0.975)) 

quantile(beta[ind,10],c(0.025,0.5,0.975)) 

quantile(beta[ind,11],c(0.025,0.5,0.975)) 

quantile(beta[ind,12],c(0.025,0.5,0.975)) 

quantile(beta[ind,13],c(0.025,0.5,0.975)) 

quantile(beta[ind,14],c(0.025,0.5,0.975)) 

quantile(beta[ind,15],c(0.025,0.5,0.975)) 

## plots check 

par(mfrow=c(2,2)) 

ts.plot(lamda);acf(lamda,lag=5000) 

ts.plot(beta[,1]);acf(beta[,1],lag=500) 

ts.plot(beta[,5]);acf(beta[,5]) 

ts.plot(tau.2[,1]);acf(tau.2[,1]) 

ts.plot(tau.2[,5]);acf(tau.2[,5]) 

## after burn in and slicing plots 

ts.plot(beta[ind,1]);acf(beta[ind,1],lag=100) 

 

################################ 

############  E-M  ############## 

################################ 

library(mvtnorm) 

library(MASS) 

library(truncnorm) ## rtruncnorm(N0,mean=mu.z[y.data==0],sd=1,a=-Inf,b=0) 

library(statmod) ## rinvgauss(10,1,1) 
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library(VGAM) ## rinv.gaussian(10,1,1) 

library(LearnBayes) 

## Prepare Simulation Data ## 

set.seed(100) 

n=1024 

d=15 

x1<-rnorm(n,3,1) 

x2<-rnorm(n,x1,1) 

x3<-rnorm(n,x2,2) 

x4<-runif(n,5,10) 

x5<-runif(n,x4,x4+3) 

x6<-rnorm(n,3.5,1) 

x7<-rnorm(n,x6,1) 

x8<-x4+x7+1 

x9<-runif(n,x8,x8+3) 

x10<-runif(n,x9,x9+1) 

x11<-rnorm(n,5,1) 

x12<-rnorm(n,x11,1) 

x13<-rnorm(n,x12,2) 

x14<-runif(n,5,10) 

x15<-runif(n,x14,x14+3) 

X<-cbind(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15) 

X[1:5,] 

apply(X,2,mean) 

beta<-c(4,-4,5,7,-6,rep(0,10));beta 
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length(beta) 

Xb<-X%*%beta                                

Xb 

# Obtain the vector with probabilities of success p using the probit link 

p<-pnorm(Xb) 

p 

y.data<-rbinom(1024,1,p) 

y.data 

length(y.data) 

## z 

z<-rep(NA,n) 

N.sim<-270000 

N1<-sum(y.data);N1 

N0<-n-N1;N0 

## beta, initail beta now from Giibbs Sampler 

beta<-matrix(NA,nrow=N.sim+1,ncol=d) 

beta[1,]<-c(4.3,-2.9,5.4,12.3,-10.5,0.3,-0.2,0,1.0,-0.5,0.4,-0.4,-0.09,-0.6,0.4) 

beta 

## tau 

tau.2<-matrix(NA,nrow=N.sim+1,ncol=d) 

tau.2[1,]<-c(rep(1,15)) 

tau.2 

## lamda 

lamda<-rep(NA,n) 

lamda[1]<-2 
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lamda 

for (j in 1:N.sim){ 

  mu.z<-X%*%beta[j,] 

  z[y.data==0]<-rtruncnorm(N0,mean=mu.z[y.data==0],sd=1,a=-Inf,b=0) 

  z[y.data==1]<-rtruncnorm(N1,mean=mu.z[y.data==1],sd=1,a=0,b=Inf) 

  tau<-diag(tau.2[j,]) 

  E<-solve(solve(tau)+t(X)%*%X) 

  beta[j+1,]<-rmvnorm(1,E%*%t(X)%*%z,E) 

  tau.2[j+1,]<-1/rinv.gaussian(d,(lamda[j]^2/beta[j+1,]^2)^0.5,lamda[j]^2) 

  lamda[j+1]<-(2*d/(sum((abs(lamda[j]*beta[j+1,])+1)/lamda[j]^2)))^0.5 

} 

##estimation 

lamda 

summary(lamda) 

z 

beta[,1] 

tau.2[,1] 

ind<-seq(from=20000,to=270000,by=250) 

summary(lamda[ind])##estimate lambda 

sd(lamda[ind]) 

plot(lamda[ind]) 

colMeans(beta[ind,])##estimate beta 

colMeans(tau.2[ind,])##estimate tau 

newb<-beta[ind,] 

sd.beta<-rep(NA,15) 
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for (k in 1:15){ 

  sd.beta[k]<-sd(newb[,k]) 

} 

sd.beta##sd of beta estimates 

quantile(beta[ind,1],c(0.025,0.5,0.975)) 

quantile(beta[ind,2],c(0.025,0.5,0.975)) 

quantile(beta[ind,3],c(0.025,0.5,0.975)) 

quantile(beta[ind,4],c(0.025,0.5,0.975)) 

quantile(beta[ind,5],c(0.025,0.5,0.975)) 

quantile(beta[ind,6],c(0.025,0.5,0.975)) 

quantile(beta[ind,7],c(0.025,0.5,0.975)) 

quantile(beta[ind,8],c(0.025,0.5,0.975)) 

quantile(beta[ind,9],c(0.025,0.5,0.975)) 

quantile(beta[ind,10],c(0.025,0.5,0.975)) 

quantile(beta[ind,11],c(0.025,0.5,0.975)) 

quantile(beta[ind,12],c(0.025,0.5,0.975)) 

quantile(beta[ind,13],c(0.025,0.5,0.975)) 

quantile(beta[ind,14],c(0.025,0.5,0.975)) 

quantile(beta[ind,15],c(0.025,0.5,0.975)) 

## plots check 

par(mfrow=c(2,2)) 

ts.plot(lamda);acf(lamda,lag=5000) 

ts.plot(beta[,1]);acf(beta[,1],lag=500) 

ts.plot(beta[,5]);acf(beta[,5]) 

ts.plot(tau.2[,1]);acf(tau.2[,1]) 
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ts.plot(tau.2[,5]);acf(tau.2[,5]) 

## after burn in and slicing plots 

ts.plot(beta[ind,1]);acf(beta[ind,1],lag=100) 

 

############################ 

######   Consistency check    ### 

############################ 

############################ 

############  E-M  ########## 

############################ 

library(mvtnorm) 

library(MASS) 

library(truncnorm) ## rtruncnorm(N0,mean=mu.z[y.data==0],sd=1,a=-Inf,b=0) 

library(statmod) ## rinvgauss(10,1,1) 

library(VGAM) ## rinv.gaussian(10,1,1) 

library(LearnBayes) 

## Prepare Simulation Data ## 

n=1024 

d=15 

x1<-rnorm(n,3,1) 

x2<-rnorm(n,x1,1) 

x3<-rnorm(n,x2,2) 

x4<-runif(n,5,10) 

x5<-runif(n,x4,x4+3) 

x6<-rnorm(n,3.5,1) 
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x7<-rnorm(n,x6,1) 

x8<-x4+x7+1 

x9<-runif(n,x8,x8+3) 

x10<-runif(n,x9,x9+1) 

x11<-rnorm(n,5,1) 

x12<-rnorm(n,x11,1) 

x13<-rnorm(n,x12,2) 

x14<-runif(n,5,10) 

x15<-runif(n,x14,x14+3) 

X<-cbind(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15) 

X[1:5,] 

apply(X,2,mean) 

beta<-c(4,-4,5,7,-6,rep(0,10));beta 

length(beta) 

Xb<-X%*%beta                                

Xb 

# Obtain the vector with probabilities of success p using the probit link 

p<-pnorm(Xb) 

p 

y.data<-rbinom(1024,1,p) 

y.data 

length(y.data) 

## z 

z<-rep(NA,n) 

N.sim<-60000 
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N1<-sum(y.data);N1 

N0<-n-N1;N0 

## beta, initail beta now from Giibbs Sampler 

beta<-matrix(NA,nrow=N.sim+1,ncol=d) 

beta[1,]<-c(4.3,-2.9,5.4,12.3,-10.5,0.3,-0.2,0,1.0,-0.5,0.4,-0.4,-0.09,-0.6,0.4) 

beta 

## tau 

tau.2<-matrix(NA,nrow=N.sim+1,ncol=d) 

tau.2[1,]<-c(rep(1,15)) 

tau.2 

## lamda 

lamda<-rep(NA,n) 

lamda[1]<-2 

lamda 

replicate( 

  30, 

{for (j in 1:N.sim){ 

  mu.z<-X%*%beta[j,] 

  z[y.data==0]<-rtruncnorm(N0,mean=mu.z[y.data==0],sd=1,a=-Inf,b=0) 

  z[y.data==1]<-rtruncnorm(N1,mean=mu.z[y.data==1],sd=1,a=0,b=Inf) 

  tau<-diag(tau.2[j,]) 

  E<-solve(solve(tau)+t(X)%*%X) 

  beta[j+1,]<-rmvnorm(1,E%*%t(X)%*%z,E) 

  tau.2[j+1,]<-1/rinv.gaussian(d,(lamda[j]^2/beta[j+1,]^2)^0.5,lamda[j]^2) 

  lamda[j+1]<-(2*d/(sum((abs(lamda[j]*beta[j+1,])+1)/lamda[j]^2)))^0.5 
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} 

  ind<-seq(from=10000,to=60000,by=50) 

  check<-colMeans(beta[ind,])##estimate beta 

  check 

} 

) 

par(mfrow=c(1,1)) 

box<-read.csv("C:/Users/di.gao/Desktop/simulation 30.csv",header=T) 

box 

boxplot(box) 
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APPENDIX C. R CODE FOR BAYESIAN LASSO MODEL BRACKETING 

############################# 

###### Package Installing ####### 

############################# 

library(mvtnorm) 

library(MASS) 

library(truncnorm) ## rtruncnorm(N0,mean=mu.z[y.data==0],sd=1,a=-Inf,b=0) 

library(statmod) ## rinvgauss(10,1,1) 

library(VGAM) ## rinv.gaussian(10,1,1) 

library(LearnBayes) 

############################### 

###### Data Cleaning ############ 

############################### 

##setwd("I:/NCAA/NewModel") 

BB<-read.csv("C:/Users/di.gao/Desktop/NCAA Data (updated on 3.14.2018).csv",header=T) 

BB 

m<- 16*64; Cx<- 2:15; Cy<- 16:21 

X<- BB[1:m,Cx]; RR<- BB[1:m,Cy] 

X 

RR 

X[1:6,] 

RR[1:6,] 

#summary(X[,15]) 

#table(X[,15]) 
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#1st round# 

a<- seq(from=1, to=m-1, by=2) 

b<- seq(from=2, to=m, by=2) 

Z<- (X[a,]-X[b,])/(abs(X[a,])+abs(X[b,])); 

seedinfo<- cbind(X[a,1],X[b,1]) 

rY<- cbind(RR[a,1],RR[b,1]) 

rY 

 

#2nd-6th round# 

for (k in 2:6) { 

  id<- which(RR[,(k-1)]==1) 

  s<- 2^(k-1) 

  a<- seq(from=1, to=m/s-1, by=2) 

  b<- seq(from=2, to=m/s, by=2) 

  Z.t<- (X[id[a],]-X[id[b],])/(abs(X[id[a],])+abs(X[id[b],])); 

  Y.t<- cbind(RR[id[a],k],RR[id[b],k]) 

  Z<- rbind(Z,Z.t) 

  rY<- rbind(rY,Y.t) 

  seedinfo.k<- cbind(X[id[a],1],X[id[b],1]) 

  seedinfo<- rbind(seedinfo,seedinfo.k) 

} 

 

Z<- as.matrix(Z) 

rowSums(rY) 

Y<- rY[,1] 
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Y 

seed.c<- seedinfo[,1]*17+seedinfo[,2] 

 

game.data<- data.frame(seed.c,Y,Z) 

colnames(game.data)[1]<- c("seed.c") 

n<- m/2+m/4+m/8+m/16+m/32+m/64  

n 

 

Y 

Z[1:6,] 

y.data<-Y 

X<-Z 

y.data 

X 

n<-length(y.data);n 

d<-length(t(X[1,]));d 

########  Initial Betas Estimate  ## 

fit<-glm(Y~0+X,family=binomial(link=logit)) 

summary(fit) 

############################## 

########  Gibbs Samplar  ######## 

############################## 

z<-rep(NA,n) 

N.sim<-60000 

N1<-sum(y.data);N1 
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N0<-n-N1;N0 

 

beta<-matrix(NA,nrow=N.sim+1,ncol=d) 

beta[1,]<-c(0.8,7.7,62.7,-58.8,-1.2,-17.1,1.2,0.1,-0.3,0.3,-3.2,-2.8,-0.6,-0.3) 

beta 

 

tau.2<-matrix(NA,nrow=N.sim+1,ncol=d) 

tau.2[1,]<-c(rep(1,d)) 

tau.2 

 

lamda<-rep(NA,n) 

lamda[1]<-2 

lamda 

 

for (j in 1:N.sim){ 

  mu.z<-X%*%beta[j,] 

  z[y.data==0]<-rtruncnorm(N0,mean=mu.z[y.data==0],sd=1,a=-Inf,b=0) 

  z[y.data==1]<-rtruncnorm(N1,mean=mu.z[y.data==1],sd=1,a=0,b=Inf) 

  tau<-diag(tau.2[j,]) 

  E<-solve(solve(tau)+t(X)%*%X) 

  beta[j+1,]<-rmvnorm(1,E%*%t(X)%*%z,E) 

  tau.2[j+1,]<-1/rinv.gaussian(d,(lamda[j]^2/beta[j+1,]^2)^0.5,lamda[j]^2) 

  lamda[j+1]<-(rgamma(1,d+1,0.5*sum(tau.2[j+1,])))^0.5 

} 
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lamda 

par(mfrow=c(1,1)) 

plot(lamda)## very stable but need to check after burn in and slcing 

z 

beta 

beta[,1] 

tau.2 

tau.2[,1] 

par(mfrow=c(2,2)) 

ts.plot(lamda);acf(lamda,lag=50) 

ts.plot(beta[,1]);acf(beta[,1],lag=50) 

ts.plot(beta[,5]);acf(beta[,5]) 

ts.plot(tau.2[,1]);acf(tau.2[,1]) 

ts.plot(tau.2[,5]);acf(tau.2[,5]) 

ind<-seq(from=10001,to=60000,by=50) 

ts.plot(lamda[ind]) 

summary(lamda[ind])##estimate lambda 

sd(lamda[ind]) 

colMeans(tau.2[ind,])##estimate tau squared 

colMeans(beta[ind,])##estimate beta 

newb<-beta[ind,] 

newb 

sd.beta<-rep(NA,14) 

for (k in 1:14){ 

  sd.beta[k]<-sd(newb[,k]) 
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} 

sd.beta##sd of beta estimates 

quantile(beta[ind,1],c(0.025,0.5,0.975)) 

quantile(beta[ind,2],c(0.025,0.5,0.975)) 

quantile(beta[ind,3],c(0.025,0.5,0.975)) 

quantile(beta[ind,4],c(0.025,0.5,0.975)) 

quantile(beta[ind,5],c(0.025,0.5,0.975)) 

quantile(beta[ind,6],c(0.025,0.5,0.975)) 

quantile(beta[ind,7],c(0.025,0.5,0.975)) 

quantile(beta[ind,8],c(0.025,0.5,0.975)) 

quantile(beta[ind,9],c(0.025,0.5,0.975)) 

quantile(beta[ind,10],c(0.025,0.5,0.975)) 

quantile(beta[ind,11],c(0.025,0.5,0.975)) 

quantile(beta[ind,12],c(0.025,0.5,0.975)) 

quantile(beta[ind,13],c(0.025,0.5,0.975)) 

quantile(beta[ind,14],c(0.025,0.5,0.975)) 

 

################################ 

############  E-M  ############## 

############################### 

z<-rep(NA,n) 

N.sim<-60000 

N1<-sum(y.data);N1 

N0<-n-N1;N0 
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beta<-matrix(NA,nrow=N.sim+1,ncol=d) 

beta[1,]<-c(0.8,7.7,62.7,-58.8,-1.2,-17.1,1.2,0.1,-0.3,0.3,-3.2,-2.8,-0.6,-0.3) 

beta 

 

tau.2<-matrix(NA,nrow=N.sim+1,ncol=d) 

tau.2[1,]<-c(rep(1,d)) 

tau.2 

 

lamda<-rep(NA,n) 

lamda[1]<-2 

lamda 

##lamda[2]<-(2*d/(sum((abs(lamda[1]*beta[1,])+1)/lamda[1]^2)))^0.5 

##lamda 

for (j in 1:N.sim){ 

  mu.z<-X%*%beta[j,] 

  z[y.data==0]<-rtruncnorm(N0,mean=mu.z[y.data==0],sd=1,a=-Inf,b=0) 

  z[y.data==1]<-rtruncnorm(N1,mean=mu.z[y.data==1],sd=1,a=0,b=Inf) 

  tau<-diag(tau.2[j,]) 

  E<-solve(solve(tau)+t(X)%*%X) 

  beta[j+1,]<-rmvnorm(1,E%*%t(X)%*%z,E) 

  tau.2[j+1,]<-1/rinv.gaussian(d,(lamda[j]^2/beta[j+1,]^2)^0.5,lamda[j]^2) 

  lamda[j+1]<-(2*d/(sum((abs(lamda[j]*beta[j+1,])+1)/lamda[j]^2)))^0.5 

} 

 

lamda 
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summary(lamda) 

plot(lamda)## very stable 

z 

beta 

beta[,1] 

tau.2 

tau.2[,1] 

par(mfrow=c(2,1)) 

ts.plot(lamda);acf(lamda) 

ts.plot(beta[,2]);acf(beta[,2]) 

ts.plot(beta[,7]);acf(beta[,7]) 

ts.plot(tau.2[,1]);acf(tau.2[,1]) 

ts.plot(tau.2[,5]);acf(tau.2[,5]) 

ind<-seq(from=5001,to=60000,by=50) 

ts.plot(lamda[ind]) ## plot check lambda stalibility 

summary(lamda[ind])##estimate lambda 

sd(lamda[ind]) 

beta[ind,] 

colMeans(tau.2[ind,])##estimate tau squared 

colMeans(beta[ind,])##estimate beta 

newb<-beta[ind,] 

newb 

sd.beta<-rep(NA,14) 

for (k in 1:14){ 

  sd.beta[k]<-sd(newb[,k]) 



 

69 

} 

sd.beta##sd of beta estimates 

 

quantile(beta[ind,1],c(0.025,0.5,0.975)) 

quantile(beta[ind,2],c(0.025,0.5,0.975)) 

quantile(beta[ind,3],c(0.025,0.5,0.975)) 

quantile(beta[ind,4],c(0.025,0.5,0.975)) 

quantile(beta[ind,5],c(0.025,0.5,0.975)) 

quantile(beta[ind,6],c(0.025,0.5,0.975)) 

quantile(beta[ind,7],c(0.025,0.5,0.975)) 

quantile(beta[ind,8],c(0.025,0.5,0.975)) 

quantile(beta[ind,9],c(0.025,0.5,0.975)) 

quantile(beta[ind,10],c(0.025,0.5,0.975)) 

quantile(beta[ind,11],c(0.025,0.5,0.975)) 

quantile(beta[ind,12],c(0.025,0.5,0.975)) 

quantile(beta[ind,13],c(0.025,0.5,0.975)) 

quantile(beta[ind,14],c(0.025,0.5,0.975)) 

 

 

################################ 

########## Bracketing ############ 

################################ 

np<- Q<- matrix(NA,nrow=64,ncol=6)   #Probability matrix# 

nX<- BB[(m+1):(m+64),Cx]  
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#1st round prediction# 

a1<- seq(from=1, to=63, by=2) 

b1<- seq(from=2, to=64, by=2) 

nZ<- (nX[a1,]-nX[b1,])/(abs(nX[a1,])+abs(nX[b1,])) 

nZ<- as.matrix(nZ);nZ 

 

neta.s<- nZ%*%t(beta.rs) 

np[a1,1] <- temp<- apply(exp(neta.s)/(1+exp(neta.s)),1,mean) 

np[b1,1] <- 1-temp 

np 

 

#2nd - 6th round prediction# 

for (k in 2:6) { 

  nu<- 2^(6-k); ri<-2^(k-1) 

  for (t in 1:nu) { 

    ini<-(t-1)*2*ri; mi<-ini+ri; ui<-ini+2*ri;  

     

    for (s in (ini+1):mi) { 

      psum<- 0 

      for (i in 1:ri) { 

        mZ<- (nX[s,]-nX[(mi+i),])/(abs(nX[s,])+abs(nX[(mi+i),])) 

        mZ<- as.matrix(mZ) 

        meta.s<- mZ%*%t(beta.rs) 

        pc<- apply(exp(meta.s)/(1+exp(meta.s)),1,mean) 

        psum<- psum+np[s,(k-1)]*np[(mi+i),(k-1)]*pc 
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      } 

      np[s,k]<- psum 

    }  

     

    for (s in (mi+1): ui) { 

      psum<- 0 

      for (i in 1:ri) { 

        mZ<- (nX[s,]-nX[(ini+i),])/(abs(nX[s,])+abs(nX[(ini+i),])) 

        mZ<- as.matrix(mZ) 

        meta.s<- mZ%*%t(beta.rs) 

        pc<- apply(exp(meta.s)/(1+exp(meta.s)),1,mean) 

        psum<- psum+np[s,(k-1)]*np[(ini+i),(k-1)]*pc 

      } 

      np[s,k]<- psum 

    } 

  } 

   

  for (t in 1:nu) { 

    ini<-(t-1)*2*ri; mi<-ini+ri; ui<-ini+2*ri; 

    cat(sum(np[(ini+1):ui,k]), "\n") 

  } 

} 

 

 

for (r in 1:6) { 
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  nu<- 2^(6-r); ri<-2^r 

  for (t in 1:nu) { 

    ini<-(t-1)*ri; mi<-ini+1; ui<-ini+ri;  

    idmax<- which.max(np[mi:ui,r])+ini 

    for (s in mi:ui) { 

      Q[s,r]<- (s==idmax)*1 

    } 

  } 

} 

colSums(Q) 

np;Q 

m 

 

R<- as.matrix(BB[(m+1):(m+64),16:21]) 

 

1-(sum(abs(Q-R))/2)/63  #accuracy of bracketing using single scoring system# 

ds<- matrix(c(1,2,4,8,16,32),6,1) 

1-sum((abs(Q-R)%*%ds)/2)/192  #accuracy of bracketing using double scoring system# 

 


